WorldWideScience

Sample records for severe accident transients

  1. Structural evaluation of electrosleeved tubes under severe accident transients

    International Nuclear Information System (INIS)

    Majumdar, S.

    1999-01-01

    A flow stress model was developed for predicting failure of Electrosleeved PWR steam generator tubing under severe accident transients. The Electrosleeve, which is nanocrystalline pure nickel, loses its strength at temperatures greater than 400 C during severe accidents because of grain growth. A grain growth model and the Hall-Petch relationship were used to calculate the loss of flow stress as a function of time and temperature during the accident. Available tensile test data as well as high temperature failure tests on notched Electrosleeved tube specimens were used to derive the basic parameters of the failure model. The model was used to predict the failure temperatures of Electrosleeved tubes with axial cracks in the parent tube during postulated severe accident transients

  2. Transient debris freezing and potential wall melting during a severe reactivity initiated accident experiment

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Moore, R.L.

    1981-01-01

    It is important to light water reactor (LWR) safety analysis to understand the transient freezing of molten core debris on cold structures following a hypothetical core meltdown accident. The purpose of this paper is to (a) present the results of a severe reactivity initiated accident (RIA) in-pile experiment with regard to molten debris distribution and freezing following test fuel rod failure, (b) analyze the transient freezing of molten debris (primarily a mixture of UO/sub 2/ fuel and Zircaloy cladding) deposited on the inner surface of the test shroud wall upon rod failure, and (c) assess the potential for wall melting upon being contacted by the molten debris. 26 refs

  3. Prediction of Transient Scenarios Using AI After Severe Accident Occurrence

    International Nuclear Information System (INIS)

    Yoo, Kwae Hwan; Back, Ju Hyun; Na, Man Gyun

    2017-01-01

    We predicted the core uncovery time, the time that core exist temperature (CET) exceeds 1200 .deg. F, reactor vessel (RV) failure time and containment failure time by using the cascaded support vector regression (SVR) model. The proposed algorithms were trained and verified using the simulation data of MAAP code for the optimized power rector (OPR1000). In this study, we predicted transient scenarios by CSVR. The MAAP code was used to describe the accident situation and the 13 measured signal data was acquired and used. The CSVR model was developed to find out the transient scenarios by using short timeintegrated signals after reactor trip. The results show that the CSVR models can predict the transient scenarios accurately.

  4. Human factors review for nuclear power plant severe accident sequence analysis

    International Nuclear Information System (INIS)

    Krois, P.A.; Haas, P.M.

    1985-01-01

    The paper discusses work conducted to: (1) support the severe accident sequence analysis of a nuclear power plant transient based on an assessment of operator actions, and (2) develop a descriptive model of operator severe accident management. Operator actions during the transient are assessed using qualitative and quantitative methods. A function-oriented accident management model provides a structure for developing technical operator guidance on mitigating core damage preventing radiological release

  5. Monitoring severe accidents using AI techniques

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of); Lim, Dong Hyuk [Korea Institute of Nuclear Nonproliferation and Control, Daejon (Korea, Republic of)

    2012-05-15

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  6. Monitoring severe accidents using AI techniques

    International Nuclear Information System (INIS)

    No, Young Gyu; Ahn, Kwang Il; Kim, Ju Hyun; Na, Man Gyun; Lim, Dong Hyuk

    2012-01-01

    After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

  7. Severe accident analysis for level 2 PSA of SMART reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Yong; Lee, Jeong Hun; Kim, Jong Uk; Yoo, Tae Geun; Chung, Soon Il; Kim, Min Gi [FNC Technology Co., Seoul (Korea, Republic of)

    2010-12-15

    The objectives of this study are to produce data for level 2 PSA and evaluation results of severe accident by analyzing severe accident sequence of transient events, producing fault tree of containment systems and evaluating direct containment heating of the SMART. In this project, severe accident analysis results were produced for general transient, loss of feedwater, station blackout, and steam line break events, and based on the results, design safety of SMART was verified. Also, direct containment heating phenomenon of the SMART was evaluated using TCE methodology. For level 2 PSA, fault tree of the containment isolation system, reactor cavity flooding system, plant chilled water system, and reactor containment building HVAC system was produced and analyzed

  8. Study On Safety Analysis Of PWR Reactor Core In Transient And Severe Accident Conditions

    International Nuclear Information System (INIS)

    Le Dai Dien; Hoang Minh Giang; Nguyen Thi Thanh Thuy; Nguyen Thi Tu Oanh; Le Thi Thu; Pham Tuan Nam; Tran Van Trung; Le Van Hong; Vo Thi Huong

    2014-01-01

    The cooperation research project on the Study on Safety Analysis of PWR Reactor Core in Transient and Severe Accident Conditions between Institute for Nuclear Science and Technology (INST), VINATOM and Korean Atomic Energy Research Institute (KAERI), Korea has been setup to strengthen the capability of researches in nuclear safety not only in mastering the methods and computer codes, but also in qualifying of young researchers in the field of nuclear safety analysis. Through the studies on the using of thermal hydraulics computer codes like RELAP5, COBRA, FLUENT and CFX the thermal hydraulics research group has made progress in the research including problems for safety analysis of APR1400 nuclear reactor, PIRT methodologies and sub-channel analysis. The study of severe accidents has been started by using MELCOR in collaboration with KAERI experts and the training on the fundamental phenomena occurred in postulated severe accident. For Vietnam side, VVER-1000 nuclear reactor is also intensively studied. The design of core catcher, reactor containment and severe accident management are the main tasks concerning VVER technology. The research results are presented in the 9 th National Conference on Mechanics, Ha Noi, December 8-9, 2012, the 10 th National Conference on Nuclear Science and Technology, Vung Tau, August 14-15, 2013, as well as published in the journal of Nuclear Science and Technology, Vietnam Nuclear Society and other journals. The skills and experience from using computer codes like RELAP5, MELCOR, ANSYS and COBRA in nuclear safety analysis are improved with the nuclear reactors APR1400, Westinghouse 4 loop PWR and especially the VVER-1000 chosen for the specific studies. During cooperation research project, man power and capability of Nuclear Safety center of INST have been strengthen. Three masters were graduated, 2 researchers are engaging in Ph.D course at Hanoi University of Science and Technology and University of Science and Technology, Korea

  9. Structural Integrity Evaluation of Containment Vessel under Severe Accident for PGSFR

    International Nuclear Information System (INIS)

    Lee, Seong-Hyeon; Koo, Gyeong-Hoi; Kim, Sung-Kyun

    2016-01-01

    This paper provides structural integrity evaluation results of CV of the PGSFR(Prototype Gen-IV Sodium Fast Reactor) under severe accident through transient analysis. The evaluation was carried out according to ASME B and PV Code Sec. III-Subsection NH rule. Structural integrity of CV was evaluated through transient analysis of structure in case of severe accident. Stress evaluation results for selected evaluation sections satisfy design criteria of ASME B and PV Code Sec. III Subsection NH. The transient load condition of normal operation will considered in the future work. The purpose of RVCS is to maintain the integrity of concrete structure during normal power operation. Therefore RVCS should be designed to keep the temperature of concrete surface under design limit and to minimize heat loss through CV(Containment Vessel). And in case of severe accident, the integrity of reactor structure and concrete structure should be maintained. Therefore RVCS should be designed to satisfy ASME Level D service limits. When RVCS works with breakdown of DHRS after severe accident, the temperature change of inner and outer surface of CV over time can affect structural integrity of CV. To verify the structural integrity, it is necessary to perform transient analysis of CV structure under changing temperature over time

  10. Station blackout transient at the Browns Ferry Unit 1 Plant: a severe accident sequence analysis (SASA) program study

    International Nuclear Information System (INIS)

    Schultz, R.R.

    1982-01-01

    Operating plant transients are of great interest for many reasons, not the least of which is the potential for a mild transient to degenerate to a severe transient yielding core damage. Using the Browns Ferry (BF) Unit-1 plant as a basis of study, the station blackout sequence was investigated by the Severe Accident Sequence Analysis (SASA) Program in support of the Nuclear Regulatory Commission's Unresolved Safety Issue A-44: Station Blackout. A station blackout transient occurs when the plant's AC power from a comemrcial power grid is lost and cannot be restored by the diesel generators. Under normal operating conditions, f a loss of offsite power (LOSP) occurs [i.e., a complete severance of the BF plants from the Tennessee Valley Authority (TVA) power grid], the eight diesel generators at the three BF units would quickly start and power the emergency AC buses. Of the eight diesel generators, only six are needed to safely shut down all three units. Examination of BF-specific data show that LOSP frequency is low at Unit 1. The station blackout frequency is even lower (5.7 x 10 - 4 events per year) and hinges on whether the diesel generators start. The frequency of diesel generator failure is dictated in large measure by the emergency equipment cooling water (EECW) system that cools the diesel generators

  11. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code; Verbundprojekt WASA-BOSS: Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt B: Druckwasserreaktor-Stoerfallanalysen unter Verwendung des Severe-Accident-Codes ATHLET-CD

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-15

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  12. Computerized accident management support system: development for severe accident management

    International Nuclear Information System (INIS)

    Garcia, V.; Saiz, J.; Gomez, C.

    1998-01-01

    The activities involved in the international Halden Reactor Project (HRP), sponsored by the OECD, include the development of a Computerized Accident Management Support System (CAMS). The system was initially designed for its operation under normal conditions, operational transients and non severe accidents. Its purpose is to detect the plant status, analyzing the future evolution of the sequence (initially using the APROS simulation code) and the possible recovery and mitigation actions in case of an accident occurs. In order to widen the scope of CAMS to severe accident management issues, the integration of the MAAP code in the system has been proposed, as the contribution of the Spanish Electrical Sector to the project (with the coordination of DTN). To include this new capacity in CAMS is necessary to modify the system structure, including two new modules (Diagnosis and Adjustment). These modules are being developed currently for Pressurized Water Reactors and Boiling Water REactors, by the engineering of UNION FENOSA and IBERDROLA companies (respectively). This motion presents the characteristics of the new structure of the CAMS, as well as the general characteristics of the modules, developed by these companies in the framework of the Halden Reactor Project. (Author)

  13. Accident management for severe accidents

    International Nuclear Information System (INIS)

    Bari, R.A.; Pratt, W.T.; Lehner, J.; Leonard, M.; Disalvo, R.; Sheron, B.

    1988-01-01

    The management of severe accidents in light water reactors is receiving much attention in several countries. The reduction of risk by measures and/or actions that would affect the behavior of a severe accident is discussed. The research program that is being conducted by the US Nuclear Regulatory Commission focuses on both in-vessel accident management and containment and release accident management. The key issues and approaches taken in this program are summarized. 6 refs

  14. Preliminary analysis of the transient overpower accident for CRBRP. Final report

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Frank, M.V.

    1975-07-01

    A preliminary analysis of the transient overpower accident for the Clinch River Breeder Reactor Plant (CRBRP) is presented. Several uncertainties in the analysis and the estimation of ramp rates during the transition to disassembly are discussed. The major conclusions are summarized

  15. Severe accident research activities at Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Polina; Jobst, Matthias; Schaefer, Frank; Kliem, Soeren [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    In the frame of the nuclear safety research program of the Helmholtz Association HZDR performs fundamental and applied research to assess and to reduce the risks related to the nuclear fuel cycle and the production of electricity in nuclear power plants. One of the research topics focuses on the safety aspects of current and future reactor designs. This includes the development and application of methods for analyses of transients and postulated accidents, covering the whole spectrum from normal operation till severe accident sequences including core degradation. This paper gives an overview of the severe accident research activities at the Reactor Safety Division at the Institute of Resource Ecology.

  16. Severe accident phenomena

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Kilpi, K.; Lindholm, I.; Maekynen, J.; Pekkarinen, E.; Sairanen, R.; Silde, A.

    1995-02-01

    Severe accidents are nuclear reactor accidents in which the reactor core is substantially damaged. The report describes severe reactor accident phenomena and their significance for the safety of nuclear power plants. A comprehensive set of phenomena ranging from accident initiation to containment behaviour and containment integrity questions are covered. The report is based on expertise gained in the severe accident assessment projects conducted at the Technical Research Centre of Finland (VTT). (49 refs., 32 figs., 12 tabs.)

  17. Application of the severe accident code ATHLET-CD. Modelling and evaluation of accident management measures (Project WASA-BOSS)

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Polina; Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Schaefer, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety

    2016-07-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. Numerical analyses are used to investigate the accident progression and the complex physical phenomena during the core degradation phase, as well as to evaluate the effectiveness of possible countermeasures in the preventive and mitigative domain [1, 2]. The presented analyses have been performed with the computer code ATHLET-CD developed by GRS [3, 4].

  18. Severe accident management. Optimized guidelines and strategies

    International Nuclear Information System (INIS)

    Braun, Matthias; Löffler, Micha; Plank, Hermann; Asse, Dietmar; Dimmelmeier, Harald

    2014-01-01

    The highest priority for mitigating the consequences of a severe accident with core melt lies in securing containment integrity, as this represents the last barrier against fission product release to the environment. Containment integrity is endangered by several physical phenomena, especially highly transient phenomena following high-pressure reactor pressure vessel failure (like direct containment heating or steam explosions which can lead to early containment failure), hydrogen combustion, quasi-static over-pressure, temperature failure of penetrations, and basemat penetration by core melt. Each of these challenges can be counteracted by dedicated severe accident mitigation hardware, like dedicated primary circuit depressurization valves, hydrogen recombiners or igniters, filtered containment venting, containment cooling systems, and core melt stabilization systems (if available). However, besides their main safety function these systems often have also secondary effects that need to be considered. Filtered containment venting causes (though limited) fission product release into the environment, primary circuit depressurization leads to loss of coolant, and an ex-vessel core melt stabilization system as well as hydrogen igniters can generate high pressure and temperature loads on the containment. To ensure that during a severe accident any available systems are used to their full beneficial extent while minimizing their potential negative impact, AREVA has implemented a severe accident management for German nuclear power plants. This concept makes use of extensive numerical simulations of the entire plant, quantifying the impact of system activations (operational systems, safety systems, as well as dedicated severe accident systems) on the accident progression for various scenarios. Based on the knowledge gained, a handbook has been developed, allowing the plant operators to understand the current state of the plant (supported by computational aids), to predict

  19. Neural network-based expert system for severe accident management

    International Nuclear Information System (INIS)

    Klopp, G.T.; Silverman, E.B.

    1992-01-01

    This paper presents the results of the second phase of a three-phase Severe Accident Management expert system program underway at Commonwealth Edison Company (CECo). Phase I successfully demonstrated the feasibility of Artificial Neural Networks to support several of the objectives of severe accident management. Simulated accident scenarios were generated by the Modular Accident Analysis Program (MAAP) code currently in use by CECo as part of their Individual Plant Evaluations (IPE)/Accident Management Program. The primary objectives of the second phase were to develop and demonstrate four capabilities of neural networks with respect to nuclear power plant severe accident monitoring and prediction. The results of this work would form the foundation of a demonstration system which included expert system performance features. These capabilities included the ability to: (1) Predict the time available prior to support plate (and reactor vessel) failure; (2) Calculate the time remaining until recovery actions were too late to prevent core damage; (3) Predict future parameter values of each of the MAAP parameter variables; and (4) Detect simulated sensor failure and provide best-value estimates for further processing in the presence of a sensor failure. A variety of accident scenarios for the Zion and Dresden plants were used to train and test the neural network expert system. These included large and small break LOCAs as well as a range of transient events. 3 refs., 1 fig., 1 tab

  20. Enhanced Severe Transient Analysis for Prevention Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway’s major emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the “loads” applied to systems, structures, and components (SSCs), and the “capacity” of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code

  1. Regulation Plans on Severe Accidents developed by KINS Severe Accident Regulation Preparation TFT

    International Nuclear Information System (INIS)

    Kim, Kyun Tae; Chung, Ku Young; Na, Han Bee

    2016-01-01

    Some nuclear power plants in Fukushima Daiichi site had lost their emergency reactor cooling function for long-time so the fuels inside the reactors were molten, and the integrity of containment was damaged. Therefore, large amount of radioactive material was released to environment. Because the social and economic effects of severe accidents are enormous, Korean Government already issued 'Severe Accident Policy' in 2001 which requires nuclear power plant operators to set up 'Quantitative Safety Goal', to do 'Probabilistic Safety Analysis', to install 'Severe Accident Countermeasures' and to make 'Severe Accident Management Plan'. After the Fukushima disaster, a Special Safety Inspection was performed for all operating nuclear power plants of Korea. The inspection team from industry, academia, and research institutes assessed Korean NPPs capabilities to cope with or respond to severe accidents and emergency situation caused by natural disasters such as a large earthquake or tsunami. As a result of the special inspection, about 50 action items were identified to increase the capability to cope with natural disaster and severe accidents. Nuclear Safety Act has been amended to require NPP operators to submit Accident Management Plant as part of operating license application. The KINS Severe Accident Regulation Preparation TFT had first investigated oversea severe accident regulation trend before and after the Fukushima accident. Then, the TFT has developed regulation draft for severe accidents such as Severe accident Management Plans, the required design features for new NPPs to prevent severe accident against multiple failures and beyond-design external events, countermeasures to mitigate severe accident and to keep the integrity of containment, and assessment methodology on safety assessment plan and probabilistic safety assessment

  2. Regulation Plans on Severe Accidents developed by KINS Severe Accident Regulation Preparation TFT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyun Tae; Chung, Ku Young; Na, Han Bee [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    Some nuclear power plants in Fukushima Daiichi site had lost their emergency reactor cooling function for long-time so the fuels inside the reactors were molten, and the integrity of containment was damaged. Therefore, large amount of radioactive material was released to environment. Because the social and economic effects of severe accidents are enormous, Korean Government already issued 'Severe Accident Policy' in 2001 which requires nuclear power plant operators to set up 'Quantitative Safety Goal', to do 'Probabilistic Safety Analysis', to install 'Severe Accident Countermeasures' and to make 'Severe Accident Management Plan'. After the Fukushima disaster, a Special Safety Inspection was performed for all operating nuclear power plants of Korea. The inspection team from industry, academia, and research institutes assessed Korean NPPs capabilities to cope with or respond to severe accidents and emergency situation caused by natural disasters such as a large earthquake or tsunami. As a result of the special inspection, about 50 action items were identified to increase the capability to cope with natural disaster and severe accidents. Nuclear Safety Act has been amended to require NPP operators to submit Accident Management Plant as part of operating license application. The KINS Severe Accident Regulation Preparation TFT had first investigated oversea severe accident regulation trend before and after the Fukushima accident. Then, the TFT has developed regulation draft for severe accidents such as Severe accident Management Plans, the required design features for new NPPs to prevent severe accident against multiple failures and beyond-design external events, countermeasures to mitigate severe accident and to keep the integrity of containment, and assessment methodology on safety assessment plan and probabilistic safety assessment.

  3. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    Energy Technology Data Exchange (ETDEWEB)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Reactor Safety

    2017-06-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  4. Application of the Severe Accident Code ATHLET-CD. Coolant injection to primary circuit of a PWR by mobile pump system in case of SBLOCA severe accident scenario

    International Nuclear Information System (INIS)

    Jobst, Matthias; Wilhelm, Polina; Kliem, Soeren; Kozmenkov, Yaroslav

    2017-01-01

    The improvement of the safety of nuclear power plants is a continuously on-going process. The analysis of transients and accidents is an important research topic, which significantly contributes to safety enhancements of existing power plants. In case of an accident with multiple failures of safety systems, core uncovery and heat-up can occur. In order to prevent the accident to turn into a severe one or to mitigate the consequences of severe accidents, different accident management measures can be applied. By means of numerical analyses performed with the compute code ATHLET-CD, the effectiveness of coolant injection with a mobile pump system into the primary circuit of a PWR was studied. According to the analyses, such a system can stop the melt progression if it is activated prior to 10 % of total core is molten.

  5. TRAC analyses of severe overcooling transients for the Oconee-1 PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ireland, J R [comp.

    1985-05-01

    This report describes the results of several Transient Reactor Analysis Code (TRAC)-PF1 calculations of overcooling transients in a Babcock and Wilcox lowered-loop, pressurized water reactor (Oconee-1). The purpose of this study is to provide detailed input on thermal-hydraulic data to Oak Ridge National Laboratory for pressurized thermal-shock analyses. The transient calculations performed were plant specific in that details of the primary system, the secondary system, and the plant-integrated control system of Oconee-1 were included in the TRAC input model. The results of the calculations indicate that the turbine-bypass valve failure transient was the most severe in terms of resulting in relatively cold liquid temperatures in the downcomer region of the vessel. The power-operated relief valve loss-of-coolant accident transient was the least severe in terms of downcomer liquid temperatures because of vent-valve fluid mixing and near-saturated conditions in the primary system. It is recommended that future calculations consider a wider range of operator actions to cover the spectra of overcooling transient sequences more completely. 6 refs., 287 figs., 32 tabs.

  6. TRAC analyses of severe overcooling transients for the Oconee-1 PWR

    International Nuclear Information System (INIS)

    Ireland, J.R.

    1985-05-01

    This report describes the results of several Transient Reactor Analysis Code (TRAC)-PF1 calculations of overcooling transients in a Babcock and Wilcox lowered-loop, pressurized water reactor (Oconee-1). The purpose of this study is to provide detailed input on thermal-hydraulic data to Oak Ridge National Laboratory for pressurized thermal-shock analyses. The transient calculations performed were plant specific in that details of the primary system, the secondary system, and the plant-integrated control system of Oconee-1 were included in the TRAC input model. The results of the calculations indicate that the turbine-bypass valve failure transient was the most severe in terms of resulting in relatively cold liquid temperatures in the downcomer region of the vessel. The power-operated relief valve loss-of-coolant accident transient was the least severe in terms of downcomer liquid temperatures because of vent-valve fluid mixing and near-saturated conditions in the primary system. It is recommended that future calculations consider a wider range of operator actions to cover the spectra of overcooling transient sequences more completely. 6 refs., 287 figs., 32 tabs

  7. Method for consequence calculations for severe accidents

    International Nuclear Information System (INIS)

    Nielsen, F.; Thykier-Nielsen, S.; Walmod-Larsen, O.

    1986-08-01

    This report was commissioned by the Swedish State Power Board, who wanted a method for calculation of radiation doses in the surroundings of nuclear power plants caused by severe accidents. The PLUCON4 code were used for the calculations. A TC-SV-accident at Ringhals 1 wer chosen as example. A transient without shutdown leads to core meltdown through the reactor vessel. The pressure peak at the moment of vessel failure opens a safety valve in the dry well. Meteorolgical data for two years from the Ringhals meteorological tower were analysed to find representative weather situations. As typical weather were chosen Pasquill D with wind speed 8 m/s, and as extreme weather were chosen Pasquill F with wind speed 4.8 m/s. (author)

  8. Cost per severe accident as an index for severe accident consequence assessment and its applications

    International Nuclear Information System (INIS)

    Silva, Kampanart; Ishiwatari, Yuki; Takahara, Shogo

    2014-01-01

    The Fukushima Accident emphasizes the need to integrate the assessments of health effects, economic impacts, social impacts and environmental impacts, in order to perform a comprehensive consequence assessment of severe accidents in nuclear power plants. “Cost per severe accident” is introduced as an index for that purpose. The calculation methodology, including the consequence analysis using level 3 probabilistic risk assessment code OSCAAR and the calculation method of the cost per severe accident, is proposed. This methodology was applied to a virtual 1,100 MWe boiling water reactor. The breakdown of the cost per severe accident was provided. The radiation effect cost, the relocation cost and the decontamination cost were the three largest components. Sensitivity analyses were carried out, and parameters sensitive to cost per severe accident were specified. The cost per severe accident was compared with the amount of source terms, to demonstrate the performance of the cost per severe accident as an index to evaluate severe accident consequences. The ways to use the cost per severe accident for optimization of radiation protection countermeasures and for estimation of the effects of accident management strategies are discussed as its applications. - Highlights: • Cost per severe accident is used for severe accident consequence assessment. • Assessments of health, economic, social and environmental impacts are included. • Radiation effect, relocation and decontamination costs are important cost components. • Cost per severe accident can be used to optimize radiation protection measures. • Effects of accident management can be estimated using the cost per severe accident

  9. Severe Accident Progression and Consequence Assessment Methodology Upgrades in ISAAC for Wolsong CANDU6

    International Nuclear Information System (INIS)

    Song, Y.M.; Kim, D.H.; Nijhawan, Sunil

    2015-01-01

    Amongst the applications of integrated severe accident analysis codes like ISAAC, the principal are to a) help develop an understanding of the severe accident progression and its consequences; b) support the design of mitigation measures by providing for them the state of the reactor following an accident; and c) to provide a training platform for accident management actions. After Fukushima accident there is an increased awareness of the need to implement effective and appropriate mitigation measures and empower the operators with training and understanding about severe accident progression and control opportunities. An updated code with reduced uncertainties can better serve these needs of the utility making decisions about mitigation measures and corrective actions. Optimal deployment of systems such as PARS and filtered containment venting require information on reactor transients for a number of critical parameters. Thus there is a greater consensus now for a demonstrated ability to perform accident progression and consequence assessment analyses with reduced uncertainties. Analyses must now provide source term transients that represent the best in available understanding and so meaningfully support mitigation measures. This requires removal of known simplifications and inclusion of all quantifiable and risk significant phenomena. Advances in understanding of CANDU6 severe accident progression reflected in the severe accident integrated code ROSHNI are being incorporated into ISAAC using CANDU specific component and system models developed and verified for Wolsong CANDU 6 reactors. A significant and comprehensive upgrade of core behavior models is being implemented in ISAAC to properly reflect the large variability amongst fuel channels in feeder geometry, fuel thermal powers and burnup. The paper summarizes the models that have been added and provides some results to illustrate code capabilities. ISAAC is being updated to meet the current requirements and

  10. Severe Accident Progression and Consequence Assessment Methodology Upgrades in ISAAC for Wolsong CANDU6

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.M.; Kim, D.H. [KAERI, Daejeon (Korea, Republic of); Nijhawan, Sunil [Prolet Inc. 98 Burbank Drive, Toronto (Canada)

    2015-05-15

    Amongst the applications of integrated severe accident analysis codes like ISAAC, the principal are to a) help develop an understanding of the severe accident progression and its consequences; b) support the design of mitigation measures by providing for them the state of the reactor following an accident; and c) to provide a training platform for accident management actions. After Fukushima accident there is an increased awareness of the need to implement effective and appropriate mitigation measures and empower the operators with training and understanding about severe accident progression and control opportunities. An updated code with reduced uncertainties can better serve these needs of the utility making decisions about mitigation measures and corrective actions. Optimal deployment of systems such as PARS and filtered containment venting require information on reactor transients for a number of critical parameters. Thus there is a greater consensus now for a demonstrated ability to perform accident progression and consequence assessment analyses with reduced uncertainties. Analyses must now provide source term transients that represent the best in available understanding and so meaningfully support mitigation measures. This requires removal of known simplifications and inclusion of all quantifiable and risk significant phenomena. Advances in understanding of CANDU6 severe accident progression reflected in the severe accident integrated code ROSHNI are being incorporated into ISAAC using CANDU specific component and system models developed and verified for Wolsong CANDU 6 reactors. A significant and comprehensive upgrade of core behavior models is being implemented in ISAAC to properly reflect the large variability amongst fuel channels in feeder geometry, fuel thermal powers and burnup. The paper summarizes the models that have been added and provides some results to illustrate code capabilities. ISAAC is being updated to meet the current requirements and

  11. Joint research project WASA-BOSS: Further development and application of severe accident codes. Assessment and optimization of accident management measures. Project B: Accident analyses for pressurized water reactors with the application of the ATHLET-CD code

    International Nuclear Information System (INIS)

    Jobst, Matthias; Kliem, Soeren; Kozmenkov, Yaroslav; Wilhelm, Polina

    2017-02-01

    Within the framework of the project an ATHLET-CD input deck for a generic German PWR of type KONVOI has been created. This input deck was applied to the simulation of severe accidents from the accident categories station blackout (SBO) and small-break loss-of-coolant accidents (SBLOCA). The complete accident transient from initial event at full power until the damage of reactor pressure vessel (RPV) is covered and all relevant severe accident phenomena are modelled: start of core heat up, fission product release, melting of fuel and absorber material, oxidation and release of hydrogen, relocation of molten material inside the core, relocation to the lower plenum, damage and failure of the RPV. The model has been applied to the analysis of preventive and mitigative accident management measures for SBO and SBLOCA transients. Therefore, the measures primary side depressurization (PSD), injection to the primary circuit by mobile pumps and for SBLOCA the delayed injection by the cold leg hydro-accumulators have been investigated and the assumptions and start criteria of these measures have been varied. The time evolutions of the transients and time margins for the initiation of additional measures have been assessed. An uncertainty and sensitivity study has been performed for the early phase of one SBO scenario with PSD (until the start of core melt). In addition to that, a code -to-code comparison between ATHLET-CD and the severe accident code MELCOR has been carried out.

  12. Development of Integrated Evaluation System for Severe Accident Management

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y

    2007-06-15

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs.

  13. Development of Integrated Evaluation System for Severe Accident Management

    International Nuclear Information System (INIS)

    Kim, Dong Ha; Kim, K. R.; Park, S. H.; Park, S. Y.; Park, J. H.; Song, Y. M.; Ahn, K. I.; Choi, Y.

    2007-06-01

    The objective of the project is twofold. One is to develop a severe accident database (DB) for the Korean Standard Nuclear Power plant (OPR-1000) and a DB management system, and the other to develop a localized computer code, MIDAS (Multi-purpose IntegrateD Assessment code for Severe accidents). The MELCOR DB has been constructed for the typical representative sequences to support the previous MAAP DB in the previous phase. The MAAP DB has been updated using the recent version of MAAP 4.0.6. The DB management system, SARD, has been upgraded to manage the MELCOR DB in addition to the MAAP DB and the network environment has been constructed for many users to access the SARD simultaneously. The integrated MIDAS 1.0 has been validated after completion of package-wise validation. As the current version of MIDAS cannot simulate the anticipated transient without scram (ATWS) sequence, point-kinetics model has been implemented. Also the gap cooling phenomena after corium relocation into the RPV can be modeled by the user as an input parameter. In addition, the subsystems of the severe accident graphic simulator are complemented for the efficient severe accident management and the engine of the graphic simulator was replaced by the MIDAS instead of the MELCOR code. For the user's convenience, MIDAS input and output processors are upgraded by enhancing the interfacial programs

  14. Review of current status for designing severe accident management support system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sub

    2000-05-01

    The development of operator support system (OSS) is ongoing in many other countries due to the complexity both in design and in operation for nuclear power plant. The computerized operator support system includes monitoring of some critical parameters, early detection of plant transient, monitoring of component status, plant maintenance, and safety parameter display, and the operator support system for these areas are developed and are being used in some plants. Up to now, the most operator support system covers the normal operation, abnormal operation, and emergency operation. Recently, however, the operator support system for severe accident is to be developed in some countries. The study for the phenomena of severe accident is not performed sufficiently, but, based on the result up to now, the operator support system even for severe accident will be developed in this study. To do this, at first, the current status of the operator support system for normal/abnormal/emergency operation is reviewed, and the positive aspects and negative aspects of systems are analyzed by their characteristics. And also, the major items that should be considered in designing the severe accident operator support system are derived from the review. With the survey of domestic and foreign operator support systems, they are reviewed in terms of the safety parameter display system, decision-making support system, and procedure-tracking system. For the severe accident, the severe accident management guideline (SAMG) which is developed by Westinghouse is reviewed; the characteristics, structure, and logical flow of SAMG are studied. In addition, the critical parameters for severe accident, which are the basis for operators decision-making in severe accident management and are supplied to the operators and the technical support center, are reviewed, too.

  15. Review of current status for designing severe accident management support system

    International Nuclear Information System (INIS)

    Jeong, Kwang Sub

    2000-05-01

    The development of operator support system (OSS) is ongoing in many other countries due to the complexity both in design and in operation for nuclear power plant. The computerized operator support system includes monitoring of some critical parameters, early detection of plant transient, monitoring of component status, plant maintenance, and safety parameter display, and the operator support system for these areas are developed and are being used in some plants. Up to now, the most operator support system covers the normal operation, abnormal operation, and emergency operation. Recently, however, the operator support system for severe accident is to be developed in some countries. The study for the phenomena of severe accident is not performed sufficiently, but, based on the result up to now, the operator support system even for severe accident will be developed in this study. To do this, at first, the current status of the operator support system for normal/abnormal/emergency operation is reviewed, and the positive aspects and negative aspects of systems are analyzed by their characteristics. And also, the major items that should be considered in designing the severe accident operator support system are derived from the review. With the survey of domestic and foreign operator support systems, they are reviewed in terms of the safety parameter display system, decision-making support system, and procedure-tracking system. For the severe accident, the severe accident management guideline (SAMG) which is developed by Westinghouse is reviewed; the characteristics, structure, and logical flow of SAMG are studied. In addition, the critical parameters for severe accident, which are the basis for operators decision-making in severe accident management and are supplied to the operators and the technical support center, are reviewed, too

  16. Evaluation of High-Pressure RCS Natural Circulations Under Severe Accident Conditions

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Bang, Young Suk; Suh, Nam Duk

    2006-01-01

    Since TMI-2 accident, the occurrence of severe accident natural circulations inside RCS during entire in-vessel core melt progressions before the reactor vessel breach had been emphasized and tried to clarify its thermal-hydraulic characteristics. As one of consolidated outcomes of these efforts, sophisticated models have been presented to explain the effects of a variety of engineering and phenomenological factors involved during severe accident mitigation on the integrity of RCS pressure boundaries, i.e. reactor pressure vessel(RPV), RCS coolant pipe and steam generator tubes. In general, natural circulation occurs due to density differences, which for single phase flow, is typically generated by temperature differences. Three natural circulation flows can be formed during severe accidents: in-vessel, hot leg countercurrent flow and flow through the coolant loops. Each of these flows may be present during high-pressure transients such as station blackout (SBO) and total loss of feedwater (TLOFW). As a part of research works in order to contribute on the completeness of severe accident management guidance (SAMG) in domestic plants by quantitatively assessing the RCS natural circulations on its integrity, this study presents basic approach for this work and some preliminary results of these efforts with development of appropriately detailed RCS model using MELCOR computer code

  17. Human factors review for Severe Accident Sequence Analysis (SASA)

    International Nuclear Information System (INIS)

    Krois, P.A.; Haas, P.M.; Manning, J.J.; Bovell, C.R.

    1984-01-01

    The paper will discuss work being conducted during this human factors review including: (1) support of the Severe Accident Sequence Analysis (SASA) Program based on an assessment of operator actions, and (2) development of a descriptive model of operator severe accident management. Research by SASA analysts on the Browns Ferry Unit One (BF1) anticipated transient without scram (ATWS) was supported through a concurrent assessment of operator performance to demonstrate contributions to SASA analyses from human factors data and methods. A descriptive model was developed called the Function Oriented Accident Management (FOAM) model, which serves as a structure for bridging human factors, operations, and engineering expertise and which is useful for identifying needs/deficiencies in the area of accident management. The assessment of human factors issues related to ATWS required extensive coordination with SASA analysts. The analysis was consolidated primarily to six operator actions identified in the Emergency Procedure Guidelines (EPGs) as being the most critical to the accident sequence. These actions were assessed through simulator exercises, qualitative reviews, and quantitative human reliability analyses. The FOAM descriptive model assumes as a starting point that multiple operator/system failures exceed the scope of procedures and necessitates a knowledge-based emergency response by the operators. The FOAM model provides a functionally-oriented structure for assembling human factors, operations, and engineering data and expertise into operator guidance for unconventional emergency responses to mitigate severe accident progression and avoid/minimize core degradation. Operators must also respond to potential radiological release beyond plant protective barriers. Research needs in accident management and potential uses of the FOAM model are described. 11 references, 1 figure

  18. CANDU safety under severe accidents

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.; Alikhan, S.; Frescura, G.M.; King, F.; Rogers, J.T.; Tamm, H.

    1996-01-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10 -6 /year. 95 refs, 3 tabs

  19. CANDU safety under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Snell, V G; Howieson, J Q [Atomic Energy of Canada Ltd. (Canada); Alikhan, S [New Brunswick Electric Power Commission (Canada); Frescura, G M; King, F [Ontario Hydro (Canada); Rogers, J T [Carleton Univ., Ottawa, ON (Canada); Tamm, H [Atomic Energy of Canada Ltd. (Canada). Whiteshell Research Lab.

    1996-12-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. The pressure-tube concept allows the separate, low-pressure, heavy-water moderator to act as a backup heat sink even if there is no water in the fuel channels. Should this also fail, the calandria shell itself can contain the debris, with heat being transferred to the water-filled shield tank around the core. Should the severe core damage sequence progress further, the shield tank and the concrete reactor vault significantly delay the challenge to containment. Furthermore, should core melt lead to containment overpressure, the containment behaviour is such that leaks through the concrete containment wall reduce the possibility of catastrophic structural failure. The Canadian licensing philosophy requires that each accident, together with failure of each safety system in turn, be assessed (and specified dose limits met) as part of the design and licensing basis. In response, designers have provided CANDUs with two independent dedicated shutdown systems, and the likelihood of Anticipated Transients Without Scram is negligible. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10{sup -6}/year. 95 refs, 3 tabs.

  20. Accident transient processes at NPPs with the WWER type reactors

    International Nuclear Information System (INIS)

    Bukrinskij, A.M.

    1982-01-01

    Thermal-physical and nuclear-physical transient processes at NPPs with the WWER type reactors during accidents with the main technological equipment failures and the accidents with loss of coolant in the primary and secondary coolant circuits are considered. Mathematical methods used for these processes modelling is described. Examples of concrete calculations for accidents with different failures are given. Comparative analysis of the results of dynamic tests at the Novo-Voronezh-3 reactor is presented. It is concluded that the modern NPP design is impossible without application of mathematical modelling methods. The mathematical modelling of transients is also necessary for proper and safe NPP operation. Mathematical modelling of accidents at NPPs is a comparatively new method of investigation. Its success and development are completely based on the progress in modern computer development. With their improvement the mathematical models will become more complicate and adequacy of real physical process representation by their means will increase

  1. Severe accident behavior

    International Nuclear Information System (INIS)

    Denning, R.S.

    1986-01-01

    The purpose of this paper is to provide an overview of severe accident behavior. The term source term is defined and a brief history of the regulatory use of source term is presented. The processes in severe accidents in light water reactors are described with particular emphasis on the relationships between accident thermal-hydraulics and chemistry. Those factors which have the greatest impact on predicted source terms are identified. Design differences between plants that affect source term estimation are also described. The principal unresolved issues are identified that are the focus of ongoing research and debate in the technical community

  2. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1987-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery managment concevtrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that 'active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk', and goes further in considering and formulating the key issue: 'The most fruitful path to follow in reducing risk even further is through the planning of accident management.' (author)

  3. Management of severe accidents

    International Nuclear Information System (INIS)

    Jankowski, M.W.

    1988-01-01

    The definition and the multidimensionality aspects of accident management have been reviewed. The suggested elements in the development of a programme for severe accident management have been identified and discussed. The strategies concentrate on the two tiered approaches. Operative management utilizes the plant's equipment and operators capabilities. The recovery management concentrates on preserving the containment, or delaying its failure, inhibiting the release, and on strategies once there has been a release. The inspiration for this paper was an excellent overview report on perspectives on managing severe accidents in commercial nuclear power plants and extending plant operating procedures into the severe accident regime; and by the most recent publication of the International Nuclear Safety Advisory Group (INSAG) considering the question of risk reduction and source term reduction through accident prevention, management and mitigation. The latter document concludes that active development of accident management measures by plant personnel can lead to very large reductions in source terms and risk, and goes further in considering and formulating the key issue: The most fruitful path to follow in reducing risk even further is through the planning of accident management

  4. Overview of BWR Severe Accident Sequence Analyses at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Hodge, S.A.

    1983-01-01

    Since its inception in October 1980, the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory (ORNL) has completed four studies including Station Blackout, Scram Discharge Volume Break, Loss of Decay Heat Removal, and Loss of Injection accident sequences for the Browns Ferry Nuclear Plant. The accident analyses incorporated in a SASA study provide much greater detail than that practically achievable in a Probabilistic Risk Assessment (PRA). When applied to the candidate dominant accident sequences identified by a PRA, the detailed SASA results determine if factors neglected by the PRA would have a significant effect on the order of dominant sequences. Ongoing SASA work at ORNL involves the analysis of Anticipated Transients Without Scram (ATWS) sequences for Browns Ferry

  5. A physical tool for severe accident mitigation studies

    Energy Technology Data Exchange (ETDEWEB)

    Marie, N., E-mail: nathalie.marie@cea.fr [CEA, DEN, DER, F-13108 Saint Paul Lez Durance (France); Bachrata, A. [CEA, DEN, DER, F-13108 Saint Paul Lez Durance (France); Seiler, J.M. [CEA, DEN, DTN, F-38054 Grenoble (France); Barjot, F. [EDF R& D, SINETICS, F-93141 Clamart (France); Marrel, A. [CEA, DEN, DER, F-13108 Saint Paul Lez Durance (France); Gossé, S. [CEA, DEN, DPC, F-91191 Gif Sur Yvette (France); Bertrand, F. [CEA, DEN, DER, F-13108 Saint Paul Lez Durance (France)

    2016-12-01

    Highlights: • Physical tool for mitigation studies devoted to SFR safety. • Physical models to describe the material discharge from core. • Comparison to SIMMER III results. • Studies for ASTRID safety assessment and support to core design. - Abstract: Within the framework of the Generation IV Sodium-cooled Fast Reactors (SFR) R&D program of CEA, the core behavior in case of severe accidents is being assessed. Such transients are usually simulated with mechanistic codes (such as SIMMER-III). As a complement to this code, which gives reference accidental transient, a physico-statistical approach is currently followed; its final objective being to derive the variability of the main results of interest for the safety. This approach involves a fast-running simulation of extended accident sequences coupling low-dimensional physical models to advanced statistical analysis techniques. In this context, this paper presents such a low-dimensional physical tool (models and simulation results) dedicated to molten core materials discharge. This 0D tool handles heat transfers from molten (possibly boiling) pools, fuel crust evolution, phase separation/mixing of fuel/steel pools, radial thermal erosion of mitigation tubes, discharge of core materials and associated axial thermal erosion of mitigation tubes. All modules are coupled with a global neutronic evolution model of the degraded core. This physical tool is used to study and to define mitigation features (function of tubes devoted to mitigation inside the core, impact of absorbers falling into the degraded core…) to avoid energetic core recriticality during a secondary phase of a potential severe accident. In the future, this physical tool, associated to statistical treatments of the effect of uncertainties would enable sensitivity analysis studies. This physical tool is described before presenting its comparison against SIMMER-III code results, including a space-and energy-dependent neutron transport kinetic

  6. Assessment of clad integrity of PHWR fuel pin following a postulated severe accident

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-01-01

    A mechanistic fuel performance analysis code FAIR has been developed. The code can analyse fuel pins with free standing as well as collapsible clad under normal, off-normal and accident conditions of reactors. The code FAIR is capable of analysing the effects of high burnup on fuel behaviour. The code incorporates finite element based thermo-mechanical module for computing transient temperature distribution and thermal-elastic-plastic stresses in the fuel pin. A number of high temperature thermo-physical and thermo-mechanical models also have been incorporated for analysing fuel pins subjected to severe accident scenario. The present paper describes salient features of code FAIR and assessment of clad integrity of PHWR fuel pins with different initial burnup subjected to severe accident scenario. (author)

  7. PCTRAN-3: The third generation of personal computer-based plant analyzer for severe accident management

    International Nuclear Information System (INIS)

    Li-Chi Cliff Po; Link, John M.

    2004-01-01

    PCTRAN is a plant analyzer that uses a personal computer to simulate plant response. The plant model is recently expanded to accommodate beyond design-basis severe accidents. In the event of multiple failures of the plant safety systems, the core may experience heatup and extensive failure. Using a high-powered personal computer (PC), PCTRAN-3 is designed to operate at a speed significantly faster than real-time. A convenient, interactive and user-friendly graphics interface allows full control by the operator. The plant analyzer is intended for use in severe accident management. In this paper the code's component models and sample runs ranging from normal operational transients to severe accidents are reviewed. (author)

  8. Pilot program: NRC severe reactor accident incident response training manual: Severe reactor accident overview

    International Nuclear Information System (INIS)

    McKenna, T.J.; Martin, J.A.; Miller, C.W.; Hively, L.M.; Sharpe, R.W.; Giitter, J.G.; Watkins, R.M.

    1987-02-01

    This pilot training manual has been written to fill the need for a general text on NRC response to reactor accidents. The manual is intended to be the foundation for a course for all NRC response personnel. Severe Reactor Accident Overview is the second in a series of volumes that collectively summarize the US Nuclear Regulatory Commission (NRC) emergency response during severe power reactor accidents and provide necessary background information. This volume describes elementary perspectives on severe accidents and accident assesment. Each volume serves, respectively, as the text for a course of instruction in a series of courses. Each volume is accompanied by an appendix of slides that can be used to present this material. The slides are called out in the text

  9. Severe Accident Research Program plan update

    International Nuclear Information System (INIS)

    1992-12-01

    In August 1989, the staff published NUREG-1365, ''Revised Severe Accident Research Program Plan.'' Since 1989, significant progress has been made in severe accident research to warrant an update to NUREG-1365. The staff has prepared this SARP Plan Update to: (1) Identify those issues that have been closed or are near completion, (2) Describe the progress in our understanding of important severe accident phenomena, (3) Define the long-term research that is directed at improving our understanding of severe accident phenomena and developing improved methods for assessing core melt progression, direct containment heating, and fuel-coolant interactions, and (4) Reflect the growing emphasis in two additional areas--advanced light water reactors, and support for the assessment of criteria for containment performance during severe accidents. The report describes recent major accomplishments in understanding the underlying phenomena that can occur during a severe accident. These include Mark I liner failure, severe accident scaling methodology, source term issues, core-concrete interactions, hydrogen transport and combustion, TMI-2 Vessel Investigation Project, and direct containment heating. The report also describes the major planned activities under the SARP over the next several years. These activities will focus on two phenomenological issues (core melt progression, and fuel-coolant interactions and debris coolability) that have significant uncertainties that impact our understanding and ability to predict severe accident phenomena and their effect on containment performance SARP will also focus on severe accident code development, assessment and validation. As the staff completes the research on severe accident issues that relate to current generation reactors, continued research will focus on efforts to independently evaluate the capability of new advanced light water reactor designs to withstand severe accidents

  10. Severe accident analysis methodology in support of accident management

    International Nuclear Information System (INIS)

    Boesmans, B.; Auglaire, M.; Snoeck, J.

    1997-01-01

    The author addresses the implementation at BELGATOM of a generic severe accident analysis methodology, which is intended to support strategic decisions and to provide quantitative information in support of severe accident management. The analysis methodology is based on a combination of severe accident code calculations, generic phenomenological information (experimental evidence from various test facilities regarding issues beyond present code capabilities) and detailed plant-specific technical information

  11. Cernavoda CANDU severe accident evaluation

    International Nuclear Information System (INIS)

    Negut, G.; Marin, A.

    1997-01-01

    The papers present the activities dedicated to Romania Cernavoda Nuclear Power Plant first CANDU Unit severe accident evaluation. This activity is part of more general PSA assessment activities. CANDU specific safety features are calandria moderator and calandria vault water capabilities to remove the residual heat in the case of severe accidents, when the conventional heat sinks are no more available. Severe accidents evaluation, that is a deterministic thermal hydraulic analysis, assesses the accidents progression and gives the milestones when important events take place. This kind of assessment is important to evaluate to recovery time for the reactor operators that can lead to the accident mitigation. The Cernavoda CANDU unit is modeled for the of all heat sinks accident and results compared with the AECL CANDU 600 assessment. (orig.)

  12. Severe accidents in nuclear reactors

    International Nuclear Information System (INIS)

    Ohai, Dumitru; Dumitrescu, Iulia; Tunaru, Mariana

    2004-01-01

    The likelihood of accidents leading to core meltdown in nuclear reactors is low. The consequences of such an event are but so severe that developing and implementing of adequate measures for preventing or diminishing the consequences of such events are of paramount importance. The analysis of major accidents requires sophisticated computation codes but necessary are also relevant experiments for checking the accuracy of the predictions and capability of these codes. In this paper an overview of the severe accidents worldwide with definitions, computation codes and relating experiments is presented. The experimental research activity of severe accidents was conducted in INR Pitesti since 2003, when the Institute jointed the SARNET Excellence Network. The INR activity within SARNET consists in studying scenarios of severe accidents by means of ASTEC and RELAP/SCDAP codes and conducting bench-scale experiments

  13. Severe accident training simulator APROS SA

    International Nuclear Information System (INIS)

    Raiko, Eerikki; Salminen, Kai; Lundstroem, Petra; Harti, Mika; Routamo, Tomi

    2003-01-01

    APROS SA is a severe accident training simulator based on the APROS simulation environment. APROS SA has been developed in Fortum Nuclear Services Ltd to serve as a training tool for the personnel of the Loviisa NPP. Training with APROS SA gives the personnel a deeper understanding of the severe accident phenomena and thus it is an important part of the implementation of the severe accident management strategy. APROS SA consists of two parts, a comprehensive Loviisa plant model and an external severe accident model. The external model is an extension to the Loviisa plant model, which allows the simulation to proceed into the severe accident phase. The severe accident model has three submodels: the core melting and relocation model, corium pool model and fission product model. In addition to these, a new thermal-hydraulic solver is introduced to the core region of the Loviisa plant model to replace the more limited APROS thermal-hydraulic solver. The full APROS SA training simulator has a graphical user interface with visualizations of both severe accident management panels at the operator room and the important physical phenomena during the accident. This paper describes the background of the APROS SA training simulator, the severe accident submodels and the graphical user interface. A short description how APROS SA will be used as a training tool at the Loviisa NPP is also given

  14. Severe accidents at nuclear power plants. Their risk assessment and accident management

    International Nuclear Information System (INIS)

    Abe, Kiyoharu.

    1995-05-01

    This document is to explain the severe accident issues. Severe Accidents are defined as accidents which are far beyond the design basis and result in severe damage of the core. Accidents at Three Mild Island in USA and at Chernobyl in former Soviet Union are examples of severe accidents. The causes and progressions of the accidents as well as the actions taken are described. Probabilistic Safety Assessment (PSA) is a method to estimate the risk of severe accidents at nuclear reactors. The methodology for PSA is briefly described and current status on its application to safety related issues is introduced. The acceptability of the risks which inherently accompany every technology is then discussed. Finally, provision of accident management in Japan is introduced, including the description of accident management measures proposed for BWRs and PWRs. (author)

  15. Uncertainties and severe-accident management

    International Nuclear Information System (INIS)

    Kastenberg, W.E.

    1991-01-01

    Severe-accident management can be defined as the use of existing and or alternative resources, systems, and actions to prevent or mitigate a core-melt accident. Together with risk management (e.g., changes in plant operation and/or addition of equipment) and emergency planning (off-site actions), accident management provides an extension of the defense-indepth safety philosophy for severe accidents. A significant number of probabilistic safety assessments have been completed, which yield the principal plant vulnerabilities, and can be categorized as (a) dominant sequences with respect to core-melt frequency, (b) dominant sequences with respect to various risk measures, (c) dominant threats that challenge safety functions, and (d) dominant threats with respect to failure of safety systems. Severe-accident management strategies can be generically classified as (a) use of alternative resources, (b) use of alternative equipment, and (c) use of alternative actions. For each sequence/threat and each combination of strategy, there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These include (a) uncertainty in key phenomena, (b) uncertainty in operator behavior, (c) uncertainty in system availability and behavior, and (d) uncertainty in information availability (i.e., instrumentation). This paper focuses on phenomenological uncertainties associated with severe-accident management strategies

  16. Severe accidents: in nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    A ''severe'' nuclear accident refers to a reactor accident that could exceed reactor design specifications to such a degree as to prevent cooling of the reactor's core by normal means. This report summarizes the work of a NEA Senior Group of Experts who have studied the potential response of existing light-water reactors to severe accidents and have found that current designs of reactors are far more capable of coping with severe accidents than design specifications would suggest. The report emphasises the specific knowledge and means that can be used for diagnosing a severe accident and for managing its progression in order to prevent or mitigate its consequences

  17. Studies of potential severe accidents in Finnish nuclear power plants. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Aro, Ilari.

    1989-07-01

    This thesis is based on six publications dealing with severe accident studies in Finnish nuclear power plants. Main emphasis has been put on general technical bases and methodologies applied in severe accident evaluation in Finland. As an example of the use of the analysis and evaluation methods, the analysis of one representative accident sequence, t otal loss of AC power , has been presented for both Finnish power plant types. This accident sequence is required to be analyzed in the Finnish safety guide YVL 2.2 which deals with transient and accident analyses as a basis of technical solutions at nuclear powr plants. Two different analysis methods, MAAP 3.0 and MARCH 3/STCP have been used for receiving as complete a picture as possible of the flow of events and for verifying the models to some extent. Besides the use of the two different models, the method of sensitivity analysis has been used for evaluating the effects of some important technical parameters on the accident flow. Finally, conclusions of the applicability of the two methods for analyzing severe accident sequences in Finnish plants have been discussed

  18. Containment severe accident thermohydraulic phenomena

    International Nuclear Information System (INIS)

    Frid, W.

