WorldWideScience

Sample records for severe genotoxic effects

  1. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers

    OpenAIRE

    Amrin Shaikh; Darshana Barot; Divya Chandel

    2018-01-01

    Background: Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. Objective: To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. Methods: The study groups included 70 petrol pump workers (exposed group) and 70 healthy age-matched individuals with no known exposure (comparison group). Buccal micronucleus cytome assay (BMCyt) was performed to check the genotoxicity caused due to inhalation ...

  2. Genotoxic effect of alkaloids

    Directory of Open Access Journals (Sweden)

    J. A. P. Henriques

    1991-01-01

    Full Text Available Because of the increase use of alkaloids in general medical practice in recent years, it is of interest to determine genotoxic, mutagenic and recombinogenic response to different groups of alkaloids in prokaryotic and eucaryotic organisms. Reserpine, boldine and chelerythrine did not show genotoxicity response in the SOS-Chromotest whereas skimmianine showed genotixicity in the presence of a metabolic activation mixture. Voacristine isolated fromthe leaves of Ervatamia coronaria shows in vivo cytostatic and mutagenic effects in Saccharomyces cerevisiae hapioids cells. The Rauwolfia alkaloid (reserpine was not able to induce reverse mutation and recombinational mitotic events (crossing-over and gene conversion in yeast diploid strain XS2316.

  3. Genotoxic effects of environmental pollutants genotoxic monitoring and detection of antigenotoxic effects

    International Nuclear Information System (INIS)

    Simic, D.; Knezevic-Vukcevic, J.; Vukovi -Gacic, B.; Mitic, D.; Beric, T.; Nikolic, B.; Stanojevic, J.; Stankovic, S.

    2002-01-01

    The control of genotoxic agents mass release, which can adversely affect the ecosystem stability and human health is of the greatest importance. Therefore, it is necessary to seriously elaborate the strategy of genotoxic monitoring and relevant legislation. Additional approach is the study and dietary use of antigenotoxic plant substances for prevention of mutation-related diseases. (author)

  4. Genotoxic effects of environmental pollutants genotoxic monitoring and detection of antigenotoxic effects

    Energy Technology Data Exchange (ETDEWEB)

    Simic, D; Knezevic-Vukcevic, J; Vukovi -Gacic, B; Mitic, D; Beric, T; Nikolic, B; Stanojevic, J; Stankovic, S [Faculty of Biology, University of Belgrade, Belgrade (Yugoslavia)

    2002-05-01

    The control of genotoxic agents mass release, which can adversely affect the ecosystem stability and human health is of the greatest importance. Therefore, it is necessary to seriously elaborate the strategy of genotoxic monitoring and relevant legislation. Additional approach is the study and dietary use of antigenotoxic plant substances for prevention of mutation-related diseases. (author)

  5. Can Genotoxic Effect be Model Dependent in Allium Test?-An Evidence

    Directory of Open Access Journals (Sweden)

    Hemant Singh Rathore

    2010-07-01

    Full Text Available Genotoxicity of peracetic acid (PAA has been assessed in two models (protocols of Allium cepa conducting two sets of experiments to know whether the results would be model dependent. One experiment was set as per Fiskesjo's model in which Allium cepa bulbs were grown in five concentrations of peracetic acid (0.039, 0.078, 0.156, 0.312 and 0.625 ppm in tap water. Another experiment was set as per Rank and Nielson's model in which Allium cepa bulbs were first grown in tap water for 24 hours and were then further grown in the same concentrations of peracetic acid as in earlier model. Genotoxic effects of peracetic acid were assessed in both models using usual parameters i.e. shape, colour and length of root tips, mitotic index, chromosomal aberrations and cell death. Magnitude of effect differed significantly in both models. More severe genotoxic effects could be seen in Fiskesjo's model. It is suggested that root primordial cells were in G0 state in Fiskesjo's model, which presumably lacked their defense system, hence were more prone to peracetic acid toxicity. Mitotically dividing root cells in Rank and Nielsen's model were equipped with antioxidant system and were more resistant to peracetic acid

  6. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers.

    Science.gov (United States)

    Shaikh, Amrin; Barot, Darshana; Chandel, Divya

    2018-04-01

    Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. The study groups included 70 petrol pump workers (exposed group) and 70 healthy age-matched individuals with no known exposure (comparison group). Buccal micronucleus cytome assay (BMCyt) was performed to check the genotoxicity caused due to inhalation of gasoline fumes. The frequencies of micronucleated cells, nuclear bud, condensed chromatin cells, karyorrhectic cells, pyknotic cells, and karyolytic cells were significantly higher in the exposed workers compared to the comparison group. Exposure to gasoline fumes is associated with increased frequency of cell abnormalities. This may lead to various health consequences including cancer in those occupationally exposed to gasoline fumes.

  7. Genotoxic and apoptotic effects of Goeckerman therapy for psoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Borska, L.; Andrys, C.; Krejsek, J.; Hamakova, K.; Kremlacek, J.; Palicka, V.; Ranna, D.; Fiala, Z. [Charles University Prague, Prague (Czech Republic). Faculty of Medicine

    2010-03-15

    Goeckerman therapy (GT) for psoriasis is based on cutaneous application of crude coal tar (polycyclic aromatic hydrocarbons (PAH)) and exposure to ultraviolet radiation (UVR). PAH and UVR are mutagenic, carcinogenic and immunotoxic agents that promote apoptosis. We evaluated dermal absorption of PAH as well as the genotoxic and apoptotic effects of GT in 20 patients with psoriasis, by determining numbers of chromosomal abnormalities in peripheral lymphocytes, and levels of 1-hydroxypyrene (1-OHP), p53 protein and soluble FasL (sFasL) in urine and/or blood, before and after GT. Psoriasis Area and Severity Index (PASI) score was used to evaluate clinical efficacy of GT. Compared with pre-treatment levels, there was a significant increase in urine 1-OHP, indicating a high degree of dermal absorption of PAH (P <0.01). We also found a significant increase in the number of chromosomal abnormalities in peripheral blood lymphocytes (P <0.001), suggesting that GT is genotoxic; significantly increased p53 protein in plasma (P <0.05), an indicator of cell response to DNA damage; and significantly increased sFasL in serum (P <0.01), an indicator of apoptosis. The PASI score was significantly decreased after GT (P <0.001), confirming clinical benefit of this treatment. Our results demonstrate high dermal absorption of PAH during GT and provide evidence that GT promotes genotoxicity and apoptosis.

  8. An evaluation of the genotoxic and cytotoxic effects of the anti-obesity drugs sibutramine and fenproporex.

    Science.gov (United States)

    da Silva, Cristiano José; dos Santos, José Ernesto; Satie Takahashi, Catarina

    2010-03-01

    Anti-obesity medications deserve special considerations at the present time due to an increasing number of overweight and obese people who require these therapeutic alternatives. Obesity is positively associated with several chronic illnesses, including cancer. In this work, we evaluated the possible genotoxic and/or cytotoxic actions of two drugs, sibutramine and fenproporex, in the doses of 10, 20 and 40 mg/kg body weight (bw), administered intraperitoneally in male Swiss mice. The genotoxic effect was analyzed by comet assay and micronucleus test. We found that both drugs increased the frequency of genotoxic damage in Swiss mice, but did not present cytotoxic activities towards the polychromatic erythrocytes of the bone marrow of these animals.

  9. Genotoxic Effects of Exposure to Gasoline Fumes on Petrol Pump Workers

    Directory of Open Access Journals (Sweden)

    Amrin Shaikh

    2018-04-01

    Full Text Available Background: Petrol pump workers are occupationally exposed to gasoline and its fumes consisting of several mutagenic chemicals. Objective: To evaluate the genotoxic effects of exposure to gasoline fumes on petrol pump workers. Methods: The study groups included 70 petrol pump workers (exposed group and 70 healthy age-matched individuals with no known exposure (comparison group. Buccal micronucleus cytome assay (BMCyt was performed to check the genotoxicity caused due to inhalation of gasoline fumes. Results: The frequencies of micronucleated cells, nuclear bud, condensed chromatin cells, karyorrhectic cells, pyknotic cells, and karyolytic cells were significantly higher in the exposed workers compared to the comparison group. Conclusion: Exposure to gasoline fumes is associated with increased frequency of cell abnormalities. This may lead to various health consequences including cancer in those occupationally exposed to gasoline fumes.

  10. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints

    International Nuclear Information System (INIS)

    Esperanza, Marta; Cid, Ángeles; Herrero, Concepción; Rioboo, Carmen

    2015-01-01

    Highlights: • Mitochondrial membrane potential constituted the most sensitive parameter assayed. • Several genotoxicity methods were applied for first time in ecotoxicological studies. • Oxidative DNA base damage (8-OHdG) was induced by paraquat exposure. • Cells with DNA strand breakage and subG1-nuclei increased in treated cultures. • Typical apoptosis hallmarks were observed in microalgal cells exposed to paraquat. - Abstract: Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of

  11. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints

    Energy Technology Data Exchange (ETDEWEB)

    Esperanza, Marta; Cid, Ángeles; Herrero, Concepción; Rioboo, Carmen, E-mail: carmen.rioboo@udc.es

    2015-08-15

    Highlights: • Mitochondrial membrane potential constituted the most sensitive parameter assayed. • Several genotoxicity methods were applied for first time in ecotoxicological studies. • Oxidative DNA base damage (8-OHdG) was induced by paraquat exposure. • Cells with DNA strand breakage and subG1-nuclei increased in treated cultures. • Typical apoptosis hallmarks were observed in microalgal cells exposed to paraquat. - Abstract: Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of

  12. Protective effect of thymoquinone against diazinon-induced hematotoxicity, genotoxicity and immunotoxicity in rats.

    Science.gov (United States)

    Danaei, Gholam Hassan; Karami, Mohammad

    2017-10-01

    Several studies have shown that oxidative stress and cell damage can occur in the very early stages of diazinon (DZN) exposure. The present study was designed to determine the beneficial effect of thymoquinone (Thy), the main component of Nigella sativa (black seed or black cumin) against DZN immunotoxicity, hematotoxicity and genotoxicity in rats. In the present experimental study, 48 male Wistar rats were randomly divided into six groups, (eight per group) as follows: control (receiving corn oil as the DZN solvent), DZN (20mg/kg), Thy (10mg/kg), Thy (2.5mg/kg)+DZN, Thy (5mg/kg)+DZN and Thy (10mg/kg)+DZN. After four weeks of treatment, the hematological parameters of red blood cells (RBCs), white blood cells (WBCs), hemoglobin (Hb), hematocrit (Hct) and platelets (PLTs) were evaluated. The evaluation of genotoxicity was carried out using the micronucleus assay. For measurement of cytokine production, interferon gamma (IFN-γ), interleukin 10 (IL10) and interleukin 4 (IL4) were chosen as immunotoxicity indicators of DZN toxicity. DZN was found to decrease RBCs, WBCs, Hb, Hct, PLTs, butyrl- and acetyl-cholinesterase activity and I FN-γ and increased the micronucleus indices of IL10 and IL4 as compared with the control group. Treatment with Thy reduced DZN hematotoxicity and immunotoxicity, but, significantly, did not prevent genotoxicity. This study showed that Thy (without the significant effect on genotoxicity) decreased the hematological toxicity, immunotoxicity and butyrl and acetyl cholinesterase activity induced by DZN. The success of Thy supplementation against DZN toxicity can be attributed to the antioxidant effects of its constituents. Copyright © 2017. Published by Elsevier B.V.

  13. Screening potential genotoxic effect of aquatic plant extracts using the mussel micronucleus test

    Directory of Open Access Journals (Sweden)

    Bettina Eck-Varanka

    2016-01-01

    Full Text Available Objective: To assess the genotoxic potential of selected aquatic macrophytes: Ceratophyllum demersum L. (hornwort, family Ceratophyllaceae, Typha angustifolia L. (narrowleaf cattail, family Typhaceae, Stratiotes aloides L. (water soldier, family Butomaceae, and Oenanthe aquatica (L. Poir. (water dropwort, family Umbelliferae. Methods: For genotoxicity assessment, the mussel micronucleus test was applied. Micronucleus frequency was determined from the haemolymph of Unio pictorum L. (painter’s mussel. In parallel, total and hydrolisable tannin contents were determined. Results: All plant extracts elucidated significant mutagenic effect. Significant correlation was determined between tannin content and mutagenic capacity. Conclusions: The significant correlation between genotoxicity as expressed by micronucleus frequency and tannin content (both total and hydrolisable tannins indicate that tannin is amongst the main compounds being responsible for the genotoxic potential. It might be suggested that genotoxic capacity of these plants elucidate a real ecological effect in the ecosystem.

  14. Detection of genotoxic and non-genotoxic carcinogens in Xpc−/−p53+/− mice

    International Nuclear Information System (INIS)

    Melis, Joost P.M.; Speksnijder, Ewoud N.; Kuiper, Raoul V.; Salvatori, Daniela C.F.; Schaap, Mirjam M.; Maas, Saskia; Robinson, Joke; Verhoef, Aart; Benthem, Jan van; Luijten, Mirjam; Steeg, Harry van

    2013-01-01

    An accurate assessment of the carcinogenic potential of chemicals and pharmaceutical drugs is essential to protect humans and the environment. Therefore, substances are extensively tested before they are marketed to the public. Currently, the rodent two-year bioassay is still routinely used to assess the carcinogenic potential of substances. However, over time it has become clear that this assay yields false positive results and also has several economic and ethical drawbacks including the use of large numbers of animals, the long duration, and the high cost. The need for a suitable alternative assay is therefore high. Previously, we have proposed the Xpa*p53 mouse model as a very suitable alternative to the two-year bioassay. We now show that the Xpc*p53 mouse model preserves all the beneficial traits of the Xpa*p53 model for sub-chronic carcinogen identification and can identify both genotoxic and non-genotoxic carcinogens. Moreover, Xpc*p53 mice appear to be more responsive than Xpa*p53 mice towards several genotoxic and non-genotoxic carcinogens. Furthermore, Xpc*p53 mice are far less sensitive than Xpa*p53 mice for the toxic activity of DNA damaging agents and as such clearly respond in a similar way as wild type mice do. These advantageous traits of the Xpc*p53 model make it a better alternative for in vivo carcinogen testing than Xpa*p53. This pilot study suggests that Xpc*p53 mice are suited for routine sub-chronic testing of both genotoxic and non-genotoxic carcinogens and as such represent a suitable alternative to possibly replace the murine life time cancer bioassay. Highlights: ► The Xpc*p53 mouse model is able to identify genotoxic and non-genotoxic carcinogens. ► Time, animals and cost can be significantly reduced compared to the 2-year bioassay. ► Xpc*p53 mice are more advantageous for carcinogen identification than Xpa*p53 mice. ► Xpc*p53 mice exhibit a wild type response upon exposure to genotoxicants.

  15. A predictive toxicogenomics signature to classify genotoxic versus non-genotoxic chemicals in human TK6 cells

    Directory of Open Access Journals (Sweden)

    Andrew Williams

    2015-12-01

    Full Text Available Genotoxicity testing is a critical component of chemical assessment. The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the DNA damage response pathways involved in response, is becoming more common. In companion papers previously published in Environmental and Molecular Mutagenesis, Li et al. (2015 [6] developed a dose optimization protocol that was based on evaluating expression changes in several well-characterized stress-response genes using quantitative real-time PCR in human lymphoblastoid TK6 cells in culture. This optimization approach was applied to the analysis of TK6 cells exposed to one of 14 genotoxic or 14 non-genotoxic agents, with sampling 4 h post-exposure. Microarray-based transcriptomic analyses were then used to develop a classifier for genotoxicity using the nearest shrunken centroids method. A panel of 65 genes was identified that could accurately classify toxicants as genotoxic or non-genotoxic. In Buick et al. (2015 [1], the utility of the biomarker for chemicals that require metabolic activation was evaluated. In this study, TK6 cells were exposed to increasing doses of four chemicals (two genotoxic that require metabolic activation and two non-genotoxic chemicals in the presence of rat liver S9 to demonstrate that S9 does not impair the ability to classify genotoxicity using this genomic biomarker in TK6cells.

  16. Assessment of Genotoxicity of Ionizing radiation using Tradescantia-Comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Ryu, Tae Ho; Hyun, Kyung Man; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Wilhelmova, Nad [Institute of Experimental Botany, Prague (Czech Republic)

    2010-05-15

    Over the last two decades, several new methodologies for the detection of DNA damage have been developed. The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, also called the single cell gel electrophoresis (SCGE) was first introduced by Ostling and Johanson as a microelectrophoretic technique for the direct visualization of DNA damage in individual cells. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Although the genotoxic effects detected by Tradescantia tests cannot be associated with mutagenesis or even carcinogenesis in humans, these bioassays are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay

  17. Evaluation of the tickcide, genotoxic, and mutagenic effects of the Ruta graveolens L. (Rutaceae

    Directory of Open Access Journals (Sweden)

    Alessandra Vargas de Carvalho

    2015-10-01

    Full Text Available Current analysis investigated the tickcide effects of the aqueous extract and chloroform fractions of Ruta graveolens L. (rue on engorged females of Rhipicephalus microplus, as well as their genotoxic and mutagenic effects on human leukocytes. The best tickcide activity (non-dependent dose and genotoxic / mutagenic effects (dependent-dose were observed on exposure to chloroform fractions. Results suggest that extract fractions of R. graveolens L are efficient against R. microplus, although the fraction and the tested concentrations show genotoxic and mutagenic potential for human leukocytes.

  18. Genotoxicity of drinking water treated with different disinfectants and effects of disinfection conditions detected by umu-test.

    Science.gov (United States)

    Nie, Xuebiao; Liu, Wenjun; Zhang, Liping; Liu, Qing

    2017-06-01

    The genotoxicity of drinking water treated with 6 disinfection methods and the effects of disinfection conditions were investigated using the umu-test. The pretreatment procedure of samples for the umu-test was optimized for drinking water analysis. The results of the umu-test were in good correlation with those of the Ames-test. The genotoxicity and production of haloacetic acids (HAAs) were the highest for chlorinated samples. UV+chloramination is the safest disinfection method from the aspects of genotoxicity, HAA production and inactivation effects. For chloramination, the effects of the mass ratio of Cl 2 to N of chloramine on genotoxicity were also studied. The changes of genotoxicity were different from those of HAA production, which implied that HAA production cannot represent the genotoxic potential of water. The genotoxicity per chlorine decay of chlorination and chloramination had similar trends, indicating that the reaction of organic matters and chlorine made a great contribution to the genotoxicity. The results of this study are of engineering significance for optimizing the operation of waterworks. Copyright © 2016. Published by Elsevier B.V.

  19. Genotoxic Effect of Atrazine, Arsenic, Cadmium and Nitrate ...

    African Journals Online (AJOL)

    Atrazine has clastogenic effects and may also act as tumor promoter as it induces the aromatase enzyme. ... bladder cancer. This study ... in MCF-10A cells, suggesting that estrogen receptor modulated the genotoxicity of estrogen. Cd caused ...

  20. In Vitro Genotoxic Effects of Four Helichrysum Species in Human Lymphocytes Cultures

    OpenAIRE

    Erolu, Erhan H; Hamzaolu, Ergin; Aksoy, Ahmet; Budak, Ümit; Özkul, Yusuf

    2010-01-01

    Helichrysum sanguineum, Helichrysum pamphylicum, Helichrysum orientale, Helichrysum noeanum (Asteraceae) are medicinal plants. For centuries, they have been used as tea in Turkey because of their medicinal properties. So far no scientifc evidence has been found in a literature survey regarding the genotoxic effects of these plants. This work evaluated the genotoxic effects on human lymphocyte cultures induced by methanol extracts of these plants, assayed in different concentrations (0.01, 0.0...

  1. Histopathological and genotoxic effects of chlorpyrifos in rats.

    Science.gov (United States)

    Ezzi, Lobna; Belhadj Salah, Imen; Haouas, Zohra; Sakly, Amina; Grissa, Intissar; Chakroun, Sana; Kerkeni, Emna; Hassine, Mohsen; Mehdi, Meriem; Ben Cheikh, Hassen

    2016-03-01

    This study aims to investigate the effects of chlorpyrifos's sub-acute exposure on male rats. Two groups with six animals each were orally treated, respectively, with 3.1 mg/kg b w and 6.2 mg/kg b w of chlorpyrifos during 4 weeks. The genotoxic effect of chlopyrifos was investigated using the comet assay and the micronucleus test. Some hematological and liver's histopathological changes were also evaluated. Results revealed that chlorpyrifos induced histopathological alterations in liver parenchyma. The lymphoid infiltration observed in liver sections and the increase in white blood cells parameter are signs of inflammation. A significant increase in the platelet' count and in polychromatic erythrocytes/normochromatic erythrocytes (PCE/NCE) ratio was observed in chlorpyrifos-treated groups which could be due to the stimulatory effect of chlorpyrifos on cell formation in the bone marrow at lower doses. In addition, the increase of bone marrow micronucleus percentage and the comet tail length revealed a genotoxic potential of chlorpyrifos in vivo.

  2. Genotoxicity of antiobesity drug orlistat and effect of caffeine intervention: an in vitro study.

    Science.gov (United States)

    Chakrabarti, Manoswini; Ghosh, Ilika; Jana, Aditi; Ghosh, Manosij; Mukherjee, Anita

    2017-07-01

    Obesity is a major global health problem associated with various adverse effects. Pharmacological interventions are often necessary for the management of obesity. Orlistat is an FDA-approved antiobesity drug which is a potent inhibitor of intestinal lipases. In the current study, orlistat was evaluated for its genotoxic potential in human lymphocyte cells in vitro and was compared with that of another antiobesity drug sibutramine, presently withdrawn from market due its undesirable health effects. Caffeine intake may be an additional burden in people using anorectic drugs, therefore, further work is needed to be carried out to evaluate the possible effects of caffeine on orlistat-induced DNA damage. Human lymphocytes were exposed to orlistat (250, 500 and 1000 μg/ml), sibutramine (250, 500 and 1000 μg/ml) and caffeine (25, 50, 75, 100, 125 and 150 μg/ml) to assess their genotoxicity by comet assay in vitro. In addition, lymphocytes were co-incubated with caffeine (50, 75 and 100 μg/ml) and a single concentration of orlistat (250 μg/ml). Orlistat and sibutramine were genotoxic at all concentrations tested, sibutramine being more genotoxic. Caffeine was found to be genotoxic at concentrations 125 μg/ml and above. Co-treatment of orlistat with non-genotoxic concentrations (50, 75 and 100 μg/ml) of caffeine lead to a decrease in DNA damage. Orlistat can induce DNA damage in human lymphocytes in vitro and caffeine was found to reduce orlistat-induced genotoxicity.

  3. Evaluation of genotoxicity and DNA protective effects of mangiferin, a glucosylxanthone isolated from Mangifera indica L. stem bark extract.

    Science.gov (United States)

    Rodeiro, I; Hernandez, S; Morffi, J; Herrera, J A; Gómez-Lechón, M J; Delgado, R; Espinosa-Aguirre, J J

    2012-09-01

    Mangiferin is a glucosylxantone isolated from Mangifera indica L. stem bark. Several studies have shown its pharmacological properties which make it a promising candidate for putative therapeutic use. This study was focused to investigate the in vitro genotoxic effects of mangiferin in the Ames test, SOS Chromotest and Comet assay. The genotoxic effects in bone marrow erythrocytes from NMRI mice orally treated with mangiferin (2000 mg/kg) were also evaluated. Additionally, its potential antimutagenic activity against several mutagens in the Ames test and its effects on CYP1A1 activity were assessed. Mangiferin (50-5000 μg/plate) did not increased the frequency of reverse mutations in the Ames test, nor induced primary DNA damage (5-1000 μg/mL) to Escherichia coli PQ37 cells under the SOS Chromotest. It was observed neither single strand breaks nor alkali-labile sites in blood peripheral lymphocytes or hepatocytes after 1h exposition to 10-500 μg/mL of mangiferin under the Comet assay. Furthermore, micronucleus studies showed mangiferin neither induced cytotoxic activity nor increased the frequency of micronucleated/binucleated cells in mice bone marrow. In short, mangiferin did not induce cytotoxic or genotoxic effects but it protect against DNA damage which would be associated with its antioxidant properties and its capacity to inhibit CYP enzymes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Genoprotective and Genotoxic Effects of Thymoquinone on ...

    African Journals Online (AJOL)

    Comet assays and apoptotic cell studies were performed to evaluate the effect of TQ on the cytotoxicity and genotoxicity-induced by DXR. Results: TQ treatment, alone, (5.0, 10, or 20 µM) increased DNA damage index (DI) in a concentrationdependent manner (0.64 ± 0.09, 0.84 ± 0.07, and 0.93 ± 0.06, respectively).

  5. Genotoxic effect of radio marked lymphocytes using Tc-99m complexes

    International Nuclear Information System (INIS)

    Pedraza L, M.; Ferro F, G.; Mendiola C, M.T.; Morales R, P.

    1997-01-01

    The genotoxic effect of radio marked lymphocytes was evaluated using 99m -Tc-HMPAO and 99m -Tc- gentisic acid complexes. With the results of this work it is pretended to contribute to the knowledge of genetic and structural damages that provokes the radiation in the marked lymphocytes. The d, 1-HMPAO was synthesized in laboratory with a yielding of 30 %. The radiochemical purity of the complexes was greater than 85%. Mouse lymphocytes obtained of sanguineous volumes 2 ml were used. The radio marked efficiency of cells was 19.6 ± 6.4% and 25.6 ± 5.8% for 99m Tc-HMPAO and 99m Tc gentisic acid respectively. The genotoxic effect was evaluated using the technique of Unicellular Electrophoresis in Micro gel (Comet assay). The results showed that both 99m Tc complexes produce genotoxicity due to their capacity to penetrate cells, therefore the Auger and M internal conversion electrons place all their energy obtaining doses of Gray order. (Author)

  6. Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations

    Directory of Open Access Journals (Sweden)

    Kwon JY

    2014-12-01

    Full Text Available Jee Young Kwon,1,* Preeyaporn Koedrith,2,* Young Rok Seo1 1Department of Life Science, Institute of Environmental Medicine, Dongguk University, Seoul, Republic of Korea; 2Faculty of Environment and Resource Studies, Mahidol University, Phuttamonthon District, NakhonPathom, Thailand *These authors contributed equally to this work and should be considered as co-first authors Abstract: Engineered nanoparticles (NPs are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed. Keywords: carcinogenicity, exposure assessment, genotoxicity, nanoparticles, risk evaluation

  7. In vitro genotoxic effects of four Helichrysum species in human lymphocytes cultures.

    Science.gov (United States)

    Erolu, Erhan H; Hamzaolu, Ergin; Aksoy, Ahmet; Budak, Ümit; Özkul, Yusuf

    2010-01-01

    Helichrysum sanguineum, Helichrysum pamphylicum, Helichrysum orientale, Helichrysum noeanum (Asteraceae) are medicinal plants. For centuries, they have been used as tea in Turkey because of their medicinal properties. So far no scientific evidence has been found in a literature survey regarding the genotoxic effects of these plants. This work evaluated the genotoxic effects on human lymphocyte cultures induced by methanol extracts of these plants, assayed in different concentrations (0.01, 0.05, 0.1, 0.5 and 1 mg/mL). According to the results, Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum induced the formation of micronuclei and decreased the mitotic and replication indexes. Helichrysum orientale did not affect these parameters, whereas Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum were clearly genotoxic. They should therefore not be used freely in alternative medicine, although their antiproliferative activity may suggest antimitotic and anticarcinogenic properties. Helichrysum orientale could be used in alternative medicine.

  8. Genotoxic and cytotoxic effects of different types of dental cement on normal cultured human lymphocytes.

    Science.gov (United States)

    Bakopoulou, A; Mourelatos, D; Tsiftsoglou, A S; Giassin, N P; Mioglou, E; Garefis, P

    2009-01-31

    In this study we have investigated the genotoxic and cytotoxic effects of eluates derived from different types of commercially available dental cements, including glass ionomer cements (GICs) (Ketac Cem/3M ESPE and GC Fuji I/GC Corp), resin-modified glass ionomer cements (RM-GICs) (RelyX Luting/3M ESPE and Vitrebond/3M ESPE) and dual-cure resin cements (RCs) (Variolink II/ Ivoclar-Vivadent and Panavia F 2.0/Kuraray) on normal cultured human lymphocytes. Lymphocyte primary cultures obtained from blood samples of three healthy donors were exposed to serial dilutions of eluates derived from specimens of each material tested. Metaphases were induced with phytohaemagglutinin, collected after 72h treatment by use of colchicine and stained according to the fluorescence plus giemsa (FPG) procedure. Preparations were scored for sister chromatid exchange (SCE) and chromosomal aberrations (CAs), while the proliferation rate index (PRI) was also calculated. Our results show that eluates derived from the RM-GICs and RCs caused severe genotoxic effects by significantly increasing the frequencies of SCEs and CAs in cultures of peripheral blood lymphocytes and by decreasing the relevant PRI values in a dose-dependent manner, whereas the two GICs caused only minor cytogenetic effects. Eluates of the two RM-GICs (Vitrebond and RelyX) were also very cytotoxic, as the first serial dilutions of both materials caused a complete mitotic arrest in lymphocyte cultures. Overall, the degree of genotoxicity and cytotoxicity caused by dental cements decreased as follows: Viterbond>Rely X>Panavia F 2.0>Variolink II>Ketac Cem=GC Fuji I. These results indicate that different types of dental cement differ extensively in their genotoxic and cytotoxic potential and their ability to affect chromosomal integrity, cell-cycle progression, DNA replication and repair. Although these results cannot be directly extrapolated to the clinical situation, the potential occurrence of adverse effects caused by the

  9. In Vitro Genotoxic Effects of Four Helichrysum Species in Human Lymphocytes Cultures

    Directory of Open Access Journals (Sweden)

    Erhan H Erolu

    2010-01-01

    Full Text Available Helichrysum sanguineum, Helichrysum pamphylicum, Helichrysum orientale, Helichrysum noeanum (Asteraceae are medicinal plants. For centuries, they have been used as tea in Turkey because of their medicinal properties. So far no scientifc evidence has been found in a literature survey regarding the genotoxic effects of these plants. This work evaluated the genotoxic effects on human lymphocyte cultures induced by methanol extracts of these plants, assayed in different concentrations (0.01, 0.05, 0.1, 0.5 and 1 mg/mL. According to the results, Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum induced the formation of micronuclei and decreased the mitotic and replication indexes. Helichrysum orientale did not affect these parameters, whereas Helichrysum noeanum, Helichrysum pamphylicum and Helichrysum sanguineum were clearly genotoxic. They should therefore not be used freely in alternative medicine, although their antiproliferative activity may suggest antimitotic and anticarcinogenic properties. Helichrysum orientale could be used in alternative medicine.

  10. Genotoxic effects of boric acid and borax in zebrafish, Danio rerio using alkaline comet assay.

    Science.gov (United States)

    Gülsoy, Nagihan; Yavas, Cüneyd; Mutlu, Özal

    2015-01-01

    The present study is conducted to determine the potential mechanisms of Boron compounds, boric acid (BA) and borax (BX), on genotoxicity of zebrafish Danio rerio for 24, 48, 72 and 96-hours acute exposure (level:1, 4, 16, 64 mg/l BA and BX) in semi-static bioassay experiment. For that purpose, peripheral erythrocytes were drawn from caudal vein and Comet assay was applied to assess genotoxicity. Acute (96 hours) exposure and high concentrations of boric acid and borax increases % tail DNA and Olive tail moment. Genotoxicity was found for BA as concentration-dependent and BX as concentration and time dependent manner. In general, significant effects (P borax-induced genotoxicity in fish.

  11. Molecular and cytogenetic assessment of Dipterygium glaucum genotoxicity

    Directory of Open Access Journals (Sweden)

    NADA H. ALTWATY

    2016-01-01

    Full Text Available ABSTRACT The aim of the present study is to assess the genotoxicity of Dipterygium glaucum grows widely in Saudi Arabia desert to produce safety herbal products. This work is considered the first and pioneer report so far due to the lack and poor evaluated reports of the plant species for their mutagensity, genotoxicity and cytogenetics effects. Cytogenetic effects of D. glaucum on mitotic in roots of Vicia faba showed reduction in mitotic activity using three extracts; water, ethanol and ethyl acetate. Chromosomal abnormalities were recorded that included stickiness of chromosomes, chromatin bridge, fragments, lagging chromosome and micronuclei. Protein bands and RAPD analyses of V. faba treated with three D. glaucum extracts revealed some newly induced proteins and DNA fragments and other disappeared. Chemical constitution of the plant species should be identified with their biological activities against human and animal cells like HeLa cancer cell line. We are recommending using additional genotoxicity tests and other toxicity tests on animal culture with different concentrations and also utilizing several drought and heat tolerant genes of the plant species in gene cloning to develop and improve other economical crop plants instead of using the species as oral herbal remedy

  12. Three-Dimensional, Transgenic Cell Models to Quantify Space Genotoxic Effects

    Science.gov (United States)

    Gonda, S. R.; Sognier, M. A.; Wu, H.; Pingerelli, P. L.; Glickman, B. W.; Dawson, David L. (Technical Monitor)

    1999-01-01

    The space environment contains radiation and chemical agents known to be mutagenic and carcinogenic to humans. Additionally, microgravity is a complicating factor that may modify or synergize induced genotoxic effects. Most in vitro models fail to use human cells (making risk extrapolation to humans more difficult), overlook the dynamic effect of tissue intercellular interactions on genotoxic damage, and lack the sensitivity required to measure low-dose effects. Currently a need exists for a model test system that simulates cellular interactions present in tissue, and can be used to quantify genotoxic damage induced by low levels of radiation and chemicals, and extrapolate assessed risk to humans. A state-of-the-art, three-dimensional, multicellular tissue equivalent cell culture model will be presented. It consists of mammalian cells genetically engineered to contain multiple copies of defined target genes for genotoxic assessment,. NASA-designed bioreactors were used to coculture mammalian cells into spheroids, The cells used were human mammary epithelial cells (H184135) and Stratagene's (Austin, Texas) Big Blue(TM) Rat 2 lambda fibroblasts. The fibroblasts were genetically engineered to contain -a high-density target gene for mutagenesis (60 copies of lacl/LacZ per cell). Tissue equivalent spheroids were routinely produced by inoculation of 2 to 7 X 10(exp 5) fibroblasts with Cytodex 3 beads (150 micrometers in diameter). at a 20:1 cell:bead ratio, into 50-ml HARV bioreactors (Synthecon, Inc.). Fibroblasts were cultured for 5 days, an equivalent number of epithelial cells added, and the fibroblast/epithelial cell coculture continued for 21 days. Three-dimensional spheroids with diameters ranging from 400 to 600 micrometers were obtained. Histological and immunohistochemical Characterization revealed i) both cell types present in the spheroids, with fibroblasts located primarily in the center, surrounded by epithelial cells; ii) synthesis of extracellular matrix

  13. Cytotoxic, mutagenicity, and genotoxicity effects of guanylhydrazone derivatives.

    Science.gov (United States)

    Pinhatti, Valéria Rodrigues; da Silva, Juliana; Martins, Tales Leandro Costa; Moura, Dinara Jaqueline; Rosa, Renato Moreira; Villela, Izabel; Stopiglia, Cheila Denise Ottonelli; da Silva Santos, Selma; Scroferneker, Maria Lúcia; Machado, Carlos Renato; Saffi, Jenifer; Henriques, João Antonio Pêgas

    2016-08-01

    Several studies have reported that guanylhydrazones display a variety of desirable biological properties, such as antihypertensive, antibacterial, and antimalarial behaviour. They furthermore promote anti-pneumocystosis and anti-trypanosomiasis, exhibit antitumor activity, and show significant cytotoxicity against cancer cell lines. In this work, we have evaluated the cytotoxicity, mutagenicity, and genotoxicity of two guanylhydrazones derivatives, (E)-2-[(2,3-dimethoxyphenyl) methylene] hydrazine carboxymidamide hydrochloride (2,3-DMeB) and (E)-2-[(3,4-dimethoxyphenyl) methylene] hydrazine carboxymidamide hydrochloride (3,4-DMeB), in different biological models. Both 2,3-DMeB and 3,4-DMeB induce weak cytotoxic and mutagenic effects in bacteria and yeast. The genotoxicity of these compounds was determined in a fibroblast cell line (V79) using alkaline comet assay, as well as a modified comet assay with bacterial enzymes formamidopyrimidine DNA-glycosylase (FPG) and endonuclease III (EndoIII). Both guanylhydrazone derivatives induced DNA damage. Treatment of V79 cells with EndoIII and FPG proteins demonstrated a significant effect of 2,3-DMeB and 3,4-DMeB with respect to oxidized bases. In addition, the derivatives induced a significant increase in the frequency of micronucleated cells at high doses. The antifungal and anti-trypanosomal properties of these guanylhydrazone derivatives were also evaluated, and the obtained results suggest that 2,3-DMeB is more effective than 3,4-DMeB. The biological activity of 2,3-DMeB and 3,4-DMeB may thus be related, at least in part, to their oxidative potential, as well as to their ability to interact with DNA. Considering the previously reported in vitro antitumor activity of guanylhydrazone derivatives in combination with the lack of acute toxicity and the fact that DNA damage is only observed at high doses should render both compounds good candidates for in vivo studies on antitumor activity. Copyright © 2016 Elsevier B

  14. Effect of Boron Toxicity on Oxidative Stress and Genotoxicity in Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Çatav, Şükrü Serter; Genç, Tuncer Okan; Kesik Oktay, Müjgan; Küçükakyüz, Köksal

    2018-04-01

    Boron (B) toxicity, which occurs in semi-arid and arid environments, can adversely affect the growth and yield of many plants. The aim of this study was to determine the effects of different concentrations of boric acid (3, 6, 9 and 12 mM) on growth, oxidative stress and genotoxicity parameters in root and shoot tissues of wheat seedlings. Our results indicate that B stress inhibits root and shoot growth of wheat in a concentration-dependent manner, and leads to increases in TBARS and H 2 O 2 contents in shoot tissue. Moreover, our findings suggest that high concentrations of B may exert a genotoxic effect on wheat. To the best of our knowledge, this is the first report to evaluate the effect of B stress on genotoxicity in both root and shoot tissues of wheat.

  15. Genotoxicity of metal nanoparticles.

    Science.gov (United States)

    Xie, Hong; Mason, Michael M; Wise, John Pierce

    2011-01-01

    Nanotechnology is currently used in industry, medicine, and military applications, as well as in more than 300 commercial products. Yet, the same properties that make these particles exciting for technology also make them daunting public health concerns because their toxicity is unknown and relatively unexplored. Increased attention is being placed on the study of metal particle genotoxicity; however, a lot of unknowns remain about their effects and the mechanisms. In this article, we highlight some metal and metal oxide nanoparticles of interest and discuss the current in vivo and in vitro studies of genotoxic effects. Many metal nanoparticles were found to cause chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. Inconsistencies are found in the literature, however, thus drawing conclusions is difficult due to a variety of factors. Therefore, the areas requiring further attention are highlighted and recommendations to improve our understanding of the genotoxic potential are addressed.

  16. Assessing genotoxic effects in fish from a marine protected area influenced by former mining activities and other stressors

    International Nuclear Information System (INIS)

    Gusso-Choueri, Paloma Kachel; Choueri, Rodrigo Brasil; Santos, Gustavo Souza; Seraphim de Araújo, Giuliana; Feitosa Cruz, Ana Carolina

    2016-01-01

    The goal of the current study was to evaluate different genotoxicity tools in order to assess a marine protected area (MPA) affected by former mining activities and urban settlements. A catfish (Cathorops spixii) was analyzed for genotoxic effects at the (i) molecular and at the (ii) chromosomal levels. Through factor analysis, genotoxicity was found to be linked to levels of metals bioaccumulated and PAH metabolites in the bile. Micronucleus and nuclear alteration were less vulnerable to the effects of confounding factors in mildly contaminated areas since they were more frequently associated with bioaccumulated metals than the DNA analysis. The different genotoxicity responses allowed for the identification of sources of pollution in the MPA. This approach was important for detecting environmental risks related to genotoxic contaminants in a mildly contaminated MPA. -- Highlights: •We assessed genotoxicity and bioaccumulation in catfish from a marine protected area. •The area is under the influence of past mining activities and urban settlements. •Cellular level responses were highly associated with body burdens of metals and As. •Responses at the molecular level were less associated with body burdens. •Genotoxicity in different organs helped identify pollution sources in MPA.

  17. Benzophenone guttiferone A from Garcinia achachairu Rusby (Clusiaceae presents genotoxic effects in different cells of mice.

    Directory of Open Access Journals (Sweden)

    Peterson Menezes Terrazas

    Full Text Available Benzophenones from natural sources and those of synthetic analogues present several reports of potent biological properties, and Guttiferone A represents a promising medicinal natural compound with analgesic and gastroprotective profiles. Considering that there are no reports that assess the genetic toxicity of Guttiferone A, the present study was undertaken to investigate the genotoxic potential of this benzophenone isolated from seeds of Garcinia achachairu in terms of DNA damage in different cells of Swiss albino mice using the comet assay, and its clastogenic/aneugenic effects in bone marrow cells in vivo by the micronucleus test. Cytotoxicity was assessed by scoring polychromatic (PCE and normochromatic (NCE erythrocytes ratio. Guttiferone A was administered by oral gavage at doses of 15, 30 and 60 mg/kg. The results showed that Guttiferone A produced genotoxic effects in leukocytes, liver, bone marrow, brain and testicle cells and clastogenic/aneugenic effects in bone marrow erythrocytes of mice. The PCE/NCE ratio indicated no cytotoxicity. Since guttiferone A is harmful to the genetic material we suggest caution in its use by humans.

  18. Non-genotoxic carcinogens: early effects on gap junctions, cell proliferation and apoptosis in the rat

    International Nuclear Information System (INIS)

    Mally, Angela; Chipman, James Kevin

    2002-01-01

    Non-genotoxic carcinogens are thought to induce tumour formation by disturbing the balance between cell growth and cell death. Gap junctions (GJ) contribute to the maintenance of tissue homeostasis by allowing the intercellular exchange of growth regulatory signals and potential inhibition of GJ intercellular communication through loss of connexin (Cx) plaques has been shown to be involved in the cancer process. We have investigated the time- and dose-dependent effects of the non-genotoxic hepatocarcinogens Wy-14,643, 2,3,7,8-tetrachlorodibenzo-p-dioxin, methapyrilene and hexachlorobenzene and the male rat kidney carcinogens chloroform, p-dichlorobenzene and d-limonene on gap junction plaque expression in relation to proliferation and apoptosis. With the exception of limonene, all non-genotoxic carcinogens significantly reduced the expression of GJ plaques containing Cx32 in their respective target tissue. No dose-dependent, significant effects were seen in non-target organs. Although alteration of Cx32 expression did not appear to correlate with induction of cell proliferation, out data suggest that the interaction of both processes--interference of GJ coupled with a proliferative stimulus (at the carcinogenic dose)--may be important in non-genotoxic carcinogenesis and provide a potential alert for non-genotoxic carcinogens in short-term toxicity tests

  19. Toward a Genotoxic Protection Factor

    International Nuclear Information System (INIS)

    Cesarini, J.P.; Demanneville, S.

    2000-01-01

    P53, a molecule normally expressed before mitosis, is considered as the 'guardian of the genome'. In the skin its level is normally very low (<3% of cells), detected by immunohistochemical methods. At least 50% of the keratinocytes express p53 protein, 24 h following a significant UV irradiation (2 SED). It is expected using sunscreens to reduce the expression of p53 in parallel with their ability to reduce the actinic erythema, the endpoint adopted to evaluate the Sun Protection Factor (SPF) of sunscreens. P53 detection on biopsies performed on the buttocks of human volunteers was used to evaluate the genotoxic protecting factor (GPF) of several sunscreens with either high UVB filtration or high UVA filtration, characterised by various SPF (COLIPA) from 10 to 40. The p53 count in parallel with sunburn cell count were the parameters studied. In general, the GPF of the sunscreens was found below the proprietary SPF. If a genotoxic effect is shown in an increased p53 expression, this effect is still observed at a dose lower than the dose inducing the faintest actinic erythema. (author)

  20. Toward a Genotoxic Protection Factor

    Energy Technology Data Exchange (ETDEWEB)

    Cesarini, J.P.; Demanneville, S

    2000-07-01

    P53, a molecule normally expressed before mitosis, is considered as the 'guardian of the genome'. In the skin its level is normally very low (<3% of cells), detected by immunohistochemical methods. At least 50% of the keratinocytes express p53 protein, 24 h following a significant UV irradiation (2 SED). It is expected using sunscreens to reduce the expression of p53 in parallel with their ability to reduce the actinic erythema, the endpoint adopted to evaluate the Sun Protection Factor (SPF) of sunscreens. P53 detection on biopsies performed on the buttocks of human volunteers was used to evaluate the genotoxic protecting factor (GPF) of several sunscreens with either high UVB filtration or high UVA filtration, characterised by various SPF (COLIPA) from 10 to 40. The p53 count in parallel with sunburn cell count were the parameters studied. In general, the GPF of the sunscreens was found below the proprietary SPF. If a genotoxic effect is shown in an increased p53 expression, this effect is still observed at a dose lower than the dose inducing the faintest actinic erythema. (author)

  1. A mixture of honey bee products ameliorates the genotoxic side effects of cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Maha Aly Fahmy

    2015-08-01

    Full Text Available Objective: To evaluate the protective role of a mixture of honey bee products (honey, royal jelly and pollen grains against the genotoxicity induced by the anticancer drug cyclophosphamide (CP. Methods: The study included chromosomal aberration analysis in mice bone marrow cells, induction of morphological sperm abnormalities, DNA fragmentation and histopathological changes induced in liver cells of mice. CP was injected intraperitoneally at the dose of 20 mg/ kg body weight. The mixture of honey bee products was administrated orally for different periods of time 5, 10 and 15 days with a dose exactly equivalent to the daily intake of human beings. Results: The results revealed that honey mixture ameliorated the genotoxic side effects of CP. For chromosomal aberrations the percentage reached 25.20 ± 1.30 for CP treated group, while it reached half of that value 12.30 ± 0.54 in CP-group pretreated with honey mixture for 15 days. Breaks, fragments and multiple aberrations were the most pronounced types of aberrations induced after CP treatment and honey mixture reduced these types of abnormalities. CP induced significant percentage of sperm abnormalities 8.52 ± 0.17 compared to control 3.10 ± 0.10. The percentage of sperm abnormalities reached nearly to the control value in CP- mice treated with honey mixture for 15 days. Honey also reduced the incidence of liver DNA damage induced by CP. The results also indicated that CP had a marked damaging effect on liver tissue including severe dilatation, congestion of main blood vessels and massive infiltration of inflammatory cells with irregular general pattern of the tissue. These effects were greatly ameliorated by using oral administration of honey mixture for different periods of time. Conclusions: The results concluded that honey bee mixture can be used as chemopreventive agent for minimizing the genotoxic side effects of the anticancer drug CP and open the field for its use in many applications.

  2. Evaluation of genotoxic effect of prozac (fluoxetine without and with addition of vitamins A and C by means of the comet assay in culture of CHO-K1 cells

    Directory of Open Access Journals (Sweden)

    Noélle Giacomini Lemos

    2005-12-01

    Full Text Available The fluoxetine, commercially named Prozac, is efficient against depression and anxiety, with lower risk of collateral effects. However, the possible genotoxic effects are still unknown. The use of vitamins as protectors against damages on cells and DNA has been evaluated, mainly for vitamins A and C. Furthermore, the associative effect of vitamins with several medicines demands studies. The evaluations of genotoxic effect of Prozac and vitamins A and C protective effect were carried out in culture of Chinese hamster ovary cells, CHO-K1, by means of the comet test. The Prozac was used, in liquid formulation, diluted in 5µg, 1µg and 0.2 µg/mL of culture medium. The vitamins were used, in liquid formulation, at the concentrations of 3µg and 880,5 µg/mL of culture medium to vitamins A and C, respectively. The treatments were carried out during 1 hour. The obtained data demonstrated that only the highest concentration of Prozac (5 µg is genotoxic and both vitamins A and C reduced such genotoxicity. The data suggest a follow-up on patients who use Prozac and the possibility of vitamins A and C association in order to minimize the collateral genotoxic effects.

  3. Genotoxicity of swine effluents.

    Science.gov (United States)

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  4. Genotoxic effects of N-nitrosodimethylamine in somatic and generative cells of mice

    Directory of Open Access Journals (Sweden)

    Anna V. Lovinskaya

    2017-10-01

    Full Text Available N-Nitrosodimethylamine (NDMA was shown to have genotoxic properties in acute and subacute studies on laboratory mice. The organ-specificity of the genotoxic effect of NDMA was revealed using the Comet assay. The most sensitive organs to the action of NDMA were kidneys and liver. DNA damage in liver cells of NDMA-treated animals at doses of 4.0 and 8.0 mg/kg, increased compared to control in 6.9 and 12.5 (р < 0.001, and in kidney cells – in 8.1 and 14.2 times (р < 0.001, respectively. NDMA also showed genotoxic activity in the reproductive cells of experimental animals, causing structural disorders of synaptonemal complexes in spermatocyte. In NDMA-treated animals at a dose of 2.0 mg/kg in acute and subacute studies, the level of spermatocytes with damaged synaptonemal complexes increased statistically significantly compared to control in 6.0 and 7.0 (р < 0.05 times, respectively.

  5. Evaluation of Hypoglycemic and Genotoxic Effect of Polyphenolic Bark Extract from Quercus sideroxyla

    Science.gov (United States)

    Soto-García, Marcela; Rosales-Castro, Martha; Escalona-Cardoso, Gerardo N.

    2016-01-01

    Quercus sideroxyla is a wood species whose bark has phenolic compound and should be considered to be bioactive; the hypoglycemic and genotoxic properties of Q. sideroxyla bark were evaluated in this study. Total phenolic compound was determined in crude extract (CE) and organic extract (OE). The OE has the highest amount of phenols (724.1 ± 12.0 GAE/g). Besides, both CE and OE demonstrated effect over the inhibition of α-amylase in vitro. Hypoglycemic activity was assessed by glucose tolerance curve and the area under curve (UAC); OE showed the highest hypoglycemic activity. In addition, diabetes was induced by streptozotocin (65 mg/kg) and the extracts (50 mg/kg) were administered for 10 days; OE showed hypoglycemic effect compared with diabetic control and decreased hepatic lipid peroxidation. Acute toxicity and genotoxicity were evaluated in CE; results of acute toxicity did not show any mortality. Besides, the comet assay showed that CE at a dose of 100 mg/kg did not show any genotoxic effect when evaluated at 24 h, whereas it induced slight damage at 200 mg/kg, with the formation of type 1 comets. PMID:27867402

  6. Evaluation of Hypoglycemic and Genotoxic Effect of Polyphenolic Bark Extract from Quercus sideroxyla

    Directory of Open Access Journals (Sweden)

    Marcela Soto-García

    2016-01-01

    Full Text Available Quercus sideroxyla is a wood species whose bark has phenolic compound and should be considered to be bioactive; the hypoglycemic and genotoxic properties of Q. sideroxyla bark were evaluated in this study. Total phenolic compound was determined in crude extract (CE and organic extract (OE. The OE has the highest amount of phenols (724.1±12.0 GAE/g. Besides, both CE and OE demonstrated effect over the inhibition of α-amylase in vitro. Hypoglycemic activity was assessed by glucose tolerance curve and the area under curve (UAC; OE showed the highest hypoglycemic activity. In addition, diabetes was induced by streptozotocin (65 mg/kg and the extracts (50 mg/kg were administered for 10 days; OE showed hypoglycemic effect compared with diabetic control and decreased hepatic lipid peroxidation. Acute toxicity and genotoxicity were evaluated in CE; results of acute toxicity did not show any mortality. Besides, the comet assay showed that CE at a dose of 100 mg/kg did not show any genotoxic effect when evaluated at 24 h, whereas it induced slight damage at 200 mg/kg, with the formation of type 1 comets.

  7. Evaluation of genotoxic effects of surface waters using a battery of bioassays indicating different mode of action.

    Science.gov (United States)

    Han, Yingnan; Li, Na; Oda, Yoshimitsu; Ma, Mei; Rao, Kaifeng; Wang, Zijian; Jin, Wei; Hong, Gang; Li, Zhiguo; Luo, Yi

    2016-11-01

    With the burgeoning contamination of surface waters threatening human health, the genotoxic effects of surface waters have received much attention. Because mutagenic and carcinogenic compounds in water cause tumors by different mechanisms, a battery of bioassays that each indicate a different mode of action (MOA) is required to evaluate the genotoxic effects of contaminants in water samples. In this study, 15 water samples from two source water reservoirs and surrounding rivers in Shijiazhuang city of China were evaluated for genotoxic effects. Target chemical analyses of 14 genotoxic pollutants were performed according to the Environmental quality standards for surface water of China. Then, the in vitro cytokinesis-block micronucleus (CBMN) assay, based on a high-content screening technique, was used to detect the effect of chromosome damage. The SOS/umu test using strain TA1535/pSK1002 was used to detect effects on SOS repair of gene expression. Additionally, two other strains, NM2009 and NM3009, which are highly sensitive to aromatic amines and nitroarenes, respectively, were used in the SOS/umu test to avoid false negative results. In the water samples, only two of the genotoxic chemicals listed in the water standards were detected in a few samples, with concentrations that were below water quality standards. However, positive results for the CBMN assay were observed in two river samples, and positive results for the induction of umuC gene expression in TA1535/pSK1002 were observed in seven river samples. Moreover, positive results were observed for NM2009 with S9 and NM3009 without S9 in some samples that had negative results using the strain TA1535/pSK1002. Based on the results with NM2009 and NM3009, some unknown or undetected aromatic amines and nitroarenes were likely in the source water reservoirs and the surrounding rivers. Furthermore, these compounds were most likely the causative pollutants for the genotoxic effect of these water samples. Therefore

  8. Genotoxicity evaluation of alpha-linolenic acid-diacylglycerol oil

    Directory of Open Access Journals (Sweden)

    Hiroshi Honda

    Full Text Available The alpha-linolenic acid (ALA-diacylglycerol (DAG oil is an edible oil enriched with DAG (>80% and ALA (>50%. Although DAG oil, which mainly consists of oleic and linoleic acids has no genotoxic concerns, the fatty acid composition could affect the chemical property of DAG. Therefore, the purpose of this study was to evaluate the genotoxicity of ALA-DAG oil using standard genotoxicity tests in accordance with the OECD guidelines. ALA-DAG oil showed negative results in the bacterial reverse mutation test (Ames test and in vitro micronucleus test in cultured Chinese hamster lung cells with and without metabolic activation, and in the in vivo bone marrow micronucleus test in mice. Our results did not show any genotoxicity, suggesting that the fatty acid composition had no deleterious effects. We conclude that ALA-DAG oil had no genotoxicity concerns under the testing conditions. Keywords: Alpha-linolenic acid-rich diacylglycerol, Diacylglycerol, Alpha-linolenic acid, Fatty acid composition, Genotoxicity

  9. Lack of genotoxicity in medical oncology nurses handling antineoplastic drugs: effect of work environment and protective equipment.

    Science.gov (United States)

    Gulten, Tuna; Evke, Elif; Ercan, Ilker; Evrensel, Turkkan; Kurt, Ender; Manavoglu, Osman

    2011-01-01

    In this study we aimed to investigate the genotoxic effects of antineoplastic agents in occupationally exposed oncology nurses. Genotoxic effects mean the disruptive effects in the integrity of DNA and they are associated with cancer development. Biomonitoring of health care workers handling antineoplastic agents is helpful for the evaluation of exposure to cytostatics. The study included an exposed and two control groups. The exposed group (n=9) was comprised of oncology nurses. The first (n=9) and second (n=10) control groups were comprised of subjects who did not come into contact with antineoplastic drugs working respectively in the same department with oncology nurses and in different departments. Genotoxicity evaluation was performed using SCE analysis. After applying culture, harvest and chromosome staining procedures, a total of 25 metaphases were analyzed per person. Kruskal Wallis test was used to perform statistical analysis. A statistically significant difference of sister chromatid exchange frequencies was not observed between the exposed and control groups. Lack of genotoxicity in medical oncology nurses might be due to good working conditions with high standards of technical equipment and improved personal protection.

  10. The genotoxic effect of oxcarbazepine on mice blood lymphocytes.

    Science.gov (United States)

    Akbar, Huma; Khan, Ajmal; Mohammadzai, Imdadullah; Khisroon, Muhammad; Begum, Ilham

    2018-04-01

    This study was conducted to assess the amount of DNA damage caused by Oxcarbazepine (OXC) through single cell gel electrophoresis (SCGE) technique/comet assay. OXC derived from dibenzazepine series is an effective second generation antiepileptic drug (AED) for both children and adults. Side effects like genotoxic effects of AEDs are of prime importance resulting from toxic metabolites, free radicals and reactive oxygen species (ROS). Forty Eight adult male Bagg's albino mice (BALB/c) were randomly classified into eight groups, each comprising of six animals. Two of these groups were control and six were tested groups. Control groups were injected with 1% tween 80 while tested groups were injected with 10, 20, and 40 mg/kg-day OXC for seven days (acute therapy) and 28 days (subchronic therapy) in peritoneal cavity. Blood samples were collected by cardiac puncture and subjected to comet assay for the analysis of DNA damage. Per sample 100 cells were scored and classified according to comet tail length. The results showed that OXC in acute and long term therapies had significantly higher (p < 0.05) genotoxicity in treated groups as compared to control groups. Our study suggests that OXC may cause significant DNA damage in both acute as well as in subchronic therapies.

  11. Genotoxic effects of vinclozolin on the aquatic insect Chironomus riparius (Diptera, Chironomidae).

    Science.gov (United States)

    Aquilino, Mónica; Sánchez-Argüello, Paloma; Martínez-Guitarte, José-Luis

    2018-01-01

    Vinclozolin (Vz) is a pollutant found in aquatic environments whose antiandrogenic effects in reproduction are well known in mammals. Although its reproductive effects have been less studied in invertebrates, other effects, including genotoxicity, have been described. Therefore, in this work, we studied the genotoxic effects of Vz in the freshwater benthic invertebrate Chironomus riparius. DNA damage was evaluated with the comet assay (tail area, olive moment, tail moment and % DNA in tail), and the transcriptional levels of different genes involved in DNA repair (ATM, NLK and XRCC1) and apoptosis (DECAY) were measured by RT-PCR. Fourth instar larvae of C. riparius, were exposed to Vz for 24 h at 20 and 200 μg/L. The Vz exposures affected the DNA integrity in this organism, since a dose-response relationship occurred, with DNA strand breaks significantly increased with increased dose for tail area, olive moment and tail moment parameters. Additionally, the lower concentration of Vz produced a significant induction of the transcripts of three genes under study (ATM, NLK and XRCC1) showing the activation of the cellular repair mechanism. In contrast, the expression of these genes with the highest concentration were downregulated, indicating failure of the cellular repair mechanism, which would explain the higher DNA damage. These data report for the first time the alterations of Vz on gene transcription of an insect and confirm the potential genotoxicity of this compound on freshwater invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Genotoxicity of topoisomerase II inhibitors: An anti-infective perspective

    International Nuclear Information System (INIS)

    Smart, Daniel J.

    2008-01-01

    At present, an inevitable consequence of a chemical's inhibitory activity on key regulators of DNA topology in bacteria, the type II topoisomerases, is a less pronounced effect on their eukaryotic counterparts. In the context of anti-infectives drug development, this may pose a risk to patient safety as inhibition of eukaryotic type II topoisomerases (TOPO II) can result in the generation of DNA double-strand breaks (DSBs), which have the potential to manifest as mutations, chromosome breakage or cell death. The biological effects of several TOPO II inhibitors in mammalian cells are described herein; their modulation of DSB damage response parameters is examined and evidence for the existence of a threshold concept for genotoxicity and its relevance in safety assessment is discussed. The potential utility of γH2AX, a promising and highly sensitive molecular marker for DSBs, in a novel genotoxicity 'pre-screen' to conventional assays is also highlighted

  13. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Kyu; Lee, Young Hee; Cho, Hyun Sun; Kim, Ki Heon; Choi, Kyung Hee; Lee, Sang Hee; Song, Kyung Seuk; Kang, Chang Soo; Yu, Il Je

    2011-07-01

    Carbon nanotubes (CNTs) have specific physico-chemical and electrical properties that are useful for telecommunications, medicine, materials, manufacturing processes and the environmental and energy sectors. Yet, despite their many advantages, it is also important to determine whether CNTs may represent a hazard to the environment and human health. Like asbestos, the aspect ratio (length:diameter) and metal components of CNTs are known to have an effect on the toxicity of carbon nanotubes. Thus, to evaluate the toxic potential of CNTs in relation to their aspect ratio and metal contamination, in vivo and in vitro genotoxicity tests were conducted using high-aspect-ratio (diameter: 10-15 nm, length: ~10 μm) and low-aspect-ratio multi-wall carbon nanotubes (MWCNTs, diameter: 10-15 nm, length: ~150 nm) according to OECD test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. To determine the treatment concentration for all the tests, a solubility and dispersive test was performed, and a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) solution found to be more suitable than distilled water. Neither the high- nor the low-aspect-ratio MWCNTs induced any genotoxicity in a bacterial reverse mutation test (~1,000 μg/plate), in vitro chromosome aberration test (without S9: ~6.25 μg/ml, with S9: ~50 μg/ml), or in vivo micronuclei test (~50 mg/kg). However, the high-aspect-ratio MWCNTs were found to be more toxic than the low-aspect-ratio MWCNTs. Thus, while high-aspect-ratio MWCNTs do not induce direct genotoxicity or metabolic activation-mediated genotoxicity, genotoxicity could still be induced indirectly through oxidative stress or inflammation.

  14. Genotoxicity of 1,3-dichloro-2-propanol in the SOS chromotest and in the Ames test. Elucidation of the genotoxic mechanism.

    Science.gov (United States)

    Hahn, H; Eder, E; Deininger, C

    1991-01-01

    1,3-Dichloro-2-propanol (1,3-DCP-OH, glycerol dichlorohydrin) is of great importance in many industrial processes and has been detected in foodstuffs, in particular in soup spices and instant soups. It has been shown to be carcinogenic, genotoxic and mutagenic. Its genotoxic mechanisms are, however, not yet entirely understood. We have investigated whether alcohol dehydrogenase (ADH) catalysed activation to the highly mutagenic and carcinogenic 1,3-dichloroacetone or formation of epichlorohydrin or other genotoxic compounds play a role for mutagenicity and genotoxicity. In our studies, no indications of ADH catalysed formation of 1,3-dichloropropane could be found, although we could demonstrate a clear activation by ADH in the case of 2-chloropropenol. Formation of allyl chloride could also be excluded. We found, however, clear evidence that epichlorohydrin formed chemically in the buffer and medium used in the test is responsible for genotoxicity. No indication was found that enzymatic formation of epichlorohydrin plays a role. Additional mutagenicity and genotoxicity studies with epichlorohydrin also confirmed the hypothesis that genotoxic effects of 1,3-DCP-OH depend on the chemical formation of epichlorohydrin.

  15. Evaluation of genotoxic effects caused by extracts of chlorinated drinking water using a combination of three different bioassays.

    Science.gov (United States)

    Zeng, Qiang; Zhang, Shao-Hui; Liao, Jing; Miao, Dong-Yue; Wang, Xin-Yi; Yang, Pan; Yun, Luo-Jia; Liu, Ai-Lin; Lu, Wen-Qing

    2015-10-15

    Potential genotoxic effects of chlorinated drinking water now are of a great concern. In this study, raw water, finished water, and tap water from a water plant in Wuhan, China were collected in two different sampling times of the year (January and July). Genotoxic effects of water extracts were evaluated using a combination of three different bioassays: SOS/umu test, HGPRT gene mutation assay, and micronucleus assay, which were separately used to detect DNA damage, gene mutation, and chromosome aberration. The results of three different bioassays showed that all water samples in January and July induced at least one types of genotoxic effects, of which the DNA-damage effects were all detectable. The levels of DNA-damage effects and gene-mutation effects of finished water and tap water in January were higher than those in July. Chlorination could increase the DNA-damage effects of drinking water in January and the gene-mutation effects of drinking water in both January and July, but did not increase the chromosome-aberration effects of drinking water in both January and July. Our results highlighted the importance of using a combination of different bioassays to evaluate the genotoxicity of water samples in different seasons. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    Science.gov (United States)

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  17. Quantitative genotoxicity assays for analysis of medicinal plants: A systematic review.

    Science.gov (United States)

    Sponchiado, Graziela; Adam, Mônica Lucia; Silva, Caroline Dadalt; Soley, Bruna Silva; de Mello-Sampayo, Cristina; Cabrini, Daniela Almeida; Correr, Cassyano Januário; Otuki, Michel Fleith

    2016-02-03

    Medicinal plants are known to contain numerous biologically active compounds, and although they have proven pharmacological properties, they can cause harm, including DNA damage. Review the literature to evaluate the genotoxicity risk of medicinal plants, explore the genotoxicity assays most used and compare these to the current legal requirements. A quantitative systematic review of the literature, using the keywords "medicinal plants", "genotoxicity" and "mutagenicity", was undertakenQ to identify the types of assays most used to assess genotoxicity, and to evaluate the genotoxicity potential of medicinal plant extracts. The database searches retrieved 2289 records, 458 of which met the inclusion criteria. Evaluation of the selected articles showed a total of 24 different assays used for an assessment of medicinal plant extract genotoxicity. More than a quarter of those studies (28.4%) reported positive results for genotoxicity. This review demonstrates that a range of genotoxicity assay methods are used to evaluate the genotoxicity potential of medicinal plant extracts. The most used methods are those recommended by regulatory agencies. However, based on the current findings, in order to conduct a thorough study concerning the possible genotoxic effects of a medicinal plant, we indicate that it is important always to include bacterial and mammalian tests, with at least one in vivo assay. Also, these tests should be capable of detecting outcomes that include mutation induction, clastogenic and aneugenic effects, and structural chromosome abnormalities. In addition, the considerable rate of positive results detected in this analysis further supports the relevance of assessing the genotoxicity potential of medicinal plants. Copyright © 2016. Published by Elsevier Ireland Ltd.

  18. Potential genotoxic effects of melted snow from an urban area revealed by the Allium cepa test.

    Science.gov (United States)

    Blagojević, Jelena; Stamenković, Gorana; Vujosević, Mladen

    2009-09-01

    The presence of well-known atmospheric pollutants is regularly screened for in large towns but knowledge about the effects of mixtures of different pollutants and especially their genotoxic potential is largely missing. Since falling snow collects pollutants from the air, melted snow samples could be suitable for evaluating potential genotoxicity. For this purpose the Allium cepa anaphase-telophase test was used to analyse melted snow samples from Belgrade, the capital city of Serbia. Samples of snow were taken at two sites, characterized by differences in pollution intensity, in three successive years. At the more polluted site the analyses showed a very high degree of both toxicity and genotoxicity in the first year of the study corresponding to the effects of the known mutagen used as the positive control. At the other site the situation was much better but not without warning signals. The results showed that standard analyses for the presence of certain contaminants in the air do not give an accurate picture of the possible consequences of urban air pollution because the genotoxic potential remains hidden. The A. cepa test has been demonstrated to be very convenient for evaluation of air pollution through analyses of melted snow samples.

  19. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    International Nuclear Information System (INIS)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-01-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed

  20. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David M., E-mail: d.brown@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom); Varet, Julia, E-mail: julia.varet@IOM-world.org [Institute of Occupational Medicine (United Kingdom); Johnston, Helinor, E-mail: h.johnston@hw.ac.uk; Chrystie, Alison; Stone, Vicki, E-mail: v.stone@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom)

    2015-10-15

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  1. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Science.gov (United States)

    Brown, David M.; Varet, Julia; Johnston, Helinor; Chrystie, Alison; Stone, Vicki

    2015-10-01

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks' balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle's activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  2. Randomly amplified polymorphic-DNA analysis for detecting genotoxic effects of Boron on maize (Zea mays L.).

    Science.gov (United States)

    Sakcali, M Serdal; Kekec, Guzin; Uzonur, Irem; Alpsoy, Lokman; Tombuloglu, Huseyin

    2015-08-01

    This study was carried out to investigate the genotoxic effect of boron (B) on maize using randomly amplified polymorphic DNA (RAPD) method. Experimental design was conducted under 0, 5, 10, 25, 50, 100, 125, and 150 ppm B exposures, and physiological changes have revealed a sharp decrease in root growth rates from 28% to 85%, starting from 25 ppm to 150 ppm, respectively. RAPD-polymerase chain reaction (PCR) analysis shows that DNA alterations are clearly observed from beginning to 100 ppm. B-induced inhibition in root growth had a positive correlation with DNA alterations. Total soluble protein, root and stem lengths, and B content analysis in root and leaves encourage these results as a consequence. These preliminary findings reveal that B causes chromosomal aberration and genotoxic effects on maize. Meanwhile, usage of RAPD-PCR technique is a suitable biomarker to detect genotoxic effect of B on maize and other crops for the future. © The Author(s) 2013.

  3. Impacts of fullerene C60 and virgin olive oil on cadmium-induced genotoxicity in rats.

    Science.gov (United States)

    Aly, Fayza M; Kotb, Ahmed M; Haridy, Mohie A M; Hammad, Seddik

    2018-07-15

    Currently, cadmium is considered to be one of the major environmental pollutants. Environmentally, cadmium is released in various forms e.g. oxide, chloride and sulphide. The aim of the present study was to examine the genotoxic impact of fullerene nanoparticles C 60 (C 60 ) and virgin olive oil (VOO) on cadmium chloride (CdCl 2 )-induced genotoxicity in rats. To evaluate these effects on DNA damage and chromosomal frequency, 25 albino rats were randomly assigned to 5 groups (n=5 per group): Group 1 served as a control; Group 2 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg); Group 3 animals were treated with C 60 (4mg/kg, orally) every other day for 20days; Group 4 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and an oral dose of C 60 (4mg/kg); and Group 5 received a single intraperitoneal dose of CdCl 2 (3.5mg/kg) and oral doses of VOO every other day for 20 consecutive days. Genotoxic and anti-genotoxic effects of C 60 and VOO were evaluated in the liver, kidney and bone marrow using molecular and cytogenetic assays. As expected, CdCl 2 and C 60 administration was associated with band number alterations in both liver and kidney; however, C 60 pretreatment recovered to approximately basal number. Surprisingly, C 60 and VOO significantly attenuated the genotoxic effects caused by CdCl 2 in livers and kidneys. In bone marrow, in addition to a reduction in the chromosomal number, several chromosomal aberrations were caused by CdCl 2 . These chromosomal alterations were also reversed by C 60 and VOO. In conclusion, molecular and cytogenetic studies showed that C 60 and VOO exhibit anti-genotoxic agents against CdCl 2 -induced genotoxicity in rats. Further studies are needed to investigate the optimal conditions for potential biomedical applications of these anti-genotoxic agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Genotoxic effects in wild rodents (Rattus rattus and Mus musculus) in an open coal mining area.

    Science.gov (United States)

    León, Grethel; Pérez, Lyda Espitia; Linares, Juan Carlos; Hartmann, Andreas; Quintana, Milton

    2007-06-15

    Coal is a mixture of a variety of compounds containing mutagenic and carcinogenic polycyclic aromatic hydrocarbons. Exposure to coal is considered as an important non-cellular and cellular source of reactive oxygen species that can induce DNA damage. In addition, spontaneous combustion can occur in coal mining areas, further releasing compounds with detrimental effects on the environment. In this study the comet assay was used to investigate potential genotoxic effects of coal mining activities in peripheral blood cells of the wild rodents Rattus rattus and Mus musculus. The study was conducted in a coal mining area of the Municipio de Puerto Libertador, South West of the Departamento de Cordoba, Colombia. Animals from two areas in the coal mining zone and a control area located in the Municipio de Lorica were investigated. The results showed evidence that exposure to coal results in elevated primary DNA lesions in blood cells of rodents. Three different parameters for DNA damage were assessed, namely, DNA damage index, migration length and percentage damaged cells. All parameters showed statistically significantly higher values in mice and rats from the coal mining area in comparison to the animals from the control area. The parameter "DNA Damage Index" was found to be most sensitive and to best indicate a genotoxic hazard. Both species investigated were shown to be sensitive indicators of environmental genotoxicity caused by coal mining activities. In summary, our study constitutes the first investigation of potential genotoxic effects of open coal mining carried out in Puerto Libertador. The investigations provide a guide for measures to evaluate genotoxic hazards, thereby contributing to the development of appropriate measures and regulations for more careful operations during coal mining.

  5. Integrated analysis of the ecotoxicological and genotoxic effects of the antimicrobial peptide melittin on Daphnia magna and Pseudokirchneriella subcapitata

    International Nuclear Information System (INIS)

    Galdiero, Emilia; Maselli, Valeria; Falanga, Annarita; Gesuele, Renato; Galdiero, Stefania; Fulgione, Domenico; Guida, Marco

    2015-01-01

    Melittin is a major constituent of the bee venom of Apis mellifera with a broad spectrum of activities. Melittin therapeutical potential is subject to its toxicity and the assessment of ecotoxicity and genotoxicity is of particular interest for therapeutic use. Here we analyzed the biological effects of melittin on two aquatic species, which are representative of two different levels of the aquatic trophic chain: the invertebrate Daphnia magna and the unicellular microalgae Pseudokirchneriella subcapitata. The attention was focused on the determination of: i) ecotoxicity; ii) genotoxicity; iii) antigenotoxicity. Our main finding is that melittin is detrimental to D. magna reproduction and its sub-lethal concentrations create an accumulation dependent on exposition times and a negative effect on DNA. We also observed that melittin significantly delayed time to first eggs. Moreover, results showed that melittin exerted its toxic and genotoxic effects in both species, being a bit more aggressive towards P. subcapitata. - Highlights: • We examine ecotoxicity to study how AMPs affect the environment. • We examine genotoxicity in order to analyze the damages to the DNA. • We examine the antigenotoxicity in order to verify DNA repair ability of the cells. • Possible therapeutical applications of AMPs depend on assessment of ecotoxicity. - Melittin exerts its dose dependent toxic and genotoxic effects on both indicators; no toxicity is found at concentrations that may typically reach the environment

  6. Fipronil-induced genotoxicity and DNA damage in vivo: Protective effect of vitamin E.

    Science.gov (United States)

    Badgujar, P C; Selkar, N A; Chandratre, G A; Pawar, N N; Dighe, V D; Bhagat, S T; Telang, A G; Vanage, G R

    2017-05-01

    Fipronil, an insecticide of the phenylpyrazole class has been classified as a carcinogen by United States Environmental Protection Agency, yet very limited information is available about its genotoxic effects. Adult male and female animals were gavaged with various doses of fipronil (2.5, 12.5, and 25 mg/kg body weight (bw)) to evaluate micronucleus test (mice), chromosome aberration (CA), and comet assay (rats), respectively. Cyclophosphamide (40 mg/kg bw; intraperitoneal) was used as positive control. Another group of animals were pretreated with vitamin E orally (400 mg/kg bw) for 5 days prior to administration of fipronil (12.5 mg/kg). Fipronil exposure in both male and female mice caused significant increase in the frequency of micronuclei (MN) in polychromatic erythrocytes. Similarly, structural CAs in bone marrow cells and DNA damage in the lymphocytes was found to be significantly higher in the male and female rats exposed to fipronil as compared to their respective controls. The average degree of protection (male and female animals combined together) shown by pretreatment of vitamin E against fipronil-induced genotoxicity was 63.28%: CAs; 47.91%: MN formation; and 74.70%: DNA damage. Findings of this study demonstrate genotoxic nature of fipronil regardless of gender effect and documents protective role of vitamin E.

  7. In Vitro Evaluation of Genotoxic Effects under Magnetic Resonant Coupling Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Kohei Mizuno

    2015-04-01

    Full Text Available Wireless power transfer (WPT technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  8. Exposure to sorbitol during lactation causes metabolic alterations and genotoxic effects in rat offspring.

