WorldWideScience

Sample records for serve combustor requirements

  1. Alternate-Fueled Combustor-Sector Performance. Parts A and B; (A) Combustor Performance; (B) Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as "drop-in" fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of processing and assumed to be feedstock agnostic. Adherence to alternate fuels and fuel blends requires "smart fueling systems" or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data. The data are for nominal inlet conditions at 225 psia and 800 F (1.551 MPa and 700 K), for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling. Assessments are made of the change in combustor efficiency, wall temperatures, emissions, and luminosity with SPK of 0%, 50%, and 100% fueling composition at 3% combustor pressure drop. The performance results (Part A) indicate no quantifiable differences in combustor efficiency, a general trend to lower liner and higher core flow temperatures with increased FT fuel blends. In general, emissions data (Part B) show little differences, but with percent increase in FT-SPK-type fueling, particulate emissions and wall temperatures are less than with baseline JP-8. High-speed photography illustrates both luminosity and combustor dynamic flame characteristics.

  2. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    Science.gov (United States)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  3. Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  4. NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML

    Science.gov (United States)

    Stueber, Thomas J.; Paxson, Daniel E.

    2014-01-01

    The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.

  5. Fuel and Combustor Concerns for Future Commercial Combustors

    Science.gov (United States)

    Chang, Clarence T.

    2017-01-01

    Civil aircraft combustor designs will move from rich-burn to lean-burn due to the latter's advantage in low NOx and nvPM emissions. However, the operating range of lean-burn is narrower, requiring premium mixing performance from the fuel injectors. As the OPR increases, the corresponding combustor inlet temperature increase can benefit greatly with fuel composition improvements. Hydro-treatment can improve coking resistance, allowing finer fuel injection orifices to speed up mixing. Selective cetane number control across the fuel carbon-number distribution may allow delayed ignition at high power while maintaining low-power ignition characteristics.

  6. Alternate-Fueled Combustor-Sector Performance—Part A: Combustor Performance and Part B: Combustor Emissions

    OpenAIRE

    Shouse, D. T.; Neuroth, C.; Hendricks, R. C.; Lynch, A.; Frayne, C. W.; Stutrud, J. S.; Corporan, E.; Hankins, Capt. T.

    2012-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F or ASTM D 7566 standards, respectively, and are classified as “drop-in’’ fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are acceptable. Adherence to alternate fuels and fuel blends requires “smart fueling systems’’ or advanced fuel-flexible systems, including combustors and engines, without significant sacrifice in performance or emissions requirements...

  7. Combustor and combustor screech mitigation methods

    Science.gov (United States)

    Kim, Kwanwoo; Johnson, Thomas Edward; Uhm, Jong Ho; Kraemer, Gilbert Otto

    2014-05-27

    The present application provides for a combustor for use with a gas turbine engine. The combustor may include a cap member and a number of fuel nozzles extending through the cap member. One or more of the fuel nozzles may be provided in a non-flush position with respect to the cap member.

  8. Alternate-Fueled Combustor-Sector Performance

    Science.gov (United States)

    Thomas, Anna E.; Saxena, Nikita T.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566 Annex (2011) standards, and are classified as "drop-in" fuel replacements. This report provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fischer-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 degF (533 K), 125 psia (0.86 MPa) at 625 degF (603 K), 175 psia (1.21 MPa) at 725 degF (658 K), and 225 psia (1.55 MPa) at 790 degF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3, 4, and 5 percent combustor pressure drop (DP) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade and vane lives.

  9. Radial midframe baffle for can-annular combustor arrangement having tangentially oriented combustor cans

    Science.gov (United States)

    Rodriguez, Jose L.

    2015-09-15

    A can-annular gas turbine engine combustion arrangement (10), including: a combustor can (12) comprising a combustor inlet (38) and a combustor outlet circumferentially and axially offset from the combustor inlet; an outer casing (24) defining a plenum (22) in which the combustor can is disposed; and baffles (70) configured to divide the plenum into radial sectors (72) and configured to inhibit circumferential motion of compressed air (16) within the plenum.

  10. Design and fabrication of a 50 MWt prototypical MHD coal-fired combustor

    International Nuclear Information System (INIS)

    Albright, J.; Braswell, R.; Listvinsky, G.; McAllister, M.; Myrick, S.; Ono, D.; Thom, H.

    1992-01-01

    A prototypical 50 MWt coal-fired combustor has been designed and fabricated as part of the Magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) Program. This is a DOE-funded program to develop a prototypical MHD power train to be tested at the Component Development and Integration Facility (CDIF) in Butte, Montana. The prototypical combustor is an outgrowth of the 50 MWt workhorse combustor which has previously been tested at the CDIF. In addition to meeting established performance criteria of the existing 50 MWt workhorse combustor, the prototypical combustor design is required to be scaleable for use at the 250 MWt retrofit level. This paper presents an overview of the mechanical design of the prototypical combustor and a description of its fabrication. Fabrication of the 50 MWt prototypical coal-fired combustor was completed in February 1992 and hot-fire testing is scheduled to begin in May 1992

  11. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  12. Co-combustor: the solid waste thermal treatment plant in MINT

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Mohd Azman Che Mat Isa; Sivapalan Kathiravale; Mohd Fairus Abdul Farid; Mohamad Puad Hj Abu; Rosli Darmawan; Muhd Noor Muhd Yunus

    2005-01-01

    MINT has geared up into the field of solid waste thermal treatment processing back in 1999 when a new unit known as MIREC was established. Since then, a fast progress has taken place including the design and construction of a pilot scale incinerator, named as the Co-Combustor. The Co-combustor was designed and developed based on the gasification principles, which employs combustion in starved air condition. In year 2001, this plant was commissioned. To date, it has been running quite well according to its design values. Several test runs were also performed in order to collect and gather data, which serve as a background or backtrack record for upgrading purposes and optimizing its performance in future. On going research is also conducted on this plant especially on the study of the waste's behaviors under combustion. Besides the typical RND activities, the Co-combustor is also currently being used to burn waste paper especially to dispose restricted and confidential documents. This paper will highlight on the design, performance, application and usage of the co-combustor. The direction for research and development activities for this plant is also discussed in this paper so as to strengthen the knowledge and build up expertise in the field of incineration

  13. Combustor and method for distributing fuel in the combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; York, William David

    2016-04-26

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface, and each tube provides fluid communication through the tube bundle. A baffle extends axially inside the tube bundle between adjacent tubes. A method for distributing fuel in a combustor includes flowing a fuel into a fuel plenum defined at least in part by an upstream surface, a downstream surface, a shroud, and a plurality of tubes that extend from the upstream surface to the downstream surface. The method further includes impinging the fuel against a baffle that extends axially inside the fuel plenum between adjacent tubes.

  14. Variable volume combustor

    Science.gov (United States)

    Ostebee, Heath Michael; Ziminsky, Willy Steve; Johnson, Thomas Edward; Keener, Christopher Paul

    2017-01-17

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a linear actuator so as to maneuver the micro-mixer fuel nozzles axially along the liner.

  15. Fuel properties effect on the performance of a small high temperature rise combustor

    Science.gov (United States)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  16. Effect of ramp-cavity on hydrogen fueled scramjet combustor

    Directory of Open Access Journals (Sweden)

    J.V.S. Moorthy

    2014-03-01

    Full Text Available Sustained combustion and optimization of combustor are the two challenges being faced by combustion scientists working in the area of supersonic combustion. Thorough mixing, lower stagnation pressure losses, positive thrust and sustained combustion are the key issues in the field of supersonic combustion. Special fluid mechanism is required to achieve good mixing. To induce such mechanisms in supersonic inflows, the fuel injectors should be critically shaped incurring less flow losses. Present investigations are focused on the effect of fuel injection scheme on a model scramjet combustor performance. Ramps at supersonic flow generate axial vortices that help in macro-mixing of fuel with air. Interaction of shocks generated by ramps with the fuel stream generates boro-clinic torque at the air & liquid fuel interface, enhancing micro-mixing. Recirculation zones present in cavities increase the residence time of the combustible mixture. Making use of the advantageous features of both, a ramp-cavity combustor is designed. The combustor has two sections. First, constant height section consists of a backward facing step followed by ramps and cavities on both the top and bottom walls. The ramps are located alternately on top and bottom walls. The complete combustor width is utilized for the cavities. The second section of the combustor is diverging area section. This is provided to avoid thermal choking. In the present work gaseous hydrogen is considered as fuel. This study was mainly focused on the mixing characteristics of four different fuel injection locations. It was found that injecting fuel upstream of the ramp was beneficial from fuel spread point of view.

  17. Development of an analytical model to assess fuel property effects on combustor performance

    Science.gov (United States)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.; Riddlebaugh, S. M.

    1987-01-01

    A generalized first-order computer model has been developed in order to analytically evaluate the potential effect of alternative fuels' effects on gas turbine combustors. The model assesses the size, configuration, combustion reliability, and durability of the combustors required to meet performance and emission standards while operating on a broad range of fuels. Predictions predicated on combustor flow-field determinations by the model indicate that fuel chemistry, as defined by hydrogen content, exerts a significant influence on flame retardation, liner wall temperature, and smoke emission.

  18. Design and preliminary results of a fuel flexible industrial gas turbine combustor

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.; Yacobucci, H. G.

    1981-01-01

    The design characteristics are presented of a fuel tolerant variable geometry staged air combustor using regenerative/convective cooling. The rich/quench/lean variable geometry combustor is designed to achieve low NO(x) emission from fuels containing fuel bound nitrogen. The physical size of the combustor was calculated for a can-annular combustion system with associated operating conditions for the Allison 570-K engine. Preliminary test results indicate that the concept has the potential to meet emission requirements at maximum continuous power operation. However, airflow sealing and improved fuel/air mixing are necessary to meet Department of Energy program goals.

  19. Estimating the uncertainty in thermochemical calculations for oxygen-hydrogen combustors

    Science.gov (United States)

    Sims, Joseph David

    The thermochemistry program CEA2 was combined with the statistical thermodynamics program PAC99 in a Monte Carlo simulation to determine the uncertainty in several CEA2 output variables due to uncertainty in thermodynamic reference values for the reactant and combustion species. In all, six typical performance parameters were examined, along with the required intermediate calculations (five gas properties and eight stoichiometric coefficients), for three hydrogen-oxygen combustors: a main combustor, an oxidizer preburner and a fuel preburner. The three combustors were analyzed in two different modes: design mode, where, for the first time, the uncertainty in thermodynamic reference values---taken from the literature---was considered (inputs to CEA2 were specified and so had no uncertainty); and data reduction mode, where inputs to CEA2 did have uncertainty. The inputs to CEA2 were contrived experimental measurements that were intended to represent the typical combustor testing facility. In design mode, uncertainties in the performance parameters were on the order of 0.1% for the main combustor, on the order of 0.05% for the oxidizer preburner and on the order of 0.01% for the fuel preburner. Thermodynamic reference values for H2O were the dominant sources of uncertainty, as was the assigned enthalpy for liquid oxygen. In data reduction mode, uncertainties in performance parameters increased significantly as a result of the uncertainties in experimental measurements compared to uncertainties in thermodynamic reference values. Main combustor and fuel preburner theoretical performance values had uncertainties of about 0.5%, while the oxidizer preburner had nearly 2%. Associated experimentally-determined performance values for all three combustors were 3% to 4%. The dominant sources of uncertainty in this mode were the propellant flowrates. These results only apply to hydrogen-oxygen combustors and should not be generalized to every propellant combination. Species for

  20. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  1. Pulse combustors for unpulverized solid fuels; Combustor pulsante para solidos nao pulverizados

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Marco Aurelio; Carvalho Junior, Joao Andrade de [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    1988-12-31

    This work presents results of performance evaluation of an experimental pulsating combustor developed to burn unpulverized solid fuels. The fuels tested were sized wood blocks and coal lumps. The results for coal show a clear maximum combustion efficiency as a function of fuel loading within the combustor. For an excess of air of 10%, a maximum combustion efficiency of 94% was obtained. (author) 38 refs., 10 figs., 2 tabs.

  2. Numerical study of the effect of inlet geometry on combustion instabilities in a lean premixed swirl combustor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Eon [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of); Park, Seul Hyun [Dept. of Mechanical Systems Engineering, Chosun University, Gwangju (Korea, Republic of); Hwang, Cheol Hong [Dept. of Fire and Disaster Prevention, Daejeon University, Daejeon (Korea, Republic of)

    2016-11-15

    The effects of flow structure and flame dynamics on combustion instabilities in a lean premixed swirl combustor were numerically investigated using Large eddy simulation (LES) by varying the inlet geometry of combustor. The dynamic ksgs-equation and G-equation flamelet models were respectively employed as the LES subgrid models of turbulence and combustion. The divergent half angle (α) in the combustor inlet was varied systematically from 30° to 90° to quantify the effect of inlet geometry on the combustion instabilities. This variation caused considerable deformation in recirculation zones in terms of their size and location, leading to significant changes in flame dynamics. Analysis of unsteady pressure distributions in the combustor showed that the largest damping caused by combustion instabilities takes place at α = 45°, and the amplitude of acoustic pressure oscillation is largest at α = 30°. Examination of local Rayleigh parameters indicated that controlling flame-vortex interactions by modifying inlet geometry can change the local characteristics of combustion instabilities in terms of their amplification and suppression, and thus serve as a useful approach to reduce the instabilities in a lean premixed swirl combustor. These phenomena were studied in detail through unsteady analysis associated with flow and flame dynamics.

  3. Numerical study of the effect of inlet geometry on combustion instabilities in a lean premixed swirl combustor

    International Nuclear Information System (INIS)

    Lee, Chang Eon; Park, Seul Hyun; Hwang, Cheol Hong

    2016-01-01

    The effects of flow structure and flame dynamics on combustion instabilities in a lean premixed swirl combustor were numerically investigated using Large eddy simulation (LES) by varying the inlet geometry of combustor. The dynamic ksgs-equation and G-equation flamelet models were respectively employed as the LES subgrid models of turbulence and combustion. The divergent half angle (α) in the combustor inlet was varied systematically from 30° to 90° to quantify the effect of inlet geometry on the combustion instabilities. This variation caused considerable deformation in recirculation zones in terms of their size and location, leading to significant changes in flame dynamics. Analysis of unsteady pressure distributions in the combustor showed that the largest damping caused by combustion instabilities takes place at α = 45°, and the amplitude of acoustic pressure oscillation is largest at α = 30°. Examination of local Rayleigh parameters indicated that controlling flame-vortex interactions by modifying inlet geometry can change the local characteristics of combustion instabilities in terms of their amplification and suppression, and thus serve as a useful approach to reduce the instabilities in a lean premixed swirl combustor. These phenomena were studied in detail through unsteady analysis associated with flow and flame dynamics

  4. Experimental clean combustor program, alternate fuels addendum, phase 2

    Science.gov (United States)

    Gleason, C. C.; Bahr, D. W.

    1976-01-01

    The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.

  5. Ejector-Enhanced, Pulsed, Pressure-Gain Combustor

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin T.

    2009-01-01

    An experimental combination of an off-the-shelf valved pulsejet combustor and an aerodynamically optimized ejector has shown promise as a prototype of improved combustors for gas turbine engines. Despite their name, the constant pressure combustors heretofore used in gas turbine engines exhibit typical pressure losses ranging from 4 to 8 percent of the total pressures delivered by upstream compressors. In contrast, the present ejector-enhanced pulsejet combustor exhibits a pressure rise of about 3.5 percent at overall enthalpy and temperature ratios compatible with those of modern turbomachines. The modest pressure rise translates to a comparable increase in overall engine efficiency and, consequently, a comparable decrease in specific fuel consumption. The ejector-enhanced pulsejet combustor may also offer potential for reducing the emission of harmful exhaust compounds by making it practical to employ a low-loss rich-burn/quench/lean-burn sequence. Like all prior concepts for pressure-gain combustion, the present concept involves an approximation of constant-volume combustion, which is inherently unsteady (in this case, more specifically, cyclic). The consequent unsteadiness in combustor exit flow is generally regarded as detrimental to the performance of downstream turbomachinery. Among other adverse effects, this unsteadiness tends to detract from the thermodynamic benefits of pressure gain. Therefore, it is desirable in any intermittent combustion process to minimize unsteadiness in the exhaust path.

  6. System and method for controlling a combustor assembly

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

    2013-03-05

    A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

  7. Ceramic combustor mounting

    Science.gov (United States)

    Hoffman, Melvin G.; Janneck, Frank W.

    1982-01-01

    A combustor for a gas turbine engine includes a metal engine block including a wall portion defining a housing for a combustor having ceramic liner components. A ceramic outlet duct is supported by a compliant seal on the metal block and a reaction chamber liner is stacked thereon and partly closed at one end by a ceramic bypass swirl plate which is spring loaded by a plurality of circumferentially spaced, spring loaded guide rods and wherein each of the guide rods has one end thereof directed exteriorly of a metal cover plate on the engine block to react against externally located biasing springs cooled by ambient air and wherein the rod spring support arrangement maintains the stacked ceramic components together so that a normal force is maintained on the seal between the outlet duct and the engine block under all operating conditions. The support arrangement also is operative to accommodate a substantial difference in thermal expansion between the ceramic liner components of the combustor and the metal material of the engine block.

  8. 40 CFR 62.14105 - Requirements for municipal waste combustor operator training and certification.

    Science.gov (United States)

    2010-07-01

    ... American Society of Mechanical Engineers, Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ..., Service Center, 22 Law Drive, Post Office Box 2900, Fairfield, NJ 07007. You may inspect a copy at the... subpart; (2) A description of basic combustion theory applicable to a municipal waste combustor unit; (3...

  9. NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    International Nuclear Information System (INIS)

    Dr. Bert Zauderer

    1999-01-01

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char

  10. Scramjet Combustor Characteristics at Hypervelocity Condition over Mach 10 Flight

    Science.gov (United States)

    Takahashi, M.; Komuro, T.; Sato, K.; Kodera, M.; Tanno, H.; Itoh, K.