    1991-08-01

    This report describes and discusses the containment accident progression and the important severe accident containment thermohydraulic phenomena. The overall objective of the report is to provide a rather detailed presentation of the present status of phenomenological knowledge, including an account of relevant experimental investigations and to discuss, to some extent, the modelling approach used in the MAAP 3.0 computer code. The MAAP code has been used in Sweden as the main tool in the analysis of severe accidents. The dependence of the containment accident progression and containment phenomena on the initial conditions, which in turn are heavily dependent on the in-vessel accident progression and phenomena as well as associated uncertainties, is emphasized. The report is in three parts dealing with: * Swedish reactor containments, the severe accident mitigation programme in Sweden and containment accident progression in Swedish PWRs and BWRs as predicted by the MAAP 3.0 code. * Key non-energetic ex-vessel phenomena (melt fragmentation in water, melt quenching and coolability, core-concrete interaction and high temperature in containment). * Early containment threats due to energetic events (hydrogen combustion, high pressure melt ejection and direct containment heating, and ex-vessel steam explosions). The report concludes that our understanding of the containment severe accident progression and phenomena has improved very significantly over the parts ten years and, thereby, our ability to assess containment threats, to quantify uncertainties, and to interpret the results of experiments and computer code calculations have also increased. (au)

  19. Fast reactor fuel failures and steam generator leaks: Transient and accident analysis approaches

    International Nuclear Information System (INIS)

    1996-10-01

    This report consists of a survey of activities on transient and accident analysis for the LMFR. It is focused on the following subjects: Fuel transient tests and analyses in hypothetical incident/accident situations; sodium-water interaction in steam generators, and sodium fires: test and analyses. There are also sections dealing with the experimental and analytical studies of: fuel subassembly failures; sodium boiling, molten fuel-coolant interaction; molten material movement and relocation in fuel bundles; heat removal after an accident or incident; sodium-water reaction in steam generator; steam generator protection systems; sodium-water contact in steam generator building; fire-fighting methods and systems to deal with sodium fires. Refs, figs, tabs

  20. SAMEX: A severe accident management support expert

    International Nuclear Information System (INIS)

    Park, Soo-Yong; Ahn, Kwang-Il

    2010-01-01

    A decision support system for use in a severe accident management following an incident at a nuclear power plant is being developed which is aided by a severe accident risk database module and a severe accident management simulation module. The severe accident management support expert (SAMEX) system can provide the various types of diagnostic and predictive assistance based on the real-time plant specific safety parameters. It consists of four major modules as sub-systems: (a) severe accident risk data base module (SARDB), (b) risk-informed severe accident risk data base management module (RI-SARD), (c) severe accident management simulation module (SAMS), and (d) on-line severe accident management guidance module (on-line SAMG). The modules are integrated into a code package that executes within a WINDOWS XP operating environment, using extensive user friendly graphics control. In Korea, the integrated approach of the decision support system is being carried out under the nuclear R and D program planned by the Korean Ministry of Education, Science and Technology (MEST). An objective of the project is to develop the support system which can show a theoretical possibility. If the system is feasible, the project team will recommend the radiation protection technical support center of a national regulatory body to implement a plant specific system, which is applicable to a real accident, for the purpose of immediate and various diagnosis based on the given plant status information and of prediction of an expected accident progression under a severe accident situation.

  1. MAAP - modular program for analyses of severe accidents

    International Nuclear Information System (INIS)

    Henry, R.E.; Lutz, R.J.

    1990-01-01

    The MAAP computer code was developed by Westinghouse as a fast, user-friendly, integrated analytical tool for evaluations of the sequences and consequences of severe accidents. The code allows a fully integrated treatment of thermohydraulic behavior and of the fission products in the primary system, the containment, and the ancillary buildings. This ensures interactive inclusion of all thermohydraulic events and of fission product behavior. All important phenomena which may occur in a major accident are contained in the modular code. In addition, many of the important parameters affecting the multitude of different phenomena can be defined by the user. In this way, it is possible to study the accuracy of the predicted course and of the consequences of a series of major accident phenomena. The MAAP code was subjected to extensive benchmarking with respect to the results of the experimental and theoretical programs, the findings obtained in other safety analyses using computers and data from accidents and transients in plants actually in operation. With the expected connection of the validation and test programs, the computer code attains a quality standard meeting the most stringent requirements in safety analyses. The code will be enlarged further in order to expand the number of benchmarks and the resolution of individual comparisons, and to ensure that future MAAP models will be in better agreement with the experiments and experiences of industry. (orig.) [de

  2. NPP Krsko Severe Accident Management Guidelines Implementation

    International Nuclear Information System (INIS)

    Basic, I.; Krajnc, B.; Bilic-Zabric, T.; Spiler, J.

    2002-01-01

    Severe Accident Management is a framework to identify and implement the Emergency Response Capabilities that can be used to prevent or mitigate severe accidents and their consequences. The USA NRC has indicated that the development of a licensee plant specific accident management program will be required in order to close out the severe accident regulatory issue (Ref. SECY-88-147). Generic Letter 88-20 ties the Accident management Program to IPE for each plant. The SECY-89-012 defines those actions taken during the course of an accident by the plant operating and technical staff to: 1) prevent core damage, 2) terminate the progress of core damage if it begins and retain the core within the reactor vessel, 3) maintain containment integrity as long as possible, and 4) minimize offsite releases. The subject of this paper is to document the severe accident management activities, which resulted in a plant specific Severe Accident Management Guidelines implementation. They have been developed based on the Krsko IPE (Individual Plant Examination) insights, Generic WOG SAMGs (Westinghouse Owners Group Severe Accident Management Guidances) and plant specific documents developed within this effort. Among the required plant specific actions the following are the most important ones: Identification and documentation of those Krsko plant specific severe accident management features (which also resulted from the IPE investigations). The development of the Krsko plant specific background documents (Severe Accident Plant Specific Strategies and SAMG Setpoint Calculation). Also, paper discusses effort done in the areas of NPP Krsko SAMG review (internal and external ), validation on Krsko Full Scope Simulator (Severe Accident sequences are simulated by MAAP4 in real time) and world 1st IAEA Review of Accident Management Programmes (RAMP). (author)

  3. Monitoring Severe Accidents Using AI Techniques

    International Nuclear Information System (INIS)

    No, Young Gyu; Kim, Ju Hyun; Na, Man Gyun; Ahn, Kwang Il

    2011-01-01

    It is very difficult for nuclear power plant operators to monitor and identify the major severe accident scenarios following an initiating event by staring at temporal trends of important parameters. The objective of this study is to develop and verify the monitoring for severe accidents using artificial intelligence (AI) techniques such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH) and fuzzy neural network (FNN). The SVC and PNN are used for event classification among the severe accidents. Also, GMDH and FNN are used to monitor for severe accidents. The inputs to AI techniques are initial time-integrated values obtained by integrating measurement signals during a short time interval after reactor scram. In this study, 3 types of initiating events such as the hot-leg LOCA, the cold-leg LOCA and SGTR are considered and it is verified how well the proposed scenario identification algorithm using the GMDH and FNN models identifies the timings when the reactor core will be uncovered, when CET will exceed 1200 .deg. F and when the reactor vessel will fail. In cases that an initiating event develops into a severe accident, the proposed algorithm showed accurate classification of initiating events. Also, it well predicted timings for important occurrences during severe accident progression scenarios, which is very helpful for operators to perform severe accident management

  4. Severe accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Valle Cepero, R.; Castillo Alvarez, J.; Ramon Fuente, J.

    1996-01-01

    For the assessment of the safety of nuclear power plants it is of great importance the analyses of severe accidents since they allow to estimate the possible failure models of the containment, and also permit knowing the magnitude and composition of the radioactive material that would be released to the environment in case of an accident upon population and the environment. This paper presents in general terms the basic principles for conducting the analysis of severe accidents, the fundamental sources in the generation of radionuclides and aerosols, the transportation and deposition processes, and also makes reference to de main codes used in the modulation of severe accidents. The final part of the paper contents information on how severe accidents are dialed with the regulatory point view in different countries

  5. Severe Accident Sequence Analysis Program: Anticipated transient without scram simulations for Browns Ferry Nuclear Plant Unit 1

    International Nuclear Information System (INIS)

    Dallman, R.J.; Gottula, R.C.; Holcomb, E.E.; Jouse, W.C.; Wagoner, S.R.; Wheatley, P.D.

    1987-05-01

    An analysis of five anticipated transients without scram (ATWS) was conducted at the Idaho National Engineering Laboratory (INEL). The five detailed deterministic simulations of postulated ATWS sequences were initiated from a main steamline isolation valve (MSIV) closure. The subject of the analysis was the Browns Ferry Nuclear Plant Unit 1, a boiling water reactor (BWR) of the BWR/4 product line with a Mark I containment. The simulations yielded insights to the possible consequences resulting from a MSIV closure ATWS. An evaluation of the effects of plant safety systems and operator actions on accident progression and mitigation is presented

  6. Assessment of uncertainties in severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Catton, I.; Dhir, V.K.; Okrent, D.

    1990-01-01

    Recent progress on the development of Probabilistic Risk Assessment (PRA) as a tool for qualifying nuclear reactor safety and on research devoted to severe accident phenomena has made severe accident management an achievable goal. Severe accident management strategies may involve operational changes, modification and/or addition of hardware, and institutional changes. In order to achieve the goal of managing severe accidents, a method for assessment of strategies must be developed which integrates PRA methodology and our current knowledge concerning severe accident phenomena, including uncertainty. The research project presented in this paper is aimed at delineating uncertainties in severe accident progression and their impact on severe accident management strategies

  7. Chemical phenomena under severe accident conditions

    International Nuclear Information System (INIS)

    Powers, D.A.

    1988-01-01

    A severe nuclear reactor accident is expected to involve a vast number of chemical processes. The chemical processes of major safety significance begin with the production of hydrogen during steam oxidation of fuel cladding. Physico-chemical changes in the fuel and the vaporization of radionuclides during reactor accidents have captured much of the attention of the safety community in recent years. Protracted chemical interactions of core debris with structural concrete mark the conclusion of dynamic events in a severe accident. An overview of the current understanding of chemical processes in severe reactor accident is provided in this paper. It is shown that most of this understanding has come from application of findings from other fields though a few areas have in the past been subject to in-depth study of a fundamental nature. Challenges in the study of severe accident chemistry are delineated

  8. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation

    International Nuclear Information System (INIS)

    Tentner, A.M.; Parma, E.; Wei, T.; Wigeland, R.

    2010-01-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  9. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.

    Energy Technology Data Exchange (ETDEWEB)

    Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

    2010-03-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  10. Outline of the Desktop Severe Accident Graphic Simulator Module for OPR-1000

    International Nuclear Information System (INIS)

    Park, S. Y.; Ahn, K. I.

    2015-01-01

    occurring during accident including core heatup, cladding oxidation and hydrogen generation, core melt progression, vessel failure, fission product release, transport and deposition, and containment failure. Output results are displayed in user friendly graphical format by using text-based (numerical) output of MAAP program.. Window-based simulator of VMAAP is designed to provide graphical displays of the results during the transient simulation so that the users can easily follow the plant dynamics. Figure 1 through 4 show an example of VMAAP graphic display for the reactor coolant system, reactor vessel, containment building, and plotting of important parameters. VMAAP is able to simulate various scenarios very easily and quickly from the input deck of the scenario database of the SARDB. Since hundreds of input decks for severe core damage scenarios are available in SARDB, the simulation for a user-defined scenario can be performed very quickly by using a sub-module of VMAAP Input-editor which is a window-based MAAPspecific input deck generation program. VMAAP consists of following sub-modules: - System menu and tool bar - Project view - Event summary - Interactive control - Parameter help view - Input editor - Reactor vessel view - Reactor coolant system view - Containment building view The plant model used in VMAAP module is oriented to severe accident phenomena and thus it can simulate the in-vessel and ex-vessel behavior for a severe accident. Even though it may not be compatible with the desire to have a best-estimate analysis of an ongoing event, it can be a supporting or supplementary measure to understand the trends of accident progression

  11. Outline of the Desktop Severe Accident Graphic Simulator Module for OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Ahn, K. I. [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    occurring during accident including core heatup, cladding oxidation and hydrogen generation, core melt progression, vessel failure, fission product release, transport and deposition, and containment failure. Output results are displayed in user friendly graphical format by using text-based (numerical) output of MAAP program.. Window-based simulator of VMAAP is designed to provide graphical displays of the results during the transient simulation so that the users can easily follow the plant dynamics. Figure 1 through 4 show an example of VMAAP graphic display for the reactor coolant system, reactor vessel, containment building, and plotting of important parameters. VMAAP is able to simulate various scenarios very easily and quickly from the input deck of the scenario database of the SARDB. Since hundreds of input decks for severe core damage scenarios are available in SARDB, the simulation for a user-defined scenario can be performed very quickly by using a sub-module of VMAAP Input-editor which is a window-based MAAPspecific input deck generation program. VMAAP consists of following sub-modules: - System menu and tool bar - Project view - Event summary - Interactive control - Parameter help view - Input editor - Reactor vessel view - Reactor coolant system view - Containment building view The plant model used in VMAAP module is oriented to severe accident phenomena and thus it can simulate the in-vessel and ex-vessel behavior for a severe accident. Even though it may not be compatible with the desire to have a best-estimate analysis of an ongoing event, it can be a supporting or supplementary measure to understand the trends of accident progression.

  12. Transient and accident analyses topical design basis documents

    International Nuclear Information System (INIS)

    Chi, Larry; Eckert, Eugene; Grim, Brit

    2004-01-01

    The designers and operators of nuclear power plants have extensively documented system functions, licensing performance, and operating procedures for all conditions. This paper presents a complementary, systematic approach for the documentation of all requirements that are based on the analysis of operational transients, abnormal transients, accidents, and other events which are included in the design and licensing basis for the plant. Up to now, application of the approach has focused on required mitigation actions (automatic or manual). All mitigation actions are directly identified with all applicable reactor events, as well as the plant-unique systems that work together to perform each function. The approach is also applicable to all operational functions. The approach makes extensive use of data base methods, thereby providing effective ways to interrogate the information for the varied users of this information. Examples of use include: evaluations of system design changes and equipment modifications, safety evaluations of any plant change (e.g., USNRC 10CFR50.59 review), plant operations (e.g., manual actions during unplanned events), system interactions, classification of safety-related equipment, environmental qualification of equipment, and mitigation requirements for different reactor operating states. This approach has been applied in customized ways to several boiling water reactor (BWR) units, based on the desires and needs of the specific utility. (author)

  13. Deterministic analyses of severe accident issues

    International Nuclear Information System (INIS)

    Dua, S.S.; Moody, F.J.; Muralidharan, R.; Claassen, L.B.

    2004-01-01

    Severe accidents in light water reactors involve complex physical phenomena. In the past there has been a heavy reliance on simple assumptions regarding physical phenomena alongside of probability methods to evaluate risks associated with severe accidents. Recently GE has developed realistic methodologies that permit deterministic evaluations of severe accident progression and of some of the associated phenomena in the case of Boiling Water Reactors (BWRs). These deterministic analyses indicate that with appropriate system modifications, and operator actions, core damage can be prevented in most cases. Furthermore, in cases where core-melt is postulated, containment failure can either be prevented or significantly delayed to allow sufficient time for recovery actions to mitigate severe accidents

  14. Development of Krsko Severe Accident Management Database (SAMD)

    International Nuclear Information System (INIS)

    Basic, I.; Kocnar, R.

    1996-01-01

    Severe Accident Management is a framework to identify and implement the Emergency Response Capabilities that can be used to prevent or mitigate severe accidents and their consequences. Krsko Severe Accident Management Database documents the severe accident management activities which are developed in the NPP Krsko, based on the Krsko IPE (Individual Plant Examination) insights and Generic WOG SAMGs (Westinghouse Owners Group Severe Accident Management Guidance). (author)

  15. MELCOR based severe accident simulation for WWER-440 type nuclear power plants

    International Nuclear Information System (INIS)

    Vegh, E.; Buerger, L.; Gacs, A.; Gyenes, F.G.; Hozer, Z.; Makovi, P.

    1997-01-01

    SUBA is a MELCOR based severe accident simulator, installed this summer at the Hungarian Nuclear Safety Directorate. In this simulator the thermohydraulics, chemical reactions and material transport in the primary and secondary systems are calculated by the MELCOR code, but the containment, except the cavity, is modelled by the HERMET code, developed in our Institute. The instrumentation and control, the safety systems and the plant logic, are calculated by our models. This paper describes the main features of the used models and presents three different test transients. The presented transients are as follows: a small break LOCA, a cold leg large break LOCA, and the station blackout, without Diesel generators. In each treated transients the most important parameters are presented as time functions and the most significant events are analysed. (author)

  16. United States position on severe accidents

    International Nuclear Information System (INIS)

    Ross, D.F.

    1988-01-01

    The United States policy on severe accidents was published in 1985 for both new plant applications and for existing plants. Implementation of this policy is in progress. This policy, aided by a related safety goal policy and by analysis capabilities emerging from improved understanding of accident phenomenology, is viewed as a logical development from the pioneering work in the WASH-1400 Reactor Safety Study published by the United States Nuclear Regulatory Commission (NRC) in 1975. This work provided an estimate of the probability and consequences of severe accidents which, prior to that time, had been mostly evaluated by somewhat arbitrary assumptions dating back 30 years. The early history of severe accident evaluation is briefly summarized for the period 1957-1979. Then, the galvanizing action of Three Mile Island Unit 2 (TMI-2) on severe accident analysis, experimentation and regulation is reviewed. Expressions of US policy in the form of rulemaking, severe accident policy, safety research, safety goal policy and court decisions (on adequacy of safety) are discussed. Finally, the NRC policy as of March 1988 is stated, along with a prospective look at the next few years. (author). 19 refs

  17. National practices in relation to severe accidents

    International Nuclear Information System (INIS)

    Soda, Kunihisa

    1989-01-01

    After the accidents at Three Mile Island and Chernobyl, many studies have been carried out on severe accidents by various organizations including IAEA and OECD/CSNI. In the present article, measures taken in different countries against severe accidents are outlined based on the results of these studies. In Sweden, policies for the management of a severe accident and reduction in the release of radioactive materials were established based on reports issued by the Atomic Energy Committee, which was set up after the Three Mile Island accident. The current policies require that filter vents be provided where necessary. France, following Sweden, adopted the use of filter vents. Operation procedures to be followed in the event of a severe accident have been established in the nation. The measures against severe accidents adopted in West Germany mainly focus on the weakening of the effects of accidents, and are not covered by the design standards. The use of filter vents are also required in Finland and Switzerland. In the U.S., a program for individual plant examination will be implemented over the three-year period beginning in 1989. Studies on measures against severe accidents seem to be performed also in the Soviet Union. (N.K.)

  18. MELCOR assessment of sequential severe accident mitigation actions under SGTR accident

    International Nuclear Information System (INIS)

    Choi, Wonjun; Jeon, Joongoo; Kim, Nam Kyung; Kim, Sung Joong

    2017-01-01

    The representative example of the severe accident studies using the severe accident code is investigation of effectiveness of developed severe accident management (SAM) strategy considering the positive and adverse effects. In Korea, some numerical studies were performed to investigate the SAM strategy using various severe accident codes. Seo et.al performed validation of RCS depressurization strategy and investigated the effect of severe accident management guidance (SAMG) entry condition under small break loss of coolant accident (SBLOCA) without safety injection (SI), station blackout (SBO), and total loss of feed water (TLOFW) scenarios. The SGTR accident with the sequential mitigation actions according to the flow chart of SAMG was simulated by the MELCOR 1.8.6 code. Three scenariospreventing the RPV failure were investigated in terms of fission product release, hydrogen risk, and the containment pressure. Major conclusions can be summarized as follows: (1) According to the flow chart of SAMG, RPV failure can be prevented depending on the method of RCS depressurization. (2) To reduce the release of fission product during the injecting into SGs, a temporary opening of SDS before the injecting into SGs was suggested. These modified sequences of mitigation actions can reduce the release of fission product and the adverse effect of SDS.

  19. Melt Fragmentation Characteristics of Metal Fuel with Melt Injection Mass during Initiating Phase of SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Lee, Min Ho; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2016-05-15

    The PGSFR has adopted the metal fuel for its inherent safety under severe accident conditions. However, this fuel type is not demonstrated clearly yet under the such severe accident conditions. Additional experiments for examining these issues should be performed to support its licensing activities. Under initiating phase of hypothetic core disruptive accident (HCDA) conditions, the molten metal could be better dispersed and fragmented into the coolant channel than in the case of using oxide fuel. This safety strategy provides negative reactivity driven by a good dispersion of melt. If the coolant channel does not sufficient coolability, the severe recriticality would occur within the core region. Thus, it is important to examine the extent of melt fragmentation. The fragmentation behaviors of melt are closely related to a formation of debris shape. Once the debris shape is formed through the fragmentation process, its coolability is determined by the porosity or thermal conductivity of the melt. There were very limited studies for transient irradiation experiments of the metal fuel. These studies were performed by Transient Reactor Test Facility (TREAT) M series tests in U.S. The TREAT M series tests provided basic information of metal fuel performance under transient conditions. The effect of melt injection mass was evaluated in terms of the fragmentation behaviors of melt. These behaviors seemed to be similar between single-pin and multi-pins failure condition. However, the more melt was agglomerated in case of multi-pins failure.

  20. Radiological Consequence Analyses Following a Hypothetical Severe Accident in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juyub; Kim, Juyoul [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    In order to reflect the lessons learned from the Fukushima Daiichi nuclear power plant accident, a simulator which is named NANAS (Northeast Asia Nuclear Accident Simulator) for overseas nuclear accident has been developed. It is composed of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. For the source-term estimation module, the representative reactor types were selected as CPR1000, BWR5 and BWR6 for China, Japan and Taiwan, respectively. Considering the design characteristics of each reactor type, the source-term estimation module simulates the transient of design basis accident and severe accident. The atmospheric dispersion prediction module analyzes the transport and dispersion of radioactive materials and prints out the air and ground concentration. Using the concentration result, the dose assessment module calculates effective dose and thyroid dose in the Korean Peninsula region. In this study, a hypothetical severe accident in Japan was simulated to demonstrate the function of NANAS. As a result, the radiological consequence to Korea was estimated from the accident. PC-based nuclear accident simulator, NANAS, has been developed. NANAS contains three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. The source-term estimation module simulates a nuclear accident for the representative reactor types in China, Japan and Taiwan. Since the maximum calculation speed is 16 times than real time, it is possible to estimate the source-term release swiftly in case of the emergency. The atmospheric dispersion prediction module analyzes the transport and dispersion of radioactive materials in wide range including the Northeast Asia. Final results of the dose assessment module are a map projection and time chart of effective dose and thyroid dose. A hypothetical accident in Japan was simulated by NANAS. The radioactive materials were released during the first 24 hours and the source

  1. Independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool

    International Nuclear Information System (INIS)

    Madni, I.K.; Eltawila, F.

    1994-01-01

    MELCOR is a fully integrated computer code that models all phases of the progression of severe accidents in light water reactor nuclear power plants, and is being developed for the US Nuclear Regulatory Commission (NRC) by Sandia National Laboratories (SNL). Brookhaven National Laboratory (BNL) has a program with the NRC called ''MELCOR Verification, Benchmarking, and Applications,'' whose aim is to provide independent assessment of MELCOR as a severe accident thermal-hydraulic/source term analysis tool. The scope of this program is to perform quality control verification on all released versions of MELCOR, to benchmark MELCOR against more mechanistic codes and experimental data from severe fuel damage tests, and to evaluate the ability of MELCOR to simulate long-term severe accident transients in commercial LWRs, by applying the code to model both BWRs and PWRs. Under this program, BNL provided input to the NRC-sponsored MELCOR Peer Review, and is currently contributing to the MELCOR Cooperative Assessment Program (MCAP). This paper presents a summary of MELCOR assessment efforts at BNL and their contribution to NRC goals with respect to MELCOR

  2. Use of PSA and severe accident assessment results for the accident management

    International Nuclear Information System (INIS)

    Jang, S. H.; Kim, H. G.; Jang, H. S.; Moon, S. K.; Park, J. U.

    1993-12-01

    The objectives for this study are to investigate the basic principle or methodology which is applicable to accident management, by using the results of PSA and severe accident research, and also facilitate the preparation of accidents management program in the future. This study was performed as follows: derivation of measures for core damage prevention, derivation of measures for accident mitigation, application of computerized tool to assess severe accident management

  3. Use of PSA and severe accident assessment results for the accident management

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S H; Kim, H G; Jang, H S; Moon, S K; Park, J U [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    1993-12-15

    The objectives for this study are to investigate the basic principle or methodology which is applicable to accident management, by using the results of PSA and severe accident research, and also facilitate the preparation of accidents management program in the future. This study was performed as follows: derivation of measures for core damage prevention, derivation of measures for accident mitigation, application of computerized tool to assess severe accident management.

  4. Improvement of severe accident analysis method for KSNP

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of); Cho, Song Won; Cho, Youn Soo [Korea Radiation Technology Institute Co., Taejon (Korea, Republic of)

    2002-03-15

    The objective of this study is preparation of MELCOR 1.8.5 input deck for KSNP and simulation of some major severe accidents. The contents of this project are preparation of MELCOR 1.8.5 base input deck for KSNP to understand severe accident phenomena and to assess severe accident strategy, preparation of 20 cell containment input deck to simulate the distribution of hydrogen and fission products in containment, simulation of some major severe accident scenarios such as TLOFW, SBO, SBLOCA, MBLOCA, and LBLOCA. The method for MELCOR 1.8.5 input deck preparation can be used to prepare the input deck for domestic PWRs and to simulate severe accident experiments such as ISP-46. Information gained from analyses of severe accidents may be helpful to set up the severe accident management strategy and to develop regulatory guidance.

  5. SEVERE ACCIDENT MANAGEMENT STATUS AT Loviisa

    International Nuclear Information System (INIS)

    Kymalainen, O.; Tuomisto, H.

    1997-01-01

    Some of the specific design features of IVO's Loviisa Plant, most notably the ice-condenser containment, strongly affect the plant response in a hypothetical core melt accident. They have together with the relatively stringent Finnish regulatory requirements forced IVO to develop a tailor made severe accident management strategy for Loviisa. The low design pressure of the ice-condenser containment complicates the design of the hydrogen management system. On the other hand, the ice-condensers and the water available from them are facilitating factors regarding in-vessel retention of corium by external cooling of reactor pressure vessel. This paper summarizes the Finnish severe accident requirements, IVO's approach to severe accidents, and its application to the Loviisa Plant

  6. Jose Cabrera NPP severe accident management activities

    International Nuclear Information System (INIS)

    Blanco, J.; Almeida, P.; Saiz, J.; Sastre, J.L.; Delgado, R.

    1998-01-01

    To prepare a common acting plan with respect to Severe Accident Management, in 1994 was founded the severe accident management ''ad-hoc'' working group from the Spanish Westinghouse PWR Nuclear Power Plant Owners Group. In this group actively collaborated the Jose Cabrera NPP Training Centre and the Department of Nuclear Engineering of UNION FENOSA. From this moment, Jose Cabrera NPP began the planning of its specific Severe Accident Management Program, which main point are Severe Accident Management Guidelines (SAMG). To elaborate this guidelines, the Spanish translation of Westinghouse Owners Group (WOG) Severe Accident Management Guidelines were considered the reference documents. The implementation of this Guidelines to Jose Cabrera NPP started on January 1997. Once the specific guidelines have been implemented to the plant, training activities for the personnel involved in severe accident issues will be developed. To prepare the training exercises MAAP4 code will be used, and with this intention, a specific Jose Cabrera NPP MAAP-GRAAPH screen has been developed. Furthermore, a wide selection of MAAP input files for the simulation of different scenarios and accidental events is available. (Author)

  7. Conclusions on severe accident research priorities

    International Nuclear Information System (INIS)

    Klein-Heßling, W.; Sonnenkalb, M.; Jacquemain, D.; Clément, B.; Raimond, E.; Dimmelmeier, H.; Azarian, G.; Ducros, G.; Journeau, C.; Herranz Puebla, L.E.; Schumm, A.; Miassoedov, A.; Kljenak, I.; Pascal, G.; Bechta, S.; Güntay, S.; Koch, M.K.; Ivanov, I.; Auvinen, A.; Lindholm, I.

    2014-01-01

    Highlights: • Estimation of research priorities related to severe accident phenomena. • Consideration of new topics, partly linked to the severe accidents at Fukushima. • Consideration of results of recent projects, e.g. SARNET, ASAMPSA2, OECD projects. - Abstract: The objectives of the SARNET network of excellence are to define and work on common research programs in the field of severe accidents in Gen. II–III nuclear power plants and to further develop common tools and methodologies for safety assessment in this area. In order to ensure that the research conducted on severe accidents is efficient and well-focused, it is necessary to periodically evaluate and rank the priorities of research. This was done at the end of 2008 by the Severe Accident Research Priority (SARP) group at the end of the SARNET project of the 6th Framework Programme of European Commission (FP6). This group has updated this work in the FP7 SARNET2 project by accounting for the recent experimental results, the remaining safety issues as e.g. highlighted by Level 2 PSA national studies and the results of the recent ASAMPSA2 FP7 project. These evaluation activities were conducted in close relation with the work performed under the auspices of international organizations like OECD or IAEA. The Fukushima-Daiichi severe accidents, which occurred while SARNET2 was running, had some effects on the prioritization and definition of new research topics. Although significant progress has been gained and simulation models (e.g. the ASTEC integral code, jointly developed by IRSN and GRS) were improved, leading to an increased confidence in the predictive capabilities for assessing the success potential of countermeasures and/or mitigation measures, most of the selected research topics in 2008 are still of high priority. But the Fukushima-Daiichi accidents underlined that research efforts had to focus still more to improve severe accident management efficiency

  8. Severe accident management guidelines tool

    International Nuclear Information System (INIS)

    Gutierrez Varela, Javier; Tanarro Onrubia, Augustin; Martinez Fanegas, Rafael

    2014-01-01

    Severe Accident is addressed by means of a great number of documents such as guidelines, calculation aids and diagnostic trees. The response methodology often requires the use of several documents at the same time while Technical Support Centre members need to assess the appropriate set of equipment within the adequate mitigation strategies. In order to facilitate the response, TECNATOM has developed SAMG TOOL, initially named GGAS TOOL, which is an easy to use computer program that clearly improves and accelerates the severe accident management. The software is designed with powerful features that allow the users to focus on the decision-making process. Consequently, SAMG TOOL significantly improves the severe accident training, ensuring a better response under a real situation. The software is already installed in several Spanish Nuclear Power Plants and trainees claim that the methodology can be followed easier with it, especially because guidelines, calculation aids, equipment information and strategies availability can be accessed immediately (authors)

  9. Study on severe accidents and countermeasures for WWER-1000 reactors using the integral code ASTEC

    International Nuclear Information System (INIS)

    Tusheva, P.; Schaefer, F.; Altstadt, E.; Kliem, S.; Reinke, N.

    2011-01-01

    The research field focussing on the investigations and the analyses of severe accidents is an important part of the nuclear safety. To maintain the safety barriers as long as possible and to retain the radioactivity within the airtight premises or the containment, to avoid or mitigate the consequences of such events and to assess the risk, thorough studies are needed. On the one side, it is the aim of the severe accident research to understand the complex phenomena during the in- and ex-vessel phase, involving reactor-physics, thermal-hydraulics, physicochemical and mechanical processes. On the other side the investigations strive for effective severe accident management measures. This paper is focused on the possibilities for accident management measures in case of severe accidents. The reactor pressure vessel is the last barrier to keep the molten materials inside the reactor, and thus to prevent higher loads to the containment. To assess the behaviour of a nuclear power plant during transient or accident conditions, computer codes are widely used, which have to be validated against experiments or benchmarked against other codes. The analyses performed with the integral code ASTEC cover two accident sequences which could lead to a severe accident: a small break loss of coolant accident and a station blackout. The results have shown that in case of unavailability of major active safety systems the reactor pressure vessel would ultimately fail. The discussed issues concern the main phenomena during the early and late in-vessel phase of the accident, the time to core heat-up, the hydrogen production, the mass of corium in the reactor pressure vessel lower plenum and the failure of the reactor pressure vessel. Additionally, possible operator's actions and countermeasures in the preventive or mitigative domain are addressed. The presented investigations contribute to the validation of the European integral severe accidents code ASTEC for WWER-1000 type of reactors

  10. Severe accident management. Prevention and Mitigation

    International Nuclear Information System (INIS)

    1992-01-01

    Effective planning for the management of severe accidents at nuclear power plants can produce both a reduction in the frequency of such accidents as well as the ability to mitigate their consequences if and when they should occur. This report provides an overview of accident management activities in OECD countries. It also presents the conclusions of a group of international experts regarding the development of accident management methods, the integration of accident management planning into reactor operations, and the benefits of accident management

  11. The development of severe accident analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heuy Dong; Cho, Sung Won; Kim, Sang Baek; Park, Jong Hwa; Lee, Kyu Jung; Park, Lae Joon; Hu, Hoh; Hong, Sung Wan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    The objective of the development of severe accident analysis technology is to understand the severe accident phenomena such as core melt progression and to provide a reliable analytical tool to assess severe accidents in a nuclear power plant. Furthermore, establishment of the accident management strategies for the prevention/mitigation of severe accidents is also the purpose of this research. The study may be categorized into three areas. For the first area, two specific issues were reviewed to identify the further research direction, that is the natural circulation in the reactor coolant system and the fuel-coolant interaction as an in-vessel and an ex-vessel phenomenological study. For the second area, the MELCOR and the CONTAIN codes have been upgraded, and a validation calculation of the MELCOR has been performed for the PHEBUS-B9+ experiment. Finally, the experimental program has been established for the in-vessel and the ex-vessel severe accident phenomena with the in-pile test loop in KMRR and the integral containment test facilities, respectively. (Author).

  12. Thermal-hydraulic uncertainties affecting severe accident progression

    International Nuclear Information System (INIS)

    Haskin, F.E.; Behr, V.L.

    1984-01-01

    To provide the proper technical bases for decisions regarding severe accidents, the US Nuclear Regulatory Commission (NRC) is sponsoring the following activities: (a) a variety of severe accident research programs, combined under the Severe Accident Research Plan; (b) nationwide task forces on containment loading, containment response, and fission product source terms; (c) a review by the American Physical Society of state-of-the-art methods for calculating radiological source terms; and (d) technical exchange meetings with the Industry Degraded Core (IDCOR) program. One of the means for integrating this developing array of technical information is the Severe Accident Risk Reduction Program (SARRP). One of the current SARRP objectives is to utilize insights gained from the activities listed above to characterize the relative likelihoods of competing containment failure modes for core-melt accidents

  13. Application of the accident management information needs methodology to a severe accident sequence

    International Nuclear Information System (INIS)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R.; Solberg, D.E.

    1989-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is conducting an Accident Management Research Program that emphasizes the application of severe accident research results to enhance the capability of plant operating personnel to effectively manage severe accidents. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed as part of the research program designed to resolve this issue. The methodology identifies the information needs of the plant personnel during a wide range of accident conditions, the existing plant measurements capable of supplying these information needs and what, if any minor additions to instrument and display systems would enhance the capability to manage accidents, known limitations on the capability of these measurements to function properly under the conditions that will be present during a wide range of severe accidents, and areas in which the information systems could mislead plant personnel. This paper presents an application of this methodology to a severe accident sequence to demonstrate its use in identifying the information which is available for management of the event. The methodology has been applied to a severe accident sequence in a Pressurized Water Reactor with a large dry containment. An examination of the capability of the existing measurements was then performed to determine whether the information needs can be supplied

  14. Analyses of severe accident scenarios in RBMK-1500

    International Nuclear Information System (INIS)

    Kaliatka, A.; Rimkevicius, S.; Uspuras, E.; Urbonavicius, E.

    2006-01-01

    Even though research of severe accidents in light water reactors is performed around the world for several decades many questions remain. Research is mostly performed for vessel-type reactors. RBMK is a channel type light water reactor, which differs from the vessel-type reactors in several aspects. These differences impose some specifics in the accident phenomena and processes that occur during severe accidents. Severe accident research for RBMK reactors is taking first steps and very little information is available in the open literature. The existing severe accident analysis codes are developed for vessel-type reactors and their application to the analysis of accidents in RBMK is not straightforward. This paper presents the results of an analysis of large loss-of-coolant accident scenarios with loss of coolant injection to the core of RBMK-1500. The analysis performed considers processes in the reactor core, in the reactor cooling system and in the confinement until the fuel melting started. This paper does not aim to answer all the questions regarding severe accidents in RBMK but rather to start a discussion, identify the expected timing of the key phenomena. (orig.)

  15. Application of the accident management information needs methodology to a severe accident sequence

    International Nuclear Information System (INIS)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R.; Solberg, D.E.

    1989-01-01

    The U.S. Nuclear Regulatory Commission is conducting an accident management research program that emphasizes the use of severe accident research to enhance the ability of plant operating personnel to effectively manage severe accidents. Hence, it is necessary to ensure that the plant instrumentation and information systems adequately provide this information to the operating staff during accident conditions. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed. The methodology identifies (a) the information needs of the plant personnel during a wide range of accident conditions, (b) the existing plant measurements capable of supplying these information needs and minor additions to instrument and display systems that would enhance management capabilities, (c) measurement capabilities and limitations during severe accident conditions, and (d) areas in which the information systems could mislead plant personnel

  16. Application of the accident management information needs methodology to a severe accident sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ward, L.W.; Hanson, D.J.; Nelson, W.R. (Idaho National Engineering Laboratory, Idaho Falls (USA)); Solberg, D.E. (Nuclear Regulatory Commission, Washington, DC (USA))

    1989-11-01

    The U.S. Nuclear Regulatory Commission is conducting an accident management research program that emphasizes the use of severe accident research to enhance the ability of plant operating personnel to effectively manage severe accidents. Hence, it is necessary to ensure that the plant instrumentation and information systems adequately provide this information to the operating staff during accident conditions. A methodology to identify and assess the information needs of the operating staff of a nuclear power plant during a severe accident has been developed. The methodology identifies (a) the information needs of the plant personnel during a wide range of accident conditions, (b) the existing plant measurements capable of supplying these information needs and minor additions to instrument and display systems that would enhance management capabilities, (c) measurement capabilities and limitations during severe accident conditions, and (d) areas in which the information systems could mislead plant personnel.

  17. Severe accident mitigation through containment design

    International Nuclear Information System (INIS)

    Bergeron, K.D.

    1990-01-01

    Recent U.S. Department of Energy plans to construct a Heavy Water Reactor for the production of defense nuclear materials have created a unique opportunity to explore ways to mitigate severe accident concerns in the design stage. Drawing on an extensive background in US-NRC-sponsored severe accident work, Sandia National Laboratories has been exploring a number of Heavy Water New Production Reactor (HW-NPR) containment design strategies that might mitigate the consequences of a core-melt accident without greatly impacting construction cost or reactor operations. Severe accident specialists have undertaken these assessments with the intent of providing the plant designers with some of the phenomenological advantages and disadvantages of various mitigation strategies. This paper will highlight some of the more interesting concepts and summarize the results obtained. (author). 9 refs., 2 tabs

  18. Severe accident mitigation through containment design

    International Nuclear Information System (INIS)

    Bergeron, K.D.

    1990-01-01

    Recent US Department of Energy plans to construct a Heavy Water Reactor for the production of defense nuclear materials have created a unique opportunity to explore ways to mitigate severe accident concerns in the design stage. Drawing on an extensive background in USNRC-sponsored severe accident work, Sandia National Laboratories has been exploring a number of Heavy Water New Production Reactor (HW-NPR) containment design strategies that might mitigate the consequences of a core-melt accident without greatly impacting construction cost or reactor operations. Severe accident specialists have undertaken these assessments with the intent of providing the plant designers with some of the phenomenological advantages and disadvantages of various mitigation strategies. This paper will highlight some of the more interesting concepts and summarize the results obtained. 9 refs., 2 tabs

  19. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    International Nuclear Information System (INIS)

    Farmer, Mitchell T.; Bunt, R.; Corradini, M.; Ellison, Paul B.; Francis, M.; Gabor, John D.; Gauntt, R.; Henry, C.; Linthicum, R.; Luangdilok, W.; Lutz, R.; Paik, C.; Plys, M.; Rabiti, Cristian; Rempe, J.; Robb, K.; Wachowiak, R.

    2015-01-01

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy's (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  20. Reactor Safety Gap Evaluation of Accident Tolerant Components and Severe Accident Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Mitchell T. [Argonne National Lab. (ANL), Argonne, IL (United States); Bunt, R. [Southern Nuclear, Atlanta, GA (United States); Corradini, M. [Univ. of Wisconsin, Madison, WI (United States); Ellison, Paul B. [GE Power and Water, Duluth, GA (United States); Francis, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Gabor, John D. [Erin Engineering, Walnut Creek, CA (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, C. [Fauske and Associates, Burr Ridge, IL (United States); Linthicum, R. [Exelon Corp., Chicago, IL (United States); Luangdilok, W. [Fauske and Associates, Burr Ridge, IL (United States); Lutz, R. [PWR Owners Group (PWROG); Paik, C. [Fauske and Associates, Burr Ridge, IL (United States); Plys, M. [Fauske and Associates, Burr Ridge, IL (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Robb, K. [Argonne National Lab. (ANL), Argonne, IL (United States); Wachowiak, R. [Electric Power Research Inst. (EPRI), Knovville, TN (United States)

    2015-01-31

    The overall objective of this study was to conduct a technology gap evaluation on accident tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist, given the current state of light water reactor (LWR) severe accident research, and additionally augmented by insights obtained from the Fukushima accident. The ultimate benefit of this activity is that the results can be used to refine the Department of Energy’s (DOE) Reactor Safety Technology (RST) research and development (R&D) program plan to address key knowledge gaps in severe accident phenomena and analyses that affect reactor safety and that are not currently being addressed by the industry or the Nuclear Regulatory Commission (NRC).

  1. Consequences of severe nuclear accidents in Europe

    Science.gov (United States)

    Seibert, Petra; Arnold, Delia; Mraz, Gabriele; Arnold, Nikolaus; Gufler, Klaus; Kromp-Kolb, Helga; Kromp, Wolfgang; Sutter, Philipp

    2013-04-01

    A first part of the presentation is devoted to the consequences of the severe accident in the 1986 Chernobyl NPP. It lead to a substantial radioactive contaminated of large parts of Europe and thus raised the awareness for off-site nuclear accident consequences. Spatial patterns of the (transient) contamination of the air and (persistent) contamination of the ground were studied by both measurements and model simulations. For a variety of reasons, ground contamination measurements have variability at a range of spatial scales. Results will be reviewed and discussed. Model simulations, including inverse modelling, have shown that the standard source term as defined in the ATMES study (1990) needs to be updated. Sensitive measurements of airborne activities still reveal the presence of low levels of airborne radiocaesium over the northern hemisphere which stems from resuspension. Over time scales of months and years, the distribution of radionuclides in the Earth system is constantly changing, for example relocated within plants, between plants and soil, in the soil, and into water bodies. Motivated by the permanent risk of transboundary impacts from potential major nuclear accidents, the multidisciplinary project flexRISK (see http://flexRISK.boku.ac.at) has been carried out from 2009 to 2012 in Austria to quantify such risks and hazards. An overview of methods and results of flexRISK is given as a second part of the presentation. For each of the 228 NPPs, severe accidents were identified together with relevant inventories, release fractions, and release frequencies. Then, Europe-wide dispersion and dose calculations were performed for 2788 cases, using the Lagrangian particle model FLEXPART. Maps of single-case results as well as various aggregated risk parameters were produced. It was found that substantial consequences (intervention measures) are possible for distances up to 500-1000 km, and occur more frequently for a distance range up to 100-300 km, which is in

  2. Thermal-hydraulic and aerosol containment phenomena modelling in ASTEC severe accident computer code

    International Nuclear Information System (INIS)

    Kljenak, Ivo; Dapper, Maik; Dienstbier, Jiri; Herranz, Luis E.; Koch, Marco K.; Fontanet, Joan

    2010-01-01

    Transients in containment systems of different scales (Phebus.FP containment, KAEVER vessel, Battelle Model Containment, LACE vessel and VVER-1000 nuclear power plant containment) involving thermal-hydraulic phenomena and aerosol behaviour, were simulated with the computer integral code ASTEC. The results of the simulations in the first four facilities were compared with experimental results, whereas the results of the simulated accident in the VVER-1000 containment were compared to results obtained with the MELCOR code. The main purpose of the simulations was the validation of the CPA module of the ASTEC code. The calculated results support the applicability of the code for predicting in-containment thermal-hydraulic and aerosol phenomena during a severe accident in a nuclear power plant.

  3. A study on hydrogen deflagration for selected severe accident sequences in Ringhals 3

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, V.; Moeller, E. [SwedPower AB (Sweden)

    2002-01-01

    In this report, we have investigated the most important severe accident sequences in Ringhals 3, a Westinghouse 3-loop PWR, concerning hydrogen generation and containment pressure at hydrogen deflagration. In order to analyze the accident sequences and to calculate the hydrogen production, the computer code MAAP (Modular Accident Analysis Program) was used. Six accident sequences were studied, where four were LOCA cases and two transients. MAAP gives the evolution of the accident and particularly the pressure in the containment and the production of hydrogen as a function of time. The pressure peaks at deflagration were calculated by the method AICC-Adiabatic Isochoric Complete Combustion. The results from these calculations are conservative for two reasons. Adiabatic combustion means that the heat losses to structures in the containment are neglected. The combustion is also assumed to occur once and all available hydrogen is burned. The maximum pressure in five analysed cases was compared with the failure pressure of the containment. In the LOCA case, 373 kg hydrogen was burned and the resulting peak pressure in the containment was 0,53 MPa. In the transient, where 720 kg hydrogen was burned, the peak pressure was 0,69 MPa. This is the same as the failure pressure of the containment. Finally, in the conservative case, 980 kg hydrogen was burned and the resulting peak pressure 0,96 MPa. However, it should be noted that these conclusions are conservative from two points of view. Firstly a more realistic (than AICC) calculation of the peak pressure would give a lower value than 0,69 MPa. Secondly, there is conservatism in the evaluation of the failure pressure. (au)

  4. Coupling of 3-D core computational codes and a reactor simulation software for the computation of PWR reactivity accidents induced by thermal-hydraulic transients

    International Nuclear Information System (INIS)

    Raymond, P.; Caruge, D.; Paik, H.J.

    1994-01-01

    The French CEA has recently developed a set of new computer codes for reactor physics computations called the Saphir system which includes CRONOS-2, a three-dimensional neutronic code, FLICA-4, a three-dimensional core thermal hydraulic code, and FLICA-S, a primary loops thermal-hydraulic transient computation code, which are coupled and applied to analyze a severe reactivity accident induced by a thermal hydraulic transient: the Steamline Break accident for a pressurized water reactor until soluble boron begins to accumulate in the core. The coupling of these codes has proved to be numerically stable. 15 figs., 7 refs

  5. Severe accident testing of electrical penetration assemblies

    International Nuclear Information System (INIS)

    Clauss, D.B.

    1989-11-01

    This report describes the results of tests conducted on three different designs of full-size electrical penetration assemblies (EPAs) that are used in the containment buildings of nuclear power plants. The objective of the tests was to evaluate the behavior of the EPAs under simulated severe accident conditions using steam at elevated temperature and pressure. Leakage, temperature, and cable insulation resistance were monitored throughout the tests. Nuclear-qualified EPAs were produced from D. G. O'Brien, Westinghouse, and Conax. Severe-accident-sequence analysis was used to generate the severe accident conditions (SAC) for a large dry pressurized-water reactor (PWR), a boiling-water reactor (BWR) Mark I drywell, and a BWR Mark III wetwell. Based on a survey conducted by Sandia, each EPA was matched with the severe accident conditions for a specific reactor type. This included the type of containment that a particular EPA design was used in most frequently. Thus, the D. G. O'Brien EPA was chosen for the PWR SAC test, the Westinghouse was chosen for the Mark III test, and the Conax was chosen for the Mark I test. The EPAs were radiation and thermal aged to simulate the effects of a 40-year service life and loss-of-coolant accident (LOCA) before the SAC tests were conducted. The design, test preparations, conduct of the severe accident test, experimental results, posttest observations, and conclusions about the integrity and electrical performance of each EPA tested in this program are described in this report. In general, the leak integrity of the EPAs tested in this program was not compromised by severe accident loads. However, there was significant degradation in the insulation resistance of the cables, which could affect the electrical performance of equipment and devices inside containment at some point during the progression of a severe accident. 10 refs., 165 figs., 16 tabs

  6. Proceedings of the workshop on operator training for severe accident management and instrumentation capabilities during severe accidents

    International Nuclear Information System (INIS)

    2001-01-01

    This Workshop was organised in collaboration with Electricite de France (Service Etudes et Projets Thermiques et Nucleaires). There were 34 participants, representing thirteen OECD Member countries, the Russian Federation and the OECD/NEA. Almost half the participants represented utilities. The second largest group was regulatory authorities and their technical support organisations. Basically, the Workshop was a follow-up to the 1997 Second Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2) [Reports NEA/CSNI/R(97)10 and 27] and to the 1992 Specialist Meeting on Instrumentation to Manage Severe Accidents [Reports NEA/CSNI/R(92)11 and (93)3]. It was aimed at sharing and comparing progress made and experience gained from these two meetings, emphasizing practical lessons learnt during training or incidents as well as feedback from instrumentation capability assessment. The objectives of the Workshop were therefore: - to exchange information on recent and current activities in the area of operator training for SAM, and lessons learnt during the management of real incidents ('operator' is defined hear as all personnel involved in SAM); - to compare capabilities and use of instrumentation available during severe accidents; - to monitor progress made; - to identify and discuss differences between approaches relevant to reactor safety; - and to make recommendations to the Working Group on the Analysis and Management of Accidents and the CSNI (GAMA). The meeting confirmed that only limited information is needed for making required decisions for SAM. In most cases existing instrumentation should be able to provide usable information. Additional instrumentation requirements may arise from particular accident management measures implemented in some plants. In any case, depending on the time frame where the instrumentation should be relied upon, it should be assessed whether it is likely to survive the harsh environmental conditions it will be exposed

  7. Development of a totally integrated severe accident training system

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Park, Sun Hee; Choi, Young; Kim, Dong Ha

    2006-01-01

    Recently KAERI has developed the severe accident management guidance to establish the Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, which uses the MELCOR code as the simulation engine. The simulator SATS graphically displays and simulates the severe accidents with interactive user commands. Especially the control capability of SATS could make a severe accident training course more interesting and effective. In this paper we will describe the development and functions of the electrical guidance module, HyperKAMG, and the SATS-HyperKAMG linkage system designed for a totally integrated and automated severe accident training. (author)

  8. Sarnet lecture notes on nuclear reactor severe accident phenomenology

    International Nuclear Information System (INIS)

    Trambauer, K.; Adroguer, B.; Fichot, F.; Muller, C.; Meyer, L.; Breitung, W.; Magallon, D.; Journeau, C.; Alsmeyer, H.; Housiadas, C.; Clement, B.; Ang, M.L.; Chaumont, B.; Ivanov, I.; Marguet, S.; Van Dorsselaere, J.P.; Fleurot, J.; Giordano, P.; Cranga, M.

    2008-01-01

    The 'Severe Accident Phenomenology Short Course' is part of the Excellence Spreading activities of the European Severe Accident Research NETwork of Excellence SARNET (project of the EURATOM 6. Framework programme). It was held at Cadarache, 9-13 January 2006. The course was divided in 14 lectures covering all aspects of severe accident phenomena that occur during a scenario. It also included lectures on PSA-2, Safety Assessment and design measures in new LWR plants for severe accident mitigation (SAM). This book presents the lecture notes of the Severe Accident Phenomenology Short Course and condenses the essential knowledge on severe accident phenomenology in 2008. (authors)

  9. Computational analysis of the behaviour of nuclear fuel under steady state, transient and accident conditions

    International Nuclear Information System (INIS)

    2007-12-01

    Accident analysis is an important tool for ensuring the adequacy and efficiency of the provision in the defence in depth concept to cope with challenges to plant safety. Accident analysis is the milestone of the demonstration that the plant is capable of meeting any prescribed limits for radioactive releases and any other acceptable limits for the safe operation of the plant. It is used, by designers, utilities and regulators, in a number of applications such as: (a) licensing of new plants, (b) modification of existing plants, (c) analysis of operational events, (d) development, improvement or justification of the plant operational limits and conditions, and (e) safety cases. According to the defence in depth concept, the fuel rod cladding constitutes the first containment barrier of the fission products. Therefore, related safety objectives and associated criteria are defined, in order to ensure, at least for normal operation and anticipated transients, the integrity of the cladding, and for accident conditions, acceptable radiological consequences with regard to the postulated frequency of the accident, as usually identified in the safety analysis reports. Therefore, computational analysis of fuel behaviour under steady state, transient and accident conditions constitutes a major link of the safety case in order to justify the design and the safety of the fuel assemblies, as far as all relevant phenomena are correctly addressed and modelled. This publication complements the IAEA Safety Report on Accident Analysis for Nuclear Power Plants (Safety Report Series No. 23) that provides practical guidance for establishing a set of conceptual and formal methods and practices for performing accident analysis. Computational analysis of the behaviour of nuclear fuel under transient and accident conditions, including normal operation (e.g. power ramp rates) is developed in this publication. For design basis accidents, depending on the type of influence on a fuel element

  10. Severe accident tests and development of domestic severe accident system codes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  11. Severe accident tests and development of domestic severe accident system codes

    International Nuclear Information System (INIS)

    2013-01-01

    According to lessons learned from Fukushima-Daiichi NPS accidents, the safety evaluation will be started based on the NRA's New Safety Standards. In parallel with this movement, reinforcement of Severe Accident (SA) Measures and Accident Managements (AMs) has been undertaken and establishments of relevant regulations and standards are recognized as urgent subjects. Strengthening responses against nuclear plant hazards, as well as realistic protection measures and their standardization is also recognized as urgent subjects. Furthermore, decommissioning of Fukushima-Daiichi Unit1 through Unit4 is promoted diligently. Taking into account JNES's mission with regard to these SA Measures, AMs and decommissioning, movement of improving SA evaluation methodologies inside and outside Japan, and prioritization of subjects based on analyses of sequences of Fukushima-Daiichi NPS accidents, three viewpoints was extracted. These viewpoints were substantiated as the following three groups of R and D subjects: (1) Obtaining near term experimental subjects: Containment venting, Seawater injection, Iodine behaviors. (2) Obtaining mid and long experimental subjects: Fuel damage behavior at early phase of core degradation, Core melting and debris formation. (3) Development of a macroscopic level SA code for plant system behaviors and a mechanistic level code for core melting and debris formation. (author)

  12. Addressing severe accidents in the CANDU 9 design

    International Nuclear Information System (INIS)

    Nijhawan, S.M.; Wight, A.L.; Snell, V.G.