    Science.gov (United States)

    Cardoso, Felipe S; Araujo-Lima, Carlos F; Aiub, Claudia A F; Felzenszwalb, Israel

    2016-10-17

    Sorbitol is a polyol used by the food industry as a sweetener. Women are consuming diet and light products containing sorbitol during pregnancy and in the postnatal period to prevent themselves from excessive weight gain and maintain a slim body. Although there is no evidence for the genotoxicity of sorbitol in the perinatal period, this study focused on evaluating the effects of the maternal intake of sorbitol on the biochemical and toxicological parameters of lactating Wistar rat offspring after 14days of mother-to-offspring exposure. A dose-dependent reduction of offspring length was observed. An increase in sorbitol levels determined in the milk was also observed. However, we detected an inverse relationship between the exposition dose in milk fructose and triacylglycerols concentrations. There was an increase in the plasmatic levels of ALT, AST and LDLc and a decrease in proteins, cholesterol and glucose levels in the offspring. Sorbitol exposure caused hepatocyte genotoxicity, including micronuclei induction. Maternal sorbitol intake induced myelotoxicity and myelosuppression in their offspring. The Comet assay of the blood cells detected a dose-dependent genotoxic response within the sorbitol-exposed offspring. According to our results, sorbitol is able to induce important metabolic alterations and genotoxic responses in the exposed offspring. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Evalution of the genotoxic effects of tiamulin S-in vivo

    OpenAIRE

    Marković Biljana; Stanimirović Zoran Ž.; Đelić Ninoslav J.

    2004-01-01

    In this work the genotoxic effect of the antibiotic preparation Tiamulin S was investigated. The experiments were done in vivo using cytogenetic analysis on BALB/c mouse bone marrow cells. The occurrence of chromosomal alterations was monitored in bone marrow and germ cells. The clastogenic effect of Tiamulin S was monitored at three doses (0.01 ml/kg, 0.2 ml/kg and 0.4 ml/kg) through eight experimental cycles. The results obtained showed that Tiamulin S induces kariotype changes including bo...

  10. Sex-related effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part II: genotoxic and cytotoxic potential.

    Science.gov (United States)

    Arslan, Mehmet; Sevgiler, Yusuf; Buyukleyla, Mehmet; Yardimci, Mustafa; Yilmaz, Mehmet; Rencuzogullari, Eyyup

    2016-01-01

    Despite its intended use, imidacloprid causes genotoxic and cytotoxic effects in mammals, especially in the presence of metabolic activation systems. The aim of this study was to determine to which extent these effects are sex related and how its metabolism modulators piperonyl butoxide and menadione affect its toxicity. Male and female Sprague-Dawley rats were injected with the intraperitoneal LD50 dose of imidacloprid alone (170 mg/kg) or pretreated with piperonyl butoxide (100 mg/kg) and menadione (25 mg/kg) for 12 and 24 h. Structural chromosome aberrations, abnormal cells and mitotic index were determined microscopically in bone marrow cells. Male rats showed susceptibility to the genotoxic effects of imidacloprid. Piperonyl butoxide was effective in countering this effect only at 24 h, whereas menadione exacerbated imidacloprid-induced genotoxicity. Piperonyl butoxide and menadione pretreatments increased the percentage of structural chromosome aberrations and abnormal cells in females. Imidacloprid decreased the mitotic index, whereas pretreatment with piperonyl butoxide and menadione showed improvement in both sexes. We believe that CYP450-mediated metabolism of imidacloprid is under the hormonal control and therefore that its genotoxicity is sex related. Piperonyl butoxide pretreatment also showed sex-related modulation. The hormonal effects on imidacloprid biotransformation require further investigation.

  11. Genotoxicity and ELF-magnetic fields: a review through the micronucleus assay

    International Nuclear Information System (INIS)

    Alcaraz, M.; Andreu-Galvez, M.; Sanchez-Villalobos, J. M.; Achel, D. G.; Olmos, E.; Martinez-Hernandez, C. M.

    2012-01-01

    Thirty for (34) published studies, conducted from 1994 to the present to evaluate the genotoxic effect of magnetic fields using ELF-EMF and diagnostic resonance on humans by the micronucleus assay have been reviewed. some characteristics of the assay methods, their significance to genotoxicity and basic interpretations of the results of these assays are discussed. of the studies analysed 70.5% implicated genotoxic effects induced by these magnetic fields: 52.9% were due to exposure to magnetic fields only and 17,6% by exposure to magnetic fields in combination with some treatment types, resulting in additive or synergistic effect. Evidence exist to support the notion that exposure of humans to magnetic fields stimulates genotoxic effects, although the actual mechanisms of action or even the true human health consequences resulting from these exposure still remain unclear. (Author) 80 refs.

  12. Genotoxic evaluation of terbinafine in human lymphocytes in vitro.

    Science.gov (United States)

    Tolomeotti, Danielle; de Castro-Prado, Marialba Avezum Alves; de Sant'Anna, Juliane Rocha; Martins, Ana Beatriz Tozzo; Della-Rosa, Valter Augusto

    2015-01-01

    Terbinafine is an antimycotic drug usually used against several superficial fungal infections and with a potential application in the treatment of human cancers. Since to date there are few data on the genotoxic effects of terbinafine in mammalian cells, current study evaluated the potential genotoxic of such antifungal agent in cultured human peripheral blood lymphocytes. Terbinafine was used at the peak plasma concentration (1.0 μg/ml) and in four additional concentrations higher than the human plasmatic peak (5.0 μg/ml, 25.0 μg/ml, 50.0 μg/ml and 100.0 μg/ml). Chromosomal aberrations (CA), sister chromatid exchanges (SCE), micronuclei (MN), nucleoplasmic bridges (NP) and nuclear buds (NB) were scored as genetic endpoints. In all analysis no significant differences (α = 0.05, Kruskal-Wallis test) were observed. Complementary criterion adopted to obtain the final response in cytogenetic agreed with statistical results. Therefore, results of this study showed that terbinafine neither induced CA, SCE, MN, NP and NB nor affected significantly mitotic, replication and cytokinesis-block proliferation indices in any of the tested concentrations. It may be assumed that terbinafine was not genotoxic or cytotoxic to cultured human peripheral blood lymphocytes in our experimental conditions.

  13. "Aspartame: A review of genotoxicity data".

    Science.gov (United States)

    Kirkland, David; Gatehouse, David

    2015-10-01

    Aspartame is a methyl ester of a dipeptide of aspartic acid and phenylalanine. It is 200× sweeter than sucrose and is approved for use in food products in more than 90 countries around the world. Aspartame has been evaluated for genotoxic effects in microbial, cell culture and animal models, and has been subjected to a number of carcinogenicity studies. The in vitro and in vivo genotoxicity data available on aspartame are considered sufficient for a thorough evaluation. There is no evidence of induction of gene mutations in a series of bacterial mutation tests. There is some evidence of induction of chromosomal damage in vitro, but this may be an indirect consequence of cytotoxicity. The weight of evidence from in vivo bone marrow micronucleus, chromosomal aberration and Comet assays is that aspartame is not genotoxic in somatic cells in vivo. The results of germ cell assays are difficult to evaluate considering limited data available and deviations from standard protocols. The available data therefore support the conclusions of the European Food Safety Authority (EFSA) that aspartame is non-genotoxic. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Assessment of in vitro genotoxic and cytotoxic effects of flurbiprofen on human cultured lymphocytes.

    Science.gov (United States)

    Timocin, Taygun; Ila, Hasan Basri; Dordu, Tuba; Husunet, Mehmet Tahir; Tazehkand, Mostafa Norizadeh; Valipour, Ebrahim; Topaktas, Mehmet

    2016-01-01

    Flurbiprofen is non-steroidal anti-inflammatory drug which is commonly used for its analgesic, antipyretic, and anti-inflammatory effects. The purpose of the study was to explore the genotoxic and cytotoxic effects of flurbiprofen in human cultured lymphocytes by sister chromatid exchange, chromosome aberration, and cytokinesis-blocked micronucleus tests. 10, 20, 30, and 40 μg/mL concentrations of flurbiprofen (solvent is DMSO) were used to treatment of human cultured lymphocytes at two different treatment periods (24 and 48 h). Flurbiprofen had no significant genotoxic effect in any of these tests. But exposing to flurbiprofen for 24 and 48 h led to significant decrease on proliferation index, mitotic index, and nuclear division index (NDI). Also, all decreases were concentration-dependent (except NDI at 24 h treatment period). Consequently, the findings of this research showed that flurbiprofen had cytotoxic effects in human blood lymphocytes.

  15. Protective effect of pumpkin seed oil against genotoxicity induced by azathioprine

    OpenAIRE

    Elfiky, S.A.; Elelaimy, I.A.; Hassan, A.M.; Ibrahim, H.M.; Elsayad, R.I.

    2012-01-01

    Pumpkin is a leafy green vegetable; it belongs to the Cucurbitaceae family. Pumpkin seed oil supplementation can prevent changes in plasma lipids and blood pressure. The present study was conducted to evaluate the protective effect of pumpkin seed oil against cytotoxicity and genotoxicity of azathioprine. Oral administration of pumpkin seed oil either before or after treatment of azathioprine was effective in the reduction of the frequencies of Mn-PCEs, decreased the DNA fragmentation, total ...

  16. Genotoxic effects and oxidative stress induced by organic extracts of particulate matter(PM 10)collected from a subway tunnel in Seoul, Korea.

    Science.gov (United States)

    Jung, Mi Hyun; Kim, Ha Ryong; Park, Yong Joo; Park, Duck Shin; Chung, Kyu Hyuck; Oh, Seung Min

    2012-12-12

    Particulate matter (PM) has become an important health risk factor in our society. PM can easily deposit in the bronchi and lungs, causing diverse diseases such as respiratory infections, lung cancers and cardiovascular diseases. In recent days, more and more toxicological studies have been dealing with air particles in distinctive areas including industrial areas, transportation sites, or indoors. Studies on subway PM in particular, have been recognizing PM as an important health risk factor because many people use subways as a major mode of public transportation (4 million people a day in Korea). The main aim of the present study was to evaluate the genotoxic effects of organic extract (OE) of subway PM10 and potential attribution of PAHs to these effects. Particles were collected in the subway tunnel at Kil-eum station(Line 4) for one month and then extracted with Dichloromethane (DCM). Chinese Hamster Ovary cells(CHO-K1) and human normal bronchial cells (BEAS-2B) were exposed to OE, and MN and Comet assays were conducted to analyze the genotoxicity. The results showed that OE increased DNA or chromosome damages in both cell lines. In the modified Comet assay and MN assay with free radical scavengers, we confirmed that the genotoxic effect of OE was partially due to the oxidative damage on DNA. DCFHD Aassay also indicated that OE induced ROS generation in BEAS-2B cells. PAHs [benzo(a)anthracene,benzo(k)fluoranthrene, etc.], the most well-known carcinogens in polluted air, were detected in Kil-eum PM10. In conclusion, our findings confirmed that OE of subway PM10 has genotoxic effects on normal human lung cells, and oxidative stress could be one of the major mechanisms of these genotoxic effects.In addition, some genotoxic and carcinogenic PAHs were detected in OE by GC/MS/MS, even though PAHs level was not enough to increase CYP1A1 gene. Therefore, we suggest that additive or synergistic effects by unidentified chemicals as well as PAHs contained in OE of subway

  17. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test.

    Directory of Open Access Journals (Sweden)

    Carolina Ribeiro E Silva

    Full Text Available Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenylprop-2-enoyl]phenyl} benzenesulfonamide (CPN were assessed using the Salmonella typhimurium reverse mutation test (Ames test and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05. The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p 0.05. Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties.

  18. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo

    Directory of Open Access Journals (Sweden)

    Latifa Khayyat

    2017-02-01

    Full Text Available Tartrazine is a synthetic organic azo dye widely used in food and pharmaceutical products. The current study aimed to evaluate the possible adverse effect of this coloring food additive on renal and hepatic structures and functions. Also, the genotoxic potential of tartrazine on white blood cells was investigated using comet assay. Twenty adult male Wistar rats were grouped into two groups of 10 each, control- and tartrazine-treated groups. The control group was administered orally with water alone. The experimental group was administered orally with tartrazine (7.5 mg/kg, b.wt.. Our results showed a marked increase in the levels of ALT, AST, ALP, urea, uric acid, creatinine, MDA and NO, and a decreased level of total antioxidants in the serum of rats dosed with tartrazine compared to controls. On the other hand, administration of tartrazine was associated with severe histopathological and cellular alterations of rat liver and kidney tissues and induced DNA damage in leucocytes as detected by comet assay. Taken together, the results showed that tartrazine intake may lead to adverse health effects.

  19. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo.

    Science.gov (United States)

    Khayyat, Latifa; Essawy, Amina; Sorour, Jehan; Soffar, Ahmed

    2017-01-01

    Tartrazine is a synthetic organic azo dye widely used in food and pharmaceutical products. The current study aimed to evaluate the possible adverse effect of this coloring food additive on renal and hepatic structures and functions. Also, the genotoxic potential of tartrazine on white blood cells was investigated using comet assay. Twenty adult male Wistar rats were grouped into two groups of 10 each, control- and tartrazine-treated groups. The control group was administered orally with water alone. The experimental group was administered orally with tartrazine (7.5 mg/kg, b.wt.). Our results showed a marked increase in the levels of ALT, AST, ALP, urea, uric acid, creatinine, MDA and NO, and a decreased level of total antioxidants in the serum of rats dosed with tartrazine compared to controls. On the other hand, administration of tartrazine was associated with severe histopathological and cellular alterations of rat liver and kidney tissues and induced DNA damage in leucocytes as detected by comet assay. Taken together, the results showed that tartrazine intake may lead to adverse health effects.

  20. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo

    International Nuclear Information System (INIS)

    Tavares, Priscila; Balbinot, Fernanda; Martins de Oliveira, Hugo; Elibio Fagundes, Gabriela; Venâncio, Mireli; Vieira Ronconi, João Vitor; Merlini, Aline; Streck, Emílio L.; Marques da Silva, Paula; Moraes de Andrade, Vanessa

    2012-01-01

    Silver nanoparticles (Ag-NPs) are the most prominent nanoproducts. Due to their antimicrobial activity, they have been incorporated in different materials, such as catheters, clothes, electric home appliance, and many others. The genotoxicity of Ag-NPs (5–45 nm), in different concentrations and times of exposure, was evaluated by the comet assay in in vitro and in vivo conditions, respectively, using human peripheral blood and Swiss mice. The results showed the genotoxic effect of Ag-NPs in vitro, in all the doses tested in the initial hour of exposure, possibly through the reactive oxygen species generation. Nevertheless, the values for this damage decrease with time, indicating that the DNA may have been restored by the repair system. In the in vivo conditions, we found no genotoxicity of Ag-NPs in any hour of exposure and any dose investigated, which can be attributed to the activation of a cellular antioxidant network and the hydrophobic nature of Ag-NPs. Now, it is absolutely necessary to investigate the role of Ag-NPs in different cell lines in vivo.

  1. Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Priscila; Balbinot, Fernanda; Martins de Oliveira, Hugo; Elibio Fagundes, Gabriela [PPGCS, Universidade do Extremo Sul Catarinense, Laboratorio de Biologia Celular e Molecular (Brazil); Venancio, Mireli; Vieira Ronconi, Joao Vitor; Merlini, Aline [Universidade do Extremo Sul Catarinense, Laboratorio de Sintese de Complexos Multifuncionais (Brazil); Streck, Emilio L. [Programa de Pos-Graduacao em Ciencias da Saude, Unidade Academica de Ciencias da Saude, Universidade do Extremo Sul Catarinense, Laboratorio de Fisiopatologia Experimental (Brazil); Marques da Silva, Paula [Universidade do Extremo Sul Catarinense, Laboratorio de Sintese de Complexos Multifuncionais (Brazil); Moraes de Andrade, Vanessa, E-mail: vmoraesdeandrade@yahoo.com.br [PPGCS, Universidade do Extremo Sul Catarinense, Laboratorio de Biologia Celular e Molecular (Brazil)

    2012-03-15

    Silver nanoparticles (Ag-NPs) are the most prominent nanoproducts. Due to their antimicrobial activity, they have been incorporated in different materials, such as catheters, clothes, electric home appliance, and many others. The genotoxicity of Ag-NPs (5-45 nm), in different concentrations and times of exposure, was evaluated by the comet assay in in vitro and in vivo conditions, respectively, using human peripheral blood and Swiss mice. The results showed the genotoxic effect of Ag-NPs in vitro, in all the doses tested in the initial hour of exposure, possibly through the reactive oxygen species generation. Nevertheless, the values for this damage decrease with time, indicating that the DNA may have been restored by the repair system. In the in vivo conditions, we found no genotoxicity of Ag-NPs in any hour of exposure and any dose investigated, which can be attributed to the activation of a cellular antioxidant network and the hydrophobic nature of Ag-NPs. Now, it is absolutely necessary to investigate the role of Ag-NPs in different cell lines in vivo.

  2. Role of Proteus mirabilis MR/P fimbriae and flagella in adhesion, cytotoxicity and genotoxicity induction in T24 and Vero cells.

    Science.gov (United States)

    Scavone, Paola; Villar, Silvia; Umpiérrez, Ana; Zunino, Pablo

    2015-06-01

    Proteus mirabilis is frequently associated with complicated urinary tract infections (UTI). It is proposed that several virulence factors are associated with P. mirabilis uropathogenicity. The aim of this work was to elucidate genotoxic and cytotoxic effects mediated by MR/P fimbriae and flagella in eukaryotic cells in vitro. Two cell lines (kidney- and bladder-derived) were infected with a clinical wild-type P. mirabilis strain and an MR/P and a flagellar mutant. We evaluated adhesion, genotoxicity and cytotoxicity by microscopy, comet assay and triple staining technique, respectively. Mutant strains displayed lower adhesion rates than the P. mirabilis wild-type strain and were significantly less effective to induce genotoxic and cytotoxic effects compared to the wild type. We report for the first time that P. mirabilis MR/P fimbriae and flagella mediate genotoxic and cytotoxic effects on eukaryotic cells, at least in in vitro conditions. These results could contribute to design new strategies for the control of UTI. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Genistein genotoxicity: Critical considerations of in vitro exposure dose

    International Nuclear Information System (INIS)

    Klein, Catherine B.; King, Audrey A.

    2007-01-01

    The potential health benefits of soy-derived phytoestrogens include their reported utility as anticarcinogens, cardioprotectants and as hormone replacement alternatives in menopause. Although there is increasing popularity of dietary phytoestrogen supplementation and of vegetarian and vegan diets among adolescents and adults, concerns about potential detrimental or other genotoxic effects persist. While a variety of genotoxic effects of phytoestrogens have been reported in vitro, the concentrations at which such effects occurred were often much higher than the physiologically relevant doses achievable by dietary or pharmacologic intake of soy foods or supplements. This review focuses on in vitro studies of the most abundant soy phytoestrogen, genistein, critically examining dose as a crucial determinant of cellular effects. In consideration of levels of dietary genistein uptake and bioavailability we have defined in vitro concentrations of genistein > 5 μM as non-physiological, and thus 'high' doses, in contrast to much of the previous literature. In doing so, many of the often-cited genotoxic effects of genistein, including apoptosis, cell growth inhibition, topoisomerase inhibition and others become less obvious. Recent cellular, epigenetic and microarray studies are beginning to decipher genistein effects that occur at dietarily relevant low concentrations. In toxicology, the well accepted principle of 'the dose defines the poison' applies to many toxicants and can be invoked, as herein, to distinguish genotoxic versus potentially beneficial in vitro effects of natural dietary products such as genistein

  4. Protective Effect of Melatonin Against Mitomycin C-Induced Genotoxic Damage in Peripheral Blood of Rats

    Directory of Open Access Journals (Sweden)

    S. Ortega-Gutiérrez

    2009-01-01

    Full Text Available Mitomycin C (MMC generates free radicals when metabolized. We investigated the effect of melatonin against MMC-induced genotoxicity in polychromatic erythrocytes and MMC-induced lipid peroxidation in brain and liver homogenates. Rats (N = 36 were classified into 4 groups: control, melatonin, MMC, and MMC + melatonin. Melatonin and MMC doses of 10 mg/kg and 2 mg/kg, respectively, were injected intraperitoneally. Peripheral blood samples were collected at 0, 24, 48, 72, and 96 hours posttreatment and homogenates were obtained at 96 hours posttreatment. The number of micronucleated polychromatic erythrocytes (MN-PCE per 1000 PCE was used as a genotoxic marker. Malondialdehyde (MDA plus 4-hydroxyalkenal (4-HDA levels were used as an index of lipid peroxidation. The MMC group showed a significant increase in MN-PCE at 24, 48, 72, and 96 hours that was significantly reduced with melatonin begin coadministrated. No significant differences were found in lipid peroxidation. Our results indicate that MMC-induced genotoxicity can be reduced by melatonin.

  5. Flooding modifies the genotoxic effects of pollution on a worm, a mussel and two fish species from the Sava River.

    Science.gov (United States)

    Aborgiba, Mustafa; Kostić, Jovana; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Elbahi, Samia; Knežević-Vukčević, Jelena; Lenhardt, Mirjana; Paunović, Momir; Gačić, Zoran; Vuković-Gačić, Branka

    2016-01-01

    Extreme hydrological events, such as water scarcity and flooding, can modify the effect of other stressors present in aquatic environment, which could result in the significant changes in the ecosystem functioning. Presence and interaction of various stressors (genotoxic pollutants) in the environment can influence the integrity of DNA molecules in aquatic organisms which can be negatively reflected on the individual, population and community levels. Therefore, in this study we have investigated the impact of flooding, in terms of genotoxicity, on organisms belonging to different trophic levels. The study was carried out on the site situated in the lower stretch of the Sava River which faced devastating effects of severe flooding in May 2014. The flooding occurred during our field experiment and this event provided a unique opportunity to assess its influence to the environment. The in situ effects of this specific situation were monitored by measuring physical, chemical and microbiological parameters of water, and by comparing the level of DNA damage in coelomocytes and haemocytes of freshwater worms Branchiura sowerbyi, haemocytes of freshwater mussels Unio tumidus and blood cells of freshwater fish Abramis bjoerkna/Abramis sapa, by means of the comet assay. Our study indicated that the flooding had a significant impact on water quality by decreasing the amount and discharge rate of urban wastewaters but simultaneously introducing contaminants from the nearby fly ash disposal field into river by runoff, which had diverse effects on the level of DNA damage in the studied organisms. This indicates that the assessment of genotoxic pollution in situ is strongly affected by the choice of the bioindicator organism. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Detection of genotoxic effects of drinking water disinfection by-products using Vicia faba bioassay.

    Science.gov (United States)

    Hu, Yu; Tan, Li; Zhang, Shao-Hui; Zuo, Yu-Ting; Han, Xue; Liu, Na; Lu, Wen-Qing; Liu, Ai-Lin

    2017-01-01

    Plant-based bioassays have gained wide use among the toxicological and/or ecotoxicological assessment procedures because of their simplicity, sensitivity, low cost, and reliability. The present study describes the use of Vicia faba (V. faba) micronucleus (MN) test and V. faba comet assay in the evaluation of the genotoxic potential of disinfection by-products (DBPs) commonly found in chlorine-disinfected drinking water. Five haloacetic acids and three halogenated acetonitriles were chosen as representatives of DBPs in this study because they are of potentially great public health risk. Results of the MN test indicated that monochloroacetic acid (MCA), monobromoacetic acid (MBA), dichloroacetic acid (DCA), dibromoacetic acid (DBA), trichloroacetic acid (TCA), and trichloroacetonitrile (TCAN) caused a statistically significant increase in MN frequency in V. faba root tip cells. However, no genotoxic response was observed for dichloroacetonitrile (DCAN) and dibromoacetonitrile (DBAN). Results of the comet assay showed that all tested DBPs induced a statistically significant increase in genomic DNA damage to V. faba root tip cells. On considering the capacity to detect genomic damage of a different nature, we suggest that a combination of V. faba MN test and V. faba comet assay is a useful tool for the detection of genotoxic effects of DBPs. It is worthy of assessing the feasibility of using V. faba comet assay combined with V. faba MN test to screen for the genotoxic activity of chlorinated drinking water in future work.

  7. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes

    International Nuclear Information System (INIS)

    Lacaze, Emilie; Pédelucq, Julie; Fortier, Marlène; Brousseau, Pauline; Auffret, Michel; Budzinski, Hélène; Fournier, Michel

    2015-01-01

    The potential toxicity of pharmaceuticals towards aquatic invertebrates is still poorly understood and sometimes controversial. This study aims to document the in vitro genotoxicity and immunotoxicity of psychotropic drugs and antibiotics on Mytilus edulis. Mussel hemocytes were exposed to fluoxetine, paroxetine, venlafaxine, carbamazepine, sulfamethoxazole, trimethoprim and erythromycin, at concentrations ranging from μg/L to mg/L. Paroxetine at 1.5 μg/L led to DNA damage while the same concentration of venlafaxine caused immunomodulation. Fluoxetine exposure resulted in genotoxicity, immunotoxicity and cytotoxicity. In the case of antibiotics, trimethoprim was genotoxic at 200 μg/L and immunotoxic at 20 mg/L whereas erythromycin elicited same detrimental effects at higher concentrations. DNA metabolism seems to be a highly sensitive target for psychotropic drugs and antibiotics. Furthermore, these compounds affect the immune system of bivalves, with varying intensity. This attests the relevance of these endpoints to assess the toxic mode of action of pharmaceuticals in the aquatic environment. - Highlights: • Psychotropic drugs and antibiotics affect the immune system of Mytilus edulis. • Genotoxic and immunotoxic endpoints were relevant to assess pharmaceuticals toxicity. • DNA metabolism is a highly sensitive target for pharmaceuticals. • Fluoxetine and paroxetine were the most toxic compounds on mussel hemocytes. - Psychotropic drugs and antibiotics have the potential to cause immune toxicity and genotoxicity on Mytilus edulis hemocytes

  8. Genotoxic effects of zinc oxide nanoparticles

    Science.gov (United States)

    Heim, Julia; Felder, Eva; Tahir, Muhammad Nawaz; Kaltbeitzel, Anke; Heinrich, Ulf Ruediger; Brochhausen, Christoph; Mailänder, Volker; Tremel, Wolfgang; Brieger, Juergen

    2015-05-01

    The potential toxicity of nanoparticles has currently provoked public and scientific discussions, and attempts to develop generally accepted handling procedures for nanoparticles are under way. The investigation of the impact of nanoparticles on human health is overdue and reliable test systems accounting for the special properties of nanomaterials must be developed. Nanoparticular zinc oxide (ZnO) may be internalised through ambient air or the topical application of cosmetics, only to name a few, with unpredictable health effects. Therefore, we analysed the determinants of ZnO nanoparticle (NP) genotoxicity. ZnO NPs (15-18 nm in diameter) were investigated at concentrations of 0.1, 10 and 100 μg mL-1 using the cell line A549. Internalised NPs were only infrequently detectable by TEM, but strongly increased Zn2+ levels in the cytoplasm and even more in the nuclear fraction, as measured by atom absorption spectroscopy, indicative of an internalised zinc and nuclear accumulation. We observed a time and dosage dependent reduction of cellular viability after ZnO NP exposure. ZnCl2 exposure to cells induced similar impairments of cellular viability. Complexation of Zn2+ with diethylene triamine pentaacetic acid (DTPA) resulted in the loss of toxicity of NPs, indicating the relevant role of Zn2+ for ZnO NP toxicity. Foci analyses showed the induction of DNA double strand breaks (DSBs) by ZnO NPs and increased intracellular reactive oxygen species (ROS) levels. Treatment of the cells with the ROS scavenger N-acetyl-l-cysteine (NAC) resulted in strongly decreased intracellular ROS levels and reduced DNA damage. However, a slow increase of ROS after ZnO NP exposure and reduced but not quashed DSBs after NAC-treatment suggest that Zn2+ may exert genotoxic activities without the necessity of preceding ROS-induction. Our data indicate that ZnO NP toxicity is a result of cellular Zn2+ intake. Subsequently increased ROS-levels cause DNA damage. However, we found evidence for

  9. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos.

    Science.gov (United States)

    Akcha, F; Spagnol, C; Rouxel, J

    2012-01-15

    We investigated the effects of genotoxicant exposure in gametes and embryos to find a possible link between genotoxicity and reproduction/developmental impairment, and explore the impact of chemical genotoxicity on population dynamics. Our study focused on the genotoxic effects of two herbicides on oyster gametes and embryos: glyphosate (both as an active substance and in the Roundup formulation) and diuron. France is Europe's leading consumer of agrochemical substances and as such, contamination of France's coastal waters by pesticides is a major concern. Glyphosate and diuron are among the most frequently detected herbicides in oyster production areas; as oyster is a specie with external reproduction, its gametes and embryos are in direct contact with the surrounding waters and are hence particularly exposed to these potentially dangerous substances. In the course of this study, differences in genotoxic and embryotoxic responses were observed in the various experiments, possibly due to differences in pollutant sensitivity between the tested genitor lots. Glyphosate and Roundup had no effect on oyster development at the concentrations tested, whereas diuron significantly affected embryo-larval development from the lowest tested concentration of 0.05 μg L⁻¹, i.e. an environmentally realistic concentration. Diuron may therefore have a significant impact on oyster recruitment rates in the natural environment. Our spermiotoxicity study revealed none of the tested herbicides to be cytotoxic for oyster spermatozoa. However, the alkaline comet assay showed diuron to have a significant genotoxic effect on oyster spermatozoa at concentrations of 0.05 μg L⁻¹ upwards. Conversely, no effects due to diuron exposure were observed on sperm mitochondrial function or acrosomal membrane integrity. Although our initial results showed no negative effect on sperm function, the possible impact on fertilization rate and the consequences of the transmission of damaged DNA for

  10. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests

    Directory of Open Access Journals (Sweden)

    Donatella Feretti

    2012-02-01

    Full Text Available Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L and surface water (TOC=7.5 mg/L. These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia. No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  11. Evaluation of Genotoxic and Cytotoxic Effects in Human Peripheral Blood Lymphocytes Exposed In Vitro to Neonicotinoid Insecticides News

    Directory of Open Access Journals (Sweden)

    María Elena Calderón-Segura

    2012-01-01

    Full Text Available Calypso (thiacloprid, Poncho (clothianidin, Gaucho (imidacloprid, and Jade (imidacloprid are commercial neonicotinoid insecticides, a new class of agrochemicals in México. However, genotoxic and cytotoxic studies have not been performed. In the present study, human peripheral blood lymphocytes (PBL were exposed in vitro to different concentrations of the four insecticides. The genotoxic and cytotoxic effects were evaluated using the alkaline comet and trypan blue dye exclusion assays. DNA damage was evaluated using two genotoxicity parameters: tail length and comet frequency. Exposure to 9.5×10-6 to 5.7×10-5 M Jade; 2.8×10-4 to 1.7×10-3 M Gaucho; 0.6×10-1 to 1.4×10-1 M Calypso; 1.2×10-1 to 9.5×10-1 M Poncho for 2 h induced a significant increase DNA damage with a concentration-dependent relationship. Jade was the most genotoxic of the four insecticides studied. Cytotoxicity was observed in cells exposed to 18×10-3 M Jade, 2.0×10-3 M Gaucho, 2.0×10-1 M Calypso, 1.07 M Poncho, and cell death occurred at 30×10-3 M Jade, 3.3×10-3 M Gaucho, 2.8×10-1 M Calypso, and 1.42 M Poncho. This study provides the first report of genotoxic and cytotoxic effects in PBL following in vitro exposure to commercial neonicotinoid insecticides.

  12. Physicochemical properties, in vitro cytotoxic and genotoxic effects of PM1.0 and PM2.5 from Shanghai, China.

    Science.gov (United States)

    Zou, Yajuan; Wu, Yizhao; Wang, Yali; Li, Yinsheng; Jin, Chengyu

    2017-08-01

    Exposure to ambient particulate matter (PM) links with a variety of respiratory diseases. However, compared with coarse particles (PM 10 ) and fine particles (PM 2.5 ), submicrometer particles (PM 1.0 ) may be a more important indicator of human health risks. In this study, the cytotoxic and genotoxic effects of PM 1.0 samples from Shanghai were examined using A549 cells, and compared with the effects of PM 2.5 , to better understand the health effects of PM 1.0 in this area. The PM 1.0 and PM 2.5 samples were characterized for morphology, water-soluble inorganic ions, organic and elemental carbon, and metal elements. The cytotoxicity of PMs was measured using cell viability and cell membrane damage assays. The genotoxic effects of PMs were determined using the comet assay, and DNA damage was quantified using olive tail moment (OTM) values. The physicochemical characterization indicated that PM 1.0 was enriched in carbonaceous elements and hazardous metals (Al, Zn, Pb, Mn, Cu, and V), whereas PM 2.5 was more abundant in large, irregular mineral particles. The biological results revealed that both PM 1.0 and PM 2.5 could induce significant cytotoxicity and genotoxicity in A549 cells, and that exposure to PM 1.0 caused more extensive toxic effects than exposure to PM 2.5 . The greater cytotoxic effects of PM 1.0 can be attributed to the combined effects of size and chemical composition, whereas the genotoxic effects of PM 1.0 may be mainly associated with chemical species.

  13. Effects of individual and combined toxicity of bisphenol A, dibutyl phthalate and cadmium on oxidative stress and genotoxicity in HepG 2 cells.

    Science.gov (United States)

    Li, Xiaohui; Yin, Pinghe; Zhao, Ling

    2017-07-01

    Bisphenol A, dibutyl phthalate and cadmium can be found in environment simultaneously. Several studies suggested that they had genotoxic effect. In this study, mono-exposure and co-exposure treatments, designed by 3 × 3 full factorial, were established to determine the individual toxicity and binary mixtures' combined effects on the oxidative stress and genotoxicity in HepG 2 cells. The highest oxidative damage was observed in the Cd treatments groups. Compared with control groups, the maximum level of reactive oxygen species and malondialdehyde were ∼1.4 fold and ∼2.22 fold respectively. And a minimum level of superoxide dismutase activity was found with the decrease of 43%. The mechanism that excessive oxidative stress led to the DNA damage was inferred. However, cells treated with BPA showed the worst DNA damage rather than Cd, which may because Cd mainly damages DNA repairing mechanism. For the joint effect, different interactions can be found in different biological endpoints for different combinations since different mechanisms have been clarified in mixture toxicity studies. It is sure that the co-exposure groups enhanced cytotoxicity, oxidative stress and genotoxicity compared to the mono-exposures. Synergistic and additive interactions were considered, which means greater threat to organisms when exposed to multiple estrogenic endocrine disruptors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk.

    Science.gov (United States)

    Kirkland, David; Brock, Tom; Haddouk, Hasnaà; Hargeaves, Victoria; Lloyd, Melvyn; Mc Garry, Sarah; Proudlock, Raymond; Sarlang, Séverine; Sewald, Katherina; Sire, Guillaume; Sokolowski, Andrea; Ziemann, Christina

    2015-10-01

    The genotoxicity of cobalt metal and cobalt compounds has been widely studied. Several publications show induction of chromosomal aberrations, micronuclei or DNA damage in mammalian cells in vitro in the absence of S9. Mixed results were seen in gene mutation studies in bacteria and mammalian cells in vitro, and in chromosomal aberration or micronucleus assays in vivo. To resolve these inconsistencies, new studies were performed with soluble and poorly soluble cobalt compounds according to OECD-recommended protocols. Induction of chromosomal damage was confirmed in vitro, but data suggest this may be due to oxidative stress. No biologically significant mutagenic responses were obtained in bacteria, Tk(+/-) or Hprt mutation tests. Negative results were also obtained for chromosomal aberrations (in bone marrow and spermatogonia) and micronuclei at maximum tolerated doses in vivo. Poorly soluble cobalt compounds do not appear to be genotoxic. Soluble compounds do induce some DNA and chromosomal damage in vitro, probably due to reactive oxygen. The absence of chromosome damage in robust GLP studies in vivo suggests that effective protective processes are sufficient to prevent oxidative DNA damage in whole mammals. Overall, there is no evidence of genetic toxicity with relevance for humans of cobalt substances and cobalt metal. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Genotoxicity of triiodothyronine: Effects on Salmonella typhimurium TA100 and human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    Bošnjak-Neumüller Jasna

    2017-01-01

    Full Text Available There is increasing evidence that substances which are normally present in human or animal bodies may, under the certain circumstances, exhibit deleterious effects on genetic material, therefore acting as endogenous mutagenic agents. Since hormones represent one of the best studied endogenous mutagens, some research focused on the possible role of thyroid hormone in mutagenesis and carcinogenesis. Indeed, thyroid hormones accelerate aerobic metabolism and production of reactive oxygen species (ROS and, therefore, may exhibit mutagenic effects in various test systems on mammalian cells. However, possible mutagenic effects on prokaryotic DNA has not been investigated so far. Hence, the aim of this research was to compare the sensitivity of TA 100 Salmonella typhimurium with and without metabolic activation with S9 fraction, and human lymphocytes to possible genotoxic effects of triiodothyronine (T3. Therefore, we used the reverse mutation assay on S. typhimurium (Ames test and in vitro Comet assay in isolated peripheral blood human lymphocytes. In both tests-systems a broad spectrum of T3 concentrations was applied. The obtained results showed absence of genotoxic effects of T3 in bacterial reverse mutation assay and very profound genotoxic effects in human lymphocytes at concentrations higher than 15 μM. We only observed cytotoxic effects in bacterial system at very high T3 concentrations (300 and 500 μM. In conclusion, T3 was unable to increase the level of reverse mutations in Ames test both with and without S9 mix. Therefore, it seems that ROS production in mitochondria may be the primary cause of DNA damage caused by T3 in mammalian cells. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III46002

  16. Synergistic effect of Gentiana lutea L. on methyl methanesulfonate genotoxicity in the Drosophila wing spot test.

    Science.gov (United States)

    Patenković, Aleksandra; Stamenković-Radak, Marina; Nikolić, Dragana; Marković, Tamara; Anđelković, Marko

    2013-03-27

    Gentiana lutea L., the yellow gentian, is herb known for its pharmacological properties, with a long tradition of use for the treatment of a variety of diseases including the use as a remedy for digestion, also in food products and in bitter beverages. The aim of the present study is to evaluate, for the first time, genotoxicity of gentian alone, and its antigenotoxicity against methyl methanesulfonate (MMS). The water infusion of the underground part of gentian were evaluated in vivo using the Drosophila wing spot test, at the dose commonly used in traditional medicine. For antigenotoxic study two types of treatment with gentian and MMS were performed: chronic co-treatment, as well as post-treatment with gentian after acute exposure with MMS. Water infusion of gentian alone did not exhibit genotoxicity. The results of co- and post-treatment experiments with gentian show that gentian enhanced the frequency of mutant clones over the values obtained with MMS alone, instead of reducing the genotoxicity of MMS, for 22.64% and 27.13% respectively. This result suggests a synergism of gentian with MMS, and indicates that water infusion of gentian used in traditional medicine may have particular effects with regard to genotoxicity indicating careful use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Modulation of the DNA repair system and ATR-p53 mediated apoptosis is relevant for tributyltin-induced genotoxic effects in human hepatoma G2 cells.

    Science.gov (United States)

    Li, Bowen; Sun, Lingbin; Cai, Jiali; Wang, Chonggang; Wang, Mengmeng; Qiu, Huiling; Zuo, Zhenghong

    2015-01-01

    The toxic effects of tributyltin (TBT) have been extensively documented in several types of cells, but the molecular mechanisms related to the genotoxic effects of TBT have still not been fully elucidated. Our study showed that exposure of human hepatoma G2 cells to 1-4 μmol/L TBT for 3 hr caused severe DNA damage in a concentration-dependent manner. Moreover, the expression levels of key DNA damage sensor genes such as the replication factor C, proliferating cell nuclear antigen and poly (ADP-ribose) polymerase-1 were inhabited in a concentration-dependent manner. We further demonstrated that TBT induced cell apoptosis via the p53-mediated pathway, which was most likely activated by the ataxia telangiectasia mutated and rad-3 related (ATR) protein kinase. The results also showed that cytochrome c, caspase-3, caspase-8, caspase-9, and the B-cell lymphoma 2 were involved in this process. Taken together, we demonstrated for the first time that the inhibition of the DNA repair system might be more responsible for TBT-induced genotoxic effects in cells. Then the generated DNA damage induced by TBT initiated ATR-p53-mediated apoptosis. Copyright © 2014. Published by Elsevier B.V.

  18. Time-Dependent Toxic and Genotoxic Effects of Zinc Oxide Nanoparticles after Long-Term and Repetitive Exposure to Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Pascal Ickrath

    2017-12-01

    Full Text Available Zinc oxide nanoparticles (ZnO-NP are widely spread in consumer products. Data about the toxicological characteristics of ZnO-NP is still under controversial discussion. The human skin is the most important organ concerning ZnO-NP exposure. Intact skin was demonstrated to be a sufficient barrier against NPs; however, defect skin may allow NP contact to proliferating cells. Within these cells, stem cells are the most important toxicological target for NPs. The aim of this study was to evaluate the genotoxic and cytotoxic effects of ZnO-NP at low-dose concentrations after long-term and repetitive exposure to human mesenchymal stem cells (hMSC. Cytotoxic effects of ZnO-NP were measured by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay. Furthermore, genotoxicity was evaluated by the comet assay. For long-term observation over 6 weeks, transmission electron microscopy (TEM was applied. The results of the study indicated cytotoxic effects of ZnO-NP beginning at high concentrations of 50 μg/mL and genotoxic effects in hMSC exposed to 1 and 10 μg/mL ZnO-NP. Repetitive exposure enhanced cyto- but not genotoxicity. Intracellular NP accumulation was observed up to 6 weeks. The results suggest cytotoxic and genotoxic potential of ZnO-NP. Even low doses of ZnO-NP may induce toxic effects as a result of repetitive exposure and long-term cellular accumulation. This data should be considered before using ZnO-NP on damaged skin.

  19. Evaluation of the genotoxic effects of chronic low-dose ionizing radiation exposure on nuclear medicine workers

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Ali [Department of Nuclear Medicine, Faculty of Medicine, Medical School, Ataturk University, Erzurum (Turkey)], E-mail: alibabam2001@yahoo.com; Tatar, Abdulgani; Oztas, Sitki [Department of Genetics, Faculty of Medicine, Ataturk University, 25240 Erzurum (Turkey); Seven, Bedri; Varoglu, Erhan [Department of Nuclear Medicine, Faculty of Medicine, Medical School, Ataturk University, Erzurum (Turkey); Yesilyurt, Ahmet [Department of Genetics, Faculty of Medicine, Ataturk University, 25240 Erzurum (Turkey); Ayan, Arif Kursad [Department of Nuclear Medicine, Faculty of Medicine, Medical School, Ataturk University, Erzurum (Turkey)

    2009-07-15

    Introduction: Nuclear medicine workers are occupationally exposed to chronic ionizing radiation. It is known that ionizing radiation may have damaging effects on chromosomes. In the present study, we investigated the genotoxic effects of ionizing radiation on nuclear medicine workers. We used two different indicators of genotoxicity methods: sister chromatid exchange (SCE) and micronucleus (MN). Methods: The present research was carried out using 21 nuclear medicine workers (11 females and 10 males) during two periods: during normal working conditions and after a 1-month vacation. The radiation dose varied from 1.20 to 48.56 mSv, which accumulated during the occupational exposure time between two vacations. Peripheral blood samples were taken from each subject for two distinct lymphocyte cultures (SCE and MN) in each period. Results: In nearly all subjects, SCE values increased significantly during radiation exposure compared to the postvacation period (P<.05). Similarly, MN frequencies in most of the subjects increased significantly during radiation exposure compared to the postvacation period (P<.05). Conclusions: This study revealed that both SCE and MN frequencies in most of the subjects were significantly higher during exposure to ionizing radiation than after a 1-month vacation period. However, this genotoxic effect was reversible in most of the subjects.

  20. Evaluation of the genotoxic effects of chronic low-dose ionizing radiation exposure on nuclear medicine workers

    International Nuclear Information System (INIS)

    Sahin, Ali; Tatar, Abdulgani; Oztas, Sitki; Seven, Bedri; Varoglu, Erhan; Yesilyurt, Ahmet; Ayan, Arif Kursad

    2009-01-01

    Introduction: Nuclear medicine workers are occupationally exposed to chronic ionizing radiation. It is known that ionizing radiation may have damaging effects on chromosomes. In the present study, we investigated the genotoxic effects of ionizing radiation on nuclear medicine workers. We used two different indicators of genotoxicity methods: sister chromatid exchange (SCE) and micronucleus (MN). Methods: The present research was carried out using 21 nuclear medicine workers (11 females and 10 males) during two periods: during normal working conditions and after a 1-month vacation. The radiation dose varied from 1.20 to 48.56 mSv, which accumulated during the occupational exposure time between two vacations. Peripheral blood samples were taken from each subject for two distinct lymphocyte cultures (SCE and MN) in each period. Results: In nearly all subjects, SCE values increased significantly during radiation exposure compared to the postvacation period (P<.05). Similarly, MN frequencies in most of the subjects increased significantly during radiation exposure compared to the postvacation period (P<.05). Conclusions: This study revealed that both SCE and MN frequencies in most of the subjects were significantly higher during exposure to ionizing radiation than after a 1-month vacation period. However, this genotoxic effect was reversible in most of the subjects.

  1. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test.

    Science.gov (United States)

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin-a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P Allium. Pretreatment of Allium sativum with quercetin significantly (P Allium sativum that resides, at least in part, on its antioxidant effects.

  2. Cytotoxic and genotoxic effects caused by 153 Sm-EDTMP, combined with BrdU a thymidine analog

    International Nuclear Information System (INIS)

    Morales A, E.; Ferro F, G.; Morales R, P.

    2006-01-01

    The ablation of the bone marrow previous to the transplant by means of radiation and chemical antineoplastics its affect indiscriminately to the healthy tissues and in particular those that are in proliferation. The objective of this work is to determine the effect of the incorporation from the BrdU to the DNA on the genotoxicity and cytotoxicity of the cells of the bone marrow caused by the radiopharmaceutical 153 Sm-EDTMP. The genotoxicity was determined by the rate of erythrocytes polychromatic micro nucleates (EPC-MN) and the cytotoxicity by the frequency of EPC. Both parameters determined in peripheral blood after the BrdU administration and 153 Sm-EDTMP. The combination of the BrdU and r1 radiopharmaceutical produced a bigger cytotoxicity that the radiation and the BrdU alone; on the other hand it produced a reduction of the EPC-MN produced by the radiation, suggesting that the cytotoxicity didn't allow the expression of the genotoxicity. (Author)

  3. Nongenotoxic effects and a reduction of the DXR-induced genotoxic effects of Helianthus annuus Linné (sunflower) seeds revealed by micronucleus assays in mouse bone marrow.

    Science.gov (United States)

    Boriollo, Marcelo Fabiano Gomes; Souza, Luiz Silva; Resende, Marielly Reis; Silva, Thaísla Andrielle da; Oliveira, Nelma de Mello Silva; Resck, Maria Cristina Costa; Dias, Carlos Tadeu dos Santos; Fiorini, João Evangelista

    2014-04-02

    This research evaluated the genotoxicity of oil and tincture of H. annuus L. seeds using the micronucleus assay in bone marrow of mice. The interaction between these preparations and the genotoxic effects of doxorubicin (DXR) was also analysed (antigenotoxicity test). Experimental groups were evaluated at 24-48 h post treatment with N-Nitroso-N-ethylurea (positive control - NEU), DXR (chemotherapeutic), NaCl (negative control), a sunflower tincture (THALS) and two sources of sunflower oils (POHALS and FOHALS). Antigenotoxic assays were carried out using the sunflower tincture and oils separately and in combination with NUE or DXR. For THALS, analysis of the MNPCEs showed no significant differences between treatment doses (250-2,000 mg.Kg-1) and NaCl. A significant reduction in MNPCE was observed when THALS (2,000 mg.Kg-1) was administered in combination with DXR (5 mg.Kg-1). For POHALS or FOHALS, analysis of the MNPCEs also showed no significant differences between treatment doses (250-2,000 mg.Kg-1) and NaCl. However, the combination DXR + POHALS (2,000 mg.Kg-1) or DXR + FOHALS (2,000 mg.Kg-1) not contributed to the MNPCEs reduction. This research suggests absence of genotoxicity of THALS, dose-, time- and sex-independent, and its combination with DXR can reduce the genotoxic effects of DXR. POHALS and FOHALS also showed absence of genotoxicity, but their association with DXR showed no antigenotoxic effects.

  4. Genotoxic effects of environmental endocrine disruptors on the aquatic insect Chironomus riparius evaluated using the comet assay.

    Science.gov (United States)

    Martínez-Paz, Pedro; Morales, Mónica; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2013-12-12

    Genotoxicity is one of the most important toxic endpoints in chemical toxicity testing and environmental risk assessment. The aim of this study was to evaluate the genotoxic potential of various environmental pollutants frequently found in aquatic environments and characterized by their endocrine disrupting activity. Monitoring of DNA damage was undertaken after in vivo exposures of the aquatic larvae of the midge Chironomus riparius, a model organism that represents an abundant and ecologically relevant macroinvertebrate, widely used in freshwater toxicology. DNA-induced damage, resulting in DNA fragmentation, was quantified by the comet assay after short (24 h) and long (96 h) exposures to different concentrations of the selected toxicants: bisphenol A (BPA), nonylphenol (NP), pentachlorophenol (PCP), tributyltin (TBT) and triclosan (TCS). All five compounds were found to have genotoxic activity as demonstrated by significant increases in all the comet parameters (%DNA in tail, tail length, tail moment and Olive tail moment) at all tested concentrations. Persistent exposure did not increase the extent of DNA damage, except for TCS at the highest concentration, but generally there was a reduction in DNA damage thought to be associated with the induction of the detoxification processes and repairing mechanisms. Comparative analysis showed differences in the genotoxic potential between the chemicals, as well as significant time and concentration-dependent variations, which most likely reflect differences in the ability to repair DNA damage under the different treatments. The present report demonstrates the sensitivity of the benthic larvae of C. riparius to these environmental genotoxins suggesting its potential as biomonitor organism in freshwater ecosystems. The results obtained about the DNA-damaging potential of these environmental pollutants reinforce the need for additional studies on the genotoxicity of endocrine active substances that, by linking genotoxic

  5. Conventional and whitening toothpastes: cytotoxicity, genotoxicity and effect on the enamel surface.

    Science.gov (United States)

    Camargo, Samira Esteves Afonso; Jóias, Renata Pilli; Santana-Melo, Gabriela Fátima; Ferreira, Lara Tolentino; El Achkar, Vivian Narana Ribeiro; Rode, Sigmar de Mello

    2014-12-01

    To evaluate the cytotoxicity and genotoxicity of whitening and common toothpastes, and the surface roughness of tooth enamel submitted to brushing with both toothpastes. Samples of whitening toothpastes [Colgate Whitening (CW) and Oral-B Whitening (OBW)] and regular (non-whitening) toothpastes (Colgate and Oral-B) were extracted in culture medium. Gingival human fibroblasts (FMM-1) were placed in contact with different dilutions of culture media that had been previously exposed to such materials, and the cytotoxicity was evaluated using the MTT assay. The genotoxicity was assessed by the micronucleus formation assay in Chinese hamster fibroblasts (V79). The cell survival rate and micronuclei number were assessed before and after exposure to the toothpaste extracts. For the surface roughness evaluation, 20 bovine tooth specimens, divided into four groups according to toothpastes, were submitted to 10,000 brushing cycles. The results were analyzed using the Mann-Whitney U and two-way ANOVA tests (P whitening toothpastes showed the highest numbers of micronuclei compared to the untreated control (UC) (P enamel surface (P whitening toothpastes and Oral-B were cytotoxic to the cells. The whitening toothpastes were more genotoxic to cells in vitro than the common toothpastes, and genotoxicity was more pronounced in the OBW toothpaste.

  6. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    Science.gov (United States)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  7. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    International Nuclear Information System (INIS)

    Zhang Pingping; Yin Ruochun; Chen Zhiyou; Wu Lifang; Yu Zengliang

    2007-01-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23 o C after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T

  8. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Marina Pöttler

    2015-11-01

    Full Text Available Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5 were treated with SPIONs, either coated with lauric acid (SEONLA only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA, or with dextran (SEONDEX. Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.

  9. Genotoxic effects of water pollution on two fish species living in Karasu River, Erzurum, Turkey.

    Science.gov (United States)

    Yazıcı, Zehra; Sişman, Turgay

    2014-11-01

    Karasu River, which is the only river in the Erzurum plain, is the source of the Euphrates River (Eastern Anatolia of Turkey). The river is in a serious environmental situation as a result of pollution by agricultural and industrial sewage and domestic discharges. The present study aims to evaluate genotoxic effects of toxic metals in chub, Leuciscus cephalus, and transcaucasian barb, Capoeta capoeta, collected from contaminated site of the Karasu River, in comparison with fish from an unpolluted reference site. Heavy metal concentrations in surface water of the river were determined. The condition factor (CF) was taken as a general biomarker of the health of the fish, and genotoxicity assays such as micronucleus (MN) and other nuclear abnormalities (NA) were carried out on the fish species studied. MN and NA such as kidney-shaped nucleus, notched nucleus, binucleated, lobed nucleus, and blebbed nucleus were assessed in peripheral blood erythrocytes, gill epithelial cells, and liver cells of the fish. A significant decrease in CF values associated with a significant elevation in MN and NA frequencies was observed in fish collected from the polluted sites compared with those from the reference site. Results of the current study show the significance of integrating a set of biomarkers to identify the effects of anthropogenic pollution. High concentrations of heavy metals have a potential genotoxic effects, and the toxicity is possibly related to industrial, agricultural, and domestic activities.

  10. Genotoxicity evaluation of the insecticide ethion in root of Allium ...

    African Journals Online (AJOL)

    USER

    2010-07-05

    Jul 5, 2010 ... In this study, the genotoxic effects of ethion were investigated in the mitotic cell division of Allium ... The use of plant root tips, particularly those of A. cepa and Vicia faba, as a bioassay test system for the genotoxicity of pesticides has shown extremely ..... the long run, even below the recommended dose.

  11. Investigations on genotoxic effects of groundwater from the Mitterndorfer Senke and from the vicinity of Wiener Neustadt.

    Science.gov (United States)

    Knasmüller, S; Helma, C; Eckl, P M; Gottmann, E; Steinkellner, H; Kassie, F; Haider, T; Parzefall, W; Schulte-Hermann, R

    1998-12-11

    This report describes the first study on genotoxic effects of Austrian ground- and drinking waters. Samples from the Mitterndorfer Senke (MS) and the vicinity of Wiener Neustadt were tested over a three years period. The MS is the largest aquifer in Austria. Due to deposition of industrial and community wastes, chemicals have polluted the groundwater in this area. Aim of the present study was to elucidate if consumption of these waters might pose a carcinogenic risk to humans. 43 Water samples were tested in a test battery which consisted of bacterial gene mutation assays (Salmonella strains TA100 and TA98), micronucleus (MN) assays with cultures of primary rat hepatocytes and plant bioassays (MN tests with Tradescantia and Vicia faba). For the bacterial assays, the water samples were extracted with XAD resins. In total, 27.9% of the samples caused positive effects; 8 samples were active in Salmonella microsome assays, Strain TA100 was particularly sensitive upon addition of metabolic activation mix (6 positive samples). Four samples were positive exclusively in MN assays with cultures of primary rat hepatocytes; one sample gave positive results in all three bioassays. Finished waters from waterworks were consistently devoid of mutagenic activity under all experimental conditions. Overall, only a small fraction of the groundwaters caused mutagenic effects and in all cases the activities were moderate. Comparison of the results of the present study with data obtained in other investigations under similar experimental conditions shows that the genotoxicity of groundwaters of the MS area are lower than the effects caused by ground- and drinking waters from other countries. The fact that no genotoxic activity was detected in any of the finished drinking waters can be taken as an indication that consumption of these waters does not pose a health hazard arising from contamination with genotoxic carcinogens to humans.

  12. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    International Nuclear Information System (INIS)

    Lima, R; Feitosa, L O; Ballottin, D; Tasic, L; Durán, N; Marcato, P D

    2013-01-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (− 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  13. Tartrazine induces structural and functional aberrations and genotoxic effects in vivo

    OpenAIRE

    Khayyat, Latifa; Essawy, Amina; Sorour, Jehan; Soffar, Ahmed

    2017-01-01

    Tartrazine is a synthetic organic azo dye widely used in food and pharmaceutical products. The current study aimed to evaluate the possible adverse effect of this coloring food additive on renal and hepatic structures and functions. Also, the genotoxic potential of tartrazine on white blood cells was investigated using comet assay. Twenty adult male Wistar rats were grouped into two groups of 10 each, control- and tartrazine-treated groups. The control group was administered orally with water...

  14. Soil genotoxicity assessment: a new stategy based on biomolecular tools and plant bioindicators.

    Science.gov (United States)

    Citterio, Sandra; Aina, Roberta; Labra, Massimo; Ghiani, Alessandra; Fumagalli, Pietro; Sgorbati, Sergio; Santagostino, Angela

    2002-06-15

    The setting up of efficient early warning systems is a challenge to research for preventing environmental alteration and human disease. In this paper, we report the development and the field application of a new biomonitoring methodology for assessing soil genotoxicity. In the first part, the use of amplified fragment length polymorphism and flow cytometry techniques to detect DNA damage induced by soils artificially contaminated with heavy metals as potentially genotoxic compounds is explained. Results show that the combination of the two techniques leads to efficient detection of the sublethal genotoxic effect induced in the plant bioindicator by contaminated soil. By contrast, the classic mortality, root, and shoot growth vegetative endpoints prove inappropriate for assessing soil genotoxicity because, although they cause genotoxic damage, some heavy metals do not affect sentinel plant development negatively. The statistical elaboration of the data obtained led to the development of a statistical predictive model which differentiates four different levels of soil genotoxic pollution and can be used everywhere. The second part deals with the application of the biomonitoring protocol in the genotoxic assessment of two areas surrounding a steelworks in northern Italy and the effectiveness of this methodology. In this particular case, in these areas, the predictive model reveals a pollution level strictly correlated to the heavy metal concentrations revealed by traditional chemical analysis.

  15. Cytotoxicity and genotoxicity of a monazite component: lanthanum effects on the viability and induction of breaks in the DNA of human lymphocytes

    International Nuclear Information System (INIS)

    Paiva, Amanda Valle de Almeida

    2007-01-01

    The Monazite is a mineral extracted from open mines. It is constituted by lanthanum element aggregated with cerium, yttrium and thorium [(Ce, La, Y, Th)PO 4 ]. Lanthanum (La) is a rare-earth metal with applications in agriculture, industry and medicine. Since lanthanides and their compounds show a broad spectrum of applications there is an increased risk of incorporation in human. Inhalation of aerosols containing La is the main route of incorporation in workers exposed to several chemical forms of La. Herein, we examined the effect of lanthanum nitrate - La(NO 3 ) 3 in human lymphocytes. JURKAT cells and human peripheral lymphocytes (HPL) were used to evaluate the effect of La(NO 3 ) 3 on viability (apoptosis or necrosis) and DNA strand breaks induction or/and alkali-labile sites (ALS). We demonstrate that La has a cytotoxic and genotoxic effect on both cell lines. The results indicate that necrosis is the pathway by which La(NO 3 ) 3 induces cytotoxicity. The vitamin E is able to diminish DNA strand breaks induced by La(NO 3 ) 3 suggesting that reactive oxygen species (ROS) may be involved in the genotoxic process. (author)

  16. Mutagenicity and genotoxicity of coal fly ash water leachate.

    Science.gov (United States)

    Chakraborty, Rajarshi; Mukherjee, Anita

    2009-03-01

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals-sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significant (Ppercentage (%), tail length (mum), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  17. Pharmacological effect of Ageratina pichinchensis on wound healing in diabetic rats and genotoxicity evaluation.

    Science.gov (United States)

    Romero-Cerecero, Ofelia; Zamilpa, Alejandro; Díaz-García, Edgar Rolando; Tortoriello, Jaime

    2014-10-28

    Among the main causes affecting the wound healing process, we find diabetes mellitus, which is due to the occurrence of a prolonged inflammation phase, defects in angiogenesis, and a diminution in fibroblast proliferation. The species Ageratina pichinchensis has been utilized in Mexican traditional medicine for the treatment of skin wounds. Pharmacological models have demonstrated that an extract obtained from this species improves wound healing and, through a clinical study, it was evidenced that the extract (in a pharmaceutical form) is effective in the treatment of patients with chronic venous ulcers. The 7-O-(β-D-glucopyranosyl)-galactin compound was recently identified as responsible for the pharmacological activity. The objective of the present study was to evaluate the wound healing activity of an aqueous extract and another hexane-ethyl acetate extract from Ageratina pichinchensis (both standardized in the active compound) in a diabetic foot ulcer rat model, as well as evaluating the possible genotoxic effects produced by the same species. Rats with streptozotocin-induced diabetes were submitted (under anesthesia with pentobarbital) to a circular lesion on the skin (excisional) on the rear of the paw. All animals were topically treated daily until healing. 5-methyl-1 phenyl-2-(1H) Pyridone was used as a positive control treatment. Once the wound was healed, a skin sample was obtained and utilized for histopathological analysis. The possible genotoxic effects produced by the extract, in a model of spermatozoid viability and morphology, were evaluated. The results showed that 100% of animals treated with Ageratina pichinchensis extracts presented wound healing between days 4 and 11 of treatment, while in the positive control group (treated with 5-methyl-1 phenyl-2-(1H) pyridone) and in the negative control group (vehicle), only 70% and 40%, respectively, exhibited wound healing at day 11. Histological analysis demonstrated evidences of an active regenerative

  18. Genotoxic effect of Pb and Cd on in vitro cultures of Sphagnum palustre: An evaluation by ISSR markers.

    Science.gov (United States)

    Sorrentino, Maria Cristina; Capozzi, Fiore; Giordano, Simonetta; Spagnuolo, Valeria

    2017-08-01

    In the present work, the genotoxic effect of cadmium and lead supplied in a laboratory trial, was investigated for the first time in the moss Sphagnum palustre, by ISSR molecular markers. A total of 169 reproducible bands were obtained with 12 primers, ten of which gave polymorphisms (i.e., appearance/disappearance of bands), indicating a clear genotoxic effect induced by the metals. Both metals induced a decrease of the genome template stability in a dose dependent manner. At concentration >10 -5 Cd also induced a general toxic effect in S. palustre, leading to chlorophyll degradation and moss death. Moreover, we followed the fate of supplied heavy metals into the moss tissue by SEM-EDX to see if they entered the cells. SEM-EDX observations on moss cultures treated with equimolar concentrations of the two metals showed that most Pb precipitated in form of particles on moss surface, while Cd did not aggregate in particles and was not found on moss surface. In light of these findings, we concluded that probably Pb induced a genotoxic effect at lower intracellular concentrations than Cd. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cytotoxicity and genotoxicity of clothianidin in human lymphocytes with or without metabolic activation system.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Şekeroğlu, Vedat; Uçgun, Ebru; Kontaş Yedier, Seval; Aydın, Birsen

    2018-02-26

    Clothianidin (CHN) is a broad-spectrum neonicotinoid insecticide. Limited studies have been carried out on the cytotoxic and genotoxic effects of both CHN using different genotoxicity tests in human cells with or without human metabolic activation system (S9 mix). Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of CHN and its metabolites on human lymphocyte cultures with or without S9 mix using chromosomal aberration (CA) and micronucleus (MN) tests. The cultures were treated with 25, 50, and 100 µg/ml of CHN in the presence (3 h treatment) and absence (48 h treatment) of S9 mix. Dimethyl sulfoxide (DMSO) was used as a solvent control. CHN showed cytotoxic and genotoxic effects due to significant decreases in mitotic index (MI) and nuclear division index (NDI), and significant increases in the CAs, aberrant cells, and MN formation in the absence of S9 mix when compared with solvent control. However, CHN did not significantly induce cytotoxicity and genotoxicity in the presence of S9 mix. Our results indicated that CHN has cytotoxic, cytostatic, and genotoxic potential on human peripheral blood lymphocyte cultures, but not its metabolites under the experimental conditions.

  20. Genotoxicity Expert Panel review: weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid.

    Science.gov (United States)

    Brusick, David; Aardema, Marilyn; Kier, Larry; Kirkland, David; Williams, Gary

    2016-09-01

    In 2015, the International Agency for Research on Cancer (IARC) published a monograph concluding there was strong evidence for genotoxicity of glyphosate and glyphosate formulations and moderate evidence for genotoxicity of the metabolite aminomethylphosphonic acid (AMPA). These conclusions contradicted earlier extensive reviews supporting the lack of genotoxicity of glyphosate and glyphosate formulations. The IARC Monograph concluded there was strong evidence of induction of oxidative stress by glyphosate, glyphosate formulations, and AMPA. The Expert Panel reviewed the genotoxicity and oxidative stress data considered in the IARC Monograph, together with other available data not considered by IARC. The Expert Panel defined and used a weight of evidence (WoE) approach that included ranking of studies and endpoints by the strength of their linkage to events associated with carcinogenic mechanisms. Importantly, the Expert Panel concluded that there was sufficient information available from a very large number of regulatory genotoxicity studies that should have been considered by IARC. The WoE approach, the inclusion of all relevant regulatory studies, and some differences in interpretation of individual studies led to significantly different conclusions by the Expert Panel compared with the IARC Monograph. The Expert Panel concluded that glyphosate, glyphosate formulations, and AMPA do not pose a genotoxic hazard and the data do not support the IARC Monograph genotoxicity evaluation. With respect to carcinogenicity classification and mechanism, the Expert Panel concluded that evidence relating to an oxidative stress mechanism of carcinogenicity was largely unconvincing and that the data profiles were not consistent with the characteristics of genotoxic carcinogens.

  1. Methodological considerations for using umu assay to assess photo-genotoxicity of engineered nanoparticles

    DEFF Research Database (Denmark)

    Cupi, Denisa; Baun, Anders

    2016-01-01

    In this study we investigated the feasibility of high-throughput (96-well plate) umu assay to test the genotoxic effect of TiO2 engineered nanoparticles (ENPs) under UV light (full spectrum) and visible light (455nm). Exposure of TiO2 ENPs to up to 60min of UV light induced a photocatalytic...... production of ROS. However, UV light itself caused cytotoxic damage to Salmonella typhimurium at exposures >15min and a genotoxic effect at exposures >0.5min; and use of UV filters did not lower this effect. No genotoxicity of TiO2 ENPs was observed under visible light conditions at concentrations up to 100...

  2. Genotoxic Maillard byproducts in current phytopharmaceutical preparations of Echinodorus grandiflorus

    Directory of Open Access Journals (Sweden)

    ELISANGELA C. LIMA-DELLAMORA

    2014-09-01

    Full Text Available Extracts of Echinodorus grandiflorus obtained from dried leaves by three different techniques were evaluated by bacterial lysogenic induction assay (Inductest in relation to their genotoxic properties. Before being added to test cultures, extracts were sterilized either by steam sterilization or ultraviolet light. Only the extracts prepared by infusion and steam sterilized have shown genotoxic activity. The phytochemical analysis revealed the presence of the flavonoids isovitexin, isoorientin, swertisin and swertiajaponin, isolated from a genotoxic fraction. They were assayed separately and tested negative in the Inductest protocol. The development of browning color and sweet smell in extracts submitted to heat, prompted further chemical analysis in search for Maillard's reaction precursors. Several aminoacids and reducing sugars were cast in the extract. The presence of characteristic Maillard's melanoidins products was determined by spectrophotometry in the visible region and the inhibition of this reaction was observed when its characteristic inhibitor, sodium bisulfite, was added prior to heating. Remarkably, this is the first paper reporting on the appearance of such compounds in a phytomedicine preparation under a current phytopharmaceutical procedure. The genotoxic activity of such heat-prepared infusions imply in some risk of developing degenerative diseases for patients in long-term, uncontrolled use of such phytomedicines.

  3. Acute toxicity and genotoxic activity of avocado seed extract (Persea americana Mill., c.v. Hass).

    Science.gov (United States)

    Padilla-Camberos, Eduardo; Martínez-Velázquez, Moisés; Flores-Fernández, José Miguel; Villanueva-Rodríguez, Socorro

    2013-01-01

    The use of vegetal extracts requires toxicological and genotoxic evaluations to establish and verify safety before being added to human cosmetic, pharmaceutical medicine, or alimentary products. Persea americana seeds have been used in traditional medicine as treatment for several diseases. In this work, the ethanolic seed extract of Persea americana was evaluated with respect to its genotoxic potential through micronucleus assay in rodents. The frequency of micronuclei in groups of animals treated with avocado seed extract showed no differences compared to the negative control (vehicle); therefore, it is considered that the avocado seed extract showed no genotoxic activity in the micronucleus test.

  4. Evaluation of Genotoxic Pressure along the Sava River.

    Directory of Open Access Journals (Sweden)

    Stoimir Kolarević

    Full Text Available In this study we have performed a comprehensive genotoxicological survey along the 900 rkm of the Sava River. In total, 12 sites were chosen in compliance with the goals of GLOBAQUA project dealing with the effects of multiple stressors on biodiversity and functioning of aquatic ecosystems. The genotoxic potential was assessed using a complex battery of bioassays performed in prokaryotes and aquatic eukaryotes (freshwater fish. Battery comprised evaluation of mutagenicity by SOS/umuC test in Salmonella typhimurium TA1535/pSK1002. The level of DNA damage as a biomarker of exposure (comet assay and biomarker of effect (micronucleus assay and the level of oxidative stress as well (Fpg-modified comet assay was studied in blood cells of bleak and spirlin (Alburnus alburnus/Alburnoides bipunctatus respectively. Result indicated differential sensitivity of applied bioassays in detection of genotoxic pressure. The standard and Fpg-modified comet assay showed higher potential in differentiation of the sites based on genotoxic potential in comparison with micronucleus assay and SOS/umuC test. Our data represent snapshot of the current status of the river which indicates the presence of genotoxic potential along the river which can be traced to the deterioration of quality of the Sava River by communal and industrial wastewaters. The major highlight of the study is that we have provided complex set of data obtained from a single source (homogeneity of analyses for all samples.

  5. Evaluation of Cytotoxicity and Genotoxicity of Acacia aroma Leaf Extracts

    Directory of Open Access Journals (Sweden)

    C. M. Mattana

    2014-01-01

    Full Text Available Acacia aroma, native plant from San Luis, Argentina, is commonly used as antiseptic and for healing of wounds. The present study was conducted to investigate the in vitro cytotoxicity and genotoxicity of hot aqueous extract (HAE and ethanolic extract (EE of A. aroma. The cytotoxic activity was assayed by neutral red uptake assay on Vero cell. Cell treatment with a range from 100 to 5000 μg/mL of HAE and EE showed that 500 μg/mL and 100 μg/mL were the maximum noncytotoxic concentrations, respectively. The CC50 was 658 μg/mL for EE and 1020 μg/mL for HAE. The genotoxicity was tested by the single-cell gel electrophoresis comet assay. The results obtained in the evaluation of DNA cellular damage exposed to varied concentrations of the HAE showed no significant genotoxic effect at range of 1–20 mg/mL. The EE at 20 mg/mL showed moderate genotoxic effect related to the increase of the DNA percentage contained in tail of the comet; DNA was classified in category 2. At concentrations below 5 mg/mL, the results of cytotoxicity and genotoxicity of aqueous and ethanolic extracts of Acacia aroma guarantee the safety at cell and genomic level. However further studies are needed for longer periods including animal models to confirm the findings.

  6. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study.

    Science.gov (United States)

    Shaymurat, Talgar; Gu, Jianxiu; Xu, Changshan; Yang, Zhikun; Zhao, Qing; Liu, Yuxue; Liu, Yichun

    2012-05-01

    The effects of zinc oxide nanoparticles (ZnO NPs) on the root growth, root apical meristem mitosis and mitotic aberrations of garlic (Allium sativum L.) were investigated. ZnO NPs caused a concentration-dependent inhibition of root length. When treated with 50 mg/L ZnO NPs for 24 h, the root growth of garlic was completely blocked. The 50% inhibitory concentration (IC(50)) was estimated to be 15 mg/L. The mitosis index was also decreased in a concentration- and time-dependent manner. ZnO NPs also induced several kinds of mitotic aberrations, mainly consisted of chromosome stickiness, bridges, breakages and laggings. The total percentage of abnormal cells increased with the increase of ZnO NPs concentration and the prolongation of treatment time. The investigation provided new information for the possible genotoxic effects of ZnO NPs on plants.

  7. Genotoxic, radioprotective and radiosensitizing effect of curcumin and trans-resveratrol in vitro cultures of human lymphocytes

    International Nuclear Information System (INIS)

    Fisher, V.A.; Tirsa Muñoz, B.; Sebastià, N.; Gómez-Cabrero, L.; La Parra, V.; Hervás, D.; Rodrigo, R.; Villaescusa, J.I.; Soriano, J.M.; Montoro, A.

    2015-01-01

    Curcumin and trans-resveratrol are natural polyphenol compounds. Curcumin is obtained from the rhizomes of the Curcumin plant (Curcuma longa), while trans-resveratrol is found in grapes, blackberries and other types of berry. These compounds have antioxidant, anti-inflammatory, immunostimulant and anticarcinogenic properties among others. In addition, they are also known for their radiomodulating properties since they are capable of providing radioprotection or radiosensitization for normal or tumours cells depending on different factors. This dual action may be the result of their properties, such as free radicals scavenging, as well as their influence on cell cycle checkpoints or control mechanisms. These are activated in response to the genetic damage induced by radiation. Despite the many beneficial properties attributed to these polyphenol compounds, some studies suggest that they are able to be genotoxic agents for some cellular lines. The results obtained indicate that both compounds possess a radioprotective effect on the lymphocytes of peripheral blood in the quiescent phase of the cellular cycle (G0). Nevertheless, they are capable of induce radiosensitivity on these type of cells in the growth phase (G2), and in addition, a different genotoxic effect can be seen according to the concentration of each compound. This study suggests, therefore, that curcumin and trans-resveratrol are able to exert a triple effect, genotoxic, radioprotective and radiosensitizing on in vitro cultures of human lymphocytes depending on the study parameters. [es

  8. The genotoxic contribution of wood smoke to indoor respirable suspended particles

    Energy Technology Data Exchange (ETDEWEB)

    Boone, P.M. (John B. Pierce Foundation Laboratory, New Haven, CT (USA)); Rossman, T.G. (New York Univ. Medical Center, New York (USA)); Daisey, J.M. (Lawrence Berkeley Laboratory, CA (USA))

    1989-01-01

    The effect of wood burning stoves on the genotoxicity of indoor respirable organic matter was investigated for four homes during the winter and spring of 1986. Paired samples, one collected when the stove was not used and one when wood was burned, were extracted with dichloromethane and acetone. Aliquots of the dichloromethane extracts were analyzed with and without metabolic activation using the Microscreen bioassay. The Microscreen is a rapid, sensitive bioassay which measures a broad genotoxic endpoint, {lambda}-prophage induction. Per nanogram of organic material, wood smoke proved to be a major source of indirect (observed with metabolic activation) but not direct genotoxins in homes. The increase in indirect genotoxicity for extracts from aerosol containing wood smoke is probably due to higher concentrations of polycyclic aromatic hydrocarbons in the wood smoke aerosol as well as other unidentified classes. The direct genotoxicity observed for extracts of aerosol not containing wood smoke decreased with metabolic activation. This direct genotoxicity may be related to cooking activities in the homes. The trends in genotoxicity observed per nanogram of organic material are more pronounced when expressed per m{sup 3} of air due to the higher percentage of extractable material in aerosol containing wood smoke.

  9. Investigating the embryo/larval toxic and genotoxic effects of {gamma} irradiation on zebrafish eggs

    Energy Technology Data Exchange (ETDEWEB)

    Simon, O., E-mail: olivier.simon@irsn.fr [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 186, BP3, 13115 Saint-Paul-lez-Durance Cedex (France); Massarin, S. [Laboratoire de Modelisation Environnementale, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 159, BP3, 13115 Saint-Paul-lez-Durance Cedex (France); Coppin, F. [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 186, BP3, 13115 Saint-Paul-lez-Durance Cedex (France); Hinton, T.G. [Service d' Etude du Comportement des Radionucleides dans les Ecosystemes, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 159, BP3, 13115 Saint-Paul-lez-Durance Cedex (France); Gilbin, R. [Laboratoire de Radioecologie et d' Ecotoxicologie, Institut de Radioprotection et de Surete Nucleaire, Cadarache, Bat 186, BP3, 13115 Saint-Paul-lez-Durance Cedex (France)

    2011-11-15

    Eggs/larval of freshwater fish (Danio rerio) were exposed to low dose rates of external gamma radiation (from 1 to 1000 mGy d{sup -1}) over a 20-day period, with the objective of testing the appropriateness of the 10 mGy d{sup -1} guideline suggested by the IAEA. The present study examines different endpoints, mortality and hatching time and success of embryos as well as the genotoxicity of {gamma}-irradiations (after 48 h). The 20-day embryo-larval bioassay showed an enhanced larval resistance to starvation after chronic exposure to {gamma} irradiation (from low 1 mGy d{sup -1} to high dose rate 1000 mGy d{sup -1}) and an acceleration in hatching time. Gamma irradiation led to increased genotoxic damage Ito zebrafish egg (40-50% DNA in tail in Comet assay) from the lowest dose rate (1 mGy d{sup -1}). Possible mechanisms of {gamma} radiotoxicity and implications for radioprotection are discussed. - Highlights: > Relevant information on the {gamma} radiation impact on early life stage biota is scarce. > The eggs of zebrafish Danio rerio were selected as biological model. > We test the appropriateness of the 10 mGy d{sup -1} guideline (IAEA). > We observed effects measured at individual levels (starvation, hatching time). > Chronic gamma irradiation led to increased genotoxic damage to zebrafish egg. > {gamma} radiotoxicity mechanisms and implications for radioprotection are discussed.