    2009-01-01

    To investigate possibility of reduction of a scramjet combustor size without thrust performance loss, a two-dimensional constant-area combustor of a previous engine model was replaced with the one with 23% lower-height. With the application of the lower-height combustor, the pressure in the combustor becomes 50% higher and the combustor length for the optimal performance becomes 43% shorter than the original combustor. The combustion tests of the modified engine model were conducted using a large free-piston driven shock tunnel at flow conditions corresponding to the flight Mach number from 9 to 14. CFD was also applied to the engine internal flows. The results showed that the mixing and combustion heat release progress faster to the distance and the combustor performance similar to that of the previous engine was obtained with the modified engine. The reduction of the combustor size without the thrust performance loss is successfully achieved by applying the lower-height combustor.

  11. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    idea of pressure gain combustion (i.e., combustion with gain in total pressure across the combustor as opposed to pressure-loss combustion experienced in constant pressure devices like conventional gas turbine combustors) is gaining popularity for propulsion devices [2]. Thus pulse combustors, which provide a practical ...

  12. An emissions audit of a biomass combustor burning treated wood waste

    International Nuclear Information System (INIS)

    Jackson, P.M.; Jones, H.H.; King, P.G.

    1993-01-01

    This report describes the Emissions Audit carried out on a Biomass Combustor burning treated wood waste at the premises of a furniture manufacturer. The Biomass Combustor was tested in two firing modes; continuous fire and modulating fire. Combustion chamber temperatures and gas residence times were not measured. Boiler efficiencies were very good at greater than 75% in both tests. However, analysis of the flue gases indicated that improved efficiencies are possible. The average concentrations of CO (512mgm -3 ) and THC (34mgm -3 ) for Test 1 were high, indicating that combustion was poor. The combustor clearly does not meet the requirements of the Guidance Note for the Combustion of Wood Waste. CO 2 and O 2 concentrations were quite variable showing that combustion conditions were fairly unstable. Improved control of combustion should lead to acceptable emission concentrations. (Author)

  13. Controlled pilot oxidizer for a gas turbine combustor

    Science.gov (United States)

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  14. Pollution technology program, can-annular combustor engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  15. High pressure MHD coal combustors investigation, phase 2

    Science.gov (United States)

    Iwata, H.; Hamberg, R.

    1981-05-01

    A high pressure MHD coal combustor was investigated. The purpose was to acquire basic design and support engineering data through systematic combustion experiments at the 10 and 20 thermal megawatt size and to design a 50 MW/sub t/ combustor. This combustor is to produce an electrically conductive plasma generated by the direct combustion of pulverized coal with hot oxygen enriched vitiated air that is seeded with potassium carbonate. Vitiated air and oxygen are used as the oxidizer, however, preheated air will ultimately be used as the oxidizer in coal fired MHD combustors.

  16. Gas turbine topping combustor

    Science.gov (United States)

    Beer, J.; Dowdy, T.E.; Bachovchin, D.M.

    1997-06-10

    A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.

  17. The effect of inlet conditions on lean premixed gas turbine combustor performance

    Science.gov (United States)

    Vilayanur, Suresh Ravi

    The combustion community is today faced with the goal to reduce NOx at high efficiencies. This requirement has directed attention to the manner by which air and fuel are treated prior to and at the combustor inlet. This dissertation is directed to establishing the role of combustor inlet conditions on combustor performance, and to deriving an understanding of the relationship between inlet conditions and combustion performance. To investigate the complex effect of inlet parameters on combustor performance, (1) a test facility was designed and constructed, (2) hardware was designed and fabricated, (3) a statistically based technique was designed and applied, and (4) detailed in-situ measurements were acquired. Atmospheric tests were performed at conditions representative of industrial combustors: 670 K inlet preheat and an equivalence ratio of 0.47, and make the study immediately relevant to the combustion community. The effects of premixing length, fuel distribution, swirl angle, swirl vane thickness and swirl solidity were investigated. The detailed in-situ measurements were performed to form the database necessary to study the responsible mechanisms. A host of conventional and advanced diagnostics were used for the investigation. In situ measurements included the mapping of the thermal and velocity fields of the combustor, obtaining species concentrations inside the combustor, and quantifying the fuel-air mixing entering the combustor. Acoustic behavior of the combustor was studied, including the application of high speed videography. The results reveal that the principal statistically significant effect on NOx production is the inlet fuel distribution, and the principal statistically significant effect on CO production is the swirl strength. Elevated levels of NOx emission result when the fuel is weighted to the centerline. Eddies shedding off the swirler hub ignite as discrete packets, and due to the elevated concentrations of fuel, reach higher temperatures

  18. Assessment of Combustor Working Environments

    Directory of Open Access Journals (Sweden)

    Leiyong Jiang

    2012-01-01

    Full Text Available In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the combustor. The airflow over each flow element of the combustor can or liner is not evenly distributed, and considerable variations, ±25%, around the average values, are observed. It is more important to note that the temperatures at the combustor can and cooling wiggle strips vary significantly, which can significantly affect fatigue life of engine critical components. The present study suggests that to develop an adequate aerothermodynamics tool, it is necessary to carry out a further systematic study, including validation of numerical results, simulations at typical engine operating conditions, and development of simple correlations between engine operating conditions and component working environments. As an ultimate goal, the cost and time of gas turbine engine fleet management must be significantly reduced.

  19. Investigation and demonstration of a rich combustor cold-start device for alcohol-fueled engines

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J W; Irick, D K [Univ. of Tennessee, Knoxville, TN (United States)

    1998-04-01

    The authors have completed a study in which they investigated the use of a rich combustor to aid in cold starting spark-ignition engines fueled with either neat ethanol or neat methanol. The rich combustor burns the alcohol fuel outside the engine under fuel-rich conditions to produce a combustible product stream that is fed to the engine for cold starting. The rich combustor approach significantly extends the cold starting capability of alcohol-fueled engines. A design tool was developed that simulates the operation of the combustor and couples it to an engine/vehicle model. This tool allows the user to determine the fuel requirements of the rich combustor as the vehicle executes a given driving mission. The design tool was used to design and fabricate a rich combustor for use on a 2.8 L automotive engine. The system was tested using a unique cold room that allows the engine to be coupled to an electric dynamometer. The engine was fitted with an aftermarket engine control system that permitted the fuel flow to the rich combustor to be programmed as a function of engine speed and intake manifold pressure. Testing indicated that reliable cold starts were achieved on both neat methanol and neat ethanol at temperatures as low as {minus}20 C. Although starts were experienced at temperatures as low as {minus}30 C, these were erratic. They believe that an important factor at the very low temperatures is the balance between the high mechanical friction of the engine and the low energy density of the combustible mixture fed to the engine from the rich combustor.

  20. Low pollution combustor designs for CTOL engines - Results of the Experimental Clean Combustor Program

    Science.gov (United States)

    Roberts, R.; Peduzzi, A.; Niedzwiecki, R. W.

    1976-01-01

    The NASA/Pratt & Whitney Aircraft Experimental Clean Combustor Program is a multi-year, major contract effort. Primary program objectives are the generation of combustor technology for development of advanced commercial CTOL engines with lower exhaust emissions than current aircraft and demonstration of this technology in a full-scale JT9D engine in 1976. This paper describes the pollution and performance goals, Phase I and II test results, and the Phase III combustor hardware, pollution sampling techniques, and test plans. Best results were obtained with the Vorbix concept which employs multiple burning zones and improved fuel preparation and distribution. Substantial reductions were achieved in all pollutant categories, meeting the 1979 EPA standards for NOx, THC, and smoke when extrapolated to JT9D cycle conditions. The Vorbix concept additionally demonstrated the capability for acceptable altitude relight and did not appear to have unsolvable durability or exit temperature distribution problems.

  1. Thermal performance of a micro-combustor for micro-gas turbine system

    International Nuclear Information System (INIS)

    Cao, H.L.; Xu, J.L.

    2007-01-01

    Premixed combustion of hydrogen gas and air was performed in a stainless steel based micro-annular combustor for a micro-gas turbine system. Micro-scale combustion has proved to be stable in the micro-combustor with a gap of 2 mm. The operating range of the micro-combustor was measured, and the maximum excess air ratio is up to 4.5. The distribution of the outer wall temperature and the temperature of exhaust gas of the micro-combustor with excess air ratio were obtained, and the wall temperature of the micro-combustor reaches its maximum value at the excess air ratio of 0.9 instead of 1 (stoichiometric ratio). The heat loss of the micro-combustor to the environment was calculated and even exceeds 70% of the total thermal power computed from the consumed hydrogen mass flow rate. Moreover, radiant heat transfer covers a large fraction of the total heat loss. Measures used to reduce the heat loss were proposed to improve the thermal performance of the micro-combustor. The optimal operating status of the micro-combustor and micro-gas turbine is analyzed and proposed by analyzing the relationship of the temperature of the exhaust gas of the micro-combustor with thermal power and excess air ratio. The investigation of the thermal performance of the micro-combustor is helpful to design an improved micro-combustor

  2. Thermal performance of a meso-scale liquid-fuel combustor

    International Nuclear Information System (INIS)

    Vijayan, V.; Gupta, A.K.

    2011-01-01

    Research highlights: → Demonstrated successful combustion of liquid fuel-air mixtures in a novel meso-scale combustor. → Flame quenching was eliminated using heat recirculation in a swiss roll type combustor that also extended the flammability limits. → Liquid fuel was rapidly vaporized with the use of hot narrow channel walls that eliminated the need of a fuel atomizer. → Maximum power density of the combustor was estimated to be about 8.5 GW/m3 and heat load in the range of 50-280W. → Overall efficiency of the combustor was estimated in the range of 12 to 20%. - Abstract: Combustion in small scale devices poses significant challenges due to the quenching of reactions from wall heat losses as well as the significantly reduced time available for mixing and combustion. In the case of liquid fuels there are additional challenges related to atomization, vaporization and mixing with the oxidant in the very short time-scale liquid-fuel combustor. The liquid fuel employed here is methanol with air as the oxidizer. The combustor was designed based on the heat recirculating concept wherein the incoming reactants are preheated by the combustion products through heat exchange occurring via combustor walls. The combustor was fabricated from Zirconium phosphate, a ceramic with very low thermal conductivity (0.8 W m -1 K -1 ). The combustor had rectangular shaped double spiral geometry with combustion chamber in the center of the spiral formed by inlet and exhaust channels. Methanol and air were introduced immediately upstream at inlet of the combustor. The preheated walls of the inlet channel also act as a pre-vaporizer for liquid fuel which vaporizes the liquid fuel and then mixes with air prior to the fuel-air mixture reaching the combustion chamber. Rapid pre-vaporization of the liquid fuel by the hot narrow channel walls eliminated the necessity for a fuel atomizer. Self-sustained combustion of methanol-air was achieved in a chamber volume as small as 32.6 mm 3

  3. Chaos in an imperfectly premixed model combustor.

    Science.gov (United States)

    Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O

    2015-02-01

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  4. Low NOx Fuel Flexible Combustor Integration Project Overview

    Science.gov (United States)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  5. Design of thermal protection system for 8 foot HTST combustor

    Science.gov (United States)

    Moskowitz, S.

    1973-01-01

    The combustor in the 8-foot high temperature structures tunnel at the NASA-Langley Research Center has encountered cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A program was conducted which analyzed the failed combustor liner hardware and determined that the mechanism of failure was vibratory fatigue. A vibration damper system using wave springs located axially between the liner T-bar and the liner support was designed as an intermediate solution to extend the life of the current two-pass regenerative air-cooled liner. The effects of liner wall thickness, cooling air passage height, stiffener ring geometry, reflective coatings, and liner material selection were investigated for these designs. Preliminary layout design arrangements including the external water-cooling system requirements, weight estimates, installation requirements and preliminary estimates of manufacturing costs were prepared for the most promissing configurations. A state-of-the-art review of thermal barrier coatings and an evaluation of reflective coatings for the gasside surface of air-cooled liners are included.

  6. Feasibility study of ultra-low NOx Gas turbine combustor using the RML combustion concept

    Energy Technology Data Exchange (ETDEWEB)

    Van, Tien Giap; Hwang, Jeong Jae; Kim, Min Kuk; Ahn, Kook Young [Environment and Energy Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon (Korea, Republic of)

    2016-12-15

    A new combustion concept, the so called RML, was investigated to validate its application as a gas turbine combustor for combustor outlet temperatures over 1973 K. The feasibility study of the RML combustor was conducted with zero dimensional combustion calculations. The emission characteristics of RQL, LEAN, EGR and RML combustors were compared. The calculation results showed that the RQL combustor has lower NOx emissions than the LEAN at high outlet temperature. NOx emissions of the RML combustor at equivalence ratio of the rich chamber of 2.0 can be reduced by 30 % compared with the EGR combustor, and lower than the RQL combustor at a combustor outlet temperature over 1973 K. However, the CO emissions of the RML combustor were higher than those of the LEAN and EGR combustors. Also, the possibility of applying the RML combustor to gas turbines was discussed considering residence time, equivalence ratio of the rich chamber and recirculation rate. Although further research to design and realize the proposed RML combustor is needed, this study verified that the RML concept can be successfully used in a gas turbine combustor.

  7. Feasibility study of ultra-low NOx Gas turbine combustor using the RML combustion concept

    International Nuclear Information System (INIS)

    Van, Tien Giap; Hwang, Jeong Jae; Kim, Min Kuk; Ahn, Kook Young

    2016-01-01

    A new combustion concept, the so called RML, was investigated to validate its application as a gas turbine combustor for combustor outlet temperatures over 1973 K. The feasibility study of the RML combustor was conducted with zero dimensional combustion calculations. The emission characteristics of RQL, LEAN, EGR and RML combustors were compared. The calculation results showed that the RQL combustor has lower NOx emissions than the LEAN at high outlet temperature. NOx emissions of the RML combustor at equivalence ratio of the rich chamber of 2.0 can be reduced by 30 % compared with the EGR combustor, and lower than the RQL combustor at a combustor outlet temperature over 1973 K. However, the CO emissions of the RML combustor were higher than those of the LEAN and EGR combustors. Also, the possibility of applying the RML combustor to gas turbines was discussed considering residence time, equivalence ratio of the rich chamber and recirculation rate. Although further research to design and realize the proposed RML combustor is needed, this study verified that the RML concept can be successfully used in a gas turbine combustor

  8. Combustion of alternative fuels in vortex trapped combustor

    International Nuclear Information System (INIS)

    Ghenai, Chaouki; Zbeeb, Khaled; Janajreh, Isam

    2013-01-01

    Highlights: ► We model the combustion of alternative fuels in trapped vortex combustor (TVC). ► We test syngas and hydrogen/hydrocarbon mixture fuels. ► We examine the change in combustion performance and emissions of TVC combustor. ► Increasing the hydrogen content of the fuel will increase the temperature and NO x emissions. ► A high combustor efficiency is obtained for fuels with different compositions and LHV. - Abstract: Trapped vortex combustor represents an efficient and compact combustor for flame stability. Combustion stability is achieved through the use of cavities in which recirculation zones of hot products generated by the direct injection of fuel and air are created and acting as a continuous source of ignition for the incoming main fuel–air stream. Computational Fluid Dynamics analysis was performed in this study to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthetic gas (syngas). The flame temperature, the flow field, and species concentrations inside the Vortex Trapped Combustor were obtained. The results show that hydrogen enriched hydrocarbon fuels combustion will result in more energy, higher temperature (14% increase when methane is replaced with hydrogen fuels) and NO x emissions, and lower CO 2 emissions (50% decrease when methane is replaced with methane/hydrogen mixture with 75% hydrogen fraction). The NO x emission increases when the fraction of hydrogen increases for methane/hydrogen fuel mixture. The results also show that the flame for methane combustion fuel is located in the primary vortex region but it is shifted to the secondary vortex region for hydrogen combustion.

  9. Core Noise: Overview of Upcoming LDI Combustor Test

    Science.gov (United States)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.

  10. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad; Masri, Assaad Rachid

    2014-01-01

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable

  11. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Srinivasan, Shiva; York, William David

    2016-11-29

    A system for reducing combustion dynamics in a combustor includes an end cap that extends radially across the combustor and includes an upstream surface axially separated from a downstream surface. A combustion chamber is downstream of the end cap, and tubes extend from the upstream surface through the downstream surface. Each tube provides fluid communication through the end cap to the combustion chamber. The system further includes means for reducing combustion dynamics in the combustor. A method for reducing combustion dynamics in a combustor includes flowing a working fluid through tubes that extend axially through an end cap that extends radially across the combustor and obstructing at least a portion of the working fluid flowing through a first set of the tubes.

  12. The development of an ultra-low-emission gas-fired cyclonic combustor

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO x emissions -- lower than the level of NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab

  13. Method for controlling incineration in combustor for radioactive wastes

    International Nuclear Information System (INIS)

    Takaoku, Y.; Uehara, A.

    1991-01-01

    This invention relates to a method for controlling incineration in a combustor for low-level radioactive wastes. In particular, it relates to a method for economizing in the consumption of supplemental fuel while maintaining a stable incineration state by controlling the amount of fuel and of radioactive wastes fed to the combustor. The amount of fuel supplied is determined by the outlet gas temperature of the combustor. (L.L.)

  14. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    An investigation of single particle behaviour in a circulating fluidized bed combustor is described, relating to sulphur capture reactions by limestone under alternate oxidizing and reducing conditions present in a circulating fluidized bed combustor, and to the devolatilization and burn out...

  15. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  16. Turbine combustor with fuel nozzles having inner and outer fuel circuits

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Kim, Kwanwoo

    2013-12-24

    A combustor cap assembly for a turbine engine includes a combustor cap and a plurality of fuel nozzles mounted on the combustor cap. One or more of the fuel nozzles would include two separate fuel circuits which are individually controllable. The combustor cap assembly would be controlled so that individual fuel circuits of the fuel nozzles are operated or deliberately shut off to provide for physical separation between the flow of fuel delivered by adjacent fuel nozzles and/or so that adjacent fuel nozzles operate at different pressure differentials. Operating a combustor cap assembly in this fashion helps to reduce or eliminate the generation of undesirable and potentially harmful noise.