    1998-01-01

    CANDU 9 is a single-unit evolutionary heavy-water reactor based on the Bruce/Darlington plants. Severe accident issues are being systematically addressed in CANDU 9, which includes a number of unique features for prevention and mitigation of severe accidents. A comprehensive severe accident program has been formulated with feedback from potential clients and the Canadian regulatory agency. Preliminary Probabilistic Safety Analyses have identified the sequences and frequency of system and human failures that may potentially lead to initial conditions indicating onset of severe core damage. Severe accident consequence analyses have used these sequences as a guide to assess passive heat sinks for the core, and containment performance. Estimates of the containment response to mass and energy injections typical of postulated severe accidents have been made and the results are presented. We find that inherent CANDU severe accident mitigation features, such as the presence of large water volumes near the fuel (moderator and shield tank), permit a relatively slow severe accident progression under most plant damage states, facilitate debris coolability and allow ample time for the operator to arrest the progression within, progressively, the fuel channels, calandria vessel or shield tank. The large-volume CANDU 9 containment design complements these features because of the long times to reach failure

  13. Development of severe accident management advisory and training simulator (SAMAT)

    International Nuclear Information System (INIS)

    Jeong, K.-S.; Kim, K.-R.; Jung, W.-D.; Ha, J.-J.

    2002-01-01

    The most operator support systems including the training simulator have been developed to assist the operator and they cover from normal operation to emergency operation. For the severe accident, the overall architecture for severe accident management is being developed in some developed countries according to the development of severe accident management guidelines which are the skeleton of severe accident management architecture. In Korea, the severe accident management guideline for KSNP was recently developed and it is expected to be a central axis of logical flow for severe accident management. There are a lot of uncertainties in the severe accident phenomena and scenarios and one of the major issues for developing a operator support system for a severe accident is the reduction of these uncertainties. In this paper, the severe accident management advisory system with training simulator, SAMAT, is developed as all available information for a severe accident are re-organized and provided to the management staff in order to reduce the uncertainties. The developed system includes the graphical display for plant and equipment status, the previous research results by knowledge-base technique, and the expected plant behavior using the severe accident training simulator. The plant model used in this paper is oriented to severe accident phenomena and thus can simulate the plant behavior for a severe accident. Therefore, the developed system may make a central role of the information source for decision-making for a severe accident management, and will be used as the training simulator for severe accident management

  14. A CANDU Severe Accident Analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie

    2006-01-01

    As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents for CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D2O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 10000 deg C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the existing data. The results are encouraging. (authors)

  15. Review of nuclear reactor accidents

    International Nuclear Information System (INIS)

    Connelly, J.W.; Storr, G.J.

    1989-01-01

    Two types of severe reactor accidents - loss of coolant or coolant flow and transient overpower (TOP) accidents - are described and compared. Accidents in research reactors are discussed. The 1961 SL1 accident in the US is used as an illustration as it incorporates the three features usually combined in a severe accident - a design flaw or flaws in the system, a circumvention of safety circuits or procedures, and gross operator error. The SL1 reactor, the reactivity accident and the following fuel-coolant interaction and steam explosion are reviewed. 3 figs

  16. Light water reactor severe accident seminar. Seminar presentation manual

    International Nuclear Information System (INIS)

    2004-01-01

    The topics covered in this manual on LWR severe accidents were: Evolution of Source Term Definition and Analysis, Current Position on Severe Accident Phenomena, Current Position on Fission Product Behavior, Overview of Software Models Used in Severe Accident Analysis, Overview of Plant Specific Source Terms and Their Impact on Risk, Current Applications of Severe Accident Analysis, and Future plans

  17. Light water reactor severe accident seminar. Seminar presentation manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The topics covered in this manual on LWR severe accidents were: Evolution of Source Term Definition and Analysis, Current Position on Severe Accident Phenomena, Current Position on Fission Product Behavior, Overview of Software Models Used in Severe Accident Analysis, Overview of Plant Specific Source Terms and Their Impact on Risk, Current Applications of Severe Accident Analysis, and Future plans.

  18. Use of simulators in severe accident management

    International Nuclear Information System (INIS)

    Evans, R.C.

    1994-01-01

    The U.S. nuclear utility industry is moving in a deliberate fashion through a coordinated industry severe accident working group to study and augment, where appropriate, the existing utility organizational and emergency planning structure to address accident and severe accident management. Full-scope simulators are used extensively to train licensed operators for their initial license examinations and continually thereafter in licensed operator requalification training and yearly examinations. The goal of the training (both initial and requalification) is to ensure that operators possess adequate knowledge, skills and abilities to prevent an event from progressing to core damage. The use of full-scope simulators in severe accident management training is in large part viewed by the industry as being premature. The working group study has not progressed to the point where the decision to employ full-scope simulators can be logically considered. It is not however premature to consider part-task or work station simulators as invaluable research tools to support the industry's study. These simulators could be employed, subject to limitations in the current state of knowledge regarding severe accident progression and phenomenological responses, in the validation and verification (V and V) of severe accident models or codes as they are developed. The U.S. nuclear utility industry has made substantial strides in the past 12 years in the accident prevention, mitigation and management arena. These strides are a product of the industry's preference for a logical and systematic approach to change. (orig.)

  19. A review of severe accident assessment

    International Nuclear Information System (INIS)

    Kawashima, Kei

    2000-01-01

    One of the most difficult problems on evaluation of external costs on nuclear power generation is value on a severe accident risk. Once forming a severe accident, its effect is very important and extends to a wide range, to give a lot of damages. It is a main area of study on externality of energy to compare various risks by means of price conversion at unit kWh. Here was outlined on research examples on main severe accident risks before then. A common fact on estimation cost such research examples is to limit it to direct cost (mainly to health damage) at accident phenomenon. As an actual problem, it is very difficult to substantially quantify such parameters because of basically belonging to social psychology. It is due to no finding out decisive evaluation method on this problem to be adopted conventional EED (Expert Expected Damages) approach in the ExternE Phase III, either. (G.K.)

  20. Study Of Severe Accident Phenomena In Nuclear Power Plant

    International Nuclear Information System (INIS)

    Sugiyanto; Antariksawan; Anhar, R.; Arifal

    2001-01-01

    Several phenomena that occurred in the light water reactor type of nuclear power plant during severe accident were studied. The study was carried out based on the results of severe accident researches in various countries. In general, severe accident phenomena can be classified into in-vessel phenomena, retention in the reactor coolant system, and ex-vessel phenomena. In-vessel retention has been recommended as a severe accident management strategy

  1. Strategies for the prevention and mitigation of severe accidents

    International Nuclear Information System (INIS)

    Ader, C.; Heusener, G.; Snell, V.G.

    1999-01-01

    The currently operating nuclear power plants have, in general, achieved a high level of safety, as a result of design philosophies that have emphasized concepts such as defense-in-depth. This type of an approach has resulted in plants that have robust designs and strong containments. These designs were later found to have capabilities to protect the public from severe accidents (accidents more severe than traditional design basis in which substantial damage is done to the reactor core). In spite of this high level of safety, it has also been recognized that future plants need to be designed to achieve an enhanced level of safety, in particular with respect to severe accidents. This has led both regulatory authorities and utilities to develop guidance and/or requirements to guide plant designers in achieving improved severe accident performance through prevention and mitigation. The considerable research programs initiated after the TMI-2 accident have provided a large body of technical data, analytical methods, and the expertise necessary to provide for an understanding of a range of severe accident phenomena. This understanding of the ways severe accidents can progress and challenge containments, combined with the wide use of probabilistic safety assessments, have provided designers of evolutionary water cooled reactors opportunities to develop designs that minimize the challenges to the plant and to the public from severe accidents, including the development of accident management strategies intended to further reduce the risk of severe accidents. This paper describes some of the recent progress made in the understanding of severe accidents and related safety assessment methodology and how this knowledge has supported the incorporation of features into representative evolutionary designs that will prevent or mitigate many of the severe accident challenges present in current plants. (author)

  2. Analysis of severe accidents in pressurized heavy water reactors

    International Nuclear Information System (INIS)

    2008-06-01

    Certain very low probability plant states that are beyond design basis accident conditions and which may arise owing to multiple failures of safety systems leading to significant core degradation may jeopardize the integrity of many or all the barriers to the release of radioactive material. Such event sequences are called severe accidents. It is required in the IAEA Safety Requirements publication on Safety of the Nuclear Power Plants: Design, that consideration be given to severe accident sequences, using a combination of engineering judgement and probabilistic methods, to determine those sequences for which reasonably practicable preventive or mitigatory measures can be identified. Acceptable measures need not involve the application of conservative engineering practices used in setting and evaluating design basis accidents, but rather should be based on realistic or best estimate assumptions, methods and analytical criteria. Recently, the IAEA developed a Safety Report on Approaches and Tools for Severe Accident Analysis. This publication provides a description of factors important to severe accident analysis, an overview of severe accident phenomena and the current status in their modelling, categorization of available computer codes, and differences in approaches for various applications of severe accident analysis. The report covers both the in- and ex-vessel phases of severe accidents. The publication is consistent with the IAEA Safety Report on Accident Analysis for Nuclear Power Plants and can be considered as a complementary report specifically devoted to the analysis of severe accidents. Although the report does not explicitly differentiate among various reactor types, it has been written essentially on the basis of available knowledge and databases developed for light water reactors. Therefore its application is mostly oriented towards PWRs and BWRs and, to a more limited extent, they can be only used as preliminary guidance for other types of reactors

  3. Severe accident recriticality analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. E-mail: wiktor.frid@ski.se; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Nilsson, L.; Puska, E.K.; Sjoevall, H

    2001-11-01

    Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the following issues have been investigated in the SARA project: (1) the energy deposition in the fuel during super-prompt power burst; (2) the quasi steady-state reactor power following the initial power burst; and (3) containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality--both super-prompt power bursts and quasi steady-state power generation--for the range of parameters studied, i.e. with core uncovering and heat-up to maximum core temperatures of approximately 1800 K, and water flow rates of 45-2000 kg s{sup -1} injected into the downcomer. Since recriticality takes place in a small fraction of the core, the power densities are high, which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal g{sup -1}, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding rate of 2000 kg s{sup -1}. In most cases, however, the predicted energy deposition was smaller, below the regulatory limits for fuel failure, but close to or above recently observed thresholds for fragmentation and dispersion of high burn-up fuel. The highest calculated

  4. Severe accident recriticality analyses (SARA)

    International Nuclear Information System (INIS)

    Frid, W.; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Nilsson, L.; Puska, E.K.; Sjoevall, H.

    2001-01-01

    Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies, the following issues have been investigated in the SARA project: (1) the energy deposition in the fuel during super-prompt power burst; (2) the quasi steady-state reactor power following the initial power burst; and (3) containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality--both super-prompt power bursts and quasi steady-state power generation--for the range of parameters studied, i.e. with core uncovering and heat-up to maximum core temperatures of approximately 1800 K, and water flow rates of 45-2000 kg s -1 injected into the downcomer. Since recriticality takes place in a small fraction of the core, the power densities are high, which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal g -1 , was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding rate of 2000 kg s -1 . In most cases, however, the predicted energy deposition was smaller, below the regulatory limits for fuel failure, but close to or above recently observed thresholds for fragmentation and dispersion of high burn-up fuel. The highest calculated quasi steady

  5. Application of FFTBM to severe accidents

    International Nuclear Information System (INIS)

    Prosek, A.; Leskovar, M.

    2005-01-01

    In Europe an initiative for the reduction of uncertainties in severe accident safety issues was initiated. Generally, the error made in predicting plant behaviour is called uncertainty, while the discrepancies between measured and calculated trends related to experimental facilities are called the accuracy of the prediction. The purpose of the work is to assess the accuracy of the calculations of the severe accident International Standard Problem ISP-46 (Phebus FPT1), performed with two versions of MELCOR 1.8.5 for validation purposes. For the quantitative assessment of calculations the improved fast Fourier transform based method (FFTBM) was used with the capability to calculate time dependent code accuracy. In addition, a new measure for the indication of the time shift between the experimental and the calculated signal was proposed. The quantitative results obtained with FFTBM confirm the qualitative conclusions made during the Jozef Stefan Institute participation in ISP-46. In general good agreement of thermal-hydraulic variables and satisfactory agreement of total releases for most radionuclide classes was obtained. The quantitative FFTBM results showed that for the Phebus FPT1 severe accident experiment the accuracy of thermal-hydraulic variables calculated with the MELCOR severe accident code is close to the accuracy of thermal-hydraulic variables for design basis accident experiments calculated with best-estimate system codes. (author)

  6. Development of a severe accident training simulator using a MELCOR code

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo; Jung, Won Dae

    2002-03-01

    Nuclear power plants' severe accidents are, despite of their rareness, very important in safety aspects, because of their huge damages when occurred. For the appropriate execution of severe accident strategy, more information for decision-making are required because of the uncertainties included in severe accidents. Earlier NRC raised concerns over severe accident training in the report NUREC/CR-477, and accordingly, developing effective training tools for severe accident were emphasized. In fact the training tools were requested from industrial area, nevertheless, few training tools were developed due to the uncertainties in severe accidents, lacks of analysis computer codes and technical limitations. SATS, the severe accident training simulator, is developed as a multi-purpose tools for severe accident training. SATS uses the calculation results of MELCOR, an integral severe accident analysis code, and with the help of SL-GMS graphic tools, provides dynamic displays of severe accident phenomena on the terminal of IBM PC. It aimed to have two main features: one is to provide graphic displays to represent severe accident phenomena and the other is to process and simulate severe accident strategy given by plant operators and TSC staffs. Severe accident strategies are basically composed of series of operations of available pumps, valves and other equipments. Whenever executing strategies with SATS, the trainee should follow the HyperKAMG, the on line version of the recently developed severe accident guidance (KAMG). Severe accident strategies are closely related to accidents scenarios. TLOFW and LOCA , two representative severe accident scenarios of Uljin 3,4, are developed as a built-in scenarios of SATS. Although SATS has some minor problems at this time, we expect SATS will be a good severe accident training tool after the appropriate addition of accident scenarios. Moreover, we also expect SATS will be a good advisory tool for the severe accident research

  7. PWR systems transient analysis

    International Nuclear Information System (INIS)

    Kennedy, M.F.; Peeler, G.B.; Abramson, P.B.

    1985-01-01

    Analysis of transients in pressurized water reactor (PWR) systems involves the assessment of the response of the total plant, including primary and secondary coolant systems, steam piping and turbine (possibly including the complete feedwater train), and various control and safety systems. Transient analysis is performed as part of the plant safety analysis to insure the adequacy of the reactor design and operating procedures and to verify the applicable plant emergency guidelines. Event sequences which must be examined are developed by considering possible failures or maloperations of plant components. These vary in severity (and calculational difficulty) from a series of normal operational transients, such as minor load changes, reactor trips, valve and pump malfunctions, up to the double-ended guillotine rupture of a primary reactor coolant system pipe known as a Large Break Loss of Coolant Accident (LBLOCA). The focus of this paper is the analysis of all those transients and accidents except loss of coolant accidents

  8. Severe accident analysis in a two-loop PWR nuclear power plant with the ASTEC code

    International Nuclear Information System (INIS)

    Sadek, Sinisa; Amizic, Milan; Grgic, Davor

    2013-01-01

    The ASTEC/V2.0 computer code was used to simulate a hypothetical severe accident sequence in the nuclear power plant Krsko, a 2-loop pressurized water reactor (PWR) plant. ASTEC is an integral code jointly developed by Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, Germany) to assess nuclear power plant behaviour during a severe accident. The analysis was conducted in 2 steps. First, the steady state calculation was performed in order to confirm the applicability of the plant model and to obtain correct initial conditions for the accident analysis. The second step was the calculation of the station blackout accident with a leakage of the primary coolant through degraded reactor coolant pump seals, which was a small LOCA without makeup capability. Two scenarios were analyzed: one with and one without the auxiliary feedwater (AFW). The latter scenario, without the AFW, resulted in earlier core damage. In both cases, the accident ended with a core melt and a reactor pressure vessel failure with significant release of hydrogen. In addition, results of the ASTEC calculation were compared with results of the RELAP5/SCDAPSIM calculation for the same transient scenario. The results comparison showed a good agreement between predictions of those 2 codes. (orig.)

  9. Severe accident management program at Cofrentes Nuclear Power Plant

    International Nuclear Information System (INIS)

    Borondo, L.; Serrano, C.; Fiol, M.J.; Sanchez, A.

    2000-01-01

    Cofrentes Nuclear Power Plant (GE BWR/6) has implemented its specific Severe Accident Management Program within this year 2000. New organization and guides have been developed to successfully undertake the management of a severe accident. In particular, the Technical Support Center will count on a new ''Severe Accident Management Team'' (SAMT) which will be in charge of the Severe Accident Guides (SAG) when Control Room Crew reaches the Emergency Operation Procedures (EOP) step that requires containment flooding. Specific tools and training have also been developed to help the SAMT to mitigate the accident. (author)

  10. SEVERE ACCIDENT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT AND IMPROVEMENTS SUGGESTED

    OpenAIRE

    SONG, JIN HO; KIM, TAE WOON

    2014-01-01

    This paper revisits the Fukushima accident to draw lessons in the aspect of nuclear safety considering the fact that the Fukushima accident resulted in core damage for three nuclear power plants simultaneously and that there is a high possibility of a failure of the integrity of reactor vessel and primary containment vessel. A brief review on the accident progression at Fukushima nuclear power plants is discussed to highlight the nature and characteristic of the event. As the severe accide...

  11. NPP Krsko Severe Accident Management Guidelines Upgrade

    International Nuclear Information System (INIS)

    Mihalina, Mario; Spalj, Srdjan; Glaser, Bruno; Jalovec, Robi; Jankovic, Gordan

    2014-01-01

    Nuclear Power Plant Krsko (NEK) has decided to take steps for upgrade of safety measures to prevent severe accidents, and to improve the means to successfully mitigate their consequences. The content of the program for the NEK Safety Upgrade is consistent with the nuclear industry response to Fukushima accident, which revealed many new insights into severe accidents. Therefore, new strategies and usage of new systems and components should be integrated into current NEK Severe Accident Management Guidelines (SAMG's). SAMG's are developed to arrest the progression of a core damage accident and to limit the extent of resulting releases of fission products. NEK new SAMG's revision major changes are made due to: replacement of Electrical Recombiners by Passive Autocatalytic Recombiners (PARs) and the installation of Passive Containment Filtered Vent System (PCFV); to handle a fuel damage situation in Spent Fuel Pool (SFP) and to assess risk of core damage situation during shutdown operation. (authors)

  12. ASTEC V2 severe accident integral code main features, current V2.0 modelling status, perspectives

    International Nuclear Information System (INIS)

    Chatelard, P.; Reinke, N.; Arndt, S.; Belon, S.; Cantrel, L.; Carenini, L.; Chevalier-Jabet, K.; Cousin, F.; Eckel, J.; Jacq, F.; Marchetto, C.; Mun, C.; Piar, L.

    2014-01-01

    The severe accident integral code ASTEC, jointly developed since almost 20 years by IRSN and GRS, simulates the behaviour of a whole nuclear power plant under severe accident conditions, including severe accident management by engineering systems and procedures. Since 2004, the ASTEC code is progressively becoming the reference European severe accident integral code through in particular the intensification of research activities carried out in the frame of the SARNET European network of excellence. The first version of the new series ASTEC V2 was released in 2009 to about 30 organizations worldwide and in particular to SARNET partners. With respect to the previous V1 series, this new V2 series includes advanced core degradation models (issued from the ICARE2 IRSN mechanistic code) and necessary extensions to be applicable to Gen. III reactor designs, notably a description of the core catcher component to simulate severe accidents transients applied to the EPR reactor. Besides these two key-evolutions, most of the other physical modules have also been improved and ASTEC V2 is now coupled to the SUNSET statistical tool to make easier the uncertainty and sensitivity analyses. The ASTEC models are today at the state of the art (in particular fission product models with respect to source term evaluation), except for quenching of a severely damage core. Beyond the need to develop an adequate model for the reflooding of a degraded core, the main other mean-term objectives are to further progress on the on-going extension of the scope of application to BWR and CANDU reactors, to spent fuel pool accidents as well as to accidents in both the ITER Fusion facility and Gen. IV reactors (in priority on sodium-cooled fast reactors) while making ASTEC evolving towards a severe accident simulator constitutes the main long-term objective. This paper presents the status of the ASTEC V2 versions, focussing on the description of V2.0 models for water-cooled nuclear plants

  13. Analysis and research status of severe core damage accidents

    International Nuclear Information System (INIS)

    1984-03-01

    The Severe Core Damage Research and Analysis Task Force was established in Nuclear Safety Research Center, Tokai Research Establishment, JAERI, in May, 1982 to make a quantitative analysis on the issues related with the severe core damage accident and also to survey the present status of the research and provide the required research subjects on the severe core damage accident. This report summarizes the results of the works performed by the Task Force during last one and half years. The main subjects investigated are as follows; (1) Discussion on the purposes and necessities of severe core damage accident research, (2) proposal of phenomenological research subjects required in Japan, (3) analysis of severe core damage accidents and identification of risk dominant accident sequences, (4) investigation of significant physical phenomena in severe core damage accidents, and (5) survey of the research status. (author)

  14. Design and Development of a Severe Accident Training System

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Park, Sun Hee; Kim, Dong Ha

    2005-01-01

    The nuclear plants' severe accidents have two big characteristics. One is that they are very rare accidents, and the other is that they bring extreme conditions such as the high pressure and temperature in their process. It is, therefore, very hard to get the severe accident data, without inquiring that the data should be real or experimental. In fact, most of severe accident analyses rely on the simulation codes where almost all severe accident knowledge is contained. These codes are, however, programmed by the Fortran language, so that their output are typical text files which are very complicated. To avoid this kind of difficulty in understanding the code output data, several kinds of graphic user interface (GUI) programs could be developed. In this paper, we will introduce a GUI system for severe accident management and training, partly developed and partly in design stage

  15. Airborne concentrations of radioactive materials in severe accidents

    International Nuclear Information System (INIS)

    Ross, D.F. Jr.; Denning, R.S.

    1989-01-01

    Radioactive materials would be released to the containment building of a commercial nuclear reactor during each of the stages of a severe accident. Results of analyses of two accident sequences are used to illustrate the magnitudes of these sources of radioactive materials, the resulting airborne mass concentrations, the characteristics of the airborne aerosols, the potential for vapor forms of radioactive materials, the effectiveness of engineered safety features in reducing airborne concentrations, and the release of radioactive materials to the environment. Ability to predict transport and deposition of radioactive materials is important to assessing the performance of containment safety features in severe accidents and in the development of accident management procedures to reduce the consequences of severe accidents

  16. Development of severe accident guidance module for the SATS simulator

    International Nuclear Information System (INIS)

    Kim, K.R.; Park, S.H.; Kim, D.H.; Song, Y.M.

    2004-01-01

    Recently KAERI has developed the severe accident management guidance to establish Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, which uses MELCOR code as the simulation engine. SATS graphically displays and simulates the severe accidents with interactive user commands. The control capability of SATS could make severe accident training course more interesting and effective. In this paper we will describe the development and functions of the electrical hypertext guidance module HyperKAMG and the SATS-HyperKAMG linkage system for the severe accident management. (author)

  17. Design features of ACR in severe accident mitigation

    International Nuclear Information System (INIS)

    Shapiro, H.; Krishnan, V.S.; Santamaura, P.; Lekakh, B.; Blahnik, C.

    2007-01-01

    New reactor designs require the evaluation of design alternatives to reduce the radiological risk by preventing severe accidents or by limiting releases from the plant in the event of such accidents. The Advanced CANDU Reactor TM (ACR TM ) design has provisions to prevent and mitigate severe accidents. This paper describes key ACR design features for severe accident mitigation. It provides a high-level overview of the findings to date. Several design provisions have not yet been finalized or decided, but the designers are keenly aware of the SAM concepts and their requirements. The active heat sinks for 'vessels' (i.e., the fuel channels, the calandria vessel, the calandria end-shields and the calandria vault) are all amply capable of dissipating the severe accident heat loads. These heat sinks are designed to be operable under severe accident environmental conditions; however, their operability is yet to be confirmed by assessments. The active heat sinks for the various process vessels are 'backed up' by passive heat sinks (i.e., steaming plus water make-up from the RWS). The supply side of passive heat sinks is simple, rugged, and not vulnerable to failures of plant systems. The importance of the steam relief side is recognized, and the adequate relief capacity will be provided. The passive heat sinks will give the SAM more than 1 day (likely several days) to diagnose the accident and to establish the ultimate heat sinks. The spray system for containment pressure suppression is designed for high reliability and has ample capacity to ensure low containment leakage without external intervention, after which time alternative supply to the sprays can be brought on line manually. The sprays are backed up by the LACs which are assessed for operability following a severe accident. The strong ACR containment will provide a long time of completely passive protection for any severe accident at decay power. Its characteristics are not prone to catastrophic failures. The

  18. Severe accident issue resolution -- definition and perspective

    International Nuclear Information System (INIS)

    Harper, F.T.

    1995-01-01

    The purpose of this discussion is to introduce the session on the Progress on the Resolution of Severe Accident Issues. There has been much work in the area of resolution of severe accident issues over the past few years. This work has been focused on those issues most important to risk as assessed by comprehensive studies such as NUREG-1150. In particular, issues associated with early containment failure have been analyzed. These efforts to resolve issues have been hampered by the fact that open-quotes issue resolutionclose quotes has not always been well defined. The term open-quotes issue resolutionclose quotes conjures tip different images for the regulator, the accident analyst, the physicist, and the probabalist. In fact it is common to have as many different images of issue resolution as there are people in the room. This issue is complicated by the fact that the uncertainty in severe accident issues is enormous. (When convolved, the quantitative uncertainty in an integrated analysis due to severe accident issues can span several orders of magnitude.) In this summary, hierarchy is presented in an attempt to add some perspective to the resolution of issues in the face of large uncertainties. Recommendations are also made for analysts communicating in the area of issue resolution

  19. Occupational Radiation Protection in Severe Accident Management

    International Nuclear Information System (INIS)

    2015-01-01

    As an early response to the Fukushima Daiichi NPP accident, the Information System on Occupational Exposure (ISOE) Bureau decided to focus on the following issues as an initial response of the joint program after having direct communications with the Japanese official participants in April 2011: - Management of high radiation area worker doses: It has been decided to make available the experience and information from the Chernobyl accident in terms of how emergency worker / responder doses were legally and practically managed, - Personal protective equipment for highly-contaminated areas: It was agreed to collect information about the types of personnel protective equipment and other equipment (e.g. air bottles, respirators, air-hoods or plastic suits, etc.), as well as high-radiation area worker dosimetry use (e.g. type, number and placement of dosimetry) for different types of emergency and high-radiation work situations. Detailed information was collected on dose criteria which are used for emergency workers /responders and their basis, dose management criteria for high dose/dose rate areas, protective equipment which is recommended for emergency workers / responders, recommended individual monitoring procedures, and any special requirement for assessment from the ISOE participating nuclear utilities and regulatory authorities and made available for Japanese utilities. With this positive response of the ISOE official participants and interest in the situation in Fukushima, the Expert Group on Occupational Radiation Protection in Severe Accident Management (EG-SAM) was established by the ISOE Management Board in May 2011. The overall objective of the EG-SAM is to contribute to occupational exposure management (providing a view on management of high radiation area worker doses) within the Fukushima plant boundary with the ISOE participants and to develop a state-of-the-art ISOE report on best radiation protection management practices for proper radiation

  20. Experiments on the lower plenum response during a severe accident

    International Nuclear Information System (INIS)

    Henry, Robert E.; Hammersley, Robert J.; Klopp, George T.; Merilo, Mati

    2004-01-01

    Severe accident evaluations for nuclear reactors consider the response when the core materials have been overheated sufficient to melt and change geometry. One possible consequence of this is that molten core debris could drain into the lower plenum, as occurred in the TMI-2 accident. Given this state, several physical processes need to be analyzed, i.e. the extent of debris particulation and cooling, the potential for thermal attack of lower plenum structures, the thermal transient of the RPV and the potential for external cooling of the RPV lower head. These are important and complex processes, the evaluations of which need to be guided by well founded experiments. To support the development of the MAAP codes, recent experiments have been performed on specific issues such as: 1. the response of lower head penetrations submerged in a high temperature melt, 2. the net steam generation rate when molten debris drains into the lower plenum, 3. the formation of a contact resistance when molten debris drains through water and contacts the RPV wall and 4. the potential for external cooling of the RPV lower head. This paper discusses these experiments and their results. More importantly, it discusses how these are used in formulating models to represent the lower plenum response in the MAAP codes. (author)

  1. Interactive simulations of gas-turbine modular HTGR transients and heatup accidents

    International Nuclear Information System (INIS)

    Ball, S.J.; Nypaver, D.J.

    1994-01-01

    An interactive workstation-based simulator has been developed for performing analyses of modular high-temperature gas-cooled reactor (MHTGR) core transients and accidents. It was originally developed at Oak Ridge National Laboratory for the US Nuclear Regulatory Commission to assess the licensability of the US Department of Energy (DOE) steam cycle design 350-MW(t) MHTGR. Subsequently, the code was modified under DOE sponsorship to simulate the 450-MW(t) Gas Turbine (GT) design and to aid in development and design studies. Features of the code (MORECA-GT) include detailed modeling of 3-D core thermal-hydraulics, interactive workstation capabilities that allow user/analyst or ''operator'' involvement in accident scenarios, and options for studying anticipated transients without scram (ATWS) events. In addition to the detailed models for the core, MORECA includes models for the vessel, Shutdown Cooling System (SCS), and Reactor Cavity Cooling System (RCCS), and core point kinetics to accommodate ATWS events. The balance of plant (BOP) is currently not modeled. The interactive workstation features include options for on-line parameter plots and 3-D graphic temperature profiling. The studies to date show that the proposed MHTGR designs are very robust and can generally withstand the consequences of even the extremely low probability postulated accidents with little or no damage to the reactor's fuel or metallic components

  2. Interactive simulations of gas-turbine modular HTGR transients and heatup accidents

    Energy Technology Data Exchange (ETDEWEB)

    Ball, S.J.; Nypaver, D.J.

    1994-06-01

    An interactive workstation-based simulator has been developed for performing analyses of modular high-temperature gas-cooled reactor (MHTGR) core transients and accidents. It was originally developed at Oak Ridge National Laboratory for the US Nuclear Regulatory Commission to assess the licensability of the US Department of Energy (DOE) steam cycle design 350-MW(t) MHTGR. Subsequently, the code was modified under DOE sponsorship to simulate the 450-MW(t) Gas Turbine (GT) design and to aid in development and design studies. Features of the code (MORECA-GT) include detailed modeling of 3-D core thermal-hydraulics, interactive workstation capabilities that allow user/analyst or ``operator`` involvement in accident scenarios, and options for studying anticipated transients without scram (ATWS) events. In addition to the detailed models for the core, MORECA includes models for the vessel, Shutdown Cooling System (SCS), and Reactor Cavity Cooling System (RCCS), and core point kinetics to accommodate ATWS events. The balance of plant (BOP) is currently not modeled. The interactive workstation features include options for on-line parameter plots and 3-D graphic temperature profiling. The studies to date show that the proposed MHTGR designs are very robust and can generally withstand the consequences of even the extremely low probability postulated accidents with little or no damage to the reactor`s fuel or metallic components.

  3. Severe Accident Test Station Activity Report

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A [ORNL; Terrani, Kurt A [ORNL

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000ºC compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  4. OSSA. A second generation of severe accident management

    International Nuclear Information System (INIS)

    Sauvage, E.C.; Musoyan, G.; Ducros, V.D.

    2009-01-01

    Nowadays the severe accident and their management are an integrated part of the new generation of power plants. The EPR, as the third generation of nuclear plants, includes both systems and instrumentation to mitigate a severe accident, but also a new generation of severe accident management guidelines: the OSSA. Severe accident management guidelines are highly dependent on human means available: emergency organization actors, training and knowledge shall be taken in consideration in an innovative way. Their impacts on ergonomy and content of the document lead to a new generation of guidelines with several innovative features. This second generation of severe accident management guidelines was developed in parallel with the PSA level 2, the human reliability analyses, the validation and verification process, the severe accident simulator progresses. By taking in consideration this variety of input the OSSA were developed in a user aspect orientation. For example in the OSSA a larger responsibility is given to the operational crew to better support the technical support group evaluation. Their existing knowledge of the plant and of the systems and instrumentation is used. This collaboration work implies a strong communication tool that has been developed to enhance the permanent communication within the emergency organization, but although to ensure the main up-to-date information for evaluation will be available where required. The entry condition is based on a strong and stand alone diagnostic for all plant states, that uses in particular a curve of core exit temperature as a function of primary pressure for a fixed core cladding temperature, or its equivalent in term of containment conditions. It ensures relatively consistent core conditions on entry. A first criterion for ultimate final primary depressurization is provided, ensuring all attempts to reflood the core with the available means have been ensured before the OSSA entry condition is reached. This

  5. Severe Accident Recriticality Analyses (SARA)

    Energy Technology Data Exchange (ETDEWEB)

    Frid, W. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hoejerup, F. [Risoe National Lab. (Denmark); Lindholm, I.; Miettinen, J.; Puska, E.K. [VTT Energy, Helsinki (Finland); Nilsson, Lars [Studsvik Eco and Safety AB, Nykoeping (Sweden); Sjoevall, H. [Teoliisuuden Voima Oy (Finland)

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B{sub 4}C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  6. Severe Accident Recriticality Analyses (SARA)

    International Nuclear Information System (INIS)

    Frid, W.; Hoejerup, F.; Lindholm, I.; Miettinen, J.; Puska, E.K.; Nilsson, Lars; Sjoevall, H.

    1999-11-01

    Recriticality in a BWR has been studied for a total loss of electric power accident scenario. In a BWR, the B 4 C control rods would melt and relocate from the core before the fuel during core uncovery and heat-up. If electric power returns during this time-window unborated water from ECCS systems will start to reflood the partly control rod free core. Recriticality might take place for which the only mitigating mechanisms are the Doppler effect and void formation. In order to assess the impact of recriticality on reactor safety, including accident management measures, the following issues have been investigated in the SARA project: 1. the energy deposition in the fuel during super-prompt power burst, 2. the quasi steady-state reactor power following the initial power burst and 3. containment response to elevated quasi steady-state reactor power. The approach was to use three computer codes and to further develop and adapt them for the task. The codes were SIMULATE-3K, APROS and RECRIT. Recriticality analyses were carried out for a number of selected reflooding transients for the Oskarshamn 3 plant in Sweden with SIMULATE-3K and for the Olkiluoto 1 plant in Finland with all three codes. The core state initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality - both superprompt power bursts and quasi steady-state power generation - for the studied range of parameters, i. e. with core uncovery and heat-up to maximum core temperatures around 1800 K and water flow rates of 45 kg/s to 2000 kg/s injected into the downcomer. Since the recriticality takes place in a small fraction of the core the power densities are high which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal/g, was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding

  7. On the simulation of transients and accidents in PWRs with digital instrumentation and control using an LQR digital controller

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C.; Oliva, J.J. Rivero

    2015-01-01

    New nuclear power plant designs are including integrated I and C digital systems for protection, control, alarming and monitoring. Existing operating nuclear power plants, as is the case of Angra 1 nuclear power plant, have to consider the replacement of their I and C analog systems by digital systems for retrofitting their facilities. However, before replacing the analog control loops by digital ones it is necessary to design and evaluate their performance, which requires modeling of the plant and its control system with extensive simulations under several normal and abnormal operation conditions. This paper discusses the use of a linear quadratic regulator (LQR) digital controller for evaluating the plant stability behavior before the actuation of the reactor protection system. The objective is to evaluate the effect of digital controllers on plant behavior for several transients and accident conditions. For this purpose, a numerical model was developed and implemented as a MatlabTM tool. This paper discusses an adequate framework in order to simulate a set of transients and accidents that constitute the design basis in the final safety analysis report of PWR power plants to evaluate the performance of digital controllers such as LQR regulators.(author)

  8. Interaction of radionuclides in severe accident conditions

    International Nuclear Information System (INIS)

    Nagrale, Dhanesh B.; Bera, Subrata; Deo, Anuj Kumar; Paul, U.K.; Prasad, M.; Gaikwad, A.J.

    2015-01-01

    Nuclear power plants are designed with inherent engineering safety systems and associated operational procedures that provide an in-depth defence against accidents. Radionuclides such as Iodine, Cesium, Tellurium, Barium, Strontium, Rubidium, Molybdenum and many others may get released during a severe accident. Among these, Iodine, one of the fission products, behaviour is significant for the analysis of severe accident consequences because iodine is a chemically more active to the potential components released to the environment. During severe accident, Iodine is released and transported in aqueous, organic and inorganic forms. Iodine release from fuel, iodine transport in primary coolant system, containment, and reaction with control rods are some of the important phases in a severe accident scenario. The behaviour of iodine is governed by aerosol physics, depletion mechanisms gravitational settling, diffusiophoresis and thermophoresis. The presence of gaseous organic compounds and oxidizing compounds on iodine, reactions of aerosol iodine with boron and formation of cesium iodide which results in more volatile iodine release in containment play significant roles. Water radiolysis products due to presence of dissolved impurities, chloride ions, organic impurities should be considered while calculating iodine release. Containment filtered venting system (CFVS) consists of venturi scrubber and a scrubber tank which is dosed with NaOH and NaS_2O_3 in water where iodine will react with the chemicals and convert into NaI and Na_2SO_4. This paper elaborates the issues with respect to interaction of radionuclides and its consideration in modeling of severe accident. (author)

  9. Calculation of spent fuel pool severe accident with MELCOR

    International Nuclear Information System (INIS)

    Deng Jian; Xiang Qing'an; Zhou Kefeng

    2014-01-01

    A calculation model was established for spent fuel pool (SFP) using MELCOR code to study the severe accident phenomena caused by the long term station black-out (SBO), including spent fuel heatup, zirconium cladding oxidation, and the injection into SFP to mitigate the severe accident. The results show that the severe accident progression is slow and relates directly with the initial water level in SFP. It is illustrated that the injection into SFP is one of the best mitigated measures for the SFP severe accident. (authors)

  10. Strategy-oriented display concept to assist severe accident management

    International Nuclear Information System (INIS)

    Jeong, Kwangsub; Ha, Jaejoo

    2000-01-01

    The Critical Function Monitoring System (CFMS) is a typical Safety Parameter Display System (SPDS) to assist the operation of Korean Standard Nuclear Power Plants during normal and emergency operation, and SPDS for severe accident is being developed in Korea. When the existing CFMS is used under a severe accident situation, some problems are expected from: (1) different design basis, i.e. prevention of core melt vs. protection of radiation release to environment, (2) different parameters for decision-making, and (3) different domain and depth of information to restore the plant. To resolve the above problems, a concept, 'Strategy-Oriented Information Display' concept, for displaying information for severe accident management is developed in this paper. Whereas the existing SPDS structure is based on the critical safety function, the developed concept is based on the severe accident management strategy. The display for each strategy includes the plant parameters to check the status of plant and component with the logical or graphical views necessary for executing the strategy. As the application of the proposed concept, KAERI is developing a display system, the prototype severe accident SPDS, Severe Accident Management Display System (SAMDIS), to assist plant personnel for executing Korean Severe Accident Management Guidelines. CFMS is developed for a general display suitable to all situations with various displays. On the contrary, SAMDIS provides all the relevant information on one screen based on the proposed concept. The SAMDIS screen shows more extensive area than CFMS and thus plant personnel can recognize the overall plant status at a glance. This concept is quite effective when used with severe accident management guidelines because of the relatively macroscopic characteristics of a severe accident management strategy. (author)

  11. Consideration of severe accidents in design of advanced WWER reactors

    International Nuclear Information System (INIS)

    Fedorov, V.G.; Rogov, M.F.; Podshibyakin, A.K.; Fil, N.S.; Volkov, B.E.; Semishkin, V.P.

    1998-01-01

    Severe accident related requirements formulated in General Regulations for Nuclear Power Plant Safety (OPB-88), in Nuclear Safety Regulations for Nuclear Power Stations' Reactor Plants (PBYa RU AS-89) and in other NPP nuclear and radiation guides of the Russian Gosatomnadzor are analyzed. In accordance with these guides analyses of beyond design basis accidents should be performed in the reactor plant design. Categorization of beyond design basis accidents leading to severe accidents should be made on occurrence probability and severity of consequences. Engineered features and measures intended for severe accident management should be provided in reactor plant design. Requirements for severe accident analyses and for development of measures for severe accident management are determined. Design philosophy and proposed engineered measures for mitigation of severe accidents and decrease of radiation releases are demonstrated using examples of large, WWER-1000 (V-392), and medium size WWER-640 (V-407) reactor plant designs. Mitigation of severe accidents and decrease of radiation releases are supposed to be conducted on basis of consistent realization of the defense in depth concept relating to application of a system of barriers on the path of spreading of ionizing radiation and radioactive materials to the environment and a set of engineered measures protecting these barriers and retaining their effectiveness. Status of fulfilled by OKB Gidropress and other Russian organizations experimental and analytical investigations of severe accident phenomena supporting design decisions and severe accident management procedures is described. Status of the works on retention of core melt inside the WWER-640 reactor vessel is also characterized

  12. Additional 5 kWe thermoelectric system temperature transients

    International Nuclear Information System (INIS)

    Halfen, F.J.

    1972-01-01

    Several additional system transients have been calculated for the 5 kW(e) TE system and are reported in this document. They include a startup transient with a reactivity rate of 0.005 cents/sec, several startup accidents, a step reactivity insertion at full power and a loss of electrical load. These data are intended for input to system design analyses and for possible use in the protected accident section of the safety report. (U.S.)

  13. Transient response of small molten salt reactor at duct blockage accident

    International Nuclear Information System (INIS)

    Yamamoto, Takahisa; Mitachi, Koshi; Ikeuchi, Koji; Suzuki, Takashi

    2005-01-01

    This paper performed transient core analysis of a small Molten Salt Reactor (MSR) at the time of a duct blockage accident. The numerical model employed in this study consists of continuity and momentum conservation equations for fuel salt flow, two group diffusion equations for fast and thermal neutron fluxes, balance equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and graphite moderator. The analysis shows that (1) the effective multiplication factor and reactor power after the blockage accident hardly change because of the self-control performance of the MSR, (2) fuel salt and graphite moderator temperatures rise at the blockage point and its vicinity, drastically but locally, (3) the highest temperature after the blockage accident is 1 363 K, very lower than the boiling point of fuel salt and melt point of reactor vessel, (4) fast and thermal neutron fluxes distributions after the blockage accident hardly change, and (5) delayed neutron precursors accumulate at the blockage point, especially 1st delayed neutron precursor due to is large decay constant. These results lead that the safety of MSR is assured in the blockage accident. (author)

  14. Overview of severe accident research at JAERI

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1999-01-01

    Severe accident research at JAERI aims at the confirmation of the safety margin, the quantification of the associated risk, and the evaluation of the effectiveness of the accident management measures of the nuclear power reactors, in accordance with the government five-year nuclear safety research program. JAERI has been conducting a wide range of severe accident research activities both in experiment and analysis, such as melt coolant interactions, fission product behaviors in coolant system, containment integrity and assessment of accident management measures. Molten core/coolant interaction and in-vessel molten coolability have been investigated in ALPHA Program. MUSE experiments in ALPHA Program has been conducted for the precise energy measurement due to steam explosion in melt jet and stratified geometries. In VEGA Program, which aims at FP release from irradiated fuels at high temperature and high pressure under various atmospheric conditions, the facility construction is almost completed. In WIND Program the revaporization of aerosols due to decay heating and also the integrity of the piping from this heat source are being investigated. Code development activities are in progress for an integrated source term analysis with THALES, fission product behaviors with ART, steam explosion with JASMINE, and in-vessel debris behaviors with CAMP. The experimental analyses and reactor application have made progress by participating international standard problem and code comparison exercises, along with the use of introduced codes, such as SCDAP/RELAP5 and MELCOR. The outcome of the severe accident research will be utilized for the evaluation of more reliable severe accident scenarios, detailed implementation of the accident management measures, and also for the future reactor development, basically through the sophisticated use of verified analytical tools. (author)

  15. Estimation of cost per severe accident for improvement of accident protection and consequence mitigation strategies

    International Nuclear Information System (INIS)

    Silva, Kampanart; Ishiwatari, Yuki; Takahara, Shogo

    2013-01-01

    To assess the complex situations regarding the severe accidents such as what observed in Fukushima Accident, not only radiation protection aspects but also relevant aspects: health, environmental, economic and societal aspects; must be all included into the consequence assessment. In this study, the authors introduce the “cost per severe accident” as an index to analyze the consequences of severe accidents comprehensively. The cost per severe accident consists of various costs and consequences converted into monetary values. For the purpose of improvement of the accident protection and consequence mitigation strategies, the costs needed to introduce the protective actions, and health and psychological consequences are included in the present study. The evaluations of these costs and consequences were made based on the systematic consequence analysis using level 2 and 3 probabilistic safety assessment (PSA) codes. The accident sequences used in this analysis were taken from the results of level 2 seismic PSA of a virtual 1,100 MWe BWR-5. The doses to the public and the number of people affected were calculated using the level 3 PSA code OSCAAR of Japan Atomic Energy Agency (JAEA). The calculations have been made for 248 meteorological sequences, and the outputs are given as expectation values for various meteorological conditions. Using these outputs, the cost per severe accident is calculated based on the open documents on the Fukushima Accident regarding the cost of protective actions and compensations for psychological harms. Finally, optimized accident protection and consequence mitigation strategies are recommended taking into account the various aspects comprehensively using the cost per severe accident. The authors must emphasize that the aim is not to estimate the accident cost itself but to extend the scope of “risk-informed decision making” for continuous safety improvements of nuclear energy. (author)

  16. Severe accident recriticality analyses (SARA)

    DEFF Research Database (Denmark)

    Frid, W.; Højerup, C.F.; Lindholm, I.

    2001-01-01

    with all three codes. The core initial and boundary conditions prior to recriticality have been studied with the severe accident codes SCDAP/RELAP5, MELCOR and MAAP4. The results of the analyses show that all three codes predict recriticality-both super-prompt power bursts and quasi steady-state power......Recriticality in a BWR during reflooding of an overheated partly degraded core, i.e. with relocated control rods, has been studied for a total loss of electric power accident scenario. In order to assess the impact of recriticality on reactor safety, including accident management strategies......, which results in large energy deposition in the fuel during power burst in some accident scenarios. The highest value, 418 cal g(-1), was obtained with SIMULATE-3K for an Oskarshamn 3 case with reflooding rate of 2000 kg s(-1). In most cases, however, the predicted energy deposition was smaller, below...

  17. Analysis on blow-down transient in water ingress accident of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang, Yan; Zheng, Yanhua; Li, Fu; Shi, Lei

    2014-01-01

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor, which will cause a positive reactivity introduction with the increase of steam density in reactor core to enhance neutron slowing-down, also the chemical corrosion of graphite fuel elements and the damage of reflector structure material. The increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The research on water ingress transient is significant for the verification of inherent safety characteristics of high temperature gas-cooled reactor. The 200 MWe high temperature gas-cooled reactor (HTR-PM), designed by the Institute of Nuclear and New Energy Technology of Tsinghua University, is exampled to be analyzed in this paper. The design basis accident (DBA) scenarios of double-ended guillotine break of single heat-exchange tube (steam generator heat-exchange tube rupture) are simulated by the thermal-hydraulic analysis code, and some key concerns which are relative to the amount of water into the reactor core during the blow-down transient are analyzed in detail. The results show that both of water mass and steam ratio of the fluid spouting from the broken heat-exchange tube are affected by break location, which will increase obviously with the broken location closing to the outlet of the heat-exchange tube. The double-ended guillotine rupture at the outlet of the heat-exchange will result more steam penetrates into the reactor core in the design basis accident of water ingress. The mass of water ingress will also be affected by the draining system. It is concluded that, with reasonable optimization on design to balance safety and economy, the total mass of water ingress into the primary circuit of reactor could be limited effectively to meet the safety requirements, and the pollution of

  18. Prevention and mitigation of severe accidents

    International Nuclear Information System (INIS)

    Weisshaeupl, H.

    1996-01-01

    For the European Pressurized water Reactor (EPR), jointly developed by French and German industry, great emphasis is laid to gain further improvement in prevention of severe accidents based on the accumulative experience and proven technology of the French and German PWR reactors. In this evolutionary development, a balanced and comprehensive approach in respect to implement new passive features has been chosen. Improvements in each step of the defense in depth concept lead to a further decrease in the probability of occurrence of a severe accident with partial or even gross melting of the core. The different phenomenons that occur during such an hypothetical accident must be taken into account during the conception of specific measurements necessary to mitigate accident consequences. To cope with the consequences of a severe accident with core melt down means to deal with different phenomena which may threaten the integrity of the containment or may lead to an enhanced fission product release into the environment: high pressure reactor pressure vessel failure; energetic molten fuel coolant interaction; direct containment heating, molten core concrete interaction; hydrogen combustion; long term pressure and temperature increase in the containment. The EPR approach follows the recommendations from the DFD (Deutsch-Franzosischer Direktionsausschuss), jointly prepared by the French and German safety authorities. The EPR concept consist to prevent or eliminate as far as possible scenarios which are connected with high loads (high pressure failure of the reactor pressure vessel, or global hydrogen detonation etc..) by dedicated design provisions, and to deal with the consequences of severe accident scenarios which are not ruled out by specific safety measures. The measures comprise: the primary system depressurization; the control of hydrogen; the stabilisation and cooling of the melted core; the containment heat removal. They are completed by specific characteristics

  19. Postulated accidents

    International Nuclear Information System (INIS)

    Ullrich, W.

    1980-01-01

    This lecture on 'Postulated Accidents' is the first of a series of lectures on the dynamic and transient behaviour of nuclear power plants, especially pressurized water reactors. The main points covered will be: Reactivity Accidents, Transients (Intact Loop) and Loss of Cooland Accidents (LOCA) including small leak. This lecture will discuss the accident analysis in general, the definition of the various operational phases, the accident classification, and, as an example, an accident sequence analysis on the basis of 'Postulated Accidents'. (orig./RW)

  20. Development of a prototype graphic simulation program for severe accident training

    International Nuclear Information System (INIS)

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo

    2000-05-01

    This is a report of the development process and related technologies of severe accident graphic simulators, required in industrial severe accident management and training. Here, we say 'a severe accident graphic simulator' as a graphics add-in system to existing calculation codes, which can show the severe accident phenomena dynamically on computer screens and therefore which can supplement one of main defects of existing calculation codes. With graphic simulators it is fairly easy to see the total behavior of nuclear power plants, where it was very difficult to see only from partial variable numerical information. Moreover, the fast processing and control feature of a graphic simulator can give some opportunities of predicting the severe accident advancement among several possibilities, to one who is not an expert. Utilizing graphic simulators' we expect operators' and TSC members' physical phenomena understanding enhancement from the realistic dynamic behavior of plants. We also expect that severe accident training course can gain better training effects using graphic simulator's control functions and predicting capabilities, and therefore we expect that graphic simulators will be effective decision-aids tools both in sever accident training course and in real severe accident situations. With these in mind, we have developed a prototype graphic simulator having surveyed related technologies, and from this development experiences we have inspected the possibility to build a severe accident graphic simulator. The prototype graphic simulator is developed under IBM PC WinNT environments and is suited to Uljin 3and4 nuclear power plant. When supplied with adequate severe accident scenario as an input, the prototype can provide graphical simulations of plant safety systems' dynamic behaviors. The prototype is composed of several different modules, which are phenomena display module, MELCOR data interface module and graphic database interface module. Main functions of

  1. Core loss during a severe accident (COLOSS)

    International Nuclear Information System (INIS)

    Adroguer, B.; Bertrand, F.; Chatelard, P.; Cocuaud, N.; Van Dorsselaere, J.P.; Bellenfant, L.; Knocke, D.; Bottomley, D.; Vrtilkova, V.; Belovsky, L.; Mueller, K.; Hering, W.; Homann, C.; Krauss, W.; Miassoedov, A.; Schanz, G.; Steinbrueck, M.; Stuckert, J.; Hozer, Z.; Bandini, G.; Birchley, J.; Berlepsch, T. von; Kleinhietpass, I.; Buck, M.; Benitez, J.A.F.; Virtanen, E.; Marguet, S.; Azarian, G.; Caillaux, A.; Plank, H.; Boldyrev, A.; Veshchunov, M.; Kobzar, V.; Zvonarev, Y.; Goryachev, A.