  10. Acute Genotoxic Effects of Effluent Water of Thermo-Power Plant “Kosova” In Tradescantia Pallida

    Directory of Open Access Journals (Sweden)

    I. R. Elezaj, L.B.Millaku, R.H. Imeri-Millaku, Q.I. Selimi, and K. Rr. Letaj

    2011-09-01

    Full Text Available The aim of this study was the evaluation of acute genotoxic effect of effluent water of thermo-power plant by means of Tradescantia root tips micronucleus test (MN, mitotic index and cell aberrations.   Tradescantia, was experimentally treated (for 24 h, with effluent water of thermo-power plant in different dilution ratios (negative control – distilled water; primary untreated effluent water and 1:1; 1:2; 1:3; 1:4; 1:5; 1:6 and 1:7 respectively. Number of aberrant cells, and frequency of micronuclei (MN, in meristematic root tip cells of treated plants (Tradescantia, were significantly increased (P<0.001; P<0.001 respectively, while the mitotic index in all treated plants was progressively decreased in comparison to the negative control. The results of present study indicate that Tradescantia root-tip micronucleus assay with direct exposure of intact plants is an appropriate method which enables to detect genotoxic effects of effluent waters.

  11. Cytotoxic and genotoxic effect of the [166Dy]Dy/166Ho-EDTMP in vivo generator system in mice

    International Nuclear Information System (INIS)

    Pedraza-Lopez, Martha; Ferro-Flores, Guillermina; Arteaga de Murphy, Consuelo; Morales-Ramirez, Pedro; Piedras-Ross, Josefa; Murphy-Stack, Eduardo; Hernandez-Oviedo, Omar

    2004-01-01

    Multiple myeloma and other hematological malignancies have been treated by myeloablative radiotherapy/chemotherapy and subsequent stem cell transplantation. [ 166 Dy]Dy/ 166 Ho-ethylenediaminetetramethylene phosphonate (EDTMP) forms a stable in vivo generator system with selective skeletal uptake in mice; therefore, it could work as a potential and improved agent for marrow ablation. Induced bone marrow cytotoxicity and genotoxicity are determined by the reduction of reticulocytes (RET) and elevation of micronucleated reticulocyte (MN-RET) in peripheral blood and ablation by bone marrow histological studies. The aim of this study was to determine the bone marrow cytotoxic and genotoxic effect of the [ 166 Dy]Dy/ 166 Ho-EDTMP in vivo generator system in mice and to evaluate by histopathology its myeloablative potential. Enriched 166 Dy 2 O 3 was irradiated and [ 166 Dy]DyCl 3 was added to EDTMP in phosphate buffer (pH 8.0) in a molar ratio of 1:1.75. QC was determined by TLC. Dy-EDTMP complex was prepared the same way with nonirradiated dysprosium oxide. A group of BALB/c mice were intraperitoneally injected with the radiopharmaceutical and two groups of control animals were injected with the cold complex and with 0.9% sodium chloride, respectively. A blood sample was taken at the beginning of the experiments and every 48 h for 12 days postinjection. The animals were sacrificed, organs of interest taken out and the radioactivity determined. The femur was used for histological studies. Flow cytometry analysis was used to quantify the frequency of RET and MN-RET in the blood samples. The MCNP4B Monte Carlo computer code was used for dosimetry calculations. Radiochemical purity was 99% and the mean specific activity was 1.3 MBq/mg. The RET and MN-RET frequency were statistically different in the treatment at the end of the 12-day period demonstrating cytotoxicity and genotoxicity induced by the in vivo generator system. The histology studies show that there was

  12. Observations of the effect of atmospheric processes on the genotoxic potency of airborne particulate matter

    DEFF Research Database (Denmark)

    Feilberg, Anders; Nielsen, Torben; Binderup, Mona-Lise

    2002-01-01

    In this study, the relationship between genotoxic potency and the occurrence of polycyclic aromatic hydrocarbons (PAH), including benzo(a)pyrene (BaP), and nitro-PAH in urban and semi-rural air masses has been investigated. The Salmonella/microsome assay has been used as a measure of genotoxic po...

  13. Geno-toxicity assay of sediment and water samples from the Upper Silesia post-mining areas, Poland by means of Allium-test

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, S.; Oudalova, A.; Michalik, B.; Dikareva, N.; Dikarev, V. [Russian Institute of Agricultural Radiology & Agroecology RAAS, Obninsk (Russian Federation)

    2011-05-15

    Genotoxic potential of two environmental compartments (water and sediment) from the Upper Silesia Coal Basin (USCB), Poland were evaluated and compared by employing root meristem cells of Allium cepa. The clear genotoxic effect of water and sediment sampled was shown, with an important contribution of severe types of cytogenetic abnormalities. The most biologically relevant pollutants were revealed through multivariate statistical analysis of relationships between biological effects registered and the environment contamination. Overall, results of simultaneous use of conventional monitoring methods and biological tests suggested that contemporary levels of persistent pollutants in post-mining areas of the USCB may enhance the risk both for human health and biological components of natural ecosystems.

  14. Acute Toxicity and Genotoxic Activity of Avocado Seed Extract (Persea americana Mill., c.v. Hass

    Directory of Open Access Journals (Sweden)

    Eduardo Padilla-Camberos

    2013-01-01

    Full Text Available The use of vegetal extracts requires toxicological and genotoxic evaluations to establish and verify safety before being added to human cosmetic, pharmaceutical medicine, or alimentary products. Persea americana seeds have been used in traditional medicine as treatment for several diseases. In this work, the ethanolic seed extract of Persea americana was evaluated with respect to its genotoxic potential through micronucleus assay in rodents. The frequency of micronuclei in groups of animals treated with avocado seed extract showed no differences compared to the negative control (vehicle; therefore, it is considered that the avocado seed extract showed no genotoxic activity in the micronucleus test.

  15. Borax counteracts genotoxicity of aluminum in rat liver.

    Science.gov (United States)

    Turkez, Hasan; Geyikoğlu, Fatime; Tatar, Abdulgani

    2013-10-01

    This study was carried out to evaluate the protective role of borax (BX) on genotoxicity induced by aluminum (Al) in rat liver, using liver micronucleus assay as an indicator of genotoxicity. Sprague-Dawley rats were randomly separated into six groups and each group had four animals. Aluminum chloride (AlCl₃; 5 mg/kg b.w.) and BX (3.25 and 13 mg/kg b.w.) were injected intraperitoneally to rats. Besides, animals were also treated with Al for 4 consecutive days followed by BX for 10 days. Rats were anesthetized after Al and BX injections and the hepatocytes were isolated for counting the number of micronucleated hepatocytes (MNHEPs). AlCl₃ was found to significantly (p < 0.05) increase the number of MNHEPs. Rats treated with BX, however, showed no increase in MNHEPs. Moreover, simultaneous treatments with BX significantly modulated the genotoxic effects of AlCl₃ in rats. It can be concluded that BX has beneficial influences and has the ability to antagonize Al toxicity.

  16. Genotoxicity of 2-bromo-3′-chloropropiophenone

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanxue; Yan, Jian; Li, Yan [Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Fu, Peter P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Fossom, Linda H.; Sood, Ramesh K.; Mans, Daniel J.; Chu, Pei-I [Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993 (United States); Moore, Martha M. [Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States); Chen, Tao, E-mail: tao.chen@fda.hhs.gov [Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 (United States)

    2013-07-15

    Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxic impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of

  17. Genotoxicity of 2-bromo-3′-chloropropiophenone

    International Nuclear Information System (INIS)

    Meng, Fanxue; Yan, Jian; Li, Yan; Fu, Peter P.; Fossom, Linda H.; Sood, Ramesh K.; Mans, Daniel J.; Chu, Pei-I; Moore, Martha M.; Chen, Tao

    2013-01-01

    Impurities are present in any drug substance or drug product. They can be process-related impurities that are not completely removed during purification or are formed due to the degradation of the drug substance over the product shelf-life. Unlike the drug substance, impurities generally do not have beneficial effects and may present a risk without associated benefit. Therefore, their amount should be minimized. 2-Bromo-3′-chloropropiophenone (BCP) is an impurity of bupropion, a second-generation antidepressant and a smoking cessation aid. The United States Pharmacopeia recommends an acceptable level for BCP that is not more than 0.1% of the bupropion. Because exposure to genotoxic impurities even at low levels is of significant concern, it is important to determine whether or not BCP is genotoxic. Therefore, in this study the Ames test and the in vitro micronucleus assay were conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of aneuploidies without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced the genotoxicity of BCP in both assays. Further studies showed that BCP treatment resulted in induction of reactive oxygen species (ROS) in the TK6 cells. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and that these activities are mediated via generation of reactive metabolites. - Highlights: • 2-Bromo-3′-chloropropiophenone is an impurity of bupropion. • BCP was positive in both the Ames test and the in vitro micronucleus assay. • It induced high frequencies of

  18. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  19. Effect of green juice and their bioactive compounds on genotoxicity induced by alkylating agents in mice.

    Science.gov (United States)

    Fagundes, Gabriela Elibio; Damiani, Adriani Paganini; Borges, Gabriela Daminelli; Teixeira, Karina Oliveira; Jesus, Maiellen Martins; Daumann, Francine; Ramlov, Fernanda; Carvalho, Tiago; Leffa, Daniela Dimer; Rohr, Paula; Moraes De Andrade, Vanessa

    2017-01-01

    Kale juice (Brassica oleracea L. var. acephala D.C.) is a reliable source of dietary carotenoids and typically contains the highest concentrations of lutein (LT) and beta-carotene (BC) among green leafy vegetables. As a result of their antioxidant properties, dietary carotenoids are postulated to decrease the risk of disease occurrence, particularly certain cancers. The present study aimed to (1) examine the genotoxic and antigenotoxic activity of natural and commercially available juices derived from Brassica oleracea and (2) assess influence of LT or BC against DNA damage induced by alkylating agents such as methyl methanesulfonate (MS) or cyclophosphamide (CP) in vivo in mice. Male Swiss mice were divided into groups of 6 animals, which were treated with water, natural, or commercial Brassica oleraceae juices (kale), LT, BC, MMS, or CP. After treatment, DNA damage was determined in peripheral blood lymphocytes using the comet assay. Results demonstrated that none of the Brassica oleraceae juices or carotenoids produced genotoxic effects. In all examined cell types, kale juices or carotenoids inhibited DNA damage induced by MMS or CP administered either pre- or posttreatment by 50 and 20%, respectively. Under our experimental conditions, kale leaf juices alone exerted no marked genotoxic or clastogenic effects. However, a significant decrease in DNA damage induced by MMS or CP was noted. This effect was most pronounced in groups that received juices, rather than carotenoids, suggesting that the synergy among constituents present in the food matrix may be more beneficial than the action of single compounds. Data suggest that the antigenotoxic properties of kale juices may be of therapeutic importance.

  20. New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk

    OpenAIRE

    Kirkland, David; Brock, Tom; Haddouk, Hasnaà; Hargeaves, Victoria; Lloyd, Melvyn; Mc Garry, Sarah; Proudlock, Raymond; Sarlang, Séverine; Sewald, Katherina; Sire, Guillaume; Sokolowski, Andrea; Ziemann, Christina

    2015-01-01

    The genotoxicity of cobalt metal and cobalt compounds has been widely studied. Several publications show induction of chromosomal aberrations, micronuclei or DNA damage in mammalian cells in vitro in the absence of S9. Mixed results were seen in gene mutation studies in bacteria and mammalian cells in vitro, and in chromosomal aberration or micronucleus assays in vivo. To resolve these inconsistencies, new studies were performed with soluble and poorly soluble cobalt compounds according to OE...

  1. The use of plants containing genotoxic carcinogens as foods and medicine.

    Science.gov (United States)

    Prinsloo, Gerhard; Nogemane, Noluyolo; Street, Renee

    2018-04-05

    In many developing countries, populations rely on traditional medicine for primary health care, which have infiltrated commercial markets globally as natural remedies are generally regarded as safe. Traditional and natural remedies are adapted and expanded in commercial products and product ranges to provide alternatives for various diseases and illnesses. These products resemble very little of the traditional use and application and adverse effects are observed in several cases. Some of the herbs and botanical formulations therefore, are not as safe as are commonly contemplated. This paper discusses some plants that are used as food or medicine. These plants are known to contain chemical components that have been identified as genotoxic carcinogens. Often contradictory results are obtained with beneficial and adverse effects reported. The concentration, biotransformation and metabolism of these compounds, as well as the matrix effect, affect the outcome of these results, therefore not providing a clear picture of the risk associated with the use and consumption of these plants. This paper focuses on plants that are accepted as healthy, however contain compounds that are genotoxic and carcinogenic. We further highlight the risks in use of these plants where thorough studies have been conducted in various food and plant products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Protective effects of acerola juice on genotoxicity induced by iron in vivo

    Directory of Open Access Journals (Sweden)

    Roberta Nunes Horta

    2016-03-01

    Full Text Available Abstract Metal ions such as iron can induce DNA damage by inducing reactive oxygen species (ROS and oxidative stress. Vitamin C is one of the most widely consumed antioxidants worldwide, present in many fruits and vegetables, especially inMalpighia glabra L., popularly known as acerola, native to Brazil. Acerola is considered a functional fruit due to its high antioxidant properties and phenolic contents, and therefore is consumed to prevent diseases or as adjuvant in treatment strategies. Here, the influence of ripe and unripe acerola juices on iron genotoxicity was analyzed in vivo using the comet assay and micronucleus test. The comet assay results showed that acerola juice exerted no genotoxic or antigenotoxic activity. Neither ripe nor unripe acerola juices were mutagenic to animals treated with juices, in micronucleus test. However, when compared to iron group, the pre-treatment with acerola juices exerted antimutagenic activity, decreasing significantly micronucleus mean values in bone marrow. Stage of ripeness did not influence the interaction of acerola compounds with DNA, and both ripe and unripe acerola juices exerted protective effect over DNA damage generated by iron.

  3. Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test

    Directory of Open Access Journals (Sweden)

    Shivika Datta

    2018-07-01

    Full Text Available Soil forms a huge reservoir of nutrients that sustains life on earth. Anthropogenic and natural impacts have led to degradation of land which declines the overall quality of soil, water or vegetation. The present study involves comparison of genotoxicity of soil procured from two different agricultural sites, pesticide treated soil (PTS and vermicompost treated soil (VTS. The soil was physico-chemically characterized and showed significant differences in terms of cytotoxicity (root length; mitotic index and genotoxicity (chromosomal aberrations in Allium cepa test. The mitotic index of the control after 24 and 48 h was found to be 26.1 ± 1.6 and 26.1 ± 1.3 respectively. Mitotic index was reduced to 10.3 ± 0.9 and 9.7 ± 0.6 in 100% PTS and 24.4 ± 1.7 and 25.4 ± 0.8 in 100% VTS after 24 and 48 h of exposure, respectively. Clastogenic aberrations were found to be highest (54.5% in 100% PTS which was significantly different from VTS extract. The PTS extracts incurred significantly more cytotoxic and genotoxic effects on A. cepa in comparison to VTS. The result indicates that addition of vermicompost in agriculture field acts as soil ameliorator and plays an important role in promotion of cell division and proliferation, hence good for the plant health and crop productivity.

  4. Hepatotoxicity and genotoxicity of gasoline fumes in albino rats

    Directory of Open Access Journals (Sweden)

    Folarin O. Owagboriaye

    2017-09-01

    Full Text Available Toxic effects of gasoline fumes have been reported, but evidence of its hepatotoxicity and genotoxicity are rare. Therefore, this study assesses hepatotoxicity and genotoxicity of gasoline fumes on forty Albino rats randomly assigned to five experimental treatments (T with eight rats per treatment (T1, T2, T3, T4 and T5. T1(Control was housed in a section of experimental animal house free from gasoline fumes while T2, T3, T4 and T5 were exposed to gasoline fumes in exposure chambers for one, three, five and nine hours daily respectively for twelve weeks. Serum alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP and histopathological examination of the liver tissues were used as diagnostic markers to assess liver dysfunction. Genotoxicity test was conducted on the lung tissues using randomly amplified polymorphic DNA fingerprinting polymerase chain reaction (RAPD PCR technique. Significant increase (p < 0.05 in the level of ALT, AST and ALP for T2, T3, T4 and T5 compared to T1 were recorded. Photomicrograph examination of the liver sections of T1 showed hepatic tissue with normal liver cell architecture while that of T2, T3, T4 and T5 revealed degenerative changes in the ultrastructural integrity of the hepatic cells. Genotoxicity test revealed DNA bands at a reducing intensity from T1 to T5. Dendrogram showed DNA damage in the lungs of T3, T4 and T5 were closely similar and the genotoxic impact was more in T3. Frequent exposure to gasoline fumes was observed to induce hepatoxicity and genotoxicity, hence impairing the normal liver function and gene structure.

  5. Genotoxic effects of bismuth (III oxide nanoparticles by comet assay

    Directory of Open Access Journals (Sweden)

    Reecep Liman

    2015-06-01

    Full Text Available Bismuth oxide is one of the important transition metal oxides and it has been intensively studied due to their peculiar characteristics (semiconductor band gap, high refractive index, high dielectric permittivity, high oxygen conductivity, resistivity, photoconductivity and photoluminescence etc.. Therefore, it is used such as microelectronics, sensor technology, optical coatings, transparent ceramic glass manufacturing, nanoenergetic gas generator, biosensor for DNA hybridization, potential immobilizing platforms for glucose oxidase and polyphenol oxidase, fuel cells, a additive in paints, an astringent in a variety of medical creams and topical ointments, and for the determination of heavy metal ions in drinking water, mineral water and urine. In addition this, Bismuth (III oxide nanoparticles (BONPs are favorable for the biomolecules adsorption than regular sized particles because of their greater advantages and novel characteristics (much higher specific surface, greater surface free energy, and good electrochemical stability etc.. Genotoxic effects of BONPs were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of BONPs at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was also observed at all concentrations of BONPs except 12.5 ppm by Comet assay. The results were also analyzed statistically by using SPSS for Windows; Duncan’s multiple range test was performed. These result indicate that BONPs exhibit genotoxic activity in A. cepa root meristematic cells.

  6. Nanoceria have no genotoxic effect on human lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Pierscionek, Barbara K; Yasseen, Akeel A [School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA (United Kingdom); Li, Yuebin; Schachar, Ronald A; Chen, Wei [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Colhoun, Liza M, E-mail: b.pierscionek@ulster.ac.uk, E-mail: weichen@uta.edu [Centre for Vision and Vascular Sciences, School of Medicine, Dentistry and Biomedical Sciences, Queen' s University Belfast, Grosvenor Road, Belfast, BT12 6BA (United Kingdom)

    2010-01-22

    There are no treatments for reversing or halting cataract, a disease of the structural proteins in the eye lens, that has associations with other age-related degenerative conditions such as Alzheimer's disease. The incidence of cataract and associated conditions is increasing as the average age of the population rises. Protein folding diseases are difficult to assess in vivo as proteins and their age-related changes are assessed after extraction. Nanotechnology can be used to investigate protein changes in the intact lens as well as for a potential means of drug delivery. Nanoparticles, such as cerium oxide (CeO{sub 2}) which have antioxidant properties, may even be used as a means of treating cataract directly. Prior to use in treatments, nanoparticle genotoxicity must be tested to assess the extent of any DNA or chromosomal damage. Sister chromatid exchanges were measured and DNA damage investigated using the alkaline COMET assay on cultured human lens epithelial cells, exposed to 5 and 10 {mu}g ml{sup -1} of CeO{sub 2} nanoparticles (nanoceria). Nanoceria at these dosages did not cause any DNA damage or significant increases in the number of sister chromatid exchanges. The absence of genotoxic effects on lens cells suggests that nanoceria, in the doses and exposures tested in this study, are not deleterious to the eye lens and have the potential for use in studying structural alterations, in developing non-surgical cataract treatments and in investigating other protein folding diseases.

  7. Pb low doses induced genotoxicity in Lactuca sativa plants.

    Science.gov (United States)

    Silva, S; Silva, P; Oliveira, H; Gaivão, I; Matos, M; Pinto-Carnide, O; Santos, C

    2017-03-01

    Soil and water contamination by lead (Pb) remains a topic of great concern, particularly regarding crop production. The admissible Pb values in irrigation water in several countries range from ≈0.1 to ≈5 mg L -1 . In order to evaluate putative effects of Pb within legal doses on crops growth, we exposed Lactuca sativa seeds and seedlings to increasing doses of Pb(NO 3 ) 2 up to 20 mg L -1 . The OECD parameter seed germination and seedling/plant growth were not affected by any of the Pb-concentrations used. However, for doses higher than 5 mg L -1 significant DNA damage was detected: Comet assay detected DNA fragmentation at ≥ 5 mg L -1 and presence of micronuclei (MN) were detected for 20 mg L -1 . Also, cell cycle impairment was observed for doses as low as 0.05 mg L -1 and 0.5 mg L -1 (mostly G 2 arrest). Our data show that for the low doses of Pb used, the OECD endpoints were not able to detect toxicity, while more sensitive endpoints (related with DNA damage and mitotic/interphase disorders) identified genotoxic and cytostatic effects. Furthermore, the nature of the genotoxic effect was dependent on the concentration. Finally, we recommend that MN test and the comet assay should be included as sensitive endpoints in (eco)toxicological assays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. High throughput comet assay to study genotoxicity of nanomaterials

    Directory of Open Access Journals (Sweden)

    Naouale El Yamani

    2015-06-01

    Full Text Available The unique physicochemical properties of engineered nanomaterials (NMs have accelerated their use in diverse industrial and domestic products. Although their presence in consumer products represents a major concern for public health safety, their potential impact on human health is poorly understood. There is therefore an urgent need to clarify the toxic effects of NMs and to elucidate the mechanisms involved. In view of the large number of NMs currently being used, high throughput (HTP screening technologies are clearly needed for efficient assessment of toxicity. The comet assay is the most used method in nanogenotoxicity studies and has great potential for increasing throughput as it is fast, versatile and robust; simple technical modifications of the assay make it possible to test many compounds (NMs in a single experiment. The standard gel of 70-100 μL contains thousands of cells, of which only a tiny fraction are actually scored. Reducing the gel to a volume of 5 μL, with just a few hundred cells, allows twelve gels to be set on a standard slide, or 96 as a standard 8x12 array. For the 12 gel format, standard slides precoated with agarose are placed on a metal template and gels are set on the positions marked on the template. The HTP comet assay, incorporating digestion of DNA with formamidopyrimidine DNA glycosylase (FPG to detect oxidised purines, has recently been applied to study the potential induction of genotoxicity by NMs via reactive oxygen. In the NanoTEST project we investigated the genotoxic potential of several well-characterized metal and polymeric nanoparticles with the comet assay. All in vitro studies were harmonized; i.e. NMs were from the same batch, and identical dispersion protocols, exposure time, concentration range, culture conditions, and time-courses were used. As a kidney model, Cos-1 fibroblast-like kidney cells were treated with different concentrations of iron oxide NMs, and cells embedded in minigels (12

  9. In vitro and in vivo genotoxic effects of somatic cell nuclear transfer cloned cattle meat.

    Science.gov (United States)

    Lee, Nam-Jin; Yang, Byoung-Chul; Jung, Yu-Ri; Lee, Jung-Won; Im, Gi-Sun; Seong, Hwan-Hoo; Park, Jin-Ki; Kang, Jong-Koo; Hwang, Seongsoo

    2011-09-01

    Although the nutritional composition and health status after consumption of the meat and milk derived from both conventionally bred (normal) and somatic cell nuclear transferred (cloned) animals and their progeny are not different, little is known about their food safeties like genetic toxicity. This study is performed to examine both in vitro (bacterial mutation and chromosome aberration) and in vivo (micronucleus) genotoxicity studies of cloned cattle meat. The concentrations of both normal and cloned cattle meat extracts (0-10×) were tested to five strains of bacteria (Salmonella typhimurium: TA98, TA100, TA1535, and TA1537; Escherichia coli: WP2uvrA) for bacterial mutation and to Chinese hamster lung (CHL/IU) cells for chromosome aberration, respectively. For micronucleus test, ICR mice were divided into five dietary groups: commercial pellets (control), pellets containing 5% (N-5) and 10% (N-10) normal cattle meat, and pellets containing 5% (C-5) and 10% (C-10) cloned cattle meat. No test substance-related genotoxicity was noted in the five bacterial strains, CHL/IU cells, or mouse bone marrow cells, suggesting that the cloned cattle meat potentially may be safe in terms of mutagenic hazards. Thus, it can be postulated that the cloned cattle meat do not induce any harmful genotoxic effects in vitro and in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Frequency of chromosome damage in synanthropic house mice as in index of genotoxic effects of environmental contamination

    International Nuclear Information System (INIS)

    Gileva, E.A.; Bol'shakov, A.V.N.; Kosareva, N.L.; Gabitova, A.T.

    1993-01-01

    Environmental contamination of the human habitat by a large number of chemical compounds with genotoxic activity increases genetic risk for the populations of large cities, industrial zones, and many agricultural regions. Moreover, the level of genetic danger for the population at large not involved in work with genotoxicants remains practically unknown since the detection of direct genotoxic environment effect on the human population is complicated by a number of circumstances (complexities related to selecting an adequate control as a result of migration and ethnic heterogeneity of the human population, high cost mass studies, etc.). It is clear that to evaluate the genotoxic potential of the environment, we need to use indicator organisms that are as close to man as possible in genome organization, physiological features, and reactions to mutagenic factors. Such organisms are, first of all, mammals, and among them, house mice should be given special attention; they live side by side with man, and mutagens enter their tissues along the same pathways as in human tissues. Although the direct extrapolation of degree of genetic danger from mouse to human is difficult, with synanthropoic mice, we can estimate the total mutagenic effect of the environment in various regions and population centers and compare this with estimates obtained from regions with a known degree of genetic risk (for example, for the Chernobyl zone)

  11. In silico prediction of genotoxicity.

    Science.gov (United States)

    Wichard, Jörg D

    2017-08-01

    The in silico prediction of genotoxicity has made considerable progress during the last years. The main driver for the pharmaceutical industry is the ICH M7 guideline about the assessment of DNA reactive impurities. An important component of this guideline is the use of in silico models as an alternative approach to experimental testing. The in silico prediction of genotoxicity provides an established and accepted method that defines the first step in the assessment of DNA reactive impurities. This was made possible by the growing amount of reliable Ames screening data, the attempts to understand the activity pathways and the subsequent development of computer-based prediction systems. This paper gives an overview of how the in silico prediction of genotoxicity is performed under the ICH M7 guideline. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies.

    Science.gov (United States)

    Fewtrell, Lorna; Majuru, Batsirai; Hunter, Paul R

    2017-06-20

    Despite poor evidence of their effectiveness, colloidal silver and silver nanoparticles are increasingly being promoted for treating potentially contaminated drinking water in low income countries. Recently, however, concerns have been raised about the possible genotoxicity of particulate silver. The goal of this paper was to review the published mammalian in vivo genotoxicity studies using silver micro and nanoparticles. SCOPUS and Medline were searched using the following search string: ("DNA damage" OR genotox* OR Cytotox* OR Embryotox*) AND (silver OR AgNP). Included papers were any mammalian in vivo experimental studies investigating genotoxicity of silver particles. Studies were quality assessed using the ToxRTool. 16 relevant papers were identified. There were substantial variations in study design including the size of silver particles, animal species, target organs, silver dose, route of administration and the method used to detect genotoxicity. Thus, it was not possible to produce a definitive pooled result. Nevertheless, most studies showed evidence of genotoxicity unless using very low doses. We also identified one human study reporting evidence of "severe DNA damage" in silver jewellery workers occupationally exposed to silver particles. With the available evidence it is not possible to be definitive about risks to human health from oral exposure to silver particulates. However, the balance of evidence suggests that there should be concerns especially when considering the evidence from jewellery workers. There is an urgent need to determine whether people exposed to particulate silver as part of drinking water treatment have evidence of DNA damage.

  13. Cytotoxic and genotoxic studies of essential oil from Rosa damascene Mill., Kashan, Iran.

    Science.gov (United States)

    Shokrzadeh, Mohammad; Habibi, Emran; Modanloo, Mona

    2017-08-01

    Aim Rosa damascene Mill. belongs to the family of Roseaceae and its essential oil is produced in large amounts in Iran. The wide application of rose oil has raised questions about potential adverse health effects. We have investigated cytotoxic activity and genotoxic effects of Rosa oil from Kashan, Iran. Methods The cytotoxic effect and IC50 of the essential oil on the cell lines was studied followed by MTT assay. In this assay mitochondrial oxidoreductase enzymes with reducing the tetrazolium dye MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) reflect the number of viable cells. Genotoxic effect of the oil was evaluated by micronucleus assay by evaluating produced micronuclei due to cytogenetic damage in binucleated lymphocytes. Results The results showed that essential oil significantly had cytotoxic and genotoxic effects at doses over 10µg/mL (pessential oil of Rose showed lower IC50 in cancer cell line (A549) in comparison with the normal cell line (NIH3T3). Conclusion Cytotoxic and genotoxic properties of essential oil of Rose in Kashan, Iran, are safe at a dose of 10µg/mL. Also, a good cytotoxic effect was shown and could be introduced as an anticancer compound. Further studies are needed with regard to anti-cancer effects of Rose essential oil. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  14. In-vitro Antioxidant, Cytotoxic, Cholinesterase Inhibitory Activities and Anti-Genotoxic Effects of Hypericum retusum Aucher Flowers, Fruits and Seeds Methanol Extracts in Human Mononuclear Leukocytes.

    Science.gov (United States)

    Keskin, Cumali; Aktepe, Necmettin; Yükselten, Yunus; Sunguroglu, Asuman; Boğa, Mehmet

    2017-01-01

    The present study investigates the antioxidant, anticancer, anticholinesterase, anti-genotoxic activities and phenolic contents of flower, fruit and seed methanol extracts of Hypericum retusum AUCHER. The amounts of protocatechuic acid, catechin, caffeic acid and syringic acid in methanol extracts were determined by HPLC. Total phenolic content of H. retusum seed extract was found more than fruit and flower extracts. The DPPH free radical scavenging activity of flower and seed methanol extracts showed close activity versus BHT as control. Among three extracts of H. retusum only flower methanol extract was exhibited considerable cytotoxic activities against to HeLa and NRK-52E cell lines. Moreover, seed methanol extract showed both acetyl and butyrl-cholinesterase inhibitory activity. The highest anti-genotoxic effects were seen 25 and 50 μg/mL concentrations. In this study, the extracts showed a strong antioxidant and anti-genotoxic effect. The seed extract was more efficient- than extracts of fruit and flowers. Our results suggest that the antioxidant and anti-genotoxic effects of extracts depend on their phenolic contents. Further studies should evaluate the in-vitro and in-vivo the benefits of H. retusum seed methanol extracts.

  15. Tradescantia micronucleus test indicates genotoxic potential of traffic emissions in European cities

    International Nuclear Information System (INIS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Calatayud, Vicent; Garrec, Jean Pierre; He Shang; Penuelas, Josep; Ribas, Angela; Ro-Poulsen, Helge; Rasmussen, Stine; Sanz, Maria Jose; Vergne, Phillippe

    2006-01-01

    Urban atmospheres contain complex mixtures of air pollutants including mutagenic and carcinogenic substances such as benzene, diesel soot, heavy metals and polycyclic aromatic hydrocarbons. In the frame of a European network for the assessment of air quality by the use of bioindicator plants, the Tradescantia micronucleus (Trad-MCN) test was applied to examine the genotoxicity of urban air pollution. Cuttings of Tradescantia clone no. 4430 were exposed to ambient air at 65 monitoring sites in 10 conurbations employing a standardised methodology. The tests revealed an elevated genotoxic potential mainly at those urban sites which were exposed to severe car traffic emissions. This bioassay proved to be a suitable tool to detect local 'hot spots' of mutagenic air pollution in urban areas. For its use in routine monitoring programmes, however, further standardisation of cultivation and exposure techniques is recommended in order to reduce the variability of results due to varying environmental conditions. - The Tradescantia micronucleus test can be used to assess genotoxic potential at urban sites

  16. Tradescantia micronucleus test indicates genotoxic potential of traffic emissions in European cities

    Energy Technology Data Exchange (ETDEWEB)

    Klumpp, Andreas [Institute for Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart (Germany)]. E-mail: aklumpp@uni-hohenheim.de; Ansel, Wolfgang [Institute for Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart (Germany); Klumpp, Gabriele [Institute for Landscape and Plant Ecology (320), University of Hohenheim, 70593 Stuttgart (Germany); Calatayud, Vicent [Fundacion CEAM, Parque Tecnologico, c/Charles Darwin 14, 46980 Paterna, Valencia (Spain); Garrec, Jean Pierre [INRA Nancy, Laboratoire Pollution Atmospherique, 54280 Champenoux (France); He Shang [INRA Nancy, Laboratoire Pollution Atmospherique, 54280 Champenoux (France); Penuelas, Josep [Unitat Ecofisiologia CSIC-CEAB-CREAF, Universitat Autonoma de Barcelona, Ed. C, 08193 Bellaterra, Barcelona (Spain); Ribas, Angela [Unitat Ecofisiologia CSIC-CEAB-CREAF, Universitat Autonoma de Barcelona, Ed. C, 08193 Bellaterra, Barcelona (Spain); Ro-Poulsen, Helge [Botanical Institute, University of Copenhagen, Oster Farimagsgade 2D, 1353 Copenhagen K (Denmark); Rasmussen, Stine [Botanical Institute, University of Copenhagen, Oster Farimagsgade 2D, 1353 Copenhagen K (Denmark); Sanz, Maria Jose [Fundacion CEAM, Parque Tecnologico, c/Charles Darwin 14, 46980 Paterna, Valencia (Spain); Vergne, Phillippe [ENS Lyon and Lyon Botanical Garden, 46 Allee d' Italie, 69364 Lyon Cedex 07 (France)

    2006-02-15

    Urban atmospheres contain complex mixtures of air pollutants including mutagenic and carcinogenic substances such as benzene, diesel soot, heavy metals and polycyclic aromatic hydrocarbons. In the frame of a European network for the assessment of air quality by the use of bioindicator plants, the Tradescantia micronucleus (Trad-MCN) test was applied to examine the genotoxicity of urban air pollution. Cuttings of Tradescantia clone no. 4430 were exposed to ambient air at 65 monitoring sites in 10 conurbations employing a standardised methodology. The tests revealed an elevated genotoxic potential mainly at those urban sites which were exposed to severe car traffic emissions. This bioassay proved to be a suitable tool to detect local 'hot spots' of mutagenic air pollution in urban areas. For its use in routine monitoring programmes, however, further standardisation of cultivation and exposure techniques is recommended in order to reduce the variability of results due to varying environmental conditions. - The Tradescantia micronucleus test can be used to assess genotoxic potential at urban sites.

  17. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ozden, Sibel, E-mail: stopuz@istanbul.edu.tr [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul (Turkey); Turgut Kara, Neslihan [Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul (Turkey); Sezerman, Osman Ugur [Department of Biostatistics and Medical Informatics, Acibadem University, Istanbul (Turkey); Durasi, İlknur Melis [Biological Sciences and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul (Turkey); Chen, Tao [Department of Toxicology, School of Public Health, Soochow University, Suzhou (China); Demirel, Goksun; Alpertunga, Buket [Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul (Turkey); Chipman, J. Kevin [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); Mally, Angela [Department of Toxicology, University of Würzburg, Würzburg (Germany)

    2015-12-01

    Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC–MS/MS in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity. - Highlights: • Studied non-genotoxic carcinogens caused no change on global DNA hypomethylation. • d-Limonene, DCB and chloroform did not show any genome-wide methylation changes. • Some genes were differentially methylated in response to MPY, TCDD and OTA. • Protein kinase activity

  18. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure

    International Nuclear Information System (INIS)

    Ozden, Sibel; Turgut Kara, Neslihan; Sezerman, Osman Ugur; Durasi, İlknur Melis; Chen, Tao; Demirel, Goksun; Alpertunga, Buket; Chipman, J. Kevin; Mally, Angela

    2015-01-01

    Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC–MS/MS in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity. - Highlights: • Studied non-genotoxic carcinogens caused no change on global DNA hypomethylation. • d-Limonene, DCB and chloroform did not show any genome-wide methylation changes. • Some genes were differentially methylated in response to MPY, TCDD and OTA. • Protein kinase activity

  19. Modulation of mitomycin C-induced genotoxicity by acetyl- and thio- analogues of salicylic acid.

    Science.gov (United States)

    Pawar, Amol Ashok; Vikram, Ajit; Tripathi, Durga Nand; Padmanabhan, Shweta; Ramarao, Poduri; Jena, Gopabandhu

    2009-01-01

    Recent reports regarding acetylsalicylic acid (ASA) and its metabolites suggest suppressive effects against mitomycin C (MMC)-induced genotoxicity in a mice chromosomal aberration assay. Keeping this in mind, the potential anti-genotoxic effect of the thio-analogue of salicylic acid namely thio-salicylic acid (TSA) was speculated upon. The present study investigated and compared the anti-genotoxic potential of ASA and TSA. The study was performed in male swiss mice (20+/-2 g) using single-cell gel electrophoresis and a peripheral blood micronucleus assay. ASA and TSA (5, 10 or 20 mg/kg) were administered 15 minutes after MMC (1 mg/kg) once daily for 3 or 7 days. Both ASA and TSA significantly decreased the DNA damage induced by MMC as indicated by a decrease in the comet parameters in bone marrow cells and decreased frequencies of micronucleated reticulocytes in peripheral blood. The results clearly demonstrate the anti-genotoxic potential of ASA and TSA.

  20. Genotoxic and teratogenic potential of marine sediment extracts investigated with comet assay and zebrafish test

    International Nuclear Information System (INIS)

    Kammann, Ulrike; Biselli, Scarlett; Huehnerfuss, Heinrich; Reineke, Ninja; Theobald, Norbert; Vobach, Michael; Wosniok, Werner

    2004-01-01

    Organic extracts of marine sediments from the North Sea and the Baltic Sea were investigated with two toxicity assays. The comet assay based on the fish cell line Epithelioma papulosum cyprini (EPC) was applied to determine the genotoxic potential; zebrafish embryos (Danio rerio) were used to quantify the teratogenic potential of the samples. EC 50 values were calculated from dose-response curves for both test systems. Highest teratogenic and genotoxic effects normalised to total organic carbon (TOC) content were detected in sediment samples of different origins. Polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) are not likely to be the causes of the observed effects, as demonstrated by a two-step fractionation procedure of selected extracts. The toxic potential was more pronounced in fractions having polarity higher than those possessed by PAHs and PCBs. The suitability of the two in vitro test systems for assessing genotoxic and teratogenic effects of marine sediment extracts could be demonstrated. - Capsule: In vitro toxicity assays are used to assess genotoxic and teratogenic effects of environmental extracts

  1. AFFINITY BIOSENSOR BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH DNA FOR GENOTOXIC COMPOUNDS DETECTION

    Directory of Open Access Journals (Sweden)

    Bambang Kuswandi

    2010-06-01

    Full Text Available An electrochemical method for the detection of the genotoxic compounds using a DNA-modified electrode was developed. This electrode was successfully used for the electrochemical detection of genotoxic compounds in water samples. The electrochemical results clearly demonstrated that, the development is related to the molecular interaction between the surface-linked DNA obtained from calf thymus and the target compounds, such as pollutants, in order to develop a simple device for rapid screening of genotoxic compounds in environmental samples. The detection of such compounds was measured by their effect on the oxidation signal of the guanine peak of the DNA immobilised on the surface of carbon based Screen-Printed Electrode (SPE in disposable mode, and monitored by square-wave voltametric analysis. The DNA biosensor is able to detect known intercalating and groove-binding genotoxic compounds such as Dioxin, Bisphenol A, PCBs, and Phtalates. Application to real water samples is discussed and reported.   Keywords: electrochemical, screen-printed electrode, DNA biosensor, genotoxic compounds

  2. Effect of a base-catalyzed dechlorination process on the genotoxicity of PCB-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    DeMarini, D.M.; Houk, V.S.; Kornel, A.; Rogers, C.J.

    1992-01-01

    We evaluated the genotoxicity of dichloromethane (DCM) extracts of PCB-contaminated soil before and after the soil had been treated by a base-catalyzed dechlorination process, which involved heating a mixture of the soil, polyethylene glycol, and sodium hydroxide to 250-350 C. This dechlorination process reduced by over 99% the PCB concentration in the soil, which was initially 2,200 ppm. The DCM extracts of both control and treated soils were not mutagenic in strain TA100 of Salmonella, but they were mutagenic in strain TA98. The base-catalyzed dechlorination process reduced the mutagenic potency of the soil by approximately one-half. The DCM extracts of the soils before and after treatment were equally genotoxic in a prophage-induction assay in E. coli, which detects some chlorinated organic carcinogens that were not detected by the Salmonella mutagenicity assay. These results show that treatment of PCB-contaminated soil by this base-catalyzed dechlorination process did not increase the genotoxicity of the soil.

  3. Effects of wood dust:Inflammation, Genotoxicity and Cancer

    DEFF Research Database (Denmark)

    Lange, Jette Bornholdt

    cell line A549 measuring inflammatory and DNA damaging effects. The second part consists of a molecular analysis of the K-ras gene for mutations in the hotspots codons in human sinonasal cancers. Design, calibration and validation of the assays were performed. Cancer at the sinonasal cavities is rare...... with incidence rates between of 0.3 to 1.4 per 100,000 for men and 0.1 to 0.8 per 100,000 for women in Europe, depending on country. However, cancer at this site is associated with occupational exposures including wood dust. Especially the adenocarcinoma subtype is strongly associated with exposure to wood dust...... and their potential to cause DNA damage. Contrary to our hypothesis, we showed that pure wood dust is able to cause primary DNA damage, independent of inflammation as well as hardwoods had no higher inflammatory or genotoxic potential than softwoods. To investigate the molecular mechanisms behind the wood dust...

  4. In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: A review.

    Science.gov (United States)

    Martín-Cameán, Ana; Jos, Ángeles; Mellado-García, Pilar; Iglesias-Linares, Alejandro; Solano, Enrique; Cameán, Ana M

    2015-07-01

    Intraoral fixed orthodontic appliances are frequently used in the clinical practice of dentistry. They are made from alloys containing different metals at various percentages. The use of these appliances leads to the long-term exposure of patients to these materials, and the potential toxic effects of this exposure raises concerns about patient safety. Thus, the biocompatibility (corrosion behaviour and toxicity) of these materials has to be evaluated prior to clinical use. In the present report, the most recent studies in the scientific literature examining metal ion release from orthodontic appliances and the toxic effects of these ions have been reviewed with a special focus on cytotoxicity and genotoxicity. Previous studies suggest that a case-by-case safety evaluation is required to take into account the increasing variability of materials, their composition and the manufacturing processes. Moreover, in vivo toxicity studies in regard to metal release, cytotoxicity and genotoxicity are still scarce. Therefore, in vitro and in vivo monitoring studies are needed to establish cause-effect relationships between metal ion release and biomarkers of cytotoxicity and genotoxicity. Further investigations could be performed to elucidate the toxic mechanisms involved in the observed effects with a special emphasis on oxidative damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Genotoxicity of gemfibrozil in the gilthead seabream (Sparus aurata).

    Science.gov (United States)

    Barreto, A; Luis, L G; Soares, A M V M; Paíga, P; Santos, L H M L M; Delerue-Matos, C; Hylland, K; Loureiro, S; Oliveira, M

    2017-09-01

    Widespread use of pharmaceuticals and suboptimal wastewater treatment have led to increased levels of these substances in aquatic ecosystems. Lipid-lowering drugs such as gemfibrozil, which are among the most abundant human pharmaceuticals in the environment, may have deleterious effects on aquatic organisms. We examined the genotoxicity of gemfibrozil in a fish species, the gilthead seabream (Sparus aurata), which is commercially important in southern Europe. Following 96-h waterborne exposure, molecular (erythrocyte DNA strand breaks) and cytogenetic (micronuclei and other nuclear abnormalities in cells) endpoints were measured. Gemfibrozil was positive in both endpoints, at environmentally relevant concentrations, a result that raises concerns about the potential genotoxic effects of the drug in recipient waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples.

    Science.gov (United States)

    Jiang, Bo; Li, Guanghe; Xing, Yi; Zhang, Dayi; Jia, Jianli; Cui, Zhisong; Luan, Xiao; Tang, Hui

    2017-10-01

    Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples. Copyright © 2017. Published by Elsevier Ltd.

  7. Cytotoxic, genotoxic and apoptotic effects of naringenin-oxime relative to naringenin on normal and cancer cell lines

    Directory of Open Access Journals (Sweden)

    Abdurrahim Kocyigit

    2016-10-01

    Conclusions: This study showed that both NG-Ox and NG possess cytotoxic, genotoxic and apoptotic activities through the production of ROS on cells, NG-Ox being the more effective one. Therefore, derived compound of NG might be used as antiproliferative agents for the treatment of cancer.

  8. GENOTOXICITY OF TOBACCO SMOKE AND TOBACCO SMOKE CONDENSATE: A REVIEW

    Science.gov (United States)

    Genotoxicity of Tobacco Smoke and Tobacco Smoke Condensate: A ReviewAbstractThis report reviews the literature on the genotoxicity of main-stream tobacco smoke and cigarette smoke condensate (CSC) published since 1985. CSC is genotoxic in nearly all systems in which it h...

  9. MMS-induced primary aneuploidy and other genotoxic effects in mitotic cells of Aspergillus.

    Science.gov (United States)

    Käfer, E

    1988-10-01

    The possibility of more than 1 target for genotoxic effects of methyl methanesulphonate (MMS) was investigated, using mitotic test systems of the fungus Aspergillus. Haploid and diploid strains were exposed, either as dormant conidia or during mitosis, and analysed for induced aneuploidy and effects on genetic segregation. MMS treatment of haploid strains resulted in dose-dependent increases of stable mutants with altered phenotypes and semi-stable unbalanced aberrations (presumably duplications). In addition, but only in dividing cells, MMS induced unstable aneuploids. These mostly were hyperhaploid with few extra chromosomes and could be identified by comparison with standard disomic phenotypes. When well-marked diploids were treated 3 types of effect could be distinguished, using genetic and phenotypic criteria: (1) Clastogenic and mutagenic effects which caused dose-dependent increases of partial aneuploids with various abnormal phenotypes. These showed secondary genetic segregation of all types and produced euploid normal sectors by eliminating damaged chromosome segments. In addition, but only in dividing nuclei, MMS induced 2 types of segregation: (2) Reciprocal crossing-over at high frequency, recognisable as half or quarter colonies of mutant colour and in some cases as 'twin spots' (i.e., complementary pairs); (3) Trisomics and other aneuploids which showed characteristic phenotypes and expected segregation of markers: the types recovered indicate random malsegregation of chromosomes (occasional deviations resulted from coincidence with induced crossing-over). These results suggest that MMS may have 2 (or more) targets for genotoxic effects: DNA, as evident from induced mutations and aberrations, and from induced recombination in dividing cells; some non-DNA target (nucleotide or protein) essential for nuclear division and susceptible to alkylation, resulting in malsegregation and primary aneuploidy.

  10. Genotoxicity of clays with potential use in biopolymers for food packaging

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Mortensen, Alicja; Hadrup, Niels

    Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements. Biopoly......Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements...... in crude suspensions (suspended in cell culture medium) and crude suspensions filtrated through a 0.2 µm pore size filter in order to investigate the potential effect of “nanoparticles” only. The two clays showed noticeable differences in genotoxicity; both crude and filtered suspensions of Cloisite...

  11. POTENTIAL APPLICATIONS OF SOS-GFP BIOSENSOR TO IN VITRO RAPID SCREENING OF CYTOTOXIC AND GENOTOXIC EFFECT OF ANTICANCER AND ANTIDIABETIC PHARMACIST RESIDUES IN SURFACE WATER

    Directory of Open Access Journals (Sweden)

    Marzena Matejczyk

    2014-12-01

    Full Text Available Escherichia coli K-12 GFP-based bacterial biosensors allowed the detection of cytotoxic and genotoxic effect of anticancer drug– cyclophosphamide and antidiabetic drug – metformin in PBS buffer and surface water. Experimental data indicated that recA::gfpmut2 genetic system was sensitive to drugs and drugs mixture applied in experiment. RecA promoter was a good bioindicator in cytotoxic and genotoxic effect screening of cyclophosphamide, metformin and the mixture of the both drugs in PBS buffer and surface water. The results indicated that E. coli K-12 recA::gfp mut2 strain could be potentially useful for first-step screening of cytotoxic and genotoxic effect of anticancer and antidiabetic pharmacist residues in water. Next steps in research will include more experimental analysis to validate recA::gfpmut2 genetic system in E. coli K-12 on different anticancer drugs.

  12. Evaluation of the Genotoxic and Antigenotoxic Effects of Andiroba (Carapa guianensis Aublet Oil and Nanoemulsion on Swiss Mice

    Directory of Open Access Journals (Sweden)

    Karina Motta Melo

    2018-01-01

    Full Text Available The Carapa guianensis (andiroba oil is commonly used by the Amazon population for medicinal purposes. The objective of this study was to determine the genotoxic and antigenotoxic potential of the andiroba oil (AO and nanoemulsion (AN using Swiss mice. Therefore, we used the comet assay and micronucleus test. The AO predominant compounds were oleic (39.13%, palmitic (33.22%, and linoleic (16.86% acids. AN composition obeyed the surfactant/oil ratio of 0.69, and the Tween 80/Span 80 ratio was held at 0.9. Our results showed no cytotoxicity or genotoxicity in the mice treated with AO and AN alone. However, there was a significant reduction in the polychromatic erythrocytes (PCEs numbers in all groups treated with doxorubicin (DOX, including those pretreated with AO and AN. Thus, the samples tested did not protect against DOX. On the other hand, our results showed a large increase in micronucleus (MN formation when the mice were treated with DOX alone; these numbers were reduced when the animals were pretreated with AO and AN. The results indicate a protective effect of andiroba on MN formation and show no evidence of genotoxicity in mice.

  13. In vitro cytotoxic, genotoxic and antioxidant/oxidant effects of guaiazulene on human lymphocytes

    Directory of Open Access Journals (Sweden)

    Başak Toğar

    2015-02-01

    Full Text Available The aim of this study was to evaluate for the cytotoxicity, genotoxicity and antioxidant/oxidant activity of GYZ on human peripheral blood lymphocytes (PBLs. Guaiazulene (GYZ was added into culture tubes at various concentrations (0-400 µg/mL-1. Cytotoxicity against the human lymphocytes cultures was examined by lactate dehydrogenase (LDH release assay. The proliferative response was estimated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay. Antioxidant/oxidant activity was evaluated by measuring the total oxidant status (TOS and total antioxidant capacity (TAC levels. Micronucleus (MN and chromosomal aberration (CA tests were used in genotoxicity studies. The results showed that GYZ caused cytotoxicity in the PBLs at high concentrations, but TOS level were not affected, while the level of TAC was significantly increased. GYZ also did not induce chromosomal aberrations when compared to that of the control group. Results this study clearly revealed that GYZ was not genotoxic and also increased the capacity of the antioxidant in the culture of human PBL cells. This report is first report on the impact of GYZ on human PBL cells.

  14. Genotoxic effect of radio marked lymphocytes using Tc-99m complexes; Efecto genotoxico del radiomarcado de linfocitos empleando complejos de Tc-99m

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza L, M.; Ferro F, G.; Mendiola C, M.T.; Morales R, P. [Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The genotoxic effect of radio marked lymphocytes was evaluated using {sup 99m}-Tc-HMPAO and {sup 99m}-Tc- gentisic acid complexes. With the results of this work it is pretended to contribute to the knowledge of genetic and structural damages that provokes the radiation in the marked lymphocytes. The d, 1-HMPAO was synthesized in laboratory with a yielding of 30 %. The radiochemical purity of the complexes was greater than 85%. Mouse lymphocytes obtained of sanguineous volumes 2 ml were used. The radio marked efficiency of cells was 19.6 {+-} 6.4% and 25.6 {+-} 5.8% for {sup 99m}Tc-HMPAO and {sup 99m} Tc gentisic acid respectively. The genotoxic effect was evaluated using the technique of Unicellular Electrophoresis in Micro gel (Comet assay). The results showed that both {sup 99m} Tc complexes produce genotoxicity due to their capacity to penetrate cells, therefore the Auger and M internal conversion electrons place all their energy obtaining doses of Gray order. (Author)

  15. Investigation of genotoxic potential of various sizes Fe2O3 nanoparticles with comet assay

    Directory of Open Access Journals (Sweden)

    İbrahim Hakkı Ciğerci

    2015-06-01

    In this study, genotoxic potential of <50 nm and <100 nm Fe2O3 nanoparticles were investigated by using Comet Assay. Allium cepa root meristems were exposed with five doses (0.001, 0.01, 0.1, 1, 10 mM of <50 nm for 4 hour and three doses (2.5, 5 (EC50, 10 mM for <100 nm of Fe2O3 nanoparticle for 24 and 96 h. Methyl methanesulfonate -MMS (10 ppm was used as a positive control. The results were also analyzed statistically by using SPSS by Windows, 18.0. It was determined that different doses of <50 nm Fe2O3 nanoparticle have no genotoxic effect of DNA. Different doses of <100 nm Fe2O3 have no genotoxic but only 10 mM dose have genotoxic effect on DNA. When compared <50 nm with <100 nm of Fe2O3 nanoparticle; <50 nm have more effects than <100 nm of Fe2O3 on DNA damage.

  16. Genotoxicity risk assessment of diversely substituted quinolines using the SOS chromotest.

    Science.gov (United States)

    Duran, Leidy Tatiana Díaz; Rincón, Nathalia Olivar; Galvis, Carlos Eduardo Puerto; Kouznetsov, Vladimir V; Lorenzo, Jorge Luis Fuentes

    2015-03-01

    Quinolines are aromatic nitrogen compounds with wide therapeutic potential to treat parasitic and microbial diseases. In this study, the genotoxicity of quinoline, 4-methylquinoline, 4-nitroquinoline-1-oxide (4-NQO), and diversely functionalized quinoline derivatives and the influence of the substituents (functional groups and/or atoms) on their genotoxicity were tested using the SOS chromotest. Quinoline derivatives that induce genotoxicity by the formation of an enamine epoxide structure did not induce the SOS response in Escherichia coli PQ37 cells, with the exception of 4-methylquinoline that was weakly genotoxic. The chemical nature of the substitution (C-5 to C-8: hydroxyl, nitro, methyl, isopropyl, chlorine, fluorine, and iodine atoms; C-2: phenyl and 3,4-methylenedioxyphenyl rings) of quinoline skeleton did not significantly modify compound genotoxicities; however, C-2 substitution with α-, β-, or γ-pyridinyl groups removed 4-methylquinoline genotoxicity. On the other hand, 4-NQO derivatives whose genotoxic mechanism involves reduction of the C-4 nitro group were strong inducers of the SOS response. Methyl and nitrophenyl substituents at C-2 of 4-NQO core affected the genotoxic potency of this molecule. The relevance of these results is discussed in relation to the potential use of the substituted quinolines. The work showed the sensitivity of SOS chromotest for studying structure-genotoxicity relationships and bioassay-guided quinoline synthesis. © 2013 Wiley Periodicals, Inc.

  17. Somatic cell genotoxicity at the glycophorin A locus in humans

    International Nuclear Information System (INIS)

    Jensen, R.H.; Grant, S.G.; Langlois, R.G.; Bigbee, W.L.

    1990-01-01

    We have developed an assay for detecting variant erythrocytes that occur as a result of in vivo allele loss at the glycophorin A (GPA) locus on chromosome 4 in humans. This gene codes for an erythroid- specific cell surface glycoprotein, and with our assay we are able to detect rare variant erythrocytes that have lost expression of one of the two GPA alleles. Two distinctly different variant cell types are detected with this assay. One variant cell type (called N OE) is hemizygous. Our assay also detects homozygous variant erythrocytes that have lost expression of the GPA(M) allele and express the GPA(N) allele at twice the heterozygous level. The results of this assay are an enumeration of the frequency of N OE and NN variant cell types for each individual analyzed. These variant cell frequencies provide a measure of the amount of somatic cell genotoxicity that has occurred at the GPA locus. Such genotoxicity could be the result of (1) reactions of toxic chemicals to which the individual has been exposed, or (2) high energy radiation effects on erythroid precursor cells, or (3) errors in DNA replication or repair in these cells of the bone marrow. Thus, the GPA-based variant cell frequency can serve as a biodosimeter that indicates the amount of genotoxic exposure each individual has received. Because two very different kinds of variant cells are enumerated, different kinds of genotoxicity should be distinguishable. Results of the GPA somatic genotoxicity assay may also provide valuable information for cancer-risk estimation on each individual. 16 refs

  18. Genotoxic thresholds, DNA repair, and susceptibility in human populations

    International Nuclear Information System (INIS)

    Jenkins, Gareth J.S.; Zair, Zoulikha; Johnson, George E.; Doak, Shareen H.

    2010-01-01

    It has been long assumed that DNA damage is induced in a linear manner with respect to the dose of a direct acting genotoxin. Thus, it is implied that direct acting genotoxic agents induce DNA damage at even the lowest of concentrations and that no 'safe' dose range exists. The linear (non-threshold) paradigm has led to the one-hit model being developed. This 'one hit' scenario can be interpreted such that a single DNA damaging event in a cell has the capability to induce a single point mutation in that cell which could (if positioned in a key growth controlling gene) lead to increased proliferation, leading ultimately to the formation of a tumour. There are many groups (including our own) who, for a decade or more, have argued, that low dose exposures to direct acting genotoxins may be tolerated by cells through homeostatic mechanisms such as DNA repair. This argument stems from the existence of evolutionary adaptive mechanisms that allow organisms to adapt to low levels of exogenous sources of genotoxins. We have been particularly interested in the genotoxic effects of known mutagens at low dose exposures in human cells and have identified for the first time, in vitro genotoxic thresholds for several mutagenic alkylating agents (Doak et al., 2007). Our working hypothesis is that DNA repair is primarily responsible for these thresholded effects at low doses by removing low levels of DNA damage but becoming saturated at higher doses. We are currently assessing the roles of base excision repair (BER) and methylguanine-DNA methyltransferase (MGMT) for roles in the identified thresholds (Doak et al., 2008). This research area is currently important as it assesses whether 'safe' exposure levels to mutagenic chemicals can exist and allows risk assessment using appropriate safety factors to define such exposure levels. Given human variation, the mechanistic basis for genotoxic thresholds (e.g. DNA repair) has to be well defined in order that susceptible individuals are

  19. Genotoxicity study of an experimental beverage made with quinua, kiwicha and kañiwa

    Directory of Open Access Journals (Sweden)

    Francia D.P. Huaman

    2014-12-01

    Full Text Available Genotoxic evaluation is an important step for a product that is aimed for human consumption. A beverage composed of pseudocereals with highly nutritious elements like quinua (Chenopodium quinoa Willd., kiwicha (Amaranthus caudatus L. and kañiwa (Chenopodium pallidicaule Aellen was prepared to reduce lipid contents in a group of volunteers. The objective of the present study is to evaluate the genotoxic potential of an experimental beverage using two in vitro tests that have been validated by international agencies. For the Ames test, two strains of Salmonella typhimurium (TA98 and TA100 with and without microsomal fraction (S9 were used. Four doses of the beverage were tested and also a possible protective effect (same four doses of beverage added to plates with mutagens. Cultures of binucleated lymphocytes and five doses of the beverage were used for the micronucleus test. Both Ames and the micronucleus tests showed the beverage has not genotoxic effect in all tested doses. However, in evaluating the possible protective effect of the beverage, it would be evident that on the contrary, the mutagenic effect of mutagens used for each strain is enhanced. These results suggest that additional tests should be performed to check the genotoxic potential of this beverage before consumption.

  20. Role of endocrine-genotoxic switchings in cancer and other human diseases: basic triad.

    Science.gov (United States)

    Berstein, Lev M

    2008-01-01

    Cancer is one of the leading causes of human death and belongs to the group of main chronic noncommunicable diseases (NCD). Certain specific features ofNCD have raised the concept of 'normal' and 'successful' aging. The apparent paradox of simultaneous increase with aging of the diseases connected with estrogen deficiency as well as with estrogenic excess can be explained by the existence of the phenomenon of the switching of estrogen effects. An isolated or combined with the weakening of hormonal effect increase in genotoxic action of estrogens can modify the course ofage-associated pathology. In particular, such changes in estrogen effect may alter the biology of tumors to make them less favorable/more aggressive. Two other endocrine-genotoxic switchings (EGS) involving phenomena ofJanus (dual) function of glucose and adipogenotoxicosis may produce similar influences on tumor and other NCD biology. These three phenomena form a'basic triad' and can act independently of each other or in concert. EGS and their inductors may serve as targets for prevention and, probably, treatment of main noncommunicable diseases. The measures to correct components of the 'triad' can be divided into several groups aimed to optimally orchestrate the balance between endocrine and DNA-damagingeffects of estrogens, glucose and adipose tissue-related factors.

  1. C(60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    K. S. Afanasieva

    2015-02-01

    Full Text Available The self-ordering of C60 fullerene, doxorubicin and their mixture precipitated from aqueous solutions was investigated using atomic-force microscopy. The results suggest the complexation between the two compounds. The genotoxicity of doxorubicin in complex with C60 fullerene (С60+Dox was evaluated in vitro with comet assay using human lymphocytes. The obtained results show that the C60 fullerene prevents the toxic effect of Dox in normal cells and, thus, С60+Dox complex might be proposed for biomedical application.

  2. Metabolic profile and genotoxicity in obese rats exposed to cigarette smoke.

    Science.gov (United States)

    Damasceno, Debora C; Sinzato, Yuri K; Bueno, Aline; Dallaqua, Bruna; Lima, Paula H; Calderon, Iracema M P; Rudge, Marilza V C; Campos, Kleber E

    2013-08-01

    Experimental studies have shown that exposure to cigarette smoke has negative effects on lipid metabolism and oxidative stress status. Cigarette smoke exposure in nonpregnant and pregnant rats causes significant genotoxicity (DNA damage). However, no previous studies have directly evaluated the effects of obesity or the association between obesity and cigarette smoke exposure on genotoxicity. Therefore, the aim of the present investigation was to evaluate DNA damage levels, oxidative stress status and lipid profiles in obese Wistar rats exposed to cigarette smoke. Female rats subcutaneously (s.c.) received a monosodium glutamate solution or vehicle (control) during the neonatal period to induce obesity. The rats were randomly distributed into three experimental groups: control, obese exposed to filtered air, and obese exposed to tobacco cigarette smoke. After a 2-month exposure period, the rats were anesthetized and killed to obtain blood samples for genotoxicity, lipid profile, and oxidative stress status analyses. The obese rats exposed to tobacco cigarette smoke presented higher DNA damage, triglycerides, total cholesterol, free fatty acids, VLDL-c, HDL-c, and LDL-c levels compared to control and obese rats exposed to filtered air. Both obese groups showed reduced SOD activity. These results showed that cigarette smoke enhanced the effects of obesity. In conclusion, the association between obesity and cigarette smoke exposure exacerbated the genotoxicity, negatively impacted the biochemical profile and antioxidant defenses and caused early glucose intolerance. Thus, the changes caused by cigarette smoke exposure can trigger the earlier onset of metabolic disorders associated with obesity, such as diabetes and metabolic syndrome. Copyright © 2012 The Obesity Society.

  3. In vitro and in vivo genotoxic evaluation of Bothrops moojeni snake venom.

    Science.gov (United States)

    Novak Zobiole, Nathalia; Caon, Thiago; Wildgrube Bertol, Jéssica; Pereira, Cintia Alves de Souza; Okubo, Brunna Mary; Moreno, Susana Elisa; Cardozo, Francielle Tramontini Gomes de Sousa

    2015-06-01

    Bothrops moojeni Hoge (Viperidae) venom is a complex mixture of compounds with therapeutic potential that has been included in the research and development of new drugs. Along with the biological activity, the pharmaceutical applicability of this venom depends on its toxicological profile. This study evaluates the cytotoxicity and genotoxicity of the Bothrops moojeni venom (BMV). The in vitro cytotoxicity and genotoxicity of a pooled sample of BMV was assessed by the MTT and Comet assay, respectively. Genotoxicity was also evaluated in vivo through the micronucleus assay. BMV displayed a 50% cytotoxic concentration (CC50) on Vero cells of 4.09 µg/mL. Vero cells treated with 4 µg/mL for 90 min and 6 h presented significant (p < 0.05, ANOVA/Newman-Keuls test) higher DNA damage than the negative control in the Comet assay. The lower DNA damage found after 6 h compared with the 90 min treatment suggests a DNA repair effect. Mice intraperitoneally treated with BMV at 10, 30, or 80 µg/animal presented significant genotoxicity (p < 0.05, ANOVA/Newman-Keuls test) in relation to the negative control after 24 h of treatment. Contrary to the in vitro results, no DNA repair seemed to occur in vivo up to 96 h post-venom inoculation at a dose of 30 µg/animal. The results show that BMV presents cyto- and genotoxicity depending on the concentration/dose used. These findings emphasize the importance of toxicological studies, including assessment of genotoxicity, in the biological activity research of BMV and/or in the development of BMV-derived products.

  4. Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos.

    Science.gov (United States)

    Schaumburg, Laura G; Siroski, Pablo A; Poletta, Gisela L; Mudry, Marta D

    2016-06-01

    Environmental contaminants produce multiple adverse consequences at individual, population and ecosystem levels. High volumes of agrochemicals applied to great variety of crops, together with agricultural expansion, generate great concerns due to the impact for the environment and large risk implicated for wildlife. The lack of data on these threats is striking. The tegu lizard (Salvator merianae) is one of the species that live in environments under contaminant effects. Several characteristics allow proposing this species as a potential sentinel organism for the monitoring of pesticides in their habitat. The present study is the first report about genotoxicity in tegu lizard neonates after embryonic exposure to Roundup® (glyphosate 66.2%). The micronucleus test (MN), nuclear abnormalities (NAs) assay and comet assay (CA) were used as biomarkers of genotoxic effects induced in erythrocytes by topical exposure of the eggs to the glyphosate commercial formulation Roundup® (RU), in laboratory controlled conditions. A total of 96 eggs were distributed in six groups exposed to RU (50, 100, 200, 400, 800, 1600μg/egg), one positive control (PC; 200μg cyclophosphamide/egg) and one negative control (NC; distilled water). No teratogenic effects were observed in any of the exposed or control neonates. A significant increase in DNA damage was observed in all concentrations higher than 100μg/egg with respect to NC (p0.05). Our results provide new information about the undesirable effects of the glyphosate-based herbicide formulations RU on this lizard species that inhabits areas permanently exposed to several pesticide formulations. We consider of utmost necessity a strict regulation of the agrochemical application conditions in those environments near to places where wild populations of terrestrial and aquatic species live, in order to minimize the adverse effects on ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Lack of genotoxicity in vivo for food color additive Tartrazine.

    Science.gov (United States)

    Bastaki, Maria; Farrell, Thomas; Bhusari, Sachin; Pant, Kamala; Kulkarni, Rohan

    2017-07-01

    Tartrazine is approved as a food color additive internationally with INS number 102, in the United States as food color subject to batch certification "Food, Drug, and Cosmetic" (FD&C) Yellow No. 5, and in Europe as food color additive with E number 102. In their evaluation of the color (2013), the European Food Safety Authority (EFSA) expressed concerns of potential genotoxicity, based primarily on one genotoxicity study that was not conducted according to Guidelines. The present in vivo genotoxicity study was conducted according to OECD Guidelines in response to EFSA's request for additional data. The animal species and strain, and the tissues examined were selected specifically to address the previously reported findings. The results of this study show clear absence of genotoxic activity for Tartrazine, in the bone marrow micronucleus assay and the Comet assay in the liver, stomach, and colon. These data addressed EFSA's concerns for genotoxicity. The Joint WHO/FAO Committee on Food Additives (JECFA) (2016) also reviewed these data and concluded that there is no genotoxicity concern for Tartrazine. Negative findings in parallel genotoxicity studies on Allura Red AC and Ponceau 4R (published separately) are consistent with lack of genotoxicity for azo dyes used as food colors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  7. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Ederli, L.; Pasqualini, S. [Department of Applied Biology, University of Perugia, I-06121 (Italy); Monarca, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Moretti, M., E-mail: massimo.moretti@unipg.i [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy)

    2009-12-15

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone no. 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air. - Plant bioassays used to explore in situ the correlation between air pollution and genotoxicity.

  8. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays

    International Nuclear Information System (INIS)

    Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S.; Ederli, L.; Pasqualini, S.; Monarca, S.; Moretti, M.

    2009-01-01

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone no. 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air. - Plant bioassays used to explore in situ the correlation between air pollution and genotoxicity.

  9. Protective Effect of Onion Extract on Bleomycin-Induced Cytotoxicity and Genotoxicity in Human Lymphocytes

    Directory of Open Access Journals (Sweden)

    Yoon Hee Cho

    2016-02-01

    Full Text Available Following one of the world’s largest nuclear accidents, occured at Fukushima, Japan in 2011, a significant scientific effort has focused on minimizing the potential adverse health effects due to radiation exposure. The use of natural dietary antioxidants to reduce the risk of radiation-induced oxidative DNA damage is a simple strategy for minimizing radiation-related cancer rates and improving overall health. The onion is among the richest sources of dietary flavonoids and is an important food for increasing their overall intake. Therefore, we examined the effect of an onion extract on cyto- and geno-toxicity in human lymphocytes treated with bleomycin (BLM, a radiomimetic agent. In addition, we measured the frequency of micronuclei (MN and DNA damage following treatment with BLM using a cytokinesis-blocked micronucleus assay and a single cell gel electrophoresis assay. We observed a significant increase in cell viability in lymphocytes treated with onion extract then exposed to BLM compared to cells treated with BLM alone. The frequency of BLM induced MN and DNA damage increased in a dose-dependent manner; however, when lymphocytes were pretreated with onion extract (10 and 20 μL/mL, the frequency of BLM-induced MN was decreased at all doses of BLM and DNA damage was decreased at 3 μg/mL of BLM. These results suggest that onion extract may have protective effects against BLM-induced cyto- and genotoxicity in human lymphocytes.

  10. Comparative potency approach based on H2AX assay for estimating the genotoxicity of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Audebert, M; Zeman, F; Beaudoin, R; Péry, A; Cravedi, J-P

    2012-04-01

    Polycyclic Aromatic Hydrocarbons (PAHs) constitute a family of over one hundred compounds and can generally be found in complex mixtures. PAHs metabolites cause DNA damage which can lead to the development of carcinogenesis. Toxicity assessment of PAH complex mixtures is currently expressed in terms of toxic equivalents, based on Toxicity Equivalent Factors (TEFs). However, the definition of new TEFs for a large number of PAH could overcome some limitations of the current method and improve cancer risk assessment. The current investigation aimed at deriving the relative potency factors of PAHs, based on their genotoxic effect measured in vitro and analyzed with mathematical models. For this purpose, we used a new genotoxic assay (γH2AX) with two human cell lines (HepG2 and LS-174T) to analyze the genotoxic properties of 13 selected PAHs at low doses after 24h treatment. The dose-response for genotoxic effects was modeled with a Hill model; equivalency between PAHs at low dose was assessed by applying constraints to the model parameters. In the two cell lines tested, we observed a clear dose-response for genotoxic effects for 11 tested compounds. LS-174T was on average ten times more sensitive than HepG2 towards PAHs regarding genotoxicity. We developed new TEFs, which we named Genotoxic Equivalent Factor (GEF). Calculated GEF for the tested PAHs were generally higher than the TEF usually used. Our study proposed a new in vitro based method for the establishment of relevant TEFs for PAHs to improve cancer risk assessment. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. In vivo genotoxicity evaluation of an artichoke (Cynara scolymus L.) aqueous extract.

    Science.gov (United States)

    Zan, Meriele A; Ferraz, Alexandre B F; Richter, Marc F; Picada, Jaqueline N; de Andrade, Heloisa H R; Lehmann, Mauricio; Dihl, Rafael R; Nunes, Emilene; Semedo, Juliane; Da Silva, Juliana

    2013-02-01

    The Cynara scolymus (artichoke) is widely consumed as tea or food and shows important therapeutic properties. However, few studies have assessed the possible toxic effects of artichoke extracts. This study evaluates genotoxic and mutagenic activities of artichoke leaf aqueous extract in mice using the comet assay and the micronucleus test. Leaf extracts were given by gavage (500 mg/kg, 1000 mg/kg, and 2000 mg/kg) for 3 consecutive days. Extract composition was investigated using phytochemical screening and high-performance liquid chromatography (HPLC). In addition, antioxidant capacity was analyzed through the diphenyl-picrylhydrazyl (DPPH) and xanthine oxidase assay. Phytochemical screening detected the presence of phenolic compounds, flavonoids, and saponins. HPLC analyses indicated the presence of chlorogenic acid, caffeic acid, isoquercetrin, and rutin. Extracts showed a dose-dependent free radical scavenging effect of DPPH and an inhibitory effect of xanthine oxidase. The genotoxic results showed that leaf extracts did not increase micronuclei in peripheral blood cells. Compared to the control group, a significant increase in comet assay values was observed only in bone marrow of group treated with 2000 mg/kg, the highest dose tested, indicating that artichoke tea should be consumed with moderation. This is the first report of in vivo mutagenic and genotoxic evaluation with C. scolymus. The present study revealed leaf aqueous extract from artichoke shows lack of mutagenicity in vivo, and low genotoxicity and antioxidant activity; indicating that artichoke tea should be consumed with moderation. © 2013 Institute of Food Technologists®

  12. Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds

    International Nuclear Information System (INIS)

    Josse, Rozenn; Dumont, Julie; Fautrel, Alain; Robin, Marie-Anne; Guillouzo, André

    2012-01-01

    Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24 h exposure of these hepatocyte models to 0.05 and 0.25 μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cell cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. -- Highlights: ► Gene expression profile changes induced by aflatoxin B1 in human hepatocytes. ► AFB1 modulates various genes including tumor suppressor genes and proto-oncogenes. ► Important inter-individual variations in the response to AFB1. ► Some genes also altered by other

  13. Genotoxic pressure of vineyard pesticides in fish: field and mesocosm surveys.

    Science.gov (United States)

    Bony, S; Gillet, C; Bouchez, A; Margoum, C; Devaux, A

    2008-09-17

    The present study deals with the genotoxicity assessment of vineyard pesticides in fish exposed in the field or in mesocosm conditions. Primary DNA damage was quantified as strand breaks using the single cell gel electrophoresis assay (Comet assay) applied to fish erythrocytes. In a first experiment, a significant genotoxic effect was observed following an upstream-downstream gradient in early life stages of brown trout (Salmo trutta fario) exposed in the Morcille River contaminated by a mixture of vineyard pesticides during three consecutive years. The pronounced response in terms of DNA damage reported in the present study could argue for a high sensitivity of fish early life stage and/or a high level of exposure to genotoxic compounds in the Morcille River. This stresses the interest in using trout larvae incubated in sediment bed to assess genotoxic compounds in the field. In a second experiment, adult European topminnow (Phoxinus phoxinus) were exposed in water running through artificial channels to a mixture of diuron and azoxystrobin, two of the main pesticides detected in the Morcille watershed. As compared with the unexposed channel, a 3-5-fold increase in the DNA damage was observed in fish exposed to chronic environmental pesticide concentrations (1-2 microg L(-1) for diuron and 0.5-1 microg L(-1) for axoxystrobin). A single 6h pulse of pesticide (14 microg L(-1) of diuron and 7 microg L(-1) of azoxystrobin) was applied to simulate transiently elevated chemical concentrations in the river following storm conditions. It did not increase genotoxicity. After a 1-month recovery period, DNA damage in exposed fish erythrocytes recovered to unexposed level, suggesting possible involvement of both repair mechanisms and cellular turnover in this transient response. This work highlights that vineyard treatment by pesticides and in particular diuron and azoxystrobin can represent a genotoxic threat to fish from contaminated watershed rivers.

  14. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays.