  17. Optimal combustor dimensions for the catalytic combustion of methane-air mixtures in micro-channels

    International Nuclear Information System (INIS)

    Chen, Junjie; Song, Wenya; Xu, Deguang

    2017-01-01

    Highlights: • The effect of combustor dimensions on the combustion stability was elucidated. • Wall thermal properties are important for optimizing combustor dimensions. • The optimal wall thickness increases with flow velocity. • The optimal combustor length depends on the wall thermal conductivity. • Stability diagrams were constructed and design recommendations were made. - Abstract: This paper addresses the question of choosing appropriate combustor dimensions for the self-sustained catalytic combustion in parallel plate micro-channels. The combustion characteristics and stability of methane-air mixtures over platinum in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of gap size, wall thickness, and combustor length on the combustion stability and combustor performance were explored to provide guidelines for optimal design of combustor dimensions. Combustion stability diagrams were constructed, and design recommendations were made. The effect of wall thermal conductivity on the mechanisms of extinction and blowout, and its implications on optimal combustor geometry were studied. It was shown that combustor dimensions are vital in determining the combustion stability of the system. The choice of appropriate combustor dimensions is crucial in achieving stable combustion, due to a rather narrow operating space determined by stability, material, and conversion constraints. The optimal gap size depends on whether the flow velocity or flow rate is kept constant. For most practical wall materials in the range of metals to highly conductive ceramics, larger combustors are more stable at a fixed flow velocity, whereas smaller combustors are recommended for a fixed flow rate at the expense of hot spots. The optimal wall thickness increases with flow velocity. Higher flow velocities can be sustained in combustors with low-conductivity materials using

  18. Development of a catalytically assisted combustor for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Yasushi; Fujii, Tomoharu; Sato, Mikio [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-01 (Japan); Kanazawa, Takaaki; Inoue, Hitoshi [Kansai Electric Power Company, Inc., 3-11-20 Nakoji, Amagasaki, Hyoho 661 (Japan)

    1999-01-01

    A catalytically assisted low NO{sub x} combustor has been developed which has the advantage of catalyst durability. This combustor is composed of a burner section and a premixed combustion section behind the burner section. The burner system consists of six catalytic combustor segments and six premixing nozzles, which are arranged alternately and in parallel. Fuel flow rate for the catalysts and the premixing nozzles are controlled independently. The catalytic combustion temperature is maintained under 1000C, additional premixed gas is injected from the premixing nozzles into the catalytic combustion gas, and lean premixed combustion at 1300C is carried out in the premixed combustion section. This system was designed to avoid catalytic deactivation at high temperature and thermal or mechanical shock fracture of the honeycomb monolith. In order to maintain the catalyst temperature under 1000C, the combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected for the combustor test. A combustor for a 20MW class multi-can type gas turbine was designed and tested under high pressure conditions using LNG fuel. Measurements of NO{sub x}, CO and unburned hydrocarbon were made and other measurements were made to evaluate combustor performance under various combustion temperatures and pressures. As a result of the tests, it was proved that NO{sub x} emission was lower than 10ppm converted at 16% O{sub 2}, combustion efficiency was almost 100% at 1300C of combustor outlet temperature and 13.5ata of combustor inlet pressure

  19. Variable volume combustor with a conical liner support

    Science.gov (United States)

    Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Keener, Chrisophter Paul; Ostebee, Heath Michael

    2017-06-27

    The present application provides a variable volume combustor for use with a gas turbine engine. The variable volume combustor may include a liner, a number of micro-mixer fuel nozzles positioned within the liner, and a conical liner support supporting the liner.

  20. Parametric Study of Pulse-Combustor-Driven Ejectors at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2015-01-01

    Pulse-combustor configurations developed in recent studies have demonstrated performance levels at high-pressure operating conditions comparable to those observed at atmospheric conditions. However, problems related to the way fuel was being distributed within the pulse combustor were still limiting performance. In the first part of this study, new configurations are investigated computationally aimed at improving the fuel distribution and performance of the pulse-combustor. Subsequent sections investigate the performance of various pulse-combustor driven ejector configurations operating at highpressure conditions, focusing on the effects of fuel equivalence ratio and ejector throat area. The goal is to design pulse-combustor-ejector configurations that maximize pressure gain while achieving a thermal environment acceptable to a turbine, and at the same time maintain acceptable levels of NOx emissions and flow non-uniformities. The computations presented here have demonstrated pressure gains of up to 2.8%.

  1. Simulation of the flow inside an annular can combustor

    OpenAIRE

    Alqaraghuli, W; Alkhafagiy, D; Shires, A

    2014-01-01

    In the gas turbine combustion system, the external flows in annuli play one of the key roles in controlling pressure loss, air flow distribution around the combustor liner, and the attendant effects on performance, durability, and stability.  This paper describes a computational fluid dynamics (CFD) simulation of the flow in the outer annulus of a can combustor. Validating this simulation was done with experimental results obtained from analyzing the flow inside a can combustor annulus that w...

  2. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  3. Overview of experimental measurements in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-11-01

    Full Text Available Due to CFD Shortfalls, experimental data on gas turbine combustors is required to obtain insight into the combustion and flow mechanisms as well as for simulation and model validation and evaluation. The temperature and velocity fields of a generic...

  4. DART Core/Combustor-Noise Initial Test Results

    Science.gov (United States)

    Boyle, Devin K.; Henderson, Brenda S.; Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. The new NASA DGEN Aero0propulsion Research Turbofan (DART) is a cost-efficient testbed for the study of core-noise physics and mitigation. This presentation gives a brief description of the recently completed DART core combustor-noise baseline test in the NASA GRC Aero-Acoustic Propulsion Laboratory (AAPL). Acoustic data was simultaneously acquired using the AAPL overhead microphone array in the engine aft quadrant far field, a single midfield microphone, and two semi-infinite-tube unsteady pressure sensors at the core-nozzle exit. An initial assessment shows that the data is of high quality and compares well with results from a quick 2014 feasibility test. Combustor noise components of measured total-noise signatures were educed using a two-signal source-separation method an dare found to occur in the expected frequency range. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject.

  5. Fluid Mechanics of Lean Blowout Precursors in Gas Turbine Combustors

    Directory of Open Access Journals (Sweden)

    T. M. Muruganandam

    2012-03-01

    Full Text Available Understanding of lean blowout (LBO phenomenon, along with the sensing and control strategies could enable the gas turbine combustor designers to design combustors with wider operability regimes. Sensing of precursor events (temporary extinction-reignition events based on chemiluminescence emissions from the combustor, assessing the proximity to LBO and using that data for control of LBO has already been achieved. This work describes the fluid mechanic details of the precursor dynamics and the blowout process based on detailed analysis of near blowout flame behavior, using simultaneous chemiluminescence and droplet scatter observations. The droplet scatter method represents the regions of cold reactants and thus help track unburnt mixtures. During a precursor event, it was observed that the flow pattern changes significantly with a large region of unburnt mixture in the combustor, which subsequently vanishes when a double/single helical vortex structure brings back the hot products back to the inlet of the combustor. This helical pattern is shown to be the characteristic of the next stable mode of flame in the longer combustor, stabilized by double helical vortex breakdown (VBD mode. It is proposed that random heat release fluctuations near blowout causes VBD based stabilization to shift VBD modes, causing the observed precursor dynamics in the combustor. A complete description of the evolution of flame near the blowout limit is presented. The description is consistent with all the earlier observations by the authors about precursor and blowout events.

  6. Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors

    Science.gov (United States)

    Mehanna Ismail, Mohammed Ali

    The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the

  7. Design Optimization of a Micro-Combustor for Lean, Premixed Fuel-Air Mixtures

    Science.gov (United States)

    Powell, Leigh Theresa

    Present technology has been shifting towards miniaturization of devices for energy production for portable electronics. Micro-combustors, when incorporated into a micro-power generation system, provide the energy desired in the form of hot gases to power such technology. This creates the need for a design optimization of the micro-combustor in terms of geometry, fuel choice, and material selection. A total of five micro-combustor geometries, three fuels, and three materials were computationally simulated in different configurations in order to determine the optimal micro-combustor design for highest efficiency. Inlet velocity, equivalence ratio, and wall heat transfer coefficient were varied in order to test a comprehensive range of micro-combustor parameters. All simulations completed for the optimization study used ANSYS Fluent v16.1 and post-processing of the data was done in CFD Post v16.1. It was found that for lean, premixed fuel-air mixtures (φ = 0.6 - 0.9) ethane (C 2H6) provided the highest flame temperatures when ignited within the micro-combustor geometries. An aluminum oxide converging micro-combustor burning ethane and air at an equivalence ratio of 0.9, an inlet velocity of 0.5 m/s, and heat transfer coefficient of 5 W/m2-K was found to produce the highest combustor efficiency, making it the optimal choice for a micro-combustor design. It is proposed that this geometry be experimentally and computationally investigated further in order to determine if additional optimization can be achieved.

  8. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    Science.gov (United States)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  9. Experimental study on premixed CH{sub 4}/air mixture combustion in micro Swiss-roll combustors

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Bei-Jing; Wang, Jian-Hua [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2010-12-15

    Excess enthalpy combustion is a promising approach to stabilize flame in micro-combustors. Using a Swiss-roll combustor configuration, excess enthalpy combustion can be conveniently achieved. In this work, three types of Swiss-roll combustors with double spiral-shaped channels were designed and fabricated. The combustors were tested using methane/air mixtures of various equivalence ratios. Both temperature distributions and extinction limits were determined for each combustor configuration at different methane mass flow rates. Results indicate that the Swiss-roll combustors developed in the current study greatly enhance combustion stability in center regions of the combustors. At the same time, excess enthalpy combustors of the Swiss-roll configuration significantly extend the extinction limits of methane/air mixtures. In addition, the effects of combustor configurations and thermal insulation arrangements on temperature distributions and extinction limits were evaluated. With heat losses to the environment being significant, the use of thermal insulations further enhances the flame stability in center regions of the Swiss-roll combustors and extends flammable ranges. (author)

  10. Flame stabilization and mixing characteristics in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Bobba, Mohan K.

    A novel combustor design, referred to as the Stagnation Point Reverse-Flow (SPRF) combustor, was recently developed that is able to operate stably at very lean fuel-air mixtures and with low NOx emissions even when the fuel and air are not premixed before entering the combustor. The primary objective of this work is to elucidate the underlying physics behind the excellent stability and emissions performance of the SPRF combustor. The approach is to experimentally characterize velocities, species mixing, heat release and flame structure in an atmospheric pressure SPRF combustor with the help of various optical diagnostic techniques: OH PLIF, chemiluminescence imaging, PIV and Spontaneous Raman Scattering. Results indicate that the combustor is primarily stabilized in a region downstream of the injector that is characterized by low average velocities and high turbulence levels; this is also the region where most of the heat release occurs. High turbulence levels in the shear layer lead to increased product entrainment levels, elevating the reaction rates and thereby enhancing the combustor stability. The effect of product entrainment on chemical timescales and the flame structure is illustrated with simple reactor models. Although reactants are found to burn in a highly preheated (1300 K) and turbulent environment due to mixing with hot product gases, the residence times are sufficiently long compared to the ignition timescales such that the reactants do not autoignite. Turbulent flame structure analysis indicates that the flame is primarily in the thin reaction zones regime throughout the combustor, and it tends to become more flamelet like with increasing distance from the injector. Fuel-air mixing measurements in case of non-premixed operation indicate that the fuel is shielded from hot products until it is fully mixed with air, providing nearly premixed performance without the safety issues associated with premixing. The reduction in NOx emissions in the SPRF

  11. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Science.gov (United States)

    2010-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before... per dry standard cubic meter (0.015 grains per dry standard cubic foot), corrected to 7 percent oxygen (dry basis). (b) On and after the date on which the initial compliance test is completed or is required...

  12. Modeling the integration of thermoelectrics in anode exhaust combustors for waste heat recovery in fuel cell systems

    Science.gov (United States)

    Maghdouri Moghaddam, Anita

    Recently developed small-scale hydrocarbon-fueled fuel cell systems for portable power under 1 kW have overall system efficiencies typically no higher than 30-35%. This study explores the possibility of using of thermoelectric waste heat recovery in anode exhaust combustors to improve the fuel cell system efficiencies by as much as 4-5% points and further to reduce required battery power during system start-up. Two models were used to explore this. The first model simulated an integrated SOFC system with a simplified catalytic combustor model with TEs integrated between the combustor and air preheating channels for waste heat recovery. This model provided the basis for assessing how much additional power can achieve during SOFC operation as a function of fuel cell operating conditions. Results for the SOFC system indicate that while the TEs may recover as much as 4% of the total fuel energy into the system, their benefit is reduced in part because they reduce the waste heat transferred back to the incoming air stream and thereby lower the SOFC operating temperatures and operating efficiencies. A second model transient model of a TE-integrated catalytic combustor explored the performance of the TEs during transient start-up of the combustor. This model incorporated more detailed catalytic combustion chemistry and enhanced cooling air fin heat transfer to show the dynamic heating of the integrated combustor. This detailed model provided a basis for exploring combustor designs and showed the importance of adequate reactant preheating when burning exhaust from a reformer during start-up for the TEs to produce significant power to reduce the size of system batteries for start-up.

  13. Variable volume combustor with nested fuel manifold system

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-13

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles, a fuel manifold system in communication with the micro-mixer fuel nozzles to deliver a flow of fuel thereto, and a linear actuator to maneuver the micro-mixer fuel nozzles and the fuel manifold system.

  14. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  15. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  16. Variable volume combustor with pre-nozzle fuel injection system

    Science.gov (United States)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  17. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  18. Variable volume combustor with an air bypass system

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  19. Thermodynamics of premixed combustion in a heat recirculating micro combustor

    International Nuclear Information System (INIS)

    Rana, Uttam; Chakraborty, Suman; Som, S.K.

    2014-01-01

    A thermodynamic model has been developed to evaluate exergy transfer and its destruction in the process of premixed combustion in a heat recirculating micro combustor. Exergy destruction caused by process irreversibilities is characterized by entropy generation in the process. The entropy transport equation along with the solution of temperature and species concentration fields in the wake of flame sheet assumptions have been used to determine the different components of entropy generation. The role of thermal conductivity and thickness of combustor wall, and Peclet number on transfer and destruction rate of exergy is depicted in the process of flame stabilization via heat recirculation. The entropy generations due to gas phase heat conduction and chemical reaction are identified as the major sources of exergy destruction. The total irreversibility in pre-flame region is confined only within a small distance upstream of the flame. It has been observed that the local volumetric entropy generation is higher near the axis than that near the combustor wall. The second law efficiency is almost invariant with heat loss from the combustor, Peclet number, and thermal conductivity and thickness of combustor wall. - Highlights: • Irreversibility in the combustor is mainly due to conduction and chemical reaction. • Entropy generation near the axis is higher compared to that near the wall. • Heat recirculation and process irreversibility decrease with heat loss. • The second law efficiency is almost independent of Peclet number. • Second law efficiency is almost independent of wall thermal conductivity

  20. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States); Barlow, R.S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1995-10-01

    Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

  1. Flame dynamics in a micro-channeled combustor

    International Nuclear Information System (INIS)

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  2. Flame dynamics in a micro-channeled combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Taaha; Balachandran, Ramanarayanan, E-mail: r.balachandran@ucl.ac.uk [Department of Mechanical Engineering, University College London, London (United Kingdom); Markides, Christos N. [Clean Energy Processes Laboratory, Department of Chemical Engineering, Imperial College London, London (United Kingdom)

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  3. Variable volume combustor with aerodynamic support struts

    Science.gov (United States)

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul

    2017-03-07

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  4. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    Science.gov (United States)

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  5. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  6. Experimental investigations on effect of different materials and varying depths of one turn exhaust channel swiss roll combustor on its thermal performance

    Science.gov (United States)

    Mane Deshmukh, Sagar B.; Krishnamoorthy, A.; Bhojwani, V. K.; Pawane, Ashwini

    2017-05-01

    More energy density of hydrocarbon fuels compared to advanced batteries available in the market demands for development of systems which will use hydrocarbon fuels at small scale to generate power in small quantity (i.e. in few watts) and device efficiency should be reasonably good, but the basic requirement is to generate heat from the fuels like methane, propane, hydrogen, LPG and converting into power. Swiss roll combustor has proved to be best combustor at small scale. Present work is carried out on one turn exhaust channel and half turn of inlet mixture channel Swiss roll combustor. Purpose of keeping exhaust channel length more than the inlet mixture channel to ensure sufficient time for heat exchange between burned and unburned gases, which is not reported in earlier studies. Experimental study mentions effects of different design parameters like materials of combustor, various depths, equivalence ratio, mass flow rates of liquefied petroleum gas (LPG), volume of combustion space and environmental conditions (with insulation and without insulation to combustors) on fuel lean limit and fuel rich limit, temperature profile obtained on all external surfaces, in the main combustion chamber, in the channel carrying unburned gas mixture and burned gas mixture, heat loss to atmosphere from all the walls of combustor, flame location. Different combustor materials tested were stainless steel, Aluminum, copper, brass, bronze, Granite. Depths considered were 22mm, 15mm, 10mm and 5mm. It was observed that flame stability inside the combustion chamber is affected by materials, depths and flow rates. Unburned mixture carrying channel was kept below quenching distance of flame to avoid flash back. Burned gas carrying channel dimension was more than the quenching distance. Considerable temperature rise was observed with insulation to combustors. But combustors with more thermal conductivity showed more heat loss to atmosphere which led to instability of flame.