    2005-01-01

    The COLOSS project was a 3-year shared-cost action, which started in February 2000. The work-programme performed by 19 partners was shaped around complementary activities aimed at improving severe accident codes. Unresolved risk-relevant issues regarding H 2 production, melt generation and the source term were studied through a large number of experiments such as (a) dissolution of fresh and high burn-up UO 2 and MOX by molten Zircaloy (b) simultaneous dissolution of UO 2 and ZrO 2 (c) oxidation of U-O-Zr mixtures (d) degradation-oxidation of B 4 C control rods. Corresponding models were developed and implemented in severe accident computer codes. Upgraded codes were then used to apply results in plant calculations and evaluate their consequences on key severe accident sequences in different plants involving B 4 C control rods and in the TMI-2 accident. Significant results have been produced from separate-effects, semi-global and large-scale tests on COLOSS topics enabling the development and validation of models and the improvement of some severe accident codes. Breakthroughs were achieved on some issues for which more data are needed for consolidation of the modelling in particular on burn-up effects on UO 2 and MOX dissolution and oxidation of U-O-Zr and B 4 C-metal mixtures. There was experimental evidence that the oxidation of these mixtures can contribute significantly to the large H 2 production observed during the reflooding of degraded cores under severe accident conditions. The plant calculation activity enabled (a) the assessment of codes to calculate core degradation with the identification of main uncertainties and needs for short-term developments and (b) the identification of safety implications of new results. Main results and recommendations for future R and D activities are summarized in this paper

  2. Development of the severe accident risk information database management system SARD

    International Nuclear Information System (INIS)

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies

  3. Development of the severe accident risk information database management system SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kwang Il; Kim, Dong Ha

    2003-01-01

    The main purpose of this report is to introduce essential features and functions of a severe accident risk information management system, SARD (Severe Accident Risk Database Management System) version 1.0, which has been developed in Korea Atomic Energy Research Institute, and database management and data retrieval procedures through the system. The present database management system has powerful capabilities that can store automatically and manage systematically the plant-specific severe accident analysis results for core damage sequences leading to severe accidents, and search intelligently the related severe accident risk information. For that purpose, the present database system mainly takes into account the plant-specific severe accident sequences obtained from the Level 2 Probabilistic Safety Assessments (PSAs), base case analysis results for various severe accident sequences (such as code responses and summary for key-event timings), and related sensitivity analysis results for key input parameters/models employed in the severe accident codes. Accordingly, the present database system can be effectively applied in supporting the Level 2 PSA of similar plants, for fast prediction and intelligent retrieval of the required severe accident risk information for the specific plant whose information was previously stored in the database system, and development of plant-specific severe accident management strategies.

  4. A framework for the assessment of severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.

    1993-09-01

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed

  5. A framework for the assessment of severe accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

    1993-09-01

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

  6. Predicted occurrence rate of severe transportation accidents involving large casks

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1978-01-01

    A summary of the results of an investigation of the severities of highway and railroad accidents as they relate to the shipment of large radioactive materials casks is discussed. The accident environments considered are fire, impact, crash, immersion, and puncture. For each of these environments, the accident severities and their predicted frequencies of occurrence are presented. These accident environments are presented in tabular and graphic form to allow the reader to evaluate the probabilities of occurrence of the accident parameter severities he selects

  7. Development of Information Display System for Operator Support in Severe Accident

    International Nuclear Information System (INIS)

    Jeong, Kwang Il; Lee, Joon Ku

    2016-01-01

    When the severe accident occurs, the technical support center (TSC) performs the mitigation strategy with severe accident management guidelines (SAMG) and communicates with main control room (MCR) operators to obtain information of plant's status. In such circumstances, the importance of an information display for severe accident is increased. Therefore an information display system dedicated to severe accident conditions is required to secure the plant information, to provide the necessary information to MCR operators and TSC operators, and to support the decision using these information. We setup the design concept of severe accident information display system (SIDS) in the previous study and defined its requirements of function and performance. This paper describes the process, results of the identification of the severe accident information for MCR operator and the implementation of SIDS. Further implementation on post-accident monitoring function and data validation function for severe accidents will be accomplished in the future

  8. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Kenji; Ebata, Shigeo [Toshiba Corp., Yokohama (Japan)

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding of the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.

  9. Instrumentation for the follow-up of severe accidents

    International Nuclear Information System (INIS)

    Munoz Sanchez, A.; Nino Perote, R.

    2000-01-01

    During severe accidents, it is foreseeable that the instrumentation installed in a plant is subjected to conditions which are more hostile than those for which the instrumentation was designed and qualified. Moreover, new, specific instrumentation is required to monitor variables which have not been considered until now, and to control systems which lessen the consequences of severe accidents. Both existing instrumentation used to monitor critical functions in design basis accident conditions and additional instrumentation which provides the information necessary to control and mitigate the consequences of severe accidents, have to be designed to withstand such conditions, especially in terms of measurements range, functional characteristics and qualification to withstand pressure and temperature loads resulting from steam explosion, hydrogen combustion/explosion and high levels of radiation over long periods of time. (Author)

  10. Severe accident sequences simulated at the Grand Gulf Nuclear Station

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1999-01-01

    Different severe accident sequences employing the MELCOR code, version 1.8.4 QK, have been simulated at the Grand Gulf Nuclear Station (Grand Gulf). The postulated severe accidents simulated are two low-pressure, short-term, station blackouts; two unmitigated small-break (SB) loss-of-coolant accidents (LOCAs) (SBLOCAs); and one unmitigated large LOCA (LLOCA). The purpose of this study was to calculate best-estimate timings of events and source terms for a wide range of severe accidents and to compare the plant response to these accidents

  11. Swedish REGULATORY APPROACH TO SAFETY Assessment AND SEVERE ACCIDENT MANAGEMENT

    International Nuclear Information System (INIS)

    Frid, W.; Sandervaag, O.

    1997-01-01

    The Swedish regulatory approach to safety assessment and severe accident management is briefly described. The safety assessment program, which focuses on prevention of incidents and accidents, has three main components: periodic safety reviews, probabilistic safety analysis, and analysis of postulated disturbances and accident progression sequences. Management and man-technology-organisation issues, as well as inspections, play a key role in safety assessment. Basis for severe accident management were established by the Government decisions in 1981 and 1986. By the end of 1988, the severe accident mitigation systems and emergency operating procedures were implemented at all Swedish reactors. The severe accident research has continued after 1988 for further verification of the protection provided by the systems and reduction of remaining uncertainties in risk dominant phenomena

  12. Fast Transient And Spatially Non-Homogenous Accident Analysis Of Two-Dimensional Cylindrical Nuclear Reactor

    International Nuclear Information System (INIS)

    Yulianti, Yanti; Su'ud, Zaki; Waris, Abdul; Khotimah, S. N.; Shafii, M. Ali

    2010-01-01

    The research about fast transient and spatially non-homogenous nuclear reactor accident analysis of two-dimensional nuclear reactor has been done. This research is about prediction of reactor behavior is during accident. In the present study, space-time diffusion equation is solved by using direct methods which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference discretization method is solved by using iterative methods ADI (Alternating Direct Implicit). The indication of accident is decreasing macroscopic absorption cross-section that results large external reactivity. The power reactor has a peak value before reactor has new balance condition. Changing of temperature reactor produce a negative Doppler feedback reactivity. The reactivity will reduce excess positive reactivity. Temperature reactor during accident is still in below fuel melting point which is in secure condition.

  13. Development of Information Display System for Operator Support in Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Il; Lee, Joon Ku [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    When the severe accident occurs, the technical support center (TSC) performs the mitigation strategy with severe accident management guidelines (SAMG) and communicates with main control room (MCR) operators to obtain information of plant's status. In such circumstances, the importance of an information display for severe accident is increased. Therefore an information display system dedicated to severe accident conditions is required to secure the plant information, to provide the necessary information to MCR operators and TSC operators, and to support the decision using these information. We setup the design concept of severe accident information display system (SIDS) in the previous study and defined its requirements of function and performance. This paper describes the process, results of the identification of the severe accident information for MCR operator and the implementation of SIDS. Further implementation on post-accident monitoring function and data validation function for severe accidents will be accomplished in the future.

  14. Development of a prototype graphic simulation program for severe accident training

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ko Ryu; Jeong, Kwang Sub; Ha, Jae Joo

    2000-05-01

    This is a report of the development process and related technologies of severe accident graphic simulators, required in industrial severe accident management and training. Here, we say 'a severe accident graphic simulator' as a graphics add-in system to existing calculation codes, which can show the severe accident phenomena dynamically on computer screens and therefore which can supplement one of main defects of existing calculation codes. With graphic simulators it is fairly easy to see the total behavior of nuclear power plants, where it was very difficult to see only from partial variable numerical information. Moreover, the fast processing and control feature of a graphic simulator can give some opportunities of predicting the severe accident advancement among several possibilities, to one who is not an expert. Utilizing graphic simulators' we expect operators' and TSC members' physical phenomena understanding enhancement from the realistic dynamic behavior of plants. We also expect that severe accident training course can gain better training effects using graphic simulator's control functions and predicting capabilities, and therefore we expect that graphic simulators will be effective decision-aids tools both in sever accident training course and in real severe accident situations. With these in mind, we have developed a prototype graphic simulator having surveyed related technologies, and from this development experiences we have inspected the possibility to build a severe accident graphic simulator. The prototype graphic simulator is developed under IBM PC WinNT environments and is suited to Uljin 3and4 nuclear power plant. When supplied with adequate severe accident scenario as an input, the prototype can provide graphical simulations of plant safety systems' dynamic behaviors. The prototype is composed of several different modules, which are phenomena display module, MELCOR data interface module and graphic database

  15. Analyzing the severity of accidents on the German Autobahn.

    Science.gov (United States)

    Manner, Hans; Wünsch-Ziegler, Laura

    2013-08-01

    We study the severity of accidents on the German Autobahn in the state of North Rhine-Westphalia using data for the years 2009 until 2011. We use a multinomial logit model to identify statistically relevant factors explaining the severity of the most severe injury, which is classified into the four classes fatal, severe injury, light injury and property damage. Furthermore, to account for unobserved heterogeneity we use a random parameter model. We study the effect of a number of factors including traffic information, road conditions, type of accidents, speed limits, presence of intelligent traffic control systems, age and gender of the driver and location of the accident. Our findings are in line with studies in different settings and indicate that accidents during daylight and at interchanges or construction sites are less severe in general. Accidents caused by the collision with roadside objects, involving pedestrians and motorcycles, or caused by bad sight conditions tend to be more severe. We discuss the measures of the 2011 German traffic safety programm in the light of our results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Revised Severe Accident Research Program plan, FY 1990--1992

    International Nuclear Information System (INIS)

    1989-08-01

    For the past 10 years, since the Three Mile Island accident, the NRC has sponsored an active research program on light-water-reactor severe accidents as part of a multi-faceted approach to reactor safety. This report describes the revised Severe Accident Research Program (SARP) and how the revisions are designed to provide confirmatory information and technical support to the NRC staff in implementing the staff's Integration Plan for Closure of Severe Accident Issues as described in SECY-88-147. The revised SARP addresses both the near-term research directed at providing a technical basis upon which decisions on important containment performance issues can be made and the long-term research needed to confirm and refine our understanding of severe accidents. In developing this plan, the staff recognized that the overall goal is to reduce the uncertainties in the source term sufficiently to enable the staff to make regulatory decisions on severe accident issues. However, the staff also recognized that for some issues it may not be practical to attempt to further reduce uncertainties, and some regulatory decisions or conclusions will have to be made with full awareness of existing uncertainties. 2 figs., 1 tab

  17. A multivariate tobit analysis of highway accident-injury-severity rates.

    Science.gov (United States)

    Anastasopoulos, Panagiotis Ch; Shankar, Venky N; Haddock, John E; Mannering, Fred L

    2012-03-01

    Relatively recent research has illustrated the potential that tobit regression has in studying factors that affect vehicle accident rates (accidents per distance traveled) on specific roadway segments. Tobit regression has been used because accident rates on specific roadway segments are continuous data that are left-censored at zero (they are censored because accidents may not be observed on all roadway segments during the period over which data are collected). This censoring may arise from a number of sources, one of which being the possibility that less severe crashes may be under-reported and thus may be less likely to appear in crash databases. Traditional tobit-regression analyses have dealt with the overall accident rate (all crashes regardless of injury severity), so the issue of censoring by the severity of crashes has not been addressed. However, a tobit-regression approach that considers accident rates by injury-severity level, such as the rate of no-injury, possible injury and injury accidents per distance traveled (as opposed to all accidents regardless of injury-severity), can potentially provide new insights, and address the possibility that censoring may vary by crash-injury severity. Using five-year data from highways in Washington State, this paper estimates a multivariate tobit model of accident-injury-severity rates that addresses the possibility of differential censoring across injury-severity levels, while also accounting for the possible contemporaneous error correlation resulting from commonly shared unobserved characteristics across roadway segments. The empirical results show that the multivariate tobit model outperforms its univariate counterpart, is practically equivalent to the multivariate negative binomial model, and has the potential to provide a fuller understanding of the factors determining accident-injury-severity rates on specific roadway segments. Published by Elsevier Ltd.

  18. A framework for assessing severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.; Jae, M.; Lim, H.; Milici, T.; Park, H.; Swider, J.; Xing, L.; Yu, D.

    1991-01-01

    Accident management can be defined as the innovative use of existing and or alternative resources, systems and actions to prevent or mitigate a severe accident. Together with risk management (changes in plant operation and/or addition of equipment) and emergency planning (off-site actions), accident management provides an extension of the defense-in-depth safety philosophy for severe accidents. A significant number of probabilistic safety assessments (PSA) have been completed which yield the principal plant vulnerabilities. For each sequence/threat and each combination of strategy there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These considerations include uncertainty in key phenomena, uncertainty in operator behavior, uncertainty in system availability and behavior, and uncertainty in available information (i.e., instrumentation). The objective of this project is to develop a methodology for assessing severe accident management strategies given the key uncertainties mentioned above. Based on Decision Trees and Influence Diagrams, the methodology is currently being applied to two case studies: cavity flooding in a PWR to prevent vessel penetration or failure, and drywell flooding in a BWR to prevent containment failure

  19. Bus accident severity and passenger injury: evidence from Denmark

    DEFF Research Database (Denmark)

    Prato, Carlo Giacomo; Kaplan, Sigal

    2014-01-01

    Purpose Bus safety is a concern not only in developing countries, but also in the U.S. and Europe. In Denmark, disentangling risk factors that are positively or negatively related to bus accident severity and injury occurrence to bus passengers can contribute to promote safety as an essential...... principle of sustainable transit and advance the vision “every accident is one too many”. Methods Bus accident data were retrieved from the national accident database for the period 2002–2011. A generalized ordered logit model allows analyzing bus accident severity and a logistic regression enables...... examining occurrence of injury to bus passengers. Results Bus accident severity is positively related to (i) the involvement of vulnerable road users, (ii) high speed limits, (iii) night hours, (iv) elderly drivers of the third party involved, and (v) bus drivers and other drivers crossing in yellow or red...

  20. Benchmarking Severe Accident Computer Codes for Heavy Water Reactor Applications

    International Nuclear Information System (INIS)

    2013-12-01

    Requests for severe accident investigations and assurance of mitigation measures have increased for operating nuclear power plants and the design of advanced nuclear power plants. Severe accident analysis investigations necessitate the analysis of the very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. The IAEA organizes coordinated research projects (CRPs) to facilitate technology development through international collaboration among Member States. The CRP on Benchmarking Severe Accident Computer Codes for HWR Applications was planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). This publication summarizes the results from the CRP participants. The CRP promoted international collaboration among Member States to improve the phenomenological understanding of severe core damage accidents and the capability to analyse them. The CRP scope included the identification and selection of a severe accident sequence, selection of appropriate geometrical and boundary conditions, conduct of benchmark analyses, comparison of the results of all code outputs, evaluation of the capabilities of computer codes to predict important severe accident phenomena, and the proposal of necessary code improvements and/or new experiments to reduce uncertainties. Seven institutes from five countries with HWRs participated in this CRP

  1. Phenomenology of severe accidents in BWR type reactors. First part

    International Nuclear Information System (INIS)

    Sandoval V, S.

    2003-01-01

    A Severe Accident in a nuclear power plant is a deviation from its normal operating conditions, resulting in substantial damage to the core and, potentially, the release of fission products. Although the occurrence of a Severe Accident on a nuclear power plant is a low probability event, due to the multiple safety systems and strict safety regulations applied since plant design and during operation, Severe Accident Analysis is performed as a safety proactive activity. Nuclear Power Plant Severe Accident Analysis is of great benefit for safety studies, training and accident management, among other applications. This work describes and summarizes some of the most important phenomena in Severe Accident field and briefly illustrates its potential use based on the results of two generic simulations. Equally important and abundant as those here presented, fission product transport and retention phenomena are deferred to a complementary work. (Author)

  2. Developing a knowledge base for the management of severe accidents

    International Nuclear Information System (INIS)

    Nelson, W.R.; Jenkins, J.P.

    1986-01-01

    Prior to the accident at Three Mile Island, little attention was given to the development of procedures for the management of severe accidents, that is, accidents in which the reactor core is damaged. Since TMI, however, significant effort has been devoted to developing strategies for severe accident management. At the same time, the potential application of artificial intelligence techniques, particularly expert systems, to complex decision-making tasks such as accident diagnosis and response has received considerable attention. The need to develop strategies for accident management suggests that a computerized knowledge base such as used by an expert system could be developed to collect and organize knowledge for severe accident management. This paper suggests a general method which could be used to develop such a knowledge base, and how it could be used to enhance accident management capabilities

  3. The management of severe accidents

    International Nuclear Information System (INIS)

    Pelce, J.; Brignon, P.

    1987-01-01

    In considering severe accidents in water power reactors, a major problem that arises is how to manage them in such a way that the situation can be controlled as well as possible, from the aspects both of preventing serious damage to the core of limiting the discharge of radioactivity. A number of countries have announced provisions in the field of accident management, some already set up, others planned, but these mainly apply to preventing damage to the core. Part of this report deals with this aspect, to show that there is a fairly wide consensus on how problems should be approached. Attitudes vary, on the other hand, in the approach to mitigate radioactive release. In fact, few countries have proposed concrete steps to manage severe accidents in the final stages when the core is seriously damaged. Since it is difficult to compare different approaches, only the French approach is described. This description is however very brief, because in the five or six years since it was defined, the approach has been presented many times. The stress is placed more on the comments which this type of approach suggests, to make the subsequent general discussion easier

  4. Containment severe accident management - selected strategies

    International Nuclear Information System (INIS)

    Duco, J.; Royen, J.; Rohde, J.; Frid, W.; De Boeck, B.

    1994-01-01

    The OECD Nuclear Energy Agency (NEA) organized in June 1994, in collaboration with the Swedish Nuclear Power Inspectorate (SKI), a Specialist Meeting on Selected Containment Severe Accident Management Strategies, to discuss their feasibility, effectiveness, benefits and drawbacks, and long-term impact. The meeting focused on water reactors, mainly on existing systems. The technical content covered topics such as general aspects of accident management strategies in OECD Member countries, hydrogen management techniques and other containment accident management strategies, surveillance and protection of the containment function. The main conclusions of the meeting are summarized in the paper. (author)

  5. Severe accident source term reassessment

    International Nuclear Information System (INIS)

    Hazzan, M.J.; Gardner, R.; Warman, E.A.; Jacobs, S.B.

    1987-01-01

    This paper summarizes the status of the reassessment of severe reactor accident source terms, which are defined as the quantity, type, and timing of fission product releases from such accidents. Concentration is on the major results and conclusions of analyses with modern methods for both pressurized water reactors (PWRs) and boiling water reactors (BWRs), and the special case of containment bypass. Some distinctions are drawn between analyses for PWRs and BWRs. In general, the more the matter is examined, the consequences, or probability of serious consequences, seem to be less. (author)

  6. Review of severe accidents and the results of accident consequence assessment in different energy systems (Contract research)

    International Nuclear Information System (INIS)

    Matsuki, Yoshio; Muramatsu, Ken

    2008-05-01

    The cases of severe accidents and the consequence assessments in different energy systems, Coal, Oil, Gas, Hydro and Nuclear, were collected, and then they were further analyzed. In this report, the information on the accidents in various energy systems were collected from the sources of the Paul Scherrer Institute (hereinafter, 'PSI') and the International Atomic Energy Agency (hereinafter, 'IAEA'). The information on the severe accidents of nuclear power plants were collected from the report of the US Presidential Commission on Catastrophic Nuclear Accidents and several relevant reports issued in the countries of the European Union, together with the reports of the PSI and the IAEA. To analyze the collected information, several parameters, which are numbers of fatalities, injuries, evacuees and the costs of the damages, were chosen to characterize those accidents in different energy systems. And then, upon the comparison of these characteristics of different accidents, the impacts of the accidents in nuclear and other energy systems were compared. Upon the results of the analysis, it is pointed out that the cost caused by the Chernobyl Accident, the severe accident in nuclear energy, tends to be higher than in the other energy systems. On the other hand, from the aspects of fatalities and injuries, it is not confirmed that the damages of the Chernobyl Accident are larger than in the other energy systems. However, it is also recognized, as the specific characteristics of the severe nuclear accident, that the impacts of the accident spread in a wider area, and stay for a longer period, in comparison with the ones in the other energy systems. (author)

  7. Managing severe reactor accidents. A review and evaluation of our knowledge on reactor accidents and accident management

    International Nuclear Information System (INIS)

    Gustavsson, Veine

    2002-11-01

    The report gives a review of the results from the last years research on severe reactor accidents, and an opinion on the possibilities to refine the present strategies for accident management in Swedish and Finnish BWRs. The following aspect of reactor accidents are the major themes of the study: 1. Early pressure relief from hydrogen production; 2. Recriticality in re-flooded, degraded core; 3. Melt-through; 4. Steam explosion after melt-through; 5. Coolability of the melt after after melt-through; 6. Hydrogen fire in the reactor containment; 7. Leaking containment; 8. Hydrogen fire in the reactor building; 9. Long-time developments after a severe accident; 10. Accidents during shutdown for overhaul; 11. Information need for remedial actions. Possibilities for improving the strategies in each of these areas are discussed. The review shows that our knowledge is sufficient in the areas 1, 2, 4, 6, 8. For the other areas, more research is needed

  8. Factors associated with urban non-fatal road-accident severity.

    Science.gov (United States)

    Potoglou, Dimitris; Carlucci, Fabio; Cirà, Andrea; Restaino, Marialuisa

    2018-02-05

    This paper reports on the factors associated with non-fatal urban-road accident severity. Data on accidents were gathered from the local traffic police in the City of Palermo, one of the six most populated cities in Italy. Findings from a mixed-effects logistic-regression model suggest that accident severity increases when two young drivers are involved, road traffic conditions are light/normal and when vehicles crash on a two-way road or carriageway. Speeding is more likely to cause slight or serious injury even when compared to a vehicle moving towards the opposite direction of traffic. An accident during the summer is more likely to result in a slight or serious injury than an accident during the winter, which is in line with evidence from Southern Europe and the Middle East. Finally, the severity of non-fatal accident injuries in an urban area of Southern Europe was significantly associated with speeding, the age of the driver and seasonality.

  9. Applicability of simplified human reliability analysis methods for severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Boring, R.; St Germain, S. [Idaho National Lab., Idaho Falls, Idaho (United States); Banaseanu, G.; Chatri, H.; Akl, Y. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2016-03-15

    Most contemporary human reliability analysis (HRA) methods were created to analyse design-basis accidents at nuclear power plants. As part of a comprehensive expansion of risk assessments at many plants internationally, HRAs will begin considering severe accident scenarios. Severe accidents, while extremely rare, constitute high consequence events that significantly challenge successful operations and recovery. Challenges during severe accidents include degraded and hazardous operating conditions at the plant, the shift in control from the main control room to the technical support center, the unavailability of plant instrumentation, and the need to use different types of operating procedures. Such shifts in operations may also test key assumptions in existing HRA methods. This paper discusses key differences between design basis and severe accidents, reviews efforts to date to create customized HRA methods suitable for severe accidents, and recommends practices for adapting existing HRA methods that are already being used for HRAs at the plants. (author)

  10. Severe accident management guidelines

    International Nuclear Information System (INIS)

    Uhle, Jennifer

    2014-01-01

    The events at Fukushima Daiichi have highlighted the importance of Severe Accident Management Guidelines (SAMGs). As the world has learned from the catastrophe and countries are considering changes to their nuclear regulatory programs, the content of SAMGs and their regulatory control are being evaluated. This presentation highlights several factors that are being addressed in the United States as rulemaking is underway pertaining to SAMGs. The question of how to be prepared for the unexpected is discussed with specific insights gleaned from Fukushima. (author)

  11. The management of severe accidents in modern pressure tube reactors

    International Nuclear Information System (INIS)

    Popov, N.K.; Santamaura, P.; Blahnik, C.; Snell, V.G.; Duffey, R.B.

    2007-01-01

    Advanced new reactor designs resist severe accidents through a balance between prevention and mitigation. This balance is achieved by designing to ensure that such accidents are very rare; and by limiting core damage progression and releases from the plant in the event of such rare accidents. These design objectives are supported by a suitable combination of probabilistic safety analysis, engineering judgment and experimental and analytical study. This paper describes the approach used for the Advanced CANDU Reactor TM -1000 (ACR-1000) design, which includes provisions to both prevent and mitigate severe accidents. The paper describes the use of PSA as a 'design assist' tool; the analysis of core damage progression pathways; the definition of the core damage states; the capability of the mitigating systems to stop and control severe accident events; and the severe accident management opportunities for consequence reduction. (author)

  12. Development of severe accident management guidance for Younggwang units 5 and 6

    International Nuclear Information System (INIS)

    Lee, K. W.; Beon, C. S.; Kim, M. K.; Hong, S. Y.; Park, K. S.

    2001-01-01

    Severe Accident Management Guidance (SAMG) has been developed for Younggwang Units 5 and 6. It is consisted of Severe Accident Control Room Guideline, Diagnostic Flow Chart, Severe Accident Guideline, Severe Challenge Guideline, TSC Long Term Monitoring, SAMG Termination. Severe Accident Control Room Guideline, which deals with severe accident after finishing Emergency Operation Procedure, consists of acitions before and after TSC actuation. Seven servere accident management strategies are developed. Diagnostic Flow Chart, Severe Accident Guideline, and Severe Challenge Guideline are developed for each strategy, which enables the users to the implementation of strategy easily and systematically. TSC Long Term Monitoring is also developed to monitor long term activities after a particular strategy. Total of 45 set points are developed for decision making during the implementation of the SAMG

  13. Accomplishments and challenges of the severe accident research

    International Nuclear Information System (INIS)

    Sehgal, B.R.

    2001-01-01

    This paper briefly describes the progress of the severe accident research since 1980, in terms of the accomplishments made so far and the challenges that remain. Much has been accomplished: many important safety issues have been resolved and consensus is near on some others. However, some of the previously identified safety issues remain as challenges, while some new ones have arisen due to the shift in focus from containment to vessel integrity. New reactor designs have also created some new challenges. In general, the regulatory demands for new reactor designs are stricter, thereby requiring much greater attention to the safety issues concerned with the containment design of the new large reactors, and to the accident management procedures for mitigating the consequences of a severe accident. We apologize for not providing references to many fine investigations that contributed to the great progress made so far in the severe accident research

  14. Knowledge data base for severe accident management of nuclear power plants

    International Nuclear Information System (INIS)

    Ogino, Masao; Kawabe, Ryuhei; Nagasaka, Hideo; Sumida, Susumu; Fukasawa, Masanori; Muta, Hitoshi

    2011-01-01

    For the reinforcement of the safety of NPPs, the continuous efforts are very important to take in the up-to-date scientific and technical knowledge positively and to reflect them into the safety regulation. The purpose of this present study is to gather effectively the scientific and technical knowledge about the severe accident (SA) phenomena and the accident management (AM) for prevention and mitigation of severe accident, and to take in the experimental data by participating in the international cooperative experiments regarding the important SA phenomena and the effectiveness of accident management. Based on those data and knowledge, JNES is developing and improving severe accident analysis models to maintain the severe accident analysis codes and the accident management knowledge base for assessment of the NPPs in Japan. The activities in fiscal year 2010 are as follows; Experimental study on OECD/NEA projects such as MCCI, SERENA, SFP and international cooperative PSI-ARTIST project, and analytical study on accident management review of new plant and making regulation for severe accident. (author)

  15. Severe accident simulation at Olkiuoto

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkonen, H.; Saarenpaeae, T. [Teollisuuden Voima Oy (TVO), Olkiluoto (Finland); Cliff Po, L.C. [Micro-Simulation Technology, Montville, NJ (United States)

    1995-09-01

    A personal computer-based simulator was developed for the Olkiluoto nuclear plant in Finland for training in severe accident management. The generic software PCTRAN was expanded to model the plant-specific features of the ABB Atom designed BWR including its containment over-pressure protection and filtered vent systems. Scenarios including core heat-up, hydrogen generation, core melt and vessel penetration were developed in this work. Radiation leakage paths and dose rate distribution are presented graphically for operator use in diagnosis and mitigation of accidents. Operating on an graphically for operator use in diagnosis and mitigation of accidents. Operating on an 486 DX2-66, PCTRAN-TVO achieves a speed about 15 times faster than real-time. A convenient and user-friendly graphic interface allows full interactive control. In this paper a review of the component models and verification runs are presented.

  16. Severe accident testing of a personnel airlock

    International Nuclear Information System (INIS)

    Clauss, D.B.; Parks, M.B.; Julien, J.T.; Peters, S.W.

    1988-01-01

    Sandia National Laboratories (Sandia) is investigating the leakage potential of mechanical penetrations as part of a research program on containment integrity under severe accident loads for the U.S. Nuclear Regulatory Commission (NRC). Barnes et al. (1984) and Shackelford et al. (1985) identified leakage from personnel airlocks as an important failure mode of containments subject to severe accident loads. However, these studies were based on relatively simple analysis methods. The complex structural interaction between the door, gasket, and bulkhead in personnel airlocks makes analytical evaluation of leakage difficult. In order to provide data to validate methods for evaluating the leakage potential, a full-size personnel airlock was subject to simulated severe accident loads consisting of pressure and temperature up to 300 psig and 800 degrees F. The test was conducted at Chicago Bridge and Iron under contract to Sandia. The authors provide a detailed report on the test program

  17. Severe accident analysis to prevent high pressure scenarios in the EPR TM

    International Nuclear Information System (INIS)

    Azarian, G.; Gandrille, P.; Gasperini, M.; Klein, R.

    2010-01-01

    The EPR TM has incorporated several design features in order to specifically address major severe accident safety issues. In particular, it was designed with the objective to transfer high pressure core melt scenarios into a low pressure scenario with high reliability so that a high pressure vessel failure can be practically eliminated. It is the key issue in the defense-in-depth approach, for a postulated severe accident with core melting, to prevent any risk of containment failure due to possible Direct Containment Heating or due to reactor vessel rocketing which results from vessel failure at high pressure. Temperature-induced steam generator tube rupture, which could lead to a radiological containment bypass, has also to be prevented. On the basis of the analysis of the main high pressure core melt scenarios which are calculated with the MAAP4.07 code which was developed to support the EPR TM, this paper explores the benefits of primary depressurization by dedicated valves on transient evolutions. It specifically addresses the thermal response of the structures by sensitivity studies involving the timing of valve actuation. It outlines that a grace period of at least one hour is available for a delayed valve actuation without inducing excessive loads and without increasing the risk of a temperature-induced steam generator tube rupture. (authors)

  18. An overview of selected severe accident research and applications

    International Nuclear Information System (INIS)

    Hammersley, R.J.; Henry, R.E.

    2004-01-01

    Severe accident research is being conducted world wide by industry organizations, utilities, and regulatory agencies. As this research is disseminated, it is being applied by utilities when they perform their Individual Plant Examinations (IPEs) and consider the preparation of Accident Management programs. The research is associated with phenomenological assessments of containment challenges and associated uncertainties, severe accident codes and analysis tools, systematic evaluation processes, and accident management planning. The continued advancement of this research and its applications will significantly contribute to the enhanced safety and operation of nuclear power plants. (author)

  19. The philosophy of severe accident management in the US

    International Nuclear Information System (INIS)

    Baratta, A.J.

    1990-01-01

    The US NRC has put forth the initial steps in what is viewed as the resolution of the severe accident issue. Underlying this process is a fundamental philosophy that if followed will likely lead to an order of magnitude reduction in the risk of severe accidents. Thus far, this philosophy has proven cost effective through improved performance. This paper briefly examines this philosophy and the next step in closure of the severe accident issue, the IPE. An example of the authors experience with determinist. (author)

  20. CANDU severe accident analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    Romania is a EU member since January first 2007. This country faces now new challenges which imply also the nuclear power reactors now in operation. Romania operates since 1996 a CANDU nuclear power reactor and soon will start up a second unit. In EU PWR reactors are mostly operated, so that the Romania's reactors have to meet EU standards. Safety analysis guidelines require to model severe accidents for reactors of this type. Starting from previous studies a thermal-hydraulic model for a degraded CANDU core was developed. The initiating event is assumed to be a LOCA with simultaneous loss of moderator and coolant and the failure of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the decay heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) uncover, then disintegrate and fall down to the calandria vessel bottom. All the quantity of calandria moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield water tank surrounding the calandria vessel. The thermal hydraulics phenomena described above are modeled, analyzed and compared with the existing data. (authors)

  1. Comparative assessment of severe accident risks in the energy sector

    International Nuclear Information System (INIS)

    Hirschberg, S.; Spiekerman, G.; Dones, R.

    1997-01-01

    This paper addresses one of the major limitations of the current comparative studies of environmental and health impacts of energy systems, i.e. the treatment of severe accidents. The work covers technical aspects of severe accidents and thus primarily reflects an engineering perspective on the energy-related risk issues. The assessments concern full energy chains associated with fossil sources (coal, oil and gas), nuclear power and hydro power. A comprehensive severe accidents database has been established. Thanks to the variety of information sources used, it exhibits in comparison with other corresponding databases a far more extensive coverage of the energy-related accidents. For hypothetical nuclear accidents the probabilistic approach has been employed and extended to cover the economic consequences of power reactor accidents. Results of comparisons between the various energy chains are shown and discussed along with a number of current issues in comparative assessment of severe accidents. As opposed to the previous studies, the aim of the present work has been, to cover whenever possible, a relatively broad spectrum of damage categories of interest. (author) 5 figs., 1 tab., 18 refs

  2. Implementation of hydrogen mitigation techniques during severe accidents in nuclear power plants

    International Nuclear Information System (INIS)

    1996-01-01

    Severe accidents in water-cooled reactors are low-probability events as the Emergency Core Cooling System (ECCS) has been designed and specific accident management measures have been implemented to prevent severe accidents from occurring. Should it not be possible to prevent a severe accident in a water-cooled reactor, a large amount of hydrogen could be generated, notably from the reaction between steam and zirconium at high fuel clad temperatures, but also from reactions of molten core debris with concrete, water radiolysis, and reactions of structural materials with steam. The rates and quantities of hydrogen produced depend on the particular severe accident scenario and also on the reactor type (e.g. mass of zirconium in the reactor core). Depending on assumptions made, and taking account of various uncertainties, release rates of hydrogen up to several kg/s have been calculated with total hydrogen mass releases ranging from 100 kg to more than 1,000 kg for large reactors. Hydrogen produced during a severe accident could burn close to the hydrogen source or would mix with the containment atmosphere and burn if flammable concentrations are attained and ignition sources are available (e.g., igniters, accidental sparks from electric equipment). If oxygen and ignition sources are present in the vicinity of the release, the hydrogen will ignite and it could burn as a standing flame at the release location, which is possible over a large range of jet exit diameters, jet velocities and environmental conditions. The hydrogen that will not burn close to the source will mix with steam and air and will transport in the containment building to increase global or local concentrations and to create possibly flammable conditions. If ignited at high enough hydrogen concentration, the mixture could burn as a deflagration, creating a transient pressure and temperature that could possibly challenge the containment integrity and equipment. In regions of higher hydrogen

  3. Studies of severe accidents in light-water reactors

    International Nuclear Information System (INIS)

    1987-01-01

    From 10 to 12 November 1986 some 80 delegates met under the auspices of the CEC working group on the safety of light-water reactors. The participants from EC Member States were joined by colleagues from Sweden, Finland and the USA and met to discuss the subject of severe accidents in LWRs. Although this seminar had been planned well before Chernobyl, the ''severe-accident-that-really-happened'' made its mark on the seminar. The four main seminar topics were: (i) high source-term accident sequences identified in PSAs, (ii) containment performance, (iii) mitigation of core melt consequences, (iv) severe accident management in LWRs. In addition to the final panel discussion there was also a separate panel discussion on lessons learned from the Chernobyl accident. These proceedings include the papers presented during the seminar and they are arranged following the seminar programme outline. The presentations and discussions of the two panels are not included in the proceedings. The general conclusions and directions following from these two panels were, however, considered in a seminar review paper which was published in the March 1987 issue of Nuclear Engineering International

  4. Severe accident analysis and management in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Golshan, Mina

    2013-01-01

    Within the UK regulatory regime, assessment of risks arising from licensee's activities are expected to cover both normal operations and fault conditions. In order to establish the safety case for fault conditions, fault analysis is expected to cover three forms of analysis: design basis analysis (DBA), probabilistic safety assessment (PSA) and severe accident analysis (SAA). DBA should provide a robust demonstration of the fault tolerance of the engineering design and the effectiveness of the safety measures on a conservative basis. PSA looks at a wider range of fault sequences (on a best estimate basis) including those excluded from the DBA. SAA considers significant but unlikely accidents and provides information on their progression and consequences, within the facility, on the site and off site. The assessment of severe accidents is not limited to nuclear power plants and is expected to be carried out for all plant states where the identified dose targets could be exceeded. This paper sets out the UK nuclear regulatory expectation on what constitutes a severe accident, irrespective of the type of facility, and describes characteristics of severe accidents focusing on nuclear fuel cycle facilities. Key rules in assessment of severe accidents as well as the relationship to other fault analysis techniques are discussed. The role of SAA in informing accident management strategies and offsite emergency plans is covered. The paper also presents generic examples of scenarios that could lead to severe accidents in a range of nuclear fuel cycle facilities. (authors)

  5. Thermal hydraulics of CANDU severe accident analysis

    International Nuclear Information System (INIS)

    Negut, Gheorghe; Catana, Alexandru; Prisecaru, Ilie; Dupleac, Daniel

    2007-01-01

    As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents in CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D 2 O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 1000 deg. C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the available data. The results are encouraging. (authors)

  6. Formulating the Canadian regulatory position on severe accidents

    International Nuclear Information System (INIS)

    Viktorov, Alex

    2006-01-01

    In response to the increasing potential of new nuclear build in Canada, and as part of documentation harmonization effort, CNSC staff has initiated development of requirements for design of nuclear power plants. These requirements build both on the IAEA standards, most notably, NS-R-1, and the Canadian practices and experience. The three safety objectives, formulated by the IAEA, are adopted, and Safety Goals are proposed consistent with the international trend. This Canadian standard will require, for the first time, explicit consideration of severe accidents in design and safety assessments. Specific requirements are formulated for several plant systems that assure an effective fourth level of defence in depth. Available results from probabilistic safety assessments indicate that the risks posed by severe accidents are acceptably low. Nevertheless, such risks are not negligible. CNSC staff considers that severe accident management (SAM) represents the most practical way to achieve risk reduction with a moderate effort. Ultimately, SAM actions are aimed at bringing the reactor, and the plant in general, into a controlled and stable state. For the operating reactors, SAM provides an additional defense barrier against the consequences of those accidents that fall beyond the scope of events considered in the reactor design basis. The establishment of a SAM program ensures availability of the information, procedures, and resources necessary to take full advantage of existing plant capabilities to arrest core degradation, and prevent or mitigate large releases of radioactive material. To the extent practicable, a SAM program builds on the existing emergency operating procedures and makes use of the plant design capabilities. On this basis, the CNSC requested nuclear power reactor licensees to develop and implement SAM at all operating reactors. To be able to demonstrate compliance with requirements for plant design and severe accident management, it is necessary to

  7. Containment pressure monitoring method after severe accident in nuclear power plant

    International Nuclear Information System (INIS)

    Luo Chuanjie; Zhang Shishui

    2011-01-01

    The containment atmosphere monitoring system in nuclear power plant was designed on the basis of design accident. But containment pressure will increase greatly in a severe accident, and pressure instrument in the containment can't satisfy the monitoring requirement. A new method to monitor the pressure change in the containment after a severe accident was considered, through which accident soften methods can be adopted. Under present technical condition, adding a pressure monitoring channel out of containment for post-severe accident is a considerable method. Daya Bay Nuclear Power Plant implemented this modification, by which the containment release time can be delayed during severe accident, and nuclear safety can be increased. After analysis, this method is safe and feasible. (authors)

  8. Full-length fuel rod behavior under severe accident conditions

    International Nuclear Information System (INIS)

    Lombardo, N.J.; Lanning, D.D.; Panisko, F.E.

    1992-12-01

    This document presents an assessment of the severe accident phenomena observed from four Full-Length High-Temperature (FLHT) tests that were performed by the Pacific Northwest Laboratory (PNL) in the National Research Universal (NRU) reactor at Chalk River, Ontario, Canada. These tests were conducted for the US Nuclear Regulatory Commission (NRC) as part of the Severe Accident Research Program. The objectives of the test were to simulate conditions and provide information on the behavior of full-length fuel rods during hypothetical, small-break, loss-of-coolant severe accidents, in commercial light water reactors

  9. System 80+ design features for severe accident prevention and mitigation

    International Nuclear Information System (INIS)

    Jacob, M.C.; Schneider, R.E.; Finnicum, D.J.

    1993-01-01

    ABB-CE, in cooperation with the US Department of Energy, is working to develop and certify the System 80+ design, which is ABB-CE's standardized evolutionary Advanced Light Water Reactor (ALWR) design. It incorporates design enhancements based on Probabilistic Risk Assessment (PRA) insights, guidance from the EPRI's Utility Requirements Document, and US NRC's Severe Accident Policy. Major severe accident prevention and mitigation design features of the system is discussed along with its conformance to EPRI URD guidance, as applicable. Computer simulation of a best estimate severe accident scenario is presented to illustrate the acceptable containment performance of the design. It is concluded that by considering severe accident prevention and mitigation early in the design process, the System 80+ design represents a robust plant design that has low core damage frequencies, low containment conditional failure probabilities, and acceptable deterministic containment performance under severe accident conditions

  10. Simulation of operator's actions during severe accident management

    International Nuclear Information System (INIS)

    Viktorov, A.

    2015-01-01

    Implementing accident management counter measures or actions to mitigate consequences of a severe accident is essential to reduce radiological risks to the public and environment. Station-specific severe accident management guidelines (SAMGs) have been developed and implemented at all Canadian nuclear power plants. Following the Fukushima Daiichi nuclear accident certain enhancements were introduced to the SAMG, namely consideration of multi-units accidents, events involving spent fuel pools, incorporation of capability offered by the portable emergency mitigating equipment, and so on. To evaluate the adequacy and usability of the SAMGs, CNSC staff initiated a number of activities including a desktop review of SAMG documentation, evaluation of SAMG implementation through exercises and interviews with station staff, and independent verification of SAMG action effectiveness. This paper focuses on the verification of SAMG actions through analytical simulations. The objectives of the work are two-folds: (a) to understand the effectiveness of SAMG-specified mitigation actions in addressing the safety challenges and (b) to check for potential negative effects of the action. Some sensitivity calculations were performed to help understanding of the impact from actions that rely on the partially effective equipment or limited material resources. The severe accident computer code MAAP4-CANDU is used as a tool in this verification. This paper will describe the methodology used in the verification of SAMG actions and some results obtained from simulations. (author)

  11. Geographic analysis of road accident severity index in Nigeria.

    Science.gov (United States)

    Iyanda, Ayodeji E

    2018-05-28

    Before 2030, deaths from road traffic accidents (RTAs) will surpass cerebrovascular disease, tuberculosis, and HIV/AIDS. Yet, there is little knowledge on the geographic distribution of RTA severity in Nigeria. Accident Severity Index is the proportion of deaths that result from a road accident. This study analysed the geographic pattern of RTA severity based on the data retrieved from Federal Road Safety Corps (FRSC). The study predicted a two-year data from a historic road accident data using exponential smoothing technique. To determine spatial autocorrelation, global and local indicators of spatial association were implemented in a geographic information system. Results show significant clusters of high RTA severity among states in the northeast and the northwest of Nigeria. Hence, the findings are discussed from two perspectives: Road traffic law compliance and poor emergency response. Conclusion, the severity of RTA is high in the northern states of Nigeria, hence, RTA remains a public health concern.

  12. The DOE technology development programme on severe accident management

    International Nuclear Information System (INIS)

    Neuhold, R.J.; Moore, R.A.; Theofanous, T.G.

    1998-01-01

    The US Department of Energy (DOE) is sponsoring a programme in technology development aimed at resolving the technical issues in severe accident management strategies for advanced and evolutionary light water reactors (LWRs). The key objective of this effort is to achieve a robust defense-in-depth at the interface between prevention and mitigation of severe accidents. The approach taken towards this goal is based on the Risk Oriented Accident Analysis Methodology (ROAAM). Applications of ROAAM to the severe accident management strategy for the US AP600 advanced LWR have been effective both in enhancing the design and in achieving acceptance of the conclusions and base technology developed in the course of the work. This paper presents an overview of that effort and its key technical elements

  13. Fuel behaviour in the case of severe accidents and potential ATF designs. Fuel Behavior in Severe Accidents and Potential Accident Tolerance Fuel Designs

    International Nuclear Information System (INIS)

    Cheng, Bo

    2013-01-01

    This presentation reviews the conditions of fuel rods under severe loss of coolant conditions, approaches that may increase coping time for plant operators to recover, requirements of advanced fuel cladding to increase tolerance in accident conditions, potential candidate alloys for accident-tolerant fuel cladding and a novel design of molybdenum (Mo) -based fuel cladding. The current Zr-alloy fuel cladding will lose all its mechanical strength at 750-800 deg. C, and will react rapidly with high-pressure steam, producing significant hydrogen and exothermic heat at 700-1000 deg. C. The metallurgical properties of Zr make it unlikely that modifications of the Zr-alloy will improve the behaviour of Zr-alloys at temperatures relevant to severe accidents. The Mo-based fuel cladding is designed to (1) maintain fuel rod integrity, and reduce the release rate of hydrogen and exothermic heat in accident conditions at 1200-1500 deg. C. The EPRI research has thus far completed the design concepts, demonstration of feasibility of producing very thin wall (0.2 mm) Mo tubes. The feasibility of depositing a protective coating using various techniques has also been demonstrated. Demonstration of forming composite Mo-based cladding via mechanical reduction has been planned

  14. Benchmarking severe accident computer codes for heavy water reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [International Atomic Energy Agency, Vienna (Austria)

    2010-07-01

    Consideration of severe accidents at a nuclear power plant (NPP) is an essential component of the defence in depth approach used in nuclear safety. Severe accident analysis involves very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. International cooperative research programmes are established by the IAEA in areas that are of common interest to a number of Member States. These co-operative efforts are carried out through coordinated research projects (CRPs), typically 3 to 6 years in duration, and often involving experimental activities. Such CRPs allow a sharing of efforts on an international basis, foster team-building and benefit from the experience and expertise of researchers from all participating institutes. The IAEA is organizing a CRP on benchmarking severe accident computer codes for heavy water reactor (HWR) applications. The CRP scope includes defining the severe accident sequence and conducting benchmark analyses for HWRs, evaluating the capabilities of existing computer codes to predict important severe accident phenomena, and suggesting necessary code improvements and/or new experiments to reduce uncertainties. The CRP has been planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for HWRs. (author)

  15. Modelling of melting and solidification transport phenomena during hypothetical NPP severe accidents

    International Nuclear Information System (INIS)

    Sarler, B.

    1992-01-01

    A physical and mathematical framework to deal with the transport phenomena occuring during melting and solidification of the hypothetical NPP severe accidents is presented. It concentrates on the transient temperature, velocity, and species concentration distributions during such events. The framework is based on the Mixture Continuum Formulation of the components and phases, cast in the boundary-domain integral shape structured by the fundamental solution of the Laplace equation. The formulation could cope with various solid-liquid sub-systems through the inclusion of the specific closure relations. The deduced system of boundary-domain integral equations for conservation of mass, energy, momentum, and species could be solved by the boundary element discrete approximative method. (author) [sl

  16. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2015-11-01

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  17. First international workshop on severe accidents and their consequences. [Chernobyl Accident

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    An international workshop on past severe nuclear accidents and their consequences was held in Dagomys region of Sochi, USSR on October 30--November 3, 1989. The plan of this meeting was approved by the USSR Academy of Sciences and by the USSR State Committee of the Utilization of Atomic Energy. The meeting was held under the umbrella of the ANS-SNS agreement of cooperation. Topics covered include analysis of the Chernobyl accident, safety measures for RBMK type reactors and consequences of the Chernobyl accident including analysis of the ecological, genetic and psycho-social factors. Separate reports are processed separately for the data bases. (CBS)

  18. An analysis of severe air transport accidents

    International Nuclear Information System (INIS)

    McClure, J.D.; Luna, R.E.

    1989-01-01

    The objective of this paper is to analyze the severity of aircraft accidents that may involve the air transport of radioactive materials (RAM). One of the basic aims of this paper is to provide a numerical description of the severity of aircraft transport accidents so that the accident severity can be compared with the accident performance standards that are specified in IAEA Safety Series 6, the international packaging standards for the safe movement of RAM. The existing packaging regulations in most countries embrace the packaging standards developed by the IAEA. Historically, the packaging standards for Type B packages have been independent of the transport mode. That is, if the shipment occurs in a certified packaging, then the shipment can take place by any transport mode. In 1975, a legislative action occurred in the US Congress which led to the development of a package designed specifically for the air transport of plutonium. Changes were subsequently made to the US packaging regulations in 10CFR71 to incorporate the plutonium air transport performance standards. These standards were used to certify the air transport package for plutonium which is commonly referred to as PAT-1 (US NRC). The PAT-1 was certified by the US Nuclear Regulatory Commission in September 1978

  19. ANS severe accident program overview & planning document

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.

    1995-09-01

    The Advanced Neutron Source (ANS) severe accident document was developed to provide a concise and coherent mechanism for presenting the ANS SAP goals, a strategy satisfying these goals, a succinct summary of the work done to date, and what needs to be done in the future to ensure timely licensability. Guidance was received from various bodies [viz., panel members of the ANS severe accident workshop and safety review committee, Department of Energy (DOE) orders, Nuclear Regulatory Commission (NRC) requirements for ALWRs and advanced reactors, ACRS comments, world-wide trends] were utilized to set up the ANS-relevant SAS goals and strategy. An in-containment worker protection goal was also set up to account for the routine experimenters and other workers within containment. The strategy for achieving the goals is centered upon closing the severe accident issues that have the potential for becoming certification issues when assessed against realistic bounding events. Realistic bounding events are defined as events with an occurrency frequency greater than 10{sup {minus}6}/y. Currently, based upon the level-1 probabilistic risk assessment studies, the realistic bounding events for application for issue closure are flow blockage of fuel element coolant channels, and rapid depressurization-related accidents.

  20. Vaporization of structural materials in severe accidents

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1982-01-01

    Vaporized structural materials form the bulk of aerosol particles that can transport fission products in severe LWR accidents. As part of the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory, a model has been developed based on a mass transport coefficient to describe the transport of materials from the surface of a molten pool. In many accident scenarios, the coefficient can be calculated from existing correlations for mass transfer by natural convection. Data from SASCHA fuel melting tests (Karlsruhe, Germany) show that the partial pressures of many of the melt components (Fe, Cr, Co, Mn, Sn) required for the model can be calculated from the vapor pressures of the pure species and Raoult's law. These calculations indicate much lower aerosol concentrations than reported in previous studies

  1. Chemical considerations in severe accident analysis

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Kress, T.S.

    1988-01-01

    The Reactor Safety Study presented the first systematic attempt to include fission product physicochemical effects in the determination of expected consequences of hypothetical nuclear reactor power plant accidents. At the time, however, the data base was sparse, and the treatment of fission product behavior was not entirely consistent or accurate. Considerable research has since been performed to identify and understand chemical phenomena that can occur in the course of a nuclear reactor accident, and how these phenomena affect fission product behavior. In this report, the current status of our understanding of the chemistry of fission products in severe core damage accidents is summarized and contrasted with that of the Reactor Safety Study

  2. Visual and intelligent transients and accidents analyzer based on thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Meng Lin; Rui Hu; Yun Su; Ronghua Zhang; Yanhua Yang

    2005-01-01

    Full text of publication follows: Many thermal-hydraulic system codes were developed in the past twenty years, such as RELAP5, RETRAN, ATHLET, etc. Because of their general and advanced features in thermal-hydraulic computation, they are widely used in the world to analyze transients and accidents. But there are following disadvantages for most of these original thermal-hydraulic system codes. Firstly, because models are built through input decks, so the input files are complex and non-figurative, and the style of input decks is various for different users and models. Secondly, results are shown in off-line data file form. It is not convenient for analysts who may pay more attention to dynamic parameters trend and changing. Thirdly, there are few interfaces with other program in these original thermal-hydraulic system codes. This restricts the codes expanding. The subject of this paper is to develop a powerful analyzer based on these thermal-hydraulic system codes to analyze transients and accidents more simply, accurately and fleetly. Firstly, modeling is visual and intelligent. Users build the thermalhydraulic system model using component objects according to their needs, and it is not necessary for them to face bald input decks. The style of input decks created automatically by the analyzer is unified and can be accepted easily by other people. Secondly, parameters concerned by analyst can be dynamically communicated to show or even change. Thirdly, the analyzer provide interface with other programs for the thermal-hydraulic system code. Thus parallel computation between thermal-hydraulic system code and other programs become possible. In conclusion, through visual and intelligent method, the analyzer based on general and advanced thermal-hydraulic system codes can be used to analysis transients and accidents more effectively. The main purpose of this paper is to present developmental activities, assessment and application results of the visual and intelligent

  3. Comparative Assessment of Severe Accidents in the Chinese Energy Sector

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, S; Burgherr, P; Spiekerman, G; Cazzoli, E; Vitazek, J; Cheng, L

    2003-03-01

    This report deals with the comparative assessment of accidents risks characteristic for the various electricity supply options. A reasonably complete picture of the wide spectrum of health, environmental and economic effects associated with various energy systems can only be obtained by considering damages due to normal operation as well as due to accidents. The focus of the present work is on severe accidents, as these are considered controversial. By severe accidents we understand potential or actual accidents that represent a significant risk to people, property and the environment and may lead to large consequences. (author)

  4. Proceedings of the Specialist Meeting on Severe Accident Management Programme Development

    International Nuclear Information System (INIS)

    1992-04-01

    Effective Accident Management planning can produce both a reduction in the frequency of severe accidents at nuclear power plants as well as the ability to mitigate a severe accident. The purpose of an accident management programme is to provide to the responsible plant staff the capability to cope with the complete range of credible severe accidents. This requires that appropriate instrumentation and equipment are available within the plant to enable plant staff to diagnose the faults and to implement appropriate strategies. The programme must also provide the necessary guidance, procedures, and training to assure that appropriate corrective actions will be implemented. One of the key issues to be discussed is the transition from control room operations and the associated emergency operating procedures to a technical support team approach (and the associated severe accident management strategies). Following a proposal made by the Senior Group of Experts on Severe Accident Management (SESAM), the Committee on the Safety of Nuclear Installations decided to sponsor a Specialist Meeting on Severe Accident Management Programme Development. The general objectives of the Specialist Meeting were to exchange experience, views, and information among the participants and to discuss the status of severe accident management programmes. The meeting brought together utilities, accident management programme developers, personnel training programme developers, regulators, and researchers. In general, the tone of the Specialist Meeting - designed to promote progress, as contrasted with conferences or symposia where the state-of-the-art is presented - was to be rather practical, and focus on accident management programme development, applications, results, difficulties and improvements. As shown by the conclusions of the meeting, there is no doubt that this objective was widely attained

  5. Proceedings of the Specialist Meeting on Severe Accident Management Programme Development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-04-15

    Effective Accident Management planning can produce both a reduction in the frequency of severe accidents at nuclear power plants as well as the ability to mitigate a severe accident. The purpose of an accident management programme is to provide to the responsible plant staff the capability to cope with the complete range of credible severe accidents. This requires that appropriate instrumentation and equipment are available within the plant to enable plant staff to diagnose the faults and to implement appropriate strategies. The programme must also provide the necessary guidance, procedures, and training to assure that appropriate corrective actions will be implemented. One of the key issues to be discussed is the transition from control room operations and the associated emergency operating procedures to a technical support team approach (and the associated severe accident management strategies). Following a proposal made by the Senior Group of Experts on Severe Accident Management (SESAM), the Committee on the Safety of Nuclear Installations decided to sponsor a Specialist Meeting on Severe Accident Management Programme Development. The general objectives of the Specialist Meeting were to exchange experience, views, and information among the participants and to discuss the status of severe accident management programmes. The meeting brought together utilities, accident management programme developers, personnel training programme developers, regulators, and researchers. In general, the tone of the Specialist Meeting - designed to promote progress, as contrasted with conferences or symposia where the state-of-the-art is presented - was to be rather practical, and focus on accident management programme development, applications, results, difficulties and improvements. As shown by the conclusions of the meeting, there is no doubt that this objective was widely attained.