    Science.gov (United States)

    Rodrigues, Fernando Postalli; Angeli, José Pedro Friedmann; Mantovani, Mário Sérgio; Guedes, Carmen Luisa Barbosa; Jordão, Berenice Quinzani

    2010-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN) testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus) hepatoma cells (HTC) were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa) and mammal (HTC) cells, for more accurately assessing genotoxicity in environmental samples.

  15. In vivo genotoxic effects of dietary heme iron on rat colon mucosa and ex vivo effects on colon cells monitored by an optimized alkaline comet assay.

    Directory of Open Access Journals (Sweden)

    Océane, C Martin

    2015-04-01

    In conclusion, our results offer a suitable protocol to evaluate genotoxicity on in vivo cryopreserved colon mucosa and on in vitro murine colonic cells, with a middle throughput capacity. This protocol confirms the increase of genotoxicity in rat colon mucosa after an heme-iron diet. Moreover, this protocol enables the demonstration that aldehydes from heme-induced lipoperoxidation are responsible for this increase of genotoxicity.

  16. Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay

    Directory of Open Access Journals (Sweden)

    Eşref Demir

    Full Text Available Synthetic amorphous silica nanoparticles (SAS NPs have been used in various industries, such as plastics, glass, paints, electronics, synthetic rubber, in pharmaceutical drug tablets, and a as food additive in many processed foods. There are few studies in the literature on NPs using gene mutation approaches in mammalian cells, which represents an important gap for genotoxic risk estimations. To fill this gap, the mouse lymphoma L5178Y/Tk+/− assay (MLA was used to evaluate the mutagenic effect for five different concentrations (from 0.01 to 150 μg/mL of two different sizes of SAS NPs (7.172 and 7.652 nm and a fine collodial form of silicon dioxide (SiO2. This assay detects a broad spectrum of mutational events, from point mutations to chromosome alterations. The results obtained indicate that the two selected SAS NPs are mutagenic in the MLA assay, showing a concentration-dependent effect. The relative mutagenic potencies according to the induced mutant frequency (IMF are as follows: SAS NPs (7.172 nm (IMF = 705.5 × 10−6, SAS NPs (7.652 nm (IMF = 575.5 × 10−6, and SiO2 (IMF = 57.5 × 10−6. These in vitro results, obtained from mouse lymphoma cells, support the genotoxic potential of NPs as well as focus the discussion of the benefits/risks associated with their use in different areas. Keywords: Synthetic amorphous silica nanoparticles, Mouse lymphoma assay, Mutagenic agents, Thymidine kinase (Tk gene, In vitro mutagenicity

  17. Size- and coating-dependent cytotoxicity and genotoxicity of silver nanoparticles evaluated using in vitro standard assays.

    Science.gov (United States)

    Guo, Xiaoqing; Li, Yan; Yan, Jian; Ingle, Taylor; Jones, Margie Yvonne; Mei, Nan; Boudreau, Mary D; Cunningham, Candice K; Abbas, Mazhar; Paredes, Angel M; Zhou, Tong; Moore, Martha M; Howard, Paul C; Chen, Tao

    2016-11-01

    The physicochemical characteristics of silver nanoparticles (AgNPs) may greatly alter their toxicological potential. To explore the effects of size and coating on the cytotoxicity and genotoxicity of AgNPs, six different types of AgNPs, having three different sizes and two different coatings, were investigated using the Ames test, mouse lymphoma assay (MLA) and in vitro micronucleus assay. The genotoxicities of silver acetate and silver nitrate were evaluated to compare the genotoxicity of nanosilver to that of ionic silver. The Ames test produced inconclusive results for all types of the silver materials due to the high toxicity of silver to the test bacteria and the lack of entry of the nanoparticles into the cells. Treatment of L5718Y cells with AgNPs and ionic silver resulted in concentration-dependent cytotoxicity, mutagenicity in the Tk gene and the induction of micronuclei from exposure to nearly every type of the silver materials. Treatment of TK6 cells with these silver materials also resulted in concentration-dependent cytotoxicity and significantly increased micronucleus frequency. With both the MLA and micronucleus assays, the smaller the AgNPs, the greater the cytotoxicity and genotoxicity. The coatings had less effect on the relative genotoxicity of AgNPs than the particle size. Loss of heterozygosity analysis of the induced Tk mutants indicated that the types of mutations induced by AgNPs were different from those of ionic silver. These results suggest that AgNPs induce cytotoxicity and genotoxicity in a size- and coating-dependent manner. Furthermore, while the MLA and in vitro micronucleus assay (in both types of cells) are useful to quantitatively measure the genotoxic potencies of AgNPs, the Ames test cannot.

  18. Induction of cytotoxic and genotoxic effects of Guandu River waters in the Allium cepa system

    Directory of Open Access Journals (Sweden)

    Jennifer Vieira Gomes

    2015-01-01

    Full Text Available The Guandu River is the main source of water supply for the metropolitan region of Rio de Janeiro and has been facing serious environmental problems due to increasing population and industrial pollution, as well as the presence of polluted tributaries. This study analyzed the cytotoxic and genotoxic potential of the Guandu River’s waters, through the use of the Allium cepa test system. Collection points were chosen at the greatest confluences of pollutant sources. The sampling included two different seasons: the rainy season (January and February and the dry season (June and July. The analyses of 5000 cells per treatment showed that all the points studied had some degree of cytotoxicity and/or genotoxicity. Two sampling locations, which receive major influxes from the polluted waters of the Poços/Queimados and Cabuçu/Ipiranga Rivers, stood out for the strong presence of micronuclei, sticky chromosomes, mitotic spindle abnormalities, necrotic cells and nucleolar changes compared to the negative control. At least two locations also found changes in the mitotic index. The existence of variations in the number of cytotoxic and genotoxic changes between periods of rain and drought indicates that the cytotoxic and genotoxic potential of the water pollutants varies according to time, depending on the discharges of the tributary rivers and the increase of contaminated effluents. The results highlight the importance of bio-monitoring to assist managers in the control of effluent discharge.

  19. Anti-Genotoxic Potential of Bilirubin In Vivo

    DEFF Research Database (Denmark)

    Wallner, Marlies; Antl, Nadja; Rittmannsberger, Barbara

    2013-01-01

    The bile pigment bilirubin is a known antioxidant and is associated with protection from cancer and cardiovascular disease (CVD) when present in too strong concentrations. Unconjugated bilirubin (UCB) might also possess anti-genotoxic potential by preventing oxidative damage to DNA. Moderately...... elevated bilirubin levels are found in individuals with Gilbert syndrome and more severe in the hyperbilirubinemic Gunn rat model. This study was therefore aimed to assess the levels of oxidative damage to DNA in Gilbert syndrome subjects and Gunn rats compared to matched controls. Seventy-six individuals...

  20. Cytotoxic and genotoxic effect of the [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP in vivo generator system in mice

    Energy Technology Data Exchange (ETDEWEB)

    Pedraza-Lopez, Martha [Departamento de Medicina Nuclear, Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Delegacion Tlalpan, Mexico DF 14000 (Mexico); Ferro-Flores, Guillermina [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca, Ocoyoacac, Estado de Mexico, CP 52045 (Mexico); Arteaga de Murphy, Consuelo [Departamento de Medicina Nuclear, Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Delegacion Tlalpan, Mexico DF 14000 (Mexico)]. E-mail: consuelo_murphy@yahoo.com.mx; Morales-Ramirez, Pedro [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca, Ocoyoacac, Estado de Mexico, CP 52045 (Mexico); Piedras-Ross, Josefa [Departamento de Medicina Nuclear, Instituto Nacional de Ciencias Medicas y Nutricion, Salvador Zubiran, Delegacion Tlalpan, Mexico DF 14000 (Mexico); Murphy-Stack, Eduardo [Hospital Santaelena, Mexico DF (Mexico); Hernandez-Oviedo, Omar [Escuela Superior de Fisica y Matematicas, IPN, Mexico DF (Mexico)

    2004-11-01

    Multiple myeloma and other hematological malignancies have been treated by myeloablative radiotherapy/chemotherapy and subsequent stem cell transplantation. [{sup 166}Dy]Dy/{sup 166}Ho-ethylenediaminetetramethylene phosphonate (EDTMP) forms a stable in vivo generator system with selective skeletal uptake in mice; therefore, it could work as a potential and improved agent for marrow ablation. Induced bone marrow cytotoxicity and genotoxicity are determined by the reduction of reticulocytes (RET) and elevation of micronucleated reticulocyte (MN-RET) in peripheral blood and ablation by bone marrow histological studies. The aim of this study was to determine the bone marrow cytotoxic and genotoxic effect of the [{sup 166}Dy]Dy/{sup 166}Ho-EDTMP in vivo generator system in mice and to evaluate by histopathology its myeloablative potential. Enriched {sup 166}Dy{sub 2}O{sub 3} was irradiated and [{sup 166}Dy]DyCl{sub 3} was added to EDTMP in phosphate buffer (pH 8.0) in a molar ratio of 1:1.75. QC was determined by TLC. Dy-EDTMP complex was prepared the same way with nonirradiated dysprosium oxide. A group of BALB/c mice were intraperitoneally injected with the radiopharmaceutical and two groups of control animals were injected with the cold complex and with 0.9% sodium chloride, respectively. A blood sample was taken at the beginning of the experiments and every 48 h for 12 days postinjection. The animals were sacrificed, organs of interest taken out and the radioactivity determined. The femur was used for histological studies. Flow cytometry analysis was used to quantify the frequency of RET and MN-RET in the blood samples. The MCNP4B Monte Carlo computer code was used for dosimetry calculations. Radiochemical purity was 99% and the mean specific activity was 1.3 MBq/mg. The RET and MN-RET frequency were statistically different in the treatment at the end of the 12-day period demonstrating cytotoxicity and genotoxicity induced by the in vivo generator system. The

  1. Genotoxic and chemopreventive assessment of Cynara scolymus L. aqueous extract in a human-derived liver cell line.

    Science.gov (United States)

    da Silva, Regiane Pereira; Jacociunas, Laura Vicedo; de Carli, Raíne Fogliati; de Abreu, Bianca Regina Ribas; Lehmann, Mauricio; da Silva, Juliana; Ferraz, Alexandre de Barros Falcão; Dihl, Rafael Rodrigues

    2017-10-01

    Cynara scolymus L., popularly known as artichoke, is consumed as food and used as tea infusions for pharmacological purposes to treat liver dysfunctions and other conditions. Scientific data on the safety and protective effect of artichoke in human-derived liver cells is missing. This study investigated the genotoxic and modulatory effect of a liophilized extract suspended in water of C. scolymus L. leaves. Four extract concentrations (0.62, 1.25, 2.5 and 5.0 mg/mL) were evaluated using the comet assay on human hepatocyte cultures, HepG2 cells. Genotoxicity was assessed after two treatment periods, 1 and 24 h. Antigenotoxicity was evaluated against oxidative lesions induced by hydrogen peroxide in pre-, simultaneous and post-treatment protocols. Artichoke leaves aqueous extract induced genotoxic effects in HepG2 cells after 1- and 24-h treatments. In turn, extract concentrations of 0.62, 1.25 and 2.5 mg/mL, exhibited a protective effect in pretreatment, compared to hydrogen peroxide alone. However, in simultaneous and post-treatment protocols, only the lowest concentration reduced the frequency of DNA damage induced by hydrogen peroxide. In addition, in the simultaneous treatment protocol, the highest artichoke extract concentration increased hydrogen peroxide genotoxicity. It can be concluded that artichoke is genotoxic, in vitro, to HepG2 cells, but can also modulate hydrogen peroxide DNA damage.

  2. Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels.

    Science.gov (United States)

    Schiavo, S; Oliviero, M; Miglietta, M; Rametta, G; Manzo, S

    2016-04-15

    The increasing use of oxide nanoparticles (NPs) in commercial products has intensified the potential release into the aquatic environment where algae represent the basis of the trophic chain. NP effects upon algae population growth were indeed already reported in literature, but the concurrent effects at cellular and genomic levels are still largely unexplored. Our work investigates the genotoxic (by COMET assay) and cytotoxic effects (by qualitative ROS production and cell viability) of ZnO nanoparticles toward marine microalgae Dunaliella tertiolecta. A comparison at defined population growth inhibition levels (i.e. 50% Effect Concentration, EC50, and No Observed Effect Concentration, NOEC) with SiO2 and TiO2 genotoxic effects and previously investigated cytotoxic effects (Manzo et al., 2015) was performed in order to elucidate the possible diverse mechanisms leading to algae growth inhibition. After 72h exposure, ZnO particles act firstly at the level of cell division inhibition (EC50: 2mg Zn/L) while the genotoxic action is evident only starting from 5mg Zn/L. This outcome could be ascribable mainly to the release of toxic ions from the aggregate of ZnO particle in the proximity of cell membrane. In the main, at EC50 and NOEC values for ZnO NPs showed the lowest cytotoxic and genotoxic effect with respect to TiO2 and SiO2. Based on Mutagenic Index (MI) the rank of toxicity is actually: TiO2>SiO2>ZnO with TiO2 and SiO2 that showed similar MI values at both NOEC and EC50 concentrations. The results presented herein suggest that up to TiO2 NOEC (7.5mg/L), the algae DNA repair mechanism is efficient and the DNA damage does not result in an evident algae population growth inhibition. A similar trend for SiO2, although at lower effect level with respect to TiO2, is observable. The comparison among all the tested nanomaterial toxicity patterns highlighted that the algae population growth inhibition occurred through pathways specific for each NP also related to their

  3. Protective effect of pumpkin seed oil against genotoxicity induced by azathioprine

    Directory of Open Access Journals (Sweden)

    S.A. Elfiky

    2012-10-01

    Full Text Available Pumpkin is a leafy green vegetable; it belongs to the Cucurbitaceae family. Pumpkin seed oil supplementation can prevent changes in plasma lipids and blood pressure. The present study was conducted to evaluate the protective effect of pumpkin seed oil against cytotoxicity and genotoxicity of azathioprine. Oral administration of pumpkin seed oil either before or after treatment of azathioprine was effective in the reduction of the frequencies of Mn-PCEs, decreased the DNA fragmentation, total sperm abnormalities and significantly increased sperm count, percentage of PCEs, and enhanced the ratio of PCEs to NCEs. However, random amplified polymorphism of DNA (RAPD showed distinct differences in animal groups intoxicated with azathioprine before and after pumpkin seed oil treatment, which reflected a DNA protective effect of pumpkin seed oil. Depletion of glutathione content in the testis was also observed in azathioprine treated mice, which was improved by an oral administration of pumpkin seed oil either before or after treatment with azathioprine.

  4. SIGNALING TO THE P53 TUMOR SUPPRESSOR THROUGH PATHWAYS ACTIVATED BY GENOTOXIC AND NON-GENOTOXIC STRESSES.

    Energy Technology Data Exchange (ETDEWEB)

    ANDERSON,C.W.APPELLA,E.

    2002-07-01

    The p53 tumor suppressor is a tetrameric transcription factor that is post-translational modified at {approx}18 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review the posttranslational modifications to p53 and the pathways that produce them in response to both genotoxic and non-genotoxic stresses.

  5. Chemopreventive effect of cactus Opuntia ficus indica on oxidative stress and genotoxicity of aflatoxin B1

    Directory of Open Access Journals (Sweden)

    Ben Mansour Hédi

    2011-10-01

    Full Text Available Abstract Background Aflatoxin B1 (AFB1 is potent hepatotoxic and hepatocarcinogenic agent. In aflatoxicosis, oxidative stress is a common mechanism contributing to initiation and progression of hepatic damage. The aim of this work was to evaluate the hepatoprotective effect of cactus cladode extract (CCE on aflatoxin B1-induced liver damage in mice by measuring malondialdehyde (MDA level, the protein carbonyls generation and the heat shock proteins Hsp 70 and Hsp 27 expressions in liver. We also looked for an eventual protective effect against AFB1-induced genotoxicity as determined by chromosome aberrations test, SOS Chromotest and DNA fragmentation assay. We further evaluated the modulation of p53, bax and bcl2 protein expressions in liver. Methods Adult, healthy balbC (20-25 g male mice were pre-treated by intraperitonial administration of CCE (50 mg/Kg.b.w for 2 weeks. Control animals were treated 3 days a week for 4 weeks by intraperitonial administration of 250 μg/Kg.b.w AFB1. Animals treated by AFB1 and CCE were divided into two groups: the first group was administrated CCE 2 hours before each treatment with AFB1 3 days a week for 4 weeks. The second group was administrated without pre-treatment with CCE but this extract was administrated 24 hours after each treatment with AFB1 3 days a week for 4 weeks. Results Our results clearly showed that AFB1 induced significant alterations in oxidative stress markers. In addition, it has a genotoxic potential and it increased the expression of pro apoptotic proteins p53 and bax and decreased the expression of bcl2. The treatment of CCE before or after treatment with AFB1, showed (i a total reduction of AFB1 induced oxidative damage markers, (ii an anti-genotoxic effect resulting in an efficient prevention of chromosomal aberrations and DNA fragmentation compared to the group treated with AFB1 alone (iii restriction of the effect of AFB1 by differential modulation of the expression of p53 which

  6. New probabilistic risk assessment of ethylhexyl methoxycinnamate: Comparing the genotoxic effects of trans- and cis-EHMC.

    Science.gov (United States)

    Nečasová, Anežka; Bányiová, Katarína; Literák, Jaromír; Čupr, Pavel

    2017-02-01

    Ethylhexyl methoxycinnamate (EHMC) is a widely used UV filter present in a large number of personal care products (PCPs). Under normal conditions, EHMC occurs in a mixture of two isomers: trans-EHMC and cis-EHMC in a ratio of 99:1. When exposed to sunlight, the trans isomer is transformed to the less stable cis isomer and the efficiency of the UV filter is reduced. To date, the toxicological effects of the cis-EHMC isomer remain largely unknown. We developed a completely new method for preparing cis-EHMC. An EHMC technical mixture was irradiated using a UV lamp and 98% pure cis-EHMC was isolated from the irradiated solution using column chromatography. The genotoxic effects of the isolated cis-EHMC isomer and the nonirradiated trans-EHMC were subsequently measured using two bioassays (SOS chromotest and UmuC test). In the case of trans-EHMC, significant genotoxicity was observed using both bioassays at the highest concentrations (0.5 - 4 mg mL -1 ). In the case of cis-EHMC, significant genotoxicity was only detected using the UmuC test at concentrations of 0.25 - 1 mg mL -1 . Based on these results, the NOEC was calculated for both cis- and trans-EHMC, 0.038 and 0.064 mg mL -1 , respectively. Risk assessment of dermal, oral and inhalation exposure to PCPs containing EHMC was carried out for a female population using probabilistic simulation and by using Quantitative in vitro to in vivo extrapolation (QIVIVE). The risk of cis-EHMC was found to be ∼1.7 times greater than trans-EHMC. In the case of cis-EHMC, a hazard index of 1 was exceeded in the 92nd percentile. Based on the observed differences between the isomers, EHMC application in PCPs requires detailed reassessment. Further exploration of the toxicological effects and properties of cis-EHMC is needed in order to correctly predict risks posed to humans and the environment. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 569-580, 2017. © 2016 Wiley Periodicals, Inc.

  7. Analysis of the Genotoxic Effects of Mobile Phone Radiation using Buccal Micronucleus Assay: A Comparative Evaluation.

    Science.gov (United States)

    Banerjee, Sumita; Singh, Narendra Nath; Sreedhar, Gadiputi; Mukherjee, Saikat

    2016-03-01

    Micronucleus (MN) is considered to be a reliable marker for genotoxic damage and it determines the presence and the extent of the chromosomal damage. The MN is formed due to DNA damage or chromosomal disarrangements. The MN has a close association with cancer incidences. In the new era, mobile phones are constantly gaining popularity specifically in the young generation, but this device uses radiofrequency radiation that may have a possible carcinogenic effect. The available reports related to the carcinogenic effect of mobile radiation on oral mucosa are contradictory. To explore the effects of mobile phone radiation on the MN frequency in oral mucosal cells. The subjects were divided into two major groups: low mobile phone users and high mobile phone users. Subjects who used their mobile phone since less than five years and less than three hours a week comprised of the first group and those who used their mobile since more than five years and more than 10 hours a week comprised of the second group. Net surfing and text messaging was not considered in this study. Exfoliated buccal mucosal cells were collected from both the groups and the cells were stained with DNA-specific stain acridine orange. Thousand exfoliated buccal mucosal cells were screened and the cells which were positive for micronuclei were counted. The micronucleus frequency was represented as mean±SD, and unpaired Student t-test was used for intergroup comparisons. The number of micronucleated cells/ 1000 exfoliated buccal mucosal cells was found to be significantly increased in high mobile phone users group than the low mobile phone users group. The use of mobile phone with the associated complaint of warmth around the ear showed a maximum increase in the number of micronucleated cells /1000 exfoliated buccal mucosal cells. Mobile phone radiation even in the permissible range when used for longer duration causes significant genotoxicity. The genotoxicity can be avoided to some extent by the

  8. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays

    Directory of Open Access Journals (Sweden)

    Fernando Postalli Rodrigues

    2010-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus hepatoma cells (HTC were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa and mammal (HTC cells, for more accurately assessing genotoxicity in environmental samples.

  9. Evaluation of genotoxic potential of neurotoxin anatoxin-a with the use of umuC test.

    Science.gov (United States)

    Sieroslawska, Anna; Rymuszka, Anna

    2010-01-01

    The aim of this study was to evaluate genotoxicity of anatoxin-a, cyanotoxin of neurotoxic activity. Additionally, other frequently detected cyanotoxin of previously described genotoxic potential, microcystin-LR, was used at the same concentrations, as well as the mixture of both toxins, anatoxin-a and microcystin-LR. Genotoxicity of the toxins was determined with the use of the umuC assay, in which the induction and expression of the umuC - lacZ reporter gene was assessed. The test was conducted on Salmonella typhimurium TA 1535/pSK1002 strain, with and without metabolic transformation. The toxin concentrations were 0.25, 0.5, 1 and 2 µg/ml. The exposure time was 2 h. The highest inefficient concentration of anatoxin-a without metabolic transformation was 0.25 µg/ml, of microcystin-LR was 0.5 µg/ml and in case of the toxin mixture all used concentrations induced the umuC gene. When S9 fraction was added to the samples, no effects were detected. To our knowledge, this is the first report on genotoxic effects of anatoxin-a. Although the study is preliminary and needs further research, however, indicates the new potential activity of the toxin, as well as the possible increase of genotoxicity of other cyanotoxins, more stable in the environment, e.g. microcystin-LR.

  10. Biomonitoring of the genotoxic effects and oxidative potentials of commercial edible dung beetles (Onitis sp.), grasshopper (Caelifera sp.) and mole crickets (Gryllotalpa sp.) in vitro.

    Science.gov (United States)

    Koc, Kubra; Incekara, Umit; Turkez, Hasan

    2014-09-01

    In this investigation, the genotoxic and oxidative effects of water soluble extracts of dung beetles, flying grasshopper and mole crickets have been assessed on cultured human blood cells. The extracts were added to the culture tubes at 12 different concentrations (0-2000 ppm). Micronucleus test was used to monitor the DNA and the chromosomal damage produced by aqueous extracts in vitro. In addition, to assess the oxidative effects, total antioxidant capacity (TAC) and total oxidant status (TOS) levels were also measured. Our results indicated that these extracts did not show genotoxic effects at the tested concentrations. However, the extracts caused dose-dependent alterations in both TAC and TOS levels. Based on the findings, it was concluded that the studied insects can be consumed safely, but it is necessary to consider the cellular damages which are likely to appear depending on oxidative stress at higher concentrations. It has also been suggested that this in vitro approach for oxidative and genotoxicity assessments may be useful to evaluate the potential health risks of edible insects. © The Author(s) 2014.

  11. Cytotoxic and genotoxic potential of food-borne nitriles in a liver in vitro model

    Science.gov (United States)

    Kupke, Franziska; Herz, Corinna; Hanschen, Franziska S.; Platz, Stefanie; Odongo, Grace A.; Helmig, Simone; Bartolomé Rodríguez, María M.; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn

    2016-01-01

    Isothiocyanates are the most intensively studied breakdown products of glucosinolates from Brassica plants and well recognized for their pleiotropic effects against cancer but also for their genotoxic potential. However, knowledge about the bioactivity of glucosinolate-borne nitriles in foods is very poor. As determined by GC-MS, broccoli glucosinolates mainly degrade to nitriles as breakdown products. The cytotoxicity of nitriles in human HepG2 cells and primary murine hepatocytes was marginal as compared to isothiocyanates. Toxicity of nitriles was not enhanced in CYP2E1-overexpressing HepG2 cells. In contrast, the genotoxic potential of nitriles was found to be comparable to isothiocyanates. DNA damage was persistent over a certain time period and CYP2E1-overexpression further increased the genotoxic potential of the nitriles. Based on actual in vitro data, no indications are given that food-borne nitriles could be relevant for cancer prevention, but could pose a certain genotoxic risk under conditions relevant for food consumption. PMID:27883018

  12. Eco- and genotoxicity profiling of a rapeseed biodiesel using a battery of bioassays.

    Science.gov (United States)

    Eck-Varanka, Bettina; Kováts, Nora; Horváth, Eszter; Ferincz, Árpád; Kakasi, Balázs; Nagy, Szabolcs Tamás; Imre, Kornélia; Paulovits, Gábor

    2018-04-30

    Biodiesel is considered an important renewable energy source but still there is some controversy about its environmental toxicity, especially to aquatic life. In our study, the toxicity of water soluble fraction of biodiesel was evaluated in relatively low concentrations using a battery of bioassays: Vibrio fischeri bioluminescence inhibition, Sinapis alba root growth inhibition, Daphnia magna immobilization, boar semen live/dead ratio and DNA fragmentation and Unio pictorum micronucleus test. While the S. alba test indicated nutritive (stimulating) effect of the sample, the biodiesel exerted toxic effect in the aquatic tests. D. magna was the most sensitive with EC 50 value of 0.0226%. For genotoxicity assessment, the mussel micronucleus test (MNT) was applied, detecting considerable genotoxic potential of the biodiesel sample: it elucidated micronuclei formation already at low concentration of 3.3%. Although this test has never been employed in biodiesel eco/genotoxicity assessments, it seems a promising tool, based on its appropriate sensitivity, and representativity. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Genotoxic damage in cultured human peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    Falaq Naz

    2012-06-29

    Jun 29, 2012 ... Genotoxic damage in cultured human peripheral blood lymphocytes of oral ... catechol estrogens and quinines, via redox reactions causes oxidative damage to .... volume was prepared for each donor. About, 0.8 ml of cell sus .... duce the adverse effects of OCs, such as the reduction in the estrogen content.

  14. Evaluation of perfluorooctanoate for potential genotoxicity

    Directory of Open Access Journals (Sweden)

    John L. Butenhoff

    2014-01-01

    processes and not a specific genotoxic effect, the results of the studies presented in this paper and other published results clearly demonstrate the absence of direct mutagenic or genotoxic risk associated with PFOA. This finding is consistent with the physical/chemical characteristics of PFOA and is supported by other published genotoxicity studies.

  15. The effect of gamma radiation on the Common carp (Cyprinus carpio): In vivo genotoxicity assessment with the micronucleus and comet assays.

    Science.gov (United States)

    M K, Praveen Kumar; Soorambail K, Shyama; Bhagatsingh Harisingh, Sonaye; D'costa, Avelyno; Ramesh Chandra, Chaubey

    2015-10-01

    Radioactive wastes may be leached into freshwater, either accidentally or in industrial effluents. We have studied gamma radiation-induced DNA damage in the freshwater fish Cyprinus carpio. Fish were irradiated with 2-10Gy gamma radiation and genotoxic effects in blood cells were studied with the micronucleus (MN) and comet assays. Micronuclei and a dose-dependent increase in comet-tail DNA were seen in dose- and time-dependent studies. The highest % tail DNA was observed at 24h, declining until 72h, which may indicate the repair of radiation-induced DNA single-strand breaks after gamma radiation. However, double-stranded DNA damage may not have been repaired, as indicated by increased micronuclei at later periods. A positive correlation was observed between the comet and micronucleus assay results. This study confirms the mutagenic/genotoxic potential of gamma radiation in the Common carp, as well as the possible combined use of the micronucleus and comet assays for in vivo laboratory studies with fresh-water fish for screening the genotoxic potential of radioactive pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. In vivo genotoxicity assessment in rats exposed to Prestige-like oil by inhalation.

    Science.gov (United States)

    Valdiglesias, Vanessa; Kiliç, Gözde; Costa, Carla; Amor-Carro, Óscar; Mariñas-Pardo, Luis; Ramos-Barbón, David; Méndez, Josefina; Pásaro, Eduardo; Laffon, Blanca

    2012-01-01

    One of the largest oil spill disasters in recent times was the accident of the oil tanker Prestige in front of the Galician coast in 2002. Thousands of people participated in the cleanup of the contaminated areas, being exposed to a complex mixture of toxic substances. Acute and prolonged respiratory symptoms and genotoxic effects were reported, although environmental exposure measurements were restricted to current determinations, such that attribution of effects observed to oil exposure is difficult to establish. The aim of this study was to analyze peripheral blood leukocytes (PBL) harvested from a rat model of subchronic exposure to a fuel oil with similar characteristics to that spilled by the Prestige tanker, in order to determine potential genotoxic effects under strictly controlled, in vivo exposure. Wistar Han and Brown Norway rats were exposed to the oil for 3 wk, and micronucleus test (MN) and comet assay, standard and modified with 8-oxoguanine DNA glycosylase (OGG1) enzyme, were employed to assess genotoxicity 72 h and 15 d after the last exposure. In addition, the potential effects of oil exposure on DNA repair capacity were determined by means of mutagen sensitivity assay. Results obtained from this study showed that inhalation oil exposure induced DNA damage in both Brown Norway and Wistar Han rats, especially in those animals evaluated 15 d after exposure. Although alterations in the DNA repair responses were noted, the sensitivity to oil substances varied depending on rat strain. Data support previous positive genotoxicity results reported in humans exposed to Prestige oil during cleanup tasks.

  17. Cytogenetic analyses of Azadirachtin reveal absence of genotoxicity but marked antiproliferative effects in human lymphocytes and CHO cells in vitro.

    Science.gov (United States)

    Mosesso, Pasquale; Bohm, Lothar; Pepe, Gaetano; Fiore, Mario; Carpinelli, Alice; Gäde, Gerd; Nagini, Siddavaram; Ottavianelli, Alessandro; Degrassi, Francesca

    2012-09-18

    In this work we have examined the genotoxic potential of the bioinsecticide Azadirachtin A (AZA) and its influence on cell proliferation on human lymphocytes and Chinese Hamster ovary (CHO) cells. AZA genotoxicity was assessed by the analysis of chromosomal aberrations and sister chromatid exchanges (SCEs) in the absence and presence of rat liver S9 metabolism. Primary DNA damage was also investigated by means of the comet assay. The results obtained clearly indicate that AZA is not genotoxic in mammalian cells. On the other hand, AZA proved to interfere with cell cycle progression as shown by modulation of frequencies of first (M1) and second division (M2) metaphases detected by 5-Bromo-2'-deoxyuridine labeling. Accumulation of M1 metaphases were more pronounced in human lymphocytes. In the transformed CHO cell line, however, significant increases of multinucleated interphases and polyploid cells were observed at long treatment time. At higher dose-levels, the incidence of polyploidy was close to 100%. Identification of spindle structure and number of centrosomes by fluorescent immunostaining with α- and γ-tubulin antibodies revealed aberrant mitoses exhibiting multipolar spindles with several centrosomal signals. These findings suggest that AZA can act either through a stabilizing activity of microtubules or by inhibition of Aurora A, since both mechanisms are able to generate genetically unstable polyploid cells with multipolar spindles and multinucleated interphases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Analyzing the Genotoxicity of Retroviral Vectors in Hematopoietic Cell Gene Therapy

    Directory of Open Access Journals (Sweden)

    Luca Biasco

    2018-03-01

    Full Text Available Retroviral vectors, including those derived from gammaretroviruses and lentiviruses, have found their way into the clinical arena and demonstrated remarkable efficacy for the treatment of immunodeficiencies, leukodystrophies, and globinopathies. Despite these successes, gene therapy unfortunately also has had to face severe adverse events in the form of leukemias and myelodysplastic syndromes, related to the semi-random vector integration into the host cell genome that caused deregulation of neighboring proto-oncogenes. Although improvements in vector design clearly lowered the risk of this insertional mutagenesis, analysis of potential genotoxicity and the consequences of vector integration remain important parameters for basic and translational research and most importantly for the clinic. Here, we review current assays to analyze biodistribution and genotoxicity in the pre-clinical setting and describe tools to monitor vector integration sites in vector-treated patients as a biosafety readout.

  19. Mixture Genotoxicity of 2,4-Dichlorophenoxyacetic Acid, Acrylamide, and Maleic Hydrazide on Human Caco-2 Cells Assessed with Comet Assay

    DEFF Research Database (Denmark)

    Syberg, Kristian; Binderup, Mona-Lise; Cedergreen, Nina

    2015-01-01

    Assessment of genotoxic properties of chemicals is mainly conducted only for single chemicals, without taking mixture genotoxic effects into consideration. The current study assessed mixture effects of the three known genotoxic chemicals, 2,4-dichlorophenoxyacetic acid (2,4-D), acrylamide (AA......), and maleic hydrazide (MH), in an experiment with a fixed ratio design setup. The genotoxic effects were assessed with the single-cell gel electrophoresis assay (comet assay) for both single chemicals and the ternary mixture. The concentration ranges used were 0-1.4, 0-20, and 0-37.7 mM for 2,4-D, AA, and MH......, respectively. Mixture toxicity was tested with a fixed ratio design at a 10:23:77% ratio for 2.4-D:AA:MH. Results indicated that the three chemicals yielded a synergistic mixture effect. It is not clear which mechanisms are responsible for this interaction. A few possible interactions are discussed...

  20. Quantitative structure-activity relationships for toxicity and genotoxicity of halogenated aliphatic compounds: wing spot test of Drosophila melanogaster.

    Science.gov (United States)

    Chroust, Karel; Pavlová, Martina; Prokop, Zbynek; Mendel, Jan; Bozková, Katerina; Kubát, Zdenek; Zajícková, Veronika; Damborský, Jiri

    2007-02-01

    Halogenated aliphatic compounds were evaluated for toxic and genotoxic effects in the somatic mutation and recombination test employing Drosophila melanogaster. The tested chemicals included chlorinated, brominated and iodinated; mono-, di- and tri-substituted; saturated and unsaturated alkanes: 1,2-dibromoethane, 1-bromo-2-chloroethane, 1-iodopropane, 2,3-dichloropropene, 3-bromo-1-propene, epibromohydrin, 2-iodobutane, 3-chloro-2-methylpropene, 1,2,3-trichloropropane, 1,2-dichloroethane, 1,2-dichlorobutane, 1-chloro-2-methylpropane, 1,3-dichloropropane, 1,2-dichloropropane, 2-chloroethymethylether, 1-bromo-2-methylpropane and 1-chloropentane. N-methyl-N-nitrosourea served as the positive and distilled water as the negative control. The set of chemicals for the toxicological testing was selected by the use of statistical experiment design. Group of unsaturated aliphatic hydrocarbons were generally more toxic than saturated analogues. The genotoxic effect was observed with 14 compounds in the wing spot test, while 3 substances did not show any genotoxicity by using the wing spot test at 50% lethal concentration. The highest number of wing spots was observed in genotoxicity assay with 1-bromo-2-chloroethane, 1,2-dichloroethane, 1,2-dibromoethane and 1-iodopropane. Nucleophilic superdelocalizability calculated by quantum mechanics appears to be a good parameter for prediction of both toxicity and genotoxicity effects of halogenated aliphatic compounds.

  1. Biodetection of potential genotoxic pollutants entering the human food chain through ashes used in livestock diets.

    Science.gov (United States)

    Sanchez-Vicente, Laura; Herraez, Elisa; Briz, Oscar; Nogales, Rogelio; Molina-Alcaide, Eduarda; Marin, Jose J G

    2016-08-15

    Ash derived from energy generation is used as a source of minerals in livestock feeds. The microbial biosensor recApr-Luc2 was built to detect genotoxic hazard in recycled ash. Escherichia coli SOS gene (recA, lexA, dinI and umuC) expression in response to cisplatin-induced DNA damage led to the selection of the recA promoter. The biosensor required functional RecA expression to respond to genotoxic heavy metals (Cr>Cd≈Pb), and polluted ash induced a strong recApr-Luc2 response. In human liver and intestinal cells, heavy metals induced acute toxicity (Cr>Cd>Pb) at concentrations sufficient to activate recApr-Luc2. Cytostatic effects, including genotoxicity, were cell- and metal-dependent, apart from Cr. In agreement with the recApr-Luc2 bioassay, Cr had the strongest effect in all cells. In conclusion, recApr-Luc2 could be useful for evaluating the genotoxic risk of pollutants present in ash that might be concentrated in animal products and, thus, entering the human food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Determination of the genotoxic effects of Convolvulus arvensis extracts on corn (Zea mays L.) seeds.

    Science.gov (United States)

    Sunar, Serap; Yildirim, Nalan; Aksakal, Ozkan; Agar, Guleray

    2013-06-01

    In this research, the methanolic extracts of Convolvulus arvensis were tested for genotoxic and inhibitor activity on the total soluble protein content and the genomic template stability against corn Zea mays L. seed. The methanol extracts of leaf, stem and root of C. arvensis were diluted to 50, 75 and 100 μl concentrations and applied to corn seed. The total soluble protein and genomic template stability results were compared with the control. The results showed that especially 100 μl extracts of diluted leaf, stem and root had a strong inhibitory activity on the genomic template stability. The changes occurred in random amplification of polymorphic DNA (RAPD) profiles of C. arvensis extract treatment included variation in band intensity, loss of bands and appearance of new bands compared with control. Also, the results obtained from this study revealed that the increase in the concentrations of C. arvensis extract increased the total soluble protein content in maize. The results suggested that RAPD analysis and total protein analysis could be applied as a suitable biomarker assay for the detection of genotoxic effects of plant allelochemicals.

  3. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin

    2017-03-01

    There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.

  4. Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment?

    International Nuclear Information System (INIS)

    Klobucar, Goeran I.V.; Stambuk, Anamaria; Srut, Maja; Husnjak, Ivana; Merkas, Martina; Traven, Luka; Cvetkovic, Zelimira

    2011-01-01

    There is a growing interest for the application of biomakers to field-collected earthworms. Therefore we have evaluated the usability of native populations of endogeic, widely distributed earthworm Aporrectodea caliginosa in the assessment of soil genotoxicity using the Comet assay. Validation of the Comet assay on earthworm coelomocytes has been established using commercially available Eisenia fetida exposed to copper, cadmium, and pentachlorophenol, along with A. caliginosa exposed to copper in a filter paper contact test. Neutral red retention time (NRRT) assay was conducted on copper exposed and field-collected earthworms. Significant DNA and lysosomal damage was measured using Comet and NRRT assays in native populations of A. caliginosa sampled from the polluted soils in the urban area in comparison to the earthworms from the reference site. The results of this study confirm the employment of A. caliginosa as a suitable species for the in situ soil toxicity and genotoxicity field surveys. - Research highlights: → Native A. caliginosa has shown significant biological effect measured by the Comet and NRRT assays. → The Comet assay on A. caliginosa and E. fetida has shown to be of similar sensitivity as the NRRT assay. → A. caliginosa is a suitable species for the in situ soil toxicity and genotoxicity field surveys. - Native populations of endogeic earthworm Aporrectodea caliginosa can be successfully applied in the genotoxicity field surveys using Comet assay.

  5. Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment?

    Energy Technology Data Exchange (ETDEWEB)

    Klobucar, Goeran I.V., E-mail: gklobuca@zg.biol.pmf.hr [Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb (Croatia); Stambuk, Anamaria; Srut, Maja [Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb (Croatia); Husnjak, Ivana [Ministry of Environmental Protection, Physical Planning and Construction, Ulica Republike Austrije 14, Zagreb (Croatia); Merkas, Martina [Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb (Croatia); Traven, Luka [Department of Environmental Medicine, Medical Faculty, University of Rijeka, Brace Branchetta 20a, 51000 Rijeka (Croatia); Teaching Institute of Public Health of the Primorsko-goranska County, Kresimirova 52a, 51000 Rijeka (Croatia); Cvetkovic, Zelimira [Department of Ecology, Institute of Public Health, Mirogojska c. 16, 10000 Zagreb (Croatia)

    2011-04-15

    There is a growing interest for the application of biomakers to field-collected earthworms. Therefore we have evaluated the usability of native populations of endogeic, widely distributed earthworm Aporrectodea caliginosa in the assessment of soil genotoxicity using the Comet assay. Validation of the Comet assay on earthworm coelomocytes has been established using commercially available Eisenia fetida exposed to copper, cadmium, and pentachlorophenol, along with A. caliginosa exposed to copper in a filter paper contact test. Neutral red retention time (NRRT) assay was conducted on copper exposed and field-collected earthworms. Significant DNA and lysosomal damage was measured using Comet and NRRT assays in native populations of A. caliginosa sampled from the polluted soils in the urban area in comparison to the earthworms from the reference site. The results of this study confirm the employment of A. caliginosa as a suitable species for the in situ soil toxicity and genotoxicity field surveys. - Research highlights: > Native A. caliginosa has shown significant biological effect measured by the Comet and NRRT assays. > The Comet assay on A. caliginosa and E. fetida has shown to be of similar sensitivity as the NRRT assay. > A. caliginosa is a suitable species for the in situ soil toxicity and genotoxicity field surveys. - Native populations of endogeic earthworm Aporrectodea caliginosa can be successfully applied in the genotoxicity field surveys using Comet assay.

  6. Evaluation of acute toxicity, genotoxicity and inhibitory effect on acute inflammation of an ethanol extract of Morus alba L. (Moraceae) in mice.

    Science.gov (United States)

    Oliveira, Alisson Macário de; Nascimento, Matheus Ferreira do; Ferreira, Magda Rhayanny Assunção; Moura, Danielle Feijó de; Souza, Talita Giselly Dos Santos; Silva, Gabriela Cavalcante da; Ramos, Eduardo Henrique da Silva; Paiva, Patrícia Maria Guedes; Medeiros, Paloma Lys de; Silva, Teresinha Gonçalves da; Soares, Luiz Alberto Lira; Chagas, Cristiano Aparecido; Souza, Ivone Antônia de; Napoleão, Thiago Henrique

    2016-12-24

    Morus alba L. (white mulberry) is used in traditional medicine worldwide, including Brazil. The leaves of this plant are used to treat inflammatory disorders. Universal interest in this plant necessitates studies on the toxicological safety and scientific substantiation of the medicinal properties of M. alba. In previous work, we investigated the acute toxicity of orally administered M. alba ethanol extract in mice. This work was designed to investigate the ethanol extract obtained from M. alba leaves for acute toxicity when intraperitoneally administered, in vivo genotoxicity, and potential to reduce acute inflammation. In order to further investigate the constituents of the extract, we also obtained the high-performance liquid chromatography (HPLC) fingerprint of the extract. Phytochemical analysis by thin layer chromatography (TLC) was performed and the results were used to obtain the HPLC fingerprint. Acute toxicity of 300 and 2000mg/kg b.w. i.p. doses administered to mice for 14 days was evaluated. Genotoxicity was evaluated by counting the number of micronucleated polychromatic erythrocytes in the blood of mice that either received or did not receive the extract at 75, 150 and 300mg/kg b.w. per os. The anti-inflammatory effect of the same doses administered per os was investigated using the carrageenan air pouch model. The TLC analysis of the extract revealed the presence of a remarkable amount of flavonoids and cinnamic acids. The HPLC fingerprint showed the presence of one major peak corresponding to chlorogenic acid and two smaller peaks corresponding to flavonoids. In the toxicity assays, there were no deaths or deviations in behavior of treated mice as compared to the control at any dose. However, biochemical, hematological, and histological analyses showed that intraperitoneal injection caused several forms of damage to the mice, which were not observed in case of oral administration, studied in our previous work. Oral administration of the extract did

  7. New nanostructural biomaterials based on active silicate systems and hydroxyapatite: characterization and genotoxicity in human peripheral blood lymphocytes.

    Science.gov (United States)

    Opačić-Galić, V; Petrović, V; Zivković, S; Jokanović, V; Nikolić, B; Knežević-Vukčević, J; Mitić-Ćulafić, D

    2013-06-01

    To characterize and investigate the genotoxic effect of a new endodontic cement based on dicalcium- and tricalcium-silicate (CS) with hydroxyapatite (HA) on human lymphocytes. Hydrothermal treatment was applied for synthesis of CS and HA. The final mixture HA-CS, with potential to be used in endodontic practice, is composed of CS (34%) and HA (66%). Human lymphocytes were incubated with HA, HA-CS and CS for 1 h, at 37 °C and 5% CO2. Cell viability was determined using the trypan blue exclusion assay. To evaluate the level of DNA damage comet assay (single cell gel electrophoresis) was performed. For the statistical analysis anova and Duncan's Post Hoc Test were used. The SEM analysis indicated that CS consisted mostly of agglomerates of several micrometers in size, built up from smaller particles, with dimensions between 117 and 477 nm. This is promising because dimensions of agglomerates are not comparable with channels inside the cell membranes, whereas their nano-elements provide evident activity, important for faster setting of these mixtures compared to MTA. Values of DNA damage obtained in the comet assay indicated low genotoxic risk of the new endodontic materials. The significantly improved setting characteristics and low genotoxic risk of the new material support further research. © 2012 International Endodontic Journal.

  8. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.

  9. Titanium dioxide nanoparticles cause genotoxicity in human lung epithelial cells

    Science.gov (United States)

    The use of engineered nanoparticles in consumer products is steadily increasing. However, the health effects of exposure to these nanoparticles are not thoroughly understood. This study investigated the genotoxicity of six titanium dioxide and two cerium oxide nanoparticles of va...

  10. Initial hazard screening for genotoxicity of photo-transformation products of ciprofloxacin by applying a combination of experimental and in-silico testing

    International Nuclear Information System (INIS)

    Toolaram, Anju Priya; Haddad, Tarek; Leder, Christoph; Kümmerer, Klaus

    2016-01-01

    . • Combination index showed CIP may be main Umu C inducer in photolysis mixtures. - Experimentally, the photo-transformation products (TPs) in the mixtures were not more genotoxic than CIP but some TPs were predicted genotoxic for several endpoints.

  11. Genotoxicity of indium tin oxide by comet test

    Directory of Open Access Journals (Sweden)

    İbrahim Hakkı Ciğerci

    2015-06-01

    Full Text Available Indium tin oxide (ITO is used for liquid crystal display (LCDs, electrochromic displays, flat panel displays, field emission displays, touch or laptop computer screens, cell phones, energy conserving architectural windows, defogging aircraft and automobile windows, heat-reflecting coatings to increase light bulb efficiency, gas sensors, antistatic window coatings, wear resistant layers on glass, nanowires and nanorods because of its unique properties of high electrical conductivity, transparency and mechanical resistance.Genotoxic effects of ITO were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of ITO at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was a observed at all concentrations of ITO by Comet assay. These result indicate that ITO exhibit genotoxic activity in A. cepa root meristematic cells.

  12. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test

    International Nuclear Information System (INIS)

    Musa, Marahaini; Ponnuraj, Kannan Thirumulu; Mohamad, Dasmawati; Rahman, Ismail Ab

    2013-01-01

    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions. (paper)

  13. Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO{sub 2}-np in bronchial epithelial (16-HBE) cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Manosij, E-mail: gmanosij@gmail.com [K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven (Belgium); Öner, Deniz; Duca, Radu-Corneliu [K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven (Belgium); Cokic, Stevan M. [Department of Oral Health Sciences, KU Leuven BIOMAT, 3000 Leuven (Belgium); Seys, Sven [K.U.Leuven, Department of Immunology and Microbiology, Leuven (Belgium); Kerkhofs, Stef [Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, Heverlee, Leuven (Belgium); Van Landuyt, Kirsten [Department of Oral Health Sciences, KU Leuven BIOMAT, 3000 Leuven (Belgium); Hoet, Peter [K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven (Belgium); Godderis, Lode, E-mail: lode.godderis@med.kuleuven.be [K.U.Leuven, Department of Public Health and Primary Care, Centre Environment & Health, B-3000 Leuven (Belgium); Idewe, External Service for Prevention and Protection at Work, B-3001, Heverlee (Belgium)

    2017-02-15

    Highlights: • Comet and micronucleus (with and without CytB) assays revealed significant genotoxic effect of TiO{sub 2}-np. • TiO{sub 2}-np induces cell cycle arrest in the S-phase. • Anatase form induces more cyto-genotoxic effect compared to rutile and anatase-rutile mixture. • Significant hypomethylation were observed at for anatase, rutile and anatase: rutile mixture. - Abstract: With the increase in use of TiO{sub 2}-np, a better understanding of their safety is important. In the present study the effect of different crystal phases of TiO{sub 2}-np (anatase, rutile and anatase: rutile mixture; 20–26 nm) were studied for cyto-genotoxicity and global DNA methylation and hydroxymethylation. Cytotoxic response was observed at a concentration of 25 μg/ml for the particles tested. Results of comet and micronucleus (with and without CytB) assays revealed significant genotoxic effect of these particles. Flow cytometry revealed cell cycle arrest in the S-phase. Based on the results, toxicity of the particles could be correlated with their physico-chemical properties (i.e. smaller size and hydrodynamic diameter and larger surface area), anatase form being the most toxic. From the results of the cyto-genotoxicity assays, concentrations were determined for the epigenetic study. Effect on global DNA methylation and hydroxymethylation levels were studied at cyto-genotoxic (25 μg/ml), genotoxic (12.5 μg/ml) and sub cyto-genotoxic (3.25 μg/ml) concentrations using LC–MS/MS analysis. Though no significant changes were observed for 3 h treatment schedule; significant hypomethylation were observed at 24 h for anatase (significant at 3.25 and 25 μg/ml), rutile (significant at 3.25 and 25 μg/ml) and anatase: rutile mixture (significant at 25 μg/ml) forms. The results suggest that epigenetic changes could occur at sub cyto-genotoxic concentrations. And hence for complete characterization of nanoparticle toxicity, epigenetic studies should be performed along with

  14. Recent perspectives on the relations between faecal mutagenicity, genotoxicity and diet

    Directory of Open Access Journals (Sweden)

    Silvia eGratz

    2011-03-01

    Full Text Available DNA damage is an essential component of the genesis of colonic cancer. Gut microbial products and food components are thought to be principally responsible for the damage that initiates disease progression. Modified Ames tests and Comet assays have been developed for measuring mutagenicity and genotoxicity. Their relevance to oncogenesis remains to be confirmed, as does the relative importance of different mutagenic and genotoxic compounds present in faecal water and the bacteria involved in their metabolism. Dietary intervention studies provide clues to the likely risks of oncogenesis. High-protein diets lead to increases in N-nitroso compounds in faecal water and greater DNA damage as measured by the Comet assay, for example. Other dietary interventions, such as non-digestible carbohydrates and probiotics, may lead to lower faecal genotoxicity. In order to make recommendations to the general public, we must develop a better understanding of how genotoxic compounds are formed in the colon, how accurate the Ames and Comet assays are, and how diet affects genotoxicity.

  15. Comet Assay: A Method to Evaluate Genotoxicity of Nano-Drug Delivery System

    Science.gov (United States)

    Vandghanooni, Somayeh; Eskandani, Morteza

    2011-01-01

    Introduction Drug delivery systems could induce cellular toxicity as side effect of nanomaterials. The mechanism of toxicity usually involves DNA damage. The comet assay or single cell gel electrophoresis (SCGE) is a sensitive method for detecting strand damages in the DNA of a cell with applications in genotoxicity testing and molecular epidemiology as well as fundamental research in DNA damage and repair. Methods In the current study, we reviewed recent drug delivery researches related to SCGE. Results We found that one preference for choosing the assay is that comet images may result from apoptosis-mediated nuclear fragmentation. This method has been widely used over the last decade in several different areas. Overall cells, such as cultured cells are embedded in agarose on a microscope slide, lysed with detergent, and treated with high salt. Nucleoids are supercoiled DNA form. When the slide is faced to alkaline electrophoresis any breakages present in the DNA cause the supercoiling to relax locally and loops of DNA extend toward the anode as a ‘‘comet tail’’. Conclusion This article provides a relatively comprehensive review upon potentiality of the comet assay for assessment of DNA damage and accordingly it can be used as an informative platform in genotoxicity studies of drug delivery systems. PMID:23678412

  16. Genotoxic damage in pathology anatomy laboratory workers exposed to formaldehyde

    International Nuclear Information System (INIS)

    Costa, Solange; Coelho, Patricia; Costa, Carla; Silva, Susana; Mayan, Olga; Silva Santos, Luis; Gaspar, Jorge; Teixeira, Joao Paulo

    2008-01-01

    Formaldehyde (FA) is a chemical traditionally used in pathology and anatomy laboratories as a tissue preservative. Several epidemiological studies of occupational exposure to FA have indicated an increased risk of nasopharyngeal cancers in industrial workers, embalmers and pathology anatomists. There is also a clear evidence of nasal squamous cell carcinomas from inhalation studies in the rat. The postulated mode of action for nasal tumours in rats was considered biologically plausible and considered likely to be relevant to humans. Based on the available data IARC, the International Agency for Research on Cancer, has recently classified FA as a human carcinogen. Although the in vitro genotoxic as well as the in vivo carcinogenic potentials of FA are well documented in mammalian cells and in rodents, evidence for genotoxic effects and carcinogenic properties in humans is insufficient and conflicting thus remains to be more documented. To evaluate the genetic effects of long-term occupational exposure to FA a group of 30 Pathological Anatomy laboratory workers was tested for a variety of biological endpoints, cytogenetic tests (micronuclei, MN; sister chromatid exchange, SCE) and comet assay. The level of exposure to FA was evaluated near the breathing zone of workers, time weighted average of exposure was calculated for each subject. The association between the biomarkers and polymorphic genes of xenobiotic metabolising and DNA repair enzymes was also assessed. The mean level of exposure was 0.44 ± 0.08 ppm (0.04-1.58 ppm). MN frequency was significantly higher (p = 0.003) in the exposed subjects (5.47 ± 0.76) when compared with controls (3.27 ± 0.69). SCE mean value was significantly higher (p < 0.05) among the exposed group (6.13 ± 0.29) compared with control group (4.49 ± 0.16). Comet assay data showed a significant increase (p < 0.05) of TL in FA-exposed workers (60.00 ± 2.31) with respect to the control group (41.85 ± 1.97). A positive correlation was

  17. Acute Genotoxic Effects of Effluent Water of Thermo-Power Plant “Kosova” In Tradescantia Pallida

    OpenAIRE

    I. R. Elezaj, L.B.Millaku, R.H. Imeri-Millaku, Q.I. Selimi, and K. Rr. Letaj

    2011-01-01

    The aim of this study was the evaluation of acute genotoxic effect of effluent water of thermo-power plant by means of Tradescantia root tips micronucleus test (MN), mitotic index and cell aberrations.   Tradescantia, was experimentally treated (for 24 h), with effluent water of thermo-power plant in different dilution ratios (negative control – distilled water; primary untreated effluent water and 1:1; 1:2; 1:3; 1:4; 1:5; 1:6 and 1:7 respectively). Number of aberrant cells, and frequency of ...

  18. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, S., E-mail: up201208875@fc.up.pt [Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169–007 Porto (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050–123 Porto (Portugal); Antunes, S.C. [Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169–007 Porto (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050–123 Porto (Portugal); Correia, A.T. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050–123 Porto (Portugal); Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200–150, Porto (Portugal); Nunes, B. [Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810–193 Aveiro (Portugal); Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810–193 Aveiro (Portugal)

    2016-03-01

    Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by

  19. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss

    International Nuclear Information System (INIS)

    Rodrigues, S.; Antunes, S.C.; Correia, A.T.; Nunes, B.

    2016-01-01

    Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by

  20. The effect of royal sun agaricus, agaricus brasiliensis S. Wasser et al., Extract on methyl Methanesulfonate caused genotoxicity in Drosophila melanogaster

    NARCIS (Netherlands)

    Savic, T.; Patenkovic, A.; Sokovic, M.; Glamoclija, J.; Andjelkovic, M.; Griensven, van L.J.L.D.

    2011-01-01

    The effect of culinary-medicinal Royal Sun Agaricus (Agaricus brasiliensis) hot water extract on methyl methane sulfonate (MMS) induced mutagenicity/genotoxity in Drosophila melanogaster was studied using a quick and broadly applicable in vivo assay, i.e., the wing somatic mutation and recombination

  1. E2F1 transcription is induced by genotoxic stress through ATM/ATR activation.

    Science.gov (United States)

    Carcagno, Abel L; Ogara, María F; Sonzogni, Silvina V; Marazita, Mariela C; Sirkin, Pablo F; Ceruti, Julieta M; Cánepa, Eduardo T

    2009-05-01

    E2F1, a member of the E2F family of transcription factors, plays a critical role in controlling both cell cycle progression and apoptotic cell death in response to DNA damage and oncogene activation. Following genotoxic stresses, E2F1 protein is stabilized by phosphorylation and acetylation driven to its accumulation. The aim of the present work was to examine whether the increase in E2F1 protein levels observed after DNA damage is only a reflection of an increase in E2F1 protein stability or is also the consequence of enhanced transcription of the E2F1 gene. The data presented here demonstrates that UV light and other genotoxics induce the transcription of E2F1 gene in an ATM/ATR dependent manner, which results in increasing E2F1 mRNA and protein levels. After genotoxic stress, transcription of cyclin E, an E2F1 target gene, was significantly induced. This induction was the result of two well-differentiated effects, one of them dependent on de novo protein synthesis and the other on the protein stabilization. Our results strongly support a transcriptional effect of DNA damaging agents on E2F1 expression. The results presented herein uncover a new mechanism involving E2F1 in response to genotoxic stress.

  2. METABOLISM, GENOTOXICITY, AND CARCINOGENICITY OF COMFREY

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Fu, Peter P.; Fuscoe, James C.; Luan, Yang; Chen, Tao

    2018-01-01

    Comfrey has been consumed by humans as a vegetable and a tea and used as an herbal medicine for more than 2000 years. Comfrey, however, produces hepatotoxicity in livestock and humans and carcinogenicity in experimental animals. Comfrey contains as many as 14 pyrrolizidine alkaloids (PA), including 7-acetylintermedine, 7-acetyllycopsamine, echimidine, intermedine, lasiocarpine, lycopsamine, myoscorpine, symlandine, symphytine, and symviridine. The mechanisms underlying comfrey-induced genotoxicity and carcinogenicity are still not fully understood. The available evidence suggests that the active metabolites of PA in comfrey interact with DNA in liver endothelial cells and hepatocytes, resulting in DNA damage, mutation induction, and cancer development. Genotoxicities attributed to comfrey and riddelliine (a representative genotoxic PA and a proven rodent mutagen and carcinogen) are discussed in this review. Both of these compounds induced similar profiles of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts and similar mutation spectra. Further, the two agents share common mechanisms of drug metabolism and carcinogenesis. Overall, comfrey is mutagenic in liver, and PA contained in comfrey appear to be responsible for comfrey-induced toxicity and tumor induction. PMID:21170807

  3. Metabolism, genotoxicity, and carcinogenicity of comfrey.

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Fu, Peter P; Fuscoe, James C; Luan, Yang; Chen, Tao

    2010-10-01

    Comfrey has been consumed by humans as a vegetable and a tea and used as an herbal medicine for more than 2000 years. Comfrey, however, produces hepatotoxicity in livestock and humans and carcinogenicity in experimental animals. Comfrey contains as many as 14 pyrrolizidine alkaloids (PA), including 7-acetylintermedine, 7-acetyllycopsamine, echimidine, intermedine, lasiocarpine, lycopsamine, myoscorpine, symlandine, symphytine, and symviridine. The mechanisms underlying comfrey-induced genotoxicity and carcinogenicity are still not fully understood. The available evidence suggests that the active metabolites of PA in comfrey interact with DNA in liver endothelial cells and hepatocytes, resulting in DNA damage, mutation induction, and cancer development. Genotoxicities attributed to comfrey and riddelliine (a representative genotoxic PA and a proven rodent mutagen and carcinogen) are discussed in this review. Both of these compounds induced similar profiles of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts and similar mutation spectra. Further, the two agents share common mechanisms of drug metabolism and carcinogenesis. Overall, comfrey is mutagenic in liver, and PA contained in comfrey appear to be responsible for comfrey-induced toxicity and tumor induction.

  4. The effect of temperature on the efficiency of industrial wastewater nitrification and its (genotoxicity

    Directory of Open Access Journals (Sweden)

    Gnida Anna

    2016-03-01

    Full Text Available The paper deals with the problem of the determination of the effects of temperature on the efficiency of the nitrification process of industrial wastewater, as well as its toxicity to the test organisms. The study on nitrification efficiency was performed using wastewater from one of Polish chemical factories. The chemical factory produces nitrogen fertilizers and various chemicals. The investigated wastewater was taken from the influent to the industrial mechanical-biological wastewater treatment plant (WWTP. The WWTP guaranteed high removal efficiency of organic compounds defined as chemical oxygen demand (COD but periodical failure of nitrification performance was noted in last years of the WWTP operation. The research aim was to establish the cause of recurring failures of nitrification process in the above mentioned WWTP. The tested wastewater was not acutely toxic to activated sludge microorganisms. However, the wastewater was genotoxic to activated sludge microorganisms and the genotoxicity was greater in winter than in spring time. Analysis of almost 3 years’ period of the WWTP operation data and laboratory batch tests showed that activated sludge from the WWTP under study is very sensitive to temperature changes and the nitrification efficiency collapses rapidly under 16°C. Additionally, it was calculated that in order to provide the stable nitrification, in winter period the sludge age (SRT in the WWTP should be higher than 35 days.

  5. Genotoxic damage in non-irradiated cells: contribution from the bystander effect

    International Nuclear Information System (INIS)

    Zhou, H.; Randers-Pherson, G.; Suzuki, M.; Waldren, C.A.; Hei, T.K.

    2002-01-01

    It has always been accepted dogma that the deleterious effects of ionising radiation such as mutagenesis and carcinogenesis are due mainly to direct damage to DNA. Using the Columbia University charged-particle microbeam and the highly sensitive A L cell mutagenic assay, it is shown here that non-irradiated cells acquire the mutagenic phenotype through direct contact with cells whose nuclei are traversed with 2 alpha particles each. Pre-treatment of cells with lindane, a gap junction inhibitor, significantly decreased the mutant yield. Furthermore, when irradiated cells were mixed with control cells in a similar ration as the in situ studies, no enhancement in bystander mutagenesis was detected. Our studies provide clear evidence that genotoxic damage can be induced in non-irradiated cells, and that gap junction mediated cell-cell communication plays a critical role in the bystander phenomenon. (author)

  6. Genotoxic effects of silver amalgam and composite restorations: Micronuclei-Based cohort and case–control study in oral exfoliated cells

    Directory of Open Access Journals (Sweden)

    S Jeslin Mary

    2018-01-01

    Full Text Available Context: A huge number of people carry dental fillings which contain either mercury-based amalgam and/or the recently introduced methacrylate-based resins. It has been shown that both these materials are known to be leached into the oral cavity and induce genotoxic alterations in the buccal mucosal cells. Because of its low cost and ease of manipulation, dental amalgam is still widely used as a restorative material in developing countries. The health risks associated with the components of this restorative material has always been a matter of concern. The present study was designed to assess the frequency of micronuclei (MN in oral mucosal cells as it is a promising tool for studying the genotoxic effect of clastogenic agents on them. Aims: The aim of this study is to evaluate the genotoxic effects of silver amalgam and composite restorations by measuring the mean number of MN in oral exfoliated cells. Materials and Methods: The present study was a prospective cohort study which includes a study group consisting of 110 participants. The study sample was equally divided into 55 participants requiring only amalgam restoration and 55 participants requiring only composite restoration in any permanent molar teeth. The same participants before the restoration formed the control group. Smears were obtained from each patient before and 10 days after restoration and were stained with DNA-specific Feulgen stain. The number of cells containing MN out of 500 cells were counted and recorded. After the evaluation of the slides, the results were compiled and subjected to statistical analysis. Results: There was a statistically significant (P < 0.01 variation in the mean number of MN after the restoration in both amalgam (5.41 ± 1.25 and composite (2.83 ± 0.85 restorations when compared to before the restoration. However, the mean number of MN in composite restoration was significantly less when compared to amalgam restoration. There was also a statistically

  7. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  8. Glucose-induced effects and joker function of glucose: endocrine or genotoxic prevalence?

    Science.gov (United States)

    Berstein, L M; Vasilyev, D A; Poroshina, T E; Kovalenko, I G

    2006-10-01

    The steady increase in chronic "glycemic load" is characteristic for modern times. Among myriad of glucose functions, two principals can be emphasized: first, endocrine (in particular, ability to induce insulin secretion) and second, DNA-damaging related to formation of reactive oxygen species (ROS). It was suggested by us earlier that a shift in the ratio of mentioned functions reflects a possible "joker" role of glucose as an important modifier of human pathology. Therefore, we embarked on a study to investigate an individual effect of peroral glucose challenge on serum insulin level and ROS generation by mononuclears (luminol-dependent/latex-induced chemiluminescence) in 20 healthy people aged between 28-75. Concentrations of glucose, blood lipids, carbonylated proteins, malondialdehyde, leptin and TNF-alpha were determined as well. On the basis of received data two separate groups could be distinguished: one (n=8), in which glucose stimulation of ROS generation by mononuclears was increased and relatively prevailed over induction of insulin secretion (state of the so called glucose-induced genotoxicity, GIGT), and another (n=12), in which signs of GIGT were not revealed. People who belonged to the first group were characterized with a tendency to lower body mass index, blood leptin and cholesterol and to higher TNF-alpha concentration. Thus, if joker function of glucose is realized in "genotoxic mode", the phenotype (and probably genotype) of subjects may be rather distinctive to the one discovered in glucose-induced "endocrine prevalence". Whether such changes may serve as a pro-mutagenic or pro-endocrine basis for the rise of different chronic diseases or, rather, different features/aggressiveness of the same disease warrants further study.

  9. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice.

    Science.gov (United States)

    Poul, Martine; Jarry, Gérard; Elhkim, Mostafa Ould; Poul, Jean-Michel

    2009-02-01

    The food dyes amaranth, sunset yellow and tartrazine were administered twice, at 24h intervals, by oral gavage to mice and assessed in the in vivo gut micronucleus test for genotoxic effects (frequency of micronucleated cells) and toxicity (apoptotic and mitotic cells). The concentrations of each compound and their main metabolites (sulfanilic acid and naphthionic acid) were measured in faeces during a 24-h period after single oral administrations of the food dyes to mice. Parent dye compounds and their main aromatic amine metabolites were detected in significant amounts in the environment of colonic cells. Acute oral exposure to food dye additives amaranth, sunset yellow and tartrazine did not induce genotoxic effect in the micronucleus gut assay in mice at doses up to 2000 mg/kg b.w. Food dyes administration increased the mitotic cells at all dose levels when compared to controls. These results suggest that the transient DNA damages previously observed in the colon of mice treated by amaranth and tartrazine by the in vivo comet assay [Sasaki, Y.F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., Taniguchi, K., Tsuda, S., 2002. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res. 519, 103-119] are unable to be fixed in stable genotoxic lesions and might be partly explained by local cytotoxicity of the dyes.

  10. Assessment of mutagenic, antimutagenic and genotoxicity effects of Mimosa tenuiflora

    Directory of Open Access Journals (Sweden)

    Viviane A. Silva

    2013-02-01

    Full Text Available Genotoxic effects of Mimosa tenuiflora (Willd. Poir, Fabaceae, were investigated by using both micronucleus test and bacterial reverse mutation assay in Salmonella typhimurium TA97, TA98, TA100, TA102 respectively. In respect of Ames test results show that the extract does not induce mutations in any strains of Salmonella typhimurium tested since the mutagenicity index is less than 2. In the antimutagenic effect was observed that the extract at the concentrations tested significantly decreased the mutagenicity index of all strains tested which characterized the extract as antimutagenic in these conditions. In the micronucleus test in vivo, we observed that the concentrations used did not induce an increase in the frequency of micronucleus in normochromatic erythrocytes of mice. Therefore, we concluded that the extract of M. tenuiflora is not mutagenic in the absence of exogenous metabolizing system and does not induce an increase in the frequency of the micronucleus characterized as an agent not mutagenic in these conditions. Further studies of toxicity need to be made to the use of this plant in the treatment of diseases to be stimulated.

  11. Assessment of mutagenic, antimutagenic and genotoxicity effects of Mimosa tenuiflora

    Directory of Open Access Journals (Sweden)

    Viviane A. Silva

    2013-04-01

    Full Text Available Genotoxic effects of Mimosa tenuiflora (Willd. Poir, Fabaceae, were investigated by using both micronucleus test and bacterial reverse mutation assay in Salmonella typhimurium TA97, TA98, TA100, TA102 respectively. In respect of Ames test results show that the extract does not induce mutations in any strains of Salmonella typhimurium tested since the mutagenicity index is less than 2. In the antimutagenic effect was observed that the extract at the concentrations tested significantly decreased the mutagenicity index of all strains tested which characterized the extract as antimutagenic in these conditions. In the micronucleus test in vivo, we observed that the concentrations used did not induce an increase in the frequency of micronucleus in normochromatic erythrocytes of mice. Therefore, we concluded that the extract of M. tenuiflora is not mutagenic in the absence of exogenous metabolizing system and does not induce an increase in the frequency of the micronucleus characterized as an agent not mutagenic in these conditions. Further studies of toxicity need to be made to the use of this plant in the treatment of diseases to be stimulated.

  12. Comparative Cytotoxicity and Genotoxicity of Particulate and Soluble Hexavalent Chromium in Human and Sperm Whale (Physeter macrocephalus) Skin Cells

    Science.gov (United States)

    Li Chen, Tânia; LaCerte, Carolyne; Wise, Sandra S.; Holmes, Amie; Martino, Julieta; Wise, John Pierce; Thompson, W. Douglas; Wise, John Pierce

    2014-01-01

    Chromium (Cr) is a global marine pollutant, present in marine mammal tissues. Hexavalent chromium [Cr(VI)] is a known human carcinogen. In this study we compare the cytotoxic and clastogenic effects of Cr(VI) in human (Homo sapiens) and sperm whale (Physeter macrocephalus) skin fibroblasts. Our data show that increasing concentrations of both particulate and soluble Cr(VI) induce increasing amounts of cytotoxicity and clastogenicity in human and sperm whale skin cells. Furthermore, the data show that sperm whale cells are resistant to these effects exhibiting less cytotoxicity and genotoxicity than the human cells. Differences in Cr uptake accounted for some but not all of the differences in particulate and soluble Cr(VI) genotoxicity, although it did explain the differences in particulate Cr(VI) cytotoxicity. Altogether the data indicate that Cr(VI) is a genotoxic threat to whales, but also suggest that whales have evolved cellular mechanisms to protect them against the genotoxicity of environmental agents such as Cr(VI). PMID:21466859

  13. Evaluation of the genotoxic and cytotoxic effects of crude extracts of Cordia ecalyculata and Echinodorus grandiflorus.

    Science.gov (United States)

    da Silva, Cristiano José; Bastos, Jairo Kenupp; Takahashi, Catarina Satie

    2010-02-03

    Cordia ecalyculata Vell. and Echinodorus grandiflorus (Cham. & Schltdl.) Micheli are extensively used in Brazil as therapeutic preparations for indigenous groups and the general population. These plants have been used in the folk medicine as: tonic, diuretic, anti-inflammatory, appetite suppressants, for the treatment of snake bites, and weight loss. In this study, it was verified the possible cytotoxic and genotoxic effects of the crude extracts of. Cordia ecalyculata and Echinodorus grandiflorus, as well as their effectiveness in treating obesity. The Micronucleus Test was used for the evaluation of possible clastogenic and aneugenic effects, and the Comet Assay was used for the evaluation of single-strand and double-strand DNA breaks. The cytotoxic effects of the crude extracts were verified by PCE/NCE ratio. Swiss mice (Mus musculus) were used as the experimental model. It was observed a significant (PCordia ecalyculata or Echinodorus grandiflorus extracts, in comparison with the negative control. There were no significant differences (P>0.05) in the frequency of micronucleated polychromatic erythrocytes for both extract treatment. We observed that treatment with the Cordia ecalyculata extract at concentrations of 1000 and 2000 mg/kg bw resulted in a PCE/NCE ratio that was larger (P0.05). The results of this study allowed us to infer that the crude extracts of Cordia ecalyculata and Echinodorus grandiflorus do not display cytotoxic or genotoxic activities. However, they do possess weak clastogenic activity (without significance) on peripheral blood cells. Contrary to commonly held beliefs it was also found in this study that the extracts are not effective for obesity treatments. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  14. The use of ex vivo human skin tissue for genotoxicity testing

    Energy Technology Data Exchange (ETDEWEB)

    Reus, Astrid A.; Usta, Mustafa [TNO Triskelion BV, Utrechtseweg 48, 3704 HE, Zeist (Netherlands); Krul, Cyrille A.M., E-mail: cyrille.krul@tno.nl [TNO, Utrechtseweg 48, 3704 HE Zeist (Netherlands)

    2012-06-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method

  15. The use of ex vivo human skin tissue for genotoxicity testing

    International Nuclear Information System (INIS)

    Reus, Astrid A.; Usta, Mustafa; Krul, Cyrille A.M.

    2012-01-01

    As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air–liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin. -- Highlights: ► We use human skin obtained from surgery for genotoxicity evaluation of chemicals. ► We use the comet assay as parameter for genotoxicity in ex vivo human skin. ► Sensitivity, specificity and accuracy to predict in vivo genotoxins are determined. ► Sensitivity, specificity and accuracy are 89%, 90% and 90%, respectively. ► The method

  16. Intermediate frequency magnetic field generated by a wireless power transmission device does not cause genotoxicity in vitro.

    Science.gov (United States)

    Shi, Dejing; Zhu, Chunbo; Lu, Rengui; Mao, Shitong; Qi, Yanhua

    2014-10-01

    The aim of this study was to evaluate effects of intermediate frequency magnetic fields (IFMF) generated by a wireless power transmission (WPT) based on magnetic resonance from the perspective of cellular genotoxicity on cultured human lens epithelial cells (HLECs). We evaluated the effects of exposure to 90 kHz magnetic fields at 93.36 µT on cellular genotoxicity in vitro for 2 and 4 h. The magnetic flux density is approximately 3.5 times higher than the reference level recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. For assessment of genotoxicity, we studied cellular proliferation, apoptosis and DNA damage by Cell Counting Kit-8 (CCK-8) assay, flow cytometry analysis, alkaline comet assay and phosphorylated histone H2AX (γH2AX) foci formation test. We did not detect any effect of a 90 kHz IFMF generated by WPT based on magnetic resonance on cell proliferation, apoptosis, comet assay, and γH2AX foci formation test. Our results indicated that exposure to 90 kHz IFMF generated by WPT based on magnetic resonance at 93.36 µT for 2 and 4 h does not cause detectable cellular genotoxicity. © 2014 Wiley Periodicals, Inc.

  17. Genotoxic Effects of Titanium Dioxide and Cerium Dioxide Nanoparticles in Human Respiratory Epithelial Cells

    Science.gov (United States)

    The nanomaterial industry has recently seen rapid growth, therefore, the risk assessment of human exposure to nanomaterials in consumer products is of paramount importance. The genotoxicity of nanomaterials is a fundamental aspect of hazard identification and regulatory guidance....

  18. Prevalence of at-risk genotypes for genotoxic effects decreases with age in a randomly selected population in Flanders: a cross sectional study

    Directory of Open Access Journals (Sweden)

    van Delft Joost HM

    2011-10-01

    Full Text Available Abstract Background We hypothesized that in Flanders (Belgium, the prevalence of at-risk genotypes for genotoxic effects decreases with age due to morbidity and mortality resulting from chronic diseases. Rather than polymorphisms in single genes, the interaction of multiple genetic polymorphisms in low penetrance genes involved in genotoxic effects might be of relevance. Methods Genotyping was performed on 399 randomly selected adults (aged 50-65 and on 442 randomly selected adolescents. Based on their involvement in processes relevant to genotoxicity, 28 low penetrance polymorphisms affecting the phenotype in 19 genes were selected (xenobiotic metabolism, oxidative stress defense and DNA repair, respectively 13, 6 and 9 polymorphisms. Polymorphisms which, based on available literature, could not clearly be categorized a priori as leading to an 'increased risk' or a 'protective effect' were excluded. Results The mean number of risk alleles for all investigated polymorphisms was found to be lower in the 'elderly' (17.0 ± 2.9 than the 'adolescent' (17.6 ± 3.1 subpopulation (P = 0.002. These results were not affected by gender nor smoking. The prevalence of a high (> 17 = median number of risk alleles was less frequent in the 'elderly' (40.6% than the 'adolescent' (51.4% subpopulation (P = 0.002. In particular for phase II enzymes, the mean number of risk alleles was lower in the 'elderly' (4.3 ± 1.6 than the 'adolescent' age group (4.8 ± 1.9 P 4 = median number of risk alleles was less frequent in the 'elderly' (41.3% than the adolescent subpopulation (56.3%, P 8 = median number of risk alleles for DNA repair enzyme-coding genes was lower in the 'elderly' (37,3% than the 'adolescent' subpopulation (45.6%, P = 0.017. Conclusions These observations are consistent with the hypothesis that, in Flanders, the prevalence of at-risk alleles in genes involved in genotoxic effects decreases with age, suggesting that persons carrying a higher number of

  19. Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays.