  7. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C D [DRA, Farnborough (United Kingdom)

    1998-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  8. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  9. Development and testing of pulsed and rotating detonation combustors

    Science.gov (United States)

    St. George, Andrew C.

    analysis approach is developed, which employs cross-correlations to detect the combustor operating state as it evolves during a test. This method enables expedient detection of the operating state from sensors placed outside the combustor, and can also identify and quantify instabilities. An investigation is conducted on a tangentially-injecting initiator tube to characterize the RDC ignition process. Maximum energy deposition for this ignition method is an order of magnitude lower than the required energy for direct initiation, and detonation develops via a deflagration-to-detonation transition process. Stable rotating detonation is preceded by a transitory onset phase with a stochastic duration, which appears to be a function of the reactant injection pressure ratio. Hydrogen-ethylene fuel blends are explored as an interim strategy to transition to stable detonation in ethylene-air mixtures. While moderate hydrogen addition enables stable operation, removal of the supplemental hydrogen triggers instability and failure. Chemical kinetic analysis indicates that elevated reactant pressure is far more significant than hydrogen addition, and suggests that the stabilizing effect of hydrogen is physical, rather than kinetic. The role of kinetic effects (e.g., cell width) is also assessed, using H2-O2-N2 mixtures. Detonation is observed when the normalized channel width exceeds the classical limit of wch/lambda = 0.5, and the number of detonations increases predictably when the detonation perimeter exceeds a critical value.

  10. The pollution reduction technology program for can-annular combustor engines - Description and results

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Diehl, L.

    1976-01-01

    Pollutant reduction and performance characteristics were determined for three successively more advanced combustor concepts. Program Element I consisted of minor modifications to the current production JT8D combustor and fuel system to evaluate means of improved fuel preparation and changes to the basic airflow distribution. Element II addressed versions of the two-staged Vorbix (vortex burning and mixing) combustor and represented a moderate increase in hardware complexity and difficulty of development. The concept selected for Element III employed vaporized fuel as a means of achieving minimum emission levels and represented the greatest difficulty of development and adaptation to the JT8D engine. Test results indicate that the Element I single-stage combustors were capable of dramatic improvement in idle pollutants. The multistage combustors evaluated in Program Elements II and III simultaneously reduced CO, THC and NOx emissions, but were unable to satisfy the current 1979 EPA standards.

  11. A study of air breathing rockets. 3: Supersonic mode combustors

    Science.gov (United States)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  12. The development of an ultra-low-emission gas-fired combustor for space heaters

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    An ultra-low-emission as-fired combustor has been developed for relatively low-temperature direct-air heating applications. High-lean premixed cyclonic combustion with a flame stabilizer is employed to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 15 refs., 10 figs., 1 tab

  13. Thermo-acoustic cross-talk between cans in a can-annular combustor

    NARCIS (Netherlands)

    Farisco, Federica; Panek, Lukasz; Kok, Jim B.W.

    2017-01-01

    Thermo-acoustic instabilities in gas turbine engines are studied to avoid engine failure. Compared to the engines with annular combustors, the can-annular combustor design should be less vulnerable to acoustic burner-to-burner interaction, since the burners are acoustically coupled only by the

  14. Experimental study of a plat-flame micro combustor burning DME for thermoelectric power generation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.Q.; Zhao, D.Q.; Guo, C.M.; Wang, X.H. [Key Laboratory of Renewable Energy and Gas Hydrate, CAS, Guangzhou Institute of Energy Conversion of CAS, Guangzhou 510640 (China)

    2011-01-15

    A centimeter magnitude thermoelectric (TE) power generation system based on a plat-flame micro combustor burning DME (dimethyl ether) has been developed. The chamber wall of this micro combustor was made of two parallel sintered porous plates which acted as mixture inlet. The main virtue of this combustor is that it can keep combustor wall at lower temperature for reducing heat loss when sustaining a stable flame. Experimental test results showed it was feasible to obtain stable DME/air premixed flame at lean combustion situations in the micro combustor. The combustion load of this 0.48 cm{sup 3} chamber capacity was 20-200 W at equivalence ratio {phi} = 0.6. Though the flame temperature was above 1000 C, the combustor's wall temperature was near 600 C lower than flame temperature. In the demonstrated TE power generation system which integrated the plat-flame micro combustor, a heat spreader had good effect on uniforming the hot side temperature field of TE modules. Cooled by water and with 150 W input power at {phi} = 0.7, the system produced 10 V output at open circuit and 4 V at 10 {omega} load. The maximum power output was above 2 W, and the maximum overall chemical-electric energy conversion efficiency was 1.25%. (author)

  15. CFD analysis of a scramjet combustor with cavity based flame holders

    Science.gov (United States)

    Kummitha, Obula Reddy; Pandey, Krishna Murari; Gupta, Rajat

    2018-03-01

    Numerical analysis of a scramjet combustor with different cavity flame holders has been carried out using ANSYS 16 - FLUENT tool. In this research article the internal fluid flow behaviour of the scramjet combustor with different cavity based flame holders have been discussed in detail. Two dimensional Reynolds-Averaged Navier-Stokes governing(RANS) equations and shear stress turbulence (SST) k - ω model along with finite rate/eddy dissipation chemistry turbulence have been considered for modelling chemical reacting flows. Due to the advantage of less computational time, global one step reaction mechanism has been used for combustion modelling of hydrogen and air. The performance of the scramjet combustor with two different cavities namely spherical and step cavity has been compared with the standard DLR scramjet. From the comparison of numerical results, it is found that the development of recirculation regions and additional shock waves from the edge of cavity flame holder is increased. And also it is observed that with the cavity flame holder the residence time of air in the scramjet combustor is also increased and achieved stabilized combustion. From this research analysis, it has been found that the mixing and combustion efficiency of scramjet combustor with step cavity design is optimum as compared to other models.

  16. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  17. Heating and Efficiency Comparison of a Fischer-Tropsch (FT) Fuel, JP-8+100, and Blends in a Three-Cup Combustor Sector

    Science.gov (United States)

    Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry; Saxena, Nikita T.; Hendricks, Robert C.

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566-Annex standards and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 aF (533 K), 125 psia (0.86 MPa) at 625 aF (603 K), 175 psia (1.21 MPa) at 725 aF (658 K), and 225 psia (1.55 MPa) at 790 aF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% P) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life. In general, 100% SPK-FT fuel and blends with JP-8+100 produce less particulates and less smoke and have lower thermal impact on combustor hardware.

  18. Transient Heat Transfer Properties in a Pulse Detonation Combustor

    Science.gov (United States)

    2011-03-01

    appreciation to my wife Shelly , and my sons Cody, Brandon, and Tyler for their encouragement, support, and understanding during this challenging time...operation frequencies. 56 B. FUTURE WORK A redesign of the cooled combustor chamber is currently in progress and will result in a cast mold. A...water-cooled combustor with casted swept ramps in the combustion chamber that are cooled as well maximizes the amount cooling to the ramps to help

  19. Effects of Burning Alternative Fuel in a 5-Cup Combustor Sector

    Science.gov (United States)

    Tacina, K. M.; Chang, C. T.; Lee, C.-M.; He, Z.; Herbon, J.

    2015-01-01

    A goal of NASA's Environmentally Responsible Aviation (ERA) program is to develop a combustor that will reduce the NOx emissions and that can burn both standard and alternative fuels. To meet this goal, NASA partnered with General Electric Aviation to develop a 5-cup combustor sector; this sector was tested in NASA Glenn's Advanced Subsonic Combustion Rig (ASCR). To verify that the combustor sector was fuel-flexible, it was tested with a 50-50 blend of JP-8 and a biofuel made from the camelina sativa plant. Results from this test were compared to results from tests where the fuel was neat JP-8. Testing was done at three combustor inlet conditions: cruise, 30% power, and 7% power. When compared to burning JP-8, burning the 50-50 blend did not significantly affect emissions of NOx, CO, or total hydrocarbons. Furthermore, it did not significantly affect the magnitude and frequency of the dynamic pressure fluctuations.

  20. 34 CFR 4.1 - Service of process required to be served on or delivered to Secretary.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Service of process required to be served on or... OF PROCESS § 4.1 Service of process required to be served on or delivered to Secretary. Summons... authorized to accept service of such process. (Authority: 5 U.S.C. 301) [47 FR 16780, Apr. 20, 1982] ...

  1. Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with High-Speed Diffuser Flow

    Directory of Open Access Journals (Sweden)

    R. C. Hendricks

    2001-01-01

    Full Text Available The Trapped Vortex Combustor (TVC potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL modes of combustion. The present work describes the operational principles of the TVC, and extends diffuser velocities toward choked flow and provides system performance data. Performance data include EINOx results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO performance. Computational fluid dynamics (CFD simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable compared to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.

  2. Large Eddy Simulations and Experimental Investigation of Flow in a Swirl Stabilized Combustor

    KAUST Repository

    Kewlani, Gaurav

    2012-01-09

    Swirling flows are the preferred mode of flame stabilization in lean premixed gas turbine engine combustors. Developing a fundamental understanding of combustion dynamics and flame stability in such systems requires a detailed investigation of the complex interactions between fluid mechanics and combustion. The turbulent reacting flow in a sudden expansion swirl combustor is studied using compressible large eddy simulations (LES) and compared with experimental data measured using PIV. Different vortex breakdown structures are observed, as the mixture equivalence ratio is reduced, that progressively diminish the stability of the flame. Sub-grid scale combustion models such as the artificially thickened flame method and the partially stirred reactor approach, along with appropriate chemical schemes, are implemented to describe the flame. The numerical predictions for average velocity correspond well with experimental results, and higher accuracy is obtained using the more detailed reaction mechanism. Copyright © 2012 American Institute of Aeronautics and Astronautics, Inc.

  3. Combustor

    Energy Technology Data Exchange (ETDEWEB)

    Boden, J C; Fuller, J; Styles, A C

    1987-02-18

    A combustor suitable for disposing of lean fuel gas mixtures, e.g. solvent-laden exhaust streams, has a combustion chamber, a heat exchanger comprising a matrix of elongate tubes for supplying lean fuel gas to the combustion chamber and a burner located within the combustion chamber. The burner is adapted to mix fuel gas and the lean fuel gas which enters at an inlet and issues from the elongate tube outlets. The heat exchanger is in an heat exchange relationship with flue gas emerging from the outlet and the combustion chamber. The passage of the flue gases from the combustion chamber over the external surfaces of the tubes of the heat exchanger enables the pre-heating of the lean fuel gas mixture prior to its entry into the combustion chamber.

  4. The preliminary design of an annular combustor for a mini gas turbine

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2015-10-01

    Full Text Available This study involves the redesign of the combustor liner for a 200N mini gas turbine engine using first principles and the design methods of the NREC series as shown in Figure 1. The combustor design was performed using five different operating...

  5. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  6. Design and evaluation of combustors for reducing aircraft engine pollution

    Science.gov (United States)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Various techniques and test results are briefly described and referenced for detail. The effort arises from the increasing concern for the measurement and control of emissions from gas turbine engines. The greater part of this research is focused on reducing the oxides of nitrogen formed during takeoff and cruise in both advanced CTOL, high pressure ratio engines, and advanced supersonic aircraft engines. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization, water injection, and gaseous fuels. In the experiments conducted to date, some of these techniques were more successful than others in reducing oxides of nitrogen emissions. Tests are being conducted on full-annular combustors at pressures up to 6 atmospheres and on combustor segments at pressures up to 30 atmospheres.

  7. Simulation Investigation on Combustion Characteristics in a Four-Point Lean Direct Injection Combustor with Hydrogen/Air

    Directory of Open Access Journals (Sweden)

    Jianzhong Li

    2017-06-01

    Full Text Available To investigate the combustion characteristics in multi-point lean direct injection (LDI combustors with hydrogen/air, two swirl–venturi 2 × 2 array four-point LDI combustors were designed. The four-point LDI combustor consists of injector assembly, swirl–venturi array and combustion chamber. The injector, swirler and venturi together govern the rapid mixing of hydrogen and air to form the mixture for combustion. Using clockwise swirlers and anticlockwise swirlers, the co-swirling and count-swirling swirler arrays LDI combustors were achieved. Using Reynolds-Averaged Navier–Stokes (RANS code for steady-state reacting flow computations, the four-point LDI combustors with hydrogen/air were simulated with an 11 species and 23 lumped reaction steps H2/Air reaction mechanism. The axial velocity, turbulence kinetic energy, total pressure drop coefficient, outlet temperature, mass fraction of OH and emission of pollutant NO of four-point LDI combustors, with different equivalence ratios, are here presented and discussed. As the equivalence ratios increased, the total pressure drop coefficient became higher because of increasing heat loss. Increasing equivalence ratios also corresponded with the rise in outlet temperature of the four-point LDI combustors, as well as an increase in the emission index of NO EINO in the four-point LDI combustors. Along the axial distance, the EINO always increased and was at maximum at the exit of the dump. Along the chamber, the EINO gradually increased, maximizing at the exit of chamber. The total temperature of four-point LDI combustors with different equivalence ratios was identical to the theoretical equilibrium temperature. The EINO was an exponential function of the equivalence ratio.

  8. An Experimental Investigation of Self-Excited Combustion Dynamics in a Single Element Lean Direct Injection (LDI) Combustor

    Science.gov (United States)

    Gejji, Rohan M.

    OH distribution in the combustion zone. The DMD analysis was able to identify similar dominant unstable modes in the combustor. Recommendations for future work are based on the continued requirement for quantitative and spatio-temporally resolved data for direct comparison with computational efforts to develop predictive capabilities for combustion instabilities at relevant operating conditions. Discriminating instability behavior for the prototypical combustor demonstrated in this study is critical for any robust validation effort Unit physics based scaling of the current effort to multi-element combustors along with improvement in diagnostic techniques and analysis efforts are recommended for advancement in understanding of the complex physics in the multi-phase, three dimensional and turbulent combustion processes in the LDI combustor.

  9. Three-dimensional particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2009-09-01

    Full Text Available The three-dimensional flow field inside a generic can-type, forward flow, experimental combustor was measured. A stereoscopic Particle Image Velocimetry (PIV) system was used to obtain the flow field of the combustor in the non-reacting condition...

  10. Nonintrusive transceiver and method for characterizing temperature and velocity fields in a gas turbine combustor

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko

    2017-09-05

    An acoustic transceiver is implemented for measuring acoustic properties of a gas in a turbine engine combustor. The transceiver housing defines a measurement chamber and has an opening adapted for attachment to a turbine engine combustor wall. The opening permits propagation of acoustic signals between the gas in the turbine engine combustor and gas in the measurement chamber. An acoustic sensor mounted to the housing receives acoustic signals propagating in the measurement chamber, and an acoustic transmitter mounted to the housing creates acoustic signals within the measurement chamber. An acoustic measurement system includes at least two such transceivers attached to a turbine engine combustor wall and connected to a controller.

  11. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wang; Zhijun Zhou; Weijuan Yang; Junhu Zhou; Jianzhong Liu; Zhihua Wang; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture. (author)

  12. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yang; Zhou Zhijun [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Yang Weijuan, E-mail: 10508107@zju.edu.c [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China); Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2010-06-15

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H{sub 2}PtCl{sub 6}. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  13. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    International Nuclear Information System (INIS)

    Wang Yang; Zhou Zhijun; Yang Weijuan; Zhou Junhu; Liu Jianzhong; Wang Zhihua; Cen Kefa

    2010-01-01

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H 2 PtCl 6 . The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  14. An Experimental Study of Swirling Flows as Applied to Annular Combustors

    Science.gov (United States)

    Seal, Michael Damian, II

    1997-01-01

    This thesis presents an experimental study of swirling flows with direct applications to gas turbine combustors. Two separate flowfields were investigated: a round, swirling jet and a non-combusting annular combustor model. These studies were intended to allow both a further understanding of the behavior of general swirling flow characteristics, such as the recirculation zone, as well as to provide a base for the development of computational models. In order to determine the characteristics of swirling flows the concentration fields of a round, swirling jet were analyzed for varying amount of swirl. The experimental method used was a light scattering concentration measurement technique known as marker nephelometry. Results indicated the formation of a zone of recirculating fluid for swirl ratios (rotational speed x jet radius over mass average axial velocity) above a certain critical value. The size of this recirculation zone, as well as the spread angle of the jet, was found to increase with increase in the amount of applied swirl. The annular combustor model flowfield simulated the cold-flow characteristics of typical current annular combustors: swirl, recirculation, primary air cross jets and high levels of turbulence. The measurements in the combustor model made by the Laser Doppler Velocimetry technique, allowed the evaluation of the mean and rms velocities in the three coordinate directions, one Reynold's shear stress component and the turbulence kinetic energy: The primary cross jets were found to have a very strong effect on both the mean and turbulence flowfields. These cross jets, along with a large step change in area and wall jet inlet flow pattern, reduced the overall swirl in the test section to negligible levels. The formation of the strong recirculation zone is due mainly to the cross jets and the large step change in area. The cross jets were also found to drive a four-celled vortex-type motion (parallel to the combustor longitudinal axis) near the

  15. Coal-based oxy-fuel system evaluation and combustor development

    Energy Technology Data Exchange (ETDEWEB)

    MacAdam, S.; Biebuyck, C.; Anderson, R.; Pronske, K. [Clean Energy Systems Inc., Rancho Cordova, CA (United States)

    2007-07-01

    The core of the Clean Energy Systems, Inc. (CES) process is an oxy-combustor adapted from rocket engine technology. This combustor burns gaseous or liquid fuels with gaseous oxygen in the presence of water. Fuels include syngas from coal, refinery residues, or biomass; natural gas; landfill gas; glycoal solutions and oil/water emulsions. The combustion is performed at near-stoichiometric conditions in the presence of recycled water to produce a steam/CO{sub 2} mixture at high temperature and pressure. These combustion products power conventional or advanced steam turbines and may use modified gas turbines operating at high-temperatures for expansion at intermediate pressures. The gas exiting the turbines enter a condenser/separator where it is cooled, separating into its components, water and CO{sub 2}. The recovered CO{sub 2} is conditioned and purified as appropriate and sold or sequestered. Most of the water is recycled to the gas generator but excess high-purity water is produced and available for export. The development, evaluation and demonstration of the CES combustor are described. 8 refs., 4 figs., 1 tab.

  16. Sensitivity of the Numerical Prediction of Turbulent Combustion Dynamics in the LIMOUSINE Combustor

    NARCIS (Netherlands)

    Shahi, Mina; Kok, Jacobus B.W.; Pozarlik, Artur Krzysztof; Roman Casado, J.C.; Sponfeldner, T.