  6. Severe accidents and terrorist threats at nuclear reactors

    International Nuclear Information System (INIS)

    Pollack, G.L.

    1987-01-01

    Some of the key areas of uncertainty are the nature of the physical and chemical interactions of released fission products and of the interactions between a molten core and concrete, the completeness and validity of the computer codes used to predict accidents, and the behavior of the containment. Because of these and other uncertainties, it is not yet possible to reliably predict the consequences of reactor accidents. It is known that for many accident scenarios, especially less severe ones or where the containment is not seriously compromised, the amount of radioactive material expected to escape the reactor is less, even much less, than was previously calculated. For such accidents, the predictions are easier and more reliable. With severe accidents, however, there is considerable uncertainty as to the predicted results. For accidents of the type that terrorists might cause - for example, where the sequence of failure would be unexpected or where redundant safety features are caused to fail together - the uncertainties are still larger. The conclusion, then, is that there are potential dangers to the public from terrorist actions at a nuclear reactor; however, because of the variety of potential terrorist threats and the incompleteness of the knowledge about the behavior of reactor components and fission products during accidents, the consequences cannot yet be assessed quantitatively

  7. Evaluation of strategies for severe accident prevention and mitigation

    International Nuclear Information System (INIS)

    Tokarz, R.

    1989-01-01

    The NRC is planning to establish regulatory oversight on severe accident management capability in the US nuclear reactor industry. Accident management includes certain preparatory and recovery measures that can be taken by the plant operating and technical personnel to prevent or mitigate the consequences of a severe accident. Following an initiating event, accident management strategies include measures to (1) prevent core damage, (2) arrest the core damage if it begins and retain the core inside the vessel, (3) maintain containment integrity if the vessel is breached, and (4) minimize offsite releases. Objectives of the NRC Severe Accident Management Program are to assure that technically sound strategies are identified and guidance to implement these strategies is provided to utilities. This paper will describe work performed to date by Pacific Northwest Laboratory (PNL) and Battelle Memorial Institute (BMI) relative to severe accident strategy evaluation, as well as work to be performed and expected results. Working with Brookhaven National Laboratory, PNL evaluated a series of NRC suggested accident management strategies. The evaluation of these strategies was divided between PNL and Brookhaven National Laboratory and a similar paper will be presented by Brookhaven regarding their strategy evaluation. This paper will stress the overall safety issues related to the research and emphasize the strategies that are applicable to major safety issues. The relationship of these research activities to other projects is discussed, as well as planning for future changes in the direction of work to be undertaken

  8. CE/Bechtel design containment response to severe accident phenomenology: A comparison among several combustion engineering plants

    International Nuclear Information System (INIS)

    Khalil, Y.F.; Schneider, R.E.

    1995-01-01

    The objectives of this paper are to: (1) discuss the types of severe accident phenomena that drive containment failure modes in CE plants and (2) contribute to the current state of knowledge of CE/Bechtel-design containment response to severe accident phenomenology. The second objective is addressed by providing a comparative study of containment response to severe accidents among several CE plants including Millstone Unit 2 (MP2), Palisades (Consumers Power), Calvert Cliffs (Baltimore Gas and Electric Company), Palo Verde (Arizona Public Service), and SONGS Units 2 and 3 (Southern California Edison). The motivation for addressing the second objective is based on the current lack of comprehensive literature on CE/Bechtel design containment failure modes and mechanisms for accidents that progress beyond the design basis limits. The first part of this paper addresses severe accident phenomena-related failure mechanisms in CE/Bechtel-designed containments. The second part of this work provides a comparative study of containment response among several CE plants

  9. Severe accident considerations for modern KWU-PWR plants

    International Nuclear Information System (INIS)

    Eyink, J.

    1987-01-01

    In assumption of severe accident on modern KWU-PWR plants the author discusses on the: selection of core meltdown sequences, course of the accident, containment behaviour and source terms for fission products release to the environment

  10. Transient analysis for resolving safety issues

    International Nuclear Information System (INIS)

    Chao, J.; Layman, W.

    1987-01-01

    The Nuclear Safety Analysis Center (NSAC) has a Generic Safety Analysis Program to help resolve high priority generic safety issues. This paper describes several high priority safety issues considered at NSAC and how they were resolved by transient analysis using thermal hydraulics and neutronics codes. These issues are pressurized thermal shock (PTS), anticipated transients without scram (ATWS), steam generator tube rupture (SGTR), and reactivity transients in light of the Chernobyl accident

  11. Leakage potential through mechanical penetrations in a severe accident environment

    International Nuclear Information System (INIS)

    Koenig, L.N.

    1986-01-01

    This paper reviews the findings of an ongoing program, Integrity of Containment Penetrations Under Severe Accident Loads. The program is concerned with the leakage modes as well as the magnitude of leakage through mechanical penetrations in a containment building subject to a severe accident. Seal and gasket tests are used to evaluate the effect of radiation aging, thermal aging, seal geometry, and seal squeeze on seals and gaskets subjected to a hypothesized severe accident. The effects on leakage of the structural response of equipment hatches, personnel airlocks, and drywell heads subjected to severe accident pressures are studied by experiments and analyses. The data gathered during this program will be used to develop methodologies for predicting leakage

  12. Temporary jobs and the severity of workplace accidents.

    Science.gov (United States)

    Picchio, Matteo; van Ours, Jan C

    2017-06-01

    From the point of view of workplace safety, it is important to know whether having a temporary job has an effect on the severity of workplace accidents. We present an empirical analysis on the severity of workplace accidents by type of contract. We used microdata collected by the Italian national institute managing the mandatory insurance against work related accidents. We estimated linear models for a measure of the severity of the workplace accident. We controlled for time-invariant fixed effects at worker and firm levels to disentangle the impact of the type of contract from the spurious one induced by unobservables at worker and firm levels. Workers with a temporary contract, if subject to a workplace accident, were more likely to be confronted with severe injuries than permanent workers. When correcting the statistical analysis for injury under-reporting of temporary workers, we found that most of, but not all, the effect is driven by the under-reporting bias. The effect of temporary contracts on the injury severity survived the inclusion of worker and firm fixed effects and the correction for temporary workers' injury under-reporting. This, however, does not exclude the possibility that, within firms, the nature of the work may vary between different categories of workers. For example, temporary workers might be more likely to be assigned dangerous tasks because they might have less bargaining power. The findings will help in designing public policy effective in increasing temporary workers' safety at work and limiting their injury under-reporting. Copyright © 2017. Published by Elsevier Ltd.

  13. Simulator drills for the management of severe accidents

    International Nuclear Information System (INIS)

    Hoffmann, E.

    1989-01-01

    The present state of deliberations on the simulation of severe accidents is presented and applied to a training philosophy. The special characteristics of 'severe' accidents are addressed and, falling under this category, the 'psychological structure of the man-machine-situation' is examined. The valid rules for drilling 'post-RESA-conduct' (RESA = fast reactor shut down) and the monitoring of safety goals are introduced. 2 figs., 1 tab

  14. Use of probabilistic safety analyses in severe accident management

    International Nuclear Information System (INIS)

    Neogy, P.; Lehner, J.

    1991-01-01

    An important consideration in the development and assessment of severe accident management strategies is that while the strategies are often built on the knowledge base of Probabilistic Safety Analyses (PSA), they must be interpretable and meaningful in terms of the control room indicators. In the following, the relationships between PSA and severe accident management are explored using ex-vessel accident management at a PWR ice-condenser plant as an example. 2 refs., 1 fig., 3 tabs

  15. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1998-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  16. Thermal Hydraulic design parameters study for severe accidents using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Chang, Keun Sun [Sunmoon University, Asan (Korea, Republic of)

    1997-12-31

    To provide the information on severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore, was performed to investigate the effect of thermal hydraulic design parameters on severe accident progression of pressurized water reactors (PWRs). Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among nine parameters. For training, different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3 and 4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout (SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to the other six parameters. 9 refs., 5 tabs. (Author)

  17. Heat transfer phenomena revelant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression

  18. Heat transfer phenomena relevant to severe accidents

    International Nuclear Information System (INIS)

    Dallman, R.J.; Duffey, R.B.

    1990-01-01

    A number of aspects of severe accidents have been reviewed, particularly in relation to the heat transfer characteristics and the important phenomena. It is shown that natural circulation, forced convection, and entrainment phenomena are important for both the reactor system and ex-vessel events. It is also shown that the phenomena related to two component enhanced heat transfer is important in the pool of molten core debris, in relation to the potential for attack of the liner structure and the concrete. These mechanisms are discussed within the general context of severe accident progression. 26 refs

  19. Small break LOCA [loss of coolant accident] mitigation for Bellefonte

    International Nuclear Information System (INIS)

    Bayless, P.D.; Dobbe, C.A.

    1986-01-01

    Several 5-cm (2-in.) diameter cold leg break loss coolant accidents for the Bellefonte nuclear plant were analyzed as part of the Severe Accident Sequence Analysis Program. The transients assumed various system failures, and included the S 2 D sequence. Operator actions to mitigate the S 2 D transient were also investigated. The transients were analyzed until either core damage began or long-term decay heat removal was established. The S 2 D sequence was analyzed into the core damage phase of the transient. The analyses showed that the flow from one high pressure injection pump was necessary and sufficient to prevent core damage in the absence of operator actions. Operator actions were also able to prevent core damage for the S 2 D sequence

  20. Desktop Severe Accident Graphic Simulator Module for CANDU6 : PSAIS

    International Nuclear Information System (INIS)

    Park, S. Y.; Song, Y. M.

    2015-01-01

    The ISAAC ((Integrated Severe Accident Analysis Code for CANDU Plant) code is a system level computer code capable of performing integral analyses of potential severe accident progressions in nuclear power plants, whose main purpose is to support a Level 2 probabilistic safety assessment or severe accident management strategy developments. The code has the capability to predict a severe accident progression by modeling the CANDU6- specific systems and the expected physical phenomena based on the current understanding of the unique accident progressions. The code models the sequence of accident progressions from a core heatup, pressure tube/calandria tube rupture after an uncovery from inside and outside, a relocation of the damaged fuel to the bottom of the calandria, debris behavior in the calandria, corium quenching after a debris relocation from the calandria to the calandria vault and an erosion of the calandria vault concrete floor, a hydrogen burn, and a reactor building failure. Along with the thermal hydraulics, the fission product behavior is also considered in the primary system as well as in the reactor building

  1. A severe accident analysis for the system-integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Jung, Gunhyo; Jae, Moosung

    2015-01-01

    The System-Integrated Modular Advanced Reactor (SMART) that has been recently designed in KOREA and has acquired standard design certification from the nuclear power regulatory body (NSSC) is an integral type reactor with 330MW thermal power. It is a small sized reactor in which the core, steam generator, pressurizer, and reactor coolant pump that are in existing pressurized light water reactors are designed to be within a pressure vessel without any separate pipe connection. In addition, this reactor has much different design characteristics from existing pressurized light water reactors such as the adoption of a passive residual heat removal system and a cavity flooding system. Therefore, the safety of the SMART against severe accidents should be checked through severe accident analysis reflecting the design characteristics of the SMART. For severe accident analysis, an analysis model has been developed reflecting the design information presented in the standard design safety analysis report. The severe accident analysis model has been developed using the MELCOR code that is widely used to evaluate pressurized LWR severe accidents. The steady state accident analysis model for the SMART has been simulated. According to the analysis results, the developed model reflecting the design of the SMART is found to be appropriate. Severe accident analysis has been performed for the representative accident scenarios that lead to core damage to check the appropriateness of the severe accident management plan for the SMART. The SMART has been shown to be safe enough to prevent severe accidents by utilizing severe accident management systems such as a containment spray system, a passive hydrogen recombiner, and a cavity flooding system. In addition, the SMART is judged to have been technically improved remarkably compared to existing PWRs. The SMART has been designed to have a larger reactor coolant inventory compared to its core's thermal power, a large surface area in

  2. Identification and evaluation of PWR in-vessel severe accident management strategies

    International Nuclear Information System (INIS)

    Dukelow, J.S.; Harrison, D.G.; Morgenstern, M.

    1992-03-01

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents

  3. Preliminary safety analysis of the PWR with accident-tolerant fuels during severe accident conditions

    International Nuclear Information System (INIS)

    Wu, Xiaoli; Li, Wei; Wang, Yang; Zhang, Yapei; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng; Liu, Tong; Deng, Yongjun; Huang, Heng

    2015-01-01

    Highlights: • Analysis of severe accident scenarios for a PWR fueled with ATF system is performed. • A large-break LOCA without ECCS is analyzed for the PWR fueled with ATF system. • Extended SBO cases are discussed for the PWR fueled with ATF system. • The accident-tolerance of ATF system for application in PWR is illustrated. - Abstract: Experience gained in decades of nuclear safety research and previous nuclear accidents direct to the investigation of passive safety system design and accident-tolerant fuel (ATF) system which is now becoming a hot research point in the nuclear energy field. The ATF system is aimed at upgrading safety characteristics of the nuclear fuel and cladding in a reactor core where active cooling has been lost, and is preferable or comparable to the current UO 2 –Zr system when the reactor is in normal operation. By virtue of advanced materials with improved properties, the ATF system will obviously slow down the progression of accidents, allowing wider margin of time for the mitigation measures to work. Specifically, the simulation and analysis of a large break loss of coolant accident (LBLOCA) without ECCS and extended station blackout (SBO) severe accident are performed for a pressurized water reactor (PWR) loaded with ATF candidates, to reflect the accident-tolerance of ATF

  4. A methodology for the transfer of probabilities between accident severity categories

    International Nuclear Information System (INIS)

    Whitlow, J.D.; Neuhauser, K.S.

    1992-01-01

    Evaluation of the radiological risks of accidents involving vehicles transporting radioactive materials requires consideration of both accident probability and consequences. The probability that an accident will occur may be estimated from historical accident data for the given mode of transport. In addition to an overall accident rate, information regarding accident severity and the resulting package environments across the range of all credible accidents is needed to determine the potential for a release of radioactive material from the package or for an increase in direct radiation from the package caused by damage to packaging shielding. This information is usually obtained from a variety of sources such as historical data, experimental data, analyses of accident and package environments, and expert opinion. The consequences of an accident depend on a number of factors including the type, quantity, and physical form of radioactive material being transported; the response of the package to accident environments; the fraction of material released from the package; and the dispersion of any released material. One approach for the classification and treatment of transportation accidents in risk analysis divides the complete range of critical accident environments resulting from all credible accidents into some number of accident-severity categories. The types of accident environments that a package may be subjected to in transportation are often classified into the following five groups: impact, fire, crush, puncture, and immersion. A open-quotes criticalclose quotes accident environment is one of a type that could present a plausible threat to a package. Each severity category represents a portion of all credible accidents, and the total of all severity categories covers the complete range of critical accident environments. This approach is used in the risk assessment codes RADTRAN (Neuhauser and Kanipe 1992) and INTERTRAN (Ericsson and Elert 1983)

  5. Injury severity and seating position in accidents with German EMS helicopters.

    Science.gov (United States)

    Hinkelbein, Jochen; Spelten, Oliver; Neuhaus, Christopher; Hinkelbein, Mandy; Özgür, Enver; Wetsch, Wolfgang A

    2013-10-01

    Accident rates and fatality rates for Helicopter Emergency Medical Service (HEMS) missions have been investigated recently, but none of these studies considered the influence of the seating position in the helicopter. The aim of the present descriptive and observational study was to analyze injury severity depending on the seating position during HEMS accidents in Germany. Data from the German Federal Agency for Flight Accident Investigation was gathered for a period of 40 years (from 1970 to 2009). The seating position in the aircraft during the accident and the resulting injury severity (i.e., 1=no; 2=slight; 3=severe; and 4=fatal) were recorded. Injury severity was compared using the Fisher's exact test. P values accidents were investigated (n=61 accidents did not lead to any injuries in the occupants, n=7 accidents resulted in minor, and n=6 in severe injuries, and lethal injuries resulted from n=15 accidents). The occupant in the "patient" position was most likely to suffer from deadly injuries (44.9%), followed by the HEMS crew member rear seat (25.0%), compared to lower lethality rates in the other seating positions (9.4-11.2%). Sitting on the HEMS crew member rear seat also was associated with the highest percentage of severe and minor injuries (12.5% each). In HEMS accidents, the patients' position and the HEMS crew member rear seat were found to be at the highest risk for fatal or severe injuries. These results support the urgent requirement of a large international data base for HEMS accidents as a basis for further studies to improve the safety in HEMS missions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Considerations of severe accidents in the design of Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Dong Wook Jerng; Choong Sup Byun

    1998-01-01

    The severe accident is one of the key issues in the design of Korean Next Generation Reactor (KNGR) which is an evolutionary type of pressurized water reactor. As IAEA recommends in TECDOC-801, the design objective of KNGR with regard to safety is provide a sound technical basis by which an imminent off-site emergency response to any circumstance could be practically unnecessary. To implement this design objective, probabilistic safety goals were established and design requirements were developed for systems to mitigate severe accidents. The basic approach of KNGR to address severe accidents is firstly prevent severe accidents by reinforcing its capability to cope with the design basis accidents (DBA) and further with some accidents beyond DBAs caused by multiple failures, and secondly mitigate severe accidents to ensure the retention of radioactive materials in the containment by providing mean to maintain the containment integrity. For severe accident mitigation, KNGR principally takes the concept of ex-vessel corium cooling. To implement this concept, KNGR is equipped with a large cavity and cavity flooding system connected to the in-containment refueling water storage tank. Other major systems incorporated in KNGR are hydrogen igniters and safety depressurization systems. In addition, the KNGR containment is designed to withstand the pressure and temperature conditions expected during the course of severe accidents. In this paper, the design features and status of system designs related with severe accidents will be presented. Also, R and D activities related to severe accident mitigation system design will be briefly described

  7. Studies of severe accidents in light water reactors. Containment performance

    International Nuclear Information System (INIS)

    Hayns, M.R.; Phillips, D.W.; Young, R.L.D.

    1987-01-01

    The containment system of a LWR is an obvious component of the plant which performs an important safety function in preventing the release of fission products to the environment in the event of design basis accidents. With over 260 LWRs in service worldwide, and others still under construction, there is a considerable diversity of containment types and combinations of containment safeguards systems. All of these satisfy local regulatory requirements which are principally aimed at the design basis accidents, and these requirements naturally have a considerable uniformity. However, their design diversity becomes more relevant to the performance of the containment in severe accident conditions, and this aspect of containment performance is reviewed in this paper. The ability of the containment to mitigate severe accident consequences introduces the potential for accident management and recovery and this in turn points towards a range of new containment systems and concepts. PSA helps in judging these possibilities and in forming policies and procedures for accident management. It is perhaps in accident management that severe accident containment performance will be most beneficial in the future, and where additional effort in containment analysis will be focused

  8. A methodology for the transfer of probabilities between accident severity categories

    International Nuclear Information System (INIS)

    Whitlow, J.D.; Neuhauser, K.S.

    1993-01-01

    This paper will describe a methodology which has been developed to allow accident probabilities associated with one severity category scheme to be transferred to another severity category scheme, permitting some comparisons of different studies at the category level. In this methodology, the severity category schemes to be compared are mapped onto a common set of axes. The axes represent critical accident environments (e.g., impact, thermal, crush, puncture) and indicate the range of accident parameters from zero (no accident) to the most sever credible forces. The choice of critical accident environments for the axes depends on the package being transported and the mode of transportation. The accident probabilities associated with one scheme are then transferred to the other scheme. This transfer of category probabilities is based on the relationships of the critical accident parameters to probability of occurrence. The methodology can be employed to transfer any quantity between category schemes if the appropriate supporting information is available. (J.P.N.)

  9. Overview of severe accident research at the USNRC

    International Nuclear Information System (INIS)

    Basu, S.; Ader, C.E.

    1999-01-01

    This paper summarizes the U.S. Nuclear Regulatory Commission's (USNRC) severe accident research activities, in particular, progress made in the past year toward the resolution and/or improved understanding of a number of severe accident issues. The direct containment heating (DCH) is nearing resolution for Combustion Engineering and Babcock and Wilcox type pressurized water reactors (PWRs) are well as for ice condensers. Additionally, two lower pressure DCH tests were conducted recently at the Sandia National Laboratories (SNL) under the NRC/IPSN/FzK sponsorship to provide data regarding intentional depressurization as an accident management strategy to mitigate DCH loads. In the area of lower head integrity, the experimental program to investigate boiling heat transfer on downward facing curved surfaces with insulation was completed. Finally, the SNL program investigating the creep rupture behavior of the lower head under the combined thermo-mechanical loading was completed recently. Additional lower head experiments at SNL are being planned as an OECD project. During the past year, the USNRC participated in two programs aimed at extending the data base on hydrogen combustion into more prototypic situations. Testing was performed at the Brookhaven National Laboratory (BNL) to investigate detonation transmission at elevated temperatures. In a cooperative program under the sponsorship of NRC/IPSN/FzK, Russian Research Center (RRC) investigated hydrogen combustion issues at large scale at the RUT facility. The experimental program at the SNL to examine the performance of Passive Autocatalytic Recombiners (PARs) was completed also this year. In the fuel-coolant interaction (FCI) area, the experimental work at the Argonne National Laboratory (ANL) to investigate chemical augmentation of FCI energetics was completed as was the experimental work at the University of Wisconsin (UW) involving one-dimensional propagation experiments (similar to KROTOS). The USNRC is

  10. Analysis of severe core damage accident progression for the heavy water reactor

    International Nuclear Information System (INIS)

    Tong Lili; Yuan Kai; Yuan Jingtian; Cao Xuewu

    2010-01-01

    In this study, the severe accident progression analysis of generic Canadian deuterium uranium reactor 6 was preliminarily provided using an integrated severe accident analysis code. The selected accident sequences were multiple steam generator tube rupture and large break loss-of-coolant accidents because these led to severe core damage with an assumed unavailability for several critical safety systems. The progressions of severe accident included a set of failed safety systems normally operated at full power, and initiative events led to primary heat transport system inventory blow-down or boil off. The core heat-up and melting, steam generator response,fuel channel and calandria vessel failure were analyzed. The results showed that the progression of a severe core damage accident induced by steam generator tube rupture or large break loss-of-coolant accidents in a CANDU reactor was slow due to heat sinks in the calandria vessel and vault. (authors)

  11. Analysis of Hydrogen Control Strategy Using Igniter during Severe Accident

    International Nuclear Information System (INIS)

    Lee, Sung Bok; Kim, Hyeong Taek; Lee, Keo Hyoung

    2008-01-01

    The Severe Accident Management Guidelines (SAMGs) for the operating pressurized water reactor (PWR) have been completed within 2006. Among the SAMG strategies, mitigation-07 is the most important strategy for managing a severe accident of a PWR in order to reduce containment hydrogen. The fastest way to reduce the containment hydrogen concentration is to intentionally ignite the hydrogen. For this strategy, igniters exist in Optimized Power Reactor 1000 (OPR 1000) to burn hydrogen for a severe accident. For using the igniters during a severe accident, the adverse effects such as the explosion of the hydrogen mixture should be considered for containment integrity. However, an applicable discrimination method to activate the igniters does not exist, so that the hydrogen control strategy using the igniters cannot be chosen during a severe accident. Thus, this study focused on suggesting an applicable discrimination method to carry out the strategy of using the igniters. In this study, the specific plant used for this analysis is Ulchin Unit 5 and 6, OPR 1000 plant, in Korea

  12. A computer code for analysis of severe accidents in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  13. A computer code for analysis of severe accidents in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  14. A computer code for analysis of severe accidents in LWRs

    International Nuclear Information System (INIS)

    2001-01-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  15. Research on sever accident emergency simulation system for CPR1000

    International Nuclear Information System (INIS)

    Yang Zhifei; Liao Yehong; Liang Manchun; Li Ke; Yang Jie; Chen Yali

    2015-01-01

    The enhanced capability to nuclear power plant (NPP) severe accident management and emergency response depends heavily on exercises. Since the exercise scene is usually monotonous and not realistic, and conduct of exercise has a high cost, the effect of enhancing the capability is limited. Thus, the development of a Sever Accident Emergency Simulation System (SAESS) is necessary. SAESS is able to connect NPP simulator, and simulates the process of severe accident management, personnel evacuation, the dispersion of radioactive plume, and emergency response of emergency organizations. The system helps to design several of exercise scenes and optimize the disposal strategy in different severe accidents. In addition, the system reduces the cost of emergency exercise by computer simulation, benefits the research of exercise, increases the efficiency of exercise and enhances the emergency decision-making capability. This paper introduces the design and application of SAESS. (author)

  16. Severe Accidents: French Regulatory Practice for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Colin, M.

    1997-01-01

    In the framework of a continuous and iterative process, the French Safety Authority asks the utility EDF to implement equipment and procedure modifications on the operating reactors, in order to cope with the most likely Severe Accident sequences. As a result of Probabilistic Safety Assessments published in 1990, important equipment and procedure modifications are being implemented on the French PWRs to improve the safety in shutdown states. The implementation of another set of modifications against some reactivity accident sequences is also in progress. More recently, the Safety Authority expressed specific Severe Accident requirements in terms of instrumentation, equipment qualification, high pressure core melt accidents and hydrogen risk prevention. In that respect, EDF was asked to implement hydrogen recombiners on its reactors. On the other hand, the French Safety authority is involved with its German counterpart in the assessment process of the European Pressurized Water Reactor Project. In consistency with the common recommendations of the Safety Authorities involved, Severe Accident provisions for this reactor are being taken into account at the design stage

  17. A database system for the management of severe accident risk information, SARD

    International Nuclear Information System (INIS)

    Ahn, K. I.; Kim, D. H.

    2003-01-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies

  18. A database system for the management of severe accident risk information, SARD

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, K. I.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The purpose of this paper is to introduce main features and functions of a PC Windows-based database management system, SARD, which has been developed at Korea Atomic Energy Research Institute for automatic management and search of the severe accident risk information. Main functions of the present database system are implemented by three closely related, but distinctive modules: (1) fixing of an initial environment for data storage and retrieval, (2) automatic loading and management of accident information, and (3) automatic search and retrieval of accident information. For this, the present database system manipulates various form of the plant-specific severe accident risk information, such as dominant severe accident sequences identified from the plant-specific Level 2 Probabilistic Safety Assessment (PSA) and accident sequence-specific information obtained from the representative severe accident codes (e.g., base case and sensitivity analysis results, and summary for key plant responses). The present database system makes it possible to implement fast prediction and intelligent retrieval of the required severe accident risk information for various accident sequences, and in turn it can be used for the support of the Level 2 PSA of similar plants and for the development of plant-specific severe accident management strategies.

  19. Comparison of SAS3A and MELT-III predictions for a transient overpower hypothetical accident

    International Nuclear Information System (INIS)

    Wilburn, N.P.

    1976-01-01

    A comparison is made of the predictions of the two major codes SAS3A and MELT-III for the hypothetical unprotected transient overpower accident in the FFTF. The predictions of temperatures, fuel restructuring, fuel melting, reactivity feedbacks, and core power are compared

  20. Validation of severe accident management guidance for the wolsong plants

    International Nuclear Information System (INIS)

    Park, S. Y.; Jin, Y. H.; Kim, S. D.; Song, Y. M.

    2006-01-01

    Full text: Full text: The severe accident management(SAM) guidance has been developed for the Wolsong nuclear power plants in Korea. The Wolsong plants are 700MWe CANDU-type reactors with heavy water as the primary coolant, natural uranium-fueled pressurized, horizontal tubes, surrounded by heavy water moderator inside a horizontal calandria vessel. The guidance includes six individual accident management strategies: (1) injection into primary heat transport system (2) injection into calandria vessel (3) injection into calandria vault (4) reduction of fission product release (5) control of reactor building condition (6) reduction of reactor building hydrogen. The paper provides the approaches to validate the SAM guidance. The validation includes the evaluation of:(l) effectiveness of accident management strategies, (2) performance of mitigation systems or components, (3) calculation aids, (4) strategy control diagram, and (5) interface with emergency operation procedure and with radiation emergency plan. Several severe accident sequences with high probability is selected from the plant specific level 2 probabilistic safety analysis results for the validation of SAM guidance. Afterward, thermal hydraulic and severe accident phenomenological analyses is performed using ISAAC(Integrated Severe Accident Analysis Code for CANDU Plant) computer program. Furthermore, the experiences obtained from a table-top-drill is also discussed

  1. Perspectives on phenomenology and simulation of severe accident in light water reactors

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    2014-01-01

    Severe accident phenomena in light water reactors (LWRs) are generally characterized by their physically and chemically complex processes involved with high temperature core melt, multi-component and multi-phase flows, transport of radioactive materials and sometimes highly non-equilibrium state. Severe accident phenomenology is usually categorized into four phases; (1) fuel degradation, (2) in-vessel phenomena, (3) ex-vessel phenomena and (4) fission product release and transport. Among these, ex-vessel phenomena consist of five subcategories; 1) direct containment heating, 2) fuel coolant interaction (steam explosion), 3) molten core concrete interaction, 4) hydrogen behaviour and control and 5) containment failure/leakage. In the field of simulation of severe accident, severe accident analytical codes have been developed in the United States, EU and Japan, such as MAAP, MELCOR, ASTEC, THALES and SAMPSON. Many different kinds of analytical codes for the specific severe accident phenomena have also been developed worldwide. After the accident at Fukushima Daiichi Nuclear Power Station, review of severe accident research issues has been conducted and several issues are reconsidered, such as effects of BWR core degradation behaviors, sea water injection, pool scrubbing under rapid depressurization, containment failure/leakage and re-criticality. Some new experimental and analytical efforts have been started after the Fukushima accident. The present paper describes the perspectives on phenomenology and simulation of severe accident in LWRs, with the emphasis of insights obtained in the review of Fukushima accident. (author)

  2. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    International Nuclear Information System (INIS)

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-01

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR

  3. Improvement of Severe Accident Analysis Computer Code and Development of Accident Management Guidance for Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Kim, Ko Ryu; Kim, Dong Ha; Kim, See Darl; Song, Yong Mann; Choi, Young; Jin, Young Ho

    2005-03-15

    The objective of the project is to develop a generic severe accident management guidance(SAMG) applicable to Korean PHWR and the objective of this 3 year continued phase is to construct a base of the generic SAMG. Another objective is to improve a domestic computer code, ISAAC (Integrated Severe Accident Analysis code for CANDU), which still has many deficiencies to be improved in order to apply for the SAMG development. The scope and contents performed in this Phase-2 are as follows: The characteristics of major design and operation for the domestic Wolsong NPP are analyzed from the severe accident aspects. On the basis, preliminary strategies for SAM of PHWR are selected. The information needed for SAM and the methods to get that information are analyzed. Both the individual strategies applicable for accident mitigation under PHWR severe accident conditions and the technical background for those strategies are developed. A new version of ISAAC 2.0 has been developed after analyzing and modifying the existing models of ISAAC 1.0. The general SAMG applicable for PHWRs confirms severe accident management techniques for emergencies, provides the base technique to develop the plant specific SAMG by utility company and finally contributes to the public safety enhancement as a NPP safety assuring step. The ISAAC code will be used inevitably for the PSA, living PSA, severe accident analysis, SAM program development and operator training in PHWR.

  4. Design consideration on severe accident for future LWR

    International Nuclear Information System (INIS)

    Omoto, A.

    1998-01-01

    Utilities' Severe Accident Management strategies, selected based on Individual Plant Examination, are in the process of implementation for each operating plant. Activities for the next generation LWR design are going on by Utilities, NSSS vendors and Research Institutes. The proposed new designs vary from evolutionary design to revolutionary design such as the supercritical LWR. Discussion on the consideration of Severe Accident in the design of next generation LWR is being held to establish the industry's self-regulatory document on containment design and its performance, which ABWR-IER (Improved Evolutionary Reactor) on the part of BWR and Evolutionary APWR and New PWR21 on the part of PWR are expected to comply. Conceptual design study for ABWR-IER will illustrate an example of design approach for the prevention and mitigation of Severe Accident and its impact on capital cost

  5. Plant specific severe accident management - the implementation phase

    International Nuclear Information System (INIS)

    Prior, R.

    1999-01-01

    Many plants are in the process of developing on-site guidance for technical staff to respond to a severe accident situation severe accident management guidance (SAMG). Once the guidance is developed, the SAMG must be implemented at the plant site, and this involves addressing a number of additional aspects. In this paper, approaches to this implementation phase are reviewed, including review and verification of plant specific SAMG, organizational aspects and integration with the emergency plan, training of SAMG users, validation and self-assessment and SAMG maintenance. Examples draw on experience from assisting numerous plants to implement symptom based severe accident management guidelines based on the Westinghouse Owners Group approach, in Westinghouse, non-Westinghouse and VVER plant types. It is hoped that it will be of use to those plant operators about to perform these activities.(author)

  6. Development of instrumentation systems for severe accidents. 4. New accident tolerant in-containment pressure transducer for containment pressure monitoring system

    International Nuclear Information System (INIS)

    Oba, Masato; Teruya, Kuniyuki; Yoshitsugu, Makoto; Ikeuchi, Takeshi

    2015-01-01

    The accident at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (TF-1 accident) caused severe situations and resulted in a difficulty in measuring important parameters for monitoring plant conditions. Therefore, we have studied the TF-1 accident to select the important parameters that should be monitored at the severe accident and are developing the Severe Accident Instrumentations and Monitoring Systems that could measure the parameters in severe accident conditions. Mitsubishi Heavy Industries, LTD (MHI) developed a new accident tolerant containment pressure monitoring system and demonstrated that the monitoring system could endure extremely harsh environmental conditions that envelop severe accident environmental conditions inside a containment such as maximum operating temperature of up to 300degC and total integrated dose (TID) of 1 MGy gamma. The new containment pressure monitoring system comprises of a strain gage type pressure transducer and a mineral insulated (MI) cable with ceramic connectors, which are located in the containment, and a strain measuring amplifier located outside the containment. Less thermal and radiation degradation is achieved because of minimizing use of organic materials for in-containment equipment such as the transducer and connectors. Several tests were performed to demonstrate the performance and capability of the in-containment equipment under severe accident environmental conditions and the major steps in this testing were run in the following test sequences: (1) the baseline functional tests (e.g., repeatability, non-linearity, hysteresis, and so on) under normal conditions, (2) accident radiation testing, (3) seismic testing, and (4) steam/temperature test exposed to simulated severe accident environmental conditions. The test results demonstrate that the new pressure transducer can endure the simulated severe accident conditions. (author)

  7. Severe accident research and management in Nordic Countries - A status report

    International Nuclear Information System (INIS)

    Frid, W.

    2002-01-01

    The report describes the status of severe accident research and accident management development in Finland, Sweden, Norway and Denmark. The emphasis is on severe accident phenomena and issues of special importance for the severe accident management strategies implemented in Sweden and in Finland. The main objective of the research has been to verify the protection provided by the accident mitigation measures and to reduce the uncertainties in risk dominant accident phenomena. Another objective has been to support validation and improvements of accident management strategies and procedures as well as to contribute to the development of level 2 PSA, computerised operator aids for accident management and certain aspects of emergency preparedness. Severe accident research addresses both the in-vessel and the ex-vessel accident progression phenomena and issues. Even though there are differences between Sweden and Finland as to the scope and content of the research programs, the focus of the research in both countries is on in-vessel coolability, integrity of the reactor vessel lower head and core melt behaviour in the containment, in particular the issues of core debris coolability and steam explosions. Notwithstanding that our understanding of these issues has significantly improved, and that experimental data base has been largely expanded, there are still important uncertainties which motivate continued research. Other important areas are thermal-hydraulic phenomena during reflooding of an overheated partially degraded core, fission product chemistry, in particular formation of organic iodine, and hydrogen transport and combustion phenomena. The development of severe accident management has embraced, among other things, improvements of accident mitigating procedures and strategies, further work at IFE Halden on Computerised Accident Management Support (CAMS) system, as well as plant modifications, including new instrumentation. Recent efforts in Sweden in this area

  8. Transient performance of S-prism

    International Nuclear Information System (INIS)

    Dubberley, A.E.; Boardman, C.E.; Gamble, R.E.; Hiu, M.M.; Lipps, A.J.; Wu, T.

    2001-01-01

    S-PRISM is an advanced Fast Reactor plant design that utilizes compact modular pool-type reactors sized to enable factory fabrication and an affordable prototype test of a single Nuclear Steam Supply System (NSSS) for design certification at minimum cost and risk. Based on the success of the previous DOE sponsored Advanced Liquid Metal Reactor (ALMR) program GE has continued to develop and assess the technical viability and economic potential of an up-rated plant called SuperPRISM (S-PRISM). This paper presents the results of transient analyses performed to assess the ability of S-PRISM to accommodate severe accident initiator events. A unique safety capability of S-PRISM is accommodation of the ''higher probability'' accident initiators that led to core melt accidents in prior large LMRs. These events, the Anticipated Transients Without Scram (ATWS) events, are thus the focus of passive safety confirmation analyses. The events included in this assessment are: Unprotected Loss of Flow, Unprotected Loss of Heat Sink, Unprotected Loss of Flow and Heat sink, Unprotected Transient Overpower and Unprotected Safe Shutdown Earthquake. (author)

  9. Development of Krsko Severe Accident Management Guidance (SAMG)

    International Nuclear Information System (INIS)

    Cizel, F.

    1999-01-01

    In this lecture development of severe accident management guidances for Krsko NPP are described. Author deals with the history of severe accident management and implementation of issues (validation, review of E-plan and other aspects SAMG implementation guidance). Methods of Westinghouse owners group, of Combustion Engineering owners group, of Babcock and Wilcox owners group, of the BWR owners group, as well as application of US SAMG methodology in Europe and elsewhere are reviewed

  10. Development of system of computer codes for severe accident analysis and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H S; Jeon, M H; Cho, N J. and others [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1992-01-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts.

  11. Development of system of computer codes for severe accident analysis and its applications

    International Nuclear Information System (INIS)

    Jang, H. S.; Jeon, M. H.; Cho, N. J. and others

    1992-01-01

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in nuclear power plants. This system of codes is necessary to conduct Individual Plant Examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident-resistance. Severe accident can be mitigated by the proper accident management strategies. Some operator action for mitigation can lead to more disastrous result and thus uncertain severe accident phenomena must be well recognized. There must be further research for development of severe accident management strategies utilizing existing plant resources as well as new design concepts

  12. CANDU severe accident management guidance update

    International Nuclear Information System (INIS)

    Jones, L.; Popov, N.; Gilbert, L.; Weed, J.

    2014-01-01

    The CANDU Owners Group (COG) developed a set of generic and initial station-specific Severe Accident Management Guidance (SAMG) documents to mitigate the consequences to the public in the event of a severe accident. The generic portion of the COG SAMG was completed in 2006; the overall project including the station-specific phase was completed in April 2007. Over the years, the CANDU industry and utilities have continuously increased the knowledge base for SAMG and have incorporated various engineered features based on the knowledge obtained. As a result of the event that occurred at the Fukushima Daiiachi nuclear power plant (NPP) in Japan, the Canadian Nuclear Safety Commission (CNSC) established the CNSC Fukushima Task Force. The results of the task force were documented in INFO-0828, CNSC Staff Action Plan on the CNSC Fukushima Task Force Recommendations. Among the recommendation documented in INFO-828 were Fukushima Action Items (FAIs) directed towards the CANDU utilities in Canada; a portion of which are related to SAMG documentation updates and directed at enhancing SAM response. A COG joint project was established to support the closure of the CNSC FAIs and to revise the current CANDU documentation accordingly. This paper provides a high level summary of the COG project scope and results. It also demonstrates that the CANDU SAMG programs in Canada provide robust protection and mitigation of severe accidents. (author)

  13. CANDU severe accident management guidance update

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L., E-mail: lisa.m.jones@opg.com [Ontario Power Generation, Pickering, ON (Canada); Popov, N., E-mail: nik.popov@rogers.com [Candu Owners Group, Toronto, ON (Canada); Gilbert, L., E-mail: lovell.gilbert@brucepower.com [Bruce Power, Tiverton, ON (Canada); Weed, J., E-mail: jeff.weed@candu.gov [Candu Owners Group, Toronto, ON (Canada)

    2014-07-01

    The CANDU Owners Group (COG) developed a set of generic and initial station-specific Severe Accident Management Guidance (SAMG) documents to mitigate the consequences to the public in the event of a severe accident. The generic portion of the COG SAMG was completed in 2006; the overall project including the station-specific phase was completed in April 2007. Over the years, the CANDU industry and utilities have continuously increased the knowledge base for SAMG and have incorporated various engineered features based on the knowledge obtained. As a result of the event that occurred at the Fukushima Daiiachi nuclear power plant (NPP) in Japan, the Canadian Nuclear Safety Commission (CNSC) established the CNSC Fukushima Task Force. The results of the task force were documented in INFO-0828, CNSC Staff Action Plan on the CNSC Fukushima Task Force Recommendations. Among the recommendation documented in INFO-828 were Fukushima Action Items (FAIs) directed towards the CANDU utilities in Canada; a portion of which are related to SAMG documentation updates and directed at enhancing SAM response. A COG joint project was established to support the closure of the CNSC FAIs and to revise the current CANDU documentation accordingly. This paper provides a high level summary of the COG project scope and results. It also demonstrates that the CANDU SAMG programs in Canada provide robust protection and mitigation of severe accidents. (author)

  14. Development of the severe accident management guidance module for the SATS training simulator

    International Nuclear Information System (INIS)

    Kim, K. R.; Park, S. H.; Kim, D. H.

    2004-01-01

    Recently KAERI has developed severe accident management guidance to establish Korea standard severe accident management system. On the other hand PC-based severe accident training simulator SATS has been developed, which uses MELCOR computing code as the simulation engine. SATS graphically displays and simulates the severe accident progression with interactive user inputs. The control capability of SATS makes a severe accident training course more interesting and effective. In this paper the development and functions of HyperKAMG module are explained. Furthermore easiness and effectiveness of the HyperKAMG-SATS system in severe accident management are described

  15. ACCIDENT PHENOMENA OF RISK IMPORTANCE PROJECT - Continued RESEARCH CONCERNING SEVERE ACCIDENT PHENOMENA AND MANAGEMENT IN Sweden

    International Nuclear Information System (INIS)

    Rolandson, S.; Mueller, F.; Loevenhielm, G.

    1997-01-01

    Since 1988 all reactors in Sweden have mitigating measures, such as filtered vents, implemented. In parallel with the work of implementing these measures, a cooperation effort (RAMA projects) between the Swedish utilities and the Nuclear Power Inspectorate was performed to acquire sufficient knowledge about severe accident research work. The on-going project has the name Accident Phenomena of Risk Importance 3. In this paper, we will give background information about severe accident management in Sweden. In the Accident Phenomena of Risk Importance 3 project we will focus on the work concerning coolability of melted core in lower plenum which is the main focus of the In-vessel Coolability Task Group within the Accident Phenomena of Risk Importance 3 project. The Accident Phenomena of Risk Importance 3 project has joined on international consortium and the in-vessel cooling experiments are performed by Fauske and Associates, Inc. in Burr Ridge, Illinois, United States America, Sweden also intends to do one separate experiment with one instrument penetration we have in Swedish/Finnish BWR's. Other parts of the Accident Phenomena of Risk Importance 3 project, such as support to level 2 studies, the research at Royal Institute of Technology and participation in international programs, such as Cooperative Severe Accident Research Program, Advanced Containment Experiments and PHEBUS will be briefly described in the paper

  16. High-speed radiation dose calculations for severe accidents using INDOS

    International Nuclear Information System (INIS)

    Davidson, G.R.; Godin-Jacqmin, L.J.; Raines, J.C.

    1992-01-01

    The computer code INDOS (in-plant dose) has been developed for the high-speed calculation of in-plant radiation dose rates and doses during and/or due to a severe accident at a nuclear power plant. This paper describes the current capabilities of the code and presents the results of calculations for several severe-accident scenarios. The INDOS code can be run either as a module of MAAP, a code widely used in the nuclear industry for simulating the response of a light water reactor system during severe accidents, or as a stand-alone code using output from an alternative companion code. INDOS calculates gamma dose rates and doses in major plant compartments caused by airborne and deposited fission products released during an accident. The fission product concentrations are determined by the companion code

  17. Molten Corium-Concrete Interaction Behavior Analyses for Severe Accident Management in CANDU Reactor

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, D. H.; Song, Y. M.

    2014-01-01

    After the last few severe accidents, the importance of accident management in nuclear power plants has increased. Many countries, including the United States (US) and Canada, have focused on understanding severe accidents in order to identify ways to further improve the safety of nuclear plants. It has been recognized that severe accident analyses of nuclear power plants will be beneficial in understanding plant-specific vulnerabilities during severe accidents. The objectives of this paper are to describe the molten corium behavior to identify a plant response with various concrete specific components. Accident analyses techniques using ISSAC can be useful tools for MCCI behavior in severe accident mitigation

  18. Analysis of hot leg natural circulation under station blackout severe accident

    International Nuclear Information System (INIS)

    Deng Jian; Cao Xuewu

    2007-01-01

    Under severe accidents, natural circulation flows are important to influence the accident progression and result in a pressurized water reactor (PWR). In a station blackout accident with no recovery of steam generator (SG) auxiliary feedwater (TMLB' severe accident scenario), the hot leg countercurrent natural circulation flow is analyzed by using a severe-accident code, to better understand its potential impacts on the creep-rupture timing among the surge line, the hot leg; and SG tubes. The results show that the natural circulation may delay the failure time of the hot leg. The recirculation ratio and the hot mixing factor are also calculated and discussed. (authors)

  19. Proceedings of the workshop on severe accident research, Japan (SARJ-99)

    International Nuclear Information System (INIS)

    Hashimoto, Kazuichiro

    2000-11-01

    The Workshop on Severe Accident Research, Japan (SARJ-99) was taken place at Hotel Lungwood on November 8-10, 1999, and attended by 156 participants from 12 countries. A total of 46 papers, which covered wide areas of severe accident research both in experiments and analyses, such as fuel/coolant interaction, accident analysis and modeling, in-vessel phenomena, accident management, fission product behavior, research reactors, ex-vessel phenomena, and structural integrity, were presented. The panel discussion titled 'Link of Severe Accident Research Results to Regulation: Current Status and Future Perspective' was successfully conducted, and the wide variety of opinions and views were exchanged among panelists and experts. (J.P.N.)

  20. MELCOR Severe Accident Analysis on the SMART Reactor

    International Nuclear Information System (INIS)

    Kim, Tae Woon; Jin, Young Ho; Kim, Young In; Kim, Keung Koo; Wang, Ziao; Revankar, Shripad

    2014-01-01

    A severe accident is analyzed for Korea SMR reactor, SMART. Core melt down sequences are analyzed for SMART reactor core using MELCOR version 1.8.5. MELCOR is developed by Sandia National Laboratory for US NRC for the simulation of severe accidents in nuclear power plants. Two cases are simulated here and compared between them; one is the case for core having 3 concentric rings and the other is the case for core having 5 concentric rings. One inch break LOCA scenario is simulated and compared between these two core models. Time sequences for the thermal hydraulic behaviors of RPV and thermal heatup behaviors of reactor core are explained in graphically. Thermal hydraulic behavior such as the change of pressure, level, mass, and temperature of RPV is explained. Thermal heatup behavior of reactor core such as oxidation of cladding, hydrogen generation, core slumping down to lower plenum, and finally creep rupture of PRV lower head is explained. Engineered safety features such as safety injection systems (SIS), and Passive residual heat removal systems (PHRS), etc. are assumed to be not working. One inch break of severe accident is simulated on Korean SMR (SMART) Integral PWR with MELCOR code version 1.8.5. Core melt progression and lower head failure time is very slow compared to other commercial reactors. Simulation on 3 and 5 radial rings core models gives very similar pattern in core cell failure timings. Other various accident scenarios (for example, SBO in Fukushima) will be tried further. Containment behaviors and source term behaviors in severe accident conditions will be analyzed in future

  1. Nuclear power plant severe accident research plan. Revision 1

    International Nuclear Information System (INIS)

    Marino, G.P.

    1986-04-01

    Subsequent to the Three Mile Island Unit 2 accident, recommendations were made by a number of review committees to consider regulatory changes which would provide better protection of the public from severe accidents. Over the past six years a major research effort has been underway by the NRC to develop an improved understanding of severe accidents and to provide a technical basis to support regulatory decisions. The purpose of this report is to describe current plans for the completion and extension of this research in support of ongoing regulatory actions in this area

  2. Test Data for USEPR Severe Accident Code Validation

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Rempe

    2007-05-01

    This document identifies data that can be used for assessing various models embodied in severe accident analysis codes. Phenomena considered in this document, which were limited to those anticipated to be of interest in assessing severe accidents in the USEPR developed by AREVA, include: • Fuel Heatup and Melt Progression • Reactor Coolant System (RCS) Thermal Hydraulics • In-Vessel Molten Pool Formation and Heat Transfer • Fuel/Coolant Interactions during Relocation • Debris Heat Loads to the Vessel • Vessel Failure • Molten Core Concrete Interaction (MCCI) and Reactor Cavity Plug Failure • Melt Spreading and Coolability • Hydrogen Control Each section of this report discusses one phenomenon of interest to the USEPR. Within each section, an effort is made to describe the phenomenon and identify what data are available modeling it. As noted in this document, models in US accident analysis codes (MAAP, MELCOR, and SCDAP/RELAP5) differ. Where possible, this report identifies previous assessments that illustrate the impact of modeling differences on predicting various phenomena. Finally, recommendations regarding the status of data available for modeling USEPR severe accident phenomena are summarized.

  3. ANS severe accident program overview ampersand planning document

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1995-09-01

    The Advanced Neutron Source (ANS) severe accident document was developed to provide a concise and coherent mechanism for presenting the ANS SAP goals, a strategy satisfying these goals, a succinct summary of the work done to date, and what needs to be done in the future to ensure timely licensability. Guidance was received from various bodies [viz., panel members of the ANS severe accident workshop and safety review committee, Department of Energy (DOE) orders, Nuclear Regulatory Commission (NRC) requirements for ALWRs and advanced reactors, ACRS comments, world-wide trends] were utilized to set up the ANS-relevant SAS goals and strategy. An in-containment worker protection goal was also set up to account for the routine experimenters and other workers within containment. The strategy for achieving the goals is centered upon closing the severe accident issues that have the potential for becoming certification issues when assessed against realistic bounding events. Realistic bounding events are defined as events with an occurrency frequency greater than 10 -6 /y. Currently, based upon the level-1 probabilistic risk assessment studies, the realistic bounding events for application for issue closure are flow blockage of fuel element coolant channels, and rapid depressurization-related accidents

  4. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject F. Contributions to code validation using BWR data and to evaluation and optimization of accident management measures. Final report

    International Nuclear Information System (INIS)

    Di Marcello, Valentino; Imke, Uwe; Sanchez Espinoza, Victor

    2016-09-01

    The exact knowledge of the transient course of events and of the dominating processes during a severe accident in a nuclear power station is a mandatory requirement to elaborate strategies and measures to minimize the radiological consequences of core melt. Two typical experiments using boiling water reactor assemblies were modelled and simulated with the severe accident simulation code ATHLET-CD. The experiments are related to the early phase of core degradation in a boiling water reactor. The results reproduce the thermal behavior and the hydrogen production due to oxidation inside the bundle until relocation of material by melting. During flooding of the overheated assembly temperatures and hydrogen oxidation are under estimated. The deviations from the experimental results can be explained by the missing model to simulate bore carbide oxidation of the control rods. On basis of a hypothetical loss of coolant accident in a typical German boiling water reactor the effectivity of flooding the partial degraded core is investigated. This measure of mitigation is efficient and prevents failure of the reactor pressure vessel if it starts before molten material is relocated into the lower plenum. Considerable amount of hydrogen is produced by oxidation of the metallic components.