    Science.gov (United States)

    Severin, Isabelle; Dumont, Coralie; Jondeau-Cabaton, Adeline; Graillot, Vanessa; Chagnon, Marie-Christine

    2010-02-01

    5-Hydroxymethylfurfural (5-HMF) is known as an indicator of quality deterioration in a wide range of foods. 5-HMF is formed as an intermediate in the Maillard reaction and has been identified in a wide variety of heat-processed foods. In recent years, the presence of 5-HMF in foods has raised toxicological concerns: data have shown cytotoxic, genotoxic and tumoral effects but further studies suggest that 5-HMF does not pose a serious health risk. However the subject is still a matter of debate. We investigated the genotoxicity of the food-borne contaminant 5-HMF using the Ames test, the micronucleus (MN) and the single-cell gel electrophoresis (SCGE) assays in the human metabolically active HepG2 cell line. Cytotoxic effect of 5-HMF was first assessed using Alamar Blue as a sensitive sub-lethal assay. 5-HMF did not induce any genic mutation in bacteria whatever the concentration in the Ames test. Furthermore, it does not induce clastogenic or aneugenic effects in the HepG2 cells. In contrast, 5-HMF induced HepG2 DNA damage at concentrations from 7.87 to 25 mM in the comet assay suggesting a weak genotoxic effect of 5-HMF in the HepG2 cells probably repaired. 2009 Elsevier Ireland Ltd. All rights reserved.

  20. ROS-mediated genotoxicity of asbestos-cement in mammalian lung cells in vitro

    Directory of Open Access Journals (Sweden)

    Rödelsperger Klaus

    2005-10-01

    Full Text Available Abstract Asbestos is a known carcinogen and co-carcinogen. It is a persisting risk in our daily life due to its use in building material as asbestos-cement powder. The present study done on V79-cells (Chinese hamster lung cells demonstrates the cytotoxic and genotoxic potential of asbestos-cement powder (ACP in comparison with chrysotile asbestos. A co-exposure of chrysotile and ACP was tested using the cell viability test and the micronucleus assay. The kinetochore analysis had been used to analyse the pathway causing such genotoxic effects. Thiobarbituric acid-reactive substances were determined as evidence for the production of reactive oxygen species. Both, asbestos cement as well as chrysotile formed micronuclei and induced loss of cell viability in a concentration- and time- dependent way. Results of TBARS analysis and iron chelator experiments showed induction of free radicals in ACP- and chrysotile exposed cultures. CaSO4 appeared to be a negligible entity in enhancing the toxic potential of ACP. The co-exposure of both, ACP and chrysotile, showed an additive effect in enhancing the toxicity. The overall study suggests that asbestos-cement is cytotoxic as well as genotoxic in vitro. In comparison to chrysotile the magnitude of the toxicity was less, but co-exposure increased the toxicity of both.

  1. Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects

    International Nuclear Information System (INIS)

    Chen Shaopeng; Zhao Ye; Zhao Guoping; Han Wei; Bao Lingzhi; Yu, K.N.; Wu Lijun

    2009-01-01

    Genomic instability can be observed in bystander cells. However, the underlying mechanism(s) is still relatively unclear. In a previous study, we found that irradiated cells released mitochondria-dependent intracellular factor(s) which could lead to bystander γ-H2AX induction. In this paper, we used normal (ρ + ) and mtDNA-depleted (ρ 0 ) human-hamster hybrid cells to investigate mitochondrial effects on the genotoxicity in bystander effect through medium transfer experiments. Through the detection of DNA double-strand breaks with γ-H2AX, we found that the fraction of γ-H2AX positive cells changed with time when irradiation conditioned cell medium (ICCM) were harvested. ICCM harvested from irradiated ρ + cells at 10 min post-irradiation (ρ + ICCM 10min ) caused larger increases of bystander γ-H2AX induction comparing to ρ 0 ICCM 10min , which only caused a slight increase of bystander γ-H2AX induction. The ρ + ICCM 10min could also result in the up-regulation of ROS production (increased by 35% at 10 min), while there was no significant increase in cells treated with ρ 0 ICCM 10min . We treated cells with dimethyl sulfoxide (DMSO), the scavenger of ROS, and quenched γ-H2AX induction by ρ + ICCM. Furthermore, after the medium had been transferred and the cells were continuously cultured for 7 days, we found significantly increased CD59 - gene loci mutation (increased by 45.9%) and delayed cell death in the progeny of ρ + ICCM-treated bystander cells. In conclusion, the work presented here suggested that up-regulation of the mitochondria-dependent ROS might be very important in mediating genotoxicity of bystander effects.

  2. Benzene-induced genotoxicity in mice in vivo detected by the alkaline comet assay

    DEFF Research Database (Denmark)

    Tuo, J; Loft, S; Thomsen, M S

    1996-01-01

    was further increased to 5.4-fold and 6.6-fold of the control values, respectively (p propylene glycol (5 microliters/g b.wt., twice with a 60-min interval), a selective CYP2E1 inhibitor, reduced the increase in the tail length by about half at all doses in both cell types (p ...The myelotoxic and genotoxic effects of benzene have been related to oxidative DNA damage after metabolism by CYP2E1. Single cell gel electrophoresis (alkaline comet assay) detects DNA damage and may thus be a convenient method for the study of benzene genotoxicity. Benzene exposure to NMRI mice.......01). By comparing our data with those from genotoxicity studies on benzene using other methods, we conclude that the 'alkaline comet assay' is a sensitive method to detect DNA damage induced by benzene. We also infer that CYP2E1 contributes, at least partly, to the formation of the 'comet'-inducing metabolites...

  3. Cytotoxicity and genotoxicity of calcium silicate-based cements on an osteoblast lineage

    Directory of Open Access Journals (Sweden)

    Ana Lívia GOMES-CORNÉLIO

    2016-01-01

    Full Text Available Abstract Several calcium silicate-based biomaterials have been developed in recent years, in addition to Mineral Trioxide Aggregate (MTA. The aim of this study was to evaluate the cytotoxicity, genotoxicity and apoptosis/necrosis in human osteoblast cells (SAOS-2 of pure calcium silicate-based cements (CSC and modified formulations: modified calcium silicate-based cements (CSCM and three resin-based calcium silicate cements (CSCR1 (CSCR 2 (CSCR3. The following tests were performed after 24 hours of cement extract exposure: methyl-thiazolyl tetrazolium (MTT, apoptosis/necrosis assay and comet assay. The negative control (CT- was performed with untreated cells, and the positive control (CT+ used hydrogen peroxide. The data for MTT and apoptosis were submitted to analysis of variance and Bonferroni’s posttest (p < 0.05, and the data for the comet assay analysis, to the Kruskal-Wallis and Dunn tests (p < 0.05. The MTT test showed no significant difference among the materials in 2 mg/mL and 10 mg/mL concentrations. CSCR3 showed lower cell viability at 10 mg/mL. Only CSC showed lower cell viability at 50 mg/mL. CSCR1, CSCR2 and CSCR3 showed a higher percentage of initial apoptosis than the control in the apoptosis test, after 24 hours exposure. The same cements showed no genotoxicity in the concentration of 2 mg/mL, with the comet assay. CSC and CSCR2 were also not genotoxic at 10 mg/mL. All experimental materials showed viability with MTT. CSC and CSCR2 presented a better response to apoptosis and genotoxicity evaluation in the 10 mg/mL concentration, and demonstrated a considerable potential for use as reparative materials.

  4. Genotoxicity studies of organically grown broccoli (Brassica oleracea var. italica) and its interactions with urethane, methyl methanesulfonate and 4-nitroquinoline-1-oxide genotoxicity in the wing spot test of Drosophila melanogaster.

    Science.gov (United States)

    Heres-Pulido, María Eugenia; Dueñas-García, Irma; Castañeda-Partida, Laura; Santos-Cruz, Luis Felipe; Vega-Contreras, Viridiana; Rebollar-Vega, Rosa; Gómez-Luna, Juan Carlos; Durán-Díaz, Angel

    2010-01-01

    Broccoli (Brassica oleracea var. italica) has been defined as a cancer preventive food. Nevertheless, broccoli contains potentially genotoxic compounds as well. We performed the wing spot test of Drosophila melanogaster in treatments with organically grown broccoli (OGB) and co-treatments with the promutagen urethane (URE), the direct alkylating agent methyl methanesulfonate (MMS) and the carcinogen 4-nitroquinoline-1-oxide (4-NQO) in the standard (ST) and high bioactivation (HB) crosses with inducible and high levels of cytochrome P450s (CYPs), respectively. Larvae of both crosses were chronically fed with OGB or fresh market broccoli (FMB) as a non-organically grown control, added with solvents or mutagens solutions. In both crosses, the OGB added with Tween-ethanol yielded the expected reduction in the genotoxicity spontaneous rate. OGB co-treatments did not affect the URE effect, MMS showed synergy and 4-NQO damage was modulated in both crosses. In contrast, FMB controls produced damage increase; co-treatments modulated URE genotoxicity, diminished MMS damage, and did not change the 4-NQO damage. The high dietary consumption of both types of broccoli and its protective effects in D. melanogaster are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Genotoxic Effects Due to Exposure to Chromium and Nickel Among Electroplating Workers.

    Science.gov (United States)

    El Safty, Amal Mohamed Kamal; Samir, Aisha Mohamed; Mekkawy, Mona Kamal; Fouad, Marwa Mohamed

    Using chromium and nickel for electroplating is important in many industries. This process induces variable adverse health effects among exposed workers. The aim of this study is to detect the genotoxic effects of combined exposure to chromium and nickel among electroplating workers. This study was conducted on 41 male workers occupationally exposed to chromium and nickel in the electroplating section of a factory compared to 41 male nonexposed individuals, where full history and clinical examination were performed. Laboratory investigations included measurement of serum chromium, nickel, 8-hydroxydeoxyguanosine (8-OHdG), and micronuclei were measured in buccal cells. In exposed workers, serum chromium ranged from 0.09 to 7.20 µg/L, serum nickel ranged from 1.20 to 28.00 µg/L, serum 8-OHdG ranged from 1.09 to12.60 ng/mL, and these results were statistically significantly increased compared to nonexposed group ( P electroplating industry are at risk of significant cytogenetic damage.

  6. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A.L. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64, Correo 16, Suc. 4, La Plata (1900) (Argentina); Reigosa, M. [Instituto Multidisciplinario de Biologia Celular (IMBICE), Calle 526 y Camino Gral. Belgrano (entre 10 y 11), La Plata 1900 (Argentina); Arnal, P.M. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64, Correo 16, Suc. 4, La Plata 1900 (Argentina); Fernandez Lorenzo de Mele, M., E-mail: mmele@inifta.unlp.edu.ar [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Diag. 113 y 64, Correo 16, Suc. 4, La Plata 1900 (Argentina)

    2010-05-15

    The aim of this study was to analyze the cytotoxicity and genotoxicity of titanium oxide (TiO{sub 2}) and aluminium oxide (Al{sub 2}O{sub 3}) nanoparticles (NPs) on Chinese hamster ovary (CHO-K1) cells using neutral red (NR), mitochondrial activity (by MTT assay), sister chromatid exchange (SCE), micronucleus (MN) formation, and cell cycle kinetics techniques. Results showed a dose-related cytotoxic effect evidenced after 24 h by changes in lysosomal and mitochondrial dehydrogenase activity. Interestingly, transmission electronic microscopy (TEM) showed the formation of perinuclear vesicles in CHO-K1 cells after treatment with both NPs during 24 h but no NP was detected in the nuclei. Genotoxic effects were shown by MN frequencies which significantly increased at 0.5 and 1 {mu}g/mL TiO{sub 2} and 0.5-10 {mu}g/mL Al{sub 2}O{sub 3}. SCE frequencies were higher for cells treated with 1-5 {mu}g/mL TiO{sub 2}. The absence of metaphases evidenced cytotoxicity for higher concentrations of TiO{sub 2}. No SCE induction was achieved after treatment with 1-25 {mu}g/mL Al{sub 2}O{sub 3}. In conclusion, findings showed cytotoxic and genotoxic effects of TiO{sub 2} and Al{sub 2}O{sub 3} NPs on CHO-K1 cells. Possible causes of controversial reports are discussed further on.

  7. Cytotoxic and genotoxic effects of Solanum lycocarpum St.-Hil (Solanaceae on the cell cycle of Lactuca sativa and Allium cepa

    Directory of Open Access Journals (Sweden)

    Raquel Bezerra Chiavegatto

    2017-06-01

    Full Text Available Solanum lycocarpum St.-Hil popularly known as ‘fruta-de-lobo’ or ‘lobeira’ is native to the Brazilian Cerrado, and used in folk medicine due to its phytotherapic properties. The action of S. lycocarpum on the cell cycle and chromosomes in order to demonstrate whether there are aneugenic and/or clastogenic effects is unknown. Thus, this study aimed at investigating the cytotoxic and genotoxic potential of methanol and hexane extracts of S. lycocarpum on growth and cell cycle of Lactuca sativa and Allium cepa. Roots from both species were exposed for 72 hours to methanol and hexane extracts with 50, 100, and 200 µg mL-1 of S. lycocarpum. Slides were prepared by the squash technique and then analyzed to determine the mitotic index and the total of chromosomal and nuclear abnormalities. The frequencies of chromosomal and nuclear abnormalities were high and significant with a dose-dependent effect, indicating that S. lycocarpum has a cytotoxic and genotoxic action depending on the dose used on meristem cells of A. cepa and L. sativa.

  8. DNA adductomics to study the genotoxic effects of red meat consumption with and without added animal fat in rats.

    Science.gov (United States)

    Hemeryck, Lieselot Y; Van Hecke, Thomas; Vossen, Els; De Smet, Stefaan; Vanhaecke, Lynn

    2017-09-01

    Digestion of red and processed meat has been linked to the formation of genotoxic N-nitroso compounds (NOCs) and lipid peroxidation products (LPOs) in the gut. In this study, rats were fed a meat based diet to compare the possible genotoxic effects of red vs. white meat, and the interfering role of dietary fat. To this purpose, liver, duodenum and colon DNA adductomes were analyzed with UHPLC-HRMS. The results demonstrate that the consumed meat type alters the DNA adductome; the levels of 22 different DNA adduct types significantly increased upon the consumption of beef (compared to chicken) and/or lard supplemented beef or chicken. Furthermore, the chemical constitution of the retrieved DNA adducts hint at a direct link with an increase in NOCs and LPOs upon red (and processed) meat digestion, supporting the current hypotheses on the causal link between red and processed meat consumption and the development of colorectal cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Genotoxicity of two heavy metal compounds: lead nitrate and cobalt chloride in Polychaete Perinereis cultrifera.

    Science.gov (United States)

    Singh, Nisha; Bhagat, Jacky; Ingole, Baban S

    2017-07-01

    The present study explores the in vivo and in vitro genotoxic effects of lead nitrate, [Pb(NO 3 ) 2 ] a recognized environmental pollutant and cobalt chloride (CoCl 2 ), an emerging environmental pollutant in polychaete Perinereis cultrifera using comet assay. Despite widespread occurrence and extensive industrial applications, no previous published reports on genotoxicity of these compounds are available in polychaete as detected by comet assay. Polychaetes were exposed in vivo to Pb(NO 3 ) 2 (0, 100, 500, and 1000 μg/l) and CoCl 2 (0, 100, 300, and 500 μg/l) for 5 days. At 100 μg/l Pb(NO 3 ) 2 concentration, tail DNA (TDNA) values in coelomocytes were increase by 1.16, 1.43, and 1.55-fold after day 1, day 3, and day 5, whereas, OTM showed 1.12, 2.33, and 2.10-fold increase in in vivo. Pb(NO 3 ) 2 showed a concentration and time-dependent genotoxicity whereas CoCl 2 showed a concentration-dependent genotoxicity in in vivo. A concentration-dependent increase in DNA damage was observed in in vitro studies for Pb(NO 3 ) 2 and CoCl 2 . DNA damage at 500 μg/L showed almost threefold increase in TDNA and approximately fourfold increase in OTM as compared to control in in vitro. Our studies suggest that Pb(NO 3 ) 2 and CoCl 2 have potential to cause genotoxic damage, with Pb(NO 3 ) 2 being more genotoxic in polychaete and should be used more carefully in industrial and other activities. Graphical abstract.

  10. Genotoxicity studies on DNA-interactive telomerase inhibitors with application as anti-cancer agents.

    Science.gov (United States)

    Harrington, Dean J; Cemeli, Eduardo; Carder, Joanna; Fearnley, Jamie; Estdale, Sian; Perry, Philip J; Jenkins, Terence C; Anderson, Diana

    2003-01-01

    Telomerase-targeted strategies have aroused recent interest in anti-cancer chemotherapy, because DNA-binding drugs can interact with high-order tetraplex rather than double-stranded (duplex) DNA targets in tumour cells. However, the protracted cell-drug exposure times necessary for clinical application require that telomerase inhibitory efficacy must be accompanied by both low inherent cytotoxicity and the absence of mutagenicity/genotoxicity. For the first time, the genotoxicity of a number of structurally diverse DNA-interactive telomerase inhibitors is examined in the Ames test using six Salmonella typhimurium bacterial strains (TA1535, TA1537, TA1538, TA98, TA100, and TA102). DNA damage induced by each agent was also assessed using the Comet assay with human lymphocytes. The two assay procedures revealed markedly different genotoxicity profiles that are likely to reflect differences in metabolism and/or DNA repair between bacterial and mammalian cells. The mutational spectrum for a biologically active fluorenone derivative, shown to be mutagenic in the TA100 strain, was characterised using a novel and rapid assay method based upon PCR amplification of a fragment of the hisG46 allele, followed by RFLP analysis. Preliminary analysis indicates that the majority (84%) of mutations induced by this compound are C --> A transversions at position 2 of the missense proline codon of the hisG46 allele. However, despite its genotoxic bacterial profile, this fluorenone agent gave a negative response in the Comet assay, and demonstrates how unwanted systemic effects (e.g., cytotoxicity and genotoxicity) can be prevented or ameliorated through suitable molecular fine-tuning of a candidate drug in targeted human tumour cells. Copyright 2003 Wiley-Liss, Inc.

  11. Potential genotoxicity of traditional chinese medicinal plants and phytochemicals: an overview.

    Science.gov (United States)

    Zhou, Jue; Ouedraogo, Moustapha; Qu, Fan; Duez, Pierre

    2013-12-01

    In the last decades, cases of poisoning due to herbal medicines have occurred in many countries; Chinese herbal medicines (CHMs) are occasionally involved. The experience gained from traditional use is efficient to detect immediate or near-immediate relationship between administration and toxic effects but is quite unlikely to detect medium- to long-term toxicities; thorough investigations of herbal medicines (toxicity assessments, active pharmacovigilance) appear then essential for their safe use. Genotoxicity is an especially insidious toxicity that may result in carcinoma development years after exposure; it can arise from multiple compounds, with or without metabolic activation. The present work reviews traditional CHMs and phytochemicals that have been shown to present a genotoxic hazard. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Critical effective methods to detect genotoxic carcinogens and neoplasm-promoting agents.

    OpenAIRE

    Weisburger, J H; Williams, G M

    1991-01-01

    Neoplasia in fish can result from contamination of waters with carcinogens and promoters. Cancer in fish, therefore, is a possible indicator of cancer risk to man and serves as a guide to the need for preventive approaches involving improved means of waste disposal and environmental hygiene. Moreover, cancer in fish indicates that this important food source may be contaminated. Detection of genotoxic carcinogens to which fish are exposed can be achieved quickly and efficiently by carefully se...

  13. Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria.

    Science.gov (United States)

    Wang, Xinan; Liu, Yun; Wang, Juan; Nie, Yaguang; Chen, Shaopeng; Hei, Tom K; Deng, Zhaoxiang; Wu, Lijun; Zhao, Guoping; Xu, An

    2017-10-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have shown great adsorption capacity for arsenic (As); however, the potential impact of TiO 2 NPs on the behavior and toxic responses of As remains largely unexplored. In the present study, we focused on the physicochemical interaction between TiO 2 NPs and As(III) to clarify the underlying mechanisms involved in their synergistic genotoxic effect on mammalian cells. Our data showed that As(III) mainly interacted with TiO 2 NPs by competitively occupying the sites of hydroxyl groups on the surface of TiO 2 NP aggregates, resulting in more aggregation of TiO 2 NPs. Although TiO 2 NPs at concentrations used here had no cytotoxic or genotoxic effects on cells, they efficiently increased the genotoxicity of As(III) in human-hamster hybrid (A L ) cells. The synergistic genotoxicity of TiO 2 NPs and As(III) was partially inhibited by various endocytosis pathway inhibitors while it was completely blocked by an As(III)-specific chelator. Using a mitochondrial membrane potential fluorescence probe, a reactive oxygen species (ROS) probe together with mitochondrial DNA-depleted ρ 0 A L cells, we discovered that mitochondria were essential for mediating the synergistic DNA-damaging effects of TiO 2 NPs and As(III). These data provide novel mechanistic proof that TiO 2 NPs enhanced the genotoxicity of As(III) via physicochemical interactions, which were mediated by mitochondria-dependent ROS.

  14. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guifang [Department of Chemistry, Jinan University, Guangzhou 510632 (China); Lu, Gang [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Yin, Pinghe, E-mail: tyinph@jnu.edu.cn [Research Center of Analysis and Test, Jinan University, Guangzhou 510632 (China); Zhao, Ling, E-mail: zhaoling@jnu.edu.cn [Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China); Jimmy Yu, Qiming [Griffith School of Engineering, Griffith University, Nathan Campus, Brisbane, Queensland 4111 (Australia)

    2016-04-15

    Highlights: • Membrane concentrates have a threat to human health and environment. • Untreated membrane concentrates induces cytotoxic and genotoxic to HepG2 cells. • Both methods were effective method for degradation of BPA and NP in concentrates. • Both methods were efficient in reducing genotoxic effects of concentrates. • UV-Fenton reagent had higher removal efficiency and provides toxicological safety. - Abstract: Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24 h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.

  15. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line

    International Nuclear Information System (INIS)

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Jimmy Yu, Qiming

    2016-01-01

    Highlights: • Membrane concentrates have a threat to human health and environment. • Untreated membrane concentrates induces cytotoxic and genotoxic to HepG2 cells. • Both methods were effective method for degradation of BPA and NP in concentrates. • Both methods were efficient in reducing genotoxic effects of concentrates. • UV-Fenton reagent had higher removal efficiency and provides toxicological safety. - Abstract: Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24 h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates.

  16. The role of natural indigo dye in alleviation of genotoxicity of sodium dithionite as a reducing agent.

    Science.gov (United States)

    Bektaş, İdris; Karaman, Şengül; Dıraz, Emel; Çelik, Mustafa

    2016-12-01

    Indigo blue is a natural dye used for thousands of years by civilizations to dye fabric blue and it is naturally obtained from Isatis tinctoria. I. tinctoria is not only used for extraction of indigo blue color but also used medicinally in Traditional Chinese Medicine because of its active compounds. Sodium dithionite (Na 2 S 2 O 4 ) is used in dye bath for indigo blue extraction, but this reducing agent and its derivatives are major pollutants of textile industry and subsequently have hazardous influences on public health. Herein, the present study was designed to obtain the high yield of natural indigo dye but with low possible toxic effect. In this context, genotoxic effects of particular combinations of natural dye solutions obtained from Isatis tinctoria subsp. tomentolla with Na 2 S 2 O 4 as reducing agent were investigated. Dye solutions were obtained using two different pH levels (pH 9 and 11) and three different concentrations of Na 2 S 2 O 4 (2.5, 5 and 10 mg/ml). In addition to the dye solutions and reducing agent, aqueous extracts of I. tinctoria were assessed for their genotoxicity on human lymphocytes. For in vitro testing of genotoxicity, chromosomal aberrations (CAs), sister chromatid exchanges (SCEs) and mitotic indexes (MI) assays were used. Accordingly, Na 2 S 2 O 4 caused significant increases in CA and SCE as well decrease in MI but the genotoxic effects of sodium dithionite were reduced with natural indigo dye. As a result, aqueous extracts of Isatis leaves removed the toxic effects of sodium dithionite and showed anti-genotoxic effect. For the optimal and desired quality but with less toxic effects of natural dye, 2.5 mg/ml (for wool yarn) and 5 mg/ml (for cotton yarn) of Na 2 S 2 O 4 doses were found to be the best doses for reduction in the dye bath at Ph 9.

  17. Genotoxicity detected in wild mice living in a highly polluted wetland area in south western Spain

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, Santiago; Daza, Paula; Dominguez, Inmaculada; Cardenas, Jose Antonio [University of Seville, Department of Cell Biology, Faculty of Biology, Avenida de la Reina Mercedes no 6, E-41012 Seville (Spain); Cortes, Felipe [University of Seville, Department of Cell Biology, Faculty of Biology, Avenida de la Reina Mercedes no 6, E-41012 Seville (Spain)], E-mail: cortes@us.es

    2008-06-15

    A field study was carried out in the south of the Iberian Peninsula in an industrial area in the neighbourhood of Huelva city, SW Spain, and in a natural area (Donana National Park) for comparison, to estimate the genetic risk induced by environmental pollution in wild mice. Genotoxic effects in a sentinel organism, the Algerian mice (Mus spretus) free living in the industrial area were compared with animals of the same species living in the natural protected area. The single cell gel electrophoresis, or Comet assay, was performed as a genotoxicity test in peripheral blood of mice. Our results clearly show that mice free living in the contaminated area bear a high burden of genetic damage as compared with control individuals. The results suggest that the assessing of genotoxicity levels by the Comet assay in wild mice can be used as a valuable test in pollution monitoring and environmental conservation. - We have found an increased genotoxic damage in wild mice in a highly polluted area from industry, mining and agriculture in SW Spain, as assessed by the Comet assay.

  18. Genotoxic, epigenetic, and transcriptomic effects of tamoxifen in mouse liver

    International Nuclear Information System (INIS)

    Conti, Aline de; Tryndyak, Volodymyr; Churchwell, Mona I.; Melnyk, Stepan; Latendresse, John R.; Muskhelishvili, Levan; Beland, Frederick A.; Pogribny, Igor P.

    2014-01-01

    Highlights: • Treatment of female mice with tamoxifen caused genotoxic changes in the livers. • Tamoxifen treatment did not affect the hepatic epigenome. • Tamoxifen caused over-expression of hepatic Lcn13 and Pparγ genes. • Mice are resistant to tamoxifen-induced liver carcinogenesis and fatty liver injury. - Abstract: Tamoxifen is a non-steroidal anti-estrogenic drug widely used for the treatment and prevention of breast cancer in women; however, there is evidence that tamoxifen is hepatocarcinogenic in rats, but not in mice. Additionally, it has been reported that tamoxifen may cause non-alcoholic fatty liver disease (NAFLD) in humans and experimental animals. The goals of the present study were to (i) investigate the mechanisms of the resistance of mice to tamoxifen-induced hepatocarcinogenesis, and (ii) clarify effects of tamoxifen on NAFLD-associated liver injury. Feeding female WSB/EiJ mice a 420 p.p.m. tamoxifen-containing diet for 12 weeks resulted in an accumulation of tamoxifen-DNA adducts, (E)-α-(deoxyguanosin-N 2 -yl)-tamoxifen (dG-TAM) and (E)-α-(deoxyguanosin-N 2 -yl)-N-desmethyltamoxifen (dG-DesMeTAM), in the livers. The levels of hepatic dG-TAM and dG-DesMeTAM DNA adducts in tamoxifen-treated mice were 578 and 340 adducts/108 nucleotides, respectively, while the extent of global DNA and repetitive elements methylation and histone modifications did not differ from the values in control mice. Additionally, there was no biochemical or histopathological evidence of NAFLD-associated liver injury in mice treated with tamoxifen. A transcriptomic analysis of differentially expressed genes demonstrated that tamoxifen caused predominantly down-regulation of hepatic lipid metabolism genes accompanied by a distinct over-expression of the lipocalin 13 (Lcn13) and peroxisome proliferator receptor gamma (Pparγ), which may prevent the development of NAFLD. The results of the present study demonstrate that the resistance of mice to tamoxifen

  19. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings

    International Nuclear Information System (INIS)

    Liu, Yanping; Xia, Qiyue; Liu, Ying; Zhang, Shuyang; Cheng, Feng; Wang, Li; Li, Hongxia; Xiao, Kai; Zhong, Zhihui

    2014-01-01

    Magnetic iron oxide nanoparticles (IONPs) have been widely used for various biomedical applications such as magnetic resonance imaging and drug delivery. However, their potential toxic effects, including genotoxicity, need to be thoroughly understood. In the present study, the genotoxicity of IONPs with different particle sizes (10, 30 nm) and surface coatings (PEG, PEI) were assessed using three standard genotoxicity assays, the Salmonella typhimurium reverse mutation assay (Ames test), the in vitro mammalian chromosome aberration test, and the in vivo micronucleus assay. In the Ames test, SMG-10 (PEG coating, 10 nm) showed a positive mutagenic response in all the five test bacterial strains with and without metabolic activation, whereas SEI-10 (PEI coating, 10 nm) showed no mutagenesis in all tester strains regardless of metabolic activation. SMG-30 (PEG coating, 30 nm) was not mutagenic in the absence of metabolic activation, and became mutagenic in the presence of metabolic activation. In the chromosomal aberration test, no increase in the incidence of chromosomal aberrations was observed for all three IONPs. In the in vivo micronucleus test, there was no evidence of increased micronuclei frequencies for all three IONPs, indicating that they were not clastogenic in vivo. Taken together, our results demonstrated that IONPs with PEG coating exhibited mutagenic activity without chromosomal and clastogenic abnormalities, and smaller IONPs (SMG-10) had stronger mutagenic potential than larger ones (SMG-30); whereas, IONPs with SEI coating (SEI-10) were not genotoxic in all three standard genotoxicity assays. This suggests that the mutagenicity of IONPs depends on their particle size and surface coating. (paper)

  20. Genotoxicity test of irradiated foods

    International Nuclear Information System (INIS)

    Tanaka, Noriho

    2004-01-01

    Safety tests of radiation irradiated foods started as early as from 1967 in Japan and genotoxicity tests in the Hatano Res. Inst., from 1977. The latter is unique in the world and is reviewed in this paper. Tests included those for the initial injury of DNA, mutagenicity, chromosomal aberration and transformation with use of bacteria, cultured mammalian cells and animals (for chromosomal aberration, micronucleus formation and dominant lethality). Foods tested hitherto were onion, rice, wheat and flour, Vienna sausage, fish sausage (kamaboko), mandarian orange, potato, black pepper and red capsicum, of which extract or powder was subjected to the test. Irradiation doses and its purposes were 0.15-6 kGy γ-ray ( 60 Co) or electron beam by the accelerator (only for the orange), and suppression of germination, pesticide action or sterilization, respectively. Genotoxicity of all foods under tested conditions is shown negative. (N.I.)

  1. Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae.

    Science.gov (United States)

    Demir, Eşref; Marcos, Ricard

    2017-07-01

    Lipid peroxidation products can induce tissue damage and are implicated in diverse pathological conditions, including aging, atherosclerosis, brain disorders, cancer, lung and various liver disorders. Since in vivo studies produce relevant information, we have selected Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to two lipid peroxidation products namely 4-oxo-2-nonenal (4-ONE) and 4-hydroxy-hexenal (4-HHE). Toxicity, intracellular reactive oxygen species production, and genotoxicity were the end-points evaluated. Haemocytes and midgut cells were the evaluated targets. Results showed that both compounds penetrate the intestine of the larvae, affecting midgut cells, and reaching haemocytes. Significant genotoxic effects, as determined by the comet assay, were observed in both selected cell targets in a concentration/time dependent manner. This study highlights the importance of D. melanogaster as a model organism in the study of the different biological effects caused by lipid peroxidation products entering via ingestion. This is the first study reporting genotoxicity data in haemocytes and midgut cells of D. melanogaster larvae for the two selected compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Radioprotective Effect of Achillea millefolium L Against Genotoxicity Induced by Ionizing Radiation in Human Normal Lymphocytes

    Directory of Open Access Journals (Sweden)

    Somayeh Shahani

    2015-04-01

    Full Text Available The radioprotective effect of Achillea millefolium L (ACM extract was investigated against genotoxicity induced by ionizing radiation (IR in human lymphocytes. Peripheral blood samples were collected from human volunteers and incubated with the methanolic extract of ACM at different concentrations (10, 50, 100, and 200 μg/mL for 2 hours. At each dose point, the whole blood was exposed in vitro to 2.5 Gy of X-ray and then the lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis-blocked binucleated cell. Antioxidant capacity of the extract was determined using free radical-scavenging method. The treatment of lymphocytes with the extract showed a significant decrease in the incidence of micronuclei binucleated cells, as compared with similarly irradiated lymphocytes without any extract treatment. The maximum protection and decrease in frequency of micronuclei were observed at 200 μg/mL of ACM extract which completely protected genotoxicity induced by IR in human lymphocytes. Achillea millefolium extract exhibited concentration-dependent radical-scavenging activity on 1,1-diphenyl-2-picryl hydrazyl free radicals. These data suggest that the methanolic extract of ACM may play an important role in the protection of normal tissues against genetic damage induced by IR.

  3. Molecular and genotoxic effects in Mytilus galloprovincialis exposed to tritiated water at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dallas, L.; Jha, A. [School of Biological Sciences, Plymouth University (United Kingdom); Bean, T.; Lyons, B. [Cefas Weymouth Laboratory (United Kingdom); Turner, A. [School of Geography, Earth and Environmental Sciences, Plymouth University (United Kingdom)

    2014-07-01

    h. These stress-induced genes are known to have protective roles as molecular chaperones, as radical scavengers, in control of cell cycle checkpoints and in DNA repair. As such, the temporal shift in HTO-induced genotoxicity may be as a result of compromised defence mechanisms. The {sup 3}H concentration in tissues was highest in byssus for all time points at both temperatures. The order in which other tissues accumulated {sup 3}H varied with time and temperature, but in general digestive gland, gill and foot showed higher concentrations than other tissues. Corresponding whole organism dose rates, as calculated using the ERICA tool, ranged from 10.94 ± 0.08 to 18.72 ± 0.10 μGy h{sup -1} (with total doses of 0.13 ± 0.01 to 2.75 ± 0.03 mGy) and were temperature- and time-dependent. This study is the first to investigate temperature effects on radiation-induced genotoxicity in the ecologically representative marine invertebrate, Mytilus galloprovincialis, which is especially pertinent in the context of rising sea temperatures and thermal pollution from nuclear institutions. From an ecological perspective, this research suggests that mussels (or similar marine species) exposed to increased temperature and HTO may have a compromised ability to defend against genotoxic insult. Document available in abstract form only. (authors)

  4. Genotoxicity and antigenotoxicity assessment of shiitake (Lentinula edodes (Berkeley Pegler using the Comet assay

    Directory of Open Access Journals (Sweden)

    CK Miyaji

    2004-01-01

    Full Text Available The mushroom shiitake (Lentinula edodes (Berkeley Pegler is been widely consumed in many countries, including Brazil, because of its pleasant flavor and reports of its therapeutic properties, although there is little available information on the genotoxicity and/or antigenotoxicity of this mushroom. We used the Comet assay and HEp-2 cells to evaluate the in vitro genotoxic and antigenotoxic activity of aqueous extracts of shiitake prepared in three different concentrations (0.5, 1.0 and 1.5 mg/mL and three different temperatures (4, 22 and 60 °C, using methyl methanesulfonate (MMS as a positive control and untreated cells as a negative control. Two concentrations (1.0 and 1.5 mg/mL of extract prepared at 4 °C and all of the concentrations prepared at 22 ± 2 and 60 °C showed moderate genotoxic activity. To test the protective effect of the three concentrations of the extracts against the genotoxicity induced by methyl methanesulfonate, three protocols were used: pre-treatment, simultaneous-treatment and post-treatment. Treatments were repeated for all combinations of preparation temperature and concentration. Two extracts (22 ± 2 °C 1.0 mg/mL (simultaneous-treatment and 4 °C 0.5 mg/mL (post-treatment showed antigenotoxic activity.

  5. Involvement of mismatch repair proteins in adaptive responses induced by N-methyl-N'-nitro-N-nitrosoguanidine against {gamma}-induced genotoxicity in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Ayumi; Sakamoto, Yasuteru; Masumura, Kenichi; Honma, Masamitsu [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Nohmi, Takehiko, E-mail: nohmi@nihs.go.jp [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2011-08-01

    Highlights: {yields} Health effects of radiation should be evaluated in combination with chemicals. {yields} Here, we show that MNNG suppresses radiation-induced genotoxicity in human cells. {yields} Mismatch repair proteins play critical roles in the apparent adaptive responses. {yields} Chemical exposure may modulate radiation-induced genotoxicity in humans. - Abstract: As humans are exposed to a variety of chemical agents as well as radiation, health effects of radiation should be evaluated in combination with chemicals. To explore combined genotoxic effects of radiation and chemicals, we examined modulating effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a direct-acting methylating agent, against genotoxicity of {gamma}-radiation. Human lymphoblastoid TK6 cells and its mismatch-deficient derivative, i.e., MT1 cells, were treated with MNNG for 24 h before they were exposed to {gamma}-irradiation at a dose of 1.0 Gy, and the resulting genotoxicity was examined. In TK6 cells, the pretreatments with MNNG at low doses suppressed frequencies of the thymidine kinase (TK) gene mutation and micronucleus (MN) formation induced by {gamma}-irradiation and thus the dose responses of TK and MN assays were U-shaped along with the pretreatment doses of MNNG. In contrast, the genotoxic effects of MNNG and {gamma}-irradiation were additive in MT1 cells and the frequencies of TK mutations and MN induction increased along with the doses of MNNG. Apoptosis induced by {gamma}-radiation was suppressed by the pretreatments in TK6 cells, but not in MT1 cells. The expression of p53 was induced and cell cycle was delayed at G2/M phase in TK6, but not in MT1 cells, by the treatments with MNNG. These results suggest that pretreatments of MNNG at low doses suppress genotoxicity of {gamma}-radiation in human cells and also that mismatch repair proteins are involved in the apparent adaptive responses.

  6. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems

    International Nuclear Information System (INIS)

    Lavorgna, Margherita; Russo, Chiara; D'Abrosca, Brigida; Parrella, Alfredo; Isidori, Marina

    2016-01-01

    The toxicity and genotoxicity of the cationic surfactant benzalkonium chloride (BAC) were studied using Daphnia magna and Ceriodaphnia dubia as model systems. Acute and chronic toxicity testing were performed according to the international standard guidelines and the genotoxicity was detected through the comet assay on cells from whole organisms in vivo exposed. Acute effects occurred at concentrations in the order of tens of μg/L in D. magna and hundreds of μg/L in C. dubia. Chronic effects were found at one order of magnitude less than short-term effects maintaining the same difference in sensitivity between D. magna and C. dubia. BAC induced relevant DNA damage, in both cladocerans; the lowest adverse effect levels were 0.4 and 4 ng/L for D. magna and C. dubia, respectively. As these effective concentrations are far lower than BAC occurrence in surface waters (units of μg/L) a concerning environmental risk cannot be excluded. The findings of this study showed that D. magna and C. dubia, could be used as model organisms to detect acute and chronic toxicity as well as genotoxicity at the whole organism level. - Highlights: • Benzalkonium chloride chronic effect in C. dubia was found at dozens of μg/L. • The LOAEC detected by comet assay in D. magna is in the order of hundreds of pg/L. • D. magna and C. dubia are useful model organisms to detect toxicity and genotoxicity. - Benzalkonium chloride showed chronic toxicity and genotoxicity in Daphnia magna and Ceriodaphnia dubia at concentrations of environmental concern. Daphnids are useful model organisms.

  7. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    Directory of Open Access Journals (Sweden)

    Soriano-Carot María

    2012-02-01

    Full Text Available Abstract Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU, methylmetanosulfonate (MMS, phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt

  8. Genotoxicity induced by Taenia solium and its reduction by immunization with calreticulin in a hamster model of taeniosis.

    Science.gov (United States)

    Salazar, Ana María; Mendlovic, Fela; Cruz-Rivera, Mayra; Chávez-Talavera, Oscar; Sordo, Monserrat; Avila, Guillermina; Flisser, Ana; Ostrosky-Wegman, Patricia

    2013-06-01

    Genotoxicity induced by neurocysticercosis has been demonstrated in vitro and in vivo in humans. The adult stage of Taenia solium lodges in the small intestine and is the main risk factor to acquire neurocysticercosis, nevertheless its carcinogenic potential has not been evaluated. In this study, we determined the genotoxic effect of T. solium infection in the hamster model of taeniosis. In addition, we assessed the effect of oral immunization with recombinant T. solium calreticulin (rTsCRT) plus cholera toxin as adjuvant on micronuclei induction, as this protein has been shown to induce 33-44% protection in the hamster model of taeniosis. Blood samples were collected from the orbital venous plexus of noninfected and infected hamsters at different days postinfection, as well as from orally immunized animals, to evaluate the frequency of micronucleated reticulocytes as a measure of genotoxicity induced by parasite exposure and rTsCRT vaccination. Our results indicate that infection with T. solium caused time-dependent DNA damage in vivo and that rTsCRT immunization reduced the genotoxic damage induced by the presence of the tapeworms. Copyright © 2013 Wiley Periodicals, Inc.

  9. Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shaopeng [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Zhao Ye; Zhao Guoping [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Han Wei [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Bao Lingzhi [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Wu Lijun, E-mail: ljw@ipp.ac.cn [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2009-06-18

    Genomic instability can be observed in bystander cells. However, the underlying mechanism(s) is still relatively unclear. In a previous study, we found that irradiated cells released mitochondria-dependent intracellular factor(s) which could lead to bystander {gamma}-H2AX induction. In this paper, we used normal ({rho}{sup +}) and mtDNA-depleted ({rho}{sup 0}) human-hamster hybrid cells to investigate mitochondrial effects on the genotoxicity in bystander effect through medium transfer experiments. Through the detection of DNA double-strand breaks with {gamma}-H2AX, we found that the fraction of {gamma}-H2AX positive cells changed with time when irradiation conditioned cell medium (ICCM) were harvested. ICCM harvested from irradiated {rho}{sup +} cells at 10 min post-irradiation ({rho}{sup +} ICCM{sub 10min}) caused larger increases of bystander {gamma}-H2AX induction comparing to {rho}{sup 0} ICCM{sub 10min}, which only caused a slight increase of bystander {gamma}-H2AX induction. The {rho}{sup +} ICCM{sub 10min} could also result in the up-regulation of ROS production (increased by 35% at 10 min), while there was no significant increase in cells treated with {rho}{sup 0} ICCM{sub 10min}. We treated cells with dimethyl sulfoxide (DMSO), the scavenger of ROS, and quenched {gamma}-H2AX induction by {rho}{sup +} ICCM. Furthermore, after the medium had been transferred and the cells were continuously cultured for 7 days, we found significantly increased CD59{sup -} gene loci mutation (increased by 45.9%) and delayed cell death in the progeny of {rho}{sup +} ICCM-treated bystander cells. In conclusion, the work presented here suggested that up-regulation of the mitochondria-dependent ROS might be very important in mediating genotoxicity of bystander effects.

  10. Plant genotoxicity: a molecular cytogenetic approach in plant bioassays.

    Science.gov (United States)

    Maluszynska, Jolanta; Juchimiuk, Jolanta

    2005-06-01

    It is important for the prevention of DNA changes caused by environment to understand the biological consequences of DNA damages and their molecular modes of action that lead to repair or alterations of the genetic material. Numerous genotoxicity assay systems have been developed to identify DNA reactive compounds. The available data show that plant bioassays are important tests in the detection of genotoxic contamination in the environment and the establishment of controlling systems. Plant system can detect a wide range of genetic damage, including gene mutations and chromosome aberrations. Recently introduced molecular cytogenetic methods allow analysis of genotoxicity, both at the chromosomal and DNA level. FISH gives a new possibility of the detection and analysis of chromosomal rearrangements in a great detail. DNA fragmentation can be estimated using the TUNEL test and the single cell gel electrophoresis (Comet assay).

  11. Photochemical fate and eco-genotoxicity assessment of the drug etodolac

    Energy Technology Data Exchange (ETDEWEB)

    Passananti, Monica [Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Napoli (Italy); Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF) UMR 6296, BP 10448, F-63000 Clermont-Ferrand (France); Lavorgna, Margherita [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta (Italy); Iesce, Maria Rosaria, E-mail: iesce@unina.it [Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Napoli (Italy); DellaGreca, Marina [Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Napoli (Italy); Brigante, Marcello [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand (ICCF) UMR 6296, BP 10448, F-63000 Clermont-Ferrand (France); Criscuolo, Emma [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta (Italy); Cermola, Flavio [Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Napoli (Italy); Isidori, Marina, E-mail: marina.isidori@unina2.it [Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta (Italy)

    2015-06-15

    The photochemical behavior of etodolac was investigated under various irradiation conditions. Kinetic data were obtained after irradiation of 10{sup −4} M aqueous solutions by UVB, UVA and direct exposure to sunlight. The Xenon lamp irradiation was used in order to determine the photodegradation quantum yield under sun-simulated condition (ϕ{sub sun}). The value was determined to be = 0.10 ± 0.01. In order to obtain photoproducts and for mechanistic purposes, experiments were carried out on more concentrated solutions by exposure to sunlight and to UVA and UVB lamps. The drug underwent photooxidative processes following an initial oxygen addition to the double bond of the five membered ring and was mainly converted into a spiro compound and a macrolactam. Ecotoxicity tests were performed on etodolac, its photostable spiro derivative and its sunlight irradiation mixture on two different aquatic trophic levels, plants (algae) and invertebrates (rotifers and crustaceans). Mutagenesis and genotoxicity were detected on bacterial strains. The results showed that only etodolac had long term effects on rotifers although at concentrations far from environmental detection values. A mutagenic and genotoxic potential was found for its derivative. - Highlights: • Photochemical transformation of etodolac occurs in the environment. • Etodolac was slightly toxic in the long term for some aquatic organisms. • A mutagenic and genotoxic potential was found for etodolac photostable derivative.

  12. Genotoxicity in earthworm after combined treatment of ionising radiation and mercury

    International Nuclear Information System (INIS)

    Ryu, Tae Ho; Kim, Jin Kyu; An, Kwang-Guk

    2014-01-01

    This study was performed to investigate the acute genotoxic effects of mercury and radiation on earthworms (Eisenia fetida). The levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida treated with mercuric chloride (HgCl 2 ) and ionising radiation (gamma rays) were analysed by means of the comet assay. For detection of DNA damage and repair, E. fetida was exposed to HgCl 2 (0-160 mg kg -1 ) and irradiated with gamma rays (0-50 Gy) in vivo. The increase in DNA damage depended on the concentration of mercury or dose of radiation. The results showed that the more the oxidative stress induced by mercury and radiation the longer the repair time that was required. When a combination of HgCl 2 and gamma rays was applied, the cell damage was much higher than those treated with HgCl 2 or radiation alone, which indicated that the genotoxic effects were increased after the combined treatment of mercury and radiation. (authors)

  13. Genotoxicity evaluation of the insecticide ethion in root of Allium ...

    African Journals Online (AJOL)

    In this study, the genotoxic effects of ethion were investigated in the mitotic cell division of Allium cepa. Primary roots of A. cepa were treated with various concentrations (25, 50, 75, and 100%) of ethion solutions for different duration of time. The result revealed that increase in the concentration and duration of treatment ...

  14. Genotoxic evaluation of infusions of Urera baccifera leaves and roots in Allium cepa cells

    Directory of Open Access Journals (Sweden)

    Amanda L. Gindri

    2015-04-01

    Full Text Available Context: The aqueous extracts of Urera baccifera Wedd. leaves and roots are used to inflammatory and infectious diseases in Brazilian folk medicine. Oxalic acid, a substance co-related with toxicity and stinging, was already quantified in this plant. Aims: To evaluate the action of leaves and roots infusions (1, 30, 75 g/L and the oxalic acid standard on mitosis as indicative of presumably antimitotic and genotoxic actions, using the Allium cepa test. Methods: Oxalic acid was quantified in the roots and leaves infusions by High-performance liquid chromatography (HPLC-DAD, with the mobile phase of 25 mM phosphate buffer (pH 2.5: acetonitrile at 95:5 (v/v. To the genotoxicity test, onion bulbs were used. After the rootlets germination, each bulb was submitted for 24 h of the individual treatments. Were analyzed 1000 cells per bulb, in a total of 5000 cells per treatment. Results: Results showed that all concentrations of roots infusions induced chromosomes abnormalities, except for the highest, that caused a substantial inhibition in the mitosis, precluding to be observed abnormalities. In the leaves infusions, only the two higher concentrations caused the highest values of damage in the cellular cycle. The oxalic acid also caused abnormalities in the mitosis, and may be considered responsible by part of the genotoxic action of U. baccifera. Conclusions: Oxalic acid can be responsible by part of the chromosomal abnormalities caused by U. baccifera, although, there must have more metabolites that evoke the same effect promoting the genotoxic effect of this nettle.

  15. Correlation between the genotoxicity endpoints measured by two different genotoxicity assays: comet assay and CBMN assay

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-06-01

    The results concerning of positive findings by micronuclei and non significant ones by comet assay, are corroborated by Deng et al. (2005 study performed in workers occupationally exposed to methotrexate, also a cytostatic drug. According to Cavallo et al. (2009, the comet assay seems to be more suitable for the prompt evaluation of the genotoxic effects, for instance, of polycyclic aromatic hydrocarbons mixtures containing volatile substances, whereas the micronucleus test seems more appropriate to evaluate the effects of exposure to antineoplastic agents. However, there are studies that observed an increase in both the comet assay and the micronucleus test in nurses handling antineoplastic drugs, although statistical significance was only seen in the comet assay, quite the opposite of our results (Maluf & Erdtmann, 2000; Laffon et al. 2005.

  16. Physicochemical characteristics, mutagenicity and genotoxicity of airborne particles under industrial and rural influences in Northern Lebanon.

    Science.gov (United States)

    Melki, Pamela N; Ledoux, Frédéric; Aouad, Samer; Billet, Sylvain; El Khoury, Bilal; Landkocz, Yann; Abdel-Massih, Roula M; Courcot, Dominique

    2017-08-01

    In this work, the main objectives were to assess the mutagenic and genotoxic effects of fine particulate matter collected in an industrial influenced site in comparison with a non-industrial influenced one (rural site) and to relate the particulate matter (PM) composition to the observed genotoxic effects. At the industrial influenced site, higher concentrations of phosphates, trace metals, and polycyclic aromatic hydrocarbons (PAHs) in particles could be related to the contributions of quarries, fertilizer producer, cement plants, and tires burning. Gasoline and diesel combustion contributions were evidenced in particles collected at both sites. Particles collected under industrial influence showed a higher mutagenic potential on three tested strains of Salmonella typhimurium (TA98, YG1041, and TA102), and especially on the YG1041, compared to particles from the rural site. Furthermore, only particles collected in the vicinity of the industrial site showed a tendency to activate the SOS responses in Escherichia coli PQ37, which is indicative of DNA damage as a result of exposure of the bacteria cells to the action of mutagenic samples. The mutagenicity and genotoxicity of the industrial PM 2.5-0.3 particulates may be attributed to its composition especially in organic compounds. This study showed that proximity of industries can affect local PM composition as well as PM genotoxic and mutagenic potential.

  17. Genotoxicity of 11 heavy metals detected as food contaminants in two human cell lines.

    Science.gov (United States)

    Kopp, B; Zalko, D; Audebert, M

    2018-04-01

    Heavy metals, such as arsenic (As), antimony (Sb), barium (Ba), cadmium (Cd), cobalt (Co), germanium (Ge), lead (Pb), nickel (Ni), tellurium (Te), and vanadium (V) are widely distributed in the environment and in the food chain. Human exposure to heavy metals through water and food has been reported by different international agencies. Although some of these heavy metals are essential elements for human growth and development, they may also be toxic at low concentrations due to indirect mechanisms. In this study, the genotoxic and cytotoxic properties of 15 different oxidation statuses of 11 different heavy metals were investigated using high-throughput screening (γH2AX assay) in two human cell lines (HepG2 and LS-174T) representative of target organs (liver and colon) for food contaminants. Base on their lowest observed adverse effect concentration, the genotoxic potency of each heavy metal in each cell line was ranked in decreasing order, NaAsO 2  > CdCl 2  > PbCl 2 (only in LS-174T cells) > As 2 O 5  > SbCl 3  > K 2 TeO 3  > As 2 O 3 . No significant genotoxicity was observed with the other heavy metals tested. Cell viability data indicate that several heavy metals (As, Cd, Co, Ni, Sb, and Te) induce cytotoxicity at high concentrations, whereas an increase in the number of cells was observed for lead concentrations >100 µM in both cell lines tested, suggesting that lead stimulates cell growth. All these results highlight the possible human health hazards associated with the presence of heavy metals present in food. Environ. Mol. Mutagen. 59:202-210, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Genotoxic and mutagenic effects of polluted surface water in the midwestern region of Brazil using animal and plant bioassays

    Directory of Open Access Journals (Sweden)

    Priscila Leocádia Rosa Dourado

    Full Text Available Abstract This study aimed to evaluate DNA damage in animal and plant cells exposed to water from the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil by using bioassays, and to identify the chemical compounds in the water to determine the water quality in the area. Through the cytotoxicity bioassay with Allium cepa, using micronucleus test, and comet assay, using Astyanax altiparanae fish, the results indicated that biological samples were genetically altered. Micronuclei were observed in erythrocytes of A. altiparanae after exposure to water from locations close to industrial waste discharge. The highest DNA damage observed with the comet assay in fish occurred with the exposure to water from locations where the presence of metals (Cu, Pb, Cd, Ni was high, indicating the possibility of genotoxic effects of these compounds. Thus, these results reinforce the importance of conducting genotoxicity tests for developing management plans to improve water quality, and indicate the need for waste management before domestic and industrial effluents are released into the rivers and streams.

  19. Critical effective methods to detect genotoxic carcinogens and neoplasm-promoting agents.

    Science.gov (United States)

    Weisburger, J H; Williams, G M

    1991-01-01

    Neoplasia in fish can result from contamination of waters with carcinogens and promoters. Cancer in fish, therefore, is a possible indicator of cancer risk to man and serves as a guide to the need for preventive approaches involving improved means of waste disposal and environmental hygiene. Moreover, cancer in fish indicates that this important food source may be contaminated. Detection of genotoxic carcinogens to which fish are exposed can be achieved quickly and efficiently by carefully selected batteries of complementary in vitro and in vivo bioassays. One such battery consists of the Ames test, a reverse mutation assay in prokaryotic Salmonella typhimurium, and the Williams test, involving DNA repair in freshly explanted metabolically highly competent liver cells from diverse species, including humans. Determination of DNA-carcinogen adducts by varied techniques, including 32P-postlabeling, as well as DNA breakage, mammalian cell mutagenicity, chromosome aberrations, sister chromatid exchange, or cell transformation represent additional approaches, each with its own advantages and disadvantages. More research is needed on systems to apprehend neoplasm promoters, but tests to determine interruption of intercellular communications through gap junctions appear promising. Other approaches rely on measurement of enzymes such as ornithine decarboxylase and protein kinase C. Approaches to the definition of risk to fish or humans require characterization of the genotoxic or nongenotoxic properties of a chemical, relative potency data obtained in select, limited rodent bioassays, and knowledge of prevailing environmental concentrations of specific carcinogens.

  20. The cytotoxic and genotoxic effects of metalaxy-M on earthworms (Eisenia fetida).

    Science.gov (United States)

    Liu, Tong; Zhu, Lusheng; Han, Yingnan; Wang, Jinhua; Wang, Jun; Zhao, Yan

    2014-10-01

    As the main optical isomer of metalaxyl, metalaxyl-M has been widely used worldwide in recent years because of its notable effect on the prevention and control of crop diseases. Together with the toxicity and degradation of metalaxyl-M, the chemical has attracted the attention of researchers. The present study examined the toxic effects of metalaxyl-M on earthworms at 0 mg kg(-1) , 0.1 mg kg(-1) , 1 mg kg(-1) , and 3 mg kg(-1) on days 7, 14, 21 and 28 after exposure. The results showed that metalaxyl-M could cause an obvious increase in the production of reactive oxygen species (ROS) when the concentration was higher than 0.1 mg kg(-1) , which led to lipid peroxidation in earthworms. Metalaxyl-M can induce DNA damage in earthworms, and the level of DNA damage markedly increased with increasing the concentration of metalaxyl-M. Metalaxyl-M also has a serious influence on the activities of antioxidant enzymes, which results in irreversible oxidative damage in cells. The changes of these indicators all indicated that metalaxyl-M may cause cytotoxic and genotoxic effects on earthworms. © 2014 SETAC.

  1. Relationship between genotoxicity and oxidative stress induced by mercury on common carp (Cyprinus carpio) tissues.

    Science.gov (United States)

    García-Medina, Sandra; Galar-Martínez, Marcela; Gómez-Oliván, Leobardo Manuel; Ruiz-Lara, Karina; Islas-Flores, Hariz; Gasca-Pérez, Eloy

    2017-11-01

    Mercury is one of the most toxic metals in aquatic systems since it is able to induce neurobehavioral disorders as well as renal and gastrointestinal tract damage. The common carp Cyprinus carpio is an important species from both an ecological and economic viewpoint as it is consumed in many countries, the top producers being Mexico, China, India and Japan. The present study aimed to evaluate the relation between Hg-induced oxidative stress and genotoxicity in diverse tissues of C. carpio. Specimens were exposed to 0.01mgHg/L (the maximum permissible limit for aquatic life protection), and lipid peroxidation, protein carbonyl content and the activity of antioxidant enzymes were evaluated at 96h. Micronuclei frequency and DNA damage by comet assay were determined at 12, 24, 48, 72 and 96h. Hg induced oxidative stress and genotoxicity on exposed fish, since inhibition of antioxidant enzymes activity and increases in lipid peroxidation, DNA damage and micronuclei frequency occurred. Blood, gill and liver were more susceptible to oxidative stress, while blood were more sensitive to genotoxicity. In conclusion, Hg at concentrations equal to the maximum permissible limit for aquatic life protection induced oxidative stress and genotoxicity on C. carpio, and these two effects prove to be correlated. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Mišík, Miroslav [Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Burke, Ian T. [Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Reismüller, Matthias; Pichler, Clemens; Rainer, Bernhard [Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria); Mišíková, Katarina [Department of Botany, Faculty of Natural Sciences, Comenius University, Bratislava (Slovakia); Mayes, William M. [Centre for Environmental and Marine Sciences, University of Hull, Scarborough YO11 3AZ (United Kingdom); Knasmueller, Siegfried, E-mail: siegfried.knasmueller@meduniwien.ac.at [Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna (Austria)

    2014-09-15

    Red mud (RM) is a byproduct of aluminum production; worldwide between 70 and 120 million tons is produced annually. We analyzed RM which was released in the course of the Kolontar disaster in Hungary into the environment in acute and genotoxicity experiments with plants which are widely used for environmental monitoring. We detected induction of micronuclei which reflect chromosomal damage in tetrads of Tradescantia and in root cells of Allium as well as retardation of root growth with contaminated soils and leachates. Chemical analyses showed that RM contains metals, in particular high concentrations of vanadium. Follow-up experiments indicated that vanadate causes the effects in the plants. This compound causes also in humans DNA damage and positive results were obtained in carcinogenicity studies. Since it was found also in RM from other production sites our findings indicate that its release in the environment is a global problem which should be studied in more detail. Capsule abstract: Our findings indicate that the red mud causes genotoxic effect in plants probably due to the presence of vanadate which is contained at high concentrations in the residue. - Highlights: • Red mud, a by-product of aluminum production, causes DNA-damage in higher plants. • We showed that this effect is caused by vanadate a known carcinogenic genotoxin. • Vanadate is contained in high concentrations in the residue. • Release of red mud may cause adverse effects in ecosystems and affect human health.

  3. Genotoxic and histopathological biomarkers for assessing the effects of magnetic exfoliated vermiculite and exfoliated vermiculite in Danio rerio

    International Nuclear Information System (INIS)

    Cáceres-Vélez, Paolin Rocio; Fascineli, Maria Luiza; Koppe Grisolia, Cesar; Oliveira Lima, Emília Celma de; Sousa, Marcelo Henrique; Morais, Paulo César de; Bentes de Azevedo, Ricardo

    2016-01-01

    Magnetic exfoliated vermiculite is a synthetic nanocomposite that quickly and efficiently absorbs organic compounds such as oil from water bodies. It was developed primarily to mitigate pollution, but the possible adverse impacts of its application have not yet been evaluated. In this context, the acute toxicity of magnetic exfoliated vermiculite and exfoliated vermiculite was herein assessed by genotoxic and histopathological biomarkers in zebrafish (Danio rerio). DNA fragmentation was statistically significant for all groups exposed to the magnetic exfoliated vermiculite and for fish exposed to the highest concentration (200 mg/L) of exfoliated vermiculite, whereas the micronucleus frequency, nuclear abnormalities and histopathological alterations were not statistically significant for the fish exposed to these materials. In the intestinal lumen, epithelial cells and goblet cells, we found the presence of magnetic exfoliated vermiculite and exfoliated vermiculite, but no alterations or presence of the materials-test in the gills or liver were observed. Our findings suggest that the use of magnetic exfoliated vermiculite and exfoliated vermiculite during standard ecotoxicological assays caused DNA damage in D. rerio, whose alterations may be likely to be repaired, indicating that the magnetic nanoparticles have the ability to promote genotoxic damage, such as DNA fragmentation, but not mutagenic effects. - Highlights: • MEV is a synthetic nanocomposite that quickly and efficiently absorbs organic compounds such as oil from water bodies. • The use of MEV and EV during standard ecotoxicological assays caused DNA fragmentation in zebrafish. • The magnetic nanoparticles showed ability to promote genotoxic damage, but did not induce micronucleus in peripheral erythrocytes at 96 h of exposure. • The tested concentrations of MEV and EV do not cause significant histopathological alterations in the gills, liver and intestine of zebrafish.

  4. Genotoxic and histopathological biomarkers for assessing the effects of magnetic exfoliated vermiculite and exfoliated vermiculite in Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Cáceres-Vélez, Paolin Rocio; Fascineli, Maria Luiza; Koppe Grisolia, Cesar [Department of Genetics and Morphology, Institute of Biological Sciences, Brasília University, Brasília (Brazil); Oliveira Lima, Emília Celma de [Chemistry Institute, Federal University of Goiás, Goiânia (Brazil); Sousa, Marcelo Henrique [Green Nanotechnology Group, Faculty of Ceilândia, Brasília University, Brasília (Brazil); Morais, Paulo César de [Physics Institute, Brasília University, Brasília (Brazil); Huazhong University of Science and Technology, School of Automation, Wuhan 430074 (China); Bentes de Azevedo, Ricardo, E-mail: razevedo@unb.br [Department of Genetics and Morphology, Institute of Biological Sciences, Brasília University, Brasília (Brazil)

    2016-05-01

    Magnetic exfoliated vermiculite is a synthetic nanocomposite that quickly and efficiently absorbs organic compounds such as oil from water bodies. It was developed primarily to mitigate pollution, but the possible adverse impacts of its application have not yet been evaluated. In this context, the acute toxicity of magnetic exfoliated vermiculite and exfoliated vermiculite was herein assessed by genotoxic and histopathological biomarkers in zebrafish (Danio rerio). DNA fragmentation was statistically significant for all groups exposed to the magnetic exfoliated vermiculite and for fish exposed to the highest concentration (200 mg/L) of exfoliated vermiculite, whereas the micronucleus frequency, nuclear abnormalities and histopathological alterations were not statistically significant for the fish exposed to these materials. In the intestinal lumen, epithelial cells and goblet cells, we found the presence of magnetic exfoliated vermiculite and exfoliated vermiculite, but no alterations or presence of the materials-test in the gills or liver were observed. Our findings suggest that the use of magnetic exfoliated vermiculite and exfoliated vermiculite during standard ecotoxicological assays caused DNA damage in D. rerio, whose alterations may be likely to be repaired, indicating that the magnetic nanoparticles have the ability to promote genotoxic damage, such as DNA fragmentation, but not mutagenic effects. - Highlights: • MEV is a synthetic nanocomposite that quickly and efficiently absorbs organic compounds such as oil from water bodies. • The use of MEV and EV during standard ecotoxicological assays caused DNA fragmentation in zebrafish. • The magnetic nanoparticles showed ability to promote genotoxic damage, but did not induce micronucleus in peripheral erythrocytes at 96 h of exposure. • The tested concentrations of MEV and EV do not cause significant histopathological alterations in the gills, liver and intestine of zebrafish.

  5. In Vivo Effects of Vanadium Pentoxide and Antioxidants (Ascorbic Acid and Alpha-Tocopherol on Apoptotic, Cytotoxic, and Genotoxic Damage in Peripheral Blood of Mice

    Directory of Open Access Journals (Sweden)

    María del Carmen García-Rodríguez

    2016-01-01

    Full Text Available This study was conducted to investigate the effects of vanadium pentoxide (V2O5, ascorbic acid (AA, and alpha-tocopherol (α-TOH on apoptotic, cytotoxic, and genotoxic activity. Groups of five Hsd:ICR mice were treated with the following: (a vehicle, distilled water; (b vehicle, corn oil; (c AA, 100 mg/kg intraperitoneally (ip; (d α-TOH, 20 mg/kg by gavage; (e V2O5, 40 mg/kg by ip injection; (f AA + V2O5; and (g α-TOH + V2O5. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCE obtained from the caudal vein at 0, 24, 48, and 72 h after treatments. Induction of apoptosis and cell viability were assessed at 48 h after treatment in nucleated cells of peripheral blood. Treatment with AA alone reduced basal MN-PCE, while V2O5 treatment marginally increased MN-PCE at all times after injection. Antioxidants treatments prior to V2O5 administration decreased MN-PCE compared to the V2O5 group, with the most significant effect in the AA + V2O5 group. The apoptotic cells increased with all treatments, suggesting that this process may contribute to the elimination of the cells with V2O5-induced DNA damage (MN-PCE. The necrotic cells only increased in the V2O5 group. Therefore, antioxidants such as AA and α-TOH can be used effectively to protect or reduce the genotoxic effects induced by vanadium compounds like V2O5.

  6. Human mesenchymal stem cells are resistant to cytotoxic and genotoxic effects of cisplatin in vitro

    Directory of Open Access Journals (Sweden)

    Bruno Corrêa Bellagamba

    2016-03-01

    Full Text Available Abstract Mesenchymal stem cells (MSCs are known for their important properties involving multilineage differentiation potential., trophic factor secretion and localization along various organs and tissues. On the dark side, MSCs play a distinguished role in tumor microenvironments by differentiating into tumor-associated fibroblasts or supporting tumor growth via distinct mechanisms. Cisplatin (CIS is a drug widely applied in the treatment of a large number of cancers and is known for its cytotoxic and genotoxic effects, both in vitro and in vivo. Here we assessed the effects of CIS on MSCs and the ovarian cancer cell line OVCAR-3, by MTT and comet assays. Our results demonstrated the resistance of MSCs to cell death and DNA damage induction by CIS, which was not observed when OVCAR-3 cells were exposed to this drug.

  7. The cyto- and genotoxicity of organotin compounds is dependent on the cellular uptake capability

    International Nuclear Information System (INIS)

    Dopp, E.; Hartmann, L.M.; Recklinghausen, U. von; Florea, A.M.; Rabieh, S.; Shokouhi, B.; Hirner, A.V.; Obe, G.; Rettenmeier, A.W.

    2007-01-01

    Organotin compounds have been widely used as stabilizers and anti-fouling agents with the result that they are ubiquitously distributed in the environment. Organotins accumulate in the food chain and potential effects on human health are disquieting. It is not known as yet whether cell surface adsorption or accumulation within the cell, or indeed both is a prerequisite for the toxicity of organotin compounds. In this study, the alkylated tin derivatives monomethyltin trichloride (MMT), dimethyltin dichloride (DMT), trimethyltin chloride (TMT) and tetramethyltin (TetraMT) were investigated for cyto- and genotoxic effects in CHO-9 cells in relation to the cellular uptake. To identify genotoxic effects, induction of micronuclei (MN), chromosome aberrations (CA) and sister chromatid exchanges (SCE) were analyzed and the nuclear division index (NDI) was calculated. The cellular uptake was assessed using ICP-MS analysis. The toxicity of the tin compounds was also evaluated after forced uptake by electroporation. Our results show that uptake of the organotin compounds was generally low but dose-dependent. Only weak genotoxic effects were observed after exposure of cells to DMT and TMT. MMT and TetraMT were negative in the test systems. After forced uptake by electroporation MMT, DMT and TMT induced significant DNA damage at non-cytotoxic concentrations. The results presented here indicate a considerable toxicological potential of some organotin species but demonstrate clearly that the toxicity is modulated by the cellular uptake capability

  8. Cyto- and genotoxic profile of groundwater used as drinking water supply before and after disinfection.

    Science.gov (United States)

    Pellacani, C; Cassoni, F; Bocchi, C; Martino, A; Pinto, G; Fontana, F; Furlini, M; Buschini, A

    2016-12-01

    The assessment of the toxicological properties of raw groundwater may be useful to predict the type and quality of tap water. Contaminants in groundwater are known to be able to affect the disinfection process, resulting in the formation of substances that are cytotoxic and/or genotoxic. Though the European directive (98/83/EC, which establishes maximum levels for contaminants in raw water (RW)) provides threshold levels for acute exposure to toxic compounds, the law does not take into account chronic exposure at low doses of pollutants present in complex mixture. The purpose of this study was to evaluate the cyto- and genotoxic load in the groundwater of two water treatment plants in Northern Italy. Water samples induced cytotoxic effects, mainly observed when human cells were treated with RW. Moreover, results indicated that the disinfection process reduced cell toxicity, independent of the biocidal used. The induction of genotoxic effects was found, in particular, when the micronucleus assay was carried out on raw groundwater. These results suggest that it is important to include bio-toxicological assays as additional parameters in water quality monitoring programs, as their use would allow the evaluation of the potential risk of groundwater for humans.

  9. The use of genotoxicity biomarkers in molecular epidemiology: applications in environmental, occupational and dietary studies

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2017-08-01

    Full Text Available Molecular epidemiology is an approach increasingly used in the establishment of associations between exposure to hazardous substances and development of disease, including the possible modulation by genetic susceptibility factors. Environmental chemicals and contaminants from anthropogenic pollution of air, water and soil, but also originating specifically in occupational contexts, are potential sources of risk of development of disease. Also, diet presents an important role in this process, with some well characterized associations existing between nutrition and some types of cancer. Genotoxicity biomarkers allow the detection of early effects that result from the interaction between the individual and the environment; they are therefore important tools in cancer epidemiology and are extensively used in human biomonitoring studies. This work intends to give an overview of the potential for genotoxic effects assessment, specifically with the cytokinesis blocked micronucleus assay and comet assay in environmental and occupational scenarios, including diet. The plasticity of these techniques allows their inclusion in human biomonitoring studies, adding important information with the ultimate aim of disease prevention, in particular cancer, and so it is important that they be included as genotoxicity assays in molecular epidemiology.

  10. Genotoxic action of sunlight upon Bacillus subtilis spores

    International Nuclear Information System (INIS)

    Munakata, Nobuo

    1989-01-01

    Samples of Bacillus subtilis spores dried on membrane filter were exposed to natural sunlight from solar-noon time at Tokyo. The survival and mutation induction of wild-type (UVR) and repair-deficient (UVS) spores were determined on 66 occasions since 1979. Two of the values were considered to be useful in monitoring solar UV intensity; the inverse of the time (in minutes) of exposure to kill 63% of the UVS spores ('sporocidal index') and the induced mutation frequency at 60 minutes of exposure of the UVR spores ('mutagenic index'). Both values were varied greatly due to time of a year, weather and other conditions. Estimates of year-round changes under clear skies were obtained by connecting the maximum values attained in these years. In these curves, there are more than 7-fold differences in the genotoxicity between winter and summer months, with major increases observed in early spring and decreases through autumn. Using a series of UV cut-off filters, the wavelengths most effective for the sporocidal actions were estimated to be in the range of 308 - 325 nm, shorter wavelengths being effective when the genotoxicity was higher. Sunburn meter of Robertson-Berger type seems to respond to slightly longer wavelength components of the solar spectrum. However, a reasonable correlation was obtained between the reading of the meter and the sporocidal index. (author)

  11. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity

    DEFF Research Database (Denmark)

    Poulsen, Sarah S.; Jackson, Petra; Kling, Kirsten

    2016-01-01

    Lung deposition of multi-walled carbon nanotubes (MWCNT) induces pulmonary toxicity. Commercial MWCNT vary greatly in physicochemical properties and consequently in biological effects. To identify determinants of MWCNT-induced toxicity, we analyzed the effects of pulmonary exposure to 10 commerci...... diameter was associated with increased genotoxicity. This study provides information on possible toxicity-driving physicochemical properties of MWCNT. The results may contribute to safe-by-design manufacturing of MWCNT, thereby minimizing adverse effects....

  12. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells

    International Nuclear Information System (INIS)

    Asare, Nana; Instanes, Christine; Sandberg, Wiggo J.; Refsnes, Magne; Schwarze, Per; Kruszewski, Marcin; Brunborg, Gunnar

    2012-01-01

    Serious concerns have been expressed about potential risks of engineered nanoparticles. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines; including the potential effects on reproduction and fertility, are relevant for this risk evaluation. In this study, we examined effects of silver particles of nano- (20 nm) and submicron- (200 nm) size, and titanium dioxide nanoparticles (TiO 2 -NPs; 21 nm), with emphasis on reproductive cellular- and genotoxicity. Ntera2 (NT2, human testicular embryonic carcinoma cell line), and primary testicular cells from C57BL6 mice of wild type (WT) and 8-oxoguanine DNA glycosylase knock-out (KO, mOgg1 −/− ) genotype were exposed to the particles. The latter mimics the repair status of human testicular cells vs oxidative damage and is thus a suitable model for human male reproductive toxicity studies. The results suggest that silver nano- and submicron-particles (AgNPs) are more cytotoxic and cytostatic compared to TiO 2 -NPs, causing apoptosis, necrosis and decreased proliferation in a concentration- and time-dependent manner. The 200 nm AgNPs in particular appeared to cause a concentration-dependent increase in DNA-strand breaks in NT2 cells, whereas the latter response did not seem to occur with respect to oxidative purine base damage analysed with any of the particles tested.

  13. Considerations on photochemical genotoxicity. II: Report of the 2009 International Workshop on Genotoxicity Testing Working Group

    NARCIS (Netherlands)

    Lynch, A.M.; Guzzie, P.J.; Bauer, D.; Gocke, E.; Itoh, S.; Jacobs, A.; Krul, C.A.M.; Schepky, A.; Tanaka, N.; Kasper, P.

    2011-01-01

    A workshop to reappraise the previous IWGT recommendations for photogenotoxicity testing [E. Gocke, L. Muller, P.J. Guzzie, S. Brendler-Schwaab, S. Bulera, C.F. Chignell, L.M. Henderson, A. Jacobs, H. Murli, R.D. Snyder, N. Tanaka, Considerations on photochemical genotoxicity: report of the

  14. Hexavalent chromium is cytotoxic and genotoxic to American alligator cells.

    Science.gov (United States)

    Wise, Sandra S; Wise, Catherine; Xie, Hong; Guillette, Louis J; Zhu, Cairong; Wise, John Pierce; Wise, John Pierce

    2016-02-01

    Metals are a common pollutant in the aquatic ecosystem. With global climate change, these levels are anticipated to rise as lower pH levels allow sediment bound metals to be released. The American alligator (Alligator mississippiensis) is an apex predator in the aquatic ecosystem and is considered a keystone species; as such it serves as a suitable monitor for localized pollution. One metal of increasing concern is hexavalent chromium (Cr(VI)). It is present in the aquatic environment and is a known human carcinogen and reproductive toxicant. We measured the cytotoxicity and genotoxicity of Cr(VI) in American alligator cells derived from scute tissue. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to alligator cells in a concentration-dependent manner. These data suggest that alligators may be used as a model for assessing the effects of environmental Cr(VI) contamination as well as for other metals of concern. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Hydropower reservoirs: cytotoxic and genotoxic assessment using the Allium cepa root model.