    2014-01-01

    The objective of this study is to investigate the sensitivity and accuracy of the reaction flow-field prediction for the LIMOUSINE combustor with regard to choices in computational mesh and turbulent combustion model. The LIMOUSINE combustor is a partially premixed, bluff body-stabilized natural gas

  17. Preliminary investigation of the performance of a single tubular combustor at pressure up to 12 atmospheres

    Science.gov (United States)

    Wear, Jerrold D; Butze, Helmut F

    1954-01-01

    The effects of combustor operation at conditions representative of those encountered in high pressure-ratio turbojet engines or at high flight speeds on carbon deposition, exhaust smoke, and combustion efficiency were studied in a single tubular combustor. Carbon deposition and smoke formation tests were conducted over a range of combustor-inlet pressures from 33 to 173 pounds per square inch absolute and combustor reference velocities from 78 to 143 feet per second. Combustion efficiency tests were conducted over a range of pressures from 58 to 117 pounds per square inch absolute and velocities from 89 to 172 feet per second.

  18. Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type

    International Nuclear Information System (INIS)

    Lee, Min Jung; Cho, Sang Moon; Choi, Byung Il; Kim, Nam Il

    2010-01-01

    Small energy sources have been interested with the recent development of small-scale mechanical systems. With the purpose of developing a basic model of micro-combustors of heat recirculation, small combustors of a counter-current channel type were fabricated, and the premixed flame stabilization characteristics were investigated experimentally. Each combustor consists of a combustion space and a pair of counter-current channels for heat recirculation. The channel gap was less than the ordinary quenching distance of a stoichiometric methane-air premixed flame. Depending on the flame locations and structures, flame stabilization was classified into four modes: an ordinary mode, a channel mode, a radiation mode, and a well-stirred reaction mode. Base-scale combustors of stainless steel were initially examined. Additional half-scale combustors of stainless steel and quartz were fabricated and their flame stabilization conditions were compared. Consequently, a change of the material of the combustor significantly affected the flame stabilization compared to the effects of a scale-down design. A half-scale quartz combustor had a wide range of flame stabilization conditions. Surface temperatures and the composition of the emission gas were measured. At a higher flow rate, the combustor temperature increases and the light emission from the middle wall is enhanced to extend the flame stabilization conditions. The combustion efficiency and the composition of emitted gas were feasible. These results provide useful information for the design of small-scale combustors.

  19. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  20. Variable volume combustor with aerodynamic fuel flanges for nozzle mounting

    Science.gov (United States)

    McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward; Ostebee, Heath Michael

    2016-09-20

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.

  1. System and method for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong H.; Johnson, Thomas Edward

    2015-11-20

    A system for reducing combustion dynamics and NO.sub.x in a combustor includes a tube bundle that extends radially across at least a portion of the combustor, wherein the tube bundle comprises an upstream surface axially separated from a downstream surface. A shroud circumferentially surrounds the upstream and downstream surfaces. A plurality of tubes extends through the tube bundle from the upstream surface through the downstream surface, wherein the downstream surface is stepped to produce tubes having different lengths through the tube bundle. A method for reducing combustion dynamics and NO.sub.x in a combustor includes flowing a working fluid through a plurality of tubes radially arranged between an upstream surface and a downstream surface of an end cap that extends radially across at least a portion of the combustor, wherein the downstream surface is stepped.

  2. An experimental study of the stable and unstable operation of an LPP gas turbine combustor

    Science.gov (United States)

    Dhanuka, Sulabh Kumar

    A study was performed to better understand the stable operation of an LPP combustor and formulate a mechanism behind the unstable operation. A unique combustor facility was developed at the University of Michigan that incorporates the latest injector developed by GE Aircraft Engines and enables operation at elevated pressures with preheated air at flow-rates reflective of actual conditions. The large optical access has enabled the use of a multitude of state-of-the-art laser diagnostics such as PIV and PLIF, and has shed invaluable light not only into the GE injector specifically but also into gas turbine combustors in general. Results from Particle Imaging Velocimetry (PIV) have illustrated the role of velocity, instantaneous vortices, and key recirculation zones that are all critical to the combustor's operation. It was found that considerable differences exist between the iso-thermal and reacting flows, and between the instantaneous and mean flow fields. To image the flame, Planar Laser Induced Fluorescence (PLIF) of the formaldehyde radical was successfully utilized for the first time in a Jet-A flame. Parameters regarding the flame's location and structure have been obtained that assist in interpreting the velocity results. These results have also shown that some of the fuel injected from the main fuel injectors actually reacts in the diffusion flame of the pilot. The unstable operation of the combustor was studied in depth to obtain the stability limits of the combustor, behavior of the flame dynamics, and frequencies of the oscillations. Results from simultaneous pressure and high speed chemiluminescence images have shown that the low frequency dynamics can be characterized as flashback oscillations. The results have also shown that the stability of the combustor can be explained by simple and well established premixed flame stability mechanisms. This study has allowed the development of a model that describes the instability mechanism and accurately

  3. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  4. Influence of the burner swirl on the azimuthal instabilities in an annular combustor

    Science.gov (United States)

    Mazur, Marek; Nygård, Håkon; Worth, Nicholas; Dawson, James

    2017-11-01

    Improving our fundamental understanding of thermoacoustic instabilities will aid the development of new low emission gas turbine combustors. In the present investigation the effects of swirl on the self-excited azimuthal combustion instabilities in a multi-burner annular annular combustor are investigated experimentally. Each of the burners features a bluff body and a swirler to stabilize the flame. The combustor is operated with an ethylene-air premixture at powers up to 100 kW. The swirl number of the burners is varied in these tests. For each case, dynamic pressure measurements at different azimuthal positions, as well as overhead imaging of OH* of the entire combustor are conducted simultaneously and at a high sampling frequency. The measurements are then used to determine the azimuthal acoustic and heat release rate modes in the chamber and to determine whether these modes are standing, spinning or mixed. Furthermore, the phase shift between the heat release rate and pressure and the shape of these two signals are analysed at different azimuthal positions. Based on the Rayleigh criterion, these investigations allow to obtain an insight about the effects of the swirl on the instability margins of the combustor. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement n° 677931 TAIAC).

  5. The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons

    Science.gov (United States)

    Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.

  6. Development of a coal fired pulse combustor for residential space heating. Phase I, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-04-01

    This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

  7. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Al-Shemmeri, T.T.; Yedla, R.; Wardle, D.

    2015-01-01

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  8. Experimental Study of Annulus Flow for Can Combustor with Vibration Influence

    Directory of Open Access Journals (Sweden)

    Rami. Y. Dahham

    2018-01-01

    Full Text Available This paper concentrate on studying the behavior of velocity profile under the influence of different frequency (34, 48, 65 and 80 Hz in each of the upper and lower annulus of Can Combustor.An experimental rig was designed to simulate the annulus flow inside a Can Combustor.The Can Combustor tested in this study is real part collected from Al-Khairat/Iraq gas turbine power station.The velocity profiles are investigated at three positions in the annular for upper and lower region.The axial velocity and turbulence intensity are calculating with different frequency for upper and lower annulus.The results were shown that the increase of frequency lead to increase the velocity profile and large recirculation zone will build in some points.Reynolds number increasing with raise of axial velocity. Also the increasing in vibration level cause non-uniform velocity profile which affect on distribution of cooling effectiveness.

  9. Numerical exploration of mixing and combustion in ethylene fueled scramjet combustor

    Science.gov (United States)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2015-12-01

    Numerical simulations are performed for full scale scramjet combustor of a hypersonic airbreathing vehicle with ethylene fuel at ground test conditions corresponding to flight Mach number, altitude and stagnation enthalpy of 6.0, 30 km and 1.61 MJ/kg respectively. Three dimensional RANS equations are solved along with species transport equations and SST-kω turbulence model using Commercial CFD software CFX-11. Both nonreacting (with fuel injection) and reacting flow simulations [using a single step global reaction of ethylene-air with combined combustion model (CCM)] are carried out. The computational methodology is first validated against experimental results available in the literature and the performance parameters of full scale combustor in terms of thrust, combustion efficiency and total pressure loss are estimated from the simulation results. Parametric studies are conducted to study the effect of fuel equivalence ratio on the mixing and combustion behavior of the combustor.

  10. Two-stage combustion for reducing pollutant emissions from gas turbine combustors

    Science.gov (United States)

    Clayton, R. M.; Lewis, D. H.

    1981-01-01

    Combustion and emission results are presented for a premix combustor fueled with admixtures of JP5 with neat H2 and of JP5 with simulated partial-oxidation product gas. The combustor was operated with inlet-air state conditions typical of cruise power for high performance aviation engines. Ultralow NOx, CO and HC emissions and extended lean burning limits were achieved simultaneously. Laboratory scale studies of the non-catalyzed rich-burning characteristics of several paraffin-series hydrocarbon fuels and of JP5 showed sooting limits at equivalence ratios of about 2.0 and that in order to achieve very rich sootless burning it is necessary to premix the reactants thoroughly and to use high levels of air preheat. The application of two-stage combustion for the reduction of fuel NOx was reviewed. An experimental combustor designed and constructed for two-stage combustion experiments is described.

  11. Steam Reformer With Fibrous Catalytic Combustor

    Science.gov (United States)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  12. Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei

    2016-10-01

    This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.

  13. Emission control by cyclone combustor technology

    Energy Technology Data Exchange (ETDEWEB)

    Syred, N; Styles, A C; Sahatimehr, A

    1983-09-01

    Recent work carried out on a multi-inlet gas-fired cyclone combustor has shown that NO formation is reduced to negligible proportions when operated at mixture ratios 1.5 < PHI < 2.2 with combustion occurring under fully premixed fuel conditions. Elimination of hot spots, common to partial premixed systems, has been achieved with mean temperatures below 1300 C, thereby reducing NO emissions (1.5 ppm) by preventing the onset of Zeldovich and prompt mechanisms. The low NO levels are therefore dependent on a combination of low flame front temperature (about 1100 C) and premixed combustion conditions. Owing to the operating mode of combustion, heat transfer at the walls plays an important role in flame stability. Insulation of the cyclone chamber by refractory has been found to extend the operating range to higher mixture ratios. Conversely, it is expected that heat removal from the walls would enable the combustor to operate at mixture ratios nearer to stoichiometric, whilst still giving rise to low levels of NO emission. 17 references.

  14. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment... Constructed on or Before September 20, 1994 § 60.33b Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals...

  15. Comparative study of non-premixed and partially-premixed combustion simulations in a realistic Tay model combustor

    OpenAIRE

    Zhang, K.; Ghobadian, A.; Nouri, J. M.

    2017-01-01

    A comparative study of two combustion models based on non-premixed assumption and partially premixed assumptions using the overall models of Zimont Turbulent Flame Speed Closure Method (ZTFSC) and Extended Coherent Flamelet Method (ECFM) are conducted through Reynolds stress turbulence modelling of Tay model gas turbine combustor for the first time. The Tay model combustor retains all essential features of a realistic gas turbine combustor. It is seen that the non-premixed combustion model fa...

  16. A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots

    Science.gov (United States)

    Yang, S. L.; Cline, M. C.; Chen, R.; Chang, Y. L.

    1993-01-01

    A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots.

  17. Forced and self-excited oscillations in a natural gas fired lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daesik; Park, Sung Wook

    2010-11-15

    An experimental study of the flame response in a premixed gas turbine combustor has been conducted at room temperature and under atmospheric pressure inlet conditions using natural gas. The fuel is premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. Therefore the observed flame response is only the result of the imposed velocity fluctuations, which are produced using a variable-speed siren. Also, a variable length combustor is designed for investigating characteristics of self-excited instabilities. Measurements are made of the velocity fluctuation in the mixing section using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function. The results show that the gain of flame transfer function is closely associated both with inlet flow forcing conditions such as frequency and amplitude of modulation as well as the operating conditions such as equivalence ratio. In order to predict the operating conditions where the combustor goes stable or unstable at given combustor and nozzle designs, time-lag analysis was tried using convection time delay measured from the phase information of the transfer function. The model prediction was in very good agreement with the self-excited instability measurement. However, spatial heat release distribution became more significant in long flames than in short flames and also had an important influence on the system damping procedure. (author)

  18. Numerical optimization of laboratory combustor geometry for NO suppression

    International Nuclear Information System (INIS)

    Mazaheri, Karim; Shakeri, Alireza

    2016-01-01

    Highlights: • A five-step kinetics for NO and CO prediction is extracted from GRI-3.0 mechanism. • Accuracy and applicability of this kinetics for numerical optimization were shown. • Optimized geometry for a combustor was determined using the combined process. • NO emission from optimized geometry is found 10.3% lower than the basis geometry. - Abstract: In this article, geometry optimization of a jet stirred reactor (JSR) combustor has been carried out for minimum NO emissions in methane oxidation using a combined numerical algorithm based on computational fluid dynamics (CFD) and differential evolution (DE) optimization. The optimization algorithm is also used to find a fairly accurate reduced mechanism. The combustion kinetics is based on a five-step mechanism with 17 unknowns which is obtained using an optimization DE algorithm for a PSR–PFR reactor based on GRI-3.0 full mechanism. The optimization design variables are the unknowns of the five-step mechanism and the cost function is the concentration difference of pollutants obtained from the 5-step mechanism and the full mechanism. To validate the flow solver and the chemical kinetics, the computed NO at the outlet of the JSR is compared with experiments. To optimize the geometry of a combustor, the JSR combustor geometry is modeled using three parameters (i.e., design variables). An integrated approach using a flow solver and the DE optimization algorithm produces the lowest NO concentrations. Results show that the exhaust NO emission for the optimized geometry is 10.3% lower than the original geometry, while the inlet temperature of the working fluid and the concentration of O_2 are operating constraints. In addition, the concentration of CO pollutant is also much less than the original chamber.

  19. Emissions from laboratory combustor tests of manufactured wood products

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, R.; Evans, M.; Ragland, K. [Univ. of Wisconsin, Madison, WI (United States); Baker, A. [USDA Forest Products Lab., Madison, WI (United States)

    1993-12-31

    Manufactured wood products contain wood, wood fiber, and materials added during manufacture of the product. Manufacturing residues and the used products are burned in a furnace or boiler instead of landfilling. Emissions from combustion of these products contain additional compounds from the combustion of non-wood material which have not been adequately characterized to specify the best combustion conditions, emissions control equipment, and disposal procedures. Total hydrocarbons, formaldehyde, higher aldehydes and carbon monoxide emissions from aspen flakeboard and aspen cubes were measured in a 76 mm i.d. by 1.5 m long fixed bed combustor as a function of excess oxygen, and temperature. Emissions of hydrocarbons, aldehydes and CO from flakeboard and from clean aspen were very sensitive to average combustor temperature and excess oxygen. Hydrocarbon and aldehyde emissions below 10 ppM were achieved with 5% excess oxygen and 1,200{degrees}C average temperature for aspen flakeboard and 1,100{degrees}C for clean aspen at a 0.9 s residence time. When the average temperature decreased below these levels, the emissions increased rapidly. For example, at 950{degrees}C and 5% excess oxygen the formaldehyde emissions were over 1,000 ppM. These laboratory tests reinforce the need to carefully control the temperature and excess oxygen in full-scale wood combustors.

  20. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  1. Mercury emissions from municipal solid waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  2. Techniques for enhancing durability and equivalence ratio control in a rich-lean, three-stage ground power gas turbine combustor

    Science.gov (United States)

    Schultz, D. F.

    1982-01-01

    Rig tests of a can-type combustor were performed to demonstrate two advanced ground power engine combustor concepts: steam cooled rich-burn combustor primary zones for enhanced durability; and variable combustor geometry for three stage combustion equivalence ratio control. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This offers the potential of both long life and reduced use of strategic materials for liner fabrication. Three degrees of variable geometry were successfully implemented to control airflow distribution within the combustor. One was a variable blade angle axial flow air swirler to control primary airflow while the other two consisted of rotating bands to control secondary and tertiary or dilution air flow.

  3. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  4. Experimental study of slight temperature rise combustion in trapped vortex combustors for gas turbines

    International Nuclear Information System (INIS)

    Zhang, R.C.; Fan, W.J.; Xing, F.; Song, S.W.; Shi, Q.; Tian, G.H.; Tan, W.L.

    2015-01-01

    Interstage turbine combustion used for improving efficiency of gas turbine was a new type of combustion mode. Operating conditions and technical requirements for this type of combustor were different from those of traditional combustor. It was expected to achieve engineering application in both ground-based and aviation gas turbine in the near future. In this study, a number of modifications in a base design were applied and examined experimentally. The trapped-vortex combustion technology was adopted for flame stability under high velocity conditions, and the preheating-fuel injection technology was used to improve the atomization and evaporation performance of liquid fuel. The experimental results indicated that stable and efficient combustion with slight temperature-rise can be achieved under the high velocity conditions of combustor inlet. Under all experimental conditions, the excess air coefficients of ignition and lean blow-out were larger than 7 and 20, respectively; pollutant emission index of NO x and the maximum wall temperature were below 2.5 g/(kg fuel) and 1050 K, respectively. Moreover, the effects of fuel injection and overall configuration on the combustion characteristics were analyzed in detail. The number increase, area increase and depth increase of fuel injectors had different influences on the stability, combustion characteristic and temperature distribution. - Highlights: • The combustion mode of slight temperature-rise (200 K) was achieved. • Effect of fuel and air injection on stability characteristic was investigated. • Impact of overall configuration on combustion performance was analyzed. • The feasibility of scheme was determined.