  5. Reactor Core Coolability Analysis during Hypothesized Severe Accidents of OPR1000

    International Nuclear Information System (INIS)

    Lee, Yongjae; Seo, Seungwon; Kim, Sung Joong; Ha, Kwang Soon; Kim, Hwan-Yeol

    2014-01-01

    Assessment of the safety features over the hypothesized severe accidents may be performed experimentally or numerically. Due to the considerable time and expenditures, experimental assessment is implemented only to the limited cases. Therefore numerical assessment has played a major role in revisiting severe accident analysis of the existing or newly designed power plants. Computer codes for the numerical analysis of severe accidents are categorized as the fast running integral code and detailed code. Fast running integral codes are characterized by a well-balanced combination of detailed and simplified models for the simulation of the relevant phenomena within an NPP in the case of a severe accident. MAAP, MELCOR and ASTEC belong to the examples of fast running integral codes. Detailed code is to model as far as possible all relevant phenomena in detail by mechanistic models. The examples of detailed code is SCDAP/RELAP5. Using the MELCOR, Carbajo. investigated sensitivity studies of Station Black Out (SBO) using the MELCOR for Peach Bottom BWR. Park et al. conduct regulatory research of the PWR severe accident. Ahn et al. research sensitivity analysis of the severe accident for APR1400 with MELCOR 1.8.4. Lee et al. investigated RCS depressurization strategy and developed a core coolability map for independent scenarios of Small Break Loss-of-Coolant Accident (SBLOCA), SBO, and Total Loss of Feed Water (TLOFW). In this study, three initiating cases were selected, which are SBLOCA without SI, SBO, and TLOFW. The initiating cases exhibit the highest probability of transitioning into core damage according to PSA 1 of OPR 1000. The objective of this study is to investigate the reactor core coolability during hypothesized severe accidents of OPR1000. As a representative indicator, we have employed Jakob number and developed JaCET and JaMCT using the MELCOR simulation. Although the RCS pressures for the respective accident scenarios were different, the JaMCT and Ja

  6. A methodology for the transfer of probabilities between accident severity categories

    International Nuclear Information System (INIS)

    Whitlow, J.D.; Neuhauser, K.S.

    1991-01-01

    A methodology has been developed which allows the accident probabilities associated with one accident-severity category scheme to be transferred to another severity category scheme. The methodology requires that the schemes use a common set of parameters to define the categories. The transfer of accident probabilities is based on the relationships between probability of occurrence and each of the parameters used to define the categories. Because of the lack of historical data describing accident environments in engineering terms, these relationships may be difficult to obtain directly for some parameters. Numerical models or experienced judgement are often needed to obtain the relationships. These relationships, even if they are not exact, allow the accident probability associated with any severity category to be distributed within that category in a manner consistent with accident experience, which in turn will allow the accident probability to be appropriately transferred to a different category scheme

  7. Application of transient ignition model to multi-canister (MCO) accident analysis

    International Nuclear Information System (INIS)

    Kummerer, M.

    1996-01-01

    The potential for ignition of spent nuclear fuel in a Multi-Canister Overpack (MCO) is examined. A transient model is applied to calculate the highest ambient gas temperature outside an MCO wall tube or shipping cask for which a stable temperature condition exists. This integral analysis couples reaction kinetics with a description of the MCO configuration, heat and mass transfer, and fission product phenomena. It thereby allows ignition theory to be applied to various complex scenarios, including MCO water loss accidents and dry MCO air ingression

  8. The economic impact of reactor transients

    International Nuclear Information System (INIS)

    Rossin, A.D.; Vine, G.L.

    1984-01-01

    This chapter discusses the cost estimation of transients and the causal relationship between transients and accidents. It is suggested that the calculation of the actual cost of a transient that has occurred is impossible without computerized records. Six months of operating experience reports, based on a survey of pressurized water reactors (PWRs) and boiling water reactors (BWRs) conducted by the Nuclear Safety Analysis Center (NSAC), are analyzed. The significant costs of a reactor transient are the repair costs resulting from severe damage to plant equipment, the cost of scrams (the actions the system is designed to take to avoid safety risks), US NRC fines, negative publicity, utility rates and revenues. It is estimated that the Three Mile Island-2 accident cost the US over $100 billion in nuclear plant delays and cancellations, more expensive fuel, oil imports, backfits, bureaucratic, administrative and legal costs, and lost productivity

  9. Fan Cooler Operation in Kori 1 for Mitigating Severe Accident

    International Nuclear Information System (INIS)

    Suh, Nam Duk; Park, Jae Hong

    2005-01-01

    The Korea Ministry of Science and Technology (MOST) issued the 'Policy on Severe Accident of Nuclear Power Plants' in August 2001. According to the policy it was required for the licensee to develop a plant specific severe accident management guideline (SAMG) and to implement it. Thus the utility has made an implementation plan to develop SAMGs for operating plants. The SAMG for Kori unit 1 was submitted to the government on January 2004. Since then, the government trusted KINS to review the submitted SAMG in view of its feasibility and effectiveness. The first principle of the developed SAMG is to use only the available facilities as it is without introducing any system change. Because Kori-1 has no mitigative facility against combustible gases during severe accident, it relies heavily both on spray and on fan cooler systems to control the containment condition. Thus one of the issues raised during the review is to know whether the fan coolers which are designed for DBA LOCA can be effective in mitigating the severe accident conditions. This paper presents an analysis result of fan cooler operation in controlling the containment condition during severe accident of Kori 1

  10. Proceedings of the workshop on severe accident research, Japan (SARJ-99)

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kazuichiro [ed.

    2000-11-01

    The Workshop on Severe Accident Research, Japan (SARJ-99) was taken place at Hotel Lungwood on November 8-10, 1999, and attended by 156 participants from 12 countries. A total of 46 papers, which covered wide areas of severe accident research both in experiments and analyses, such as fuel/coolant interaction, accident analysis and modeling, in-vessel phenomena, accident management, fission product behavior, research reactors, ex-vessel phenomena, and structural integrity, were presented. The panel discussion titled 'Link of Severe Accident Research Results to Regulation: Current Status and Future Perspective' was successfully conducted, and the wide variety of opinions and views were exchanged among panelists and experts. (J.P.N.)

  11. Human error as the root cause of severe accidents at nuclear reactors

    International Nuclear Information System (INIS)

    Kovács Zoltán; Rýdzi, Stanislav

    2017-01-01

    A root cause is a factor inducing an undesirable event. It is feasible for root causes to be eliminated through technological process improvements. Human error was the root cause of all severe accidents at nuclear power plants. The TMI accident was caused by a series of human errors. The Chernobyl disaster occurred after a badly performed test of the turbogenerator at a reactor with design deficiencies, and in addition, the operators ignored the safety principles and disabled the safety systems. At Fukushima the tsunami risk was underestimated and the project failed to consider the specific issues of the site. The paper describes the severe accidents and points out the human errors that caused them. Also, provisions that might have eliminated those severe accidents are suggested. The fact that each severe accident occurred on a different type of reactor is relevant – no severe accident ever occurred twice at the same reactor type. The lessons learnt from the severe accidents and the safety measures implemented on reactor units all over the world seem to be effective. (orig.)

  12. Severe Accidents in the Energy Sector

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, S; Spiekerman, G; Dones, R

    1998-11-01

    A comprehensive database on severe accidents, with main emphasis on the ones associated with the energy sector, has been established by the Paul Scherrer Institute (PSI). Fossil energy carriers, nuclear power and hydro power are covered in ENSAD (Energy related Severe Accident Database), and the scope of work includes all stages of the analysed energy chains, i.e. exploration, extraction, transports, processing, storage and waste disposal. The database has been developed using a wide variety of sources. As opposed to the previous studies the ambition of the present work has been, whenever feasible, to cover a relatively broad spectrum of damage categories of interest. This includes apart from fatalities also serious injuries, evacuations, land or water contamination, and economic losses. Currently, ENSAD covers 13,914 accidents, of which 4290 are energy related, and 1943 are considered as severe accidents. Significant effort has been directed towards the examination of the relevance of the worldwide accident records to the Swiss specific conditions, particularly in the context of nuclear and hydro power. For example, a detailed investigation of large dam failures and their consequences was carried out. Generally, while Swiss specific aspects are emphasised, the major part of the collected and analysed data, as well as the insights gained, are considered to be of general interest. In particular, three sets of the aggregated results are provided based on world wide occurrence, on OECD countries, and on non OECD countries, respectively. Significant differences exist between the aggregated, normalised damage rates assessed for the various energy carriers: On the world wide basis, the broader picture obtained by coverage of full energy chains leads to aggregated immediate fatality rates being much higher for the fossil fuels than what one would expect if power plants only were considered. The highest rates apply to LPG, followed by hydro, oil, coal, natural gas and

  13. Severe Accidents in the Energy Sector

    International Nuclear Information System (INIS)

    Hirschberg, S.; Spiekerman, G.; Dones, R.

    1998-11-01

    A comprehensive database on severe accidents, with main emphasis on the ones associated with the energy sector, has been established by the Paul Scherrer Institute (PSI). Fossil energy carriers, nuclear power and hydro power are covered in ENSAD (Energy related Severe Accident Database), and the scope of work includes all stages of the analysed energy chains, i.e. exploration, extraction, transports, processing, storage and waste disposal. The database has been developed using a wide variety of sources. As opposed to the previous studies the ambition of the present work has been, whenever feasible, to cover a relatively broad spectrum of damage categories of interest. This includes apart from fatalities also serious injuries, evacuations, land or water contamination, and economic losses. Currently, ENSAD covers 13,914 accidents, of which 4290 are energy related, and 1943 are considered as severe accidents. Significant effort has been directed towards the examination of the relevance of the worldwide accident records to the Swiss specific conditions, particularly in the context of nuclear and hydro power. For example, a detailed investigation of large dam failures and their consequences was carried out. Generally, while Swiss specific aspects are emphasised, the major part of the collected and analysed data, as well as the insights gained, are considered to be of general interest. In particular, three sets of the aggregated results are provided based on world wide occurrence, on OECD countries, and on non OECD countries, respectively. Significant differences exist between the aggregated, normalised damage rates assessed for the various energy carriers: On the world wide basis, the broader picture obtained by coverage of full energy chains leads to aggregated immediate fatality rates being much higher for the fossil fuels than what one would expect if power plants only were considered. The highest rates apply to LPG, followed by hydro, oil, coal, natural gas and

  14. How has severe accident analysis contributed to sizewell B and how can it continue to contribute in the future

    International Nuclear Information System (INIS)

    Harrison, J.R.; Western, D.J.

    1987-01-01

    Sizewell B is a proposed 1100 MWe PWR which is a UK development of the US SNUPPS design. The UK reference design document for the plant was first issued in 1981 and the Pre-Construction Safety Report (PCSR) was submitted to the Nuclear Installations Inspectorate (NII), the UK licensing authority, in 1982. A major public inquiry into the proposal took place between January 1983 and March 1985. This paper is concerned with the analysis of severe accidents. This means all the analysis that is concerned with those fault sequences that are outside the design basis of the plant and which may lead to severe consequences - either in terms of plant damage or release of radioactivity. This analysis comprises probabilistic assessments of the frequency of such sequences, transient analysis of the way such sequences develop and radiological release analysis. Part one of this paper examines how the severe accident analysis carried out for Sizewell B has contributed to the judgement that the design is sound and that the construction phase should proceed. The second part of the paper looks to the future and asks ''Can severe accident analysis make any further contribution during the period from licensing up until operation commences

  15. Recent Developments in Level 2 PSA and Severe Accident Management

    International Nuclear Information System (INIS)

    Ang, Ming Leang; Shepherd, Charles; Gauntt, Randall; Landgren, Vickie; Van Dorsselaere, Jean Pierre; Chaumont, Bernard; Raimond, Emmanuel; Magallon, Daniel; Prior, Robert; Mlady, Ondrej; Khatib-Rahbar, Mohsen; Lajtha, Gabor; Tinkler, Charles; Siu, Nathan

    2007-01-01

    In 1997, CSNI WGRISK produced a report on the state of the art in Level 2 PSA and severe accident management - NEA/CSNI/R(1997)11. Since then, there have been significant developments in that more Level 2 PSAs have been carried out worldwide for a variety of nuclear power plant designs including some that were not addressed in the original report. In addition, there is now a better understanding of the severe accident phenomena that can occur following core damage and the way that they should be modelled in the PSA. As requested by CSNI in December 2005, the objective of this study was to produce a report that updates the original report and gives an account of the developments that have taken place since 1997. The aim has been to capture the most significant new developments that have occurred rather than to provide a full update of the original report, most of which is still valid. This report is organised using the same structure as the original report as follows: Chapter 2: Summary on state of application, results and insights from recent Level 2 PSAs. Chapter 3: Discussion on key severe accident phenomena and modelling issues, identification of severe accident issues that should be treated in Level 2 PSAs for accident management applications, review of severe accident computer codes and the use of these codes in Level 2 PSAs. Chapter 4: Review of approaches and practices for accident management and SAM, evaluation of actions in Level 2 PSAs. Chapter 5: Review of available Level 2 PSA methodologies, including accident progression event tree / containment event tree development. Chapter 6: Aspects important to quantification, including the use of expert judgement and treatment of uncertainties. Chapter 7: Examples of the use of the results and insights from the Level 2 PSA in the context of an integrated (risk informed) decision making process

  16. [Severe parachuting accident. Analysis of 122 cases].

    Science.gov (United States)

    Krauss, U; Mischkowsky, T

    1993-06-01

    Based on a population of 122 severely injured patients the causes of paragliding accidents and the patterns of injury are analyzed. A questionnaire is used to establish a sport-specific profile for the paragliding pilot. The lower limbs (55.7%) and the lower parts of the spine (45.9%) are the most frequently injured parts of the body. There is a high risk of multiple injuries after a single accident because of the tremendous axial power. The standard of equipment is good in over 90% of the cases. Insufficient training and failure to take account of geographical and meteorological conditions are the main determinants of accidents sustained by paragliders, most of whom are young. Nevertheless, 80% of our patients want to continue paragliding. Finally some advice is given on how to prevent paragliding accidents and injuries.

  17. Mitigation of Hydrogen Hazards in Severe Accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-07-01

    Consideration of severe accidents in nuclear power plants is an essential component of the defence in depth approach in nuclear safety. Severe accidents have very low probabilities of occurring, but may have significant consequences resulting from the degradation of nuclear fuel. The generation of hydrogen and the risk of hydrogen combustion, as well as other phenomena leading to overpressurization of the reactor containment in case of severe accidents, represent complex safety issues in relation to accident management. The combustion of hydrogen, produced primarily as a result of heated zirconium metal reacting with steam, can create short term overpressure or detonation forces that may exceed the strength of the containment structure. An understanding of these phenomena is crucial for planning and implementing effective accident management measures. Analysis of all the issues relating to hydrogen risk is an important step for any measure that is aimed at the prevention or mitigation of hydrogen combustion in reactor containments. The main objective of this publication is to contribute to the implementation of IAEA Safety Standards, in particular, two IAEA Safety Requirements: Safety of Nuclear Power Plants: Design and Safety of Nuclear Power Plants: Operation. These Requirements publications discuss computational analysis of severe accidents and accident management programmes in nuclear power plants. Specifically with regard to the risk posed by hydrogen in nuclear power reactors, computational analysis of severe accidents considers hydrogen sources, hydrogen distribution, hydrogen combustion and control and mitigation measures for hydrogen, while accident management programmes are aimed at mitigating hydrogen hazards in reactor containments.

  18. Association of transient hyperthyroidism and severity of hyperemesis gravidarum.

    Science.gov (United States)

    Malek, Nor Zila Hassan; Kalok, Aida; Hanafiah, Zainal Abidin; Shah, Shamsul Azhar; Ismail, Nor Azlin Mohamed

    2017-03-23

    Background Transient non-immune hyperthyroidism in early pregnancy is hyperthyroidism diagnosed for the first time in early pregnancy, without evidence of thyroid autoimmunity or clinical findings of Grave's disease and resolved spontaneously as the pregnancy progressed. Hyperemesis gravidarum (HG) is the commonest cause with 66%-73% of women with severe HG were found to have elevated thyroid function. Materials and methods We conducted a cross sectional study to determine the prevalence of transient hyperthyroidism in patients with hyperemesis gravidarum and its relation to the severity of nausea and vomiting. Severity of nausea and vomiting in pregnancy was assessed using the modified pregnancy-unique quantification of emesis (PUQE) scoring system. Each patient had urine and blood investigations which also included a full blood count and thyroid and renal function tests. Patients with abnormal thyroid function were retested at 20 weeks of gestation. The patients' demographic data, electrolyte levels, thyroid function and their respective PUQE score were analyzed. Results The prevalence of transient hyperthyroidism in women with hyperemesis gravidarum was 4.8%. Although there was a significant association between the severity of the PUQE score and hypokalemia (p = 0.001), there was no significant association with transient hyperthyroidism in early pregnancy (p = 0.072). Free T4 and TSH values of all women with transient hyperthyroidism were normalized by 20 weeks of gestation. Conclusion Transient hyperthyroidism in pregnancy is not significantly associated with the severity of the PUQE score. Women with transient hyperthyroidism in pregnancy are normally clinically euthyroid, hence a routine thyroid function test is unnecessary unless they exhibit clinical signs or symptoms of hyperthyroidism.

  19. Methodological aspects to elaborate the management and procedure guides of severe accidents

    International Nuclear Information System (INIS)

    Gonzalez Gonzalez, F.; Jimenez Fernandez, A.

    1995-01-01

    The management guides in severe accidents are very important to know the procedures in these accidents. The present articles summarizes the methodological aspects to elaborate the management guides, in order to prevent the severe accidents

  20. Contribution of the Exposure Pathways After a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joeun; Hwang, Wontae; Han, Moonhee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jae, Moosung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    A radiological dose assessment calculates the amount of radiation energy absorbed by a potentially exposed individual as a result of a specific exposure. Public can be exposure from several exposure pathways. External doses occur when the body is exposed to radioactive material outside the body. When making the emergency preparedness for severe accident from NPPs, therefore, we need to have comprehension about those exposure pathways. Thus, in this study, an evaluation of external and internal dose from radioactive materials during severe accident was performed to find out exposure pathway from which the dose has the highest value for several radionuclides. The basic study to make out the relation between exposure pathways and dose from them was performed. In the emergency phase, the most affecting nuclide type on public was noble gas, especially {sup 133}Xe, and the dominant exposure pathway was could shine. Also, in the long term-phase, the most affecting nuclide type on public was fission product, especially {sup 90}Sr, and the dominant exposure pathway was water ingestion. The information of the dose composition from exposure pathway obtained in this study might be basic data for making emergency preparedness plan for severe accident. In the future, assessment of the source term is expected to enhance the reliability of dose assessment during severe accident.

  1. Key Parameters for Operator Diagnosis of BWR Plant Condition during a Severe Accident

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dwight A [ORNL; Poore III, Willis P [ORNL

    2015-01-01

    The objective of this research is to examine the key information needed from nuclear power plant instrumentation to guide severe accident management and mitigation for boiling water reactor (BWR) designs (specifically, a BWR/4-Mark I), estimate environmental conditions that the instrumentation will experience during a severe accident, and identify potential gaps in existing instrumentation that may require further research and development. This report notes the key parameters that instrumentation needs to measure to help operators respond to severe accidents. A follow-up report will assess severe accident environmental conditions as estimated by severe accident simulation model analysis for a specific US BWR/4-Mark I plant for those instrumentation systems considered most important for accident management purposes.

  2. Severe Accident Management System On-line Network SAMSON

    International Nuclear Information System (INIS)

    Silverman, Eugene B.

    2004-01-01

    SAMSON is a computational tool used by accident managers in the Technical Support Centers (TSC) and Emergency Operations Facilities (EOF) in the event of a nuclear power plant accident. SAMSON examines over 150 status points monitored by nuclear power plant process computers during a severe accident and makes predictions about when core damage, support plate failure, and reactor vessel failure will occur. These predictions are based on the current state of the plant assuming that all safety equipment not already operating will fail. SAMSON uses expert systems, as well as neural networks trained with the back propagation learning algorithms to make predictions. Training on data from an accident analysis code (MAAP - Modular Accident Analysis Program) allows SAMSON to associate different states in the plant with different times to critical failures. The accidents currently recognized by SAMSON include steam generator tube ruptures (SGTRs), with breaks ranging from one tube to eight tubes, and loss of coolant accidents (LOCAs), with breaks ranging from 0.0014 square feet (1.30 cm 2 ) in size to breaks 3.0 square feet in size (2800 cm 2 ). (author)

  3. Linking of FRAP-T, FRAPCON and RELAP-4 codes for transient analysis and accidents of light water reactors fuel rods

    International Nuclear Information System (INIS)

    Marra Neto, A.; Silva, A.T. e; Sabundjian, G.; Freitas, R.L.; Neves Conti, T. das.

    1991-09-01

    The computer codes FRAP-T, FRAPCON and RELAP-4 have been linked for the fuel rod behavior analysis under transients and hypothetical accidents in light water reactors. The results calculated by thermal hydraulic code RELAP-4 give input in file format into the transient fuel analysis code FRAP-T. If the effect of fuel burnup is taken into account, the fuel performance code FRAPCON should provide the initial steady state data for thhe transient analysis. With the thermal hydraulic boundary conditions provided by RELAP-4 (MOD3), FRAP-T6 is used to analyse pressurized water reactor fuel rod behavior during the blowdown phase under large break loss of coolant accident conditions. Two cases have been analysed: without and with initialization from FRAPCON-2 steady state data. (author)

  4. Severe accident management at South Africa's Koeberg plant

    International Nuclear Information System (INIS)

    Prior, R.P.; Wolvaardt, F.P.; Holderbaum, D.F.; Lutz, R.J.; Taylor, J.J.; Hodgson, C.D.

    1997-01-01

    Between the middle of 1993 and the end of 1995, Westinghouse and Eskom implemented plant specific Severe Accident Management Guidelines (SAMGs) at the Koeberg Nuclear Power Plant in South Africa. Prior to this project, Koeberg, like many plants, had emergency operating procedures which contain guidance for plant personnel to perform preventive accident management measures in event of an accident. There was, however, no structured guidance on recovery from an event which progresses past core damage -mitigative accident management. The SAMGs meet this need. In this paper, the Westinghouse approach to severe accident management is outlined, and the Koeberg implementation project described. A few key issues which arose during implementation are discussed, including plant instrumentation, flooding of the reactor pit, organisation and training of the Technical Support Centre staff, and impact of SAMG on risk. The means by which both generic and plant-specific SAMG have been validated is also summarised. In the next few years, many LWR owners will be implementing SAMG. In the U.S. all plants are in the process of developing SAMG. The Koeberg project is believed to be the first plant specific implementation of the WOG SAMG worldwide, and this paper has hopefully provided insights into some of the implementation issues for those about to undertake similar projects. (author)

  5. A framework for the assessment of severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.; Jae, M.; Lim, H.; Milici, T.; Park, H.; Swider, J.; Xing, L.; Yu, D.

    1992-01-01

    Accident management can be defined as the innovative use of existing and or alternative resources, systems and actions to prevent or mitigate a severe accident. Together with risk management (changes in plant operation and/or addition of equipment) and emergency planning (off-site actions), accident management provides an extension of the defense-in-depth safety philosophy for severe accidents. A significant number of probabilistic safety assessments (PSA) have been completed which yield the principal plant vulnerabilities. For each sequence/threat and each combination of strategy there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These considerations include uncertainty in key phenomena, uncertainty in operator behavior, uncertainty in system availability and behavior, and uncertainty in available information (i.e., instrumentation). The objective of this project is to develop a methodology for assessing severe accident management strategies given the key uncertainties mentioned above. Based on decision trees and influence diagrams, the methodology is currently being applied to two case studies: cavity flooding in a pressurized water reactor to prevent vessel penetration or failure, and drywell flooding in a boiling water reactor to prevent containment failure

  6. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    Jokiniemi, J.; Auvinen, A.; Maekynen, J.; Valmari, T.

    1998-01-01

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  7. Development of reactor accident diagnostic system DISKET using knowledge engineering technique

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Yoshida, Kazuo; Kohsaka, Atsuo; Yamamoto, Minoru.

    1986-01-01

    An accident diagnostic system DISKET has been developed to identify the cause and the type of an abnormal transient of a nuclear power plant. The system is based on the knowledge engineering (KE) and consists of an inference engine IERIAS and a knowledge base. The main features of DISKET are the following : (1) Time-varying characteristics of transients can be treated. (2) Knowledge base can be divided into several knowledge units to handle a lot of rules effectively. (3) Programming language UTILISP, which is a dialect of LISP, is used to manipulate symbolic data effectively. For the verification of DISKET, performance tests have been conducted for several types of accidents. The knowledge base used in the tests was generated from the data of various types of transients produced by a PWR plant simulator. The results of verification studies showed a good applicability of DISKET to reactor accident diagnosis. (author)

  8. Interactions of severe accident research and regulatory positions (ISARRP)

    International Nuclear Information System (INIS)

    Sehgal, B.R.

    2001-12-01

    The work Programme of the ISARRP Project was divided into several work packages. The work was conducted in the form of presentations and discussions, held during several meetings whose character was that of workshops. Short reports were prepared by the partners assigned to each task. Work Package 1: Critical review of the SA phenomenological research. The objective of this work package was to consider the progress made world-wide in research on the resolution of the outstanding phenomenological issues posed by severe accidents. Work Package 2: Relevance of severe accident research to SAMG requirements and implementation. The objective of this work package was to relate the progress made in the resolution of the SA issues to the practical matter of what results are required or have been used for the management of severe accidents. Clearly, the SAMG is the most important avenue employed by the regulatory organizations to assure themselves of the safe (from public perspective) performance of a nuclear plant in a postulated severe accident event. Work Package 3: Relevance of severe accident research to PSA and the risk informed regulatory approach. The objectives of this work package is to relate the results obtained by the severe accident research to the requirements of a PSA and of the new trend of employing the risk informed approach in promulgating regulations. Clearly a PSA identifies vulnerabilities in the knowledge base, however, their importance is decidedly plant specific. Nevertheless the uncertainties in the phenomenology or in resolution of issues lead to uncertainties in the PSA conclusions and in the adoption of the risk informed approach. Work Package 4: Questionnaire and the evaluation of responses to the questions. The purpose of this work package is to solicit the views of the regulatory organizations towards the results of the SA research and the benefits they have derived from it in terms of regulatory actions, or in the confidence they have gained

  9. Interactions of severe accident research and regulatory positions (ISARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R. (comp.) [Royal Inst. of Tech., Stockholm (Sweden). Nuclear Power Safety

    2001-12-01

    The work Programme of the ISARRP Project was divided into several work packages. The work was conducted in the form of presentations and discussions, held during several meetings whose character was that of workshops. Short reports were prepared by the partners assigned to each task. Work Package 1: Critical review of the SA phenomenological research. The objective of this work package was to consider the progress made world-wide in research on the resolution of the outstanding phenomenological issues posed by severe accidents. Work Package 2: Relevance of severe accident research to SAMG requirements and implementation. The objective of this work package was to relate the progress made in the resolution of the SA issues to the practical matter of what results are required or have been used for the management of severe accidents. Clearly, the SAMG is the most important avenue employed by the regulatory organizations to assure themselves of the safe (from public perspective) performance of a nuclear plant in a postulated severe accident event. Work Package 3: Relevance of severe accident research to PSA and the risk informed regulatory approach. The objectives of this work package is to relate the results obtained by the severe accident research to the requirements of a PSA and of the new trend of employing the risk informed approach in promulgating regulations. Clearly a PSA identifies vulnerabilities in the knowledge base, however, their importance is decidedly plant specific. Nevertheless the uncertainties in the phenomenology or in resolution of issues lead to uncertainties in the PSA conclusions and in the adoption of the risk informed approach. Work Package 4: Questionnaire and the evaluation of responses to the questions. The purpose of this work package is to solicit the views of the regulatory organizations towards the results of the SA research and the benefits they have derived from it in terms of regulatory actions, or in the confidence they have gained

  10. Simulation of severe accident using March-3 computer code

    International Nuclear Information System (INIS)

    Fernandes, A.; Nakata, H.

    1991-01-01

    The severe accident sensitivity analysis utilizing the March-3 approximate modelization options has been performed. The reference results against which the present results have been compared were obtained from the best published results for the most representative accident sequences: TMLU, S sub(2)DC sub(r) and S sub(2)DCF sub(r) for the Zion-1 reactor. The results of the present sensitivity analysis revealed the presence of very crude modelizations, in the March-3 program, to represent the critical phenomenologies involved in the severe accident sequences considered, even though large uncertainties must still be taken into account due primarily to the scarcity of the integral benchmark data. (author)

  11. A study on the development of framework and supporting tools for severe accident management

    International Nuclear Information System (INIS)

    Chang, Hyun Sop

    1996-02-01

    Through the extensive research on severe accidents, knowledge on severe accident phenomenology has constantly increased. Based upon such advance, probabilistic risk studies have been performed for some domestic plants to identify plant-specific vulnerabilities to severe accidents. Severe accident management is a program devised to cover such vulnerabilities, and leads to possible resolution of severe accident issues. This study aims at establishing severe accident management framework for domestic nuclear power plants where severe accident management program is not yet established. Emphasis is given to in-vessel and ex-vessel accident management strategies and instrumentation availability for severe accident management. Among the various strategies investigated, primary system depressurization is found to be the most effective means to prevent high pressure core melt scenarios. During low pressure core melt sequences, cooling of in-vessel molten corium through reactor cavity flooding is found to be effective. To prevent containment failure, containment filtered venting is found to be an effective measure to cope with long-term and gradual overpressurization, together with appropriate hydrogen control measure. Investigation of the availability of Yonggwang 3 and 4 instruments shows that most of instruments essential to severe accident management lose their desired functions during the early phase of severe accident progression, primarily due to the environmental condition exceeded ranges of instruments. To prevent instrument failure, a wider range of instruments are recommended to be used for some severe accident management strategies such as reactor cavity flooding. Severe accidents are generally known to accompany a number of complex phenomena and, therefore, it is very beneficial when severe accident management personnel is aided by appropriately designed supporting systems. In this study, a support system for severe accident management personnel is developed

  12. Severe accident considerations in Canadian nuclear power reactors

    International Nuclear Information System (INIS)

    Omar, A.M.; Measures, M.P.; Scott, C.K.; Lewis, M.J.

    1990-08-01

    This paper describes a current study on severe accidents being sponsored by the Atomic Energy Control Board (AECB) and provides background on other related Canadian work. Scoping calculations are performed in Phase I of the AECB study to establish the relative consequences of several permutations resulting from six postulated initiating events, nine containment states, and a selection of meteorological conditions and health effects mitigating criteria. In Phase II of the study, selected accidents sequences would be analyzed in detail using models suitable for the design features of the Canadian nuclear power reactors

  13. Development of Severe Accident Containment Analysis Package

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Hwan; Kim, Dong-Min; Seo, Jea-Uk; Lee, Dea-Young; Park, Soon-Ho; Lee, Jae-Gwon; Lee, Jin-Yong; Lee, Byung-Chul [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    In safety viewpoint, the pressure and temperature of the containment is the important parameters, of course, the local hydrogen concentration is also the parameter of the major concern because of its flammability and the risk of the detonation. In addition, there are possibilities of occurrence of other relevant phenomena following the reactor core melting such as DCH(direct containment heating) due to HPME(high pressure melt ejection), steam explosion due to fuel-coolant interaction in the reactor cavity and molten core concrete interaction at the late stage. It is important to predict the containment responses during a severe accident by a reasonable accuracy for establishing of effective mitigation strategies and preparation of the safety features required. In this paper, the overview of the SACAP development status is presented. SACAP is developed so as to be able to analyze, so called, Ex-Vessel severe accident phenomena including thermal-hydraulics, combustible gas burn, direct containment heating, steam explosion and molten core-concrete interaction. At the parallel time, SACAP and In-Vessel analysis module named CSPACE are processed for integration through MPI communication coupling. Development of the integrated severe accident analysis code system will be completed in following one year to make the code revision zero to be released.

  14. Nuclear power plant Severe Accident Research Plan

    International Nuclear Information System (INIS)

    Larkins, J.T.; Cunningham, M.A.

    1983-01-01

    The Severe Accident Research Plan (SARP) will provide technical information necessary to support regulatory decisions in the severe accident area for existing or planned nuclear power plants, and covers research for the time period of January 1982 through January 1986. SARP will develop generic bases to determine how safe the plants are and where and how their level of safety ought to be improved. The analysis to address these issues will be performed using improved probabilistic risk assessment methodology, as benchmarked to more exact data and analysis. There are thirteen program elements in the plan and the work is phased in two parts, with the first phase being completed in early 1984, at which time an assessment will be made whether or not any major changes will be recommended to the Commission for operating plants to handle severe accidents. Additionally at this time, all of the thirteen program elements in Chapter 5 will be reviewed and assessed in terms of how much additional work is necessary and where major impacts in probabilistic risk assessment might be achieved. Confirmatory research will be carried out in phase II to provide additional assurance on the appropriateness of phase I decisions. Most of this work will be concluded by early 1986

  15. Method of assessing severe accident management strategies

    International Nuclear Information System (INIS)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.; Okrent, D.; Jae, M.; Lim, H.; Milici, T.; Park, H.; Swider, J.; Xing, L.; Yu, D.

    1991-01-01

    Accident management can be defined as the innovative use of existing and or alternative resources, systems, and actions to prevent or mitigate a severe accident. A significant number of probabilistic safety assessments (PSAs) have been completed that yield the principal plant vulnerabilities. These vulnerabilities can be categorized as (1) dominant sequences with respect to core-melt frequency. (2) dominant sequences with respect to various risk measures. (3) dominant threats that challenge safety functions. (4) dominant threats with respect to failure of safety systems. For each sequence/threat and each combination of strategy, there may be several options available to the operator. Each strategy/option involves phenomenological and operational considerations regarding uncertainty. These considerations include uncertainties in key phenomena, operator behavior, system availability and behavior, and available information. This paper presents a methodology for assessing severe accident management strategies given the key uncertainties delineated at two workshops held at the University of California, Los Angeles. Based on decision trees and influence diagrams, the methodology is currently being applied to two case studies: cavity flooding in a pressurized water reactor (PWR) to prevent vessel penetration or failure, and drywell flooding in a boiling water reactor to prevent vessel and/or containment failure

  16. Severity of electrical accidents in the construction industry in Spain.

    Science.gov (United States)

    Suárez-Cebador, Manuel; Rubio-Romero, Juan Carlos; López-Arquillos, Antonio

    2014-02-01

    This paper analyzes the severity of workplace accidents involving electricity in the Spanish construction sector comprising 2,776 accidents from 2003 to 2008. The investigation considered the impact of 13 variables, classified into 5 categories: Personal, Business, Temporal, Material, and Spatial. The findings showed that electrical accidents are almost five times more likely to have serious consequences than the average accident in the sector and it also showed how the variables of age, occupation, company size, length of service, preventive measures, time of day, days of absence, physical activity, material agent, type of injury, body part injured, accident location, and type of location are related to the severity of the electrical accidents under consideration. The present situation makes it clear that greater effort needs to be made in training, monitoring, and signage to guarantee a safe working environment in relation to electrical hazards. This research enables safety technicians, companies, and government officials to identify priorities and to design training strategies to minimize the serious consequences of electrical accidents for construction workers. Copyright © 2013 Elsevier Ltd and National Safety Council. All rights reserved.

  17. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Kress, T.S.; Cleveland, J.C.; Petek, M.

    1992-01-01

    This paper briefly describes the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to evaluate the effectiveness and feasibility of current and proposed strategies for BWR severe accident management. These results are described in detail in the just-released report Identification and Assessment of BWR In-Vessel Severe Accident Mitigation Strategies, NUREG/CR-5869, which comprises three categories of findings. First, an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences is combined with a review of the BWR Owners' Group Emergency Procedure Guidelines (EPGs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, two of the four candidate strategies identified by this effort are assessed in detail. These are (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored

  18. The External Cost Evaluation of the Nuclear Severe Accident Using CVM

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Lee, Byung Chul

    2006-01-01

    The external cost of energy can be defined as 'the cost not included in the energy market price', such as air pollution, noise, etc. Within the evaluation of the external cost of nuclear energy, the estimation of the external cost of severe accident is one of the major topics to be addressed. For the evaluation of the external cost of severe accident, the effect of risk aversion of the public against the severe accident must be addressed, because people are more concerned about low probability - high consequence events than about high probability - low consequence events having the same mean damage. It is generally recognized that there is a discrepancy between the social acceptability of the risk and the average monetary value which corresponds in principle to the compensation of the consequences for each individual of the population affected by the accident. In this paper, the CVM (Contingent Valuation Method) is used to integrate the risk aversion in the external costs of nuclear severe accidents in Korea

  19. Recent Perspective on the Severe Accident Management Programme for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kim, Manwoong; Lee, Sukho; Lee, Jungjae; Chung, Kuyoung

    2017-01-01

    Severe Accident Management Guidelines (SAMGs), has been developed to help operators to prevent or mitigate the impacts of accidents at nuclear power plants. Severe accident management was first introduced in the 1990s with the creation of SAMGs following recognition that post-Three Mile Island Emergency Operating Procedures (EOPs) did not adequately address severe core damage conditions. Establishing and maintaining multiple layers of defence against any internal/external hazards is an important measure to reduce radiological risks to the public and environment. This study is intended to suggest future regulatory perspectives to strengthen the prevention and mitigation strategies for severe accidents by review of the current status of revision of IAEA Safety Standard on Severe Accident Management Programmes for Nuclear Power Plants and the combined PWR SAMG. This new IAEA Safety Guide will address guidelines for preparation, development, implementation and review of severe accident management programs during all operating conditions for both reactor and spent fuel pool. This Guide is used by operating organizations of nuclear power plants and their support organizations. It may also be used by national regulatory bodies and technical support organizations as a reference for developing their relevant safety requirements and for conducting reviews and safety assessments for SAMP including SAMG. The Pressurized Water Reactor Owner’s Group (PWROG) is upgrading the original generic Severe Accident Management Guidelines (SAMGs) into single Severe Accident Guidelines (SAGs) for the PWR SAMG aims to consolidate the advantages of each of the separate vendor severe accident (SA) mitigation methods. This new PWROG SAGs changes the SAMG process to be made that can improve SA response. Changes have been made that guidance is available for control room operators when the TSC is not activated thus allowing for timely accident response. Other changes were made to the guidance

  20. Formation of decontamination cost calculation model for severe accident consequence assessment

    International Nuclear Information System (INIS)

    Silva, Kampanart; Promping, Jiraporn; Okamoto, Koji; Ishiwatari, Yuki

    2014-01-01

    In previous studies, the authors developed an index “cost per severe accident” to perform a severe accident consequence assessment that can cover various kinds of accident consequences, namely health effects, economic, social and environmental impacts. Though decontamination cost was identified as a major component, it was taken into account using simple and conservative assumptions, which make it difficult to have further discussions. The decontamination cost calculation model was therefore reconsidered. 99 parameters were selected to take into account all decontamination-related issues, and the decontamination cost calculation model was formed. The distributions of all parameters were determined. A sensitivity analysis using the Morris method was performed in order to identify important parameters that have large influence on the cost per severe accident and large extent of interactions with other parameters. We identified 25 important parameters, and fixed most negligible parameters to the median of their distributions to form a simplified decontamination cost calculation model. Calculations of cost per severe accident with the full model (all parameters distributed), and with the simplified model were performed and compared. The differences of the cost per severe accident and its components were not significant, which ensure the validity of the simplified model. The simplified model is used to perform a full scope calculation of the cost per severe accident and compared with the previous study. The decontamination cost increased its importance significantly. (author)

  1. Helicopter type and accident severity in Helicopter Emergency Medical Services missions.

    Science.gov (United States)

    Hinkelbein, Jochen; Schwalbe, Mandy; Wetsch, Wolfgang A; Spelten, Oliver; Neuhaus, Christopher

    2011-12-01

    Whereas accident rates and fatal accident rates for Helicopter Emergency Medical Services (HEMS) were investigated sufficiently, resulting consequences for the occupants remain largely unknown. The present study aimed to classify HEMS accidents in Germany to prognosticate accident severity with regard to the helicopter model used. German HEMS accidents (1 Sept. 1970-31 Dec. 2009) were gathered as previously reported. Accidents were categorized in relation to the most severe injury, i.e., (1) no; (2) slight; (3) severe; and (4) fatal injuries. Only helicopter models with at least five accidents were analyzed to retrieve representative data. Prognostication was estimated by the relative percentage of each injury type compared to the total number of accidents. The model BO105 was most often involved in accidents (38 of 99), followed by BK117 and UH-1D. OfN = 99 accidents analyzed, N = 63 were without any injuries (63.6%), N = 8 resulted in minor injuries of the occupants (8.1%), and N = 9 in major injuries (9.1%). Additionally, N = 19 fatal accidents (19.2%) were registered. EC135 and BK1 17 had the highest incidence of uninjured occupants (100% vs. 88.2%) and the lowest percentage of fatal injuries (0% vs. 5.9%; all P > 0.05). Most fatal accidents occurred with the models UH-1D, Bell 212, and Bell 412. Use of the helicopter models EC135 and BK117 resulted in a high percentage of uninjured occupants. In contrast, the fatality rate was highest for the models Bell UH-I D, Bell 222, and Bell 412. Data from the present study allow for estimating accident risk in HEMS missions and prognosticating resulting fatalities, respectively.

  2. An Evaluation Methodology Development and Application Process for Severe Accident Safety Issue Resolution

    Directory of Open Access Journals (Sweden)

    Robert P. Martin

    2012-01-01

    Full Text Available A general evaluation methodology development and application process (EMDAP paradigm is described for the resolution of severe accident safety issues. For the broader objective of complete and comprehensive design validation, severe accident safety issues are resolved by demonstrating comprehensive severe-accident-related engineering through applicable testing programs, process studies demonstrating certain deterministic elements, probabilistic risk assessment, and severe accident management guidelines. The basic framework described in this paper extends the top-down, bottom-up strategy described in the U.S Nuclear Regulatory Commission Regulatory Guide 1.203 to severe accident evaluations addressing U.S. NRC expectation for plant design certification applications.

  3. Regulatory analyses for severe accident issues: an example

    International Nuclear Information System (INIS)

    Burke, R.P.; Strip, D.R.; Aldrich, D.C.

    1984-09-01

    This report presents the results of an effort to develop a regulatory analysis methodology and presentation format to provide information for regulatory decision-making related to severe accident issues. Insights and conclusions gained from an example analysis are presented. The example analysis draws upon information generated in several previous and current NRC research programs (the Severe Accident Risk Reduction Program (SARRP), Accident Sequence Evaluation Program (ASEP), Value-Impact Handbook, Economic Risk Analyses, and studies of Vented Containment Systems and Alternative Decay Heat Removal Systems) to perform preliminary value-impact analyses on the installation of either a vented containment system or an alternative decay heat removal system at the Peach Bottom No. 2 plant. The results presented in this report are first-cut estimates, and are presented only for illustrative purposes in the context of this document. This study should serve to focus discussion on issues relating to the type of information, the appropriate level of detail, and the presentation format which would make a regulatory analysis most useful in the decisionmaking process

  4. Evaluation of severe accident risks: Quantification of major input parameters: MAACS [MELCOR Accident Consequence Code System] input

    International Nuclear Information System (INIS)

    Sprung, J.L.; Jow, H-N; Rollstin, J.A.; Helton, J.C.

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs

  5. Overview of severe accident research at KAERI

    International Nuclear Information System (INIS)

    Kim, H.D.; Kim, S.B.; Hong, S.W.; Kim, D.H.

    2000-01-01

    The severe accident research program at Korea Atomic Energy Research Institute, within the framework of governmental 10 year long-term nuclear R and D program, aims at the development of assessment techniques and accident management strategies for the prevention and mitigation of potential risk. The research program includes experimental efforts, development of phenomena specific models and development of an integrated computer code. The results of research program is intended to be utilized for the design of the advanced light water reactor and development of accident management strategies for the operating reactors. The main focused areas of recent investigation at KAERI are experiments on in-vessel core debris retention (SONATA-IV) and fuel coolant interaction (TROI) along with the development of models and integrated computer code (MIDAS). (author)

  6. Proposal strategy and policy on nuclear safety for no-more severe accidents

    International Nuclear Information System (INIS)

    2013-01-01

    Following the outspoken advice saying 'scientists and engineers concerning with nuclear power promotion and safety should be responsible for clarifying how preventable or what measures should be needed to prevent severe accidents occurring at Fukushima Daiichi nuclear power plants (NPPs)', committee on prevention of severe accidents at NPPs was established by relevant nuclear scientists and engineers involved so as to discuss basic issues to be solved from scientific and technical viewpoints. Based on the review of 'defense in depth' concept and accident analysis at Fukushima nuclear accident, four major proposals and six supplements to be established were identified such as: (1) finding mechanism of beyond imagination events for natural disaster, terrorism, and internal events, (2) reform of comprehensive safety standards and guidelines with performance basis easy to reflect latest knowledge and technology as 'back-fitting', (3) severe accidents measures, their validation, and drilling on accident management to advance procedures and develop human resources, and (4) risk communications and public disclosure of information. This article described backgrounds of committee's proposals on nuclear safety for no-more severe accidents. (T. Tanaka)

  7. WASA-BOSS. Development and application of Severe Accident Codes. Evaluation and optimization of accident management measures. Subproject F. Contributions to code validation using BWR data and to evaluation and optimization of accident management measures. Final report; WASA-BOSS. Weiterentwicklung und Anwendung von Severe Accident Codes. Bewertung und Optimierung von Stoerfallmassnahmen. Teilprojekt F. Beitraege zur Codevalidierung anhand von SWR-Daten und zur Bewertung und Optimierung von Stoerfallmassnahmen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Di Marcello, Valentino; Imke, Uwe; Sanchez Espinoza, Victor

    2016-09-15

    The exact knowledge of the transient course of events and of the dominating processes during a severe accident in a nuclear power station is a mandatory requirement to elaborate strategies and measures to minimize the radiological consequences of core melt. Two typical experiments using boiling water reactor assemblies were modelled and simulated with the severe accident simulation code ATHLET-CD. The experiments are related to the early phase of core degradation in a boiling water reactor. The results reproduce the thermal behavior and the hydrogen production due to oxidation inside the bundle until relocation of material by melting. During flooding of the overheated assembly temperatures and hydrogen oxidation are under estimated. The deviations from the experimental results can be explained by the missing model to simulate bore carbide oxidation of the control rods. On basis of a hypothetical loss of coolant accident in a typical German boiling water reactor the effectivity of flooding the partial degraded core is investigated. This measure of mitigation is efficient and prevents failure of the reactor pressure vessel if it starts before molten material is relocated into the lower plenum. Considerable amount of hydrogen is produced by oxidation of the metallic components.

  8. OSSA - An optimized approach to severe accident management: EPR application

    International Nuclear Information System (INIS)

    Sauvage, E. C.; Prior, R.; Coffey, K.; Mazurkiewicz, S. M.

    2006-01-01

    There is a recognized need to provide nuclear power plant technical staff with structured guidance for response to a potential severe accident condition involving core damage and potential release of fission products to the environment. Over the past ten years, many plants worldwide have implemented such guidance for their emergency technical support center teams either by following one of the generic approaches, or by developing fully independent approaches. There are many lessons to be learned from the experience of the past decade, in developing, implementing, and validating severe accident management guidance. Also, though numerous basic approaches exist which share common principles, there are differences in the methodology and application of the guidelines. AREVA/Framatome-ANP is developing an optimized approach to severe accident management guidance in a project called OSSA ('Operating Strategies for Severe Accidents'). There are still numerous operating power plants which have yet to implement severe accident management programs. For these, the option to use an updated approach which makes full use of lessons learned and experience, is seen as a major advantage. Very few of the current approaches covers all operating plant states, including shutdown states with the primary system closed and open. Although it is not necessary to develop an entirely new approach in order to add this capability, the opportunity has been taken to develop revised full scope guidance covering all plant states in addition to the fuel in the fuel building. The EPR includes at the design phase systems and measures to minimize the risk of severe accident and to mitigate such potential scenarios. This presents a difference in comparison with existing plant, for which severe accidents where not considered in the design. Thought developed for all type of plants, OSSA will also be applied on the EPR, with adaptations designed to take into account its favourable situation in that field

  9. Development of a system of computer codes for severe accident analyses and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1991-12-15

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy.

  10. Development of a system of computer codes for severe accident analyses and its applications

    International Nuclear Information System (INIS)

    Chang, Soon Hong; Cheon, Moon Heon; Cho, Nam jin; No, Hui Cheon; Chang, Hyeon Seop; Moon, Sang Kee; Park, Seok Jeong; Chung, Jee Hwan

    1991-12-01

    The objectives of this study is to develop a system of computer codes for postulated severe accident analyses in Nuclear Power Plants. This system of codes is necessary to conduct individual plant examination for domestic nuclear power plants. As a result of this study, one can conduct severe accident assessments more easily, and can extract the plant-specific vulnerabilities for severe accidents and at the same time the ideas for enhancing overall accident resistance. The scope and contents of this study are as follows : development of a system of computer codes for severe accident analyses, development of severe accident management strategy

  11. Improvements to the RELAP/SCDAPSIM of Laguna Verde model for the analysis of transients and accidents; Mejoras al modelo de Laguna Verde de RELAP/SCDAPSIM para el analisis de transitorios y accidentes

    Energy Technology Data Exchange (ETDEWEB)

    Amador G, R.; Castillo D, R.; Ortiz V, J.; Araiza M, E.; Martinez C, E., E-mail: rogelio.castillo@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    This work presents the improvements to the integral model of the nuclear power plant of Laguna Verde for the RELAP/SCDAPSIM code, for the simulation of transients and severe accidents. The model includes a new detailed geometry of the steam lines, as well as improvements in the performance of the emergency systems. A primary containment model has also been created, which will be used to analyze the effect of safety valve and relief valve discharges to the wet well suppression pool and the effect of the rupture of a recirculation loop on the dry well. The simulations performed with the new model show that the changes made improve the prediction of the phenomenology involved during transients and accidents. (Author)

  12. Severe accident consequence mitigation by filtered containment venting at Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Lebel, Luke S.; Morreale, Andrew C.; Korolevych, Volodymyr; Brown, Morgan J.; Gyepi-Garbrah, Sam

    2017-01-01

    Highlights: • Use of filtered containment venting during a severe accident assessed. • Severe accident simulations performed using MAAP-CANDU and ADDAM. • Flow capacity, initiation protocols, efficiency, mass and thermal loading evaluated. • Efficient, robust system drastically reduces accident consequences. - Abstract: Having the capability to use filtered containment venting during a severe nuclear accident can significantly reduce its overall consequences. This study employs the MAAP-CANDU severe accident analysis code and the ADDAM atmospheric dispersion code to study the progression of: an unmitigated station blackout accident at a generic pressurized heavy water reactor, the release of radioactive material into the environment, the subsequent dispersion of the fission products through the atmosphere and the subsequent consequences (evacuation radius). The goal is to evaluate the application of filtered venting as an accident mitigation technology. Several aspects of filtered containment venting system design, like flow capacity, initiation protocols, filter efficiency, mass loading, and thermal loading are considered. An efficient and robust filtered containment venting system can reduce the amount of radiological materials emitted during an accident by 25 times or more, and as a result considerably reduce the off-site consequences of an accident.

  13. Control room habitability during severe accidents

    International Nuclear Information System (INIS)

    Siu, R.P.

    1989-01-01

    The requirements for protection of control room personnel against radiation hazards are specified in 10CFR50, Appendix A, GDC 19. The conventional approach involves a mechanistic evaluation of the radiation doses to control room personnel during design-basis accidents. In this study, an assessment of control room habitability during severe accidents is conducted. The potential levels of radiation hazards to control room personnel are evaluated in terms of both magnitude and probability of occurrence. The expected values for the probabilities of exceeding GDC-19 limits and the cumulative probability distributions of control room doses are determined. In this study, a pressurized water reactor with a large dry containment has been selected for analysis. The types of control rooms evaluated in this study include designs with: (a) filtered local intakes only, (b) filtered recirculation only, (c) filtered local intakes and recirculation, and (d) filtered dual remote intakes and recirculation. From the observations, it is concluded that, except for control room D, all other control room designs may require improvements in order to provide adequate radiation protection during severe accidents, particularly in terms of reducing whole-body gamma doses and skin doses. Potential design improvements include reduction of intake flows for concepts relying on pressurization, reduction in overall leakages, and control room pressurization through the use of bottled air supply

  14. Factors associated with the severity of construction accidents: The case of South Australia

    Directory of Open Access Journals (Sweden)

    Jantanee Dumrak

    2013-12-01

    Full Text Available While the causes of accidents in the construction industry have been extensively studied, severity remains an understudied area. In order to provide more evidence for the currently limited number of empirical investigations on severity, this study analysed 24,764 construction accidents reported during 2002-11 in South Australia. A conceptual model developed through literature uses personal characteristics such as age, experience, gender and language. It also employs work-related factors such as size of organization, project size and location, mechanism of accident and body location of the injury. These were shown to discriminate why some accidents result in only a minor severity while others are fatal. Factors such as time of accident, day of the week and season were not strongly associated with accident severity. When the factors affecting severity of an accident are well understood, preventive measures could be developed specifically to those factors that are at high risk.