    Science.gov (United States)

    Rambo, Cassiano Lazarotto; Zanotelli, Patrícia; Dalegrave, Daniela; De Nez, Dinara; Szczepanik, Jozimar; Carazek, Fábio; Franscescon, Francini; Rosemberg, Denis Broock; Siebel, Anna Maria; Magro, Jacir Dal

    2017-03-01

    Hydropower offers a reliable source of electricity in several countries, and Brazil supplies its energy needs almost entirely through hydropower plants. Nevertheless, hydropower plants comprise large buildings and water reservoirs and dams, resulting in huge ecological disruptions. Here, we analyzed the impact of four hydropower reservoirs construction in metals and pesticides incidence and the cytotoxic and genotoxic potential of sediment elutriate of rivers from southern Brazil. Our analyses have evidenced the elevated incidence of different metals (lead, iron, cadmium, and chrome) and pesticides (methyl parathion, atrazine, and 2,4-dichlorophenoxyacetic acid). We showed that Allium cepa exposed to sediment elutriates did not change the seed germination rate and mitotic index. However, roots from Allium cepa exposed to reservoirs sediment elutriates showed increased occurrence of chromosomal aberrations and nuclear abnormalities. Therefore, the results obtained in our study indicate that sediment from reservoirs present elevated concentration of metals and pesticides and a significant genotoxic potential. Taken together, our data support that hydropower reservoirs represent an environmental scenario that could impact surrounding wildlife and population.

  16. Flow cytometry based micronucleus assay for evaluation of genotoxic potential of 2-ACBs in hepatic cells HepG2

    International Nuclear Information System (INIS)

    Barbezan, Angélica B.; Santos, Carla J.B.; Carvalho, Luma R.; Vieira, Daniel P.; Villavicêncio, Anna L.C.H.; Santelli, Glaucia M.M.

    2017-01-01

    Food irradiation is approved for use in more than 60 countries for applications and purposes in a wide variety of foods, being an effective and safe method for preservation and long-term storage. 2-Alkylcyclobutanones (2-ACBs) are the only known radiolytic products generated from foods that contain fatty acids (Triglycerides) when irradiated. The acids analyzed in this study are palmitic and stearic, which when irradiated form 2-Dodecylcyclobutanones (2-dDCB) and 2-Tetradecylcyclobutanone (2-tDCB). Part of the 2-ACBs ingested is excreted through feces and part is deposited in adipose tissues. In vitro studies so far have been only in colon cells. The work used a human hepatoma cell line (HepG2) since the accumulation of fat in this organ is quite common. Micronucleus test was selected to evaluate possible genotoxic effects of 2-dDCB and 2-tDCB compounds when exposed to high concentrations (447, 1422 and 2235 μM) for 4 and 24 hours. Tests were performed in quadriplicates using flow cytometric analysis. None detectable genotoxic damage was observed after 4 hours of exposure to the compounds, and cytotoxic effects were only significant at the highest concentration (2235 μM) of 2-dDCB. After 24 hours of exposure, slight genotoxic damage was observed at all concentrations evaluated, and cytotoxic effects were only present when exposed to compound 2-tDCB. Although there is a genotoxic and cytotoxic effect in some of the situations tested, the two compounds predominantly induced proliferation reduction effects of this hepatic tumor cell line. (author)

  17. Flow cytometry based micronucleus assay for evaluation of genotoxic potential of 2-ACBs in hepatic cells HepG2

    Energy Technology Data Exchange (ETDEWEB)

    Barbezan, Angélica B.; Santos, Carla J.B.; Carvalho, Luma R.; Vieira, Daniel P.; Villavicêncio, Anna L.C.H., E-mail: abarbezan@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santelli, Glaucia M.M. [Universidade de São Paulo (USP), SP (Brazil). Departamento de Biologia Celular e do Desenvolvimento

    2017-07-01

    Food irradiation is approved for use in more than 60 countries for applications and purposes in a wide variety of foods, being an effective and safe method for preservation and long-term storage. 2-Alkylcyclobutanones (2-ACBs) are the only known radiolytic products generated from foods that contain fatty acids (Triglycerides) when irradiated. The acids analyzed in this study are palmitic and stearic, which when irradiated form 2-Dodecylcyclobutanones (2-dDCB) and 2-Tetradecylcyclobutanone (2-tDCB). Part of the 2-ACBs ingested is excreted through feces and part is deposited in adipose tissues. In vitro studies so far have been only in colon cells. The work used a human hepatoma cell line (HepG2) since the accumulation of fat in this organ is quite common. Micronucleus test was selected to evaluate possible genotoxic effects of 2-dDCB and 2-tDCB compounds when exposed to high concentrations (447, 1422 and 2235 μM) for 4 and 24 hours. Tests were performed in quadriplicates using flow cytometric analysis. None detectable genotoxic damage was observed after 4 hours of exposure to the compounds, and cytotoxic effects were only significant at the highest concentration (2235 μM) of 2-dDCB. After 24 hours of exposure, slight genotoxic damage was observed at all concentrations evaluated, and cytotoxic effects were only present when exposed to compound 2-tDCB. Although there is a genotoxic and cytotoxic effect in some of the situations tested, the two compounds predominantly induced proliferation reduction effects of this hepatic tumor cell line. (author)

  18. Comparative Genotoxicity of Cadmium and Lead in Earthworm Coelomocytes

    Directory of Open Access Journals (Sweden)

    Ptumporn Muangphra

    2011-01-01

    Full Text Available To determine genotoxicity to coelomocytes, Pheretima peguana earthworms were exposed in filter paper studies to cadmium (Cd and lead (Pb for 48 h, at concentrations less than the LC10—Cd: 0.09, 0.19, 0.38, 0.75, and 1.50 μg cm−2; Pb: 1.65, 3.29, 6.58, 13.16, and 26.32 μg cm−2. For Cd at 0.75 μg cm−2, in the micronucleus test (detects chromosomal aberrations, significant increases (<.05 in micronuclei and binucleate cells were observed, and in the comet assay (detects DNA single-strand breaks, tail DNA% was significantly increased. Lead was less toxic with minimal effects on DNA, but the binucleates were significantly increased by Pb at 3.29 μg cm−2. This study shows that Cd is more acutely toxic and sublethally genotoxic than Pb to P. peguana. Cadmium caused chromosomal aberrations and DNA single-strand breaks at 45% of the LC10 concentration. Lead, in contrast, did not induce DNA damage but caused cytokinesis defects.

  19. A review of the genotoxicity of trimethylolpropane triacrylate (TMPTA).

    Science.gov (United States)

    Kirkland, David; Fowler, Paul

    2018-04-01

    Trimethylolpropane triacrylate (TMPTA) is a trifunctional acrylate monomer which polymerizes rapidly when exposed to sources of free radicals. It is widely used as a reactive diluent and polymer building block in the formulation of overprint varnishes, inks and a variety of wood, plastic and metal coatings. TMPTA has been tested in a range of in vitro and in vivo genotoxicity tests. There is no clear evidence of induction of gene mutations by TMPTA in bacteria or mammalian cells in vitro, but there is evidence of clastogenicity from induction of small colony tk mutants in the mouse lymphoma assay, and also induction of micronuclei and chromosomal aberrations. However, TMPTA was negative in bone marrow or blood micronucleus tests in vivo following oral or repeated dermal application, and did not induce comets in bone marrow or liver of mice following intravenous administration, which would have achieved plasma (and therefore tissue) concentrations estimated to exceed those inducing clastogenic effects in vitro. It is concluded that TMPTA is not genotoxic in vivo. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. In vitro and in vivo genotoxicity assessment of HI-6 dimethanesulfonate/oxime.

    Science.gov (United States)

    Nakab, Lauren; Bardot, Isabelle; Bardot, Sébastien; Simar, Sophie; Marzin, Daniel; Nesslany, Fabrice

    2014-03-01

    Organophosphate compounds, which induce organophosphate poisoning, were originally used as pesticides. But this type of product has also been used as warfare nerve agent like sarin, soman, Russian VX, or tabun. HI-6-dimethanesulfonate is a salt of the oxime HI-6 used in the treatment of nerve-agent poisoning. It is known to be the best re-activator component of inactivated acetyl cholinesterase. HI-6-dimethanesulfonate has shown a higher level of solubility with similar potency to reactivate acetyl cholinesterase and a similar pharmacokinetics profile compared with HI-6 dichloride. HI-6 dimethanesulfonate was tested for its mutagenic and genotoxic potential by use of the standard ICH S2R (1) battery for the evaluation of pharmaceuticals. HI-6-dimethanesulfonate was mutagenic in the Ames test only in the presence of metabolic activation. In the mutation assay at the Tk locus in L5178Y mouse-lymphoma cells, HI-6-dimethanesulfonate showed mutagenic activity both with and without metabolic activation, with a significant increase in small colonies. The effects were in favour of a clastogenic activity. It was concluded that the compound was mutagenic and possibly clastogenic in vitro. In contrast, the in vivo micronucleus test in rat bone-marrow did not demonstrate any genotoxic activity and the Comet assay performed in rat liver did not show any statistically or biologically significant increases in DNA strand-breaks. The results of both in vivo studies performed on two different organs with two endpoints are sufficient to conclude the absence of a genotoxic hazard in vivo and to consider that there is no genotoxic concern in humans for HI-6-dimethanesulfonate. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Absence of genotoxic activity from milk and water boiled in microwave oven in somatic cells from Drosophila melanogaster

    International Nuclear Information System (INIS)

    Dias, Cristina das Dores.

    2003-01-01

    This paper reports an experiment for evaluation of the possible genotoxic effects of food prepared in a microwave oven, through the mutation test and somatic recombination, in wings of Drosophila melanogaster. Two crossing have been performed: a standard cross-ST and a high bioactivation cross - HB resulting in marked trans -heterozygote descendents (MH) and balanced heterozygotes (BH). The 72 hours larvas were fed with water and milk boiled both in the microwave oven and in the traditional way. The MH individual wings were analyzed, where the spots can be induced either by mutation or mitotic recombination. The experiment presented negative results related to the genotoxic effects of the water and milk boiled using the microwave oven, in MH descendents of both crossing. Therefore, under these experimental conditions, genotoxic activity were not presented by milk and water boiled in the microwave oven. However, an extensive study using different techniques is necessary to investigate the action of the food prepared in the microwave oven on the genetic material

  2. Correlation between serum anyloid a low density lipoprotein and genotoxicity in smokers

    International Nuclear Information System (INIS)

    Jamil, A.; Rashid, A.; Majeed, A.; Naveed, A.K.

    2018-01-01

    Objective:To investigate the relation between serum amyloid A-low density lipoprotein (SAA-LDL) and genotoxicity in smokers. Study Design:An experimental study. Place and Duration of Study:Army Medical College, Rawalpindi and National Institute of Health (NIH), Islamabad, from June 2014 to February 2015. Methodology:Seventy healthy Sprague Dawley rats were purchased from NIH and exposed to cigarette smoke in smoke chamber for three months. Blood samples were drawn from each rat at the end of the study period. SAA-LDL was determined by enzyme-linked immunosorbent assay (ELISA). Genotoxicity was assessed by cytokinesis block micronucleus (CBMN) assay. Pearson correlation was used to find correlation between SAA-LDL and genotoxicity. Results:Strong positive correlation was found between SAA-LDL and micronuclei frequency in smoke-exposed rats (r=0.799, N=70, p <0.01). Conclusion:Statistically significant strong positive correlation between SAA-LDL and genotoxicity in smoke-exposed rats shows that changes in one is associated with changes in other and vice versa. (author)

  3. Evaluation of genotoxicity of nitrile fragrance ingredients using in vitro and in vivo assays.

    Science.gov (United States)

    Bhatia, S P; Politano, V T; Api, A M

    2013-09-01

    Genotoxicity studies were conducted on a group of 8 fragrance ingredients that belong to the nitrile family. These nitriles are widely used in consumer products however there is very limited data in the literature regarding the genotoxicity of these nitriles. The 8 nitriles were assessed for genotoxicity using an Ames test, in vitro chromosome aberration test or in vitro micronucleus test. The positive results observed in the in vitro tests were further investigated using an in vivo micronucleus test. The results from these different tests were compared and these 8 nitriles are not considered to be genotoxic. Dodecanitrile and 2,2,3-trimethylcyclopent-3-enylacetonitrile were negative in the in vitro chromosome aberration test and in vitro micronucleus test, respectively. While citronellyl nitrile, 3-methyl-5-phenylpentanenitrile, cinnamyl nitrile, and 3-methyl-5-phenylpent-2-enenitrile revealed positive results in the in vitro tests, but confirmatory in vivo tests determined these nitriles to be negative in the in vivo micronucleus assay. The remaining two nitriles (benzonitrile and α-cyclohexylidene benzeneacetonitrile) were negative in the in vivo micronucleus test. This study aims to evaluate the genotoxicity potential of these nitriles as well as enrich the literature with genotoxicity data on fragrance ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The effect of royal sun agaricus, Agaricus brasiliensis S. Wasser et al., extract on methyl methanesulfonate caused genotoxicity in Drosophila melanogaster.

    Science.gov (United States)

    Savić, Tatjana; Patenković, Aleksandra; Soković, Marina; Glamoclija, Jasmina; Andjelković, Marko; van Griensven, Leo J L D

    2011-01-01

    The effect of culinary-medicinal Royal Sun Agaricus (Agaricus brasiliensis) hot water extract on methyl methane sulfonate (MMS) induced mutagenicity/genotoxity in Drosophila melanogaster was studied using a quick and broadly applicable in vivo assay, i.e., the wing somatic mutation and recombination test. We used 2nd instar larvae, trans-heterozygous for the third chromosome recessive markers, i.e., multiple wing hairs (mvh) and flare-3 [flr (3)], and fed them for 24 h with the aqueous extract of A. brasiliensis. For antigenotoxicity studies a 24-h pretreatment with the extract was done, followed by a 48-h treatment of the then 3rd instar larvae with MMS. The frequency of mutations of the wing blade changes (i.e., of the number of wing spots of different sizes) induced in somatic cells was determined as a parameter of genetic changes of the wing imaginal discs. The results showed that A. brasiliensis extract did not cause any genotoxic or mutagenic effects. No antigenotoxic and/or protective effect against the induction of mutations by MMS was observed. Instead, a possible enhanced mitotic recombination frequency by MMS was seen after pretreatment of the larvae with A. brasiliensis extract. Possible mechanisms of action are discussed.

  5. In vitro cytotoxicity and genotoxicity studies of gold nanoparticles-mediated photo-thermal therapy versus 5-fluorouracil

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Iman E., E-mail: iman.gomaa@guc.edu.eg; Abdel Gaber, Sara A. [German University in Cairo (GUC), Faculty of Pharmacy and Biotechnology (Egypt); Bhatt, Samarth; Liehr, Thomas [Friedrich Schiller University, Jena University Hospital, Institute of Human Genetics (Germany); Glei, Michael [Friedrich Schiller University, Faculty of Biology and Pharmacy, Institute of Nutrition (Germany); El-Tayeb, Tarek A. [Cairo University, The National Institute for Laser Enhanced Sciences (NILES) (Egypt); Abdel-Kader, Mahmoud H. [German University in Cairo (GUC), Faculty of Pharmacy and Biotechnology (Egypt)

    2015-02-15

    This study evaluates tumour cell-killing efficacy of metallic gold nanoparticles (AuNPs)-mediated photo-thermal therapy (PTT) in comparison to 5-fluorouracil (5-FU) as a standard chemotherapeutic drug. It also focuses on the possible genetic abnormalities of both drugs in normal blood lymphocytes. Both 5-FU and light-activated spherical AuNPs of 15± nm diameter were used to target MCF-7 breast cancer cell line. Alkaline comet assay, standard karyotyping and multiplex fluorescent in situ hybridization were applied in order to investigate the respective possible genotoxic and mutagenic side effects that might result from the application of each therapeutic modality. Results showed that the LC25 of AuNPs-mediated PTT was achieved at a concentration of 100 µM for 12-h incubation and exposure to light energy of 50 J/cm{sup 2}, while the same cytotoxic effect was obtained by incubating the MCF-7 cells with the same concentration of the chemotherapeutic drug 5-FU for 24 h. On the other hand, AuNPs showed insignificant genotoxic effect of DNA damage represented by 4.6 % in comparison to 18.58 % exerted by 5-FU. The chromosomal studies resulted in normal karyotypes for cells treated with AuNPs-mediated PTT, while those treated with 5-FU showed several types of numerical as well as structural chromosomal aberrations. In conclusion, compared to 5-FU, light-activated AuNPs-mediated PTT provides considerable efficacy in breast cancer cells killing with no genetic side effects under the proposed experimental conditions.

  6. In vitro cytotoxicity and genotoxicity studies of gold nanoparticles-mediated photo-thermal therapy versus 5-fluorouracil

    International Nuclear Information System (INIS)

    Gomaa, Iman E.; Abdel Gaber, Sara A.; Bhatt, Samarth; Liehr, Thomas; Glei, Michael; El-Tayeb, Tarek A.; Abdel-Kader, Mahmoud H.

    2015-01-01

    This study evaluates tumour cell-killing efficacy of metallic gold nanoparticles (AuNPs)-mediated photo-thermal therapy (PTT) in comparison to 5-fluorouracil (5-FU) as a standard chemotherapeutic drug. It also focuses on the possible genetic abnormalities of both drugs in normal blood lymphocytes. Both 5-FU and light-activated spherical AuNPs of 15± nm diameter were used to target MCF-7 breast cancer cell line. Alkaline comet assay, standard karyotyping and multiplex fluorescent in situ hybridization were applied in order to investigate the respective possible genotoxic and mutagenic side effects that might result from the application of each therapeutic modality. Results showed that the LC25 of AuNPs-mediated PTT was achieved at a concentration of 100 µM for 12-h incubation and exposure to light energy of 50 J/cm 2 , while the same cytotoxic effect was obtained by incubating the MCF-7 cells with the same concentration of the chemotherapeutic drug 5-FU for 24 h. On the other hand, AuNPs showed insignificant genotoxic effect of DNA damage represented by 4.6 % in comparison to 18.58 % exerted by 5-FU. The chromosomal studies resulted in normal karyotypes for cells treated with AuNPs-mediated PTT, while those treated with 5-FU showed several types of numerical as well as structural chromosomal aberrations. In conclusion, compared to 5-FU, light-activated AuNPs-mediated PTT provides considerable efficacy in breast cancer cells killing with no genetic side effects under the proposed experimental conditions

  7. In vitro cytotoxicity and genotoxicity of composite mixtures of natural rubber and leather residues used for textile applications.

    Science.gov (United States)

    Cavalcante, Dalita Gsm; Gomes, Andressa S; Dos Reis, Elton Ap; Danna, Caroline S; Kerche-Silva, Leandra E; Yoshihara, Eidi; Job, Aldo E

    2017-06-01

    A novel composite material has been developed from natural rubber and leather waste, and a corresponding patent has been filed. This new material may be incorporated into textile and footwear products. However, as leather waste contains chromium, the biocompatibility of this new material and its safety for use in humans must be investigated. The aim of the present study was to investigate the presence of chromium in this new material, determine the amount of each form of chromium present (trivalent or hexavalent), and evaluate the potential cytotoxic and genotoxic effects of the novel composite in two cell lines. The cellular viability was quantified using the MTT3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction method and neutral red uptake assay, and genotoxic damage was analyzed using the comet assay. Our findings indicated that the extracts obtained from the composite were severely cytotoxic to both cell lines tested, and additionally highly genotoxic to MRC-5 cells. These biological responses do not appear to be attributable to the presence of chromium, as the trivalent form was predominantly found to be present in the extracts, indicating that hexavalent chromium is not formed during the production of the novel composite. The incorporation of this new material in applications that do not involve direct contact with the human skin is thus indicated, and it is suggested that the chain of production of this material be studied in order to improve its biocompatibility so that it may safely be used in the textile and footwear industries.

  8. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  9. Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinus carpio.

    Science.gov (United States)

    Galar-Martínez, M; García-Medina, S; Gómez-Olivan, L M; Pérez-Coyotl, I; Mendoza-Monroy, D J; Arrazola-Morgain, R E

    2016-09-01

    The nonsteroidal anti-inflammatory drug ketorolac is extensively used in the treatment of acute postoperative pain. This pharmaceutical has been found at concentrations of 0.2-60 µg/L in diverse water bodies around the world; however, its effects on aquatic organisms remain unknown. The present study, evaluated the oxidative stress and genotoxicity induced by sublethal concentrations of ketorolac (1 and 60 µg/L) on liver, brain, and blood of the common carp Cyprinus carpio. This toxicant induced oxidative damage (increased lipid peroxidation, hydroperoxide content, and protein carbonyl content) as well as changes in antioxidant status (superoxide dismutase, catalase, and glutathione peroxidase activity) in liver and brain of carp. In blood, ketorolac increased the frequency of micronuclei and is therefore genotoxic for the test species. The effects observed were time and concentration dependent. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1035-1043, 2016. © 2015 Wiley Periodicals, Inc.

  10. Bio-monitoring of Tissue Accumulation and Genotoxic Effect of Heavy Metals in Cyprinus carpio from River Kabul Khyber Pakhtunkhwa Pakistan.

    Science.gov (United States)

    Siraj, Muhammad; Khisroon, Muhammad; Khan, Ajmal; Zaidi, Farrah; Ullah, Ahmad; Rahman, Ghani

    2018-03-01

    The study explored (I) the concentration of heavy metals in water samples (II) their bioaccumulation in common carp Cyprinus carpio (III) and the subsequent genotoxicity in the selected organs of carp; from river Kabul, Khyber Pakhtunkhwa Pakistan. Except for Mercury (Hg) the water samples had all the heavy metals within permissible limits of recommended dietary allowance (RDA). Nonetheless a number of heavy metals (Zn, Ni, Cr, Cd, Pb and Hg) showed bioaccumulation at levels higher than permissible. Zinc (Zn) was the most while Cadmium (Cd) was the least accumulated metal in all tissue samples analyzed. The metal burden in different organs of C. carpio was in sequence of intestine > skin > liver > gills > muscle. The Comet assay established DNA damage in selected organs to be in accordance with metal burden; the most to least damage being in sequence of blood > intestine > skin > liver > gills > muscle. In conclusion assessment of DNA damage in the organs of C. carpio appears to be a useful bio-marker to evaluate genotoxic effects of heavy metal pollution.

  11. Biomarkers of environmental genotoxicity: comparison of genetic damage induced in Trad-SH cells and human lymphocytes

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1999-01-01

    The report presents some of the results of genotoxicity of the environmental agents studied in somatic cells of Tradescantia and show similarity between responses of the Tradescantia stamen hair cells (Trad-SH) and human blood cells to the physical and chemical mutagens. In the studies in vitro chromosome aberrations (CA) and sister chromatid exchanges (SCE) were applied to evaluate genotoxicity of pesticides. For comparison of genotoxic effectiveness of agrochemicals with other chemicals, there are also presented results of the genotoxicity of well-known mutagens (EMS, X-rays). The results confirm that in the environment a chemical pollution might cause higher genetic risk than radiation. Trad-SH assay was applied for in situ monitoring of the ambient air mutagenicity caused by benzene and petroleum associated compounds. The studies showed that gene mutation frequencies were slightly dependent on the distance from the petroleum work center. Results of measures of the cell cycle factor have shown also that the chemical pollutants in the air played also an important role in physiological cellular processes. The similarity of the Trad-SH and human blood cells responses to the physical and chemical mutagens showed that the gene mutations in Tradescantia present a simple and sensitive model, which can be very useful in biological monitoring

  12. Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures

    International Nuclear Information System (INIS)

    Česen, Marjeta; Eleršek, Tina; Novak, Matjaž; Žegura, Bojana; Kosjek, Tina; Filipič, Metka; Heath, Ester

    2016-01-01

    Cyclophosphamide (CP) and ifosfamide (IF) are commonly used cytostatic drugs that repress cell division by interaction with DNA. The present study investigates the ecotoxicity and genotoxicity of CP, IF, their human metabolites/transformation products (TPs) carboxy-cyclophosphamide (CPCOOH), keto-cyclophosphamide (ketoCP) and N-dechloroethyl-cyclophosphamide (NdCP) as individual compounds and as mixture. The two parent compounds (CP and IF), at concentrations up to 320 mg L −1 , were non-toxic towards the alga Pseudokirchneriella subcapitata and cyanobacterium Synecococcus leopoliensis. Further ecotoxicity studies of metabolites/TPs and a mixture of parent compounds and metabolites/TPs performed in cyanobacteria S. leopoliensis, showed that only CPCOOH (EC 50  = 17.1 mg L −1 ) was toxic. The measured toxicity (EC 50  = 11.5 mg L −1 ) of the mixture was lower from the toxicity predicted by concentration addition model (EC 50  = 21.1 mg L −1 ) indicating potentiating effects of the CPCOOH toxicity. The SOS/umuC assay with Salmonella typhimurium revealed genotoxic activity of CP, CPCOOH and the mixture in the presence of S9 metabolic activation. Only CPCOOH was genotoxic also in the absence of metabolic activation indicating that this compound is a direct acting genotoxin. This finding is of particular importance as in the environment such compounds can directly affect DNA of non-target organisms and also explains toxicity of CPCOOH against cyanobacteria S. leopoliensis. The degradation study with UV irradiation of samples containing CP and IF showed efficient degradation of both compounds and remained non-toxic towards S. leopoliensis, suggesting that no stable TPs with adverse effects were formed. To our knowledge, this is the first study describing the ecotoxicity and genotoxicity of the commonly used cytostatics CP and IF, their known metabolites/TPs and their mixture. The results indicate the importance of toxicological evaluation and

  13. Nonclinical Safety Assessment of Morus alba L. Fruits: Study of 90-D Toxicity in Sprague Dawley Rats and Genotoxicity in Salmonella.

    Science.gov (United States)

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2016-05-01

    Morus alba L. is a traditional herb with a long history of consumption, both as an edible fruit and as medicine. However, its safety evaluation has not yet been established. The objective of this study was to evaluate subchronic oral toxicity and genotoxicity of M. alba L. fruits (MFE). The subchronic toxicity after daily oral administration of MFE at 0, 40, 200, and 1000 mg/kg for 90 d was examined in Sprague Dawley (SD) rats. MFE administration did not lead to death, adverse effects, change in food and water consumption, and body weight gain. Significant toxic effects were not found within the parameters of organ weight, biochemical values, and hematological and urine analysis between the control and the MFE group. The genotoxicity of MFE was assayed by Ames test in Salmonella typhimurium strains TA98, TA102, and TA1535. No genotoxicity was found in all the tested strains. Thus in this study, a no-observed-adverse-effect level for MFE in 90 d repeated oral toxicity study in rats was determined to be greater than 1000 mg/kg regardless of gender. The results also suggested that MFE does not have a genotoxicity potential. © 2016 Institute of Food Technologists®

  14. [Study on the chemical components of edible oil fume in kitchen and its genotoxity on Drosophila].

    Science.gov (United States)

    Li, S; Wang, Y; Zhang, J; Zhao, X

    1999-01-30

    To study the chemical components of the condensate of edible oil fume in kitchen and its genotoxicity on Drosophila. Analysis for the chemical components was carried out by gas chromatography and mass spectra (GC/MS) and its genotoxicity was studied by sex linked recessive lethal (SLRL) test in Drosophila. A total of 74 organic compounds were found in samples of condensed oil from the fume in kitchen. It included hydroxylic acids, hydrocarbons, alcohols, esters, aldehydes, ketones, aromatic compounds, and steroids, etc. The total mutagenicity rates in SLRL test induced by the samples at concentrations of 110,320 and 960 mg/L were 0.1732%, 0.4306% and 0.1707% respectively. The sterility rates of the first broods were 2.564%, 2.056% and 2.845% at above 3 concentrations respectively(P < 0.05, as compared with the control). The mutagenicity rate of the second brood at 320 mg/L was 0.530% and that of the third brood at 110 mg/L 0.540%(P < 0.001). Some of the compounds in the condensate of edible oil fume were proved to have high recessive lethal effect and genotoxic effect on the reproductive system of Drosophila.

  15. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review

    Science.gov (United States)

    Chappell, Grace; Pogribny, Igor P.; Guyton, Kathryn Z.; Rusyn, Ivan

    2016-01-01

    Accumulating evidence suggests that epigenetic alterations play an important role in chemically-induced carcinogenesis. Although the epigenome and genome may be equally important in carcinogenicity, the genotoxicity of chemical agents and exposure-related transcriptomic responses have been more thoroughly studied and characterized. To better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints. Specifically, we searched for publications reporting epigenetic effects for the 28 agents and occupations included in Monograph Volume 100F of the International Agency for the Research on Cancer (IARC) that were classified as “carcinogenic to humans” (Group 1) with strong evidence of genotoxic mechanisms of carcinogenesis. We identified a total of 158 studies that evaluated epigenetic alterations for 12 of these 28 carcinogenic agents and occupations (1,3-butadiene, 4-aminobiphenyl, aflatoxins, benzene, benzidine, benzo[a]pyrene, coke production, formaldehyde, occupational exposure as a painter, sulfur mustard, and vinyl chloride). Aberrant DNA methylation was most commonly studied, followed by altered expression of non-coding RNAs and histone changes (totaling 85, 59 and 25 studies, respectively). For 3 carcinogens (aflatoxins, benzene and benzo[a]pyrene), 10 or more studies reported epigenetic effects. However, epigenetic studies were sparse for the remaining 9 carcinogens; for 4 agents, only 1 or 2 published reports were identified. While further research is needed to better identify carcinogenesis-associated epigenetic perturbations for many potential carcinogens, published reports on specific epigenetic endpoints can be systematically identified and increasingly incorporated in cancer hazard assessments. PMID:27234561

  16. Evaluation of toxicity and genotoxicity of 2-chlorophenol on bacteria, fish and human cells.

    Science.gov (United States)

    Vlastos, Dimitris; Antonopoulou, Maria; Konstantinou, Ioannis

    2016-05-01

    Due to the extensive use of chlorophenols (CPs) in anthropogenic activities, 2-Chlorophenol (2-CP), among other CPs, can enter aquatic ecosystems and can be harmful to a variety of organisms, including bacteria, fish and humans, that are exposed directly and/or indirectly to such contaminated environments. Based on the existing knowledge and in order to move a step forward, the purpose of this study is to investigate the toxic and mainly the genotoxic effects of 2-CP using a combination of bioassays. The tests include the marine bacterium Vibrio fischeri and micronuclei induction in the erythrocytes of Carassius auratus as well as in cultured human lymphocytes. The results obtained reveal that 2-CP is able to induce dose-dependent toxic and genotoxic effects on the selected tested concentrations under the specific experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Genotoxic and Antigenotoxic Potential of Momordica charantia Linn (Cucurbitaceae) in the Wing Spot Test of Drosophila melanogaster.

    Science.gov (United States)

    Guterres, Zaira Rosa; Zanetti, Thalita Alves; Sennes-Lopes, Tiago Felipe; da Silva, Ana Francisca Gomes

    2015-10-01

    Momordica charantia, popularly known as bitter melon, is a plant widely used in ethnobotanical medicine. It has antibacterial, antifungal, anthelmintic, antidiabetic, antiviral, and antimalarial activities, among others. The goal of this study was to evaluate the genotoxic and/or antigenotoxic activity of the aqueous extracts obtained from the aerial parts and fruit of this plant by means of the Drosophila melanogaster wing spot test. Third-stage larvae that obtained standard (ST) cross and high bioactivation (HB) cross were treated with aqueous extracts of the aerial parts (IQA) and fruit (IQF) of M. charantia, following two protocols (genotoxicity and antigenotoxicity). The aqueous extracts are not genotoxic in lower concentrations. The frequencies of mutant spots observed in the descendants of the ST and HB crosses treated with doxorubicin (DXR) alone were 8.65 and 9.25, respectively, whereas in those cotreated with IQA and DXR, the frequencies ranged from 15.90 to 29 in the ST cross and from 15.05 to 24.78 in the HB cross. In cotreatment with IQF, the frequencies ranged from 30.10 to 30.65 in the ST cross and from 13.60 to 14.50 in the HB cross, whereas the frequencies obtained with DXR were 32.50 in the ST cross and 26.00 in the HB cross. In conclusion, the IQA has a synergistic effect, enhancing the genotoxicity of DXR in the ST cross and the HB cross, whereas the IQF has antigenotoxic effects in the HB cross.

  18. Comparative Physicochemical and Genotoxicity Assessments of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The textile industry has become indispensable in view of its basic and social importance to human life, but its environmental impact has continued to be a subject of concern. ... the economy of many countries. ... Textile and clothing production process ..... Genotoxicity screening of industrial effluents using.

  19. A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of 'faecal water'

    DEFF Research Database (Denmark)

    Rieger, Martin A.; Parlesak, Alexandr; Pool-Zobel, Beatrice

    1999-01-01

    To determine the effects of different diets on the genotoxicity of human faecal water, a diet rich in fat, meat and sugar but poor in vegetables and free of wholemeal products (diet 1) was consumed by seven healthy volunteers over a period of 12 days. One week after the end of this period......, the volunteers started to consume a diet enriched with vegetables and wholemeal products but poor in fat and meat (diet 2) over a second period of 12 days. The genotoxic effect of faecal waters obtained after both diets was assessed with the single cell gel electrophoresis (Comet assay) using the human colon...... and purine bases revealed no differences after pretreatment with both types of faecal water. The results indicate that diets high in fat and meat but low in dietary fibre increase the genotoxicity of faecal water to colonic cells and may contribute to an enhanced risk of colorectal cancer....

  20. Antioxidant, genotoxic and antigenotoxic activities of daphne gnidium leaf extracts

    Directory of Open Access Journals (Sweden)

    Chaabane Fadwa

    2012-09-01

    Full Text Available Abstract Background Plants play a significant role in maintaining human health and improving the quality of human life. They serve humans well as valuable components of food, as well as in cosmetics, dyes, and medicines. In fact, many plant extracts prepared from plants have been shown to exert biological activity in vitro and in vivo. The present study explored antioxidant and antigenotoxic effects of Daphne gnidium leaf extracts. Methods The genotoxic potential of petroleum ether, chloroform, ethyl acetate, methanol and total oligomer flavonoid (TOF enriched extracts from leaves of Daphne gnidium, was assessed using Escherichia coli PQ37. Likewise, the antigenotoxicity of the same extracts was tested using the “SOS chromotest test”. Antioxidant activities were studied using non enzymatic and enzymatic method: NBT/Riboflavine and xantine oxidase. Results None of the different extracts produced a genotoxic effect, except TOF extract at the lowest tested dose. Our results showed that D. gnidium leaf extracts possess an antigenotoxic effect against the nitrofurantoin a mutagen of reference. Ethyl acetate and TOF extracts were the most effective in inhibiting xanthine oxidase activity. While, methanol extract was the most potent superoxide scavenger when tested with the NBT/Riboflavine assay. Conclusions The present study has demonstrated that D. gnidium leaf extract possess antioxidant and antigenotoxic effects. These activities could be ascribed to compounds like polyphenols and flavonoid. Further studies are required to isolate the active molecules.

  1. Genotoxicity in the eyes of bystander cells

    International Nuclear Information System (INIS)

    Hei, Tom K.; Persaud, Rudranath; Zhou, Hongning; Suzuki, Masao

    2004-01-01

    The controversial use of a linear, no threshold extrapolation model for low dose risk assessment has become even more so in light of the recent reports on the bystander phenomenon. The answer to the question as to which of the two phenomena, bystander versus adaptive response, is more important has practical implication in terms of low dose radiation risk assessment. In this review, genotoxicity is used as an endpoint to introduce the two phenomena, provide some insight into the mechanisms of bystander effect and to bridge the two low dose phenomena which operate in opposite directions: the bystander effect tends to exaggerate the effect at low doses, by communicating damage from hit to non-hit cells whereas the adaptive response confers resistance to a subsequent challenging dose by an initial low priming dose

  2. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.

  3. Genotoxicity assessment of some cosmetic and food additives.

    Science.gov (United States)

    Di Sotto, Antonella; Maffei, Francesca; Hrelia, Patrizia; Di Giacomo, Silvia; Pagano, Ester; Borrelli, Francesca; Mazzanti, Gabriela

    2014-02-01

    α-Hexylcinnamaldehyde (HCA) and p-tert-butyl-alpha-methylhydrocinnamic aldehyde (BMHCA) are synthetic aldehydes, characterized by a typical floral scent, which makes them suitable to be used as fragrances in personal care (perfumes, creams, shampoos, etc.) and household products, and as flavouring additives in food and pharmaceutical industry. The aldehydic structure suggests the need for a safety assessment for these compounds. Here, HCA and BMHCA were evaluated for their potential genotoxic risk, both at gene level (frameshift or base-substitution mutations) by the bacterial reverse mutation assay (Ames test), and at chromosomal level (clastogenicity and aneuploidy) by the micronucleus test. In order to evaluate a primary and repairable DNA damage, the comet assay has been also included. In spite of their potential hazardous chemical structure, a lack of mutagenicity was observed for both compounds in all bacterial strains tested, also in presence of the exogenous metabolic activator, showing that no genotoxic derivatives were produced by CYP450-mediated biotransformations. Neither genotoxicity at chromosomal level (i.e. clastogenicity or aneuploidy) nor single-strand breaks were observed. These findings will be useful in further assessing the safety of HCA and BMHCA as either flavour or fragrance chemicals. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Arsenic-induced biochemical and genotoxic effects and distribution in tissues of Sprague-Dawley rats

    Science.gov (United States)

    Patlolla, Anita K.; Todorov, Todor I.; Tchounwou, Paul B.; van der Voet, Gijsbert; Centeno, Jose A.

    2012-01-01

    Arsenic (As) is a well documented human carcinogen. However, its mechanisms of toxic action and carcinogenic potential in animals have not been conclusive. In this research, we investigated the biochemical and genotoxic effects of As and studied its distribution in selected tissues of Sprague–Dawley rats. Four groups of six male rats, each weighing approximately 60 ± 2 g, were injected intraperitoneally, once a day for 5 days with doses of 5, 10, 15, 20 mg/kg BW of arsenic trioxide. A control group was also made of 6 animals injected with distilled water. Following anaesthetization, blood was collected and enzyme analysis was performed by spectrophotometry following standard protocols. At the end of experimentation, the animals were sacrificed, and the lung, liver, brain and kidney were collected 24 h after the fifth day treatment. Chromosome and micronuclei preparation was obtained from bone marrow cells. Arsenic exposure significantly increased (p < 0.05) the activities of plasma alanine aminotransferase–glutamate pyruvate transaminase (ALT/GPT), and aspartate aminotransferase–glutamate oxaloacetate transaminase (AST/GOT), as well as the number of structural chromosomal aberrations (SCA) and frequency of micronuclei (MN) in the bone marrow cells. In contrast, the mitotic index in these cells was significantly reduced (p < 0.05). These findings indicate that aminotransferases are candidate biomarkers for arsenic-induced hepatotoxicity. Our results also demonstrate that As has a strong genotoxic potential, as measured by the bone marrow SCA and MN tests in Sprague–Dawley rats. Total arsenic concentrations in tissues were measured by inductively coupled plasma mass spectrometry (ICP-MS). A dynamic reaction cell (DRC) with hydrogen gas was used to eliminate the ArCl interference at mass 75, in the measurement of total As. Total As doses in tissues tended to correlate with specific exposure levels.

  5. Potential genotoxic and cytotoxicity of emamectin benzoate in human normal liver cells.

    Science.gov (United States)

    Zhang, Zhijie; Zhao, Xinyu; Qin, Xiaosong

    2017-10-10

    Pesticide residue inducing cancer-related health problems draw people more attention recently. Emamectin benzoate (EMB) has been widely used in agriculture around the world based on its specificity targets. Although potential risk and the molecular mechanism of EMB toxicity to human liver has not been well-characterized. Unlike well-reported toxicity upon central nervous system, potential genotoxic and cytotoxicity of EMB in human liver cell was ignored and very limited. In this study, we identify genotoxicity and cytotoxicity of EMB to human normal liver cells (QSG7701 cell line) in vitro . We demonstrate that EMB inhibited the viability of QSG7701 cells and induced the DNA damage. Established assays of cytotoxicity were performed to characterize the mechanism of EMB toxicity on QSG7701 cells. Typical chromatin condensation and DNA fragmentation indicated the apoptosis of QSG7701 cells induced by EMB. And the intracellular biochemical results demonstrated that EMB-enhanced apoptosis of QSG7701 cells concurrent with generated ROS, a loss of mitochondrial membrane potential, the cytochrome-c release, up regulate the Bax/Bcl-2 and the activation of caspase-9/-3. Our results of EMB induces the death of QSG7701 cells maybe via mitochondrial-mediated intrinsic apoptotic pathways would contribute to promote the awareness of EMB as an extensive used pesticide to human being effects and reveal the underlying mechanisms of potential genotoxic.

  6. Genotoxicity Screening of Industrial Effluents using Onion bulbs ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: The potential cytotoxicity and genotoxicity of three industrial wastewaters (brewery .... National recommended water quality criteria – correction; cWorld Health Organisation (1996). ..... Industrial Pollution Policy Management Study.

  7. Genotoxicity tests on D-tagatose.

    Science.gov (United States)

    Kruger, C L; Whittaker, M H; Frankos, V H

    1999-04-01

    D-tagatose is a low-calorie sweetener that tastes like sucrose. Its genotoxic potential was examined in five standard assays: the Ames Salmonella typhimurium reverse mutation assay, the Escherichia coli/mammalian microsome assay, a chromosomal aberration assay in Chinese hamster ovary cells, a mouse lymphoma forward mutation assay, and an in vivo mouse micronucleus assay. D-tagatose was not found to increase the number of revertants per plate relative to vehicle controls in either the S. typhimurium tester strains or the WP2uvrA- tester strain with or without metabolic activation at doses up to 5000 microg/plate. No significant increase in Chinese hamster ovary cells with chromosomal aberrations was observed at concentrations up to 5000 microg/ml with or without metabolic activation. D-tagatose was not found to increase the mutant frequency in mouse lymphoma L5178Y cells with or without metabolic activation up to concentrations of 5000 microg/ml. D-tagatose caused no significant increase in micronuclei in bone marrow polychromatic erythrocytes at doses up to 5000 mg/kg. D-tagatose was not found to be genotoxic under the conditions of any of the assays described above. Copyright 1999 Academic Press.

  8. In vivo genotoxicity of nitramines, transformation products of amine-based carbon capture technology

    Directory of Open Access Journals (Sweden)

    Claire Coutris

    2015-05-01

    Full Text Available In times where we need to reduce our CO2 emissions to the atmosphere, it is important to get a clearer picture of the environmental impacts associated with potential mitigation technologies. Chemical absorption with amines is emerging as the most advanced mitigation technology for post-combustion capture of CO2 from fossil fuel power stations. Although the amine solvent used in this technology is recycled during the capture process, degradation products are formed and released into the environment. Among these degradation products, the aliphatic nitramine compounds dimethylnitramine and ethanolnitramine have been identified, whose environmental impact was unknown. In addition to conducting survival, growth and reproduction tests in a range of marine species, we looked into the in vivo genotoxic potential of these two compounds to experimentally exposed fish (Coutris et al. 2015. DNA damage was analyzed in blood samples collected from the caudal vein of juvenile turbot Scophthalmus maximus after 28 day exposure to nitramines, using the 12 mini-gels version of the comet assay, with and without digestion with formamidopyrimidine DNA glycosylase. Although whole organism bioassays indicated that nitramine toxicity through necrosis was low, the genotoxicity assessment revealed contrasting results, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1 mg/L, 84 % DNA damage was observed, whereas 100 mg/L dimethylnitramine was required to cause 37 % DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90 % of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90 % of the genotoxicity of ethanolnitramine. Fish exposed to > 3 mg/L ethanolnitramine had virtually no DNA left in their red blood cells. The

  9. In Vitro and In Vivo Genotoxicity Assessment of Aristolochia manshuriensis Kom.

    Directory of Open Access Journals (Sweden)

    Youn-Hwan Hwang

    2012-01-01

    Full Text Available Arisolochiae species plants containing aristolochic acids I and II (AA I and AA II are well known to cause aristolochic acid nephropathy (AAN. Recently, there are various approaches to use AAs-containing herbs after the removal of their toxic factors. However, there is little information about genotoxicity of Arisolochiae manshuriensis Kom. (AMK per se. To obtain safety information for AMK, its genotoxicity was evaluated in accordance with OECD guideline. To evaluate genotoxicity of AMK, we tested bacterial reverse mutation assay, chromosomal aberration test, and micronucleus test. Here, we also determined the amounts of AA I and II in AMK (2.85 ± 0.08 and 0.50 ± 0.02 mg/g extract, resp.. In bacterial reverse mutation assay, AMK dose-dependently increased revertant colony numbers in TA98, TA100 and TA1537 regardless of metabolic activation. AMK increased the incidence of chromosomal aberration in Chinese hamster ovary-K1 cells, but there was no statistically significant difference. The incidences of micronucleus in bone marrow erythrocyte were significantly increased in mice after oral administration of AMK (5000 mg/kg, comparing with those of vehicle group (P<0.05. The results of three standard tests suggest that the genotoxicity of AMK is directly related to the AAs contents in AMK.

  10. Genotoxicity of unmodified and organo-modified montmorillonite

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Schmidt, Bjørn; Frandsen, Henrik Lauritz

    2010-01-01

    absent in the filtered samples, which was independently confirmed by dynamic light-scattering measurements. Detection and identification of free quaternary ammonium modifier in the filtered sample was carried out by HPLC-Q-TOF/MS and revealed a total concentration of a mixture of quaternary ammonium...... assay, none of the clays produced ROS in a cell-free test system (the DCFH-DA assay). Inductively coupled plasma mass-spectrometry (ICP-MS) was used to detect clay particles in the filtered samples using aluminium as a tracer element characteristic to clay. The results indicated that clay particles were...... analogues of 1.57 mu g/ml. These findings suggest that the genotoxicity of organo-modified montmorillonite was caused by the organo-modifier. The detected organo-modifier mixture was synthesized and comet-assay results showed that the genotoxic potency of this synthesized organo-modifier was in the same...

  11. Is Senna Laxative Use Associated to Cathartic Colon, Genotoxicity, or Carcinogenicity?

    OpenAIRE

    Morales, M. A.; Hern?ndez, D.; Bustamante, S.; Bachiller, I.; Rojas, A.

    2009-01-01

    Due to their natural origin, apparent low oral toxicity, effectiveness, and accessibility without a medical prescription, the anthranoid laxatives are a popular remedy for constipation and are frequently used abusively. Therefore, it is important to characterize its harmful and/or toxic effects. The sennosides, main active metabolites of senna, exhibit a very low toxicity in rats, and its genotoxic activity in bacterial strains as well as mammal cells was classified as weak in those cases whe...

  12. Evaluation of the genotoxic and cytotoxic potential of mainstream whole smoke and smoke condensate from a cigarette containing a novel carbon filter.

    Science.gov (United States)

    Bombick, D W; Bombick, B R; Ayres, P H; Putnam, K; Avalos, J; Borgerding, M F; Doolittle, D J

    1997-09-01

    A novel carbon filter has been developed which primarily reduces the amount of certain vapor phase constituents of tobacco smoke with greater efficiency than the charcoal filters of cigarettes currently in the market. In vitro indicators of genotoxic and cytotoxic potential were used to compare the cigarette smoke condensate (particulate phase) or whole cigarette smoke (vapor phase and particulate phase) from cigarettes containing the novel carbon filter with smoke condensate or whole smoke from commercial or prototype cigarettes not containing the novel carbon filter. Ames bacterial mutagenicity, sister chromatid exchange (SCE) in Chinese hamster ovary (CHO) cells, and neutral red cytotoxicity assays in CHO cells were utilized to assess the genotoxic and cytotoxic potential of the cigarette smoke condensates. SCE and neutral red cytotoxicity assays were utilized to assess the genotoxic and cytotoxic potential of the whole smoke. As expected, the novel carbon filter did not significantly affect the genotoxic or cytotoxic activity of the smoke condensate, although we did observe that the use of low-nitrogen tobacco reduced the mutagenicity of the condensate in Salmonella typhimurium strain TA98. However, the whole smoke from cigarettes containing the novel carbon filter demonstrated significant reductions in genotoxic and cytotoxic potential compared to cigarettes without the novel carbon filter. The toxicity of the smoke was correlated (r = 0.7662 for cytotoxicity and r = 0.7562 for SCE induction) to the aggregate mass of several vapor phase components (acetone, acetaldehyde, acrolein, acrylonitrile, 1,3-butadiene, ammonia, NOx, HCN, benzene, isoprene, and formaldehyde) in the smoke of the cigarettes utilized in this study. In conclusion, this novel carbon filter, which significantly reduced the amount of carbonyls and other volatiles in mainstream cigarette smoke, resulted in significant reductions in the genotoxic and cytotoxic activity of the smoke as measured

  13. Genotoxicity Biomonitoring Along a Coastal Zone Under Influence of Offshore Petroleum Exploration (Southeastern Brazil).

    Science.gov (United States)

    Gutiérrez, Juan Manuel; da Conceição, Moisés Basilio; Molisani, Mauricio Mussi; Weber, Laura Isabel

    2018-03-01

    Offshore oil exploration creates threats to coastal ecosystems, including increasing urbanization and associated effluent releases. Genotoxicity biomarkers in mussels were determined across a gradient of coastal zone influences of offshore petroleum exploration in southeastern Brazil. Coastal ecosystems such as estuaries, beaches and islands were seasonally monitored for genotoxicity evaluation using the brown mussel Perna perna. The greatest DNA damage (5.2% ± 1.9% tail DNA and 1.5‰  ± 0.8‰ MN) were observed in urban estuaries, while Santana Archipelago showed levels of genotoxicity near zero and is considered a reference site. Mussels from urban and pristine beaches showed intermediate damage levels, but were also influenced by urbanization. Thus, mussel genotoxicity biomarkers greatly indicated the proposed oil exploration and urbanization scenarios that consequently are genetically affecting coastal organisms.

  14. Assessment of genotoxicity associated with hydroxyurea therapy in children with sickle cell anemia

    Science.gov (United States)

    Flanagan, Jonathan M.; Howard, Thad A.; Mortier, Nicole; Avlasevich, Svetlana L.; Smeltzer, Matthew P.; Wu, Song; Dertinger, Stephen D.; Ware, Russell E.

    2018-01-01

    Hydroxyurea induces fetal hemoglobin, improves laboratory parameters, and ameliorates clinical complications of sickle cell anemia (SCA), but its long-term efficacy and safety in this patient population remain incompletely defined. Although generally considered non-DNA reactive, an important safety concern is that hydroxyurea may indirectly cause genotoxic damage. To better address this safety issue of hydroxyurea in patients with SCA, we measured the production of micronuclei (MN) in red blood cells (RBC) as a marker of genotoxicity. Blood samples were collected from children with SCA enrolled in the Hydroxyurea Study of Long-term Effects (ClinicalTrials.gov NCT00305175). Flow cytometry quantified circulating MN-containing erythrocyte sub-populations before and during hydroxyurea exposure. The frequency of micronucleated reticulocytes (MN-CD71+) and micronucleated mature erythrocytes (MN-RBC) were then tested for associations with laboratory and clinical data. In cross-sectional analysis of 293 blood samples from 105 children with SCA and a median of 2 years of hydroxyurea therapy, exposure to hydroxyurea was associated with significantly increased frequencies of MN-CD71+ and MN-RBC compared to baseline. The increases were evident by 3 months of therapy, and did not escalate further with up to 12 years of continuous drug exposure. In prospective longitudinal analysis, substantial inter-individual variation in the effect of hydroxyurea on %MN-CD71+ was observed that was associated with the expected laboratory effects of hydroxyurea. In conclusion, clinically relevant exposure to hydroxyurea is associated with increased MN production consistent with erythroblast genotoxicity but with substantial inter-patient variability. Associations between increased %MN-CD71+ and laboratory benefits suggest that hydroxyurea effects on MN production may be related to individual patient sensitivity to hydroxyurea within the bone marrow. PMID:20230905

  15. Evaluation of genotoxic and anti-mutagenic properties of cleistanthin A and cleistanthoside A tetraacetate.

    Science.gov (United States)

    Himakoun, Lakana; Tuchinda, Patoomratana; Puchadapirom, Pranom; Tammasakchai, Ratigon; Leardkamolkarn, Vijittra

    2011-01-01

    Cleistanthin A (CleinA) and cleistanthoside A (CleisA) isolated from plant Phyllanthus taxodiifolius Beille have previously shown potent anticancer effects. To promote their medicinal benefits, CleisA was modified to cleistanthoside A tetraacetate (CleisTA) and evaluated for genotoxic and anti-mutagenic properties in comparison with CleinA. Both compounds showed no significant mutagenic activity to S. typhimulium bacteria and no cytotoxic effect to normal mammalian cells. The non genotoxic effect of CleinA was further confirmed by un-alteration of cytokinesis-block proliferation index (CBPI) and micronucleus (MN) frequency assays in Chinese hamster lung fibroblast (V79) cells, and of CleisTA was confirmed by un-changes of human peripheral blood lymphocytes (HPBL) chromosomal structure assay. Moreover, the metabolic form of CleinA efficiently demonstrated cytostasis effect to V79 cell and prevented mutagen induced Salmonella TA98 and TA100 reversion, whereas both metabolic and non-metabolic forms of CleisTA reduced HPBL mitotic index (%M.I) in a concentration-dependent relationship. The results support CleinA and CleisTA as the new lead compounds for anti-cancer drug development.

  16. Effect of upgraded diesel fuels and oxidation catalysts on emission properties, especially PAH and genotoxicity

    DEFF Research Database (Denmark)

    Johansen, Keld; Gabrielsson, Pär; Stavnsbjerg, Peter

    1997-01-01

    in an engine test bench and a full ECE R49 13 mode test was performed and 2) a VW GOLF 1.6 l engine was mounted in a car and a full transient FTP-75 test was performed. Regulated emissions and unregulated emissions as SOF, sulphur, nitrate, PAH in PM plus vapour phase were measured. Genotoxic activity...

  17. In vivo assessment of genotoxic, antigenotoxic and anticarcinogenic activities of Solanum lycocarpum fruits glycoalkaloidic extract.

    Directory of Open Access Journals (Sweden)

    Carla Carolina Munari

    Full Text Available The fruits of Solanum lycocarpum, known as wolf-fruit, are used in folk medicine, and because of that we have evaluated both the genotoxic potential of its glycoalkaloidic extract (SL and its influence on the genotoxicity induced by methyl methanesulfonate. Furthermore, the potential blocking effect of SL intake in the initial stage of colon carcinogenesis in Wistar rats was investigated in a short-term (4-week bioassay using aberrant crypt foci (ACF as biomarker. The genotoxic potential was evaluated using the Swiss mice peripheral blood micronucleus test. The animals were treated with different doses of SL (15, 30 and 60 mg/kg b.w. for 14 days, and the peripheral blood samples were collected at 48 h, 7 days and 14 days after starting the treatment. For antigenotoxicity assessment, MMS was administered on the 14th day, and after 24 h the harvesting of bone marrow and liver cells was performed, for the micronucleus and comet assays, respectively. In the ACF assay, male Wistar rats were given four subcutaneous injections of the carcinogen 1,2-dimethylhydrazine (DMH, 40 mg/kg b.w., twice a week, during two weeks to induce ACF. The treatment with SL (15, 30 and 60 mg/kg b.w. was given for four weeks during and after carcinogen treatment to investigate the potential beneficial effects of SL on DMH-induced ACF. The results demonstrated that SL was not genotoxic in the mouse micronucleus test. In animals treated with SL and MMS, the frequencies of micronucleus and extensions of DNA damage were significantly reduced in comparison with the animals receiving only MMS. Regarding the ACF assay, SL significantly reduced the frequency of ACF induced by DMH.

  18. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice

    DEFF Research Database (Denmark)

    Modrzynska, Justyna; Berthing, Trine; Ravn-Haren, Gitte

    2018-01-01

    Background Little is known about the mechanism underlying the genotoxicity observed in the liver following pulmonary exposure to carbon black (CB) nanoparticles (NPs). The genotoxicity could be caused by the presence of translocated particles or by circulating inflammatory mediators released during...

  19. Proteome-wide Identification of Poly(ADP-Ribosyl)ation Targets in Different Genotoxic Stress Responses

    DEFF Research Database (Denmark)

    Jungmichel, S.; Rosenthal, F.; Altmeyer, M.

    2013-01-01

    . Nuclear proteins encompassing nucleic acid binding properties are prominently PARylated upon genotoxic stress, consistent with the nuclear localization of ARTD1/PARP1 and ARTD2/PARP2. Distinct differences in proteins becoming PARylated upon various genotoxic insults are observed, exemplified...

  20. Genotoxicity test of Maytenus rigida and Aristolochia birostris in the radicular meristem of the onion, Allium cepa

    Directory of Open Access Journals (Sweden)

    Sandra S. Mendes

    2011-09-01

    Full Text Available Medicinal plants are an important source of treatment for many ailments, although little is known of the potential genotoxic effects of most species. In the present study, two species from diverse and medicinally important genera - Maytenus rigida Mart., Celastraceae, and Aristolochia birostris Ducht, Aristolochiaceae - were analyzed to identify potentially significant secondary metabolites and the possible effects of their aqueous and alcoholic extracts on cell division in the onion root stem (genotoxicity test. The phytochemical testing revealed the presence of a number of potentially important secondary compounds in both species, including phenols, flavonoids, triterpenoids, steroids, and saponins. In the genotoxicity tests, no chromosomal abnormalities of any kind were observed in either species. In the case of M. rigida, a significant increase in mitotic activity was observed at the highest concentration. No significant tendency was recorded in A. birostris, although a considerable increase in the prophase was observed at all concentrations of the alcoholic extract. The triterpenoid content of both species may be especially important from a medicinal viewpoint, although recent findings on the carcinogenic potential of Aristolochia extracts demands caution in the interpretation of the results, and the need for further research.

  1. Genotoxicity test of Maytenus rigida and Aristolochia birostris in the radicular meristem of the onion, Allium cepa

    Directory of Open Access Journals (Sweden)

    Sandra S. Mendes

    2012-02-01

    Full Text Available Medicinal plants are an important source of treatment for many ailments, although little is known of the potential genotoxic effects of most species. In the present study, two species from diverse and medicinally important genera - Maytenus rigida Mart., Celastraceae, and Aristolochia birostris Ducht, Aristolochiaceae - were analyzed to identify potentially significant secondary metabolites and the possible effects of their aqueous and alcoholic extracts on cell division in the onion root stem (genotoxicity test. The phytochemical testing revealed the presence of a number of potentially important secondary compounds in both species, including phenols, flavonoids, triterpenoids, steroids, and saponins. In the genotoxicity tests, no chromosomal abnormalities of any kind were observed in either species. In the case of M. rigida, a significant increase in mitotic activity was observed at the highest concentration. No significant tendency was recorded in A. birostris, although a considerable increase in the prophase was observed at all concentrations of the alcoholic extract. The triterpenoid content of both species may be especially important from a medicinal viewpoint, although recent findings on the carcinogenic potential of Aristolochia extracts demands caution in the interpretation of the results, and the need for further research.

  2. Micronuclei as biomarkers of genotoxicity of gamma radiation in aquatic environments

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luanna R.S.; Silva, Edvane B.; Melo, Ana M.M.A. [Universidade Federal de Pernambuco (GERAR/DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear. Grupo de Estudos em Radioprotecao e Radioecologia; Silva, Ronaldo C. da [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica; Amancio, Francisco F. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia. Lab. de Radiobiologia

    2011-07-01

    Ionizing radiation is a genotoxic agent, inducing gene mutations and cellular death. Several efforts have been defendants in the development of techniques for measurement of radiation damage in biological systems. Among these techniques, micronuclei test has been showing as a great bio marker of DNA damage, being used in environmental monitoring to detect genotoxic agents in the environment. Additionally, organisms as Biomphalaria glabrata, freshwater molluscs, presents itself as an excellent model to assess damage caused by physical and chemical agents, due their biological and environmental characteristics. The snails were divided into groups of 5 individuals exposed to doses of 0 (control), 25, 35, 45 and 55 Gy of {sup 60}Co. After 48 hours of irradiation, the hemo lymph was collected and prepared the slides, which were stained with Giemsa and analyzed the cellular changes in haemocytes Statistical analysis was accomplished through chi-square test, ANOVA and Tukey test (p< 0,05). The results indicated that B. glabrata showed to be sensitive to gamma radiation. The snails irradiated with 35 Gy showed a decrease of haemocytes, while that of 55 Gy increased. Cellular and morphological changes were observed at doses of 35, 45 and 55 Gy and the dose of 55 Gy, the most radiotoxic. (author)

  3. Micronuclei as biomarkers of genotoxicity of gamma radiation in aquatic environments

    International Nuclear Information System (INIS)

    Silva, Luanna R.S.; Silva, Edvane B.; Melo, Ana M.M.A.; Silva, Ronaldo C. da; Amancio, Francisco F.

    2011-01-01

    Ionizing radiation is a genotoxic agent, inducing gene mutations and cellular death. Several efforts have been defendants in the development of techniques for measurement of radiation damage in biological systems. Among these techniques, micronuclei test has been showing as a great bio marker of DNA damage, being used in environmental monitoring to detect genotoxic agents in the environment. Additionally, organisms as Biomphalaria glabrata, freshwater molluscs, presents itself as an excellent model to assess damage caused by physical and chemical agents, due their biological and environmental characteristics. The snails were divided into groups of 5 individuals exposed to doses of 0 (control), 25, 35, 45 and 55 Gy of 60 Co. After 48 hours of irradiation, the hemo lymph was collected and prepared the slides, which were stained with Giemsa and analyzed the cellular changes in haemocytes Statistical analysis was accomplished through chi-square test, ANOVA and Tukey test (p< 0,05). The results indicated that B. glabrata showed to be sensitive to gamma radiation. The snails irradiated with 35 Gy showed a decrease of haemocytes, while that of 55 Gy increased. Cellular and morphological changes were observed at doses of 35, 45 and 55 Gy and the dose of 55 Gy, the most radiotoxic. (author)

  4. Molecular and cytogenetic evaluation for potential genotoxicity of hydrocortisone

    Directory of Open Access Journals (Sweden)

    Maha Aly Fahmy

    2015-09-01

    Full Text Available Objective: To assess the risk of hydrocortisone sodium succinate through different end points of genotoxicity. Methods: The study examined the induction of chromosomal aberrations in bone marrow cells, morphological sperm abnormalities, the effect on dominant lethal gene and protein synthesis. Hydrocortisone was given intraperitoneally at three dose levels 26, 39 and 52 mg/kg body weight which was equivalent to the therapeutic doses in man. Results: The results showed that single dose treatment with different doses had no effect on chromosomal aberrations. The dose of 52 mg/kg body weight induced significant percentage of chromosomal aberrations in bone marrow cells after repeated treatment for 7 and 14 days. Significant effect of morphological sperm abnormalities was demonstrated only after treatment with the dose of 52 mg/kg body weight. For examining the dominant lethal mutation, male mice were injected with dose of 39 mg/kg body weight for 5 consecutive days. Mating between treated males and virgin untreated females were performed at different time intervals. The results showed that the percentage of fertile mating at 1–7 and 8–14 days reduced to 50% and 60% respectively compared with control group while no effect was recorded at 15–21 days. The percentage of dominant lethal mutation reached 0.32%, 4.4% and 0% in mating intervals respectively indicating pronounced effect of hydrocortisone at the interval 8–14 days which represented by the late spermatids. The results also showed that the repeated treatment with the dose of 52 mg/kg body weight inhibited protein synthesis which contributed to the cytotoxic effect of the drug. Conclusions: It is concluded that long term treatment with large doses of hydrocortisone may have genotoxic effect.

  5. A novel mechanism of oxidative genotoxicity

    Indian Academy of Sciences (India)

    The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant ...

  6. Genotoxic effect of polycyclic aromatic hydrocarbons in the metropolitan area of Porto Alegre, Brazil, evaluated by Helix aspersa (Mueller, 1774)

    Energy Technology Data Exchange (ETDEWEB)

    Ianistcki, M. [Laboratorio de Genetica Toxicologica, Department of Biology, ULBRA, Av. Farroupilha 8001, Pr. 14/Sala 218, Bairro Sao Jose, CEP 92425-900 Canoas, RS (Brazil); Dallarosa, J. [Laboratorio de Ecologia, UFRGS (Brazil); Sauer, C.; Teixeira, C.E. [Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler, FEPAM, RS (Brazil); Silva, J. da, E-mail: juliana.silva@ulbra.b [Laboratorio de Genetica Toxicologica, Department of Biology, ULBRA, Av. Farroupilha 8001, Pr. 14/Sala 218, Bairro Sao Jose, CEP 92425-900 Canoas, RS (Brazil)

    2009-07-15

    The purpose of this study was to biomonitor metropolitan areas of Porto Alegre (Brazil) for PAHs associated with atmospheric particles and check their effects on the DNA of the land mollusk Helix aspersa. The sampling sites are located in an urban area with heavy traffic: (i) Canoas, (ii) Sapucaia do Sul, and (iii) FIERGS/Porto Alegre. The samples were collected during a continuous period of 24 hours during 15 days using Stacked Filter Units (SFU) on polycarbonate filters (two separated size fractions: PM{sub 10-2.5} and PM{sub <2.5}). The concentrations of 16 major PAHs were determined according to EPA. Comet assay on H. aspersa hemolymph cells was chosen for genotoxicity evaluation. This evaluation shows that, in general, the smaller PM-size fractions (PM{sub <2.5}) have the highest genotoxicity and contain higher concentrations of extractable organic matter. In addition, associations between chemical characteristics and PM carcinogenicity tend to be stronger for the smaller PM-size fractions. - DNA damage in H. aspersa exposed to atmospheric particulate in Metropolitan Area of Porto Alegre demonstrated association with PAHs in the fine filter (PM{sub <2.5}).

  7. Dicholesteroyl diselenide: cytotoxicity, genotoxicity and mutagenicity in the yeast Saccharomyces cerevisiae and in Chinese hamster lung fibroblasts.

    Science.gov (United States)

    de Oliveira, Iuri Marques; Degrandi, Tiago Hoerbe; Jorge, Patrícia Mendes; Saffi, Jenifer; Rosa, Renato Moreira; Guecheva, Temenouga Nikolova; Henriques, João Antonio Pêgas

    2014-03-15

    The organoselenium compound, dicholesteroyl diselenide (DCDS) is a structural analogue of diphenyl diselenide (DPDS) and may be considered as a promising antioxidant drug in vivo. Nevertheless, little is known about the toxicological properties of DCDS. In the present study we evaluated the cytotoxic, genotoxic and mutagenic properties of DCDS in Chinese hamster lung fibroblasts (V79) and in strains of the yeast Saccharomyces cerevisiae, proficient and deficient in several DNA-repair pathways. The results with V79 cells show that DCDS induced cytotoxicity, GSH depletion and elevation of lipid peroxidation at lower concentrations than did DPDS. DCDS also generated single- and double-strand DNA breaks in V79 cells, both in the presence and in the absence of metabolic activation, as revealed by alkaline and neutral comet assays. Moreover, the induction of oxidative DNA base-damage was demonstrated by means of a modified comet assay with formamidopyrimidine-DNA glycosylase and endonuclease III. Treatment with DCDS also induced micronucleus formation in V79 cells as well as point and frame-shift mutations in a haploid wild-type strain of S. cerevisiae. Yeast mutants defective in base excision-repair proteins were the most sensitive to DCDS. Pre-incubation with N-acetylcysteine reduced DCDS's oxidative, genotoxic and mutagenic effects in yeast and in V79 cells. Our findings indicate that the presence of cholesteroyl substituents in DCDS results in elevation of its cytotoxic and genotoxic potential compared with that of DPDS in yeast and in V79 cells. However, due to dose-dependent contrasting behaviour of organoselenium compounds and differences in their toxicity in in vitro and in vivo systems, further studies are needed in order to establish the non-toxic concentration range for treatment in mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A tiered approach to the use of alternatives to animal testing for the safety assessment of cosmetics: genotoxicity. A COLIPA analysis.

    Science.gov (United States)

    Pfuhler, Stefan; Kirst, Annette; Aardema, Marilyn; Banduhn, Norbert; Goebel, Carsten; Araki, Daisuke; Costabel-Farkas, Margit; Dufour, Eric; Fautz, Rolf; Harvey, James; Hewitt, Nicola J; Hibatallah, Jalila; Carmichael, Paul; Macfarlane, Martin; Reisinger, Kerstin; Rowland, Joanna; Schellauf, Florian; Schepky, Andreas; Scheel, Julia

    2010-01-01

    For the assessment of genotoxic effects of cosmetic ingredients, a number of well-established and regulatory accepted in vitro assays are in place. A caveat to the use of these assays is their relatively low specificity and high rate of false or misleading positive results. Due to the 7th amendment to the EU Cosmetics Directive ban on in vivo genotoxicity testing for cosmetics that was enacted March 2009, it is no longer possible to conduct follow-up in vivo genotoxicity tests for cosmetic ingredients positive in in vitro genotoxicity tests to further assess the relevance of the in vitro findings. COLIPA, the European Cosmetics Association, has initiated a research programme to improve existing and develop new in vitro methods. A COLIPA workshop was held in Brussels in April 2008 to analyse the best possible use of available methods and approaches to enable a sound assessment of the genotoxic hazard of cosmetic ingredients. Common approaches of cosmetic companies are described, with recommendations for evaluating in vitro genotoxins using non-animal approaches. A weight of evidence approach was employed to set up a decision-tree for the integration of alternative methods into tiered testing strategies. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Acute toxicity and genotoxicity of fermented traditional medicine oyaksungi-san.

    Science.gov (United States)

    Park, Hwayong; Hwang, Youn-Hwan; Ma, Jin Yeul

    2017-06-01

    The traditional medicine oyaksungi-san (OY) has been prescribed in East Asia for hundreds of years for the treatment of stroke, paralysis, and ataxia. OY also has therapeutic effects on arthralgia, myalgia, and rheumatoid arthritis, and recent studies have shown its protective effects against apoptosis of hippocampal cells and its anti-inflammatory effects on the peripheral blood cells of patient with cerebral infarction. Many studies have explored the use of traditional medicine and herb materials in the development of safe, novel, and effective pharmaceuticals with fewer side effects. These efforts commonly adopt a bioconversion tool for fermentation with beneficial microbes. However, only pharmaceuticals with high levels of safety and low levels of toxicity can be used in healthcare system. OY water extract was fermented with Lactobacillus and assayed for acute toxicity and genotoxicity. Single dose acute toxicity, bacterial reverse mutation, chromosome aberrations, and micronucleus were observed and assayed in rats, histidine/tryptophan auxotrophic bacteria, Chinese hamster ovary fibroblast cells, and mice bone marrow cells, respectively. All the experimental animals showed no abnormal behavior, clinical signs, body weight increases, or mortality. In the bacterial cultures, no revertant colonies were observed. Morphological and numerical chromosomal aberrations were not found in all metaphases examined. Frequency of induced micronuclei was not significantly increased in all doses applied. As a whole, no acute toxicity or genotoxicity were observed in all the assays examined. Therefore, fermented OY is considered to be a safe material that can be used for development of complementary and alternative medicine using bioconversion.

  10. Assessing genotoxicity of diuron on Drosophila melanogaster by the wing-spot test and the wing imaginal disk comet assay.

    Science.gov (United States)

    Peraza-Vega, Ricardo I; Castañeda-Sortibrán, América N; Valverde, Mahara; Rojas, Emilio; Rodríguez-Arnaiz, Rosario

    2017-05-01

    The aim of this study was to evaluate the genotoxicity of the herbicide diuron in the wing-spot test and a novel wing imaginal disk comet assay in Drosophila melanogaster. The wing-spot test was performed with standard (ST) and high-bioactivation (HB) crosses after providing chronic 48 h treatment to third instar larvae. A positive dose-response effect was observed in both crosses, but statistically reduced spot frequencies were registered for the HB cross compared with the ST. This latter finding suggests that metabolism differences play an important role in the genotoxic effect of diuron. To verify diuron's ability to produce DNA damage, a wing imaginal disk comet assay was performed after providing 24 h diuron treatment to ST and HB third instar larvae. DNA damage induced by the herbicide had a significantly positive dose-response effect even at very low concentrations in both strains. However, as noted for the wing-spot test, a significant difference between strains was not observed that could be related to the duration of exposure between both assays. A positive correlation between the comet assay and the wing-spot test was found with regard to diuron genotoxicity.

  11. Acute genotoxicity analysis in vivo of the aqueous extract of Maytenus guyanensis Amazonian chichuá

    Directory of Open Access Journals (Sweden)

    Dionatas Ulises de Oliveira Meneguetti

    Full Text Available Abstract The species Maytenus guyanensis Klotzsch ex Reissek, Celastraceae, present a wide variety of possible pharmacological activities and its roots and stems are used by popular medicine in the western Amazon rainforest. Few studies have demonstrated the genotoxic safety of the popular use of this species, and owing to this, the present study aimed to perform an analysis of the acute genotoxicity in vivo of the aqueous extract of M. guyanensis. Male and female mice from Mus musculus species, of weights ranging from 20 to 40 g, organized in eight groups with different treatments were used. The aqueous extracts of the bark of M. guyanensis were administered orally by gavage with 0.1 ml of the test substance per 10 g of the animal, followed by performance of comet assay in peripheral blood, PCE/NCE correlation and occurrence of micronuclei in the bone marrow. It was found that the aqueous extract of M. guyanensis, with ten times higher concentration than those used in ethnopharmacology, did not present genotoxic effect and, moreover, it has antigenotoxic action in mice treated acutely. Further studies regarding bioaccumulation and chronic effects of this species are suggested, in order to improve the understanding of its mechanism of action, ensuring the efficacy and safety of its utilization and developing phytotherapics and drugs.

  12. Comet assay evaluation of six chemicals of known genotoxic potential in rats.

    Science.gov (United States)

    Hobbs, Cheryl A; Recio, Leslie; Streicker, Michael; Boyle, Molly H; Tanaka, Jin; Shiga, Atsushi; Witt, Kristine L

    2015-07-01

    As a part of an international validation of the in vivo rat alkaline comet assay (comet assay) initiated by the Japanese Center for the Validation of Alternative Methods (JaCVAM) we examined six chemicals for potential to induce DNA damage: 2-acetylaminofluorene (2-AAF), N-nitrosodimethylamine (DMN), o-anisidine, 1,2-dimethylhydrazine dihydrochloride (1,2-DMH), sodium chloride, and sodium arsenite. DNA damage was evaluated in the liver and stomach of 7- to 9-week-old male Sprague Dawley rats. Of the five genotoxic carcinogens tested in our laboratory, DMN and 1,2-DMH were positive in the liver and negative in the stomach, 2-AAF and o-anisidine produced an equivocal result in liver and negative results in stomach, and sodium arsenite was negative in both liver and stomach. 1,2-DMH and DMN induced dose-related increases in hedgehogs in the same tissue (liver) that exhibited increased DNA migration. However, no cytotoxicity was indicated by the neutral diffusion assay (assessment of highly fragmented DNA) or histopathology in response to treatment with any of the tested chemicals. Therefore, the increased DNA damage resulting from exposure to DMN and 1,2-DMH was considered to represent a genotoxic response. Sodium chloride, a non-genotoxic non-carcinogen, was negative in both tissues as would be predicted. Although only two (1,2-DMH and DMN) out of five genotoxic carcinogens produced clearly positive results in the comet assay, the results obtained for o-anisidine and sodium arsenite in liver and stomach cells are consistent with the known mode of genotoxicity and tissue specificity exhibited by these carcinogens. In contrast, given the known genotoxic mode-of-action and target organ carcinogenicity of 2-AAF, it is unclear why this chemical failed to convincingly increase DNA migration in the liver. Thus, the results of the comet assay validation studies conducted in our laboratory were considered appropriate for five out of the six test chemicals. Copyright © 2015

  13. Genotoxicity assessment of membrane concentrates of landfill leachate treated with Fenton reagent and UV-Fenton reagent using human hepatoma cell line.