  5. Large eddy simulation of soot evolution in an aircraft combustor

    Science.gov (United States)

    Mueller, Michael E.; Pitsch, Heinz

    2013-11-01

    An integrated kinetics-based Large Eddy Simulation (LES) approach for soot evolution in turbulent reacting flows is applied to the simulation of a Pratt & Whitney aircraft gas turbine combustor, and the results are analyzed to provide insights into the complex interactions of the hydrodynamics, mixing, chemistry, and soot. The integrated approach includes detailed models for soot, combustion, and the unresolved interactions between soot, chemistry, and turbulence. The soot model is based on the Hybrid Method of Moments and detailed descriptions of soot aggregates and the various physical and chemical processes governing their evolution. The detailed kinetics of jet fuel oxidation and soot precursor formation is described with the Radiation Flamelet/Progress Variable model, which has been modified to account for the removal of soot precursors from the gas-phase. The unclosed filtered quantities in the soot and combustion models, such as source terms, are closed with a novel presumed subfilter PDF approach that accounts for the high subfilter spatial intermittency of soot. For the combustor simulation, the integrated approach is combined with a Lagrangian parcel method for the liquid spray and state-of-the-art unstructured LES technology for complex geometries. Two overall fuel-to-air ratios are simulated to evaluate the ability of the model to make not only absolute predictions but also quantitative predictions of trends. The Pratt & Whitney combustor is a Rich-Quench-Lean combustor in which combustion first occurs in a fuel-rich primary zone characterized by a large recirculation zone. Dilution air is then added downstream of the recirculation zone, and combustion continues in a fuel-lean secondary zone. The simulations show that large quantities of soot are formed in the fuel-rich recirculation zone, and, furthermore, the overall fuel-to-air ratio dictates both the dominant soot growth process and the location of maximum soot volume fraction. At the higher fuel

  6. Concentric catalytic combustor

    Science.gov (United States)

    Bruck, Gerald J [Oviedo, FL; Laster, Walter R [Oviedo, FL

    2009-03-24

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  7. An investigation of co-combustion municipal sewage sludge with biomass in a 20kW BFB combustor under air-fired and oxygen-enriched condition.

    Science.gov (United States)

    Kumar, Rajesh; Singh, Ravi Inder

    2017-12-01

    The behavior of municipal sewage sludge (MSS) with biomass (Guar stalks (GS), Mustard Husk (MH), Prosopis Juliflora Wood (PJW)) has been investigated in a 20kW bubbling fluidized bed (BFB) combustor under both air-fired (A-F) and oxygen-enriched (O-E) conditions. The work presented is divided into three parts, first part cover the thermogravimetric analysis (TGA), second part cover the experimental investigation of BFB combustor, and third part covers the ash analysis. TGA was performed with a ratio of 50%MSS/50%biomass (GS, MH, PJW) and results show that 50%MSS/50%GS has highest combustion characteristic factor (CCF). The experimental investigation of BFB combustor was performed for two different ratios of MSS/biomass (50%/50% and 25%/75%) and the combustion characteristics of blends were distinctive under both A-F and O-E condition. Despite 50%MSS/50%GS showing the highest combustion performance in TGA analysis, it formed agglomerates during burning in BFB. Due to this formation of large amount of agglomerates, de-fluidization was observed in the combustor bed after 65-75min in A-F conditions. The rate of de-fluidization increased under O-E condition. The de-fluidization problem disappeared when the share of MSS was reduced to 25%, but small amounts of the agglomerate were still present in the bed. With oxygen enhancement, the combustion efficiency of BFB combustor was improved and flue gasses were found within permissible limit. The maximum conceivable combustion efficiency (97.1%) for BFB combustor was accomplished by using 50% MSS/50%PJW under O-E condition. Results show that a ratio of 25%MSS/75%biomass combusted successfully inside the BFB combustor and extensive work is required for efficient utilization of significant share of MSS with biomass. SEM/EDS analyses were performed for agglomerate produced and for the damaged heater to study the surface morphology and compositions. The elemental heterogeneity of fly ash generated during MSS/biomass combustion

  8. Experimental study on the heavy-duty gas turbine combustor

    International Nuclear Information System (INIS)

    Antonovsky, V.; Ahn, Kook Young

    2000-01-01

    The results of stand and field testing of a combustion chamber for a heavy-duty 150 MW gas turbine are discussed. The model represented one of 14 identical segments of a tubular multican combustor constructed in the scale 1:1. The model experiments were executed at a pressure smaller than in the real gas turbine. The combustion efficiency, pressure loss factor, pattern factor, liner wall temperature, flame radiation, fluctuating pressure, and NOx emission were measured at partial and full load for both model and on-site testing. The comparison of these items of information, received on similar modes in the stand and field tests, has allowed the development of a method of calculation and the improvement of gas turbine combustors

  9. Large eddy simulation of premixed and non-premixed combustion in a Stagnation Point Reverse Flow combustor

    Science.gov (United States)

    Undapalli, Satish

    A new combustor referred to as Stagnation Point Reverse Flow (SPRF) combustor has been developed at Georgia Tech to meet the increasingly stringent emission regulations. The combustor incorporates a novel design to meet the conflicting requirements of low pollution and high stability in both premixed and non-premixed modes. The objective of this thesis work is to perform Large Eddy Simulations (LES) on this lab-scale combustor and elucidate the underlying physics that has resulted in its excellent performance. To achieve this, numerical simulations have been performed in both the premixed and non-premixed combustion modes, and velocity field, species field, entrainment characteristics, flame structure, emissions, and mixing characteristics have been analyzed. Simulations have been carried out first for a non-reactive case to resolve relevant fluid mechanics without heat release by the computational grid. The computed mean and RMS quantities in the non-reacting case compared well with the experimental data. Next, the simulations were extended for the premixed reactive case by employing different sub-grid scale combustion chemistry closures: Eddy Break Up (EBU), Artificially Thickened Flame (TF) and Linear Eddy Mixing (LEM) models. Results from the EBU and TF models exhibit reasonable agreement with the experimental velocity field. However, the computed thermal and species fields have noticeable discrepancies. Only LEM with LES (LEMLES), which is an advanced scalar approach, has been able to accurately predict both the velocity and species fields. Scalar mixing plays an important role in combustion, and this is solved directly at the sub-grid scales in LEM. As a result, LEM accurately predicts the scalar fields. Due to the two way coupling between the super-grid and sub-grid quantities, the velocity predictions also compare very well with the experiments. In other approaches, the sub-grid effects have been either modeled using conventional approaches (EBU) or need

  10. Final analysis and design of a thermal protection system for 8-foot HTST combustor

    Science.gov (United States)

    Moskowitz, S.

    1973-01-01

    The cylindrical shell combustor with T-bar supports in the 8-foot HTST at the NASA-Langley Research Center encountered vibratory fatigue cracking over a period of 50-250 tunnel tests within a limited range of the required operating envelope. A preliminary design study provided several suitable thermal protection system designs for the combustor, one of which was a two-pass regenerative type air-cooled omega-shaped segment liner. A final design layout of the omega segment liner was prepared and analyzed for steady-state and transient conditions. The design of a support system for the fuel spray bar assembly was also included. Detail drawings suitable for fabrication purposes were also prepared. Liner design problems defined during the preliminary study included (1) the ingress of gas into the attachment bulb section of the omega segment, (2) the large thermal gradient along the leg of the omega bulb attachment section and, (3) the local peak metal temperature at the radius between the liner ID and the leg of the bulb attachment. These were resolved during the final design task. Analyses of the final design of the omega segment liner indicated that all design goals were met and the design provided the capability of operating over the required test envelope with a life expectancy substantially above the goal of 1500 cycles.

  11. [Characterization and supply of coal based fuels]. Quarterly technical report, February 1, 1988--April 30, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-31

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements; Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is described.

  12. Near-zero emissions combustor system for syngas and biofuels

    International Nuclear Information System (INIS)

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on

  13. Investigations on the Influence of the In-Stream Pylon and Strut on the Performance of a Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    Hao Ouyang

    2014-01-01

    Full Text Available The influence of the in-stream pylon and strut on the performance of scramjet combustor was experimentally and numerically investigated. The experiments were conducted with a direct-connect supersonic model combustor equipped with multiple cavities. The entrance parameter of combustor corresponds to scramjet flight Mach number 4.0 with a total temperature of 947 K. The research results show that, compared with the scramjet combustor without pylon and strut, the wall pressure and the thrust of the scramjet increase due to the improvement of mixing and combustion effect due to the pylon and strut. The total pressure loss caused by the strut is considerable whereas pylon influence is slight.

  14. Combustion Dynamic Characteristics Identification in a 9-point LDI Combustor Under Choked Outlet Boundary Conditions

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.

    2017-01-01

    Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.

  15. Numerical Investigation of Merged and Non-merged Flame of a Twin Cavity Annular Trapped Vortex Combustor

    Directory of Open Access Journals (Sweden)

    Pravendra Kumar

    2016-09-01

    Full Text Available : The present work is focused to characterize numerically the merged and non-merged flame emanating from the cavities in downstream of twin cavity Annular Trapped Vortex Combustor (ATVC.The isotherm corresponding to the auto-ignition temperature is used to locate the merging point of the flame in the mainstream region along the combustor length. In present study, the cavity flame is said to be merged only if this isotherm corresponding to self-ignition temperature of methane is located within 20 percentage of the combustor length from aft wall of cavities. It is interesting to note that on increasing the power loading parameter (PLP in mainstream for a constant power loading parameter ratio (outer to inner cavity, the merging point gets shifted towards the cavity aft-wall. This leads to the reduction of combustor length and subsequent reduction in overall weight of the gas turbine engine.

  16. Technical surveys on MHD combustors. Surveys on incorporation of pressurized coal partial combustion furnaces; MHD combustor gijutsu chosa. Kaatsugata sekitan bubun nenshoro no donyu chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    The pressurized coal partial combustion (PCPC) furnace is surveyed/studied for its incorporation in MHD generation. The technical development of the atmospheric CPC has been basically completed, and the concept is demonstrated using a test system of commercial size. Many techniques developed for the atmospheric CPC are applicable to the PCPC system. These include structures of the CPC furnace walls, and slag handling and simulation techniques. Combination of PFBC with PCPC or IGCC can bring about many merits, e.g., enhanced efficiency and abated NOx emissions for the combined cycle power generation. These topping cycles, therefore, should be developed in the early stage. MHD power generation is one of the concepts that can enhance efficiency. In particular, the techniques for closed cycle MHD generation have notably advanced recently. The PCPC techniques are useful for coal combustors for MHD generation. Full-scale development works for the direct coal combustion gas turbine systems have been just started for the IGCC systems of the next generation, and the PCPC-related techniques are expected to serve as the central techniques for these turbine systems. (NEDO)

  17. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  18. High-Temperature Polymer Composites Tested for Hypersonic Rocket Combustor Backup Structure

    Science.gov (United States)

    Sutter, James K.; Shin, E. Eugene; Thesken, John C.; Fink, Jeffrey E.

    2005-01-01

    Significant component weight reductions are required to achieve the aggressive thrust-toweight goals for the Rocket Based Combined Cycle (RBCC) third-generation, reusable liquid propellant rocket engine, which is one possible engine for a future single-stage-toorbit vehicle. A collaboration between the NASA Glenn Research Center and Boeing Rocketdyne was formed under the Higher Operating Temperature Propulsion Components (HOTPC) program and, currently, the Ultra-Efficient Engine Technology (UEET) Project to develop carbon-fiber-reinforced high-temperature polymer matrix composites (HTPMCs). This program focused primarily on the combustor backup structure to replace all metallic support components with a much lighter polymer-matrixcomposite- (PMC-) titanium honeycomb sandwich structure.

  19. Flame Propagation in a Dump Combustor with Shear Layer Excitation

    Data.gov (United States)

    National Aeronautics and Space Administration — This experimentation looks to investigate the use of fluidic oscillators to attenuate combustion instability in a naturally unstable rocket combustor. Since...

  20. Computational simulation of multi-strut central lobed injection of hydrogen in a scramjet combustor

    Directory of Open Access Journals (Sweden)

    Gautam Choubey

    2016-09-01

    Full Text Available Multi-strut injection is an approach to increase the overall performance of Scramjet while reducing the risk of thermal choking in a supersonic combustor. Hence computational simulation of Scramjet combustor at Mach 2.5 through multiple central lobed struts (three struts have been presented and discussed in the present research article. The geometry and model used here is slight modification of the DLR (German Aerospace Center scramjet model. Present results show that the presence of three struts injector improves the performance of scramjet combustor as compared to single strut injector. The combustion efficiency is also found to be highest in case of three strut fuel injection system. In order to validate the results, the numerical data for single strut injection is compared with experimental result which is taken from the literature.

  1. Numerical study of effect of compressor swirling flow on combustor design in a MTE

    Science.gov (United States)

    Mu, Yong; Wang, Chengdong; Liu, Cunxi; Liu, Fuqiang; Hu, Chunyan; Xu, Gang; Zhu, Junqiang

    2017-08-01

    An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics (CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor (as: Overall Temperature Distribution Factor -OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.

  2. Study on mechanism of combustion instability in a dump gas turbine combustor

    International Nuclear Information System (INIS)

    Lee, Yeon Joo; Lee, Jong Ho; Jeon, Chong Hwan; Chang, Yonng June

    2002-01-01

    Combustion instabilities are an important concern associated with lean premixed combustion. Laboratory-scale dump combustor was used to understand the underlying mechanisms causing combustion instabilities. Experiments were conducted at atmospheric pressure and sound level meter was used to track the pressure fluctuations inside the combustor. Instability maps and phase-resolved OH chemiluminescence images were obtained at several conditions to investigate the mechanism of combustion instability and relations between pressure wave and heat release rate. It showed that combustion instability was susceptible to occur at higher value of equivalence ratio (>0.6) as the mean velocity was decreased. Instabilities exhibited a longitudinal mode with a dominant frequency of ∼341.8 Hz, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instabilities occurred. Rayleigh index distribution gave a hint about the location where the strong coherence of pressure and heat release existed. These results also give an insight to the control scheme of combustion instabilities. Emission test revealed that NO x emissions were affected by not only equivalence but also combustion instability

  3. Experimental study on combustion modes and thrust performance of a staged-combustor of the scramjet with dual-strut

    Science.gov (United States)

    Yang, Qingchun; Chetehouna, Khaled; Gascoin, Nicolas; Bao, Wen

    2016-05-01

    To enable the scramjet operate in a wider flight Mach number, a staged-combustor with dual-strut is introduced to hold more heat release at low flight Mach conditions. The behavior of mode transition was examined using a direct-connect model scramjet experiment along with pressure measurements. The typical operating modes of the staged-combustor are analyzed. Fuel injection scheme has a significant effect on the combustor operating modes, particularly for the supersonic combustion mode. Thrust performances of the combustor with different combustion modes and fuel distributions are reported in this paper. The first-staged strut injection has a better engine performance in the operation of subsonic combustion mode. On the contrast, the second-staged strut injection has a better engine performance in the operation of supersonic combustion mode.

  4. Multiscale Software Tool for Controls Prototyping in Supersonic Combustors

    National Research Council Canada - National Science Library

    Pindera, M

    2004-01-01

    .... In Phase I we have developed a proof-of-concept version of such a tool. We have developed a model-free direct control strategy with on-line training and demonstrated its capabilities in controlling isolator unstart in a hypersonic combustor...

  5. Investigation of Methane Oxy-Fuel Combustion in a Swirl-Stabilised Gas Turbine Model Combustor

    Directory of Open Access Journals (Sweden)

    Mao Li

    2017-05-01

    Full Text Available CO2 has a strong impact on both operability and emission behaviours in gas turbine combustors. In the present study, an atmospheric, preheated, swirl-stabilised optical gas turbine model combustor rig was employed. The primary objectives were to analyse the influence of CO2 on the fundamental characteristics of combustion, lean blowout (LBO limits, CO emission and flame structures. CO2 dilution effects were examined with three preheating temperatures (396.15, 431.15, and 466.15 K. The fundamental combustion characteristics were studied utilising chemical kinetic simulations. To study the influence of CO2 on the operational range of the combustor, equivalence ratio (Ф was varied from stoichiometric conditions to the LBO limits. CO emissions were measured at the exit of the combustor using a water-cooled probe over the entire operational range. The flame structures and locations were characterised by performing CH chemiluminescence imaging. The inverse Abel transformation was used to analyse the CH distribution on the axisymmetric plane of the combustor. Chemical kinetic modelling indicated that the CO2 resulted in a lower reaction rate compared with the CH4/air flame. Fundamental combustion properties such as laminar flame speed, ignition delay time and blowout residence time were found to be affected by CO2. The experimental results revealed that CO2 dilution resulted in a narrower operational range for the equivalence ratio. It was also found that CO2 had a strong inhibiting effect on CO burnout, which led to a higher concentration of CO in the combustion exhaust. CH chemiluminescence showed that the CO2 dilution did not have a significant impact on the flame structure.

  6. Experimental results showing the internal three-component velocity field and outlet temperature contours for a model gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, BC

    2011-09-01

    Full Text Available by the American Institute of Aeronautics and Astronautics Inc. All rights reserved ISABE-2011-1129 EXPERIMENTAL RESULTS SHOWING THE INTERNAL THREE-COMPONENT VELOCITY FIELD AND OUTLET TEMPERATURE CONTOURS FOR A MODEL GAS TURBINE COMBUSTOR BC Meyers*, GC... identifier c Position identifier F Fuel i Index L (Combustor) Liner OP Orifice plate Introduction There are often inconsistencies when comparing experimental and Computational Fluid Dynamics (CFD) simulations for gas turbine combustors [1...

  7. Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines

    KAUST Repository

    Lisanti, Joel

    2017-02-01

    The gas turbine engine is an essential component of the global energy infrastructure which accounts for a significant portion of the total fossil fuel consumption in transportation and electric power generation sectors. For this reason there is significant interest in further increasing the efficiency and reducing the pollutant emissions of these devices. Conventional approaches to this goal, which include increasing the compression ratio, turbine inlet temperature, and turbine/compressor efficiency, have brought modern gas turbine engines near the limits of what may be achieved with the conventionally applied Brayton cycle. If a significant future step increase in gas turbine efficiency is to be realized some deviation from this convention is necessary. The pressure gain gas turbine concept is a well established new combustion technology that promises to provide a dramatic increase in gas turbine efficiency by replacing the isobaric heat addition process found in conventional technology with an isochoric process. The thermodynamic benefit of even a small increase in stagnation pressure across a gas turbine combustor translates to a significant increase in cycle efficiency. To date there have been a variety of methods proposed for achieving stagnation pressure gains across a gas turbine combustor and these concepts have seen a broad spectrum of levels of success. The following chapter provides an introduction to one of the proposed pressure gain methods that may be most easily realized in a practical application. This approach, known as pulse combustor driven pressure gain combustion, utilizes an acoustically resonant pulse combustor to approximate isochoric heat release and thus produce a rise in stagnation pressure.