  15. Control-rod, pressure and flow-induced accident and transient analysis of a direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Kitoh, Kazuaki; Koshizuka, Seiichi; Oka, Yoshiaki

    1996-01-01

    The features of the direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor (SCFBR) are high thermal efficiency and simple reactor system. The safety principle is basically the same as that of an LWR since it is a water-cooled reactor. Maintaining the core flow is the basic safety requirement of the reactor, since its coolant system is the one through type. The transient behaviors at control rod, pressure and flow-induced abnormalities are analyzed and presented in this paper. The results of flow-induced transients of SCFBR were reported at ICONE-3, though pressure change was neglected. The change of fuel temperature distribution is also considered for the analysis of the rapid reactivity-induced transients such as control rod withdrawal. Total loss of flow and pump seizure are analyzed as the accidents. Loss of load, control rod withdrawal from the normal operation, loss of feedwater heating, inadvertent start of an auxiliary feedwater pump, partial loss of coolant flow and loss of external power are analyzed as the transients. The behavior of the flow-induced transients is not so much different from the analyses assuming constant pressure. Fly wheels should be equipped with the feedwater pumps to prolong the coast-down time more than 10s and to cope with the total loss of flow accident. The coolant density coefficient of the SCFBR is less than one tenth of a BWR in which the recirculation flow is used for the power control. The over pressurization transients at the loss of load is not so severe as that of a BWR. The power reaches 120%. The minimum deterioration heat flux ratio (MDHFR) and the maximum pressure are sufficiently lower than the criteria; MDHFR above 1.0 and pressure ratio below 1.10 of 27.5 MPa, maximum pressure for operation. Among the reactivity abnormalities, the control rod withdrawal transient from the normal operation is analyzed

  16. An analysis of LOCA sequences in the development of severe accident analysis DB

    International Nuclear Information System (INIS)

    Choi, Young; Park, Soo Yong; Ahn, Kwang-Il; Kim, D.H.

    2006-01-01

    Although a Level 2 PSA was performed for the Korean Standard Power Plants (KSNPs), and it considered the necessary sequences for an assessment of the containment integrity and source term analysis. In terms of an accident management, however, more cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results. At present, KAERI is calculating the severe accident sequences intensively for various initiating events and generating a database for the accident progression including thermal hydraulic and source term behaviours. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by knowledge-base technique, and the expected plant behaviour. The plant model used in this paper is oriented to the case of LOCAs related severe accident phenomena and thus can simulate the plant behaviours for a severe accident. Therefore the developed system may play a central role as an information source for decision-making for a severe accident management, and will be used as a training simulator for a severe accident management. (author)

  17. The American 'severe fuel damage program'

    International Nuclear Information System (INIS)

    Sdouz, G.

    1982-03-01

    The TMI-2 accident has initiated a new phase of safety research. It is necessary to consider severe accidents with degraded or molten core. For NRC there was a need for an improved understanding of this reactor behaviour and the 'Severe Fuel Dage Program' was initiated. Planned are in-pile experiments in PBF, NRU and ESSOR and in addition separate effects tests and results from TMI-2. The analytical component of the program is the development of different versions of the code SCDAP for the detailed analysis during severe accident transients. (Author) [de

  18. Source term analyses under severe accidents for KNGR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong Mann; Park, Soo Yong

    2001-03-01

    In this study, in-containment source term for LOFW (Loss of Feed Water), which has appeared the most frequent core melt accident, is calculated and compared with NUREG-1465 source term. This study provides not only new source term data using MELCOR1.8.4 and its state-of-the-art models but also evaluating basis of KNGR design and its mitigation capability under severe accidents. As the selected accident is identical with LOFW-S17, which has been analyzed using MAAP by KEPCO with only difference of 2 SITs, mutual comparison of the results is especially expected.

  19. Development of a parametric containment event tree model for a severe BWR accident

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, T [OTO-Consulting Ay, Helsinki (Finland)

    1995-04-01

    A containment event tree (CET) is built for analysis of severe accidents at the TVO boiling water reactor (BWR) units. Parametric models of severe accident progression and fission product behaviour are developed and integrated in order to construct a compact and self-contained Level 2 PSA model. The model can be easily updated to correspond to new research results. The analyses of the study are limited to severe accidents starting from full-power operation and leading to core melting, and are focused mainly on the use and effects of the dedicated severe accident management (SAM) systems. Severe accident progression from eight plant damage states (PDS), involving different pre-core-damage accident evolution, is examined, but the inclusion of their relative or absolute probabilities, by integration with Level 1, is deferred to integral safety assessments. (33 refs., 5 figs., 7 tabs.).

  20. Incorporation of severe accidents in the licensing of nuclear power plants

    International Nuclear Information System (INIS)

    Alvarenga, Marco Antonio Bayout; Rabello, Sidney Luiz

    2011-01-01

    Severe accidents are the result of multiple faults that occur in nuclear power plants as a consequence from the combination of latent failures and active faults, such as equipment, procedures and operator failures, which leads to partial or total melting of the reactor core. Regardless of active and latent failures related to the plant management and maintenance, aspects of the latent failures related to the plant design still remain. The lessons learned from the TMI accident in the U.S.A., Chernobyl in the former Soviet Union and, more recently, in Fukushima, Japan, suggest that severe accidents must necessarily be part of design-basis of nuclear power plants. This paper reviews the normative basis of the licensing of nuclear power plants concerning to severe accidents in countries having nuclear power plants under construction or in operation. It was addressed not only the new designs of nuclear power plants in the world, but also the design changes in plants that are in operation for decades. Included in this list are the Brazilian nuclear power plants, Angra-1, Angra-2, and Angra-3. This paper also reviews the current status of licensing in Brazil and Brazilian standards related to severe accidents. It also discusses the impact of severe accidents in the emergency plans of nuclear power plants. (author)

  1. Incorporation of severe accidents in the licensing of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga, Marco Antonio Bayout; Rabello, Sidney Luiz, E-mail: bayout@cnen.gov.b, E-mail: sidney@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Severe accidents are the result of multiple faults that occur in nuclear power plants as a consequence from the combination of latent failures and active faults, such as equipment, procedures and operator failures, which leads to partial or total melting of the reactor core. Regardless of active and latent failures related to the plant management and maintenance, aspects of the latent failures related to the plant design still remain. The lessons learned from the TMI accident in the U.S.A., Chernobyl in the former Soviet Union and, more recently, in Fukushima, Japan, suggest that severe accidents must necessarily be part of design-basis of nuclear power plants. This paper reviews the normative basis of the licensing of nuclear power plants concerning to severe accidents in countries having nuclear power plants under construction or in operation. It was addressed not only the new designs of nuclear power plants in the world, but also the design changes in plants that are in operation for decades. Included in this list are the Brazilian nuclear power plants, Angra-1, Angra-2, and Angra-3. This paper also reviews the current status of licensing in Brazil and Brazilian standards related to severe accidents. It also discusses the impact of severe accidents in the emergency plans of nuclear power plants. (author)

  2. Effects of B4C control rod degradation under severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si-Won; Park, Sang-Gil; Han, Sang-Ku [Atomic Creative Technology Co., Daejeon (Korea, Republic of)

    2016-10-15

    Boron carbide (B4C) is widely used as absorber material in western boiling water reactor (BWR), some PWR, EPR and Russian RBMK and VVERs. B4C oxidation is one of the important phenomena of in-vessel. In the present paper, the main results and knowledge gained regarding the B4C control rod degradation from above mentioned experiments are reviewed and arranged to inform its significance on the severe accident consequences. In this paper, the role of B4C control rod oxidation and the subsequent degradation on the severe accident consequences is reviewed with available literature and report of previous experimental program regarding the B4C oxidation. From this review, it seems that the contribution of this B4C oxidation on the accident progression to the further severe accident situation is not negligible. For the future work, the extensive experimental data interpretation will be performed to assess quantitatively the effect of B4C oxidation and degradation on the various postulated severe accident conditions.

  3. MELCOR DB Construction for the Severe Accident Analysis DB

    International Nuclear Information System (INIS)

    Song, Y. M.; Ahn, K. I.

    2011-01-01

    The Korea Atomic Energy Research Institute (KAERI) has been constructing a severe accident analysis database (DB) under a National Nuclear R and D Program. In particular, an MAAP (commercial code being widely used in industries for integrated severe accident analysis) DB for many scenarios including a station blackout (SBO) has been completed. This paper shows the MELCOR DB construction process with examples of SBO scenarios, and the results will be used for a comparison with the MAAP DB

  4. Shipping container response to severe highway and railway accident conditions: Main report

    International Nuclear Information System (INIS)

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    This report describes a study performed by the Lawrence Livermore National Laboratory to evaluate the level of safety provided under severe accident conditions during the shipment of spent fuel from nuclear power reactors. The evaluation is performed using data from real accident histories and using representative truck and rail cask models that likely meet 10 CFR 71 regulations. The responses of the representative casks are calculated for structural and thermal loads generated by severe highway and railway accident conditions. The cask responses are compared with those responses calculated for the 10 CFR 71 hypothetical accident conditions. By comparing the responses it is determined that most highway and railway accident conditions fall within the 10 CFR 71 hypothetical accident conditions. For those accidents that have higher responses, the probabilities anf potential radiation exposures of the accidents are compared with those identified by the assessments made in the ''Final Environmental Statement on the Transportation of Radioactive Material by Air and other Modes,'' NUREG-0170. Based on this comparison, it is concluded that the radiological risks from spent fuel under severe highway and railway accident conditions as derived in this study are less than risks previously estimated in the NUREG-0170 document

  5. Design study on dose evaluation method for employees at severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio [Institute of Nuclear Safety Systems Inc., Mihama, Fukui (Japan); Kudo, Seiichi [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Nishimura, Kazuya [Computer Software Development Co., Ltd., Tokyo (Japan)

    2001-09-01

    When we assume a severe accident in a nuclear power plant, it is required for rescue activity in the plant, accident management, repair work of failed parts and evaluation of employees to obtain radiation dose rate distribution or map in the plant and estimated dose value for the above works. However it might be difficult to obtain them accurately along the progress of the accident, because radiation monitors are not always installed in the areas where the accident management is planned or the repair work is thought for safety-related equipments. In this work, we analyzed diffusion of radioactive materials in case of a severe accident in a pressurized water reactor plant, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system by modeling a specific part of components and buildings in the plant from this design study on dose evaluation method for employees at severe accident, and then evaluated its availability. As a result, we obtained the followings: (1) A new dose evaluation method was established to predict the radiation dose rate in any point in the plant during a severe accident scenario. (2) This evaluation of total dose including moving route and time for the accident management and the repair work is useful for estimating radiation dose limit for these actions of the employees. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  6. Design study on dose evaluation method for employees at severe accident

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio; Kudo, Seiichi; Nishimura, Kazuya

    2001-01-01

    When we assume a severe accident in a nuclear power plant, it is required for rescue activity in the plant, accident management, repair work of failed parts and evaluation of employees to obtain radiation dose rate distribution or map in the plant and estimated dose value for the above works. However it might be difficult to obtain them accurately along the progress of the accident, because radiation monitors are not always installed in the areas where the accident management is planned or the repair work is thought for safety-related equipments. In this work, we analyzed diffusion of radioactive materials in case of a severe accident in a pressurized water reactor plant, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system by modeling a specific part of components and buildings in the plant from this design study on dose evaluation method for employees at severe accident, and then evaluated its availability. As a result, we obtained the followings: (1) A new dose evaluation method was established to predict the radiation dose rate in any point in the plant during a severe accident scenario. (2) This evaluation of total dose including moving route and time for the accident management and the repair work is useful for estimating radiation dose limit for these actions of the employees. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  7. Evaluation of severe accident risks, Grand Gulf, Unit 1: Appendices

    International Nuclear Information System (INIS)

    Brown, T.D.; Breeding, R.J.; Jow, H.N.; Higgins, S.J.; Shiver, A.W.; Helton, J.C.; Amos, C.N.

    1990-12-01

    In support of the Nuclear Regulatory Commission's (NRC's) assessment of the risk from severe accidents at commercial nuclear power plants in the US report in NUREG-1150, the Severe Accident Risk Reduction Program (SARRP) has completed a revised calculation of the risk to the general public from severe accidents at the Grand Gulf Nuclear Station, Unit 1. This power plant, located in Port Gibson, Mississippi, is operated by the System Energy Resources, Inc. (SERI). The emphasis in this risk analysis was not on determining a ''so-called'' point estimate of risk. Rather, it was to determine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution. Off-site risk initiated by events internal to the power plant was assessed. This document provides Appendices A through E for this report. Topics included are, respectively: supporting information for the accident progression analysis; supporting information for the source term analysis; supporting information for the consequence analysis; risk results; and sampling information

  8. Severe accident risks: An assessment for five US nuclear power plants

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes an assessment of the risks from severe accidents in five commercial nuclear power plants in the United State. These risks are measured in a number of ways, including: the estimated frequencies of core damage accidents from internally initiated accidents and externally initiated accidents for two of the plants; the performance of containment structures under severe accident loadings; the potential magnitude of radionuclide releases and offsite consequences of such accidents; and the overall risk (the product of accident frequencies and consequences). Supporting this summary report are a large number of reports written under contract to NRC that provide the detailed discussion of the methods used and results obtained in these risk studies. This report, Volume 3, contains two appendices. Appendix D summarizes comments received, and staff responses, on the first (February 1987) draft of NUREG-1150. Appendix E provides a similar summary of comments and responses, but for the second (June 1989) version of the report

  9. Root causes and impacts of severe accidents at large nuclear power plants.

    Science.gov (United States)

    Högberg, Lars

    2013-04-01

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long-lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities.

  10. Sisifo-gas a computerised system to support severe accident training and management

    International Nuclear Information System (INIS)

    Castro, A.; Buedo, J.L.; Borondo, L.; Lopez, N.

    2001-01-01

    Nuclear Power Plants (NPP) will have to be prepared to face the management of severe accidents, through the development of Severe Accident Guides and sophisticated systems of calculation, as a supporting to the decision-making. SISIFO-GAS is a flexible computerized tool, both for the supporting to accident management and for education and training in severe accident. It is an interactive system, a visual and an easily handle one, and needs no specific knowledge in MAAP code to make complicate simulations in conditions of severe accident. The system is configured and adjusted to work in a BWR/6 technology plant with Mark III Containment, as it is Cofrentes NPP. But it is easily portable to every other kind of reactor, having the level 2 PSA (probabilistic safety analysis) of the plant to be able to establish the categories of the source term and the most important sequences in the progression of the accident. The graphic interface allows following in a very intuitive and formative way the evolution and the most relevant events in the accident, in the both system's way of work, training and management. (authors)

  11. Root Causes and Impacts of Severe Accidents at Large Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hoegberg, Lars

    2013-01-01

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities

  12. Root Causes and Impacts of Severe Accidents at Large Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Lars

    2013-04-15

    The root causes and impacts of three severe accidents at large civilian nuclear power plants are reviewed: the Three Mile Island accident in 1979, the Chernobyl accident in 1986, and the Fukushima Daiichi accident in 2011. Impacts include health effects, evacuation of contaminated areas as well as cost estimates and impacts on energy policies and nuclear safety work in various countries. It is concluded that essential objectives for reactor safety work must be: (1) to prevent accidents from developing into severe core damage, even if they are initiated by very unlikely natural or man-made events, and, recognizing that accidents with severe core damage may nevertheless occur; (2) to prevent large-scale and long lived ground contamination by limiting releases of radioactive nuclides such as cesium to less than about 100 TBq. To achieve these objectives the importance of maintaining high global standards of safety management and safety culture cannot be emphasized enough. All three severe accidents discussed in this paper had their root causes in system deficiencies indicative of poor safety management and poor safety culture in both the nuclear industry and government authorities.

  13. Priorities for Addressing Severe Accident and L3PSA in Radiation Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M. S.; Kang, H. S.; Kim, S. R. [NESS, Daejeon (Korea, Republic of); Yang, Y. H.; Yoon, Y. I. [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    Domestic rules for the radiation environment impact assessment were enacted based on NUREG-0555, the guidance to the nuclear regulatory commission staff in implementing provisions of 10 CFR 51, 'environmental protection regulations for domestic licensing and related regulatory functions', related to NPPs. A revised document of NUREG-0555 was published in 2000 as NUREG-1555, Vol. 1 and 2. The related domestic rules would have made some revisions in accordance with NUREG-1555 in 2016. In this paper, we would introduce the new technical standards and review legal and technical issues on legislation. There are three legal and technical issues on revised legislation that includes severe accidents and L3PSA results in RER. First, it may need a regular and continuing education for the severe accident concept, probabilistic assessment method and conservative assumptions for severe accident, how to interpret the assessment results, the probability of a severe accident, SAMA and etc. to obtain the public understanding for severe accident. Second, it needs the development of strategy and technology not only to evaluate the risk of multi-unit accidents and failure case and the impacts of inter-unit shared systems and common events for the probabilistic assessment of severe accidents but also to solve many potential L3PSA challenges. Finally, the cost-beneficial SAMAs analysis would be added in radiation environmental impact and severe accident impact analysis.

  14. Consideration of severe accident issues for the General Electric BWR standard plant: Chapter 10

    International Nuclear Information System (INIS)

    Holtzclaw, K.W.

    1983-01-01

    In early 1982, the U.S. Nuclear Regulatory Commission (NRC) proposed a policy to address severe accident rulemaking on future plants by utilizing standard plant licensing documentation. GE provided appendices to the licensing documentation of its standard plant design, GESSAR II, which address severe accidents for the GE BWR/6 Mark III 238 nuclear island design. The GE submittals discuss the features of the design that prevent severe accidents from leading to core damage or that mitigate the effects of severe accidents should core damage occur. The quantification of the accident prevention and mitigation features, including those incorporated in the design since the accident at Three Mile Island (TMI), is provided by means of a comprehensive probabilistic risk assessment, which provides an analysis of the probability and consequences of postulated severe accidents

  15. An assessment the severe accident equipment survivability for the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Lee, B. C.; Moon, Y. T.; Park, J. W.; Kho, H. J.; Lee, S. W.

    1999-01-01

    One of the prominent design approaches to cope with the severe accident challenges in the Korean Next Generation Reactor is an assessment of equipment survivability in the severe accident environment at early design stage. In compliance with 10CFR50.34(f) and SECY-93-087, this work addresses that a reasonable level of assurance be provided to demonstrate that sufficient instrumentation and equipment will survive the consequences of a severe accident and will be available so that the operator may recover from and trend severe core damage sequences, including those scenarios which result in 100 percent oxidation of the active fuel cladding. An analytical and systematic approach was used to identify the equipment and instrumentation of safety-function and define severe accident environments including temperature, pressure, humidity, and radiation before and after the reactor vessel breach. As a result, it was concluded that with minor exceptions, existing design basis equipment qualification methods are sufficient to provide a reasonable level of assurance that this equipment will function during a severe accident. Furthermore, supplemental severe accident equipment and instrument procurement requirements were identified. (author)

  16. Shipping container response to severe highway and railway accident conditions: Appendices

    International Nuclear Information System (INIS)

    Fischer, L.E.; Chou, C.K.; Gerhard, M.A.; Kimura, C.Y.; Martin, R.W.; Mensing, R.W.; Mount, M.E.; Witte, M.C.

    1987-02-01

    Volume 2 contains the following appendices: Severe accident data; truck accident data; railroad accident data; highway survey data and bridge column properties; structural analysis; thermal analysis; probability estimation techniques; and benchmarking for computer codes used in impact analysis. (LN)

  17. Severe Accident Test Station Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  18. Severe Accident Test Station Design Document

    International Nuclear Information System (INIS)

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-01-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  19. Severe accident management: radiation dose control, Fukushima Daiichi and TMI-2 nuclear plant accidents

    International Nuclear Information System (INIS)

    Shaw, Roger

    2014-01-01

    This presentation presents valuable dose information related to the Fukushima Daiichi and Three Mile Island Unit 2 (TMI-2) Nuclear Plant accidents. Dose information is provided for what is well known for TMI-2, and what is available for Fukushima Daiichi. Particular emphasis is placed on the difference between the type of reactors involved, overarching plant damage issues, and radiation worker dose outcomes. For TMI-2, more in depth dose data is available for the accident and the subsequent recovery efforts. The comparisons demonstrate the need to understand the wide variation in potential dose management measures and outcomes for severe reactor accidents. (author)

  20. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.; Cleveland, J.C.; Kress, T.S.; Petek, M. [Oak Ridge National Lab., TN (United States)

    1992-10-01

    This report provides the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to develop a technical basis for evaluating the effectiveness and feasibility of current and proposed strategies for boiling water reactor (BWR) severe accident management. First, the findings of an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences are described. This includes a review of the BWR Owners` Group Emergency Procedure Guidelines (EPGSs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident and to provide the basis for recommendations for enhancement of accident management procedures. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, recommendations are made for consideration of additional strategies where warranted, and two of the four candidate strategies identified by this effort are assessed in detail: (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored.

  1. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cleveland, J.C.; Kress, T.S.; Petek, M.

    1992-10-01

    This report provides the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to develop a technical basis for evaluating the effectiveness and feasibility of current and proposed strategies for boiling water reactor (BWR) severe accident management. First, the findings of an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences are described. This includes a review of the BWR Owners' Group Emergency Procedure Guidelines (EPGSs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident and to provide the basis for recommendations for enhancement of accident management procedures. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, recommendations are made for consideration of additional strategies where warranted, and two of the four candidate strategies identified by this effort are assessed in detail: (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored

  2. Severe accidents and nuclear containment integrity (SANCY). SANCY summary report

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, I. [VTT Processes, Espoo (Finland)

    2004-07-01

    SANCY project investigates physical phenomena related to severe nuclear accidents with importance to Finnish nuclear power plants. Currently the major topics are the ex-vessel coolability issues, long-term severe accident management and containment leak tightness and adoption and development of new calculation tools considering also the needs of the future Olkiluoto 3 plant. SANCY employs both experimental and analytical methods. (orig.)

  3. Factors affecting accident severity inside and outside urban areas in Greece.

    Science.gov (United States)

    Theofilatos, Athanasios; Graham, Daniel; Yannis, George

    2012-09-01

    This research aims to identify and analyze the factors affecting accident severity through a macroscopic analysis, with a focus on the comparison between inside and outside urban areas. Disaggregate road accident data for Greece for the year 2008 were used. Two models were developed, one for inside and one for outside urban areas. Because the dependent variable had 2 categories, killed/severely injured (KSI) and slightly injured (SI), the binary logistic regression analysis was selected. Furthermore, this research aims to estimate the probability of fatality/severe injury versus slight injury as well as to calculate the odds ratios (relative probabilities) for various road accident configurations. The Hosmer and Lemeshow statistic and other diagnostic tests were conducted in order to assess the goodness-of-fit of the model. From the application of the models, it appears that inside urban areas 3 types of collisions (sideswipe, rear-end, with fixed object/parked car), as well as involvement of motorcycles, bicycles, buses, 2 age groups (18-30 and older than 60 years old), time of accident, and location of the accident, seem to affect accident severity. Outside urban areas, 4 types of collisions (head-on, rear-end, side, sideswipe), weather conditions, time of accident, one age group (older than 60 years old), and involvement of motorcycles and buses were found to be significant. Factors affecting road accident severity only inside urban areas include young driver age, bicycles, intersections, and collision with fixed objects, whereas factors affecting severity only outside urban areas are weather conditions and head-on and side collisions, demonstrating the particular road users and traffic situations that should be focused on for road safety interventions for the 2 different types of networks (inside and outside urban areas). The methodology and the results of this research may provide a promising tool to prioritize programs and measures to improve road safety in

  4. Development of Methodology for Spent Fuel Pool Severe Accident Analysis Using MELCOR Program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Tae; Shin, Jae-Uk [RETech. Co. LTD., Yongin (Korea, Republic of); Ahn, Kwang-Il [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The general reason why SFP severe accident analysis has to be considered is that there is a potential great risk due to the huge number of fuel assemblies and no containment in a SFP building. In most cases, the SFP building is vulnerable to external damage or attack. In contrary, low decay heat of fuel assemblies may make the accident processes slow compared to the accident in reactor core because of a great deal of water. In short, its severity of consequence cannot exclude the consideration of SFP risk management. The U.S. Nuclear Regulatory Commission has performed the consequence studies of postulated spent fuel pool accident. The Fukushima-Daiichi accident has accelerated the needs for the consequence studies of postulated spent fuel pool accidents, causing the nuclear industry and regulatory bodies to reexamine several assumptions concerning beyond-design basis events such as a station blackout. The tsunami brought about the loss of coolant accident, leading to the explosion of hydrogen in the SFP building. Analyses of SFP accident processes in the case of a loss of coolant with no heat removal have studied. Few studies however have focused on a long term process of SFP severe accident under no mitigation action such as a water makeup to SFP. USNRC and OECD have co-worked to examine the behavior of PWR fuel assemblies under severe accident conditions in a spent fuel rack. In support of the investigation, several new features of MELCOR model have been added to simulate both BWR fuel assembly and PWR 17 x 17 assembly in a spent fuel pool rack undergoing severe accident conditions. The purpose of the study in this paper is to develop a methodology of the long-term analysis for the plant level SFP severe accident by using the new-featured MELCOR program in the OPR-1000 Nuclear Power Plant. The study is to investigate the ability of MELCOR in predicting an entire process of SFP severe accident phenomena including the molten corium and concrete reaction. The

  5. Severe accident management: a summary of the VAHTI and ROIMA projects

    International Nuclear Information System (INIS)

    Sairanen, R.

    1998-01-01

    Two severe accident research projects: 'Severe Accident Management' (VAHTI), 1994-96 and 'Reactor Accidents' Phenomena and Simulation (ROIMA) 1997-98. have been conducted at VTT Energy within the RETU research programme. The main objective was to assist the severe accident management programmes of the Finnish nuclear power plants. The projects had several subtopics. These included thermal hydraulic validation of the APROS code, studies of failure mode of the BWR pressure vessel, investigation of core melt progression within a BWR pressure vessel, containment phenomena, development of a computerised severe accident training tool, and aerosol behaviour experiments. The last topic is summarised by another paper in the seminar. The projects have met the objectives set at the project commencement. Calculation tools have been developed and validated suitable for analyses of questions specific for the Finnish plants. Experimental fission product data have been produced that can be used to validate containment aerosol codes. The tools and results have been utilised in plant assessments. One of the main achievements has been the computer code PASULA for analysis of interactions between core melt and pressure vessel. The code has been applied to pressure vessel penetration analysis. The results have shown the importance of the nozzle construction. Modelling possibilities have recently improved by addition of a creep and porous debris models. Cooling of a degraded BWR core has been systematically studied as joint Nordic projects with a set of severe accident codes. Estimates for coolable conditions have been provided. Recriticality due to reflooding of a damaged core has been evaluated. (orig.)

  6. Electrical equipment performance under severe accident conditions (BWR/Mark 1 plant analysis): Summary report

    International Nuclear Information System (INIS)

    Bennett, P.R.; Kolaczkowski, A.M.; Medford, G.T.

    1986-09-01

    The purpose of the Performance Evaluation of Electrical Equipment during Severe Accident States Program is to determine the performance of electrical equipment, important to safety, under severe accident conditions. In FY85, a method was devised to identify important electrical equipment and the severe accident environments in which the equipment was likely to fail. This method was used to evaluate the equipment and severe accident environments for Browns Ferry Unit 1, a BWR/Mark I. Following this work, a test plan was written in FY86 to experimentally determine the performance of one selected component to two severe accident environments

  7. The role of nuclear reactor containment in severe accidents

    International Nuclear Information System (INIS)

    1989-04-01

    The containment is a structural envelope which completely surrounds the nuclear reactor system and is designed to confine the radioactive releases in case of an accident. This report summarises the work of an NEA Senior Group of Experts who have studied the potential role of containment in accidents exceeding design specifications (so-called severe accidents). Some possibilities for enhancing the ability of plants to reduce the risk of significant off-site consequences by appropriate management of the acident have been examined

  8. Deep knowledge expert system for diagnosis of multiple-failure severe transients in nuclear power plant

    International Nuclear Information System (INIS)

    Martin, R.P.; Nassersharif, B.

    1987-01-01

    TAMUS (Transient Analysis of MUltiple-failure Simulations) is a prototype expert system which is the result of a project investigating and implementing event confidence-levels (used by reactor safety experts in reactor transient analysis) in the form of an expert system. Currently, TAMUS is designed to diagnose reactor transients by analyzing simulated sensor and plant thermal hydraulic information from a system simulation. TAMUS uses a knowledge base of existing emergency nuclear plant operating guidelines and detailed thermal-hydraulic calculating results correlated to confidence-levels. TAMUS can diagnose a number of reactor transients (for example, loss-of-coolant accidents, steam-generator-tube ruptures, loss-of-offsite power, etc.). Future work includes the expansion of the knowledge base and improvement of the deep-knowledge qualitative models

  9. Severe accident assessment. Results of the reactor safety research project VAHTI

    International Nuclear Information System (INIS)

    Sairanen, R.

    1997-10-01

    The report provides a summary of the publicly funded nuclear reactor safety research project Severe Accident Management (VAHTI). The project has been conducted at the Technical Research Centre of Finland (VTT) during the years 1994-96. The main objective was to assist the severe accident management programmes of the Finnish nuclear power plants. The project was divided into five work packages: (1) thermal hydraulic validation of the APROS code, (2) core melt progression within a BWR pressure vessel, (3) failure mode of the BWR pressure vessel, (4) Aerosol behaviour experiments, and (5) development of a computerized severe accident training tool

  10. Integral thermal model of severe accident dynamics of NPP with containment

    International Nuclear Information System (INIS)

    Arutyunyan, R.V.; Bol'shov, L.A.; Vasil'ev, A.D.; Kamennov, G.P.

    1991-01-01

    An analytical model of the interaction of reactor core remains with concrete during severe accidents at nuclear power plants is considered. Time dependences of side and radial concrete melting are plotted. Time dependences of containment atmosphere temperature and pressure during a severe accident at nuclear power plants are investigated analytically and numerically. The sensitivity of the results to the coefficient values in the problem is studied within the range of their concertainty. The Kaverna-1 is described. The results of modelling a severe NPP accident which have been obtained using the Kaverna-1 package are presented

  11. Modelling and analysis of severe accidents for VVER-1000 reactors

    International Nuclear Information System (INIS)

    Tusheva, Polina

    2012-01-01

    Accident conditions involving significant core degradation are termed severe accidents /IAEA: NS-G-2.15/. Despite the low probability of occurrence of such events, the investigation of severe accident scenarios is an important part of the nuclear safety research. Considering a hypothetical core melt down scenario in a VVER-1000 light water reactor, the early in-vessel phase focusing on the thermal-hydraulic phenomena, and the late in-vessel phase focusing on the melt relocation into the reactor pressure vessel (RPV) lower head, are investigated. The objective of this work is the assessment of severe accident management procedures for VVER-1000 reactors, i.e. the estimation of the maximum period of time available for taking appropriate measures and particular decisions by the plant personnel. During high pressure severe accident sequences it is of prime importance to depressurize the primary circuit in order to allow for effective injection from the emergency core cooling systems and to avoid reactor pressure vessel failure at high pressure that could cause direct containment heating and subsequent challenge to the containment structure. Therefore different accident management measures were investigated for the in-vessel phase of a hypothetical station blackout accident using the severe accident code ASTEC, the mechanistic code ATHLET and the multi-purpose code system ANSYS. The analyses performed on the PHEBUS ISP-46 experiment, as well as simulations of small break loss of coolant accident and station blackout scenarios were used to contribute to the validation and improvement of the integral severe accident code ASTEC. Investigations on the applicability and the effectiveness of accident management procedures in the preventive domain, as well as detailed analyses on the thermal-hydraulic phenomena during the early in-vessel phase of a station blackout accident have been performed with the mechanistic code ATHLET. The results of the simulations show, that the

  12. Severe Accident R and D for Enhanced CANDU-6 Reactors

    International Nuclear Information System (INIS)

    Nitheanandan, Thambiayah

    2012-01-01

    CANDU reactors possess a number of inherent of inherent and designed safety features that make them resistant to core damage accidents. The unique feature is the low temperature moderator surrounding the fuel channels, which can serve as an alternate heat sink. The fuel is surrounded by three water systems: heavy water primary coolant, heavy water moderator, and light water calandria vault and shield water. In addition, the liquid inventory in the steam generators is a fourth indirect heat sink, able to cool the primary coolant. The water inventories in the emergency core cooling system and the reserve water tank at the dome of the containment can also provide fuel cooling and water makeup to prevent severe core damage or mitigate the consequences of a severe core damage accident. An assessment of the adequacy of the existing severe accident knowledge base, to confidently perform consequence analyses for the Enhanced CANDU-6 reactor in compliance with regulatory requirements, was recently completed. The assessment relied on systematic Phenomena Identification and Ranking Tables (PIRT) studies completed domestically and internationally. The assessment recommends cost-effective R and D to mitigate the consequences of severe accidents and associated risk vulnerabilities

  13. Discussion on several issues of the accidents management of nuclear power plants in operation

    International Nuclear Information System (INIS)

    Cao Xuewu; Wang Zhe; Zhang Yingzhen

    2009-01-01

    This article discusses several issues of the accident management of nuclear power plants in operation, for example: the necessity, implementation principle of accident management and accident management program etc. For conducting accident management for beyond design basis accidents, this article thinks that the accident management program should be developed and implemented to ensure that the plant and its personnel with responsibilities for accident management are adequately prepared to take effective on-site actions to prevent or mitigate the consequences of severe accident. (authors)

  14. The technical requirements concerning severe accident management in nuclear power plants

    International Nuclear Information System (INIS)

    Okamoto, Koji; Sugiyama, Tomoyuki; Kamata, Shinya

    2014-01-01

    The Great East Japan Earthquake with a magnitude of 9.0 (The 2011 off the Pacific coast of Tohoku Earthquake) occurred on March 11, 2011, and the beyond design-basis tsunami descended on the Fukushima Daiichi Nuclear Power Plant by the earthquake. Eventually, the core cooling systems of the units 1, 2 and 3 could not operate stably, they all suffered severe accident, and hydrogen explosions were triggered in the reactor buildings of units 1, 3 and 4. In the light of these circumstances, Atomic Energy Society of Japan (AESJ) decided to establish a standard that consolidates the concept of maintaining and improving severe accident management. In the SAM standard, the combination of hardware and software measures based on the risk assessment enables a scientific and rational approach to apply to scenarios of various severe accidents including low-frequency, high-impact events, and assures safety with functionality and flexibility. The SAM standard is already established in March, 2014. After publication of the SAM standard, with regard to effectiveness assessment for accident management and treatment of the uncertainty of severe accident analysis code, for example, the detailed guideline will be prepared as appendices of the standard. (author)

  15. A Bayesian ensemble of sensitivity measures for severe accident modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Di Maio, Francesco, E-mail: francesco.dimaio@polimi.it [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Vagnoli, Matteo [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Zio, Enrico [Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Chair on System Science and Energetic Challenge, Fondation EDF – Electricite de France Ecole Centrale, Paris, and Supelec, Paris (France); Pourgol-Mohammad, Mohammad [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of)

    2015-12-15

    Highlights: • We propose a sensitivity analysis (SA) method based on a Bayesian updating scheme. • The Bayesian updating schemes adjourns an ensemble of sensitivity measures. • Bootstrap replicates of a severe accident code output are fed to the Bayesian scheme. • The MELCOR code simulates the fission products release of LOFT LP-FP-2 experiment. • Results are compared with those of traditional SA methods. - Abstract: In this work, a sensitivity analysis framework is presented to identify the relevant input variables of a severe accident code, based on an incremental Bayesian ensemble updating method. The proposed methodology entails: (i) the propagation of the uncertainty in the input variables through the severe accident code; (ii) the collection of bootstrap replicates of the input and output of limited number of simulations for building a set of finite mixture models (FMMs) for approximating the probability density function (pdf) of the severe accident code output of the replicates; (iii) for each FMM, the calculation of an ensemble of sensitivity measures (i.e., input saliency, Hellinger distance and Kullback–Leibler divergence) and the updating when a new piece of evidence arrives, by a Bayesian scheme, based on the Bradley–Terry model for ranking the most relevant input model variables. An application is given with respect to a limited number of simulations of a MELCOR severe accident model describing the fission products release in the LP-FP-2 experiment of the loss of fluid test (LOFT) facility, which is a scaled-down facility of a pressurized water reactor (PWR).

  16. Study on severe accident induced by large break loss of coolant accident for pressureized water reactor

    International Nuclear Information System (INIS)

    Zhang Longfei; Zhang Dafa; Wang Shaoming

    2007-01-01

    Using the best estimate computer code SCDAP/RELAP5/MOD3.2 and taking US Westinghouse corporation Surry nuclear power plant as the reference object, a typical three-loop pressurized water reactor severe accident calculation model was established and 25 cm large break loss of coolant accident (LBLOCA) in cold and hot leg of primary loop induced core melt accident was analyzed. The calculated results show that core melt progression is fast and most of the core material melt and relocated to the lower plenum. The lower head of reactor pressure vessel failed at an early time and the cold leg break is more severe than the hot leg break in primary loop during LBLOCA. (authors)

  17. Steam Oxidation Testing in the Severe Accident Test Station

    Energy Technology Data Exchange (ETDEWEB)

    Pint, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    After the March 2011 accident at Fukushima Daiichi, Oak Ridge National Laboratory (ORNL) began conducting high temperature steam oxidation testing of candidate materials for accident tolerant fuel (ATF) cladding in August 2011 [1-11]. The ATF concept is to enhance safety margins in light water reactors (LWR) during severe accident scenarios by identifying materials with 100× slower steam oxidation rates compared to current Zr-based alloys. In 2012, the ORNL laboratory equipment was expanded and made available to the entire ATF community as the Severe Accident Test Station (SATS) [4,12]. Compared to the current UO2/Zr-based alloy fuel system, an ATF alternative would significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [13-14]. The steam oxidation behavior of candidate materials is a key metric in the evaluation of ATF concepts and also an important input into models [15-17]. However, initial modeling work of FeCrAl cladding has used incomplete information on the physical properties of FeCrAl. Also, the steam oxidation data being collected at 1200°-1700°C is unique as no prior work has considered steam oxidation of alloys at such high temperatures. Also, because many accident scenarios include steadily increasing temperatures, the required data are not traditional isothermal exposures but exposures with varying “ramp” rates. In some cases, the steam oxidation behavior has been surprising and difficult to interpret. Thus, more fundamental information continues to be collected. In addition, more work continues to focus on commercially-manufactured tube material. This report summarizes recent work to characterize the behavior of candidate alloys exposed to high temperature steam, evaluate steam oxidation behavior in various ramp scenarios and continue to collect integral data on FeCrAl compared to conventional Zr-based cladding.

  18. System 80+TM PRA insights on severe accident prevention and mitigation

    International Nuclear Information System (INIS)

    Finnicum, D.J.; Jacob, M.C.; Schneider, R.E.; Weston, R.A.

    2004-01-01

    The System 80 + design is ABB-CE's standardized evolutionary Advanced Light Water Reactor (ALWR) design. It incorporates design enhancements based on Probabilistic Risk Assessment (PRA) insights, guidance from the ALWR Utility Requirements Document (URD), and US NRC's Severe Accident Policy. Major severe accident prevention and mitigation design features of the System 80 + design are described. The results of the System 80 + PRA are presented and the insights gained from the PRA sensitivity analyses are discussed. ABB-CE considered defense-in-depth for accident prevention and mitigation early in the design process and used robust design features to ensure that the System 80 + design achieved a low core damage frequency, low containment conditional failure probability, and excellent deterministic containment performance under severe accident conditions and to ensure that the risk was properly allocated among design features and between prevention and mitigation. (author)

  19. Analysis of unmitigated large break loss of coolant accidents using MELCOR code

    Science.gov (United States)

    Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.

    2017-11-01

    In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.

  20. Assessment of Equipment Capability to Perform Reliably under Severe Accident Conditions

    International Nuclear Information System (INIS)

    2017-07-01

    The experience from the last 40 years has shown that severe accidents can subject electrical and instrumentation and control (I&C) equipment to environmental conditions exceeding the equipment’s original design basis assumptions. Severe accident conditions can then cause rapid degradation or damage to various degrees up to complete failure of such equipment. This publication provides the technical basis to consider when assessing the capability of electrical and I&C equipment to perform reliably during a severe accident. It provides examples of calculation tools to determine the environmental parameters as well as examples and methods that Member States can apply to assess equipment reliability.

  1. [Characterization of severe acute occupational poisoning accidents in China between 1989 and 2003].

    Science.gov (United States)

    Zhang, Min; Li, Tao; Wang, Huan-Qiang; Wang, Hong-Fei; Chen, Shu-Yang; Du, Xie-Yi; Zhang, Shuang; Qin, Jian

    2006-12-01

    To analyze severe acute occupational poisoning accidents reported in China between 1989 and 2003, and to study the characteristics of severe acute occupational poisoning accidents and provide scientific evidences for prevention and control strategies. The data from the national occupational poisoning case reporting system were analyzed with descriptive methods. (1) There were 506 acute severe occupational poisoning accidents for 15 years with 4 657 workers poisoned. The total poisoning rate was 54.8%, and the total mortality was 16.5%. The average poisoning age was (31.9 +/- 9.8) years old and the average death age was (33.7 +/- 10.3) years old. The poisoning accidents occurred more in men than in women. (2) There were more than 112 chemicals which caused these poisoning accidents. Most of the accidents caused by hydrogen sulfide, carbon monoxide, benzene and homologs, metal and metalloid and carbon dioxide, and the types of chemicals varied in different types of industries. (3) The accidents mainly occurred in chemical industry, manufacture, water disposal industry, mining and construction industry, and the risk was higher in some jobs than others, such as cleanout, machine maintenance and repair, production, mine and digging. The accidents occurred more frequently from April to August each year. (1) The control over the severe acute occupational poisoning is urgent. (2) The trend of the characteristics of severe acute occupational poisoning accidents is centralized in the high risk industries, poisons and jobs. (3) The characteristics of the accidents varied in different types of industries. (4) It is the key point to strengthen the supervision on poisoning.

  2. Safety against releases in severe accidents. Final report

    International Nuclear Information System (INIS)

    Lindholm, I.; Berg, Oe.; Nonboel, E.

    1997-12-01

    The work scope of the RAK-2 project has involved research on quantification of the effects of selected severe accident phenomena for Nordic nuclear power plants, development and testing of a computerised accident management support system and data collection and description of various mobile reactors and of different reactor types existing in the UK. The investigations of severe accident phenomena focused mainly on in-vessel melt progression, covering a numerical assessment of coolability of a degraded BWR core, the possibility and consequences of a BWR reactor to become critical during reflooding and the core melt behavior in the reactor vessel lower plenum. Simulant experiments were carried out to investigate lower head hole ablation induced by debris discharge. In addition to the in-vessel phenomena, a limited study on containment response to high pressure melt ejection in a BWR and a comparative study on fission product source term behaviour in a Swedish PWR were performed. An existing computerised accident management support system (CAMS) was further developed in the area of tracking and predictive simulation, signal validation, state identification and user interface. The first version of a probabilistic safety analysis module was developed and implemented in the system. CAMS was tested in practice with Barsebaeck data in a safety exercise with the Swedish nuclear authority. The descriptions of the key features of British reactor types, AGR, Magnox, FBR and PWR were published as data reports. Separate reports were issued also on accidents in nuclear ships and on description of key features of satellite reactors. The collected data were implemented in a common Nordic database. (au)

  3. Assessing information needs and instrument availability for a pressurized water reactor during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Duane J. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States)); Arcieri, William C. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States)); Ward, Leonard W. (Idaho National Engineering Laboratory, Idaho Falls, ID 83415 (United States))

    1994-07-01

    A five-step methodology was developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information that personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and severe accident conditions, to evaluate the availability of the instrumentation to supply needed plant information. This methodology was applied to a pressurized water reactor with a large dry containment and the results are presented. A companion article describes application of the methodology to a boiling water reactor with a Mark I containment. ((orig.))

  4. Assessing information needs and instrument availability for a pressurized water reactor during severe accidents

    International Nuclear Information System (INIS)

    Hanson, Duane J.; Arcieri, William C.; Ward, Leonard W.

    1994-01-01

    A five-step methodology was developed to evaluate information needs for nuclear power plants under accident conditions and the availability of plant instrumentation during severe accidents. Step 1 examines the credible accidents and their relationships to plant safety functions. Step 2 determines the information that personnel involved in accident management will need to understand plant behavior. Step 3 determines the capability of the instrumentation to function properly under severe accident conditions. Step 4 determines the conditions expected during the identified severe accidents. Step 5 compares the instrument capabilities and severe accident conditions, to evaluate the availability of the instrumentation to supply needed plant information. This methodology was applied to a pressurized water reactor with a large dry containment and the results are presented. A companion article describes application of the methodology to a boiling water reactor with a Mark I containment. ((orig.))

  5. Numerical module for debris behavior under severe accident conditions

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Kobelev, G.V.; Strizhov, V.F.; Vasiliev, A.D.

    2005-01-01

    The late phase of a hypothetical severe accident in a nuclear reactor is characterized by the appearance of porous debris and liquid pools in core region and lower head of the reactor vessel. Thermal hydraulics and heat transfer in these regions are very important for adequate analysis of severe accident dynamics. The purpose of this work is to develop a universal module which is able to model above-mentioned phenomena on the basis of modern physical concepts. The original approach for debris evolution is developed from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The calculation results of several tests on modeling of porous debris behavior, including the MP-1 experiment, are presented in comparison with experimental data. The results are obtained using this module implemented into the Russian best estimate code, RATEG/SVECHA/HEFEST, which was developed for modeling severe accident thermal hydraulics and late phase phenomena in VVER nuclear power plants. (author)

  6. Simulation of severe accidents in COTELS experiments

    International Nuclear Information System (INIS)

    Vasilev, Yu.S.; Zhdanov, V.S.; Kolodeshnikov, A.A.; Kadyrov, Kh. G.; Turkebaev, T.E.; Tsaj, K.V.; Suslov, E.E.

    1999-01-01

    At present, the issue of atomic reactor operation safety is of a great attention. It is evident that the accident accompanied with a core materials melting is an improbable event. To fully assess a hazard of a reactor use and enhance its safety, it is necessary to predict a possible accident progress and specify possible consequences of severe accidents and eliminating measures. In COTELS experiments, aimed at investigation of interaction of corium with concrete and water, the corium s imulator m elt is discharged on the concrete. The concrete erosion parameters, composition and rate of aerosol and gas escaping are recorded. The solidified melt and concrete fragments structure is studied after the testing, using the X-ray diffractometer DRON-3. This paper gives consideration to possible mechanisms of formation of uranium-containing and other phases of products of interaction of the corium melt with concrete and water

  7. Severe accident management (SAM), operator training and instrumentation capabilities - Summary and conclusions

    International Nuclear Information System (INIS)

    2002-01-01

    The Workshop on Operator Training for Severe Accident Management (SAM) and Instrumentation Capabilities During Severe Accidents was organised in collaboration with Electricite de France (Service Etudes et Projets Thermiques et Nucleaires). There were 34 participants, representing thirteen OECD Member countries, the Russian Federation and the OECD/NEA. Almost half the participants represented utilities. The second largest group was regulatory authorities and their technical support organisations. Basically, the Workshop was a follow-up to the 1997 Second Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2) [Reports NEA/CSNI/R(97)10 and 27] and to the 1992 Specialist Meeting on Instrumentation to Manage Severe Accidents [Reports NEA/CSNI/R(92)11 and (93)3]. It was aimed at sharing and comparing progress made and experience gained from these two meetings, emphasizing practical lessons learnt during training or incidents as well as feedback from instrumentation capability assessment. The objectives of the Workshop were therefore: - to exchange information on recent and current activities in the area of operator training for SAM, and lessons learnt during the management of real incidents ('operator' is defined hear as all personnel involved in SAM); - to compare capabilities and use of instrumentation available during severe accidents; - to monitor progress made; - to identify and discuss differences between approaches relevant to reactor safety; - and to make recommendations to the Working Group on the Analysis and Management of Accidents and the CSNI (GAMA). The Workshop was organised into five sessions: - 1: Introduction; - 2: Tools and Methods; - 3: Training Programmes and Experience; - 4: SAM Organisation Efficiency; - 5: Instrumentation Capabilities. It was concluded by a Panel and General Discussion. This report presents the summary and conclusions: the meeting confirmed that only limited information is needed for making required decisions

  8. Specialist meeting on selected containment severe accident management strategies. Summary and conclusions

    International Nuclear Information System (INIS)

    1994-01-01

    The CSNI Specialist Meeting on Selected Containment Severe Accident Management Strategies held in Stockholm, Sweden in June 1994 was organised by the Task Group on Containment Aspects of Severe Accident Management (CAM) of CSNI's Principal Working Group on the Confinement of Accidental Radioactive Releases (PWG4) in collaboration with the Swedish Nuclear Power Inspectorate (SKI). Conclusions and recommendations are given for each of the sessions of the workshops: Containment accident management strategies (general aspects); hydrogen management techniques and other containment accident management techniques; surveillance and protection of containment function

  9. SARNET. Severe Accident Research Network - key issues in the area of source term

    International Nuclear Information System (INIS)

    Giordano, P.; Micaelli, J.C.; Haste, T.; Herranz, L.

    2005-01-01

    About fifty European organisations integrate in SARNET (Network of Excellence of the EU 6 th Framework Programme) their research capacities in resolve better the most important remaining uncertainties and safety issues concerning existing and future Nuclear Power Plants (NPPs) under hypothetical Severe Accident (SA) conditions. Wishing to maintain a long-lasting cooperation, they conduct three types of activities: integrating activities, spreading of excellence and jointly executed research. This paper summarises the main results obtained by the network after the first year, giving more prominence to those from jointly executed research in the Source Term area. Integrating activities have been performed through different means: the ASTEC integral computer code for severe accident transient modelling, through development of PSA2 methodologies, through the setting of a structure for definition of evolving R and D priorities and through the development of a web-network of data bases that hosts experimental data. Such activities have been facilitated by the development of an Advanced Communication Tool. Concerning spreading of excellence, educational courses covering Severe Accident Analysis Methodology and Level 2 PSA have been set up, to be given in early 2006. A detailed text book on Severe Accident Phenomenology has been designed and agreed amongst SARNET members. A mobility programme for students and young researchers is being developed, some detachments are already completed or in progress, and examples are quoted. Jointly executed research activities concern key issues grouped in the Corium, Containment and Source Term areas. In Source Term, behaviour of the highly radio-toxic ruthenium under oxidising conditions (like air ingress) for HBU and MOX fuel has been investigated. First modelling proposals for ASTEC have been made for oxidation of fuel and of ruthenium. Experiments on transport of highly volatile oxide ruthenium species have been performed. Reactor

  10. A two dimensional approach for temperature distribution in reactor lower head during severe accident

    International Nuclear Information System (INIS)

    Cao, Zhen; Liu, Xiaojing; Cheng, Xu

    2015-01-01

    Highlights: • Two dimensional module is developed to analyze integrity of lower head. • Verification step has been done to evaluate feasibility of new module. • The new module is applied to simulate large-scale advanced PWR. • Importance of 2-D approach is clearly quantified. • Major parameters affecting vessel temperature distribution are identified. - Abstract: In order to evaluate the safety margin during a postulated severe accident, a module named ASAP-2D (Accident Simulation on Pressure vessel-2 Dimensional), which can be implemented into the severe accident simulation codes (such as ATHLET-CD), is developed in Shanghai Jiao Tong University. Based on two-dimensional spherical coordinates, heat conduction equation for transient state is solved implicitly. Together with solid vessel thickness, heat flux distribution and heat transfer coefficient at outer vessel surface are obtained. Heat transfer regime when critical heat flux has been exceeded (POST-CHF regime) could be simulated in the code, and the transition behavior of boiling crisis (from spatial and temporal points of view) can be predicted. The module is verified against a one-dimensional analytical solution with uniform heat flux distribution, and afterwards this module is applied to the benchmark illustrated in NUREG/CR-6849. Benchmark calculation indicates that maximum heat flux at outer surface of RPV could be around 20% lower than that of at inner surface due to two-dimensional heat conduction. Then a preliminary analysis is performed on the integrity of the reactor vessel for which the geometric parameters and boundary conditions are derived from a large scale advanced pressurized water reactor. Results indicate that heat flux remains lower than critical heat flux. Sensitivity analysis indicates that outer heat flux distribution is more sensitive to input heat flux distribution and the transition boiling correlation than mass flow rate in external reactor vessel cooling (ERVC) channel

  11. CANDU safety under severe accidents

    International Nuclear Information System (INIS)

    Snell, V.G.; Howieson, J.Q.; Frescura, G.M.; King, F.; Rogers, J.T.; Tamm, H.

    1988-01-01

    The characteristics of the CANDU reactor relevant to severe accidents are set first by the inherent properties of the design, and second by the Canadian safety/licensing approach. Probabilistic safety assessment studies have been performed on operating CANDU plants, and on the 4 x 880 MW(e) Darlington station now under construction; furthermore a scoping risk assessment has been done for a CANDU 600 plant. They indicate that the summed severe core damage frequency is of the order of 5 x 10 -6 /year. CANDU nuclear plant designers and owner/operators share information and operational experience nationally and internationally through the CANDU Owners' Group (COG). The research program generally emphasizes the unique aspects of the CANDU concept, such as heat removal through the moderator, but it has also contributed significantly to areas generic to most power reactors such as hydrogen combustion, containment failure modes, fission product chemistry, and high temperature fuel behaviour. Abnormal plant operating procedures are aimed at first using event-specific emergency operating procedures, in cases where the event can be diagnosed. If this is not possible, generic procedures are followed to control Critical Safety Parameters and manage the accident. Similarly, the on-site contingency plans include a generic plan covering overall plant response strategy, and a specific plan covering each category of contingency

  12. Accidents and transients analyses of a super fast reactor with single flow pass core

    International Nuclear Information System (INIS)

    Sutanto,; Oka, Yoshiaki

    2014-01-01

    Highlights: • Safety analysis of a Super FR with single flow pass core is conducted. • Loss of feed water flow leads to a direct effect on the loss of fuel channel flow. • The core pressure is sensitive to LOCA accidents due to the direct effect. • Small LOCA introduces a critical break. • The safety criteria for all selected events are satisfied. - Abstract: The supercritical water cooled fast reactor with single flow pass core has been designed to simplify refueling and the structures of upper and lower mixing plenums. To evaluate the safety performance, safety analysis has been conducted with regard to LOCA and non-LOCA accidents including transient events. Safety analysis results show that the safety criteria are satisfied for all selected events. The total loss of feed water flow is the most important accident which the maximum cladding surface temperature (MCST) is high due to a direct effect of the accident on the total loss of flow in all fuel assemblies. However, actuation of the ADS can mitigate the accident. Small LOCA also introduces a critical break at 7.8% break which results high MCST at BOC because the scram and ADS are not actuated. Early ADS actuation is effective to mitigate the accident. In large LOCA, 100% break LOCA results a high MCST of flooding phase at BOC due to high power peaking at the bottom part. Use of high injection flow rate by 2 LPCI units is effective to decrease the MCST

  13. A study on the estimation of economic consequence of severe accident

    International Nuclear Information System (INIS)

    Hong, Dae Seok; Lee, Kun Jai; Jeong, Jong Tae

    1996-01-01

    A model to estimate economic consequence of severe accident provides some measure of the impact on the accident and enables to know the different effects of the accident described as same terms of cost and combined as necessary. Techniques to assess the consequences of accidents in terms of cost have many applications, for instance in examining countermeasure options, as part of either emergency planning or decision making after an accident. In this study, a model to estimate the accident economic consequence is developed appropriate to our country focused on PWR accident costs from a societal viewpoint. Societal costs are estimated by accounting for losses that directly affect the plant licensee, the public, the nuclear industry, or the electric utility industry after PWR accident

  14. Instrumentation availability during severe accidents for a boiling water reactor with a Mark I containment

    International Nuclear Information System (INIS)

    Arcieri, W.C.; Hanson, D.J.