    Science.gov (United States)

    Wang, Guifang; Lu, Gang; Yin, Pinghe; Zhao, Ling; Yu, Qiming Jimmy

    2016-04-15

    Membrane concentrates of landfill leachates contain organic and inorganic contaminants that could be highly toxic and carcinogenic. In this paper, the genotoxicity of membrane concentrates before and after Fenton and UV-Fenton reagent was assessed. The cytotoxicity and genotoxicity was determined by using the methods of methyltetrazolium (MTT), cytokinesis-block micronucleus (CBMN) and comet assay in human hepatoma cells. MTT assay showed a cytotoxicity of 75% after 24h of exposure to the highest tested concentration of untreated concentrates, and no cytotoxocity for UV-Fenton and Fenton treated concentrates. Both CBMN and comet assays showed increased levels of genotoxicity in cells exposed to untreated concentrates, compared to those occurred in cells exposed to UV-Fenton and Fenton reagent treated concentrates. There was no significant difference between negative control and UV-Fenton treated concentrates for micronucleus and comet assay parameters. UV-Fenton and Fenton treatment, especially the former, were effective methods for degradation of bisphenol A and nonylphenol in concentrates. These findings showed UV-Fenton and Fenton reaction were effective methods for treatment of such complex concentrates, UV-Fenton reagent provided toxicological safety of the treated effluent, and the genotoxicity assays were found to be feasible tools for assessment of toxicity risks of complex concentrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  15. Genotoxic, cytotoxic, developmental and survival effects of tritiated water in the early life stages of the marine mollusc, Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Hagger, Josephine A. [School of Biological Sciences, University of Plymouth, Drake Circus, Devon, Plymouth PL4 8AA (United Kingdom); Atienzar, Franck A. [School of Biological Sciences, University of Plymouth, Drake Circus, Devon, Plymouth PL4 8AA (United Kingdom); Jha, Awadhesh N. [School of Biological Sciences, University of Plymouth, Drake Circus, Devon, Plymouth PL4 8AA (United Kingdom)]. E-mail: ajha@plymouth.ac.uk

    2005-09-10

    Using an integrated approach linking different levels of biological organisation, the genotoxic, cytotoxic, developmental and survival impact of tritiated water (HTO) were investigated in the embryo-larvae of marine mollusc Mytilus edulis. One-hour-old embryos were exposed to a range of concentrations (0.37-370 kBq ml{sup -1}) of HTO, which delivered a dose between 0.02 and 21.41 mGy over the exposure period for different end points. Detrimental effects, if any, were monitored at different levels of biological organisation (i.e. DNA, chromosomal, cellular and individual). Genotoxic effects were assessed using molecular and cytogenetic approaches which included analysis of random amplified polymorphic DNA (RAPD), induction of sister chromatid exchanges (SCEs) and chromosomal aberrations (Cabs). Cytotoxic effects were evaluated by determining the proliferative rate index (PRI) of the embryo-larval cells. Developmental and survival effects were also monitored every 24 h up to 72 h. Results in general indicated that HTO significantly increased cytogenetic damage, cytotoxicity, developmental abnormalities and mortality of the embryo-larvae as a function of concentration or radiation dose. The analysis of RAPD profiles also revealed qualitative effects in the HTO exposed population compared to controls. However, while the embryo-larvae showed dose or concentration dependent effects for mortality, developmental abnormalities and induction of SCEs, the dose-dependent effects were not apparent for Cabs and PRI at higher doses. The study contributes to our limited understanding of the impact of environmentally relevant radionuclides on non-human biota and emphasises the need for further investigations to elucidate potentially long term damage induced by persistent, low levels of other radionuclides on commercially and ecologically important species, in order to protect human and ecosystem health.

  16. Cells behaviors and genotoxicity on topological surface

    International Nuclear Information System (INIS)

    Yang, N.; Yang, M.K.; Bi, S.X.; Chen, L.; Zhu, Z.Y.; Gao, Y.T.; Du, Z.

    2013-01-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell–cell and cell–matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro. - Highlights: • Different cells behaviors on microstructure surfaces were discussed in this paper. • The expression of cell protein of Vinculin was studied in this research. • Cellular micronuclei test was applied to evaluate cells' genotoxicity. • Cell genotoxicity was first studied in the research field of topological surfaces

  17. Toxic and genotoxic effects of Roundup on tadpoles of the Indian skittering frog (Euflictis cyanophlyctis) in the presence and absence of predator stress.

    Science.gov (United States)

    Yadav, Sushama Singh; Giri, Sarbani; Singha, Utsab; Boro, Freeman; Giri, Anirudha

    2013-05-15

    Glyphosate, a post emergent herbicide, has become the backbone of no-till agriculture and is considered safe for animals. However, the impact of glyphosate on non-target organisms, especially on amphibians, is the subject of major concern and debate in recent times. We examined the toxic and genotoxic effects of Roundup, a commercial formulation of glyphosate, in the tadpoles of the Indian skittering frog (Euflictis cyanophlyctis). Roundup at different concentrations (0, 1, 2, 3, 4 and 8mg acid equivalent (ae)/L), tested in a 2×6 factorial design in the presence and absence of predator stress, induced concentration-dependent lethality in tadpoles. The 96-h LC50 for Roundup in the absence and presence of predator stress were 3.76mgae/L and 3.39mgae/L, respectively. The 10-day LC50 value for Roundup was significantly lower, 2.12mgae/L and 1.91mgae/L in the absence and presence of predator stress, respectively. Lower concentrations of Roundup (1, 2 and 3mgae/L) induced the formation of micronuclei (MN) in the erythrocytes of tadpoles at 24-h (F3,56=10.286, p<0.001), 48-h (F3,56=48.255, p<0.001), 72-h (F3,56=118.933, p<0.001) and 96-h (F3,56=85.414, p<0.001) in a concentration-dependent manner. Presence of predator stress apparently increased the toxicity and genotoxicity of Roundup; but these effects were not statistically significant. These findings suggest that Roundup at environmentally relevant concentrations has lethal and genotoxic impact on E. cyanophlyctis; which may have long-term fitness consequence to the species. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Genotoxicity effects of nano bioactive glass and Novabone bioglass on gingival fibroblasts using single cell gel electrophoresis (comet assay: An in vitro study

    Directory of Open Access Journals (Sweden)

    Mohammad Tavakoli

    2012-01-01

    Conclusion: The findings of this study have demonstrated that novel nano bioactive glass had no genotoxicity in concentrations lower than 4 mg/ml. Nanoparticles have a higher surface area in comparison to microparticles and thus, the amount and rate of ion release for nanoparticles are extremely higher. This difference is the main reason for the different genotoxicity of nano bioactive glass and micro Novabone bioglass in the concentrations higher than 4 mg/ml.

  19. Comparing BMD-derived genotoxic potency estimations across variants of the transgenic rodent gene mutation assay.

    Science.gov (United States)

    Wills, John W; Johnson, George E; Battaion, Hannah L; Slob, Wout; White, Paul A

    2017-12-01

    There is growing interest in quantitative analysis of in vivo genetic toxicity dose-response data, and use of point-of-departure (PoD) metrics such as the benchmark dose (BMD) for human health risk assessment (HHRA). Currently, multiple transgenic rodent (TGR) assay variants, employing different rodent strains and reporter transgenes, are used for the assessment of chemically-induced genotoxic effects in vivo. However, regulatory issues arise when different PoD values (e.g., lower BMD confidence intervals or BMDLs) are obtained for the same compound across different TGR assay variants. This study therefore employed the BMD approach to examine the ability of different TGR variants to yield comparable genotoxic potency estimates. Review of over 2000 dose-response datasets identified suitably-matched dose-response data for three compounds (ethyl methanesulfonate or EMS, N-ethyl-N-nitrosourea or ENU, and dimethylnitrosamine or DMN) across four commonly-used murine TGR variants (Muta™Mouse lacZ, Muta™Mouse cII, gpt delta and BigBlue® lacI). Dose-response analyses provided no conclusive evidence that TGR variant choice significantly influences the derived genotoxic potency estimate. This conclusion was reliant upon taking into account the importance of comparing BMD confidence intervals as opposed to directly comparing PoD values (e.g., comparing BMDLs). Comparisons with earlier works suggested that with respect to potency determination, tissue choice is potentially more important than choice of TGR assay variant. Scoring multiple tissues selected on the basis of supporting toxicokinetic information is therefore recommended. Finally, we used typical within-group variances to estimate preliminary endpoint-specific benchmark response (BMR) values across several TGR variants/tissues. We discuss why such values are required for routine use of genetic toxicity PoDs for HHRA. Environ. Mol. Mutagen. 58:632-643, 2017. © 2017 Her Majesty the Queen in Right of Canada

  20. [Evaluation of cyto- and genotoxic action of ferronanomagnetic and constant magnetic field in in vivo system].

    Science.gov (United States)

    Chekhun, V F; Lozovs'ka, Iu V; Luk'ianova, N Iu; Demash, D V; Todor, I M; Nalieskina, L A

    2013-01-01

    Cyto- and genotoxic effects of nanoparticles on the basis of FM, CMF or their combination have been studied in AKE cells, BM cells of erythroid line, and peripheral blood lymphocytes with the use of MN test and "DNA-comet" assay. It has been shown that expression of mentioned effects is related to FM concentration and duration of tested agent action. It has been also demonstrated that action of CMF alone in the studied cells did not cause any changes in cell architectonics or affect MN counts which are associated with DNA damage. When FM and CMF were used in combination there has been observed the phenomenon of induction of CMF action with FM nanoparticles. The obtained results allow recommend MN test and "DNA-comet" assay as the markers of genome stability in the tests of genotoxic effects of nanomaterials for development of vector nanosystems.

  1. Genotoxicity studies in semiconductor industry. 1. In vitro mutagenicity and genotoxicity studies of waste samples resulting from plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.; Huettner, E.M.; Merten, H.; Raabe, F. (Institute of Plant Genetics and Crop Plant Research, Gatersleben (Germany))

    1993-07-01

    Solid waste samples taken from the etching reactor, the turbo pump, and the waste air system of a plasma etching technology line in semiconductor production were studied as to their genotoxic properties in a bacterial repair test, in the Ames/Salmonella microsome assay, in the SOS chromotest, in primary mouse hepatocytes, and in Chinese hamster V79 cell cultures. All three waste samples were found to be active by inducing of unscheduled DNA-synthesis in mouse hepatocytes in vitro. In the bacterial rec-type repair test with Proteus mirabilis, waste samples taken from the turbo pump and the vacuum pipe system were not genotoxic. The waste sample taken from the chlorine-mediated plasma reactor was clearly positive in the bacterial repair assay and in the SOS chromotest with Escherichia coli. Mutagenic activity was demonstrated for all samples in the presence and absence of S9 mix made from mouse liver homogenate. Again, highest mutagenic activity was recorded for the waste sample taken from the plasma reactor, while samples collected from the turbo pump and from the waste air system before dilution and liberation of the air were less mutagenic. For all samples chromosomal damage in V79 cells was not detected, indicating absence of clastogenic activity in vitro. Altogether, these results indicate generation of genotoxic and mutagenic products as a consequence of chlorine-mediated plasma etching in the microelectronics industry and the presence of genotoxins even in places distant from the plasma reactor. Occupational exposure can be expected both from the precipitated wastes and from chemicals reaching the environment with the air stream.

  2. Fusarium infection causes genotoxic disorders and antioxidant-based damages in Orobanche spp.

    Science.gov (United States)

    Aybeke, Mehmet

    2017-08-01

    This study aims to evaluate the toxic effects of Fusarium oxysporum on root parasitic weed, Orobanche spp. Comparative genetic and gene expression studies were conducted on uninfected and fungus-infected orobanches. In genetic studies, isolated total DNA was amplified by RAPD PCR. Fragment properties were analysed by GTS test. According to the results, the fragment properties of control and Fusarium infected (experimental) groups varied widely; and it has been observed that Fusarium has genotoxic effects on the DNA of orobanches. In gene expression studies, the expression levels of genes encoding enzymes or proteins were associated with ROS damage and toxic effects, therefore, gene expressions of Mn-superoxide dismutase (SOD), Zn-superoxide dismutase (=SOD2, mitochondrial), glutamine synthetase (GS), heat shock protein gene (HSP70), BAX, Caspase-3 and BCL2 were significantly higher in the experimental group. In the light of obtained data, it was concluded that F. oxysporum (1) caused heavy ROS damage in Orobanche (2) induced significant irrevocable genotoxic effects on the DNA of Orobanche, (3) degraded protein metabolism and synthesis, and finally (4) triggered apoptosis. The results of this study can be a ground for further research on reducing the toxic effects of Fusarium on agricultural products, so that advancements in bio-herbicide technology may provide a sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Genotoxicity assessment data for exfoliated buccal cells exposed to mobile phone radiation

    Directory of Open Access Journals (Sweden)

    F.M. de Oliveira

    2017-12-01

    Full Text Available Healthy mobile phone users aged 18–30 y.o. provided exfoliated buccal cells samples from the right and left inner cheeks. A total of 2000 cells per subject were screened for the presence of micronuclei as a sign of genotoxic damage, according to the mobile phone use profile of each user. Keywords: Electromagnetic fields, Mobile phones, Genotoxicity, Micronuclei, Exfoliated buccal cells, Feulgen stain

  4. Analysis of Aloe vera cytotoxicity and genotoxicity associated with endodontic medication and laser photobiomodulation.

    Science.gov (United States)

    Carvalho, Nayane Chagas; Guedes, Simone Alves Garcez; Albuquerque-Júnior, Ricardo Luiz Cavalcanti; de Albuquerque, Diana Santana; de Souza Araújo, Adriano Antunes; Paranhos, Luiz Renato; Camargo, Samira Esteves Afonso; Ribeiro, Maria Amália Gonzaga

    2018-01-01

    This study aims to evaluate, in vitro, the effect of Aloe vera associated with endodontic medication, with or without laser photobiomodulation (FTL) irradiation in FP6 human pulp fibroblasts. The materials were divided into eight groups: CTR - control; CL - FTL alone; AA - Aloe vera with distilled water; AL - Aloe vera with distilled water and FTL; HA - calcium hydroxide P.A. with distilled water; HL - calcium hydroxide P.A. with distilled water and FTL; HAA - calcium hydroxide P.A. with Aloe vera and distilled water; HAL - calcium hydroxide P.A. with Aloe vera, distilled water, and FTL. The cytotoxicity was evaluated by MTT assay at 24, 48, and 72h and the genotoxicity by micronucleus test assay. This study was performed in triplicate. Data obtained in both tests were statistically analyzed by ANOVA and Tukey's tests (p≤0.05). Group AA presented high genotoxicity and low cytotoxicity. After 24, 48, and 72h, the group HAA significantly reduced the cell viability. Interaction with FTL showed slightly increase cell viability after 24 and 48h in groups CL and HL (pAloe vera allowed higher cell viability in human pulp fibroblasts in the presence of calcium hydroxide or with FTL separately, but genotoxicity increased in these associations. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mutagenic and genotoxic activity of particulate matter MP2,5, in Pamplona, North Santander, Colombia

    Directory of Open Access Journals (Sweden)

    Martínez Montañez, Mónica Liseth

    2012-10-01

    Full Text Available Objective: To study the mutagenic and genotoxic activities of particulate material (MP2,5 collected in Pamplona, Norte de Santander, Colombia.Materials and methods: MP2,5 was monitored by means of a Partisol 2025 sequential air sampler with Plus Palmflex quartz filters. The latter were subjected to two extraction procedures: Soxhlet extraction using dichloromethane-acetone; and ultrasonic extraction using dichloromethane, acetone and dichloromethane/ acetone mix. The mutagenic and genotoxic activities were determined for each extract.Results: This is the first study conducted in Colombia that reports the mutagenic and genotoxic activities associated with particulate matter (MP2,5 taken from vehicular emissions in Pamplona, Norte de Santander. The mutagenic assay determined by the Ames test using Salmonella typhimurium strains TA98 and TA100 showed a high direct mutagenic activity in the analyzed extracts. On the other hand, the genotoxic activity, determined by means of the comet assay, was high too.Conclusion: Particulate material (MP2,5 present in air samples in Pamplona (northeastern Colombia is a risk factor for the exposed population because it can directly induce mutations and also cause genotoxic damage.

  6. Genotoxicity test of propolis extract, mineral trioksida aggregat, and calcium hydroxide on fibroblast BHK-21 cell cultures

    Directory of Open Access Journals (Sweden)

    Ceples Dian Kartika W.P

    2015-03-01

    Full Text Available Background: Health industry has always used natural products as an alternative. Propolis, a natural antibiotic, is a resinous yellow brown or dark brown substance derived from honey bees (Apis mellifera. The main chemical compounds contained in propolis are flavonoids, phenolics and other various aromatic compounds. Flavonoids are well known plant compounds that have antibacterial, antifungal, antiviral, antioxidant and anti-inflammatory proprieties. Propolis is expected to be an alternative used for root canal treatment with lower toxicity compared to calcium hydroxide (Ca(OH2 . Over the last decade, a new material, mineral trioxide aggregate (MTA was developed, and has been used as the gold standard. All materials used in mouth should be biocompatible. The initial level of material biocompatibility evaluation involves toxicity and genotoxicity tests. Purpose: This research is aimed to conduct comparison test of genotoxicity effect of propolis extract, MTA and Ca(OH2 on fibroblast BHK-21 cell culture. Methods: This research was conducted with single-cell gel electrophoresis method. Results: The results indicate that propolis extract cannot cause DNA damage, while MTA can cause apoptosis and Ca(OH2 can cause neucrosis. Conclusion: It can be concluded that propolis extract has genotoxicity effect lower than MTA and Ca(OH2 , but MTA has lower effect on fibroblast BHK-21 cell culture.

  7. An alternative approach to studying the effects of ZnO nanoparticles in cultured human lymphocytes: combining electrochemistry and genotoxicity tests.

    Science.gov (United States)

    Branica, Gina; Mladinić, Marin; Omanović, Dario; Želježić, Davor

    2016-12-01

    Nanoparticle use has increased radically raising concern about possible adverse effects in humans. Zinc oxide nanoparticles (ZnO NPs) are among the most common nanomaterials in consumer and medical products. Several studies indicate problems with their safe use. The aim of our study was to see at which levels ZnO NPs start to produce adverse cytogenetic effects in human lymphocytes as an early attempt toward establishing safety limits for ZnO NP exposure in humans. We assessed the genotoxic effects of low ZnO NP concentrations (1.0, 2.5, 5, and 7.5 μg mL-1) in lymphocyte cultures over 14 days of exposure. We also tested whether low and high-density lymphocytes differed in their ability to accumulate ZnO NPs in these experimental conditions. Primary DNA damage (measured with the alkaline comet assay) increased with nanoparticle concentration in unseparated and high density lymphocytes. The same happened with the fragmentation of TP53 (measured with the comet-FISH). Nanoparticle accumulation was significant only with the two highest concentrations, regardless of lymphocyte density. High-density lymphocytes had significantly more intracellular Zn2+ than light-density ones. Our results suggest that exposure to ZnO NPs in concentrations above 5 μg mL-1 increases cytogenetic damage and intracellular Zn2+ levels in lymphocytes.

  8. Genotoxicity monitoring of industrial wastes using plant bioassays and management through vermitechnology: A review

    Directory of Open Access Journals (Sweden)

    Sartaj Ahmad Bhat

    2017-10-01

    Full Text Available The main objective of this review was to summarize and present a comprehensive account of the cytotoxic, genotoxic and mutagenic potential of various industrial wastes/sludges using some well-known plant bioassays followed by their bioremediation using vermitechnology. Industries are the main origin of discharges of various types of chemical wastes and are the main causes of environmental degradation. The direct application of industrial sludges could also harm the local biota. The genotoxicity of industrial sludges is assessed using various plant bioassays (for example Allium cepa, Vicia faba and these bioassays are comparatively more sensitive and cost-effective compared to other in-vitro genotoxicity bioassays. In addition, the materials used for toxicity evaluation are easily available and are being routinely used for the monitoring of environmental pollution. In most studies, the increases in root length and mitotic index, as well as the decrease in chromosomal aberrations in post vermicomposted sludges/wastes indicate that earthworms have the ability to reduce the ecotoxicogenetic effects of sludges/wastes. Post vermicompost is considered an excellent material of a homogenous nature as it has reduced levels of contaminants and holds more nutrients over a longer time without affecting the environment. The biotransformation potential of earthworms and their ability to detoxify most of the heavy metals in industrial sludges is because of their strong metabolic system and the involvement of diverse intestinal microflora and chloragocytic cells that reduce toxic forms to nontoxic forms. This unique ability of earthworms confirms the effectiveness of vermitechnology in reducing the toxicity of industrial wastes. Keywords: Allium cepa, Earthworm, Industrial sludge, Toxicity, Vermicomposting

  9. Investigation of flurbiprofen genotoxicity and cytotoxicity in rat bone marrow cells.

    Science.gov (United States)

    Timocin, Taygun; Ila, Hasan B

    2015-01-01

    This study was performed to investigate cytogenetic effects of NSAID flurbiprofen which was used as active ingredient in some analgesic, antipyretic and anti-inflammatory drugs. Genotoxic effect of flurbiprofen was investigated using in vivo chromosome aberration (CA) test and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) test. Also, oxidative stress potential of flurbiprofen was determined by measuring total oxidant and antioxidant level which occurred with flurbiprofen treatment in rat peripheral blood. For these purposes, rats were treated with three concentrations of flurbiprofen (29.25, 58.50 and 117 mg/kg, body weight) in single dose at two different treatment periods (12 and 24 h). According to the results, flurbiprofen did not affect chromosome aberrations in rat bone marrow cells with CA test. In RAPD-PCR test, polymorphic bands were unaffected. Also, test substance did not change total oxidant and antioxidant status (except for 58.50 and 117 mg/kg, 12 h) and therefore it did not lead to significant increase on oxidative stress (again except 58.50 and 117 mg/kg, 12 h). However, flurbiprofen reduced to mitotic indexes and these reductions were dose-dependent for 12 h treatment. In summary, flurbiprofen did not show significant genotoxic effect. But it caused cytotoxicity in rat bone marrow cells.

  10. UVA/UVB-induced genotoxicity and lesion repair in Colossoma macropomum and Arapaima gigas Amazonian fish.

    Science.gov (United States)

    Groff, Aline Aparecida; da Silva, Juliana; Nunes, Emilene A; Ianistcki, Martus; Guecheva, Temenouga N; de Oliveira, Alzira Miranda; de Oliveira, Christiane Patrícia Feitosa; Val, Adalberto Luis; Henriques, João A P

    2010-05-03

    Ultraviolet radiation is known to cause adverse effects to aquatic species and aquatic environments. The fish Colossoma macropomum (tambaqui) and Arapaima gigas (pirarucu) live in the Amazon basin, near the Equator, and thus receive high intensity of ultraviolet radiation. Deforestation further aggravates the situation by reducing shade at ground level. The aim of this study was to evaluate the genotoxic effects of UVA and UVB radiation on erythrocytes of tambaqui and pirarucu fish using Micronuclei test and Comet assay. Our study showed that UV radiation caused DNA damage in both species as detected by Comet assay. In addition, there were differences in response to genotoxicity between both species, which are possibly related to their evolutionary history. Tambaqui fish exposed to ultraviolet radiation for different periods presented clear dose-response in DNA damage profile. Significant damage repair was observed 24h after cessation of ultraviolet radiation exposure. At the test conditions used, no significant increase in micronucleated cells was observed in tambaqui and pirarucu fish. Tambaqui proved to be more sensitive to ultraviolet radiation than Pirarucu, as detected by Comet assay, showing statistically higher baseline DNA damage. The present results demonstrated that alkaline Comet assay was very sensitive for detecting the UV-induced genotoxicity during the short exposure period in our study. In addition, the present study also suggests that tambaqui and pirarucu fish are useful sentinel organisms, as their UV sensitivity allows them to be effective monitors of biological hazards in the Amazon region. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Genotoxicity of carbon nanofibers: Are they potentially more or less dangerous than carbon nanotubes or asbestos?

    International Nuclear Information System (INIS)

    Kisin, E.R.; Murray, A.R.; Sargent, L.; Lowry, D.; Chirila, M.; Siegrist, K.J.; Schwegler-Berry, D.; Leonard, S.; Castranova, V.; Fadeel, B.; Kagan, V.E.; Shvedova, A.A.

    2011-01-01

    The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf (registered) -III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos > CNF > SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominately centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.

  12. Evaluation of environmental genotoxicity by comet assay in Columba livia.

    Science.gov (United States)

    González-Acevedo, Anahi; García-Salas, Juan A; Gosálvez, Jaime; Fernández, José Luis; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Méndez-López, Luis F; Cortés-Gutiérrez, Elva I

    2016-01-01

    The concentrations of recognized or suspected genotoxic and carcinogenic agents found in the air of large cities and, in particular, developing countries, have raised concerns about the potential for chronic health effects in the populations exposed to them. The biomonitoring of environmental genotoxicity requires the selection of representative organisms as "sentinels," as well as the development of suitable and sensitive assays, such as those aimed at assessing DNA damage. The aim of this study was to evaluate DNA damage levels in erythrocytes from Columba livia living in the metropolitan area of Monterrey, Mexico, compared with control animals via comet assay, and to confirm the results via Micronuclei test (MN) and DNA breakage detection-fluorescence in situ hybridization (DBD-FISH). Our results showed a significant increase in DNA migration in animals from the area assayed compared with that observed in control animals sampled in non-contaminated areas. These results were confirmed by MN test and DBD-FISH. In conclusion, these observations confirm that the examination of erythrocytes from Columba livia via alkaline comet assay provides a sensitive and reliable end point for the detection of environmental genotoxicants.

  13. Molecular and structural changes induced by essential oils treatments in Vicia faba roots detected by genotoxicity testing.

    Science.gov (United States)

    Sturchio, Elena; Boccia, Priscilla; Zanellato, Miriam; Meconi, Claudia; Donnarumma, Lucia; Mercurio, Giuseppe; Mecozzi, Mauro

    2016-01-01

    Over the last few years, there has been an increased interest in exploiting allelopathy in organic agriculture. The aim of this investigation was to examine the effects of essential oil mixtures in order to establish their allelopathic use in agriculture. Two mixtures of essential oils consisting respectively of tea tree oil (TTO) and clove plus rosemary (C + R) oils were tested. Phytotoxicity and genotoxicity tests on the root meristems of Vicia faba minor were performed. A phytotoxic influence was particularly relevant for C + R mixture, while genotoxicity tests revealed significant results with both C + R oil mixture and TTO. Phenotypic analysis on Vicia faba minor primary roots following C + R oil mixture treatment resulted in callose production, an early symptom attributed to lipid peroxidation. The approach described in this study, based on genotoxicity bioassays, might identify specific DNA damage induced by essential oil treatments. These tests may represent a powerful method to evaluate potential adverse effects of different mixtures of essential oils that might be useful in alternative agriculture. Future studies are focusing on the positive synergism of more complex mixtures of essential oils in order to reduce concentrations of potentially toxic components while at the same time maintaining efficacy in antimicrobial and antifungal management.

  14. Comparison of in vitro test systems using bacterial and mammalian cells for genotoxicity assessment within the "health-related indication value (HRIV) concept.

    Science.gov (United States)

    Prantl, Eva-Maria; Kramer, Meike; Schmidt, Carsten K; Knauer, Martina; Gartiser, Stefan; Shuliakevich, Aliaksandra; Milas, Julia; Glatt, Hansruedi; Meinl, Walter; Hollert, Henner

    2018-02-01

    In numerous cases, the German health-related indication value (HRIV) concept has proved its practicability for the assessment of drinking water relevant trace substances (Umweltbundesamt 2003). The HRIV is based on the toxicological profile of a substance. An open point of the HRIV concept has been the assignment of standardized test procedures to be used for the assessment. The level of the HRIV is at its lowest as soon as the genotoxicity of the substance is detected. As a single test on its own, it is not sufficient enough to assess the human toxicological relevance of a genotoxic effect or exclude it in the case of a negative result; a reasonable test battery was required, technically oriented towards the already harmonized international, hierarchical evaluation for toxicological assessment of chemicals. Therefore, an important aim of this project was to define a strategy for the genotoxicological assessment of anthropogenic trace substances. The basic test battery for genotoxicity of micropollutants in drinking water needs to fulfill several requirements. Although quick test results are needed for the determination of HRIV, a high degree of transferability to human genotoxicity should be ensured. Therefore, an in vitro genotoxicity test battery consisting of the Ames fluctuation test with two tester strains (ISO 11350), the umu test and the micronucleus test, or from the Ames test with five tester strains (OECD 471) and the micronucleus test is proposed. On the basis of selected test substances, it could be shown that the test battery leads to positive, indifferent, and negative results. Given indifferent results, the health authority and the water supplier must assume that it is a genotoxic substance. Genetically modified tester strains are being sensitive to different chemical classes by expression of selected mammalian key enzymes for example nitroreductase, acetyltransferase, and glutathione-S-transferase. These strains may provide valuable additional

  15. In vivo micronucleus test as a biomarker of genotoxicity in free-range goats from suspected contaminated environment

    Directory of Open Access Journals (Sweden)

    Afusat Jagun Jubril

    2017-09-01

    Conclusion: The finding indicates the prevalence and frequency of micronucleus as a biomarker of genotoxicity and an indicator of exposure to environmental genotoxic subtances. Hence, this highlights the relevance of these goats as important sentinel animal model. These findings, therefore, serve as a preliminary data for further studies on the latent genotoxic environmental contaminants and their potential deleterious impact. [J Adv Vet Anim Res 2017; 4(3.000: 281-287

  16. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    Science.gov (United States)

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cytotoxicity and genotoxicity of intravitreal adalimumab administration in rabbit retinal cells

    Directory of Open Access Journals (Sweden)

    Álcio Coutinho de Paula

    2015-04-01

    Full Text Available Purpose: To assess the cytotoxicity and genotoxicity of intravitreal adalimumab treatment in an animal experimental model using cytological and molecular techniques. Methods: Eighteen rabbits were randomly assigned to three groups: control, adalimumab treatment, and placebo. Cytotoxicity on retinal cells was evaluated using flow cytometry assays to determine the level of apoptosis and necrosis. Genotoxicity was evaluated by comet assays to assess DNA damage, and quantitative real-time polymerase chain reaction (qPCR was used to evaluate expression of apoptosis-inducing caspases (8 and 3. Results: No cytotoxicity or genotoxicity was observed in any of the two treatment groups (adalimumab and placebo following intravitreal administration compared with the control group. Flow cytometry analysis revealed that more than 90% of the cells were viable, and only a low proportion of retinal cells presented apoptotic (~10% or necrotic (<1% activity across all groups. Molecular damage was also low with a maximum of 6.4% DNA degradation observed in the comet assays. In addition, no increase in gene expression of apoptosis-inducing caspases was observed on retinal cells by qPCR in both the adalimumab and placebo groups compared with the control group. Conclusion: The use of adalimumab resulted in no detectable cytotoxicity or genotoxicity on retinal cells for up to 60 days upon administration. These results therefore indicate that adalimumab may be a safe option for intravitreal application to treat ocular inflammatory diseases in which TNF-α is involved.

  18. Genotoxicity and cytotoxicity induced by eluates from orthodontic glass ionomer cements in vitro

    Directory of Open Access Journals (Sweden)

    Fernanda Angelieri

    2018-01-01

    Full Text Available The aim of this study was to investigate genotoxicity and cytotoxicity of some orthodontic glass ionomer cements commercially available by means of the single cell gel (comet assay. For this purpose, five commercial orthodontic glass ionomer cements (Vidrion C®, Meron®, Optiband®, Multicure® and Ultra Band Lok® were tested in murine fibroblasts in vitro. For this purpose, eluates from each cement were prepared according manufactures instructions at 0, 2, 4, 8, 18, 32 and 64 days of immersion in artificial saliva at 37 °C. All orthodontic glass ionomer cements failed to induce cytotoxicity to murine fibroblasts for all periods evaluated in this study. However, Vidrion C® was able to induce genotoxicity after 64 days of exposure to eluates. Meron® also demonstrated genotoxicity as depicted by increasing DNA damage on 2nd day. Multicure® demonstrated genotoxicity on 32nd day and Ultra band Lok on 18th, 32nd days of exposure. Taken together, our results demonstrated that orthodontic cements derived from resin-modified glass ionomer composite (Multicure® and compomer (Ultra Band Lok® cause genetic damage in mammalian cells in vitro.

  19. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    Directory of Open Access Journals (Sweden)

    T. R. Chaparro

    2011-12-01

    Full Text Available This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand, DOC (dissolved organic carbon, AOX (adsorbable organic halogen, ASL (acid soluble lignin, color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and genetic toxicity assessments were performed with Daphnia similis, Ceriodaphnia sp. and Allium cepa L, respectively. The removal efficiency of organic matter measured as COD, ranged from 45% to 55%, while AOX removal ranged from 40% to 45%. The acute toxic and chronic effects, as well as the cytotoxic, genotoxic and mutagenic effects, decrease as the biodegradable fraction of the organics is removed. These results, together with the organic load measurement of the effluents of the anaerobic treatment, indicate that these effluents are recalcitrant but not toxic. As expected, color increased when the anaerobic treatment was applied. However, the colored compounds are of microbial origin and do not cause an increase in genotoxic effects. To discharge the wastewater, it is necessary to apply a physico-chemical or aerobic biological post-treatment to the effluents of the anaerobic reactor.

  20. Induction of micronuclei by 2-hydroxypyridine in water and elimination of solution genotoxicity by UVC (254 nm) photolysis

    International Nuclear Information System (INIS)

    Skoutelis, Charalambos G.; Vlastos, Dimitris; Kortsinidou, Marianna C.; Theodoridis, Ioannis T.; Papadaki, Maria I.

    2011-01-01

    Highlights: ► 2-Hydroxypyridine (2-HPY) is the major metabolite of 2-halogenated pyridines photolysis. ► We examine the genotoxicity of 2-HPY in cultured human lymphocytes applying the micronucleus assay. ► 2-HPY was found to be genotoxic. ► Aqueous solutions of 2-HPY were irradiated by UV at 254 nm. ► Solution genotoxicity can be completely removed after prolonged phototreatment. - Abstract: 2-Hydroxypyridine (2-HPY) is a major first-stage product formed upon the photolytic destruction of 2-halogenated pyridines. Genotoxicity of 2-HPY in water was studied as a function of concentration. Aqueous solutions of 2-HPY were irradiated by ultraviolet (UV) at 254 nm. 2-HPY concentration, solution total organic carbon (TOC) concentration and solution genotoxicity were measured as a function of treatment time and their profile as a function of time is presented in this work. 2-HPY was found to be genotoxic at all concentrations in the range of 5–400 μg ml −1 . 2-HPY mineralises completely upon prolonged UV irradiation. All untreated and irradiated solution samples, taken at different photo-treatment times, were tested in cultured human lymphocytes applying the cytokinesis block micronucleus (CBMN) assay. The genotoxicity of the solution was reduced near to the control level after prolonged UV irradiation.

  1. Chemical composition and in vitro cytotoxic, genotoxic effects of essential oil from Urtica dioica L.

    Science.gov (United States)

    Gül, Süleyman; Demirci, Betül; Başer, Kemal Hüsnü Can; Akpulat, H Aşkin; Aksu, Pinar

    2012-05-01

    The aim of this study was to determine the chemical composition of Urtica dioica essential oil, and to evaluate its cytotoxic and genotoxic effects, using cytogenetic tests such as the cytokinesis-block micronucleus assay and chromosomal aberration analysis in human lymphocyte cultures in vitro. GC-MS analysis of U. dioica essential oil identified 43 compounds, representing 95.8% of the oil. GC and GC-MS analysis of the essential oil of U. dioica revealed that carvacrol (38.2%), carvone (9.0%), naphthalene (8.9%), (E)-anethol (4.7%), hexahydrofarnesyl acetone (3.0%), (E)-geranyl acetone (2.9%), (E)-β-ionone (2.8%) and phytol (2.7%) are the main components, comprising 72.2% of the oil. A significant correlation was found between the concentration of essential oil and the following: chromosomal aberrations, micronuclei frequency, apoptotic cells, necrotic cells, and binucleated cells.

  2. Cytotoxicity and genotoxicity of a monazite component: lanthanum effects on the viability and induction of breaks in the DNA of human lymphocytes; Citotoxicidade e genotoxicidade de um componente da monazita: efeitos do lantanio na viabilidade e inducao de quebras no DNA de linfocitos humanos

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Amanda Valle de Almeida

    2007-07-01

    The Monazite is a mineral extracted from open mines. It is constituted by lanthanum element aggregated with cerium, yttrium and thorium [(Ce, La, Y, Th)PO{sub 4}]. Lanthanum (La) is a rare-earth metal with applications in agriculture, industry and medicine. Since lanthanides and their compounds show a broad spectrum of applications there is an increased risk of incorporation in human. Inhalation of aerosols containing La is the main route of incorporation in workers exposed to several chemical forms of La. Herein, we examined the effect of lanthanum nitrate - La(NO{sub 3}){sub 3} in human lymphocytes. JURKAT cells and human peripheral lymphocytes (HPL) were used to evaluate the effect of La(NO{sub 3}){sub 3} on viability (apoptosis or necrosis) and DNA strand breaks induction or/and alkali-labile sites (ALS). We demonstrate that La has a cytotoxic and genotoxic effect on both cell lines. The results indicate that necrosis is the pathway by which La(NO{sub 3}){sub 3} induces cytotoxicity. The vitamin E is able to diminish DNA strand breaks induced by La(NO{sub 3}){sub 3} suggesting that reactive oxygen species (ROS) may be involved in the genotoxic process. (author)

  3. Application of the micronucleus test and comet assay in Trachemys callirostris erythrocytes as a model for in situ genotoxic monitoring.

    Science.gov (United States)

    Zapata, Lina M; Bock, Brian C; Orozco, Luz Yaneth; Palacio, Jaime A

    2016-05-01

    Trachemys callirostris is a turtle species endemic to northern South America. In northern Colombia it occurs in the middle and lower Magdalena River drainage and its principal tributaries (lower Cauca and San Jorge rivers) and in other minor drainages such as the lower Sinú River. In recent years, industrial, agricultural, and mining activities have altered natural habitats in Colombia where this species occurs, and many of the pollutants released there are known to induce genetic alterations in wildlife species. The micronucleus test and comet assay are two of the most widely used methods to characterize DNA damage induced by physical and chemical agents in wildlife species, but have not been employed previously for genotoxic evaluations in T. callirostris. The goal of this study was to optimize these genotoxic biomarkers for T. callirostris erythrocytes in order to establish levels of DNA damage in this species and thereby evaluate its potential as a sentinel species for monitoring genotoxic effects in freshwater environments in northern Colombia. Both genotoxic techniques were applied on peripheral blood erythrocytes from 20 captive-reared T. callirostris individuals as a negative control, as well as from samples obtained from 49 individuals collected in Magangué (Magdalena River drainage) and 24 individuals collected in Lorica (Sinú River drainage) in northern Colombia. Negative control individuals exhibited a baseline frequency of micronuclei of 0.78±0.58 and baseline values for comet tail length and tail moment of 3.34±0.24µm and 10.70±5.5, respectively. In contrast, samples from both field sites exhibited significantly greater evidence of genotoxic effects for both tests. The mean MN frequencies in the samples from Magangué and Lorica were 8.04±7.08 and 12.19±12.94, respectively. The mean tail length for samples from Magangué and Lorica were 5.78±3.18 and 15.46±7.39, respectively. Finally, the mean tail moment for samples from Magangué and

  4. Mercury-induced genotoxicity in marine diatom (Chaetoceros tenuissimus)

    Digital Repository Service at National Institute of Oceanography (India)

    Sarker, S.; Desai, S.R.; Verlecar, X.N.; Sarker, M.S.; Sarkar, A.

    In this paper, we present an evaluation of genotoxic responses in marine diatom, Chaetoceros tenuissimus, isolated from Kandla Creek (lat 23.03° N, long 70.22° E), Gujarat, India, in terms of impairment of DNA integrity as a function...

  5. Genotoxicity of freshwater ecosystem shows DNA damage in preponderant fish as validated by in vivo micronucleus induction in gill and kidney erythrocytes.

    Science.gov (United States)

    Obiakor, M O; Okonkwo, J C; Ezeonyejiaku, C D

    2014-12-01

    Genotoxicity of Anambra River was studied by micronucleus (MN) assay of preponderant fish species in the river. The micronucleus indices obtained were used as biomarker to estimate and predict pollution profile and possible danger of feeding on the aquatic species. Micronuclei profile of the fish was measured from gill and kidney erythrocytes using microscopic technique. Season, species and location effects on micronuclei, together with their interactions were also determined. Two major seasons (rainy and dry) and preponderant fish species in the river (Synodontis clarias, Linnaeus, 1758 and Tilapia nilotica, Linnaeus, 1757) were studied at five distinct locations that displayed differential environmental stresses. The study showed that the micronucleus index of fish is an excellent biomarker for measuring pollution level and genotoxicity of freshwater habitat. Season, species of fish and location affect micronuclei profile of the fish species sampled in the river. Disease outbreak among rural dwellers depending on the river for domestic and other uses is imminent and they lack knowledge on its health implication. Moreover, the study maintained that the micronuclei in fish could be measured from either the gill or kidney; however, gill is more efficient as it enables collection of several samples from the same individuals without sacrificing it, and Synodontis clarias fish species appeared to be more vulnerable to the genotoxic damage than Tilapia nilotica. Consequently, the study recommended regular monitoring (micronucleus tests) of edible aquatic life such as Synodontis clarias in order to eliminate the danger of people feeding on toxic metals, some of which are carcinogenic. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Genotoxic potential evaluation of a cosmetic insoluble substance by the micronuclei assay.

    Science.gov (United States)

    Dayan, N; Shah, V; Minko, T

    2011-01-01

    An optical brightener (OB) powder (INCI: sodium silicoaluminate (and) glycidoxypropyl trimethyloxysilane/PEI-250 cross fluorescent brightener 230 salt (and) polyvinylalcohol crosspolymer) that is used in cosmetic facial products was tested for its genotoxic potential using the micronuclei test (MNT). It is a solid dry powder with an average size of 5 microns that is insoluble but dispersible in water. This study describes the exposure of cell culture to positive controls with and without enzymatic activation and to the test compound in different concentrations. We evaluated three end points: microscopic observation and quantification of micronuclei formation, and cell viability and proliferation. Both positive controls induced significant changes that were observed under the microscope and quantified. Based on its chemical nature, it was not anticipated that the test substance will degrade under the conditions of the experiments. However, the test is required to make sure that when solublized, impurities that may be present, even at trace levels, will not induce a genotoxic effect. The test compound did not promote micronuclei formation or change the viability or proliferation rate of cells. During this study we faced challenges such as solubilization and correlating viability data to genotoxicity data. These are described in the body of the paper. We believe that with the emergence of the 7(th) European amendment that bans animal testing, sharing these data and the study protocol serves as a key in building the understanding of the utilization of in vitro studies in the safety assessment of cosmetic ingredients.

  7. [Genotoxic damage among artisanal and small-scale mining workers exposed to mercury].

    Science.gov (United States)

    Rosales-Rimache, Jaime A; Elizabeth Malca, Nancy; Alarcón, Jhonatan J; Chávez, Manuel; Gonzáles, Marco Antonio

    2013-01-01

    To determine the genotoxic damage among artisanal and small-scale mining workers exposed to mercury. Observational cross-sectional study which evaluated mercury-exposed workers (n=83), whose cells were collected by mouth swab for further staining, microscopic observance, micronuclei count, and other nuclear alterations. 24-hour urine was also collected for the determination of inorganic mercury. 68.7% of participants were male, the mean age being 43 ± 12,4 years (range: 16-76). The average time of occupational exposure to mercury was 12,1 ± 6,7 years, and the contact with mercury was 4,1 ± 3,6 kg per person per day. 93% of participants failed to wear personal protection gear while handling mercury. Results of biological monitoring showed that 17% of participants had concentrations of mercury in urine higher than 2,5 µg/L, this value being the detection limit of the measurement technique used. Results of the genotoxic evaluation evidenced that 15% of people with labor exposure to mercury presented micronuclei in mouth epithelial cells, and other indicators of nuclear alteration such as nucleoplasmic bridges, gemmation and binucleation were found, which are also considered genotoxic events associated to the exposure of physical or chemical risk agents. The finding of micronuclei in mouth epithelial cells reflects genotoxic damage associated to the labor exposure of mercury used in artisanal and small-scale mining activities.

  8. High Dose Ascorbate Causes Both Genotoxic and Metabolic Stress in Glioma Cells

    Science.gov (United States)

    Castro, Maria Leticia; Carson, Georgia M.; McConnell, Melanie J.; Herst, Patries M.

    2017-01-01

    We have previously shown that exposure to high dose ascorbate causes double stranded breaks (DSBs) and a build-up in S-phase in glioblastoma (GBM) cell lines. Here we investigated whether or not this was due to genotoxic stress as well as metabolic stress generated by exposure to high dose ascorbate, radiation, ascorbate plus radiation and H2O2 in established and primary GBM cell lines. Genotoxic stress was measured as phosphorylation of the variant histone protein, H2AX, 8-oxo-7,8-dihydroguanine (8OH-dG) positive cells and cells with comet tails. Metabolic stress was measured as a decrease in NADH flux, mitochondrial membrane potential (by CMXRos), ATP levels (by ATP luminescence) and mitochondrial superoxide production (by mitoSOX). High dose ascorbate, ascorbate plus radiation, and H2O2 treatments induced both genotoxic and metabolic stress. Exposure to high dose ascorbate blocked DNA synthesis in both DNA damaged and undamaged cell of ascorbate sensitive GBM cell lines. H2O2 treatment blocked DNA synthesis in all cell lines with and without DNA damage. DNA synthesis arrest in cells with damaged DNA is likely due to both genotoxic and metabolic stress. However, arrest in DNA synthesis in cells with undamaged DNA is likely due to oxidative damage to components of the mitochondrial energy metabolism pathway. PMID:28737676

  9. Cholesterol reduction and lack of genotoxic or toxic effects in mice after repeated 21-day oral intake of lemongrass (Cymbopogon citratus) essential oil.

    Science.gov (United States)

    Costa, Celso A R A; Bidinotto, Lucas T; Takahira, Regina K; Salvadori, Daisy M F; Barbisan, Luís F; Costa, Mirtes

    2011-09-01

    Cymbopogon citratus (lemongrass) is currently used in traditional folk medicine. Although this species presents widespread use, there are no scientific data on its efficacy or safety after repeated treatments. Therefore, this work investigated the toxicity and genotoxicity of this lemongrass's essential oil (EO) in male Swiss mice. The single LD(50) based on a 24h acute oral toxicity study was found to be around 3500 mg/kg. In a repeated-dose 21-day oral toxicity study, mice were randomly assigned to two control groups, saline- or Tween 80 0.01%-treated groups, or one of the three experimental groups receiving lemongrass EO (1, 10 or 100mg/kg). No significant changes in gross pathology, body weight, absolute or relative organ weights, histology (brain, heart, kidneys, liver, lungs, stomach, spleen and urinary bladder), urinalysis or clinical biochemistry were observed in EO-treated mice relative to the control groups. Additionally, blood cholesterol was reduced after EO-treatment at the highest dose tested. Similarly, data from the comet assay in peripheral blood cells showed no genotoxic effect from the EO. In conclusion, our findings verified the safety of lemongrass intake at the doses used in folk medicine and indicated the beneficial effect of reducing the blood cholesterol level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil

    Directory of Open Access Journals (Sweden)

    E Bianchi

    Full Text Available Some water bodies in the Sinos River Basin (SRB have been suffering the effects of pollution by residential, industrial and agroindustrial wastewater. The presence of cytotoxic and genotoxic compounds could compromise the water quality and the balance of these ecosystems. In this context, the research aimed to evaluate the genotoxicity and cytotoxicity of the water at four sites along the SRB (in the cities of Santo Antônio da Patrulha, Parobé, Campo Bom and Esteio, using bioassays in fish and cell culture. Samples of surface water were collected and evaluated in vitro using the Astyanax jacuhiensis fish species (micronucleus test and comet assay and the Vero lineage of cells (comet assay and cytotoxicity tests, neutral red - NR and tetrazolium MTT. The micronucleus test in fish showed no significant differences between the sampling sites, and neither did the comet assay and the MTT and NR tests in Vero cells. The comet assay showed an increase in genetic damage in the fish exposed to water samples collected in the middle and lower sections of the basin (Parobé, Campo Bom and Esteio when compared to the upper section of the basin (Santo Antônio da Patrulha. The results indicate contamination by genotoxic substances starting in the middle section of the SRB.

  11. Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets

    Science.gov (United States)

    Federici, Ermanno; Prete, Roberta; Lazzi, Camilla; Pellegrini, Nicoletta; Moretti, Massimo; Corsetti, Aldo; Cenci, Giovanni

    2017-01-01

    This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides–Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut. PMID:28293225

  12. Bacterial Composition, Genotoxicity, and Cytotoxicity of Fecal Samples from Individuals Consuming Omnivorous or Vegetarian Diets.

    Science.gov (United States)

    Federici, Ermanno; Prete, Roberta; Lazzi, Camilla; Pellegrini, Nicoletta; Moretti, Massimo; Corsetti, Aldo; Cenci, Giovanni

    2017-01-01

    This study analyzes the composition of viable fecal bacteria and gut toxicology biomarkers of 29 healthy volunteers, who followed omnivorous, lacto-ovo-vegetarian, or vegan diets. In particular, the research was focused on the prevalence of some representative viable bacteria from the four dominant phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria) commonly present in human feces, in order to evaluate the relationship between microorganisms selected by the habitual dietary patterns and the potential risk due to fecal water (FW) genotoxicity and cytotoxicity, considered as biomarkers for cancer risk and protective food activity. The relative differences of viable bacteria among dietary groups were generally not statistically significant. However, compared to omnivores, lacto-ovo-vegetarians showed low levels of total anaerobes. Otherwise, vegans showed total anaerobes counts similar to those of omnivores, but with lower number of bifidobacteria and the highest levels of bacteria from the Bacteroides-Prevotella genera. FW genotoxicity of lacto-ovo-vegetarians resulted significantly lower either in relation to that of omnivores and vegans. Lacto-ovo-vegetarians also showed the lowest levels of cytotoxicity, while the highest were found for vegans. These results highlighted that lacto-ovo-vegetarian diet was particularly effective in a favorable modulation of microbial activity, thus contributing to a significant reduction of the genotoxic and cytotoxic risk in the gut.

  13. Ameliorative Effects of Dimetylthiourea and N-Acetylcysteine on Nanoparticles Induced Cyto-Genotoxicity in Human Lung Cancer Cells-A549

    Science.gov (United States)

    Srivastava, Ritesh Kumar; Rahman, Qamar; Kashyap, Mahendra Pratap; Lohani, Mohtashim; Pant, Aditya Bhushan

    2011-01-01

    We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages. PMID:21980536

  14. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549.

    Directory of Open Access Journals (Sweden)

    Ritesh Kumar Srivastava

    Full Text Available We study the ameliorative potential of dimetylthiourea (DMTU, an OH• radical trapper and N-acetylcysteine (NAC, a glutathione precursor/H₂O₂ scavenger against titanium dioxide nanoparticles (TiO₂-NPs and multi-walled carbon nanotubes (MWCNTs induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml of either of TiO₂-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure, while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure. Investigations were carried out for cell viability, generation of reactive oxygen species (ROS, micronuclei (MN, and expression of markers of oxidative stress (HSP27, CYP2E1, genotoxicity (P⁵³ and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO₂-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO₂-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages.

  15. In vitro and in vivo genotoxicity of 1,3-butadiene and metabolites.

    OpenAIRE

    Arce, G T; Vincent, D R; Cunningham, M J; Choy, W N; Sarrif, A M

    1990-01-01

    1,3-Butadiene and two major genotoxic metabolites 3,4-epoxybutene (EB) and 1,2:3,4-diepoxybutane (DEB) were used as model compounds to determine if genetic toxicity findings in animal and human cells can aid in extrapolating animal toxicity data to man. Sister chromatid exchange (SCE) and micronucleus induction results indicated 1,3-butadiene was genotoxic in the bone marrow of the mouse but not the rat. This paralleled the chronic bioassays which showed mice to be more susceptible than rats ...

  16. Dietary elevated sucrose modulation of diesel-induced genotoxicity in the colon and liver of Big Blue rats

    DEFF Research Database (Denmark)

    Risom, L.; Moller, P.; Hansen, Max

    2003-01-01

    Earlier studies have indicated that sucrose possesses either co-carcinogenic or tumor-promoter effects in colon carcinogenesis induced by genotoxic carcinogens. In this study we investigated the role of sucrose on diesel exhaust particle (DEP)-induced genotoxicity in the colonic mucosa and liver......-breaks and DNA adducts in liver. DEP and sucrose treatment did not have any effect on mutation frequency in colon and liver. Oxidative DNA damage detected as 8-oxodG (8-oxo-7,8-dihydro-2'-deoxyguanosine) and endonuclease III or formamidopyrimidine DNA glycosylase sensitive sites was unaltered in colon and liver....... The mRNA expression levels of the DNA repair enzymes N-methylpurine DNA glycosylase (MPG), 8-oxoguanine DNA glycosylase (OGG1) and ERCC1 (part of the nucleotide excision repair complex) measured by reverse transcription-polymerase chain reaction were increased in liver by DEP feeding. In colon...

  17. Genotoxic valuation of Zinalco, a zinc base alloy, by the mutation and somatic recombination test in Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Ramirez V, P.

    1995-01-01

    Zinalco is an eutectoid alloy made of zinc, aluminium and copper (78% , 20% and 2%), because of its physical, chemical and mechanical characteristics, it has been established as a structural material and valued as a feasible bio material. Previous authors have studies on the cytotoxic effect of Zinalco, so for concluded that it is harmless to the organism. However, was considered necessary to evaluate its potential genotoxicity. The present work was done with the fruit fly Drosophila Melanogaster. The objectives were: to determine the administered particle size, to evaluate its ingestion zinalco and to score the genotoxic effect by means of the SMART test in wing cells of D. Melanogaster. The protocol consisted of an oral chronic treatment, to groups of 72th age larvae, with concentrations of 0,1,2,4,8 and 16 mg of zinalco in ml of water on 1.5 g of synthetic medium. Statistical analysis was done through the SMART program. The results obtained showed an average particle size of 16 m long x 5.9 m wide. The normal amount of the alloy elements in the larvae was increased and finally, no genotoxicity at any of the administered doses could be detected. (Author)

  18. Evaluation of the genotoxicity of cellulose nanofibers.

    Science.gov (United States)

    de Lima, Renata; Oliveira Feitosa, Leandro; Rodrigues Maruyama, Cintia; Abreu Barga, Mariana; Yamawaki, Patrícia Cristina; Vieira, Isolda Jesus; Teixeira, Eliangela M; Corrêa, Ana Carolina; Caparelli Mattoso, Luiz Henrique; Fernandes Fraceto, Leonardo

    2012-01-01

    Agricultural products and by products provide the primary materials for a variety of technological applications in diverse industrial sectors. Agro-industrial wastes, such as cotton and curaua fibers, are used to prepare nanofibers for use in thermoplastic films, where they are combined with polymeric matrices, and in biomedical applications such as tissue engineering, amongst other applications. The development of products containing nanofibers offers a promising alternative for the use of agricultural products, adding value to the chains of production. However, the emergence of new nanotechnological products demands that their risks to human health and the environment be evaluated. This has resulted in the creation of the new area of nanotoxicology, which addresses the toxicological aspects of these materials. Contributing to these developments, the present work involved a genotoxicological study of different nanofibers, employing chromosomal aberration and comet assays, as well as cytogenetic and molecular analyses, to obtain preliminary information concerning nanofiber safety. The methodology consisted of exposure of Allium cepa roots, and animal cell cultures (lymphocytes and fibroblasts), to different types of nanofibers. Negative controls, without nanofibers present in the medium, were used for comparison. The nanofibers induced different responses according to the cell type used. In plant cells, the most genotoxic nanofibers were those derived from green, white, and brown cotton, and curaua, while genotoxicity in animal cells was observed using nanofibers from brown cotton and curaua. An important finding was that ruby cotton nanofibers did not cause any significant DNA breaks in the cell types employed. This work demonstrates the feasibility of determining the genotoxic potential of nanofibers derived from plant cellulose to obtain information vital both for the future usage of these materials in agribusiness and for an understanding of their environmental

  19. Modulation of the genotoxicity of bleomycin by amines through noncovalent DNA interactions and alteration of physiological conditions in yeast

    International Nuclear Information System (INIS)

    Hoffmann, George R.; Gessner, Gabrielle S.; Hughes, Jennifer F.; Ronan, Matthew V.; Sylvia, Katelyn E.; Willett, Christine J.

    2007-01-01

    The effects of amines on the induction of mitotic gene conversion by bleomycin (BLM) were studied at the trp5 locus in Saccharomyces cerevisiae strain D7. BLM induces double-strand breaks in DNA and is a potent recombinagen in this assay. The polyamine spermidine causes concentration-dependent protection against the genotoxicity of BLM, reducing the convertant frequency by over 90% under the most protective conditions. Spermine, diethylenetriamine, ethylenediamine, putrescine, and ethylamine were also antigenotoxic in combined treatments with BLM. There was a general correspondence between the protective effect and the number of amino groups, suggesting that more strongly cationic amines tend to be stronger antirecombinagens. Electrostatic association of the amines with DNA probably hinders BLM access to the 4' position of deoxyribose where it generates a free radical. Other amines interact with BLM differently from these unbranched aliphatic amines. The aminothiol cysteamine inhibits the genotoxicity of BLM under hypoxic conditions but increases it under euoxic conditions. In contrast, pargyline potentiates the genotoxicity of BLM under hypoxic conditions but not under euoxic conditions. The antirecombinagenic effect of cysteamine apparently involves DNA binding and depletion of oxygen needed for BLM activity, whereas its potentiation of BLM entails its serving as an electron source for the activation of BLM. Pargyline may enhance BLM indirectly by preventing the depletion of oxygen by monoamine and polyamine oxidase. The planar 9-aminoacridine weakly induces gene conversion in strain D7, but it is strongly synergistic with BLM. Enhancement of BLM activity by this compound and by the related nitroacridine Entozon is apparently mediated by intercalation of the acridine ring system into DNA. Thus, the influence of amines on the genotoxicity of BLM in yeast encompasses antigenotoxic, potentiating, and synergistic interactions. The underlying mechanisms involve

  20. Modulation of the genotoxicity of bleomycin by amines through noncovalent DNA interactions and alteration of physiological conditions in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)], E-mail: ghoffmann@holycross.edu; Gessner, Gabrielle S.; Hughes, Jennifer F.; Ronan, Matthew V.; Sylvia, Katelyn E.; Willett, Christine J. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)

    2007-10-01

    The effects of amines on the induction of mitotic gene conversion by bleomycin (BLM) were studied at the trp5 locus in Saccharomyces cerevisiae strain D7. BLM induces double-strand breaks in DNA and is a potent recombinagen in this assay. The polyamine spermidine causes concentration-dependent protection against the genotoxicity of BLM, reducing the convertant frequency by over 90% under the most protective conditions. Spermine, diethylenetriamine, ethylenediamine, putrescine, and ethylamine were also antigenotoxic in combined treatments with BLM. There was a general correspondence between the protective effect and the number of amino groups, suggesting that more strongly cationic amines tend to be stronger antirecombinagens. Electrostatic association of the amines with DNA probably hinders BLM access to the 4' position of deoxyribose where it generates a free radical. Other amines interact with BLM differently from these unbranched aliphatic amines. The aminothiol cysteamine inhibits the genotoxicity of BLM under hypoxic conditions but increases it under euoxic conditions. In contrast, pargyline potentiates the genotoxicity of BLM under hypoxic conditions but not under euoxic conditions. The antirecombinagenic effect of cysteamine apparently involves DNA binding and depletion of oxygen needed for BLM activity, whereas its potentiation of BLM entails its serving as an electron source for the activation of BLM. Pargyline may enhance BLM indirectly by preventing the depletion of oxygen by monoamine and polyamine oxidase. The planar 9-aminoacridine weakly induces gene conversion in strain D7, but it is strongly synergistic with BLM. Enhancement of BLM activity by this compound and by the related nitroacridine Entozon is apparently mediated by intercalation of the acridine ring system into DNA. Thus, the influence of amines on the genotoxicity of BLM in yeast encompasses antigenotoxic, potentiating, and synergistic interactions. The underlying mechanisms involve

  1. No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

    Science.gov (United States)

    Nam, Sun-Hwa; Kim, Shin Woong; An, Youn-Joo

    2013-10-01

    Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l(-1) for Au NPs, 32.3 mg l(-1) for Ag NPs and 100 mg l(-1) for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non-genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Genotoxicity of formaldehyde: Molecular basis of DNA damage and mutation

    Directory of Open Access Journals (Sweden)

    Masanobu eKawanishi

    2014-09-01

    Full Text Available Formaldehyde is commonly used in the chemical industry and is present in the environment, such as vehicle emissions, some building materials, food and tobacco smoke. It also occurs as a natural product in most organisms, the sources of which include a number of metabolic processes. It causes various acute and chronic adverse effects in humans if they inhale its fumes. Among the chronic effects on human health, we summarize data on genotoxicity and carcinogenicity in this review, and we particularly focus on the molecular mechanisms involved in the formaldehyde mutagenesis. Formaldehyde mainly induces N-hydroxymethyl mono-adducts on guanine, adenine and cytosine, and N-methylene crosslinks between adjacent purines in DNA. These crosslinks are types of DNA damage potentially fatal for cell survival if they are not removed by the nucleotide excision repair pathway. In the previous studies, we showed evidence that formaldehyde causes intra-strand crosslinks between purines in DNA using a unique method (Matsuda et al. Nucleic Acids Res. 26, 1769-1774,1998. Using shuttle vector plasmids, we also showed that formaldehyde as well as acetaldehyde induces tandem base substitutions, mainly at 5’-GG and 5’-GA sequences, which would arise from the intra-strand crosslinks. These mutation features are different from those of other aldehydes such as crotonaldehyde, acrolein, glyoxal and methylglyoxal. These findings provide molecular clues to improve our understanding of the genotoxicity and carcinogenicity of formaldehyde.

  3. Genotoxic effects and gene expression in Danio rerio (Hamilton 1822) (Cypriniformes: Cyprinidae) exposed to mining-impacted tributaries in Manizales, Colombia.

    Science.gov (United States)

    Ossa-López, Paula A; Castaño-Villa, Gabriel J; Rivera-Páez, Fredy A

    2017-09-25

    The zebrafish (Danio rerio) is one of the most studied aquatic organisms for water biomonitoring, due to its sensitivity to environmental degradation and resistance to toxic substances. This study determined the presence of micronuclei and nuclear abnormalities in peripheral blood erythrocytes, and assessed the gene expression of caspase-3 (CASP-3) and metallothionein 1 (MT-1) in the gills and liver of D. rerio. The study fish (n = 45) were exposed to water collected from two stations with mining impact (E2 and E3) and a reference station without evident mining contamination (E1), all located in La Elvira stream (Manizales-Colombia). In addition, a positive control (PC) with HgCl 2 (50 μg/L) and negative control (NC) with tap water were included. The fish from the PC and E2 and E3 treatments displayed genotoxic effects and changes in gene expression, with significant differences in micronuclei formation and the presence of blebbed nuclei. The cytochrome oxidase subunit I (COI) gene was used as reference and proved to be stable compared to the β-actin and 28S ribosomal RNA (28S) genes. In gills, CASP-3 expression was higher in the PC, and MT-1 expression was higher in the PC and E3 treatment. In liver, CASP-3 was expressed in the E2 treatment, and MT-1 expression was low. These results show that the genotoxic effects and differential gene expression observed in fish exposed to water from La Elvira stream could also be affecting the organisms present in this habitat.

  4. Genotoxicity of Water Contaminants from the Basin of Lake Sevan, Armenia Evaluated by the Comet Assay in Gibel Carp (Carassius auratus gibelio) and Tradescantia Bioassays.

    Science.gov (United States)

    Simonyan, Anna; Gabrielyan, Barduch; Minasyan, Seyran; Hovhannisyan, Galina; Aroutiounian, Rouben

    2016-03-01

    Combination of bioassays and chemical analysis was applied to determine the genotoxic/mutagenic contamination in four different sites of the basin of Lake Sevan in Armenia. Water genotoxicity was evaluated using the single cell gel electrophoresis technique (comet assay) in erythrocytes of gibel carp (Carassius auratus gibelio), Tradescantia micronucleus (Trad-MCN) and Tradescantia stamen hair mutation (Trad-SHM) assays. Significant inter-site differences in the levels of water genotoxicity according to fish and Trad-MCN bioassays have been revealed. Two groups of locations with lower (south-southwest of the village Shorzha and Peninsula of Lake Sevan) and higher (estuaries of Gavaraget and Dzknaget rivers) levels of water genotoxicity were distinguished. Correlation analysis support the hypothesis that the observed genetic alterations in fish and plant may be a manifestation of the effects of water contamination by nitrate ions, Si, Al, Fe, Mn and Cu. Increase of DNA damage in fish also correlated with content of total phosphorus.

  5. Ecotoxicity and genotoxicity assessment of cytostatic pharmaceuticals

    Czech Academy of Sciences Publication Activity Database

    Zounková, R.; Odráška, P.; Doležalová, L.; Hilscherová, Klára; Maršálek, Blahoslav; Bláha, Luděk

    2007-01-01

    Roč. 26, č. 10 (2007), s. 2208-2214 ISSN 0730-7268 Grant - others:GA MŠk(CZ) 2B06171; ECODIS(XE) 518043-1 Institutional research plan: CEZ:AV0Z60050516 Source of funding: R - rámcový projekt EK Keywords : cytostatic pharmaceuticals * genotoxicity * antineoplastics Subject RIV: EF - Botanics Impact factor: 2.309, year: 2007

  6. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines.

    Science.gov (United States)

    Paget, V; Sergent, J A; Grall, R; Altmeyer-Morel, S; Girard, H A; Petit, T; Gesset, C; Mermoux, M; Bergonzo, P; Arnault, J C; Chevillard, S

    2014-08-01

    Although nanodiamonds (NDs) appear as one of the most promising nanocarbon materials available so far for biomedical applications, their risk for human health remains unknown. Our work was aimed at defining the cytotoxicity and genotoxicity of two sets of commercial carboxylated NDs with diameters below 20 and 100 nm, on six human cell lines chosen as representative of potential target organs: HepG2 and Hep3B (liver), Caki-1 and Hek-293 (kidney), HT29 (intestine) and A549 (lung). Cytotoxicity of NDs was assessed by measuring cell impedance (xCELLigence® system) and cell survival/death by flow cytometry while genotoxicity was assessed by γ-H2Ax foci detection, which is considered the most sensitive technique for studying DNA double-strand breaks. To validate and check the sensitivity of the techniques, aminated polystyrene nanobeads were used as positive control in all assays. Cell incorporation of NDs was also studied by flow cytometry and luminescent N-V center photoluminescence (confirmed by Raman microscopy), to ensure that nanoparticles entered the cells. Overall, we show that NDs effectively entered the cells but NDs do not induce any significant cytotoxic or genotoxic effects on the six cell lines up to an exposure dose of 250 µg/mL. Taken together these results strongly support the huge potential of NDs for human nanomedicine but also their potential as negative control in nanotoxicology studies.

  7. Evaluation of the cytotoxic and genotoxic potential of lecithin/chitosan nanoparticles

    Science.gov (United States)

    Taner, Gökçe; Yeşilöz, Recep; Özkan Vardar, Deniz; Şenyiğit, Taner; Özer, Özgen; Degen, Gisela H.; Başaran, Nurşen

    2014-02-01

    Nanoparticles-based drug targeting delivery systems have been introduced in the treatment for various diseases because of their effective properties, although there have been conflicting results on the toxicity of nanoparticles. In the present study, the aim was to evaluate the cytotoxicity and the genotoxicity of different concentrations of lecithin/chitosan nanoparticles with and without clobetasol-17-propionate (CP) by neutral red uptake (NRU) cytotoxicity assay and single cell gel electrophoresis (Comet) and cytokinesis-blocked micronucleus assays. The IC50 values of lecithin/chitosan nanoparticles with/without CP were found as 1.9 and 1.8 %, respectively, in the NRU cytotoxicity test. High concentrations of lecithin/chitosan nanoparticles induced DNA damage in human lymphocytes as evaluated by comet assay. The micronucleus frequency was increased by the lecithin/chitosan treatment in a dose-dependent manner. Also at the two highest concentrations, a significant increase in micronucleus formation was observed. Lecithin/chitosan nanoparticles with CP did not increase the frequency of micronucleus and also did not induce additional DNA damage when compared with lecithin/chitosan nanoparticles without CP; therefore, CP itself has not found to be genotoxic at the studied concentration.

  8. Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm).

    Science.gov (United States)

    Han, So-Ri; Yun, Eun-Young; Kim, Ji-Young; Hwang, Jae Sam; Jeong, Eun Ju; Moon, Kyoung-Sik

    2014-06-01

    The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions.

  9. Determination of spectral markers of cytotoxicity and genotoxicity using in vitro Raman microspectroscopy: cellular responses to polyamidoamine dendrimer exposure.

    Science.gov (United States)

    Efeoglu, Esen; Casey, Alan; Byrne, Hugh J

    2017-10-09

    Although consumer exposure to nanomaterials is ever increasing, with potential increased applications in areas such as drug and/or gene delivery, contrast agents and diagnosis, the determination of the cyto- and geno-toxic effects of nanomaterials on human health and the environment still remains challenging. Although many techniques have been established and adapted to determine the cytotoxicity and genotoxicity of nano-sized materials, these techniques remain limited by the number of assays required, total cost, and use of labels and they struggle to explain the underlying interaction mechanisms. In this study, Raman microspectroscopy is employed as an in vitro label-free, high content screening technique to observe toxicological changes within the cell in a multi-parametric fashion. The evolution of spectral markers as a function of time and applied dose has been used to elucidate the mechanism of action of polyamidoamine (PAMAM) dendrimers associated with cytotoxicity and their impact on nuclear biochemistry. PAMAM dendrimers are chosen as a model nanomaterial due to their widely studied cytotoxic and genotoxic properties and commercial availability. Point spectra were acquired from the cytoplasm to monitor the cascade of toxic events occurring in the cytoplasm upon nanoparticle exposure, whereas the spectra acquired from the nucleus and the nucleolus were used to explore PAMAM-nuclear material interaction as well as genotoxic responses.

  10. Cytotoxic and genotoxic effects induced by stannous chloride associated to nuclear medicine kits

    International Nuclear Information System (INIS)

    Guedes, Anderson P.; Cardoso, Valbert N.; De Mattos, Jose C.P.; Dantas, Flavio J.S.; Matos, Vanessa C.; Silva, Josiane C.F.; Bezerra, Roberto J.A.C.; Caldeira-de-Araujo, Adriano

    2006-01-01

    At present, more than 75% of routine nuclear medicine diagnostic procedures use technetium-99m ( 99m Tc). The binding between 99m Tc and the drug to obtain Radiopharmaceutical needs a reducing agent, with stannous chloride (SnCl 2 ) being one of the most used. There are controversies about the cytotoxic, genotoxic and mutagenic effects of SnCl 2 in the literature. Thus, the approaches below were used to better understand the biological effects of this salt and its association in nuclear medicine kits [methylenediphosphonate (MDP) bone scintigraphy and diethylenetriaminepentaacetic acid (DTPA) kidney and brain scintigraphy]: (i) bacterial inactivation experiments; (ii) agarose gel electrophoresis of supercoiled and linear plasmid DNA and (iii) bacterial transformation assay. The Escherichia coli strains used here were AB1157 (wild type) and BW9091 (xthA mutant). Data obtained showed that both MDP and SnCl 2 presented a high toxicity, but this was not observed when they were assayed together in the kit, thereby displaying a mutual protect effect. DTPA salt showed a moderate toxicity, and once more, the DTPA kit provided protection, compared to the SnCl 2 effect alone. The results suggest a possible complex formation, either MDP-SnCl 2 or DTPA-SnCl 2 , originating an atoxic compound. On the other hand, SnCl 2 -induced cell inactivation and the decrease in bacterial transformation generated by DTPA found in XthA mutant strain suggest that the lack of this enzyme could be responsible for the effects observed, being necessary to induce DNA damage repair

  11. In vitro evaluation of mutagenicity and genotoxicity of sitagliptin ...

    African Journals Online (AJOL)

    Keywords: Sitagliptin, Artificial sweeteners, Comet assay, DNA damage, Ames assay, Genotoxicity,. Mutagenicity. Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African.

  12. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    Science.gov (United States)

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e

  13. Does the recommended lymphocyte cytokinesis-block micronucleus assay for human biomonitoring actually detect DNA damage induced by occupational and environmental exposure to genotoxic chemicals?

    Science.gov (United States)

    Speit, Günter

    2013-07-01

    This commentary challenges the paradigm that the cytokinesis-block micronucleus assay (CBMN assay) with cultured human lymphocytes, as it is performed currently, is a sensitive and useful tool for detecting genotoxic effects in populations exposed occupationally or environmentally to genotoxic chemicals. Based on the principle of the assay and the available data, increased micronucleus (MN) frequencies in binucleated cells (BNC) are mainly due to MN produced in vitro during the cultivation period (i.e. MN produced in vivo do not substantially contribute to the MN frequency measured in BNC). The sensitivity of the assay for the detection of induced MN in BNC after an in vivo exposure to a genotoxic chemical is limited because cytochalasin B (Cyt-B) is added relatively late during the culture period and, therefore, the BNC that are scored do not always represent cells that have completed one cell cycle only. Furthermore, this delay means that damaged cells can be eliminated by apoptosis and/or that DNA damage induced in vivo can be repaired prior to the production of a MN in the presence of Cyt-B. A comparison with the in vitro CBMN assay used for genotoxicity testing leads to the conclusion that it is highly unlikely that DNA damage induced in vivo is the cause for increased MN frequencies in BNC after occupational or environmental exposure to genotoxic chemicals. This commentary casts doubt on the usefulness of the CBMN assay as an indicator of genotoxicity in human biomonitoring and questions the relevance of many published data for hazard identification and risk assessment. Thus, it seems worthwhile to reconsider the use of the CBMN assay as presently conducted for the detection of genotoxic exposure in human biomonitoring.

  14. Genotoxicity and antigenotoxicity study of aqueous and hydro-methanol extracts of Spondias mombin L., Nymphaea lotus L. and Luffa cylindrical L. using animal bioassays.

    Science.gov (United States)

    Oyeyemi, Ifeoluwa Temitayo; Yekeen, Olaide Maruf; Odusina, Paul Olayinka; Ologun, Taiwo Mary; Ogbaide, Orezimena Michelle; Olaleye, Olayinka Israel; Bakare, Adekunle A

    2015-12-01

    Spondias mombin (Linn), Nymphaea lotus (Linn) and Luffa cylindrica (Linn) (syn Luffa aegyptiaca Mill) are plants traditionally used as food ingredients and in the management of diseases, including cancer, in Nigeria. Despite the therapeutic potentials attributed to these plants, reports on their genotoxicity are scanty. In this study, the genotoxicity of the aqueous and hydro-methanol extract of these plants was evaluated using mouse bone marrow micronucleus and sperm morphology assays. Antigenotoxicity was assessed by the bone marrow micronucleus test. The highest attainable dose of 5 000 mg/kg according to OECD guidelines was first used to assess acute toxicity of the aqueous and hydro-methanol extracts in Swiss albino mice. For each extract, there were five groups of mice (n=4/group) treated with different concentrations of the extract as against the negative and positive control group for the genotoxicity study. In the antigenotoxicity study, five groups of mice were exposed to five different concentrations of the extracts along with 60 mg/kg of methyl methane sulfonate (MMS), which was used to induce genotoxicity. The mice were administered 0.2 mL of extract per day for 10 days in the genotoxicity and antigenotoxicity groups. Administration of each of the extracts at the concentration of 5 000 mg/kg did not induce acute toxicity in mice. At the concentrations tested, all the extracts, except aqueous S. mombin, increased micronucleated polychromatic erythrocytes. The aqueous and hydro-methanol extracts of N. lotus increased the frequency of aberrant sperm cells. All the extracts were also able to ameliorate MMS induced genotoxicity in bone marrow cells of the exposed mice. The results showed the potential of the extracts to induce somatic and germ cell mutation in male mice. The extracts also ameliorated the genotoxic effect of MMS.