  8. Computational model of a whole tree combustor

    Energy Technology Data Exchange (ETDEWEB)

    Bryden, K.M.; Ragland, K.W. [Univ. of Wisconsin, Madison, WI (United States)

    1993-12-31

    A preliminary computational model has been developed for the whole tree combustor and compared to test results. In the simulation model presented hardwood logs, 15 cm in diameter are burned in a 4 m deep fuel bed. Solid and gas temperature, solid and gas velocity, CO, CO{sub 2}, H{sub 2}O, HC and O{sub 2} profiles are calculated. This deep, fixed bed combustor obtains high energy release rates per unit area due to the high inlet air velocity and extended reaction zone. The lowest portion of the overall bed is an oxidizing region and the remainder of the bed acts as a gasification and drying region. The overfire air region completes the combustion. Approximately 40% of the energy is released in the lower oxidizing region. The wood consumption rate obtained from the computational model is 4,110 kg/m{sup 2}-hr which matches well the consumption rate of 3,770 kg/m{sup 2}-hr observed during the peak test period of the Aurora, MN test. The predicted heat release rate is 16 MW/m{sup 2} (5.0*10{sup 6} Btu/hr-ft{sup 2}).

  9. Material requirements for the High Speed Civil Transport

    Science.gov (United States)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  10. System for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Hughes, Michael John; York, William David

    2016-05-31

    A combustor includes an end cap that extends radially across at least a portion of the combustor. The end cap includes an upstream surface axially separated from a downstream surface. A plurality of tubes extend from the upstream surface through the downstream surface of the end cap to provide fluid communication through the end cap. Each tube in a first set of the plurality of tubes has an inlet proximate to the upstream surface and an outlet downstream from the downstream surface. Each outlet has a first portion that extends a different axial distance from the inlet than a second portion.

  11. Systems and methods for preventing flashback in a combustor assembly

    Science.gov (United States)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Stevenson, Christian Xavier

    2016-04-05

    Embodiments of the present application include a combustor assembly. The combustor assembly may include a combustion chamber, a first plenum, a second plenum, and one or more elongate air/fuel premixing injection tubes. Each of the elongate air/fuel premixing injection tubes may include a first length at least partially disposed within the first plenum and configured to receive a first fluid from the first plenum. Moreover, each of the elongate air/fuel premixing injection tubes may include a second length disposed downstream of the first length and at least partially disposed within the second plenum. The second length may be formed of a porous wall configured to allow a second fluid from the second plenum to enter the second length and create a boundary layer about the porous wall.

  12. Characterization and supply of coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  13. Characterization and supply of coal-based fuels. Quarterly report, February 1, 1989--April 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  14. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  15. The mechanism of char ignition in fluidized bed combustors

    NARCIS (Netherlands)

    Siemons, R.V.

    1987-01-01

    Knowledge about ignition processes of coal in fluidized beds is of importance for the start-up and dynamic control of these combustors. Initial experiments in a transparent fluidized bed scale model showed the existence of a considerable induction period for the ignition of char, especially at low

  16. Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification

    International Nuclear Information System (INIS)

    Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.

    1981-01-01

    This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs

  17. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  18. Ultra low injection angle fuel holes in a combustor fuel nozzle

    Science.gov (United States)

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  19. Experimental and Modeling Investigation of the Effect of Air Preheat on the Formation of NOx in an RQL Combustor

    Science.gov (United States)

    Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.

    2012-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.

  20. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  1. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  2. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels

    International Nuclear Information System (INIS)

    Permchart, W.; Kouprianov, V.I.

    2004-01-01

    This paper summarizes the results of an experimental study on combustion of three distinct biomass fuels (sawdust, rice husk and pre-dried sugar cane bagasse) in a single fluidized-bed combustor (FBC) with a conical bed using silica sand as the inert bed material. Temperature, CO, NO and O 2 concentrations along the combustor height as well as in flue (stack) gas were measured in the experimental tests. The effects of fuel properties and operating conditions (load and excess air) on these variables were investigated. Both CO and NO axial profiles were found to have a maximum whose location divides conventionally the combustor volume into formation (lower) and reduction (upper) regions for these pollutants. Based on CO emission and unburned carbon content in fly ash, the combustion efficiency of the conical FBC was quantified for the selected biomass fuels fired under different operating conditions. (Author)

  3. Combustor nozzles in gas turbine engines

    Science.gov (United States)

    Johnson, Thomas Edward; Keener, Christopher Paul; Stewart, Jason Thurman; Ostebee, Heath Michael

    2017-09-12

    A micro-mixer nozzle for use in a combustor of a combustion turbine engine, the micro-mixer nozzle including: a fuel plenum defined by a shroud wall connecting a periphery of a forward tube sheet to a periphery of an aft tubesheet; a plurality of mixing tubes extending across the fuel plenum for mixing a supply of compressed air and fuel, each of the mixing tubes forming a passageway between an inlet formed through the forward tubesheet and an outlet formed through the aft tubesheet; and a wall mixing tube formed in the shroud wall.

  4. System and method for reducing combustion dynamics in a combustor

    Science.gov (United States)

    Uhm, Jong Ho; Johnson, Thomas Edward; Zuo, Baifang; York, William David

    2013-08-20

    A system for reducing combustion dynamics in a combustor includes an end cap having an upstream surface axially separated from a downstream surface, and tube bundles extend through the end cap. A diluent supply in fluid communication with the end cap provides diluent flow to the end cap. Diluent distributors circumferentially arranged inside at least one tube bundle extend downstream from the downstream surface and provide fluid communication for the diluent flow through the end cap. A method for reducing combustion dynamics in a combustor includes flowing fuel through tube bundles that extend axially through an end cap, flowing a diluent through diluent distributors into a combustion chamber, wherein the diluent distributors are circumferentially arranged inside at least one tube bundle and each diluent distributor extends downstream from the end cap, and forming a diluent barrier in the combustion chamber between at least one pair of adjacent tube bundles.

  5. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Hong, Jongsup; Chaudhry, Gunaranjan; Brisson, J.G.; Field, Randall; Gazzino, Marco; Ghoniem, Ahmed F.

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SO x , de-NO x , and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  6. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    Science.gov (United States)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  7. 45 CFR 2522.940 - What are the requirements for a program in which AmeriCorps members serve as tutors?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What are the requirements for a program in which..., PROGRAMS, AND APPLICANTS Program Management Requirements for Grantees § 2522.940 What are the requirements for a program in which AmeriCorps members serve as tutors? A program in which members engage in...

  8. DEVELOPMENT OF A VORTEX CONTAINMENT COMBUSTOR FOR COAL COMBUSTION SYTEMS

    Science.gov (United States)

    The report describes the development of a vortex containment combustor (VCC) for coal combustion systems, designed to solve major problems facing the conversion of oil- and gas-fired boilers to coal (e.g., derating, inorganic impurities in coal, and excessive formation of NOx and...

  9. Thermo-acoustic coupling in can-annular combustors : A numerical investigation

    NARCIS (Netherlands)

    Farisco, Federica; Panek, Lukasz; Kok, Jim B.W.; Pent, Jared; Rajaram, Rajesh

    2015-01-01

    Thermo-acoustic instabilities in modern, high power density gas turbines need to be predicted and understood in order to avoid unexpected damage and engine failure. While the annular combustor design is expected to suffer from the occurrence of transverse waves and burner-to-burner acoustic

  10. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  11. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    International Nuclear Information System (INIS)

    Azzam, S.M.

    1993-01-01

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of 'LPG' in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs

  12. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, S M

    1994-12-31

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of `LPG` in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs.

  13. Effects of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor

    Science.gov (United States)

    Brown, Marcus; Agrawal, Ajay; Allen, James; Kornegay, John

    2016-11-01

    In this study, we investigated different methods of determining the effect a porous insert has on flame dynamics during lean premixed combustion. A metallic porous insert is used to mitigate instabilities in a swirl-stabilized combustor. Thermoacoustic instabilities are seen as negative consequences of lean premixed combustion and eliminating them is the motivation for our research. Three different diagnostics techniques with high-speed Photron SA5 cameras were used to monitor flame characteristics. Particle image velocimetry (PIV) was used to observe vortical structures and recirculation zones within the combustor. Using planar laser induced fluorescence (PLIF), we were able to observe changes in the reaction zones during instabilities. Finally, utilizing a color high-speed camera, visual images depicting a flame's oscillations during the instability were captured. Using these monitoring techniques, we are able to support the claims made in previous studies stating that the porous insert in the combustor significantly reduces the thermoacoustic instability. Funding for this research was provided by the NSF REU site Grant EEC 1358991 and NASA Grant NNX13AN14A.

  14. A Comparison of Combustion Dynamics for Multiple 7-Point Lean Direct Injection Combustor Configurations

    Science.gov (United States)

    Tacina, K. M.; Hicks, Y. R.

    2017-01-01

    The combustion dynamics of multiple 7-point lean direct injection (LDI) combustor configurations are compared. LDI is a fuel-lean combustor concept for aero gas turbine engines in which multiple small fuel-air mixers replace one traditionally-sized fuel-air mixer. This 7-point LDI configuration has a circular cross section, with a center (pilot) fuel-air mixer surrounded by six outer (main) fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle, which varies with the configuration. Testing was done in a 5-atm flame tube with inlet air temperatures from 600 to 800 F and equivalence ratios from 0.4 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section.

  15. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.

    Science.gov (United States)

    Kuprianov, Vladimir I; Arromdee, Porametr

    2013-07-01

    Combustion of peanut and tamarind shells was studied in the conical fluidized-bed combustor using alumina sand as the bed material to prevent bed agglomeration. Morphological, thermogravimetric and kinetic characteristics were investigated to compare thermal and combustion reactivity between the biomass fuels. The thermogravimetric kinetics of the biomasses was fitted using the Coats-Redfern method. Experimental tests on the combustor were performed at 60 and 45 kg/h fuel feed rates, with excess air within 20-80%. Temperature and gas concentrations were measured along radial and axial directions in the reactor and at stack. The axial temperature and gas concentration profiles inside the combustor exhibited sensible effects of fuel properties and operating conditions on combustion and emission performance. High (≈ 99%) combustion efficiency and acceptable levels of CO, CxHy, and NO emissions are achievable when firing peanut shells at excess air of about 40%, whereas 60% is more preferable for burning tamarind shells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Dragos D. Isvoranu

    2003-01-01

    Full Text Available This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has been used to investigate the flow and combustion in a one-stage turbine combustor.

  17. NOx results from two combustors tested on medium BTU coal gas

    Science.gov (United States)

    Sherlock, T. P.; Carl, D. E.; Vermes, G.; Schwab, J.; Notardonato, J. J.

    1982-01-01

    The results of tests of two combustor configurations using coal gas from a 25 ton/day fluidized bed coal gasifier are reported. The trials were run with a ceramic-lined, staged rich/lean burner and an integral, all metal multiannular swirl burner (MASB) using a range of temperatures and pressures representative of industrial turbine inlet conditions. A lean mixture was examined at 104, 197, and 254 Btu/Scf, yielding NO(x) emissions of 5, 20, and 70 ppmv, respectively. The MASB was employed only with a gas rated at 220-270 Btu/Scf, producing 80 ppmv NO(x) at rated engine conditions. The results are concluded to be transferrable to current machines. Further tests on the effects of gas composition, the scaling of combustors to utility size, and the development of improved wall cooling techniques and variable geometry are indicated.

  18. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Science.gov (United States)

    2010-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before... exceed 30 nanograms per dry standard cubic meter (12 grains per billion dry standard cubic feet), corrected to 7 percent oxygen (dry basis). ...

  19. Characterization of Centrifugally-Loaded Flame Migration for Ultra-Compact Combustors

    Science.gov (United States)

    2011-10-01

    configuration on the flat vane. However, Radtke [38] investigated a curved radial vane geometry and demonstrated increased combustion eciency with the curved...Hancock, R. D., “Ultra-Compact Combustors for Advanced Gas Turbine Engines,” ASME Turbo Expo 2004 , GT-2004-53155, 2004. [38] Radtke , J. T., Eciency

  20. Combustion of cork waste in a circulating fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Miranda, M.; Cabrita, I. [Dept. de Tecnologias de Combustao, ITE-INETI, Lisboa (Portugal); Abelha, P. [Coaltec e Ambiente, Lisboa (Portugal)

    1999-07-01

    There is currently an ongoing joint project between Portugal and Spain, which is being funded by the FAIR programme. The principal objective of the FAIR project is to investigate the application of the fluidised bed combustion (FBC) technology to burn cork wastes with the aim of overcoming the difficulties currently experienced in the cork processing industries. The combustion studies at INETI were carried out using the 300 kW{sub th} circulating fluidised bed facility. The combustor is square in cross section with each side being 0.3 m long. The combustor height is 5 m. The temperatures in the bed, the riser and that of the flue gases leaving the reactor were continuously monitored. The combustion gases leaving the reactor passed through the recycling cyclone first to capture most of particulates elutriated out of the combustor. The solid particles were intermittently collected for analysis to determine the amount of carbon present, which helped the combustion efficiency to be calculated. Instantaneous measurements of O{sub 2}, CO, CO{sub 2}, NO{sub x}, N{sub 2}O and SO{sub 2} present levels in the flue gases were also carried out. The combustion tests were done with both the cork waste dust and granular virgin cork. The difference is that cork dust gets contaminated during the process due to the use of various additives. Most of the combustion took place in the riser where the temperature was at times up to 523 K above that of the bed. The unburned carbon level was low ranging from about 1.5 to 2.% suggesting that most of the particles burned to completion in the riser. (orig.)

  1. An Engineering Model for Prediction of Waste Incineration in a Dump Combustor

    National Research Council Canada - National Science Library

    Arunajatesan, S

    1997-01-01

    An engineering model that can be used to obtain predictions of axial distributions of temperature and species concentrations in complex flows has been formulated and applied to waste incineration in a dump combustor...

  2. The influence of cavity parameters on the combustion oscillation in a single-side expansion scramjet combustor

    Science.gov (United States)

    Ouyang, Hao; Liu, Weidong; Sun, Mingbo

    2017-08-01

    Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.

  3. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary; Shanbhogue, Santosh; Ghoniem, Ahmed

    2011-01-01

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  4. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary

    2011-01-04

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  5. Effect of Fuel on Performance of a Single Combustor of an I-16 Turbojet Engine at Simulated Altitude Conditions

    Science.gov (United States)

    Zettle, Eugene V; Bolz, Ray E; Dittrich, R T

    1947-01-01

    As part of a study of the effects of fuel composition on the combustor performance of a turbojet engine, an investigation was made in a single I-16 combustor with the standard I-16 injection nozzle, supplied by the engine manufacturer, at simulated altitude conditions. The 10 fuels investigated included hydrocarbons of the paraffin olefin, naphthene, and aromatic classes having a boiling range from 113 degrees to 655 degrees F. They were hot-acid octane, diisobutylene, methylcyclohexane, benzene, xylene, 62-octane gasoline, kerosene, solvent 2, and Diesel fuel oil. The fuels were tested at combustor conditions simulating I-16 turbojet operation at an altitude of 45,000 feet and at a rotor speed of 12,200 rpm. At these conditions the combustor-inlet air temperature, static pressure, and velocity were 60 degrees F., 12.3 inches of mercury absolute, and 112 feet per second respectively, and were held approximately constant for the investigation. The reproducibility of the data is shown by check runs taken each day during the investigation. The combustion in the exhaust elbow was visually observed for each fuel investigated.

  6. Emissions control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans at municipal waste combustors

    International Nuclear Information System (INIS)

    Tseng, S.C.; Jozewicz, W.; Sedman, C.B.

    1991-01-01

    This paper gives the results of an analysis of available emission data of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF) from municipal waste combustors (MWCs) to evaluate the effectiveness of various air pollution control devices on PCDD/PCDF removal. The effects of flue gas temperature, recycling fabric filter ash, and process additives such as ammonia and Tesisorb powder were also analyzed. The analysis shows that MWCs equipped with a spray dryer followed by fabric filters can achieve PCDD/PCDF removal efficiencies (REs) of 97% and higher. A RE of 94% has been achieved at a combustor equipped with a Thermal DeNO x system followed by a spray dryer and fabric filters. MWCs equipped with a duct sorbent injection system followed by fabric filters can potentially achieve a RE of 99%. A combustor equipped with a spray dryer followed by electrostatic precipitators (ESPs) has achieved a RE of 64%. Neither a duct sorbent injection system followed by ESPs nor a furnace sorbent injection system followed by ESPs could effectively remove PCDD/PCDF. PCDD/PCDF were not effectively removed from MWCs equipped with ESPs as the only devices to control air pollution

  7. Coherent anti-Stokes Raman scattering for quantitative temperature and concentration measurements in a high-pressure gas turbine combustor rig

    Science.gov (United States)

    Thariyan, Mathew Paul

    Dual-pump coherent anti-Stokes Raman scattering (DP-CARS) temperature and major species (CO2/N2) concentration measurements have been performed in an optically-accessible high-pressure gas turbine combustor facility (GTCF) and for partially-premixed and non-premixed flames in a laminar counter-flow burner. A window assembly incorporating pairs of thin and thick fused silica windows on three sides was designed, fabricated, and assembled in the GTCF for advanced laser diagnostic studies. An injection-seeded optical parametric oscillator (OPO) was used as a narrowband pump laser source in the dual-pump CARS system. Large prisms on computer-controlled translation stages were used to direct the CARS beams either into the main optics leg for measurements in the GTCF or to a reference optics leg for measurements of the nonresonant CARS spectrum and for aligning the CARS system. Combusting flows were stabilized with liquid fuel injection only for the central injector of a 9-element lean direct injection (LDI) device developed at NASA Glenn Research Center. The combustor was operated using Jet A fuel at inlet air temperatures up to 725 K and combustor pressures up to 1.03 MPa. Single-shot DP-CARS spectra were analyzed using the Sandia CARSFT code in the batch operation mode to yield instantaneous temperature and CO2/N2 concentration ratio values. Spatial maps of mean and standard deviations of temperature and CO2/N2 concentrations were obtained in the high-pressure LDI flames by translating the CARS probe volume in axial and vertical directions inside the combustor rig. The mean temperature fields demonstrate the effect of the combustor conditions on the overall flame length and the average flame structure. The temperature relative standard deviation values indicate thermal fluctuations due to the presence of recirculation zones and/or flame brush fluctuations. The correlation between the temperature and relative CO 2 concentration data has been studied at various combustor

  8. Rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation

    Science.gov (United States)

    Milcarek, Ryan J.; Ahn, Jeongmin

    2018-03-01

    Micro-tubular flame-assisted fuel cells (mT-FFC) were recently proposed as a modified version of the direct flame fuel cell (DFFC) operating in a dual chamber configuration. In this work, a rich-burn, quick-mix, lean-burn (RQL) combustor is combined with a micro-tubular solid oxide fuel cell (mT-SOFC) stack to create a rich-burn, flame-assisted fuel cell, quick-mix, lean-burn (RFQL) combustor and power generation system. The system is tested for rapid startup and achieves peak power densities after only 35 min of testing. The mT-FFC power density and voltage are affected by changes in the fuel-lean and fuel-rich combustion equivalence ratio. Optimal mT-FFC performance favors high fuel-rich equivalence ratios and a fuel-lean combustion equivalence ratio around 0.80. The electrical efficiency increases by 150% by using an intermediate temperature cathode material and improving the insulation. The RFQL combustor and power generation system achieves rapid startup, a simplified balance of plant and may have applications for reduced NOx formation and combined heat and power.