    1992-02-01

    In support of the US Nuclear Regulatory Commission Accident Management Research Program, the availability of instruments to supply accident management information during a broad range of severe accidents is evaluated for a Boiling Water Reactor with a Mark I containment. Results from this evaluation include: (1) the identification of plant conditions that would impact instrument performance and information needs during severe accidents; (2) the definition of envelopes of parameters that would be important in assessing the performance of plant instrumentation for a broad range of severe accident sequences; and (3) assessment of the availability of plant instrumentation during severe accidents

  15. Consideration of severe accident issues for the general electric BWR standard plant a status report

    International Nuclear Information System (INIS)

    Holtzclaw, K.W.

    1983-01-01

    In early 1982 the U.S. NRC proposed a policy to address severe accident rulemaking on future plants by utilizing standard plant licensing documentation. This paper, GE's submission, discusses the features of the design that prevent severe accidents from leading to core damage or that mitigate the effects of severe accidents should core damage occur. The quantification of the accident prevention and mitigation features, including those incorporated in the design since the accident at TMI, is provided by means of a comprehensive probabilistic risk assessment, which provides an analysis of the probability and consequences of postulated severe accidents

  16. FN-curves: preliminary estimation of severe accident risks after Fukushima

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Costa, Antonio Carlos Lopes da

    2015-01-01

    Doubts of whether the risks related to severe accidents in nuclear reactors are indeed very low were raised after the nuclear accident at Fukushima Daiichi in 2011. Risk estimations of severe accidents in nuclear power plants involve both probability and consequence assessment of such events. Among the ways to display risks, risk curves are tools that express the frequency of exceeding a certain magnitude of consequence. Societal risk is often represented graphically in a FN-curve, a type of risk curve, which displays the probability of having N or more fatalities per year, as a function of N, on a double logarithmic scale. The FN-curve, originally introduced for the assessment of the risks in the nuclear industry through the U.S.NRC Reactor Safety Study WASH-1400 (1975), is used in various countries to express and limit risks of hazardous activities. This first study estimated an expected rate of core damage equal to 5x10 -5 by reactor-year and suggested an upper bound of 3x10 -4 by reactor-year. A more recent report issued by Electric Power Research Institute - EPRI (2008) estimates a figure of the order of 2x10 -5 by reactor-year. The Fukushima nuclear accident apparently implies that the observed core damage frequency is higher than that predicted by these probabilistic safety assessments. Therefore, this paper presents a preliminary analyses of the FN-curves related to severe nuclear reactor accidents, taking into account a combination of available data of past accidents, probability modelling to estimate frequencies, and expert judgments. (author)

  17. FN-curves: preliminary estimation of severe accident risks after Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Costa, Antonio Carlos Lopes da, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: aclc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Doubts of whether the risks related to severe accidents in nuclear reactors are indeed very low were raised after the nuclear accident at Fukushima Daiichi in 2011. Risk estimations of severe accidents in nuclear power plants involve both probability and consequence assessment of such events. Among the ways to display risks, risk curves are tools that express the frequency of exceeding a certain magnitude of consequence. Societal risk is often represented graphically in a FN-curve, a type of risk curve, which displays the probability of having N or more fatalities per year, as a function of N, on a double logarithmic scale. The FN-curve, originally introduced for the assessment of the risks in the nuclear industry through the U.S.NRC Reactor Safety Study WASH-1400 (1975), is used in various countries to express and limit risks of hazardous activities. This first study estimated an expected rate of core damage equal to 5x10{sup -5} by reactor-year and suggested an upper bound of 3x10{sup -4} by reactor-year. A more recent report issued by Electric Power Research Institute - EPRI (2008) estimates a figure of the order of 2x10{sup -5} by reactor-year. The Fukushima nuclear accident apparently implies that the observed core damage frequency is higher than that predicted by these probabilistic safety assessments. Therefore, this paper presents a preliminary analyses of the FN-curves related to severe nuclear reactor accidents, taking into account a combination of available data of past accidents, probability modelling to estimate frequencies, and expert judgments. (author)

  18. Analytical measurements of fission products during a severe nuclear accident

    Science.gov (United States)

    Doizi, D.; Reymond la Ruinaz, S.; Haykal, I.; Manceron, L.; Perrin, A.; Boudon, V.; Vander Auwera, J.; tchana, F. Kwabia; Faye, M.

    2018-01-01

    The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d'Investissement d'Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements) is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium) outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  19. Analytical measurements of fission products during a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Doizi D.

    2018-01-01

    Full Text Available The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  20. Summary and conclusions of the specialist meeting on severe accident management programme development

    International Nuclear Information System (INIS)

    1992-01-01

    The CSNI Specialist meeting on severe accident management programme development was held in Rome and about seventy experts from thirteen countries attended the meeting. A total of 27 papers were presented in four sessions, covering specific aspects of accident management programme development. It purposely focused on the programmatic aspects of accident management rather than on some of the more complex technical issues associated with accident management strategies. Some of the major observations and conclusions from the meeting are that severe accident management is the ultimate part of the defense in depth concept within the plant. It is function and success oriented, not event oriented, as the aim is to prevent or minimize consequences of severe accidents. There is no guarantee it will always be successful but experts agree that it can reduce the risks significantly. It has to be exercised and the importance of emergency drills has been underlined. The basic structure and major elements of accident management programmes appear to be similar among OECD member countries. Dealing with significant phenomenological uncertainties in establishing accident management programmes continues to be an important issue, especially in confirming the appropriateness of specific accident management strategies

  1. Using MARS to assist in managing a severe accident

    International Nuclear Information System (INIS)

    Raines, J.C.; Hammersley, R.J.; Henry, R.E.

    2004-01-01

    During an accident, information about the current and possible future states of the plant provides guidance for accident managers in evaluating which actions should be taken. However, depending upon the nature of the accident and the stress levels imposed on the plant staff responding to the accident the current and future plant assessments may be very difficult or nearly impossible to perform without supplemental training and/or appropriate tools. The MAAP Accident Response System (MARS) has been developed as a calculational aid to assist the responsible accident management individuals. Specifically MARS provides additional insights on the current and possible future states of the plant during an accident including the influence of operator actions. In addition to serving as a calculational aid, the MARS software can be an effective means for providing supplemental training. The MARS software uses engineering calculations to perform an integral assessment of the plant status including a consistency assessment of the available instrumentation. In addition, it uses the Modular Accident Analysis Program (MAAP) to provide near term predictions of the plant response if corrective actions are taken. This paper will discuss the types of information that are beneficial to the accident manager and how MARS addresses each. The MARS calculational functions include: instrumentation, validation and simulation, projected operator response based on the EOPs, as well as estimated timing and magnitude of in-plant and off-site radiation dose releases. Each of these items is influential in the management of a severe accident. (author)

  2. Assessment of accident severity in the construction industry using the Bayesian theorem.

    Science.gov (United States)

    Alizadeh, Seyed Shamseddin; Mortazavi, Seyed Bagher; Mehdi Sepehri, Mohammad

    2015-01-01

    Construction is a major source of employment in many countries. In construction, workers perform a great diversity of activities, each one with a specific associated risk. The aim of this paper is to identify workers who are at risk of accidents with severe consequences and classify these workers to determine appropriate control measures. We defined 48 groups of workers and used the Bayesian theorem to estimate posterior probabilities about the severity of accidents at the level of individuals in construction sector. First, the posterior probabilities of injuries based on four variables were provided. Then the probabilities of injury for 48 groups of workers were determined. With regard to marginal frequency of injury, slight injury (0.856), fatal injury (0.086) and severe injury (0.058) had the highest probability of occurrence. It was observed that workers with severe and fatal accidents, involved workers ≥ 50 years old, married, with 1-5 years' work experience, who had no past accident experience. The findings provide a direction for more effective safety strategies and occupational accident prevention and emergency programmes.

  3. Modelling and forecasting occupational accidents of different severity levels in Spain

    International Nuclear Information System (INIS)

    Carmen Carnero, Maria; Jose Pedregal, Diego

    2010-01-01

    The control of accidents at the work place is a critical issue all over the world. The consequences of occupational accidents in terms of costs for the company in which the accidents take place is only one minor matter, being the social impact and the loss of human life the most controversial effects of this important problem. The methods used to forecast future evolution of accidents are often limited to trend estimations and projections, being the scientific literature on this topic rather scarce. This paper aims at showing and predicting the evolution of Spanish occupational accidents of different levels of severity, allowing the evaluation of the influence that preventive actions carried out by public administrations or private companies may have over the number of occupational accidents. Though some contributions may be found on this topic for Spain, this paper is the first contribution that forecast occupational accidents for different levels of severity using Multivariate Unobserved Components models developed in a State Space framework extended to deal with the irregular sampling interval of the data. Data from 1998 to 2009 have been used to test the efficacy of the forecasting system.

  4. Evaluation of severe accident safety system value based on averting financial risks

    International Nuclear Information System (INIS)

    Hatch, S.W.; Benjamin, A.S.; Bennett, P.R.

    1983-01-01

    The Severe Accident Risk Reduction Program is being performed to benchmark the risks from nuclear power plants and to assess the benefits and impacts of a set of severe accident safety features. This paper describes the program in general and presents some preliminary results. These results include estimates of the financial risks associated with the operation of six reference plants and the value of severe accident prevention and mitigation safety systems in averting these risks. The results represent initial calculations and will be iterated before being used to support NRC decisions

  5. Thermal and hydraulic behaviour of CANDU cores under severe accident conditions - final report

    International Nuclear Information System (INIS)

    Rogers, J.T.

    1984-06-01

    This volume of appendices presents listings and sample runs of the computer codes used in the study of the thermalhydraulic behaviour of CANDU reactor cores during severe loss of coolant accidents. The codes, written in standard FORTRAN, are MODBOIL, to calculate moderator temperatures, pressures and water levels; DEBRIS, to calculate the transient temperature distribution in the debris of calandria and pressure tubes and fuel pellets; MOLTENPOOL, to calculate the temperature history in a pool of molten debris; CONFILM, to calculate the behaviour of a condensing film of vaporized core debris on the calandria wall, and BLDG, to calculate the pressurization of the containment during the expulsion of moderator through pressure relief ducts. In addition there are discussions of the average condensation heat transfer coefficient for vaporized core material on the calandria wall, and of vapor explosions

  6. PWR severe accident mitigation measures, the french point of view

    International Nuclear Information System (INIS)

    Duco, J.; L'Homme, A.; Queniart, D.

    1990-01-01

    French studies have early considered the fact that, despite all the precautions taken, the possibility of severe accidents cannot be absolutely excluded; these accidents include core meltdown and a more or less significant loss, at an early or later stage, of the confinement of the radioactive substances in the containment. For a given scenario, one can almost always imagine a more severe scenario by postulating additional failures, but it is obvious that, as the severity of the imagined scenario increases, the probability of its occurrence tends towards zero. However, it does not appear reasonable to attempt to set a probability threshold below which the scenarios should be excluded. First of all, the higher the improbability of the scenarios, the greater the uncertainty in the calculation of their probability, with the result that the calculation is not very meaningful. Secondly, and more importantly, this approach ignores the essential problem of accident situation management. From the outset, French studies have been focused on controlling the development of these situations and mitigating their consequences by means of a series of appropriate actions involving, on the one hand, optimum use of the resources available in the installation during the course of the accident and, on the other hand, the taking of protective measures for the population. To attempt to prevent an initial event to degenerate into a severe accident leading to core meltdown if the proper actions are not taken, Electricite de France has proposed a new operating procedure based on the characterization of every possible cooling state of the core

  7. ALWR severe accident issue resolution in support of updated emergency planning

    International Nuclear Information System (INIS)

    Additon, Stephen L.; Leaver, David E.; Sorrell, Steven W.; Theofanous, Theo G.

    2004-01-01

    The Advanced Light Water Reactor (ALWR) Program in the U.S. is a cooperative, cost-sharing undertaking between the U.S. government, industry, and a number of international participants, with the objective of developing the next generation of nuclear power plants. The ALWR designs emphasize improvements in safety and operational reliability through simplification, improved safety margins, innovative passive safety systems, enhanced man-machine interfaces, and incorporation of the lessons learned from the operation of existing LWR plants. An important component of the improved safety characteristics of ALWRs is the consideration of severe accidents in the plant design. The U.S. Department of Energy (DOE) initiated the Advanced Reactor Severe Accident Program (ARSAP) to assist in the transfer of severe accident technology from the U.S. national laboratories to the industry to implement this approach. The basic design requirements for this new generation of nuclear power plants were developed, under the management of the Electric Power Research Institute (EPRI) by the utilities and documented in the Utility Requirements Document (URD). The URD safety policy is based on the traditional 'defense-in-depth' approach, which emphasizes prevention through safety systems which prevent accidents from progressing to core damage, and mitigation to ensure that accidents are mitigated and contained. In a major departure from previous practice, severe accidents, including postulated core melt events, are specifically included in the defense-in-depth design considerations for ALWRs. As a result of this approach, the emergency planning assumptions and criteria warrant a review and reevaluation for ALWR designs. ALWRs present a risk profile that is significantly different than that which served as the basis for the emergency planning requirements for operating plants. The determination of this profile necessarily requires the characterization of the severe accident response of ALWRs

  8. Cleanup and decommissioning of a nuclear reactor after a severe accident

    International Nuclear Information System (INIS)

    1992-01-01

    Although the development of commercial nuclear power plants has in general been associated with an excellent record of nuclear safety, the possibility of a severe accident resulting in major fuel and core damage cannot be excluded and such accidents have in fact already occurred. For over a decade, IAEA publications have provided technical guidance and recommendations for post-accident planning to be considered by appropriate authorities. Guidance and recommendations have recently been published on the management of damaged nuclear fuel, sealing of the reactor building and related safety and performance assessment aspects. The present technical report on the cleanup and decommissioning of reactors which have undergone a severe accident represents a further publication in the series. Refs, figs and tabs.

  9. Comparative risk assessment of severe accidents in the energy sector

    International Nuclear Information System (INIS)

    Burgherr, Peter; Hirschberg, Stefan

    2014-01-01

    Comparative assessment of accident risks in the energy sector is a key aspect in a comprehensive evaluation of sustainability and energy security concerns. Safety performance of energy systems can have important implications on the environmental, economic and social dimensions of sustainability as well as availability, acceptability and accessibility aspects of energy security. Therefore, this study provides a broad comparison of energy technologies based on the objective expression of accident risks for complete energy chains. For fossil chains and hydropower the extensive historical experience available in PSI's Energy-related Severe Accident Database (ENSAD) is used, whereas for nuclear a simplified probabilistic safety assessment (PSA) is applied, and evaluations of new renewables are based on a combination of available data, modeling, and expert judgment. Generally, OECD and EU 27 countries perform better than non-OECD. Fatality rates are lowest for Western hydropower and nuclear as well as for new renewables. In contrast, maximum consequences can be by far highest for nuclear and hydro, intermediate for fossil, and very small for new renewables, which are less prone to severe accidents. Centralized, low-carbon technology options could generally contribute to achieve large reductions in CO 2 -emissions; however, the principal challenge for both fossil with Carbon Capture and Storage and nuclear is public acceptance. Although, external costs of severe accidents are significantly smaller than those caused by air pollution, accidents can have disastrous and long-term impacts. Overall, no technology performs best or worst in all respects, thus tradeoffs and priorities are needed to balance the conflicting objectives such as energy security, sustainability and risk aversion to support rationale decision making. - Highlights: • Accident risks are compared across a broad range of energy technologies. • Analysis of historical experience was based on the

  10. Safety against releases in severe accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, I.; Berg, Oe.; Nonboel, E. [eds.

    1997-12-01

    The work scope of the RAK-2 project has involved research on quantification of the effects of selected severe accident phenomena for Nordic nuclear power plants, development and testing of a computerised accident management support system and data collection and description of various mobile reactors and of different reactor types existing in the UK. The investigations of severe accident phenomena focused mainly on in-vessel melt progression, covering a numerical assessment of coolability of a degraded BWR core, the possibility and consequences of a BWR reactor to become critical during reflooding and the core melt behavior in the reactor vessel lower plenum. Simulant experiments were carried out to investigate lower head hole ablation induced by debris discharge. In addition to the in-vessel phenomena, a limited study on containment response to high pressure melt ejection in a BWR and a comparative study on fission product source term behaviour in a Swedish PWR were performed. An existing computerised accident management support system (CAMS) was further developed in the area of tracking and predictive simulation, signal validation, state identification and user interface. The first version of a probabilistic safety analysis module was developed and implemented in the system. CAMS was tested in practice with Barsebaeck data in a safety exercise with the Swedish nuclear authority. The descriptions of the key features of British reactor types, AGR, Magnox, FBR and PWR were published as data reports. Separate reports were issued also on accidents in nuclear ships and on description of key features of satellite reactors. The collected data were implemented in a common Nordic database. (au) 39 refs.

  11. ESTER: a new approach in modelling severe accidents

    International Nuclear Information System (INIS)

    Shepherd, I.; Jones, A.; Schmidt, F.

    1993-01-01

    ESTER is a set of codes for calculating phenomena during severe accidents in thermal reactors. It makes use of software tools that allow the data to be defined as a tree-structured data base and this data to be stored and retrieved by the code modules. The tools include generalized input and output routines that are independent of the particular code being used. Severe accident research codes are in a continual state of development and the structure of ESTER is such that modifications can be introduced easily and safely. The ESTER framework also facilitates the coupling together of codes. A preliminary version of ESTER containing a complete set of tools and a limited number of applications has already been released. 9 refs., 5 figs

  12. Modeling of in-vessel fission product release including fuel morphology effects for severe accident analyses

    International Nuclear Information System (INIS)

    Suh, K.Y.

    1989-10-01

    A new in-vessel fission product release model has been developed and implemented to perform best-estimate calculations of realistic source terms including fuel morphology effects. The proposed bulk mass transfer correlation determines the product of fission product release and equiaxed grain size as a function of the inverse fuel temperature. The model accounts for the fuel-cladding interaction over the temperature range between 770 K and 3000 K in the steam environment. A separate driver has been developed for the in-vessel thermal hydraulic and fission product behavior models that were developed by the Department of Energy for the Modular Accident Analysis Package (MAAP). Calculational results of these models have been compared to the results of the Power Burst Facility Severe Fuel Damage tests. The code predictions utilizing the mass transfer correlation agreed with the experimentally determined fractional release rates during the course of the heatup, power hold, and cooldown phases of the high temperature transients. Compared to such conventional literature correlations as the steam oxidation model and the NUREG-0956 correlation, the mass transfer correlation resulted in lower and less rapid releases in closer agreement with the on-line and grab sample data from the Severe Fuel Damage tests. The proposed mass transfer correlation can be applied for best-estimate calculations of fission products release from the UO 2 fuel in both nominal and severe accident conditions. 15 refs., 10 figs., 2 tabs

  13. Nuclear safety in light water reactors severe accident phenomenology

    CERN Document Server

    Sehgal, Bal Raj

    2011-01-01

    This vital reference is the only one-stop resource on how to assess, prevent, and manage severe nuclear accidents in the light water reactors (LWRs) that pose the most risk to the public. LWRs are the predominant nuclear reactor in use around the world today, and they will continue to be the most frequently utilized in the near future. Therefore, accurate determination of the safety issues associated with such reactors is central to a consideration of the risks and benefits of nuclear power. This book emphasizes the prevention and management of severe accidents to teach nuclear professionals

  14. A PC based multi-CPU severe accident simulation trainer

    International Nuclear Information System (INIS)

    Jankowski, M.W.; Bienarz, P.P.; Sartmadjiev, A.D.

    2004-01-01

    MELSIM Severe Accident Simulation Trainer is a personal computer based system being developed by the International Atomic Energy Agency and Risk Management Associates, Inc. for the purpose of training the operators of nuclear power stations. It also serves for evaluating accident management strategies as well as assessing complex interfaces between emergency operating procedures and accident management guidelines. The system is being developed for the Soviet designed WWER-440/Model 213 reactor and it is plant specific. The Bohunice V2 power station in the Slovak Republic has been selected for trial operation of the system. The trainer utilizes several CPUs working simultaneously on different areas of simulation. Detailed plant operation displays are provided on colour monitor mimic screens which show changing plant conditions in approximate real-time. Up to 28 000 curves can be plotted on a separate monitor as the MELSIM program proceeds. These plots proceed concurrently with the program, and time specific segments can be recalled for review. A benchmarking (limited in scope) against well validated thermal-hydraulic codes and selected plant accident data (WWER-440/213 Rovno NPP, Ukraine) has been initiated. Preliminary results are presented and discussed. (author)

  15. Design study on dose evaluation method for employees at severe accident

    International Nuclear Information System (INIS)

    Yoshida, Yoshitaka; Irie, Takashi; Kohriyama, Tamio; Kudo, Seiichi; Nishimura, Kazuya

    2002-01-01

    If a severe accident occurs in a pressurized water reactor plant, it is required to estimate dose values of operators engaged in emergency such as accident management, repair of failed parts. However, it might be difficult to measure radiation dose rate during the progress of an accident, because radiation monitors are not always installed in areas where the emergency activities are required. In this study, we analyzed the transport of radioactive materials in case of a severe accident, investigated a method to obtain radiation dose rate in the plant from estimated radioactive sources, made up a prototype analyzing system from this design study, and then evaluated its availability. As a result, we obtained the following: (1) A new dose evaluation method was established to predict the radiation dose rate at any point in the plant during a severe accident scenario. (2) This evaluation of total dose including access route and time for emergency activities is useful for estimating radiation dose limit for these employee actions. (3) The radiation dose rate map is effective for identifying high radiation areas and for choosing a route with lower radiation dose rate. (author)

  16. BWR severe accident sequence analyses at ORNL - some lessons learned

    International Nuclear Information System (INIS)

    Hodge, S.A.

    1983-01-01

    Boiling water reactor severe accident sequence studies are being carried out using Browns Ferry Unit 1 as the model plant. Four accident studies were completed, resulting in recommendations for improvements in system design, emergency procedures, and operator training. Computer code improvements were an important by-product

  17. Instrumentation availability for a pressurized water reactor with a large dry containment during severe accidents

    International Nuclear Information System (INIS)

    Arcieri, W.C.; Hanson, D.J.

    1991-03-01

    In support of the US Nuclear Regulatory Commission (NRC) Accident Management Research Program, the availability of instruments to supply accident management information during a broad range of severe accidents is evaluated for a pressurized water reactor with a large dry containment. Results from this evaluation include the following: (a) identification of plant conditions that would impact instrument performance and information needs during severe accidents, (b) definition of envelopes of parameters that would be important in assessing the performance of plant instrumentation for a broad range of severe accident sequences, and (c) assessment of the availability of plant instrumentation during severe accidents. 16 refs., 3 figs., 4 tabs

  18. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Kyun; Kim, Sang Nyung [Kyung Hee Univ., Yongin (Korea, Republic of)

    2013-10-15

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was

  19. Severe Accident Mitigation by using Core Catcher applicable for Korea standard nuclear power plant

    International Nuclear Information System (INIS)

    Park, Hae Kyun; Kim, Sang Nyung

    2013-01-01

    Nuclear power plants have been designed and operated in order to prevent severe accident because of their risk that contains tremendous radioactive materials that are potentially hazardous. Moreover, the government requested the nuclear industry to implement a severe accident management strategy for existing reactors to mitigate the risk of potential severe accidents. However, Korea standard nuclear power plant(APR-1400 and OPR-1000) are much more vulnerable for severe accident management than that of developed countries. Due to the design feature of reactor cavity in Korea standard nuclear power plant, inequable and serious Molten Core-Concrete Interaction(MCCI) may cause considerable safety problem to the reactor containment liner. At worst, it brings the release of radioactive materials to the environment. This accident applies to the fourth level of defense in depth(IAEA 1996), 'severe accident'. This study proposes and designs the 'slope' to secure reactor containment liner integrity when the corium spreads out from the destroyed reactor vessel to the reactor cavity due to the core melting accident. For this, make the initial corium distribution evenly exploit the 'slope' on the basis of the study of Ex-vessel corium behavior to prevent inequable and serious MCCI, in order to mitigate severe accident. The viscosity has a dominant position in the calculation. According to the result, the spread out distance on the slope is 10.7146841m, considering the rough surface of the concrete(slope) and margin of reactor cavity end(under 11m). Easy to design, production and economic feasibility are the advantage of the designed slope in this study. However, the slope design may unsuitable when the sequences of the accidents did not satisfy the assumptions as mentioned. Despite of those disadvantages, the slope will show a great performance to mitigate the severe accident. As mentioned in assumption, the corium releasing time property was conservatively calculated

  20. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. For the purpose of evaluating this problem a state-of-the-art fracture mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure today if subjected to a Rancho Seco (1978) or TMI-2 (1979) type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  1. Integrity of PWR pressure vessels during overcooling accidents

    International Nuclear Information System (INIS)

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents, vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. A state-of-the-art fracture-mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure in a few years if subjected to a Rancho Seco-type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation

  2. Risk assessment of severe accident-induced steam generator tube rupture

    International Nuclear Information System (INIS)

    1998-03-01

    This report describes the basis, results, and related risk implications of an analysis performed by an ad hoc working group of the U.S. Nuclear Regulatory Commission (NRC) to assess the containment bypass potential attributable to steam generator tube rupture (SGTR) induced by severe accident conditions. The SGTR Severe Accident Working Group, comprised of staff members from the NRC's Offices of Nuclear Reactor Regulation (NRR) and Nuclear Regulatory Research (RES), undertook the analysis beginning in December 1995 to support a proposed steam generator integrity rule. The work drew upon previous risk and thermal-hydraulic analyses of core damage sequences, with a focus on the Surry plant as a representative example. This analysis yielded new results, however, derived by predicting thermal-hydraulic conditions of selected severe accident scenarios using the SCDAP/RELAP5 computer code, flawed tube failure modeling, and tube failure probability estimates. These results, in terms of containment bypass probability, form the basis for the findings presented in this report. The representative calculation using Surry plant data indicates that some existing plants could be vulnerable to containment bypass resulting from tube failure during severe accidents. To specifically identify the population of plants that may pose a significant bypass risk would require more definitive analysis considering uncertainties in some assumptions and plant- and design-specific variables. 46 refs., 62 figs., 37 tabs

  3. Panel discussion: Which severe accident chemistry topics most deserve further research?

    International Nuclear Information System (INIS)

    Bergeron, K.D.

    1988-01-01

    A severe accident would involve so many species and chemical environments within the plant that detailed description of all the chemical reactions and chemistry-related processes is currently not practical or even possible. Thus it is necessary to select for consideration those phenomena which might be most important. The panel will discuss which severe accident chemistry topics most deserve further research

  4. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-12-31

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig.

  5. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    International Nuclear Information System (INIS)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-01-01

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig

  6. Methodology to estimate the cost of the severe accidents risk / maximum benefit

    International Nuclear Information System (INIS)

    Mendoza, G.; Flores, R. M.; Vega, E.

    2016-09-01

    For programs and activities to manage aging effects, any changes to plant operations, inspections, maintenance activities, systems and administrative control procedures during the renewal period should be characterized, designed to manage the effects of aging as required by 10 Cfr Part 54 that could impact the environment. Environmental impacts significantly different from those described in the final environmental statement for the current operating license should be described in detail. When complying with the requirements of a license renewal application, the Severe Accident Mitigation Alternatives (SAMA) analysis is contained in a supplement to the environmental report of the plant that meets the requirements of 10 Cfr Part 51. In this paper, the methodology for estimating the cost of severe accidents risk is established and discussed, which is then used to identify and select the alternatives for severe accident mitigation, which are analyzed to estimate the maximum benefit that an alternative could achieve if this eliminate all risk. Using the regulatory analysis techniques of the US Nuclear Regulatory Commission (NRC) estimates the cost of severe accidents risk. The ultimate goal of implementing the methodology is to identify candidates for SAMA that have the potential to reduce the severe accidents risk and determine if the implementation of each candidate is cost-effective. (Author)

  7. Development of Severe Accident Management Strategies for Shin-Kori 3 and 4

    International Nuclear Information System (INIS)

    Lee, Youngseung; Kim, Hyeongtaek; Shin, Jungmin

    2013-01-01

    Shin-Kori units 3 and 4 are new reactors under construction as an APR 1400 type reactor. The plants which considered coping with severe accident from design phase are different from other operating plants in view of severe accident management strategies. The purpose of this paper is to establish optimal strategies for Shin-Kori 3 and 4. A scheme for optimized severe accident management was drawn up with the object of achieving core cooling, containment integrity, and decreased release of fission product. Shin-Kori units 3 and 4 are a new reactor and designed to add mitigating systems for coping with severe accident such as ECSBS, PAR, and CFS. Also the plants are reflected as a part of Fukushima followup measures The strategies of SAMG for Shin-Kori 3 and 4 were developed. The strategic approach was based on the concept of defense in depth. Firstly, strategies for core cooling were chosen such as RCS depressurization, injection to SG, injection to RCS, and injection to reactor cavity. Secondly, the plans for containment integrity were developed for controlling pressure and hydrogen in containment. Lastly, reduced release of fission product was considered for protection of the public after containment failure. The achieved strategies meet the needs of effective methods for severe accident management and enhancement of safety

  8. Drug use and the severity of a traffic accident

    NARCIS (Netherlands)

    Smink, BE; Ruiter, B; Lusthof, KJ; de Gier, JJ; Uges, DRA; Egberts, ACG

    Several studies have showed that driving under the influence of alcohol and/or certain illicit or medicinal drugs increases the risk of a (severe) crash. Data with respect to the question whether this also leads to a more severe accident are sparse. This study examines the relationship between the

  9. Assessment of PASS Effectiveness under Severe Accidents in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Yu Jung; Lee, Sung Bok; Kim, Hyeong Taek; Lee, Jin Yong

    2008-01-01

    Following the accident at Three Mile Island Unit 2 (TMI-2) on March 28, 1979, the USNRC formed a lessons-learned Task Force to identify and evaluate safety concerns originating with the TMI-2 accident. NUREG-0578 documented the results of the task force effort. One of the recommendations of the task force was for licensees to upgrade the capability to obtain samples from the reactor coolant system and containment atmosphere under high radioactivity conditions and to provide the capability for chemical and spectral analyses of high-level samples on site. NUREG-0737 contained the details of the TMI recommendations that were to be implemented by the licensees. Additional criteria for post accident sampling system(PASS) were issued by Regulatory Guide 1.97. As the results, PASS has been installed on nuclear power plants(NPPs) in Korea as well as United States. However, significant improvements have been achieved since the TMI-2 accident in the areas of understanding risks associated with nuclear plant operations and developing better strategies for managing the response to potential severe accidents at NPPs. Thus, the requirements for PASS have been re-evaluated in some reports. According to the reports, the samples and measurements from PASS do not contribute significantly to emergency management response to severe accidents due to the long analyzing time, 3 hours. Hence, this paper focused on the development of the quantitative analysis methodology to analyze the sequence of the severe accident in Yonggwang nuclear power plants (YGN) and presented the results of the analysis according to the developed methodology

  10. Source terms associated with two severe accident sequences in a 900 MWe PWR

    International Nuclear Information System (INIS)

    Fermandjian, J.; Evrard, J.M.; Berthion, Y.; Lhiaubet, G.; Lucas, M.

    1983-12-01

    Hypothetical accidents taken into account in PWR risk assessment result in fission product release from the fuel, transfer through the primary circuit, transfer into the reactor containment building (RCB) and finally release to the environment. The objective of this paper is to define the characteristics of the source term (noble gases, particles and volatile iodine forms) released from the reactor containment building during two dominant core-melt accident sequences: S 2 CD and TLB according to the ''Reactor Safety Study'' terminology. The reactor chosen for this study is a French 900 MWe PWR unit. The reactor building is a prestressed concrete containment with an internal liner. The first core-melt accident sequence is a 2-break loss-of-coolant accident on the cold leg, with failure of both system and the containment spray system. The second one is a transient initiated by a loss of offsite and onsite power supply and auxiliary feedwater system. These two sequences have been chosen because they are representative of risk dominant scenarios. Source terms associated with hypothetical core-melt accidents S 2 CD and TLB in a French PWR -900 MWe- have been performed using French computer codes (in particular, JERICHO Code for containment response analysis and AEROSOLS/31 for aerosol behavior in the containment)

  11. Level 2 PSA methodology and severe accident management

    International Nuclear Information System (INIS)

    1997-01-01

    The objective of the work was to review current Level 2-PSA (Probabilistic Safety Assessment) methodologies and practices and to investigate how Level 2-PSA can support severe accident management programmes, i.e. the development, implementation, training and optimisation of accident management strategies and measures. For the most part, the presented material reflects the state in 1996. Current Level 2 PSA results and methodologies are reviewed and evaluated with respect to plant type specific and generic insights. Approaches and practices for using PSA results in the regulatory context and for supporting severe accident management programmes by input from level 2 PSAs are examined. The work is based on information contained in: PSA procedure guides, PSA review guides and regulatory guides for the use of PSA results in risk informed decision making; plant specific PSAs and PSA related literature exemplifying specific procedures, methods, analytical models, relevant input data and important results, use of computer codes and results of code calculations. The PSAs are evaluated with respect to results and insights. In the conclusion section, the present state of risk informed decision making, in particular in the level 2 domain, is described and substantiated by relevant examples

  12. 77 FR 61446 - Proposed Revision Probabilistic Risk Assessment and Severe Accident Evaluation for New Reactors

    Science.gov (United States)

    2012-10-09

    ... Severe Accident Evaluation for New Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... its Standard Review Plan (SRP), Section 19.0, ``Probabilistic Risk Assessment and Severe Accident... assessment (PRA) information and severe accident assessments for new reactors submitted to support design...

  13. Stepwise integral scaling method and its application to severe accident phenomena

    International Nuclear Information System (INIS)

    Ishii, M.; Zhang, G.

    1993-10-01

    Severe accidents in light water reactors are characterized by an occurrence of multiphase flow with complicated phase changes, chemical reaction and various bifurcation phenomena. Because of the inherent difficulties associated with full-scale testing, scaled down and simulation experiments are essential part of the severe accident analyses. However, one of the most significant shortcomings in the area is the lack of well-established and reliable scaling method and scaling criteria. In view of this, the stepwise integral scaling method is developed for severe accident analyses. This new scaling method is quite different from the conventional approach. However, its focus on dominant transport mechanisms and use of the integral response of the system make this method relatively simple to apply to very complicated multi-phase flow problems. In order to demonstrate its applicability and usefulness, three case studies have been made. The phenomena considered are (1) corium dispersion in DCH, (2) corium spreading in BWR MARK-I containment, and (3) incore boil-off and heating process. The results of these studies clearly indicate the effectiveness of their stepwise integral scaling method. Such a simple and systematic scaling method has not been previously available to severe accident analyses

  14. Characteristics of severely damaged fuel from PBF tests and the TMI-2 accident

    International Nuclear Information System (INIS)

    Osetek, D.J.; Cook, B.A.; Dallman, R.J.; Broughton, J.M.

    1986-01-01

    As a result of the TMI-2 reactor accident, the US Nuclear Regulatory Commission initiated a research program to investigate phenomena associated with severe fuel damage accidents. This program is sponsored by several countries and includes in-pile and out-of-pile experiments, separate effects studies, and computer code development. The principal in-pile testing portion of the program includes four integral severe fuel damage (SFD) tests in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL). The INEL is also responsible for examining the damaged core in the Three Mile Island-Unit 2 (TMI-2) reactor, which offers the unique opportunity to directly compare the findings of an experimental program to those of an actual reactor accident. The principal core damage phenomena which can occur during a severe accident are discussed, and examples from the INEL research programs are used to illustrate the characteristics of these phenomena. The preliminary results of the programs are presented, and their impact on plant operability during severe accidents is discussed

  15. Study to improve recriticality evaluation methodology after severe accident (Joint research)

    International Nuclear Information System (INIS)

    Kugo, Teruhiko; Ishikawa, Makoto; Nagaya, Yasunobu; Yokoyama, Kenji; Fukaya, Yuji; Maruyama, Hiromi; Kondo, Takao; Minato, Hirokazu; Tsuchiya, Akiyuki; Ishii, Yoshihiko; Fujimura, Koji

    2014-03-01

    The present report summarizes the results of a 2-year cooperative study between JAEA and Hitachi-GE Nuclear Energy in order to contribute to the settlement of the Fukushima-Daiich nuclear power plants which suffered from the severe accident on March 2011. In the Fukushima-Daiich plants, it is considered that the nuclear fuel in the core was melted down by the loss of ultimate heat sink by the station black out after the 2011 off the Pacific coast of Tohoku Earthquake. The position and/or the mass of the melted fuel have not been known yet. Therefore, the possibility of recriticality events and the severity of the postulated recriticality are uncertain. In the present study, the possible scenarios to reach the recriticality events in Fukushima-Daiich were investigated first. Then, the analytical methodology to evaluate the time-dependent recriticality events has been developed by modelling the reactivity insertion rate and the possible feedback according to the recriticality scenarios identified in the first step. The methodology developed here has been equipped as a transient simulation tool, PORCAS, which is operated on a multi-purpose platform for reactor analysis, MARBLE. Finally, the radiation exposure rates by the postulated recriticality events in Fukushima-Daiich were approximately evaluated to estimate the impact to the public environment. (author)

  16. Radiation protection issues on preparedness and response for a severe nuclear accident: experiences of the Fukushima accident.

    Science.gov (United States)

    Homma, T; Takahara, S; Kimura, M; Kinase, S

    2015-06-01

    Radiation protection issues on preparedness and response for a severe nuclear accident are discussed in this paper based on the experiences following the accident at Fukushima Daiichi nuclear power plant. The criteria for use in nuclear emergencies in the Japanese emergency preparedness guide were based on the recommendations of International Commission of Radiological Protection (ICRP) Publications 60 and 63. Although the decision-making process for implementing protective actions relied heavily on computer-based predictive models prior to the accident, urgent protective actions, such as evacuation and sheltering, were implemented effectively based on the plant conditions. As there were no recommendations and criteria for long-term protective actions in the emergency preparedness guide, the recommendations of ICRP Publications 103, 109, and 111 were taken into consideration in determining the temporary relocation of inhabitants of heavily contaminated areas. These recommendations were very useful in deciding the emergency protective actions to take in the early stages of the Fukushima accident. However, some suggestions have been made for improving emergency preparedness and response in the early stages of a severe nuclear accident. © The Chartered Institution of Building Services Engineers 2014.

  17. Severe accidents and operator training - discussion of potential issues

    International Nuclear Information System (INIS)

    Vidard, Michel

    1997-01-01

    R and D programs developed throughout the world allowed significant progress in the understanding of physical phenomena and Severe Accident Management (SAM) programs started in many OECD countries. Basically, the common denominator to all these SAM programs was to provide utility operators with procedures or guidelines allowing to deal with complex situations not formally considered in the Design Basis, including accidents where a significant portion of the core had molten. These SAM procedures or guidelines complement the traditional accident management procedures (event, symptom or physical-state oriented) and should allow operators to deal with a reasonably bounding set of situations. Dealing with operator or crisis team training, it was recognized that training would be beneficial but that training programs were lagging, i.e. though training sessions were either organized or contemplated after implementation of SAM programs, they seemed to be somewhat different from more traditional training sessions on Accident Management. After some explanations on the differences between Design Basis Accidents (DBAs) and Beyond Design Basis Accidents (BDBAs), this paper underlines some potential difficulties for training operators and discuss problems to be addressed by organisms contemplating SAM training sessions consistent with similar activities for less complex events

  18. Severe Accident Analysis for Combustible Gas Risk Evaluation inside CFVS

    International Nuclear Information System (INIS)

    Lee, NaRae; Lee, JinYong; Bang, YoungSuk; Lee, DooYong; Kim, HyeongTaek

    2015-01-01

    The purpose of this study is to identify the composition of gases discharged into the containment filtered venting system by analyzing severe accidents. The accident scenarios which could be significant with respect to containment pressurization and hydrogen generation are derived and composition of containment atmosphere and possible discharged gas mixtures are estimated. In order to ensure the safety of the public and environment, the ventilation system should be designed properly by considering discharged gas flow rate, aerosol loads, radiation level, etc. One of considerations to be resolved is the risk due to combustible gas, especially hydrogen. Hydrogen can be generated largely by oxidation of cladding and decomposition of concrete. If the hydrogen concentration is high enough and other conditions like oxygen and steam concentration is met, the hydrogen can burn, deflagrate or detonate, which result in the damage the structural components. In particularly, after Fukushima accident, the hydrogen risk has been emphasized as an important contributor threatening the integrity of nuclear power plant during the severe accident. These results will be used to analyze the risk of hydrogen combustion inside the CFVS as boundary conditions. Severe accident simulation results are presented and discussed qualitatively with respect to hydrogen combustion. The hydrogen combustion risk inside of the CFVS has been examined qualitatively by investigating the discharge flow characteristics. Because the composition of the discharge flow to CFVS would be determined by the containment atmosphere, the severe accident progression and containment atmosphere composition have been investigated. Due to PAR operation, the hydrogen concentration in the containment would be decreased until the oxygen is depleted. After the oxygen is depleted, the hydrogen concentration would be increased. As a result, depending on the vent initiation timing (i.e. vent initiation pressure), the important

  19. Severe Accident Analysis for Combustible Gas Risk Evaluation inside CFVS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, NaRae; Lee, JinYong; Bang, YoungSuk; Lee, DooYong [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, HyeongTaek [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The purpose of this study is to identify the composition of gases discharged into the containment filtered venting system by analyzing severe accidents. The accident scenarios which could be significant with respect to containment pressurization and hydrogen generation are derived and composition of containment atmosphere and possible discharged gas mixtures are estimated. In order to ensure the safety of the public and environment, the ventilation system should be designed properly by considering discharged gas flow rate, aerosol loads, radiation level, etc. One of considerations to be resolved is the risk due to combustible gas, especially hydrogen. Hydrogen can be generated largely by oxidation of cladding and decomposition of concrete. If the hydrogen concentration is high enough and other conditions like oxygen and steam concentration is met, the hydrogen can burn, deflagrate or detonate, which result in the damage the structural components. In particularly, after Fukushima accident, the hydrogen risk has been emphasized as an important contributor threatening the integrity of nuclear power plant during the severe accident. These results will be used to analyze the risk of hydrogen combustion inside the CFVS as boundary conditions. Severe accident simulation results are presented and discussed qualitatively with respect to hydrogen combustion. The hydrogen combustion risk inside of the CFVS has been examined qualitatively by investigating the discharge flow characteristics. Because the composition of the discharge flow to CFVS would be determined by the containment atmosphere, the severe accident progression and containment atmosphere composition have been investigated. Due to PAR operation, the hydrogen concentration in the containment would be decreased until the oxygen is depleted. After the oxygen is depleted, the hydrogen concentration would be increased. As a result, depending on the vent initiation timing (i.e. vent initiation pressure), the important

  20. Use of decision trees for evaluating severe accident management strategies in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jae, Moosung [Hanyang Univ., Seoul (Korea, Republic of). Dept. of Nuclerar Engineering; Lee, Yongjin; Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of). School of Energy Systems Engineering

    2016-07-15

    Accident management strategies are defined to innovative actions taken by plant operators to prevent core damage or to maintain the sound containment integrity. Such actions minimize the chance of offsite radioactive substance leaks that lead to and intensify core damage under power plant accident conditions. Accident management extends the concept of Defense in Depth against core meltdown accidents. In pressurized water reactors, emergency operating procedures are performed to extend the core cooling time. The effectiveness of Severe Accident Management Guidance (SAMG) became an important issue. Severe accident management strategies are evaluated with a methodology utilizing the decision tree technique.

  1. Severe Accident Management Guidance: Lessons Still to be Learned after Fukushima

    International Nuclear Information System (INIS)

    Vayssier, G.

    2016-01-01

    After the accidents in Three Mile Island (TMI) and Chernobyl, many countries decided to develop and implement guidelines specifically directed to mitigate accidents with core damage, so-called severe accidents. The guidelines are usually named Severe Accident Management Guidelines (SAMG). In the USA, all operating plants had these guidelines in place at the end of 1998. Most other countries followed later, but today, it can be said that many nuclear power plants in the world have such guidelines in place. Typically, however, the guidelines were constructed under the assumption that many plant systems still will be available, i.e. there will be DC to feed the instruments, AC to feed equipment and water to restore cooling to the core. Typically, this was basically the situation at TMI: most equipment was functional, only the insight of what had happened had been lost and operators did not know how to respond. At Fukushima-Daiichi, a Site Disruptive Accident (SDA) occurred and it appeared that the situation was much more complex: much of the needed supportive equipment needed was unavailable, which greatly complicated the handling of the event. In this paper, the major shortcomings of the present existing SAMG are discussed, both from a technical, and an organisational viewpoint. It is concluded that, where proper regulation still is missing, the development of an industrial standard is recommended to define adequate tools and guidelines to mitigate severe accidents, including SDAs. (author).

  2. Proceedings of the specialist meeting on selected containment severe accident management strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-15

    Twenty papers were presented at the first specialist meeting on Selected Containment Severe Accident management Strategies, held in Stockholm, Sweden, in 1994, half of them dealing with accident management strategies implementation status, half of them with research aspects. The four sessions were: general aspects of containment accident management strategies, hydrogen management techniques, other containment accident management strategies (spray cooling, core catcher...), surveillance and protection of containment function

  3. Proceedings of the specialist meeting on selected containment severe accident management strategies

    International Nuclear Information System (INIS)

    1995-07-01

    Twenty papers were presented at the first specialist meeting on Selected Containment Severe Accident management Strategies, held in Stockholm, Sweden, in 1994, half of them dealing with accident management strategies implementation status, half of them with research aspects. The four sessions were: general aspects of containment accident management strategies, hydrogen management techniques, other containment accident management strategies (spray cooling, core catcher...), surveillance and protection of containment function

  4. A comparison of in-vessel behaviors between SFR and PWR under severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggil; Cho, Cheon Hwey [ACT Co., Daejeon (Korea, Republic of); Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper aims to provide an easy guide for experts who know well the severe accident phenomenology of Pressurized Water Reactor (PWR) by comparing both reactor design concepts and in vessel behaviors under a postulated severe accident condition. This study only provides a preliminary qualitative comparison based on available literature. The PWR and SFR in-vessel design concepts and their effects under a postulate severe accident are investigated in this paper. Although this work is a preliminary study to compare the in-vessel behaviors for both PWR and SFR, it seems that there is no possibility to lead a significant core damage in the metal fuel SFR concept. In the oxide fuel SFR, there might be a chance to progress to the severe accident initiators such as the energetic reaction, flow blockage and so on.

  5. Evaluation of severe accident risks, Grand Gulf, Unit 1: Main report

    International Nuclear Information System (INIS)

    Brown, T.D.; Breeding, R.J.; Jow, H.N.; Higgins, S.J.; Shiver, A.W.; Helton, J.C.; Amos, C.N.

    1990-12-01

    In support of the Nuclear Regulatory Commission's (NRC's) assessment of the risk from severe accidents at commercial nuclear power plants in the US report in NUREG-1150, the Severe Accident Risk Reduction Program (SARRP) has completed a revised calculation of the risk to the general public from severe accidents at the Grand Gulf Nuclear Station, Unit 1. This power plant, located in Port Gibson, Mississippi, is operated by the System Energy Resources, Inc. (SERI). The emphasis in this risk analysis was not on determining a ''so-called'' point estimate of risk. Rather, it was to determine the distribution of risk, and to discover the uncertainties that account for the breadth of this distribution. Off-site risk initiated by events internal to the power plant was assessed. 42 refs., 51 figs., 52 tabs

  6. Several accidents about ERHRS of CEFR

    International Nuclear Information System (INIS)

    Zhang, D.

    2000-01-01

    An analysis of about several unusual accidents about Emergency Residual Heat Removal System (ERHRS) of China Experiment Fast Reactor (CEFR) is presented. CEFR is a pool-type sodium-cooled fast reactor. The ERHRS of this reactor is designed in passive principle, which enhances the interior reliability of CEFR. It consists of two sets of independent channels. Each channel is comprised of decay heat exchanger (DHX), intermediate circuit, sodium-air heat exchanger (AHX) and related auxiliary system. Both DHX are located in the hot pool of the main vessel directly, which is used to cool the hot sodium. The whole set of ERHRS is completely passive except the ventilation valves of AHX. But, as a very important set of engineered safety features which is the final way to remove the heat from the reactor core, it is necessary to pay attention to all of the possibilities that may reduce this ability. Several accidents are analyzed including when the ventilation valves couldn't be opened, when only one set of ERHRS could work and so on. The calculation results show that the ERHRS can keep the reactor in a safety status. Even though it is, experiments are still necessary in the view of engineering. (author)

  7. Occupational Radiation Protection in Severe Accident Management. EG-SAM Interim Report

    International Nuclear Information System (INIS)

    2014-01-01

    As an early response to the Fukushima NPP accident, the ISOE Bureau decided to focus on the following issues as an initial response of the joint program after having direct communications with the Japanese official participants in April 2011; - Management of high radiation area worker doses: It has been decided to make available the experience and information from the Chernobyl accident in terms of how emergency worker / responder doses were legally and practically managed, - Personal protective equipment for highly-contaminated areas: It was agreed to collect information about the types of personnel protective equipment and other equipment (e.g. air bottles, respirators, air-hoods or plastic suits, etc.), as well as high-radiation area worker dosimetry use (e.g. type, number and placement of dosimetry) for different types of emergency and high-radiation work situations. Detailed information was collected on dose criteria which are used for emergency workers/responders and their basis, dose management criteria for high dose/dose rate areas, protective equipment which is recommended for emergency workers / responders, recommended individual monitoring procedures, and any special requirement for assessment from the ISOE participating nuclear utilities and regulatory authorities and made available for Japanese utilities. With this positive response of the ISOE actors and interest in the situation in Fukushima, the Expert Group on Occupational Radiation Protection in Severe Accident Management (EG-SAM) was established by the ISOE Management Board in May 2011. The overall objective of the EG-SAM is to contribute to occupational exposure management (providing a view on management of high radiation area worker doses) within the Fukushima plant boundary with the ISOE participants and to develop a state-of-the- art ISOE report on best radiation protection management practices for proper radiation protection job coverage during severe accident initial response and recovery

  8. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents.

    Science.gov (United States)

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-11

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers' health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002-2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies.

  9. The Impact of Heat Waves on Occurrence and Severity of Construction Accidents

    Science.gov (United States)

    Rameezdeen, Rameez; Elmualim, Abbas

    2017-01-01

    The impact of heat stress on human health has been extensively studied. Similarly, researchers have investigated the impact of heat stress on workers’ health and safety. However, very little work has been done on the impact of heat stress on occupational accidents and their severity, particularly in South Australian construction. Construction workers are at high risk of injury due to heat stress as they often work outdoors, undertake hard manual work, and are often project based and sub-contracted. Little is known on how heat waves could impact on construction accidents and their severity. In order to provide more evidence for the currently limited number of empirical investigations on the impact of heat stress on accidents, this study analysed 29,438 compensation claims reported during 2002–2013 within the construction industry of South Australia. Claims reported during 29 heat waves in Adelaide were compared with control periods to elicit differences in the number of accidents reported and their severity. The results revealed that worker characteristics, type of work, work environment, and agency of accident mainly govern the severity. It is recommended that the implementation of adequate preventative measures in small-sized companies and civil engineering sites, targeting mainly old age workers could be a priority for Work, Health and Safety (WHS) policies. PMID:28085067

  10. γ radiation level simulation and analysis with MCNP in EPR containment during severe accident

    International Nuclear Information System (INIS)

    Zeng Jun; Liu Shuhuan; Wang Yang; Zhai Liang

    2013-01-01

    The γ dosimetry model based on the EPR core structure, material composition and the designed shielding system was established. The γ-ray dose rate distributions in EPR containment under different conditions including normal operation state, loss-of-coolant accident and core melt severe accident were simulated with MCNP5, and the calculation results under normal operation state and severe accident were compared and analyzed respectively with that of the designed limit. The study results may provide some relative data reference for EPR core accident prediction and reactor accident emergency decision making. (authors)

  11. Review of the severe accident risk reduction program (SARRP) containment event trees

    International Nuclear Information System (INIS)

    1986-05-01

    A part of the Severe Accident Risk Reduction Program, researchers at Sandia National Laboratories have constructed a group of containment event trees to be used in the analysis of key accident sequences for light water reactors (LWR) during postulated severe accidents. The ultimate goal of the program is to provide to the NRC staff a current assessment of the risk from severe reactor accidents for a group of five light water reactors. This review specifically focuses on the development and construction of the containment event trees and the results for containment failure probability, modes and timing. The report first gives the background on the program, the review criteria, and a summary of the observations, findings and recommendations. secondly, the individual reviews of each committee member on the event trees is presented. Finally, a review is provided on the computer model used