  15. Genotoxicity and antigenotoxicity study of aqueous and hydro-methanol extracts of Spondias mombin L., Nymphaea lotus L. and Luffa cylindrical L. using animal bioassays

    Directory of Open Access Journals (Sweden)

    Oyeyemi Ifeoluwa Temitayo

    2015-12-01

    Full Text Available Spondias mombin (Linn, Nymphaea lotus (Linn and Luffa cylindrica (Linn (syn Luffa aegyptiaca Mill are plants traditionally used as food ingredients and in the management of diseases, including cancer, in Nigeria. Despite the therapeutic potentials attributed to these plants, reports on their genotoxicity are scanty. In this study, the genotoxicity of the aqueous and hydro-methanol extract of these plants was evaluated using mouse bone marrow micronucleus and sperm morphology assays. Antigenotoxicity was assessed by the bone marrow micronucleus test. The highest attainable dose of 5 000 mg/kg according to OECD guidelines was first used to assess acute toxicity of the aqueous and hydro-methanol extracts in Swiss albino mice. For each extract, there were five groups of mice (n=4/group treated with different concentrations of the extract as against the negative and positive control group for the genotoxicity study. In the antigenotoxicity study, five groups of mice were exposed to five different concentrations of the extracts along with 60 mg/kg of methyl methane sulfonate (MMS, which was used to induce genotoxicity. The mice were administered 0.2 mL of extract per day for 10 days in the genotoxicity and antigenotoxicity groups. Administration of each of the extracts at the concentration of 5 000 mg/kg did not induce acute toxicity in mice. At the concentrations tested, all the extracts, except aqueous S. mombin, increased micronucleated polychromatic erythrocytes. The aqueous and hydro-methanol extracts of N. lotus increased the frequency of aberrant sperm cells. All the extracts were also able to ameliorate MMS induced genotoxicity in bone marrow cells of the exposed mice. The results showed the potential of the extracts to induce somatic and germ cell mutation in male mice. The extracts also ameliorated the genotoxic effect of MMS.

  16. Lack of in vivo embryotoxic and genotoxic activities of orally administered stem bark aqueous extract of Mangifera indica L. (Vimang).

    Science.gov (United States)

    González, J E; Rodríguez, M D; Rodeiro, I; Morffi, J; Guerra, E; Leal, F; García, H; Goicochea, E; Guerrero, S; Garrido, G; Delgado, R; Nuñez-Selles, A J

    2007-12-01

    Mango (Mangifera indica L.) stem bark aqueous extract (MSBE) is a new natural product with antioxidant, anti-inflammatory and immunomodulatory effects known by the brand name of its formulations as Vimang. Previously, the oral toxicity studies of the extract showed a low toxicity potential up to 2000 mg/kg. This work reports the results about teratogenic and genotoxicologic studies of MSBE. For embryotoxicity study, MSBE (20, 200, or 2000 mg/kg/day) was given to Sprague-Dawley rats by gavage on days 6-15 of gestation. For genotoxicity, MSBE was administered three times during 48 h to NMRI mice. Cyclophosphamide (50 mg/kg) was used as a positive control. No maternal or developmental toxicities were observed when the rats were killed on day 20th. The maternal body-weight gain was not affected. No dose-related effects were observed in implantations, fetal viability or external fetal development. Skeletal and visceral development was similar among fetuses from all groups. No genotoxicity was observed in bone marrow erythrocytes and liver cells after administration. MSBE appears to be neither embryotoxic nor genotoxic as measured by bone marrow cytogenetics in rodents.

  17. Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels-the FuelHealth project.

    Science.gov (United States)

    Kowalska, Magdalena; Wegierek-Ciuk, Aneta; Brzoska, Kamil; Wojewodzka, Maria; Meczynska-Wielgosz, Sylwia; Gromadzka-Ostrowska, Joanna; Mruk, Remigiusz; Øvrevik, Johan; Kruszewski, Marcin; Lankoff, Anna

    2017-11-01

    Epidemiological data indicate that exposure to diesel exhaust particles (DEPs) from traffic emissions is associated with higher risk of morbidity and mortality related to cardiovascular and pulmonary diseases, accelerated progression of atherosclerotic plaques, and possible lung cancer. While the impact of DEPs from combustion of fossil diesel fuel on human health has been extensively studied, current knowledge of DEPs from combustion of biofuels provides limited and inconsistent information about its mutagenicity and genotoxicity, as well as possible adverse health risks. The objective of the present work was to compare the genotoxicity of DEPs from combustion of two first-generation fuels, 7% fatty acid methyl esters (FAME) (B7) and 20% FAME (B20), and a second-generation 20% FAME/hydrotreated vegetable oil (SHB: synthetic hydrocarbon biofuel) fuel. Our results revealed that particulate engine emissions from each type of biodiesel fuel induced genotoxic effects in BEAS-2B and A549 cells, manifested as the increased levels of single-strand breaks, the increased frequencies of micronuclei, or the deregulated expression of genes involved in DNA damage signaling pathways. We also found that none of the tested DEPs showed the induction of oxidative DNA damage and the gamma-H2AX-detectable double-strand breaks. The most pronounced differences concerning the tested particles were observed for the induction of single-strand breaks, with the greatest genotoxicity being associated with the B7-derived DEPs. The differences in other effects between DEPs from the different biodiesel blend percentage and biodiesel feedstock were also observed, but the magnitude of these variations was limited.

  18. Biomonitoring of genotoxic exposure among stainless steel welders

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Boisen, T; Christensen, J M

    1992-01-01

    A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G. Environm......A biosurvey in the Danish metal industry measured the genotoxic exposure from stainless steel welding. The study comprised measurements of chromosomal aberrations (CA), sister-chromatid exchanges (SCE), unscheduled DNA synthesis (UDS) in peripheral lymphocytes and serum immunoglobulin G....... A higher frequency of chromosomal aberrations, classified as translocations, double minutes, exchanges and rings, was observed in stainless steel welders than in non-welders. SCE was lower in welders working with both MMA and TIG welding than in reference persons. N-Acetoxy-N-acetylaminofluorene (NA...... lymphocytes in exposed persons compared with non-exposed are suggested. MMA welding gave the highest exposure to chromium, an increased number of chromosomal aberrations and a decrease in SCE when compared with TIG welding. Consequently improvements in the occupational practice of stainless steel welding...

  19. Histopathological, oxidative damage, biochemical, and genotoxicity alterations in hepatic rats exposed to deltamethrin: modulatory effects of garlic (Allium sativum).

    Science.gov (United States)

    Ncir, Marwa; Ben Salah, Ghada; Kamoun, Hassen; Makni Ayadi, Fatma; Khabir, Abdelmajid; El Feki, Abdelfattah; Saoudi, Mongi

    2016-06-01

    Deltamethrin is a pesticide widely used as a synthetic pyrethroid. The aim of this study was undertaken to investigate the effects of deltamethrin to induce oxidative stress and changes in biochemical parameters, hepatotoxicity and genotoxicity in female rats following a short-term (30 days) oral exposure and attenuation of these effects by Allium sativum extract. Indeed, Allium sativum is known to be a good antioxidant food resource which helps destroy free radical particles. Our results showed that deltamethrin treatment caused an increase in liver enzyme activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH); and hepatic lipid peroxidation (LPO) level. However, it induced a decrease in activities of hepatic catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) (p Allium sativum extract normalized significantly (p Allium sativum diminished the adverse effects induced by this synthetic pyrethroid insecticide.

  20. Moesin Is a Biomarker for the Assessment of Genotoxic Carcinogens in Mouse Lymphoma

    Science.gov (United States)

    Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong

    2012-01-01

    1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells. PMID:22358511

  1. Use of the Microscreen phage-induction assay to assess the genotoxicity of 14 hazardous industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1988-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s lambda, was used to test 14 crude (unfractionated) hazardous industrial-waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assay detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.

  2. Use of the microscreen phage-induction assay to assess the genotoxicity of 14 hazardous industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Houk, V.S.; DeMarini, D.M.

    1988-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 pg per ml. Comparisons between the ability of these waste samples to induce prophage and their mutagenicity in the Salmonella reverse mutation assay indicate that the phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assay detected as genotoxic five additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed, as are some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.

  3. The influence of abiotic factors present in the Rio de la Plata over the chromium genotoxicity

    International Nuclear Information System (INIS)

    Lopez, L.C.; Moretton, J.

    1997-01-01

    The alterations suffered by the well-known environmental genotoxic agent, Cr(V I), were studied. Cr(V I) salts were dissolved in water effluent river receptors waters such as from the Rio de la Plata. The influence of abiotic factors present in this kind of water was evaluated using the Rec. assay in Bacillus subtilis. The results detected a soluble fraction that potentiated Cr(V I) genotoxicity. This substance (or group of substances) is sensible to sterilization by heat and UV radiation, and its activity seems to decrease with particulate matter. Its genotoxicity was not affected by high concentrations of particulate matter in the Rio de la Plata water. In samples where chromium salts were added to raw river water, abiotic interference due to sterilization process occurred. A decrease in genotoxicity was found after filtration through inorganic filters (0.22 μ m) and an increase was noticed after exposure to UV radiation. (Author)

  4. Assessment of the in vitro and in vivo genotoxicity of extracts and indole monoterpene alkaloid from the roots of Galianthe thalictroides (Rubiaceae).

    Science.gov (United States)

    Fernandes, L M; Garcez, W S; Mantovani, M S; Figueiredo, P O; Fernandes, C A; Garcez, F R; Guterres, Z R

    2013-09-01

    Roots of Galianthe thalictroides K. Schum. (Rubiaceae) are used in folk medicine in the State of Mato Grosso do Sul, Brazil, for treating and preventing cancer. To gain information about the genotoxicity of extracts (aqueous and EtOH), the CHCl₃ phase resulting from partition of the EtOH extract and the indole monoterpene alkaloid 1 obtained from this plant. The genotoxicity of 1 and extracts was evaluated in vivo through the Drosophila melanogaster wing Somatic Mutation and Recombination Test - SMART, while in vitro cytotoxic (MTT) and Comet assays were performed only with alkaloid 1. The results obtained with the SMART test indicated that the aqueous extract had no genotoxic activity. The EtOH extract was not genotoxic to ST descendants but genotoxic to HB ones. The CHCl₃ phase was genotoxic and cytotoxic. Alkaloid 1 showed significant mutational events with SMART, in the cytotoxicity assay (MTT), it showed a high cytotoxicity for human hepatoma cells (HepG2), whereas for the Comet assay, not showing genotoxic activity. The ethanol extract was shown to be genotoxic to HB descendants in the SMART assay, while the results obtained in this test for the monoterpene indole alkaloid 1 isolated from this extract. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Comparison of the in vivo and in vitro genotoxicity of glyphosate isopropylamine salt in three different organisms

    Directory of Open Access Journals (Sweden)

    Carlos Alvarez-Moya

    2014-01-01

    Full Text Available There is considerable controversy with regard to the genotoxicity of glyphosate, with some reports stating that this compound is non-toxic for fish, birds and mammals. In this work, we used the comet assay to examine the genotoxicity of glyphosate isopropylamine (0.7, 7, 70 and 700 µM in human lymphocytes, erythrocytes of Oreochromis niloticus and staminal nuclei of Tradescantia (4430 in vitro and in vivo. Cells, nuclei and fish that had and had not been exposed to 5 mM N-nitrosodiethylamine (NDEA were used as positive and negative controls, respectively. Significant (p 7 µM, whereas in vitro, glyphosphate was genotoxic in human lymphocytes and Tradescantia hairs at > 0.7 µM. These results indicate that glyphosate is genotoxic in the cells and organisms studied at concentrations of 0.7-7 µM.

  6. Evaluation of the genotoxicity of zinc oxide-eugenol cement to Allium cepa L. - doi: 10.4025/actascibiolsci.v35i4.17925

    Directory of Open Access Journals (Sweden)

    Elisângela de Fátima Rezende

    2013-07-01

    Full Text Available Evaluation of the Genotoxicity of Zinc Oxide-Eugenol Cement in Allium cepa L. Dental materials can induce local and systemic effects. The Allium cepa assay was used to evaluate the genotoxicity and/or cytotoxicity of zinc oxide and eugenol (ZOE at different proportions. The ZOE solution was tested at the concentration of 1 drop of eugenol (in each drop of liquid, the approximate concentration of eugenol is 85% and 1 portion of zinc oxide cement (treatment I, and twice the concentration of eugenol (treatment II. Treated roots appeared to be yellowish-brown, fewer in number, thicker and less turgid compared with the control, suggesting a cytotoxic activity of ZOE. A significant difference was found in the root size between the control and treatment II. This treatment reduced by 79% the size of the root compared with the control, and the mitotic index was 66%, indicating a 22.4% reduction relative to the control, which in turn evidenced the cytotoxicity of ZOE. The significant increase in anaphase bridges suggests a genotoxic effect.

  7. Electrochemical Genotoxicity Assay Based on a SOS/umu Test Using Hydrodynamic Voltammetry in a Droplet

    Science.gov (United States)

    Kuramitz, Hideki; Sazawa, Kazuto; Nanayama, Yasuaki; Hata, Noriko; Taguchi, Shigeru; Sugawara, Kazuharu; Fukushima, Masami

    2012-01-01

    The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the β-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less interference, enables the analysis of turbid samples and allows detection even in small volumes without loss of sensitivity. Based on this understanding, we aim to develop a new umu test system with hydrodynamic chronoamperometry using a rotating disk electrode (RDE) in a microliter droplet. PAPG when used as a substrate is not electroactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current response of chronoamperometry resulting from the oxidation of PAP to PQI is directly proportional to the enzymatic activity of S. typhimurium. This was achieved by performing genotoxicity tests for 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and 2-aminoanthracene (2-AA) as model genotoxic compounds. The results obtained in this study indicated that the signal detection in the genotoxicity assay based on hydrodynamic voltammetry was less influenced by the presence of colored components and sediment particles in the samples when compared to the usual colorimetric signal detection. The influence caused by the presence of humic acids (HAs) and artificial sediment on the genotoxic property of selected model compounds such as 4-nitroquinoline-N-oxide (4-NQO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 1,8-dinitropyrene (1,8-DNP) and 1-nitropyrene (1-NP) were also investigated. The results showed that the genotoxicity of 1-NP and MX changed in the presence of 10 mg·L−1 HAs. The genotoxicity of tested chemicals with a high hydrophobicity such as 1,8-DNP

  8. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Jukka Luukkonen

    Full Text Available BACKGROUND: Extremely low frequency (ELF magnetic fields (MF are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. METHODOLOGY/PRINCIPAL FINDINGS: Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS. Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. CONCLUSIONS: The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.

  9. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-03-23

    Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.

  10. Genotoxic effects of deoxynivalenol in broiler chickens fed low-protein feeds.

    Science.gov (United States)

    Awad, W A; Ghareeb, K; Dadak, A; Gille, L; Staniek, K; Hess, M; Böhm, J

    2012-03-01

    Deoxynivalenol (DON) is one of the most abundant and important trichothecenes in food and feed, and it is a significant contaminant due to its frequent occurrence at toxicologically relevant concentrations worldwide. Deoxynivalenol has negative influences on the health and performance of chicks. However, there is little information available regarding the effect of DON on DNA fragmentation in blood lymphocytes. In addition, the effects of Mycofix select (Biomin GmbH, Herzogenburg, Austria) supplementation to DON-contaminated broiler diets on lymphocyte DNA have not yet been demonstrated. Therefore, the aim of the present study was to establish the effect of DON on lipid peroxidation and lymphocyte DNA fragmentation in broilers and to evaluate the potential of Mycofix select in the prevention of toxin-mediated changes. Thirty-two 1-d-old (Ross 308 male) broiler chicks were randomly divided into 4 groups. The control group was fed a noncontaminated diet, and a second group was fed the same diet but supplemented with Mycofix select (0.25%). A third group of broilers was fed a diet artificially contaminated with 10 mg of feed-grade DON/kg of diet, and a fourth group was fed a DON-contaminated diet supplemented with Mycofix select. At the end of the feeding trial, blood was collected and the degree of lymphocyte DNA damage was measured in the plasma by comet assay. Deoxynivalenol increased (P = 0.016) the amount of DNA damage in chicken lymphocytes by 46.8%. Mycofix select protected lymphocyte DNA from the DON effects. To our knowledge, these are the first data on genotoxic effects of a moderate dose of DON on chicken lymphocytes. However, the thiobarbituric acid reactive substances level in liver and liver enzyme activity did not differ among the groups. In conclusion, the present study demonstrated that the diets contaminated with the mycotoxin DON at moderate levels in combination with low-protein feed are able to induce lymphocyte DNA damage in chickens

  11. Genotoxic Potential of Two Herbicides and their Active Ingredients Assessed with Comet Assay on a Fish Cell Line, Epithelioma Papillosum Cyprini (EPC)

    DEFF Research Database (Denmark)

    Syberg, Kristian; Rank, Jette; Jensen, Klara

    2013-01-01

    The aim of this study was to optimize the epithelioma papillosum cyprini (EPC) cell line handling procedure for the comet assay to investigate the genotoxic potential of widely used pesticides. The effects of various media and handling of the EPC cell line were examined. Results indicated......-(2,4-dichlorophenoxy)propionic acid) individually and in a ternary mixture were examined with the comet assay. Data showed that among the active ingredients only 2,4-D andMCPA induced DNA damage, while both herbicides were genotoxic at high concentrations....

  12. Cytotoxic and genotoxic effects caused by {sup 153} Sm-EDTMP, combined with BrdU a thymidine analog; Efecto citotoxico y genotoxico causado por {sup 153} Sm-EDTMP, combinado con BrdU un analogo de timidina

    Energy Technology Data Exchange (ETDEWEB)

    Morales A, E; Ferro F, G; Morales R, P [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    The ablation of the bone marrow previous to the transplant by means of radiation and chemical antineoplastics its affect indiscriminately to the healthy tissues and in particular those that are in proliferation. The objective of this work is to determine the effect of the incorporation from the BrdU to the DNA on the genotoxicity and cytotoxicity of the cells of the bone marrow caused by the radiopharmaceutical {sup 153}Sm-EDTMP. The genotoxicity was determined by the rate of erythrocytes polychromatic micro nucleates (EPC-MN) and the cytotoxicity by the frequency of EPC. Both parameters determined in peripheral blood after the BrdU administration and {sup 153}Sm-EDTMP. The combination of the BrdU and r1 radiopharmaceutical produced a bigger cytotoxicity that the radiation and the BrdU alone; on the other hand it produced a reduction of the EPC-MN produced by the radiation, suggesting that the cytotoxicity didn't allow the expression of the genotoxicity. (Author)

  13. Cytotoxic and genotoxic effects caused by {sup 153} Sm-EDTMP, combined with BrdU a thymidine analog; Efecto citotoxico y genotoxico causado por {sup 153} Sm-EDTMP, combinado con BrdU un analogo de timidina

    Energy Technology Data Exchange (ETDEWEB)

    Morales A, E.; Ferro F, G.; Morales R, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2006-07-01

    The ablation of the bone marrow previous to the transplant by means of radiation and chemical antineoplastics its affect indiscriminately to the healthy tissues and in particular those that are in proliferation. The objective of this work is to determine the effect of the incorporation from the BrdU to the DNA on the genotoxicity and cytotoxicity of the cells of the bone marrow caused by the radiopharmaceutical {sup 153}Sm-EDTMP. The genotoxicity was determined by the rate of erythrocytes polychromatic micro nucleates (EPC-MN) and the cytotoxicity by the frequency of EPC. Both parameters determined in peripheral blood after the BrdU administration and {sup 153}Sm-EDTMP. The combination of the BrdU and r1 radiopharmaceutical produced a bigger cytotoxicity that the radiation and the BrdU alone; on the other hand it produced a reduction of the EPC-MN produced by the radiation, suggesting that the cytotoxicity didn't allow the expression of the genotoxicity. (Author)

  14. Approaches to the risk assessment of genotoxic carcinogens in food: a critical appraisal.

    Science.gov (United States)

    O'Brien, J; Renwick, A G; Constable, A; Dybing, E; Müller, D J G; Schlatter, J; Slob, W; Tueting, W; van Benthem, J; Williams, G M; Wolfreys, A

    2006-10-01

    The present paper examines the particular difficulties presented by low levels of food-borne DNA-reactive genotoxic carcinogens, some of which may be difficult to eliminate completely from the diet, and proposes a structured approach for the evaluation of such compounds. While the ALARA approach is widely applicable to all substances in food that are both carcinogenic and genotoxic, it does not take carcinogenic potency into account and, therefore, does not permit prioritisation based on potential risk or concern. In the absence of carcinogenicity dose-response data, an assessment based on comparison with an appropriate threshold of toxicological concern may be possible. When carcinogenicity data from animal bioassays are available, a useful analysis is achieved by the calculation of margins of exposure (MOEs), which can be used to compare animal potency data with human exposure scenarios. Two reference points on the dose-response relationship that can be used for MOE calculation were examined; the T25 value, which is derived from linear extrapolation, and the BMDL10, which is derived from mathematical modelling of the dose-response data. The above approaches were applied to selected food-borne genotoxic carcinogens. The proposed approach is applicable to all substances in food that are DNA-reactive genotoxic carcinogens and enables the formulation of appropriate semi-quantitative advice to risk managers.

  15. Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius)

    International Nuclear Information System (INIS)

    Kuzmick, Danika M.; Mitchelmore, Carys L.; Hopkins, William A.; Rowe, Christopher L.

    2007-01-01

    Coal combustion residues (CCRs), largely derived from coal-fired electrical generation, are rich in numerous trace elements that have the potential to induce sublethal effects including oxidative stress, alterations in antioxidant status and DNA single strand breaks (SSB). CCRs are frequently discharged into natural and man-made aquatic systems. As the effects of CCRs have received relatively little attention in estuarine systems, the estuarine grass shrimp, Palaemonetes pugio, was chosen for this study. Grass shrimp were exposed in the laboratory to CCR-enriched sediments and food over a full life cycle. Survival to metamorphosis was significantly reduced in CCR-exposed larvae (17 ± 4 versus 70 ± 13% in the controls) but not in the juveniles or adults. The COMET assay, a general but sensitive assay for genotoxicity, was used to quantify DNA SSB in the adults. Total antioxidant potential was examined to assess the overall antioxidant scavenging capacity of CCR-exposed and non-exposed adult grass shrimp. Grass shrimp exposed to CCR significantly accumulated selenium and cadmium compared to unexposed shrimp, although an inverse relationship was seen for mercury accumulation. Chronic CCR exposure caused DNA SSB in hepatopancreas cells, as evidenced by the significantly increased percent tail DNA, tail moment, and tail length as compared to reference shrimp. However, no significant difference was observed in total antioxidant potential. Our findings suggest that genotoxicity may be an important mode of toxicity of CCR, and that DNA SSB may serve as a useful biomarker of exposure and effect of this very common, complex waste stream

  16. Effects of coal combustion residues on survival, antioxidant potential, and genotoxicity resulting from full-lifecycle exposure of grass shrimp (Palaemonetes pugio Holthius)

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmick, Danika M.; Mitchelmore, Carys L.; Rowe, Christopher L. [University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, 1, Williams Street, PO Box 38, Solomons, MD, 20688 (United States); Hopkins, William A. [Department of Fisheries and Wildlife Sciences, Virginia Polytechnic Institute and State University, 100 Cheatham Hall, Blacksburg, VA (United States)

    2007-02-01

    Coal combustion residues (CCRs), largely derived from coal-fired electrical generation, are rich in numerous trace elements that have the potential to induce sublethal effects including oxidative stress, alterations in antioxidant status and DNA single strand breaks (SSB). CCRs are frequently discharged into natural and man-made aquatic systems. As the effects of CCRs have received relatively little attention in estuarine systems, the estuarine grass shrimp, Palaemonetes pugio, was chosen for this study. Grass shrimp were exposed in the laboratory to CCR-enriched sediments and food over a full life cycle. Survival to metamorphosis was significantly reduced in CCR-exposed larvae (17 {+-} 4 versus 70 {+-} 13% in the controls) but not in the juveniles or adults. The COMET assay, a general but sensitive assay for genotoxicity, was used to quantify DNA SSB in the adults. Total antioxidant potential was examined to assess the overall antioxidant scavenging capacity of CCR-exposed and non-exposed adult grass shrimp. Grass shrimp exposed to CCR significantly accumulated selenium and cadmium compared to unexposed shrimp, although an inverse relationship was seen for mercury accumulation. Chronic CCR exposure caused DNA SSB in hepatopancreas cells, as evidenced by the significantly increased percent tail DNA, tail moment, and tail length as compared to reference shrimp. However, no significant difference was observed in total antioxidant potential. Our findings suggest that genotoxicity may be an important mode of toxicity of CCR, and that DNA SSB may serve as a useful biomarker of exposure and effect of this very common, complex waste stream. (author)

  17. Effect of training data size and noise level on support vector machines virtual screening of genotoxic compounds from large compound libraries.

    Science.gov (United States)

    Kumar, Pankaj; Ma, Xiaohua; Liu, Xianghui; Jia, Jia; Bucong, Han; Xue, Ying; Li, Ze Rong; Yang, Sheng Yong; Wei, Yu Quan; Chen, Yu Zong

    2011-05-01

    Various in vitro and in-silico methods have been used for drug genotoxicity tests, which show limited genotoxicity (GT+) and non-genotoxicity (GT-) identification rates. New methods and combinatorial approaches have been explored for enhanced collective identification capability. The rates of in-silco methods may be further improved by significantly diversified training data enriched by the large number of recently reported GT+ and GT- compounds, but a major concern is the increased noise levels arising from high false-positive rates of in vitro data. In this work, we evaluated the effect of training data size and noise level on the performance of support vector machines (SVM) method known to tolerate high noise levels in training data. Two SVMs of different diversity/noise levels were developed and tested. H-SVM trained by higher diversity higher noise data (GT+ in any in vivo or in vitro test) outperforms L-SVM trained by lower noise lower diversity data (GT+ in in vivo or Ames test only). H-SVM trained by 4,763 GT+ compounds reported before 2008 and 8,232 GT- compounds excluding clinical trial drugs correctly identified 81.6% of the 38 GT+ compounds reported since 2008, predicted 83.1% of the 2,008 clinical trial drugs as GT-, and 23.96% of 168 K MDDR and 27.23% of 17.86M PubChem compounds as GT+. These are comparable to the 43.1-51.9% GT+ and 75-93% GT- rates of existing in-silico methods, 58.8% GT+ and 79% GT- rates of Ames method, and the estimated percentages of 23% in vivo and 31-33% in vitro GT+ compounds in the "universe of chemicals". There is a substantial level of agreement between H-SVM and L-SVM predicted GT+ and GT- MDDR compounds and the prediction from TOPKAT. SVM showed good potential in identifying GT+ compounds from large compound libraries based on higher diversity and higher noise training data.

  18. QSAR screening of 70,983 REACH substances for genotoxic carcinogenicity, mutagenicity and developmental toxicity in the ChemScreen project

    DEFF Research Database (Denmark)

    Wedebye, Eva Bay; Dybdahl, Marianne; Nikolov, Nikolai Georgiev

    2015-01-01

    The ChemScreen project aimed to develop a screening system for reproductive toxicity based on alternative methods. QSARs can, if adequate, contribute to the evaluation of chemical substances under REACH and may in some cases be applied instead of experimental testing to fill data gaps...... for information requirements. As no testing for reproductive effects should be performed in REACH on known genotoxic carcinogens or germ cell mutagens with appropriate risk management measures implemented, a QSAR pre-screen for 70,983 REACH substances was performed. Sixteen models and three decision algorithms...... were used to reach overall predictions of substances with potential effects with the following result: 6.5% genotoxic carcinogens, 16.3% mutagens, 11.5% developmental toxicants. These results are similar to findings in earlier QSAR and experimental studies of chemical inventories, and illustrate how...

  19. Linking embryo toxicity with genotoxic responses in the freshwater snail Physa acuta: single exposure to benzo(a)pyrene, fluoxetine, bisphenol A, vinclozolin and exposure to binary mixtures with benzo(a)pyrene.

    Science.gov (United States)

    Sánchez-Argüello, Paloma; Aparicio, Natalia; Fernández, Carlos

    2012-06-01

    Genotoxic effects on fauna after waterborne pollutant exposure have been demonstrated by numerous research programmes. Less effort has been focused on establishing relationship between genotoxicity and long-term responses at higher levels of biological organization. Taking into account that embryos may be more sensitive indicators of reproductive impairment than alterations in fertility, we have developed two assays in multiwell plates to address correlations between embryo toxicity and genotoxicity. The potential teratogenicity was assessed by analyzing abnormal development and mortality of Physa acuta at embryonic stage. Genotoxicity was measured by the micronucleus (MN) test using embryonic cells. Our results showed that linkage between genotoxicity and embryo toxicity depends on mechanisms of action of compounds under study. Embryo toxic responses showed a clear dose-related tendency whereas no clear dose-dependent effect was observed in micronucleus induction. The higher embryo toxicity was produced by benzo(a)pyrene exposure followed by fluoxetine and bisphenol A. Vinclozolin was the lower embryo toxic compound. Binary mixtures with BaP always resulted in higher embryo toxicity than single exposures but antagonistic effects were observed for MN induction. Benzo(a)pyrene produced the higher MN induction at 0.04 mg/L, which also produced clear embryo toxic effects. Fluoxetine did not induce cytogenetic effects but 0.25mg/L altered embryonic development. Bisphenol A significantly reduced hatchability at 0.5mg/L while MN induction appeared with higher treatments than those that start causing teratogenicity. Much higher concentration of vinclozolin (5mg/L) reduced hatchability and induced maximum MN formation. In conclusion, while validating one biomarker of genotoxicity and employing one ecologically relevant effect, we have evaluated the relative sensitivity of a freshwater mollusc for a range of chemicals. The embryo toxicity test is a starting point for the

  20. Biomonitoring of genotoxic effects and elemental accumulation derived from air pollution in community urban gardens.

    Science.gov (United States)

    Amato-Lourenco, Luís Fernando; Lobo, Debora Jã A; Guimarães, Eliane T; Moreira, Tiana Carla Lopes; Carvalho-Oliveira, Regiani; Saiki, Mitiko; Saldiva, Paulo Hilário Nascimento; Mauad, Thais

    2017-01-01

    Urban gardening is a growing global phenomenon with a positive impact on society. Despite several associated benefits, growing vegetables in urban gardens that are localized in highly polluted areas poses questions about the safety of the produced food. Therefore, the identification of risk factors that result in possible deleterious effects to human health is important for realizing all of the benefits to society. We evaluated the use of two biomonitoring methods in ten urban gardens of Sao Paulo city and one control site: the micronuclei frequencies for early tetrads of Tradescantia pallida (Rose) Hunt. cv. "Purpurea" Boom (hereafter, Trad-MCN) as a short-term indicator of genotoxic response and tree barks to quantify the accumulation of traffic-related chemical elements as a long-term biomarker of air pollution in urban gardens. Mature plants of Tradescantia pallida were exposed in each garden, and their inflorescences were sampled over three months. A random set of 300 early tetrads in 13 to 21 slides per garden were evaluated for micronuclei frequencies. Elemental concentrations in 428 tree barks samples from 107 different trees in the areas surrounding urban gardens were quantified using an energy dispersive X-ray fluorescence spectrometer. The frequency of Trad-MCN has a significant correlation with traffic variables and chemical elements related to road dust and tailpipe emissions deposited in tree barks. Negative associations between Trad-MCN and both the distance through traffic and the presence of vertical obstacles were observed in the community gardens. The Mn/Zn concentrations in tree barks were associated with increased Trad-MCN. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chemical characterization and cytotoxic, genotoxic, and mutagenic properties of Baccharis trinervis (Lam, Persoon) from Colombia and Brazil.

    Science.gov (United States)

    Jaramillo-García, Victoria; Trindade, Cristiano; Lima, Elisiane; Guecheva, Temenouga N; Villela, Izabel; Martinez-Lopez, Wilner; Corrêa, Dione S; Ferraz, Alexandre de B F; Moura, Sidnei; Sosa, Milton Quintana; Da Silva, Juliana; Henriques, João Antônio Pegas

    2018-03-01

    Baccharis trinervis (Lam, Persoon) leaves are used in the traditional medicine for the treatment of high fevers, edema, inflammation, sores and muscle cramps, snakebites and as antiseptic. To investigate the cytotoxic, genotoxic, and mutagenic effects of extracts and fractions of B. trinervis from Brazil and Colombia in Chinese Hamster Ovary (CHO) cells, and to examine the mutagenic activity in Salmonella typhimurium. Aqueous extracts (AE) of aerial parts of B. trinervis from Brazil (B) and Colombia (C) were fractioned in ethyl acetate fraction (EAF), butanol extract (BF), and aqueous residue fraction (ARF). Qualitative chemical screening and determination of total flavonoid content were made. Identification of chemical constituents was performed by High Performance Liquid Chromatography (HPLC) and High Resolution Mass Spectrometry (HRMS). For the in vitro tests, CHO cells were treated for 3h with extracts and fractions. The cytotoxic activity was evaluated by clonal survival and 3-(4.5-dimethylthiazole-2-yl)-2.5-biphenyl tetrazolium bromide reduction assay (MTT). Genotoxic and mutagenic effects were evaluated by the alkaline comet assay and Cytokinesis-blockage micronucleus test (CBMN), respectively. Additionally, Salmonella/microsome assay was carried out to determinate the mutagenic effects in EAF from Brazil and Colombia. Phytochemical analyses indicated the presence of saponins and flavonoids. AE and EAF were the samples with the highest quantity of total flavonoids. HPLC showed the presence of luteolin only in AEC, and caffeic acid, ellagic acid, rosmarinic acid, and rutin were identified in AEB and AEC (AEC>AEB). The HRMS in positive mode of EAFB and EAFC showed presence of two carboxylic acids, coumarin, and two terpenoids. In addition, were identified one terpenoid and two carboxylic acids in AE, BF and ARF of B. trinervis from both countries in negative mode. Dose-dependent cytotoxic effects were observed in CHO cells treated with B. trinervis extracts

  2. Protective Effect of Curcumin against Ionizing Radiation (IR)-induced Cytotoxicity and Genotoxicity in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong Min; Nasir Uddin, S. M.; Ryu, Tae Ho; Kang, Mi Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Ionizing radiation (IR) has many practical applications such as medicine, foods, agricultures, industries, and research laboratories. However, the increasing use of radiation is associated with radiation accidents threatening human health. It is well known that exposure to IR gives rise to genomic alterations, mutagenesis, and cell death. IR is absorbed directly by DNA, leading to various DNA damages (single or double-strand breaks, base damage, and DNA-DNA or DNA-protein cross-linkages) in many living organisms. Therefore, the development of effective and nontoxic radioprotective agents is of considerable interest. Curcumin (C{sub 12}H{sub 20}O{sub 6}, structure is the major yellow component of Curcuma longa with biological activities (antioxidant, anti-proliferative and anti-inflammatory properties). It has been widely used as food and medicine for a long time. The aim of our present study is to investigate the protective effects of curcumin against IR-induced cytotoxicity and genotoxicity in cultured HepG2 cells.

  3. Protective Effect of Curcumin against Ionizing Radiation (IR)-induced Cytotoxicity and Genotoxicity in HepG2 Cells

    International Nuclear Information System (INIS)

    Chung, Dong Min; Nasir Uddin, S. M.; Ryu, Tae Ho; Kang, Mi Young; Kim, Jin Kyu

    2013-01-01

    Ionizing radiation (IR) has many practical applications such as medicine, foods, agricultures, industries, and research laboratories. However, the increasing use of radiation is associated with radiation accidents threatening human health. It is well known that exposure to IR gives rise to genomic alterations, mutagenesis, and cell death. IR is absorbed directly by DNA, leading to various DNA damages (single or double-strand breaks, base damage, and DNA-DNA or DNA-protein cross-linkages) in many living organisms. Therefore, the development of effective and nontoxic radioprotective agents is of considerable interest. Curcumin (C 12 H 20 O 6 , structure is the major yellow component of Curcuma longa with biological activities (antioxidant, anti-proliferative and anti-inflammatory properties). It has been widely used as food and medicine for a long time. The aim of our present study is to investigate the protective effects of curcumin against IR-induced cytotoxicity and genotoxicity in cultured HepG2 cells

  4. Urinary screening for potentially genotoxic exposures in a chemical industry

    Energy Technology Data Exchange (ETDEWEB)

    Ahlborg, G. Jr.; Bergstroem, B.H.; Hogstedt, C.; Einistoe, P.S.; Sorsa, M.

    1985-10-01

    Mutagenic activity, measured by the bacterial fluctuation assay and thioether concentration in urine from workers at a chemical plant producing pharmaceuticals and explosives, was determined before and after exposure. Of 12 groups only those exposed to trinitrotoluene (n = 14) showed a significant increase in mutagenic activity using Salmonella typhimurium TA 98 without any exogenous metabolic system. The same strain responded only weakly when the S-9 mix was used; with Escherichia coli WP2 uvrA no effect of exposure was observed. Urinary thioether concentration was higher among smokers than among non-smokers, but occupational exposure had no effect. Urinary mutagenicity testing may be a useful tool for screening potentially genotoxic exposures in complex chemical environments.

  5. Environmental genotoxicity and risk assessment in the Gulf of Riga (Baltic Sea) using fish, bivalves, and crustaceans.

    Science.gov (United States)

    Butrimavičienė, Laura; Baršienė, Janina; Greiciūnaitė, Janina; Stankevičiūtė, Milda; Valskienė, Roberta

    2018-06-21

    Environmental genotoxicity in the Gulf of Riga was assessed using different bioindicators (fish, clams, and isopods) collected from 14 study stations. Comparison of genotoxicity responses (micronuclei (MN) and nuclear buds (NB)) in blood erythrocytes of herring (Clupea harengus), eelpout (Zoarces viviparous), and flounder (Platichthys flesus) revealed the species- and site-specific differences. For the first time, the analysis of genotoxicity was carried out in gill cells of isopods Saduria entomon. The highest inductions of MN and NB in gill cells of investigated S. entomon and clams (Macoma balthica) were evaluated in specimens from station 111A (offshore zone). In fish, the highest incidences of MN were measured in eelpout and in herring collected in the southern part of Gulf of Riga (station GOR3/41S). Moreover, in the southern coastal area, the assessment of genotoxicity risk (according to micronuclei levels) indicated exceptionally high risk for flounder, eelpout, and clams.

  6. Genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food

    Directory of Open Access Journals (Sweden)

    Makoto Nakai

    2014-01-01

    Full Text Available Here, we conducted in vitro genotoxicity tests to evaluate the genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food. Styrene oligomers were extracted with acetone and the extract was subjected to the Ames test (OECD test guideline No. 471 and the in vitro chromosomal aberration test (OECD test guideline No. 473 under good laboratory practice conditions. The concentrations of styrene dimers and trimers in the concentrated extract were 540 and 13,431 ppm, respectively. Extraction with acetone provided markedly higher concentrations of styrene oligomers compared with extraction with 50% ethanol aqueous solution, which is the food simulant currently recommended for use in safety assessments of polystyrene by both the United States Food and Drug Administration and the European Food Safety Authority. And these high concentrations of styrene dimers and trimers were utilized for the evaluation of genotoxicity in vitro. Ames tests using five bacterial tester strains were negative both in the presence or absence of metabolic activation. The in vitro chromosomal aberration test using Chinese hamster lung cells (CHL/IU was also negative. Together, these results suggest that the risk of the genotoxicity of styrene oligomers that migrate from polystyrene food packaging into food is very low.

  7. A biomarker model of sublethal genotoxicity (DNA single-strand breaks and adducts) using the sentinel organism Aporrectodea longa in spiked soil

    International Nuclear Information System (INIS)

    Martin, Francis L.; Piearce, Trevor G.; Hewer, Alan; Phillips, David H.; Semple, Kirk T.

    2005-01-01

    There is a need to develop risk biomarkers during the remediation of contaminated land. We employed the earthworm, Aporrectodea longa (Ude), to determine whether genotoxicity measures could be applied to this organism's intestinal tissues. Earthworms were added, for 24 h or 7 days, to soil samples spiked with benzo[a]pyrene (B[a]P) and/or lindane. After exposure, intestinal tissues (crop/gizzard or intestine) were removed prior to the measurement in disaggregated cells of DNA single-strand breaks (SSBs) by the alkaline comet assay. Damage was quantified by comet tail length (CTL, μm). B[a]P 24-h exposure induced dose-related increases (P 32 P-postlabelling, showed a two-adduct-spot pattern. This preliminary investigation suggests that earthworm tissues may be incorporated into genotoxicity assays to facilitate hazard identification within terrestrial ecosystems. - Sublethal genotoxicity in the sentinel organism A. longa can be used to monitor the effects of contaminants in soil

  8. Generation of in vitro data to model dose dependent in vivo DNA binding of genotoxic carcinogens and its consequences: the case of estragole

    NARCIS (Netherlands)

    Paini, A.

    2012-01-01

    Our food contains several compounds which, when tested in isolated form at high doses in animal experiments, have been shown to be genotoxic and carcinogenic. At the present state-of-the-art there is no scientific consensus on how to perform the risk assessment of these compounds when present at

  9. Study on cellular genotoxicities induced by alpha particles irradiation in combination with NNK treatment

    International Nuclear Information System (INIS)

    Li Ping; Yang Zhihua; Pan Xiujie; Cao Zhenshan; Mi Na; Chen Zhongmin; Liu Gang; Wei Han; Li Huiying; Zhu Maoxiang

    2006-01-01

    Objective: To investigate cellular genotoxicities of aplha particles irradiation in combination with NNK treatment. Methods: Exponentially growing immortalized human bronchial epithelial cells were divided into the normal control group (NC), alpha particles irradiation (α), NNK administration group (NNK), NNK administration (100 μg/ml) followed by alpha particles irradiation group (NNK + α), and alpha particles irradiation followed by NNK administration (100 μg/ml) group (μ + NNK). DNA damage were detected by single cell gel electrophoresis (SCGE); multinuclear cell assay was used to detect the frequency of the HPRT gene mutation; cell micronucleus frequency were detected by cytogenetic methods. Results: In the group exposed to both alpha particles irradiation and NNK, DNA damage, HPRT gene mutation frequency, and cell micronucleus frequency were significantly higher than those in the same dose groups irradiated with alpha particles or NNK administration alone. Subtracted the NNK effect, DNA damage, HPRT gene mutation frequency and cell micronucleus frequency in the group irradiated by alpha particles in combination with NNK administration were significantly higher than those of alpha particles irradiation alone. Conclusion: The genotoxicity of alpha particles irradiation in combination with NNK administration had synergistic effect. (authors)

  10. Evaluation of Cytotoxicity and Genotoxicity of Inula viscosa Leaf Extracts with Allium Test

    Directory of Open Access Journals (Sweden)

    Tülay Aşkin Çelik

    2010-01-01

    Full Text Available I. viscosa has been used for years in folk medicine for its anti-inflammatory, antipyretic, antiseptic, and paper antiphlogistic activities. In this study, cytotoxic and genotoxic effects of I. viscosa leaf extracts on the root meristem cells of Allium cepa have been examined. Onion bulbs were exposed to 2.5 mg/ml, 5 mg/ml, and 10 mg/ml concentrations of the extracts for macroscopic and microscopic analysis. Tap water has been used as a negative control and Ethyl methanesulfonate (EMS (2⋅10−2 M has been used as a positive control. The test concentrations have been determined according to doses which are recommended for use in alternative medicine. There has been statistically significant (P<.05 inhibition of root growth depending on concentration by the extracts when compared with the control groups. All the tested extracts have been observed to have cytotoxic effects on cell division in A. cepa. I. viscosa leaf extract induces the total number of chromosomal aberrations and micronuclei (MNC formations in A. cepa root tip cells significantly when compared with control groups. Also, this paper shows for the first time the induction of cell death, ghost cells, cells with membrane damage, and binucleated cells by extract treatment. These results suggest the cytotoxic and genotoxic effects of the I. viscosa leaf extracts on A. cepa.

  11. On the relevance of genotoxicity for fish populations I: effects of a model genotoxicant on zebrafish (Danio rerio) in a complete life-cycle test.

    Science.gov (United States)

    Diekmann, Markus; Hultsch, Veit; Nagel, Roland

    2004-05-28

    Genotoxicity may be detected in surface waters by means of various genotoxicity assays. In order to enable an ecotoxicological assessment of the consequences of such genotoxic potential for fish populations, a complete life-cycle test with zebrafish (Danio rerio) and the model genotoxicant 4-nitroquinoline-1-oxide (NQO) was conducted. Zebrafish (f1) were continuously exposed to NQO (i.e. 0.1, 0.3, 1.1, 2.9, and 14.6 microg/l, respectively) from fertilised eggs until sexual maturity. In addition to reproduction studies in the f1-generation, f2-fish were exposed to NQO during the first 6 weeks of development. Up to 2.9 microg/l NQO, fish did not display differences in survival and growth (P < 0.05). A NQO concentration of 14.6 microg/l, however, was lethal. Female fish exposed to all NQO concentrations up to 2.9 microg/l displayed a significant reduction in egg production (P < 0.05). A mathematical simulation revealed that exposure to weak concentrations of NQO is leading to an elevated extinction risk. Copyright 2004 Elsevier B.V.

  12. Effects of low-dose gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes in a mouse model

    International Nuclear Information System (INIS)

    Phan, N.; McFarlane, N.M.; Lemon, J.; Boreham, D.R.

    2008-01-01

    Using a successful new automation of micronucleated reticulocyte (MN-RET) scoring, the effects of low-dose (< 1.0 Gy) gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes (RET) in a mouse model were investigated. Gamma and neutron irradiation induced significant (p<0.001) increases in the levels of %MN-RET and decreases in the levels of %RET (p<0.001) as the dose level increased. Increasing dose levels showed that gamma radiation induced significantly (p<0.05) more %MN-RET and more %RET than neutron radiation. The results suggest that neutron irradiation may be more cytotoxic (less %RET) than gamma irradiation; however, gamma irradiation may be producing cells with more chromosomal aberrations (more %MN-RET) than neutron irradiation. (author)

  13. Effects of low-dose gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Phan, N.; McFarlane, N.M.; Lemon, J.; Boreham, D.R. [McMaster Univ., Medical Physics and Applied Radiation Sciences Unit, Hamilton, Ontario (Canada)

    2008-07-01

    Using a successful new automation of micronucleated reticulocyte (MN-RET) scoring, the effects of low-dose (< 1.0 Gy) gamma and neutron radiation on genotoxicity and cytotoxicity of reticulocytes (RET) in a mouse model were investigated. Gamma and neutron irradiation induced significant (p<0.001) increases in the levels of %MN-RET and decreases in the levels of %RET (p<0.001) as the dose level increased. Increasing dose levels showed that gamma radiation induced significantly (p<0.05) more %MN-RET and more %RET than neutron radiation. The results suggest that neutron irradiation may be more cytotoxic (less %RET) than gamma irradiation; however, gamma irradiation may be producing cells with more chromosomal aberrations (more %MN-RET) than neutron irradiation. (author)

  14. Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm)

    Science.gov (United States)

    Han, So-Ri; Yun, Eun-Young; Kim, Ji-Young; Hwang, Jae Sam; Jeong, Eun Ju

    2014-01-01

    The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions. PMID:25071922

  15. Comet Assay on Daphnia magna in eco-genotoxicity testing.

    Science.gov (United States)

    Pellegri, Valerio; Gorbi, Gessica; Buschini, Annamaria

    2014-10-01

    Detection of potentially hazardous compounds in water bodies is a priority in environmental risk assessment. For the evaluation and monitoring of water quality, a series of methodologies may be applied. Among them, the worldwide used toxicity tests with organisms of the genus Daphnia is one of the most powerful. In recent years, some attempts were made to utilize Daphnia magna in genotoxicity testing as many of the new environmental contaminants are described as DNA-damaging agents in aquatic organisms. The aim of this research was to develop a highly standardized protocol of the Comet Assay adapted for D. magna, especially regarding the isolation of cells derived from the same tissue (haemolymph) from newborn organisms exposed in vivo. Several methods for haemolymph extraction and different Comet Assay parameters were compared. Electrophoretic conditions were adapted in order to obtain minimum DNA migration in cells derived from untreated organisms and, at the same time, maximum sensitivity in specimens treated with known genotoxicants (CdCl2 and H2O2). Additional tests were performed to investigate if life-history traits of the cladoceran (such as the age of adult organisms that provide newborns, the clutch size of origin, the number of generations reared in standard conditions) and the water composition as well, might influence the response of the assay. This study confirms the potential application of the Comet Assay in D. magna for assessing genotoxic loads in aqueous solution. The newly developed protocol could integrate the acute toxicity bioassay, thus expanding the possibility of using this model species in freshwater monitoring (waters, sediment and soil elutriates) and is in line with the spirit of the EU Water Framework Directive in reducing the number of bioassays that involve medium-sized species. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Does Caesalpinia bonducella ameliorate genotoxicity? An in vitro ...

    African Journals Online (AJOL)

    The aim of the study is to investigate the antimutagenic and antigenotoxic potential of alcoholic extracts of C. bonducella against methyl methane sulfonate (MMS) induced genotoxicity. In this experiment we have used in vitro method i.e., human lymphocyte culture and in vivo method in bone marrow cells of albino mice, ...

  17. Genotoxicity and mutagenicity of solid waste leachates: A review

    African Journals Online (AJOL)

    user

    2013-07-03

    Jul 3, 2013 ... There is need for a shift from waste disposal to sustainable waste management. Awareness on possible health ... Key words: Solid waste leachate, genotoxicity, mutagenicity, environmental pollution. INTRODUCTION. Solid wastes .... landfills and incineration residues from Japan include persistent organic ...

  18. Genotoxic Effects of Tobacco on Buccal Epithelium: Cell Nuclear Anomalies as Biomarker

    Directory of Open Access Journals (Sweden)

    Sohini Das Biswas

    2014-12-01

    Full Text Available Background: Tobacco use has toxic effects on different organs. This study was carried out to assess the effect of indigenous tobacco both in smoking (bidi and smokeless (gutkha, zarda and khaini forms on buccal cells at chromosomal level, through assessment of different nuclear anomalies as biomarker. Methods:This study was done on people living in Durgapur and its adjacent areas, West Bengal, India during January to July 2011. The samples were collected from 50 smokers (case group, 50 smokeless tobacco consumers or chewers (case group and 50 non-tobacco consumers (control group. Micronucleus assay was used to assess buccal cell nuclear changes. Buccal smears collected from study subjects were prepared on a grease free slide. Prepared slides were observed under light microscope and 2 to 5 fields were observed randomly for counting the different anomalies. In each field, the frequency of each anomaly was assessed in 100 cells and reported with percentage. Results:Chewers had significantly the highest frequency of all nuclear anomalies compared to smokers and healthy controls (HCs. Smokers also had significantly more anomalies compared to HCs. Condensed chromatin (CC, karyolysis (KL and bi-nucleation (BN in chewers and CC, pyknosis and BN in smokers were the most frequent anomalies. KL was significantly more frequent in chewers compared to smokers (59.8 ± 6.4 vs. 24.2 ± 12.4%, P < 0.001, however, the frequency of other nuclear anomalies were not significantly different in these two study groups. Presence of each nuclear anomaly was significantly greater in older ages in all study groups. Conclusion:Tobacco can cause and increase the rate of nuclear anomalies in both smoking and smokeless forms compared to HCs. The genotoxic effects of tobacco on buccal cells are partly age-related. Cell nuclear anomalies in buccal tissue can be used as biomarker indicating the detrimental effects of tobacco.

  19. Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotus carolinus (Linnaeus, 1766)

    Energy Technology Data Exchange (ETDEWEB)

    Vignardi, Caroline P., E-mail: carolpatvig@usp.br [Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanogáfico 191, Cidade Universitária, Butantã, São Paulo, SP 05508900 (Brazil); Hasue, Fabio M., E-mail: humbigutis@gmail.com [Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanogáfico 191, Cidade Universitária, Butantã, São Paulo, SP 05508900 (Brazil); Sartório, Priscila V., E-mail: pri.sartorio@gmail.com [Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanogáfico 191, Cidade Universitária, Butantã, São Paulo, SP 05508900 (Brazil); Cardoso, Caroline M., E-mail: camargonato@gmail.com [Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanogáfico 191, Cidade Universitária, Butantã, São Paulo, SP 05508900 (Brazil); Machado, Alex S.D., E-mail: mamiferomarinho@gmail.com [Faculty of Veterinary Medicine, Integrated College North of Minas Osmane Barbosa Avenue, 11111, JK, Montes Claros, MG 39404006 (Brazil); and others

    2015-01-15

    Highlights: • TiO{sub 2}–NP cytogenotoxicity and cell uptake in marine fish was studied. • TiO{sub 2}–NP suspension was in primary particle, agglomerated and aggregated form. • TiO{sub 2}–NP genotoxicity was time/dose dependent and may induce cell uptake. • Methodology proved to be efficient for evaluating the toxic effect of TiO{sub 2}–NP. - Abstract: Nanoparticles have physicochemical characteristics that make them useful in areas such as science, technology, medicine and in products of everyday use. Recently the manufacture and variety of these products has grown rapidly, raising concerns about their impact on human health and the environment. Adverse effects of exposure to nanoparticles have been reported for both terrestrial and aquatic organisms, but the toxic effects of the substances on marine organisms remain poorly understood. The main aim of this study was to evaluate the genotoxicity of TiO{sub 2}–NP in the marine fish Trachinotus carolinus, through cytogenotoxic methods. The fish received two different doses of 1.5 μg and 3.0 μg–TiO{sub 2}–NP g{sup −1} by intraperitoneal injection. Blood samples were collected to analyze erythrocyte viability using the Trypan Blue exclusion test, comet assay (pH > 13), micronucleus (MN) and other erythrocyte nuclear abnormalities (ENA) 24, 48 and 72 h after injection. The possible cell uptake of TiO{sub 2}–NP in fish injected with the higher dose was investigated after 72 h using transmission electron microscopy (TEM). The results showed that TiO{sub 2}–NP is genotoxic and potentially cytotoxic for this species, causing DNA damage, inducing the formation of MN and other ENA, and decreasing erythrocyte viability. TEM examination revealed that cell uptake of TiO{sub 2}–NP was mainly in the kidney, liver, gills and to a lesser degree in muscle. To the extent of the authors’ knowledge, this is the first in vivo study of genotoxicity and other effects of TiO{sub 2}–NP in a marine fish.

  20. Evaluation of the Cytotoxicity and Genotoxicity of Flavonolignans in Different Cellular Models

    Directory of Open Access Journals (Sweden)

    Michal Bijak

    2017-12-01

    Full Text Available Flavonolignans are the main components of silymarin, which represents 1.5–3% of the dry fruit weight of Milk thistle (Silybum marianum L. Gaernt.. In ancient Greece and Romania, physicians and herbalists used the Silybum marianum to treat a range of liver diseases. Besides their hepatoprotective action, silymarin flavonolignans have many other healthy properties, such as anti-platelet and anti-inflammatory actions. The aim of this study was to evaluate the toxic effect of flavonolignans on blood platelets, peripheral blood mononuclear cells (PBMCs and human lung cancer cell line—A549—using different molecular techniques. We established that three major flavonolignans: silybin, silychristin and silydianin, in concentrations of up to 100 µM, have neither a cytotoxic nor genotoxic effect on blood platelets, PMBCs and A549. We also saw that silybin and silychristin have a protective effect on cellular mitochondria, observed as a reduction of spontaneous mitochondrial DNA (mtDNA damage in A549, measured as mtDNA copies, and mtDNA lesions in ND1 and ND5 genes. Additionally, we observed that flavonolignans increase the blood platelets’ mitochondrial membrane potential and reduce the generation of reactive oxygen species in blood platelets. Our current findings show for the first time that the three major flavonolignans, silybin, silychristin and silydianin, do not have any cytotoxicity and genotoxicity in various cellular models, and that they actually protect cellular mitochondria. This proves that the antiplatelet and anti-inflammatory effect of these compounds is part of our molecular health mechanisms.

  1. Chemically dispersed oil is cytotoxic and genotoxic to sperm whale skin cells.

    Science.gov (United States)

    Wise, Catherine F; Wise, James T F; Wise, Sandra S; Wise, John Pierce

    2018-06-01

    Two major oil crises in United States history, the 1989 Exxon-Valdez oil spill in Alaska and the 2010 Deepwater Horizon Oil Rig explosion in the Gulf of Mexico, drew attention to the need for toxicological experiments on oil and chemically dispersed oil. We are still learning the effects these spills had on wildlife. However, little data is known about the toxicity of these substances in marine mammals. The objective of this study is to determine the toxicity of Alaskan oil, as well as chemically dispersed oil. Oil experiments were performed using the water accommodated fraction of Alaskan oil (WAF) and the chemically enhanced water accommodated fraction of Alaskan oil (CEWAF). The Alaskan WAF is not cytotoxic to sperm whale skin cells though it did induce chromosome damage; S9-mediated metabolism did not affect the cytotoxicity of WAF but did increase the levels of chromosome damage. Alaskan CEWAF is more cytotoxic and genotoxic than the WAF; S9 mediated metabolism increased both cytotoxicity and genotoxicity of CEWAF. Analysis of the PAH content of Alaskan WAF and CEWAF revealed a forty-fold increase in the total levels of PAHs in CEWAF compared to WAF. These findings show that chemically dispersed oil leads to higher levels of PAH exposure which are more toxic and likely to lead to longer and more persistent health effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. 2-Dodecylcyclobutanone, a radiolytic product of palmitic acid, is genotoxic in primary human colon cells and in cells from preneoplastic lesions

    International Nuclear Information System (INIS)

    Knoll, Nadine; Weise, Anja; Claussen, Uwe; Sendt, Wolfgang; Marian, Brigitte; Glei, Michael; Pool-Zobel, Beatrice L.

    2006-01-01

    The irradiation of fat results in the formation of 2-alkylcyclobutanones, a new class of food contaminants. Results of previous in vitro studies with primary human colon cells and in vivo experiments with rats fed with 2-alkylcyclobutanones indicated that these radiolytic derivatives may be genotoxic and enhance the progression of colon tumors. The underlying mechanisms of these effects, however, are not clearly understood. Therefore we performed additional investigations to elucidate the genotoxic potential of 2-dodecylcyclobutanone (2dDCB) that is generated from palmitic acid. In particular, we explored the relative sensitivities of human colon cells, representing different stages of tumor development and healthy colon tissues, respectively. HT29clone19A cells, LT97 adenoma cells and primary human epithelial cells were exposed to 2dDCB (150-2097 μM). We determined cytotoxic effects using trypan blue exclusion. Genotoxicity, reflected as strand breaks, was assessed using the alkaline version of the comet assay and chromosomal abnormalities were investigated by 24-color fluorescence-in-situ-hybridization. 2dDCB was cytotoxic in a time- and dose-dependent manner in LT97 adenoma cells and in freshly isolated primary cells but not in the human colon tumor cell line. Associated with this was a marked induction of DNA damage by 2dDCB in LT97 adenoma cells and in freshly isolated colonocytes, whereas in the HT29clone19A cells no strand breaks were detectable. A long-term incubation of LT97 adenoma cells with lower concentrations of 2dDCB revealed cytogenetic effects. In summary, 2dDCB was clearly genotoxic in healthy human colon epithelial cells and in cells representing preneoplastic colon adenoma. These findings provide additional evidence that this compound may be regarded as a possible risk factor for processes in colon carcinogenesis related to initiation and progression

  3. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liping, E-mail: lisaleercees807@yahoo.cn; Wei, Dongbin, E-mail: weidb@rcees.ac.cn; Wei, Guohua, E-mail: wgh@rcees.ac.cn; Du, Yuguo, E-mail: duyuguo@rcees.ac.cn

    2013-11-15

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process.

  4. Transformation of cefazolin during chlorination process: Products, mechanism and genotoxicity assessment

    International Nuclear Information System (INIS)

    Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo

    2013-01-01

    Highlights: • Base-catalyzed electrophilic substitution occurred in cefazolin chlorination. • Oxidation of thioether in cefazolin was found in chlorination process. • The pH conditions impacted on the occurrence of reaction types. • Genotoxicity had an elevation after chlorination of cefazolin. • Reaction pathways of cefazolin chlorination were replayed in surface water matrix. -- Abstract: Large quantities of cephalosporins have entered into aquatic environment in recent years, posing potential adverse effect to human health and ecological safety. In this study, cefazolin, one of widely used cephalosporins, was targeted to explore its transformation behaviors in chlorination disinfection process. With the help of ultra high performance liquid chromatography and high resolution mass spectroscopy, one chlorinated product and four oxidation products were detected in cefazolin chlorination system. The corresponding transformation pathways of cefazolin were proposed. Two kinds of reactions occurred in chlorination system, one was oxidation of thioether-sulfur to sulfoxide and di-sulfoxide, and the other was base-catalyzed electrophilic substitution of alpha-H of amide by chlorine atom. The pH value determined the occurrence of reaction types, and increasing chlorine dose promoted transformation of cefazolin. More importantly, genotoxicity in SOS/umu assay had an elevation after chlorination, which might be attributed to the formation of chlorinated product and sulfoxide during chlorination process

  5. Determination of heavy metals and genotoxicity of water from an ...

    African Journals Online (AJOL)

    Determination of heavy metals and genotoxicity of water from an artesian well ... do Amaral, Vanessa Marques de Oliveira Moraes, Luciana Pereira Silva ... environmental interest because it is the most important zinc producer district of Brazil.

  6. Applicability of in silico genotoxicity models on food and feed ingredients.

    Science.gov (United States)

    Vuorinen, Anna; Bellion, Phillip; Beilstein, Paul

    2017-11-01

    Evaluation of the genotoxic potential of food and feed ingredients is required in the development of new substances and for their registration. In addition to in vitro and in vivo assays, in silico tools such as expert alert-based and statistical models can be used for data generation. These in silico models are commonly used among the pharmaceutical industry, whereas the food industry has not widely adopted them. In this study, the applicability of in silico tools for predicting genotoxicity was evaluated, with a focus on bacterial mutagenicity, in vitro and in vivo chromosome damage assays. For this purpose, a test set of 27 food and feed ingredients including vitamins, carotenoids, and nutraceuticals with experimental genotoxicity data was constructed from proprietary data. This dataset was run through multiple models and the model applicability was analyzed. The compounds were generally within the applicability domain of the models and the models predicted the compounds correctly in most of the cases. Although the regulatory acceptance of in silico tools as single data source is still limited, the models are applicable and can be used in the safety evaluation of food and feed ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    Directory of Open Access Journals (Sweden)

    Huarong Guo

    2012-09-01

    Full Text Available p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase and pRL-CMV-luc (CMV promoter linked to Renilla luciferase into marine flatfish flounder gill (FG cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation, but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl phthalate (DEHP, a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner.

  8. Investigation of potential genotoxic activity using the SOS Chromotest for real paracetamol wastewater and the wastewater treated by the Fenton process.

    Science.gov (United States)

    Kocak, Emel

    2015-01-01

    The potential genotoxic activity associated with high strength real paracetamol (PCT) wastewater (COD = 40,000 mg/L, TOC = 12,000 mg/L, BOD5 = 19,320 mg/L) from a large-scale drug-producing plant in the Marmara Region, was investigated in pre- and post- treated wastewater by the Fenton process (COD = 2,920 mg/L, TOC = 880 mg/L; BOD5 = 870 mg/L). The SOS Chromotest, which is based on Escherichia coli PQ37 activities, was used for the assessment of genotoxicity. The corrected induction factors (CIF) values used as quantitative measurements of the genotoxic activity were obtained from a total of four different dilutions (100, 50, 6.25, and 0.078 % v/v.) for two samples, in triplicate, to detect potentially genotoxic activities with the SOS Chromotest. The results of the SOS Chromotest demonstrated CIFmax value of 1.24, indicating that the PCT effluent (non-treated) is genotoxic. The results of the SOS Chromotest showed an CIFmax value of 1.72, indicating that the wastewater treated by Fenton process is genotoxic. The findings of this study clearly reveal that the PCT wastewater (non-treated) samples have a potentially hazardous impact on the aquatic environment before treatment, and in the wastewater that was treated by the Fenton process, genotoxicity generally increased.

  9. Cytotoxicity and genotoxicity property of hydroxyapatite-mullite eluates.

    Science.gov (United States)

    Kalmodia, Sushma; Sharma, Vyom; Pandey, Alok K; Dhawan, Alok; Basu, Bikramjit

    2011-02-01

    Long-term biomedical applications of implant materials may cause osteolysis, aseptic losing and toxicity. Therefore, we investigated the cytotoxic and genotoxic potential of hydroxyapatite (HA) mullite eluates in L929 mouse fibroblast cells. The spark plasma sintered HA-20% mullite biocomposite (HA20M) were ground using mortar and pestle as well as ball milling. The cells were exposed for 6 h to varying concentrations (10, 25, 50, 75 and 100%) of the eluates of HA-20% mullite (87 nm), HA (171 nm) and mullite (154 nm). The scanning electron microscopy and MTT assay revealed the concentration dependent toxicity of H20M eluate at and above 50%. The analysis of the DNA damaging potential of HA, mullite and HA20M eluates using Comet assay demonstrated a significant DNA damage by HA20M which was largely related to the presence of mullite. The results collectively demonstrate the cytotoxic and genotoxic potential of HA20M eluate in L929 cells is dependent on particle size, concentration and composition.

  10. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line

    International Nuclear Information System (INIS)

    Kienzler, Aude; Mahler, Barbara J.; Van Metre, Peter C.; Schweigert, Nathalie; Devaux, Alain; Bony, Sylvie

    2015-01-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity. - Highlights: • Co-exposure to runoff from coal-tar-sealcoated pavement and UVA caused DNA damage. • Significant genotoxicity occurred with a 1:100 dilution of runoff. • Runoff collected up to 36 d following coal-tar-sealcoat application was genotoxic. • Exposure to runoff from sealed pavement impaired an important DNA repair pathway. • Repair capacity was impaired with a 1:10 dilution of runoff (1:100 not

  11. Exposure to runoff from coal-tar-sealed pavement induces genotoxicity and impairment of DNA repair capacity in the RTL-W1 fish liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Aude, E-mail: aude.kienzler@entpe.fr [Université de Lyon, UMR LEHNA 5023, USC INRA, ENTPE, rue Maurice Audin, Vaulx-en-Velin F-69518 (France); Mahler, Barbara J., E-mail: bjmahler@usgs.gov [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Van Metre, Peter C., E-mail: pcvanmet@usgs.gov [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Schweigert, Nathalie [Université de Lyon, UMR LEHNA 5023, USC INRA, ENTPE, rue Maurice Audin, Vaulx-en-Velin F-69518 (France); Devaux, Alain, E-mail: alain.devaux@entpe.fr [Université de Lyon, UMR LEHNA 5023, USC INRA, ENTPE, rue Maurice Audin, Vaulx-en-Velin F-69518 (France); Bony, Sylvie, E-mail: bony@entpe.fr [Université de Lyon, UMR LEHNA 5023, USC INRA, ENTPE, rue Maurice Audin, Vaulx-en-Velin F-69518 (France)

    2015-07-01

    Coal-tar-based (CTB) sealcoat, frequently applied to parking lots and driveways in North America, contains elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and related compounds. The RTL-W1 fish liver cell line was used to investigate two endpoints (genotoxicity and DNA-repair-capacity impairment) associated with exposure to runoff from asphalt pavement with CTB sealcoat or with an asphalt-based sealcoat hypothesized to contain about 7% CTB sealcoat (AS-blend). Genotoxic potential was assessed by the Formamido pyrimidine glycosylase (Fpg)-modified comet assay for 1:10 and 1:100 dilutions of runoff samples collected from 5 h to 36 d following sealcoat application. DNA-repair capacity was assessed by the base excision repair comet assay for 1:10 dilution of samples collected 26 h and 36 d following application. Both assays were run with and without co-exposure to ultraviolet-A radiation (UVA). With co-exposure to UVA, genotoxic effects were significant for both dilutions of CTB runoff for three of four sample times, and for some samples of AS-blend runoff. Base excision repair was significantly impaired for CTB runoff both with and without UVA exposure, and for AS-blend runoff only in the absence of UVA. This study is the first to investigate the effects of exposure to the complex mixture of chemicals in coal tar on DNA repair capacity. The results indicate that co-exposure to runoff from CT-sealcoated pavement and UVA as much as a month after sealcoat application has the potential to cause genotoxicity and impair DNA repair capacity. - Highlights: • Co-exposure to runoff from coal-tar-sealcoated pavement and UVA caused DNA damage. • Significant genotoxicity occurred with a 1:100 dilution of runoff. • Runoff collected up to 36 d following coal-tar-sealcoat application was genotoxic. • Exposure to runoff from sealed pavement impaired an important DNA repair pathway. • Repair capacity was impaired with a 1:10 dilution of runoff (1:100 not

  12. THE GENOTOXICITY OF AMBIENT OUTDOOR AIR, A REVIEW: SALMONELLA MUTAGENICITY

    Science.gov (United States)

    The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicityAbstractMutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used ...

  13. Lack of genotoxicity of potassium iodate in the alkaline comet assay and in the cytokinesis-block micronucleus test. Comparison to potassium bromate.

    Science.gov (United States)

    Poul, J M; Huet, S; Godard, T; Sanders, P

    2004-02-01

    Iodine could be added to the diet of human population in the form of iodide or iodate but iodate had not been adequately tested for genotoxicity and carcinogenicity. In the present study, genotoxic effects of potassium iodate were evaluated in vitro using the alkaline comet assay and the cytokinesis-block micronucleus assay on CHO cells and compared to halogenate salt analogues potassium bromate and chlorate and also to their respective reduced forms (potassium iodide, bromide and chloride). The results showed that the comet assay failed to detect the presence of DNA damage after a treatment of cells by potassium iodate for concentrations up to 10 mM. This absence of primary DNA damage was confirmed in the cytokinesis-block micronucleus assay. In the same way, results showed that potassium chlorate as well as potassium iodide, bromide and chloride did not induced DNA damage in the alkaline comet assay for doses up to 10 mM. By contrast, potassium bromate exposure led to an increase in both DNA damage and frequency of micronucleated cells. The repair of bromate-induced DNA damage was incomplete 24 h after the end of treatment. These results seem to indicate that potassium bromate would induce DNA damage by several mechanisms besides oxidative stress.

  14. Genotoxic effects induced by the exposure to an environmental mixture of illicit drugs to the zebra mussel.

    Science.gov (United States)

    Parolini, Marco; Magni, Stefano; Castiglioni, Sara; Binelli, Andrea

    2016-10-01

    Despite the growing interest on the presence of illicit drugs in freshwater ecosystems, just recently the attention has been focused on their potential toxicity towards non-target aquatic species. However, these studies largely neglected the effects induced by exposure to complex mixtures of illicit drugs, which could be different compared to those caused by single psychoactive molecules. This study was aimed at investigating the genetic damage induced by a 14-day exposure to a realistic mixture of the most common illicit drugs found in surface waters worldwide (cocaine, benzoylecgonine, amphetamine, morphine and 3,4-methylenedioxymethamphetamine) on the zebra mussel (Dreissena polymorpha). The mixture caused a significant increase of DNA fragmentation and triggered the apoptotic process and micronuclei formation in zebra mussel hemocytes, pointing out its potential genotoxicity towards this bivalve species. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Mutagenic and genotoxic activity of particulate matter MP2,5, in Pamplona, North Santander, Colombia

    OpenAIRE

    Martínez Montañez, Mónica Liseth; Meléndez Gélvez, Iván; Quijano Parra, Alfonso

    2012-01-01

    Objective: To study the mutagenic and genotoxic activities of particulate material (MP2,5 collected in Pamplona, Norte de Santander, Colombia.Materials and methods: MP2,5 was monitored by means of a Partisol 2025 sequential air sampler with Plus Palmflex quartz filters. The latter were subjected to two extraction procedures: Soxhlet extraction using dichloromethane-acetone; and ultrasonic extraction using dichloromethane, acetone and dichloromethane/ acetone mix. The mutagenic and genotoxic a...

  16. Development of a Transgenic Model to Assess Bioavailable Genotoxicity in Sediments

    National Research Council Canada - National Science Library

    1999-01-01

    This technical note describes the rationale for using transgenic animal models to assess the potential genotoxicity of sediments, the benefits that can be obtained using such models versus currently...

  17. Use of the aquatic plant Elodea canadensis to assess toxicity and genotoxicity of Yenisei River sediments.

    Science.gov (United States)

    Zotina, Tatiana A; Trofimova, Elena A; Medvedeva, Marina Yu; Dementyev, Dmitry V; Bolsunovsky, Alexander Ya

    2015-10-01

    The toxicity, cytotoxicity, and genotoxicity of bulk sediments from the Yenisei River (Siberia, Russia) were estimated in laboratory bioassays based on several endpoints in the aquatic plant Elodea canadensis. The bottom sediment samples were collected in the Yenisei River upstream and downstream of the sources of chemical and radioactive contamination. The testing revealed different sensitivities of Elodea endpoints to the quality of the bottom sediment: weight of shoots Elodea) was the highest in sediments with chemical pollution, whereas the highest inhibition of toxicity endpoints (shoot and root length) occurred in sediments with the highest level of radioactive pollution. The extreme response of Elodea endpoints to the quality of certain sediment samples may be regarded as related to the possible presence of unknown toxicants. The results show that E. canadensis can be used as an indicator species in laboratory contact testing of bottom sediment. The responses of shoot and root length growth endpoints of Elodea can be recommended as basic sensitivity indicators of bottom sediment toxicity. Analysis of cells carrying abnormal chromosomes in the apical root meristem of Elodea can be performed optionally in the same test to assess the genotoxicity of sediments. © 2015 SETAC.

  18. Genotoxicity of the Musi River (Hyderabad, India) investigated with the VITOTOX test.

    Science.gov (United States)

    Vijayashree, B; Ahuja, Y R; Regniers, L; Rao, V; Verschaeve, L

    2005-01-01

    The bacterial VITOTOX genotoxicity test was used to screen water samples collected from three different stations along the banks of the river Musi, in Hyderabad, India. Water was collected at three stations that differed from each other in the nature of the surrounding industrial and other activities. A number of different pollutants were also measured in water, soil and air samples. The three stations were found highly polluted and different with regard to the genotoxicity and toxicity of their samples. These results demonstrate the need for further biological studies in this area to generate valuable data on genomic instability, risk assessment of cancer, and to provide avenues for risk management.

  19. Monitoring of genotoxic effects in lymphocytes of people exposed to pesticides

    International Nuclear Information System (INIS)

    Panek, A.; Marcos, R.; Cebulska-Wasilewska, A.

    2002-01-01

    The aim of this study was to assess the potential genotoxic risk of occupational exposure to pesticides. The DNA damage and the repair capacities of lymphocytes, in four groups of the people of various countries were assessed by the use of single cell gel electrophoresis (SCGE) also known as the Comet assay. The results from the analysis performed in the Spanish group are presented in this paper. Statistical analysis of the results shows a slightly higher level of the DNA damage in the untreated lymphocytes of donors from the group exposed to pesticides; however, only for donors below 30 years old are these differences significant (p<0.05). Although, comparison of the efficiency of the UV-C induced dimmers excision process did not indicate differences between exposed and referent groups, though lymphocytes for donors exposed to pesticides have shown a statistically lower repair rate (p<0.01) than lymphocytes from the unexposed group. (author)

  20. Genotoxicity of a Low-Dose Nitrosamine Mixture as Drinking Water Disinfection Byproducts in NIH3T3 Cells.

    Science.gov (United States)

    Wang, Hai-Yan; Qin, Ming; Dong, Lei; Lv, Jia-Ying; Wang, Xia

    2017-01-01

    N - nitrosamines (NAms), which can arise as byproducts of disinfection agents, are reportedly found in drinking water, and their potential carcinogenicity is a concern; however, little research exists regarding the genotoxicity or carcinogenicity of NAms exposure as a low-dose mixture. The three most common NAms components in China's drinking water are N -nitrosodimethylamine (NDMA), N -nitrosodiethylamine (NDEA) and N -nitrosomethylethylamine (NMEA). Thus, we measured the genotoxic and carcinogenic potential of these compounds and measured the cell cycle and gene expression. The data show that exposure to the NAms-mixture doubled the revertants in the TA98 and TA100 S. typhimurium strains and increased the DNA double-strand breaks and the micronuclear frequency in the NIH3T3 cells compared to a single exposure. After long-term NAms mixture exposure, a malignant transformation of NIH3T3 and a significantly increased G2/M distribution were observed. Furthermore, P53, CDK1, P38, CDC25A and CyclinB expressions were down-regulated in the NAms-mixture exposure group; however, P21 and GADD45A genes were up-regulated. Interestingly, the CHK1/CHK2 and CDC25A genes had two responses, depending on the NAms concentrations. Thus, we observed mutagenic, genotoxic and carcinogenic effects after a low-dose NAms-mixture exposure in drinking water, and DNA repair and apoptosis pathways may contribute to these adverse effects.