  9. Experimental study of a high-efficiency low-emission surface combustor-heater

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Fish, F.F.

    1991-01-01

    The surface combustor-heater is a combined combustion/heat-transfer device in which the heat-exchange surfaces are embedded in a stationary bed of refractory material where gaseous fuel is burned. Because of intensive heat radiation from the hot solid particles and enhanced heat convection from the gas flow to the heat-exchange tubes, heat transfer is significantly intensified. Removing heat simultaneously with the combustion process has the benefit of reducing the combustion temperature, which suppresses NO x formation. A basic experimental study was conducted on a 60-kW bench-scale surface combustor-heater with two rows of water-cooled tube coils to evaluate its performance and explore the mechanism of combined convective-radiative heat transfer and its interaction with combustion in the porous matrix. Combustion stability in the porous matrix, heat-transfer rates, emissions, and pressure drop through the unit have been investigated for the variable parameters of operation and unit configurations. Experimental results have demonstrated that high combustion intensity (up to 2.5 MW/m 2 ), high heat-transfer rates (up to 310 kW/m 2 ), high density of energy conversion (up to 8 MW/m 3 ), as well as ultra-low emissions (NO x and CO as low as 15 vppm*) have been achieved. The excellent performance of the test unit and the extensive data obtained from the present experimental study provide the basis for further development of high-efficiency and ultra low-emission water heaters, boilers, and process heaters based on the surface combustor-heater concept. 4 refs., 16 figs

  10. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  11. Combustion of peanut shells in a cone-shaped bubbling fluidized-bed combustor using alumina as the bed material

    International Nuclear Information System (INIS)

    Arromdee, Porametr; Kuprianov, Vladimir I.

    2012-01-01

    Highlights: ► We propose burning of peanut shells in a conical fluidized bed using alumina sand. ► We examine hydrodynamic, combustion and emission characteristics of the reactor. ► High, over 99%, combustion efficiency is achievable. ► Emissions of CO and NO from the combustor meet the national emission limits. ► Composition of the bed material undergoes significant changes during the combustion. -- Abstract: This paper reports experimental studies on burning peanut shells in the conical fluidized-bed combustor using alumina sand as the fluidizing agent. Prior to combustion tests, hydrodynamic regimes and characteristics of a conical alumina–biomass bed were investigated under cold-state conditions for variable percentage of peanut shells in the mixture and static bed height. With selected particle sizes (300–500 μm) and static bed height (30 cm), alumina ensured bubbling fluidization regime of the bed at operating conditions specified for firing biomass. Combustion tests were performed at 60 kg/h and 45 kg/h fuel feed rates, while ranging excess air from 20% to 80% at a fixed combustor load. Temperature and gas concentrations (O 2 , CO, C x H y as CH 4 , and NO) were measured along radial and axial directions inside the reactor as well as at stack in order to characterize combustion and emission performance of the combustor for the ranges of operating conditions. For firing 60 kg/h peanut shells, excess air of 40% can be selected as an appropriate value ensuring high, about 99%, combustion efficiency and rather low emissions of CO and NO: 520 ppm and 125 ppm, respectively (both on a dry basis and at 6% O 2 ). With reducing combustor load, the combustion efficiency and emission characteristics were improved to a little extent. No evidence of bed agglomeration was found during 30-h combustion tests on this conical fluidized-bed combustor using alumina sand as the bed material. However, the timescale effect on the composition of the bed material was

  12. Sector Tests of a Low-NO(sub x), Lean, Direct- Injection, Multipoint Integrated Module Combustor Concept Conducted

    Science.gov (United States)

    Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel

    2002-01-01

    The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36

  13. Large Municipal Waste Combustors (LMWC): New Source Performance Standards (NSPS) and Emissions Guidelines

    Science.gov (United States)

    Learn about the NSPS, emission guidelines and compliance times for large municipal waste combustors (MWC) by reading the rule summary, rule history and the federal register citations and supporting documents

  14. Evaluation of Water Injection Effect on NO(x) Formation for a Staged Gas Turbine Combustor

    Science.gov (United States)

    Fan, L.; Yang, S. L.; Kundu, K. P.

    1996-01-01

    NO(x) emission control by water injection on a staged turbine combustor (STC) was modeled using the KIVA-2 code with modification. Water is injected into the rich-burn combustion zone of the combustor by a single nozzle. Parametric study for different water injection patterns was performed. Results show NO(x) emission will decrease after water being injected. Water nozzle location also has significant effect for NO formation and fuel ignition. The chemical kinetic model is also sensitive to the excess water. Through this study, a better understanding of the physics and chemical kinetics is obtained, this will enhance the STC design process.

  15. Operability of an Ejector Enhanced Pulse Combustor in a Gas Turbine Environment

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin

    2008-01-01

    A pressure-gain combustor comprised of a mechanically valved, liquid fueled pulsejet, an ejector, and an enclosing shroud, was coupled to a small automotive turbocharger to form a self-aspirating, thrust producing gas turbine engine. The system was constructed in order to investigate issues associated with the interaction of pulsed combustion devices and turbomachinery. Installed instrumentation allowed for sensing of distributed low frequency pressure and temperature, high frequency pressure in the shroud, fuel flow rate, rotational speed, thrust, and laboratory noise. The engine ran successfully and reliably, achieving a sustained thrust of 5 to 6 lbf, and maintaining a rotor speed of approximately 90,000 rpm, with a combustor pressure gain of approximately 4 percent. Numerical simulations of the system without pressure-gain combustion indicated that the turbocharger would not operate. Thus, the new combustor represented a substantial improvement in system performance. Acoustic measurements in the shroud and laboratory indicated turbine stage sound pressure level attenuation of 20 dB. This is consistent with published results from detonative combustion experiments. As expected, the mechanical reed valves suffered considerable damage under the higher pressure and thermal loading characteristics of this system. This result underscores the need for development of more robust valve systems for this application. The efficiency of the turbomachinery components did not appear to be significantly affected by unsteadiness associated with pulsed combustion, though the steady component efficiencies were already low, and thus not expected to be particularly sensitive.

  16. Thermal Performance of a Scramjet Combustor Operating at Mach 5.6 Flight Conditions

    National Research Council Canada - National Science Library

    Stouffer, Scott

    1997-01-01

    .... The objective of the thermal loads testing was to map the thermal and mechanical loads, including heat transfer, dynamic and static pressures, and skin friction in a scramjet combustor during direct...

  17. Consideraciones sobre una cámara de combustión experimental de 400 kW // Considerations on a 400 kW experimental combustor.

    Directory of Open Access Journals (Sweden)

    J. A. Cabrera Rodríguez

    2000-03-01

    Full Text Available El trabajo aborda el diseño térmico y constructivo de la cámara de combustión de un combustor experimental para lasimulación de procesos reales de combustión. Se analizan distintas variantes constructivas y se valora su influencia en elcomportamiento del horno, su estabilidad térmica y los gastos energéticos incurridos durante su funcionamiento.Palabras claves: Cámara de combustión, diseño, combustor.________________________________________________________________________________AbstractThe work approaches the thermal and mechanical design of a combustion chamber of an experimental combustor for thesimulation of real combustion process. Different designs are analyzed and their influence is valued in the behavior of thefurnace, thermal stability and cost incurred during their operation.Key words: Combustor, furnace design, thermical design .

  18. Method for control of NOx emission from combustors using fuel dilution

    Science.gov (United States)

    Schefer, Robert W [Alamo, CA; Keller, Jay O [Oakland, CA

    2007-01-16

    A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

  19. Diffuse interfacelets in transcritical flows of propellants into high-pressure combustors

    Science.gov (United States)

    Urzay, Javier; Jofre, Lluis

    2017-11-01

    Rocket engines and new generations of high-power jet engines and diesel engines oftentimes involve the injection of one or more reactants at subcritical temperatures into combustor environments at high pressures, and more particularly, at pressures higher than those corresponding to the critical points of the individual components of the mixture, which typically range from 13 to 50 bars for most propellants. This class of trajectories in the thermodynamic space has been traditionally referred to as transcritical. Under particular conditions often found in hydrocarbon-fueled chemical propulsion systems, and despite the prevailing high pressures, the flow in the combustor may contain regions close to the injector where a diffuse interface is formed in between the fuel and oxidizer streams that is sustained by surface-tension forces as a result of the elevation of the critical pressure of the mixture. This talk describes progress towards modeling these effects in the conservation equations. Funded by the US Department of Energy.

  20. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.; Shanbhogue, Santosh J.; Speth, Raymond L.; Ghoniem, Ahmed F.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides

  1. Post-processing computational fluid dynamic simulations of gas turbine combustor

    International Nuclear Information System (INIS)

    Sturgess, G.J.; Inko-Tariah, W.P.C.; James, R.H.

    1986-01-01

    The flowfield in combustors for gas turbine engines is extremely complex. Numerical simulation of such flowfields using computational fluid dynamics techniques has much to offer the design and development engineer. It is a difficult task, but it is one which is now being attempted routinely in the industry. The results of such simulations yield enormous amounts of information from which the responsible engineer has to synthesize a comprehensive understanding of the complete flowfield and the processes contained therein. The complex picture so constructed must be distilled down to the essential information upon which rational development decisions can be made. The only way this can be accomplished successfully is by extensive post-processing of the calculation. Post processing of a simulation relies heavily on computer graphics, and requires the enhancement provided by color. The application of one such post-processor is presented, and the strengths and weaknesses of various display techniques are illustrated

  2. Numerical study of effect of wall parameters on catalytic combustion characteristics of CH4/air in a heat recirculation micro-combustor

    International Nuclear Information System (INIS)

    Yan, Yunfei; Wang, Haibo; Pan, Wenli; Zhang, Li; Li, Lixian; Yang, Zhongqing; Lin, Changhai

    2016-01-01

    Highlights: • Combustion in heat recuperation micro-combustors with different materials was studied. • Heat concentration is more obvious with thermal conductivity decreasing. • Combustor with copper baffles has uniform temperature distribution and best preheating effectiveness. • Influence of wall thermal conductivity is negligible on OH(s) coverage. • Methane conversion rate firstly increases and then decreases with h increasing. - Abstract: Premixed combustion of methane/air mixture in heat recuperation micro-combustors made of different materials (corundum, quartz glass, copper and ferrochrome) was investigated. The effects of wall parameters on the combustion characters of a CH 4 /air mixture under Rhodium catalyst as well as the influence of wall materials and convection heat transfer coefficients on the stable combustion limit, temperature field, and free radicals was explored using numerical analysis methodology. The results show that with a decrease of thermal conductivity of wall materials, the temperature of the reaction region increases and hot spots becomes more obvious. The combustor with copper baffles has uniform temperature distribution and best preheating effectiveness, but when inlet velocity is too small, the maximum temperature in the combustor with copper or ferrochrome baffles is well beyond the melting point of the materials. With an increase in thermal conductivity, the preheat zone for premixed gas increases, but the influence of thermal conductivity on OH(s) coverage is negligible. With an increase of the wall convection heat transfer coefficient, the methane conversion rate firstly increases, then decreases reaching a maximum value at h = 8.5 W/m 2 K, however, the average temperature of both the axis and exterior surface of the combustor decrease.

  3. ServAR: An augmented reality tool to guide the serving of food.

    Science.gov (United States)

    Rollo, Megan E; Bucher, Tamara; Smith, Shamus P; Collins, Clare E

    2017-05-12

    Accurate estimation of food portion size is a difficult task. Visual cues are important mediators of portion size and therefore technology-based aids may assist consumers when serving and estimating food portions. The current study evaluated the usability and impact on estimation error of standard food servings of a novel augmented reality food serving aid, ServAR. Participants were randomised into one of three groups: 1) no information/aid (control); 2) verbal information on standard serving sizes; or 3) ServAR, an aid which overlayed virtual food servings over a plate using a tablet computer. Participants were asked to estimate the standard serving sizes of nine foods (broccoli, carrots, cauliflower, green beans, kidney beans, potato, pasta, rice, and sweetcorn) using validated food replicas. Wilcoxon signed-rank tests compared median served weights of each food to reference standard serving size weights. Percentage error was used to compare the estimation of serving size accuracy between the three groups. All participants also performed a usability test using the ServAR tool to guide the serving of one randomly selected food. Ninety adults (78.9% female; a mean (95%CI) age 25.8 (24.9-26.7) years; BMI 24.2 (23.2-25.2) kg/m 2 ) completed the study. The median servings were significantly different to the reference portions for five foods in the ServAR group, compared to eight foods in the information only group and seven foods for the control group. The cumulative proportion of total estimations per group within ±10%, ±25% and ±50% of the reference portion was greater for those using ServAR (30.7, 65.2 and 90.7%; respectively), compared to the information only group (19.6, 47.4 and 77.4%) and control group (10.0, 33.7 and 68.9%). Participants generally found the ServAR tool easy to use and agreed that it showed potential to support optimal portion size selection. However, some refinements to the ServAR tool are required to improve the user experience. Use of the

  4. Experiments and computations on coaxial swirling jets with centerbody in an axisymmetric combustor

    International Nuclear Information System (INIS)

    Chao, Y.C.; Ho, W.C.; Lin, S.K.

    1987-01-01

    Experiments and computations of turbulent, confined, coannular swirling flows have been performed in a model combustor. Numerical results are obtained by means of a revised two-equation model of turbulence. The combustor consists of two confined, concentric, swirling jets and a centerbody at the center of the inlet. Results are reported for cold flow conditions under co- and counter-swirl. The numerical results agree with the experimental data under both conditions. The size of the central recirculation zone is dominated by the strength of the outer swirl. A two-cell recirculation zone may be formed due to the presence of the swirler hub. The mechanism of interaction between the separation bubble at the hub of the swirler and the central recirculation zone due to vortex breakdown is also investigated. 18 references

  5. Coal-fired MHD combustor development project: Phase 3D

    Science.gov (United States)

    1985-05-01

    This fourth quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase 3D) presents the accomplishments during the period February 1 to April 30, 1985. The scope of work covered by this quarterly report encompasses development work on the 50 MW/sub t/ combustor related to test support at the CDIF, assembly and checkout of first and second stage hardware, second stage design verification testing, designs for a continuous slag rejector and low preheat inlet section, and planning for power train testing. Progress includes the following: assembly and checkout of the second first stage, two second stages, and PEM was completed and the hardware was shipped to CDIF and FETS; integration of first and second stage hardware on the FETS Cell No. 2 test stand was completed, cold flow functional tests were performed, and hot fire checkout testing was initiated; assembly of the continuous slag rejector test set-up was 70% completed; the low preheat air inlet section Preliminary Design Review was held (work on the detail design was initiated and is 85% complete); and the Users' Manual was updated to include material for the second stage and final revisions to the power train test plan were made.

  6. Parameterised Model of 2D Combustor Exit Flow Conditions for High-Pressure Turbine Simulations

    Directory of Open Access Journals (Sweden)

    Marius Schneider

    2017-12-01

    Full Text Available An algorithm is presented generating a complete set of inlet boundary conditions for Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD of high-pressure turbines to investigate their interaction with lean and rich burn combustors. The method shall contribute to understanding the sensitivities of turbine aerothermal performance in a systematic approach. The boundary conditions are based on a set of input parameters controlling velocity, temperature, and turbulence fields. All other quantities are derived from operating conditions and additional modelling assumptions. The algorithm is coupled with a CFD solver by applying the generated profiles as inlet boundary conditions. The successive steps to derive consistent flow profiles are described and results are validated against flow fields extracted from combustor CFD.

  7. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    Science.gov (United States)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  8. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Science.gov (United States)

    2010-07-01

    ... for Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or... weight or volume) or 30 parts per million by volume, corrected to 7 percent oxygen (dry basis), whichever... by volume, corrected to 7 percent oxygen (dry basis), whichever is less stringent. ...

  9. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and ru...

  10. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    NARCIS (Netherlands)

    Thy, P.; Jenkins, B.M.; Williams, R.B.; Lesher, C.E.; Bakker, R.R.

    2010-01-01

    Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run durations

  11. Thermionic combustor application to combined gas and steam turbine power plants

    Science.gov (United States)

    Miskolczy, G.; Wang, C. C.; Lieb, D. P.; Margulies, A. E.; Fusegni, L. J.; Lovell, B. J.

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air; the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh.

  12. Thermionic combustor application to combined gas and steam turbine power plants

    International Nuclear Information System (INIS)

    Miskolczy, G.; Wang, C.C.; Lieb, D.P.

    1981-01-01

    A design for the insertion of thermionic converters into the wall of a conventional combustor to produce electricity in a topping cycle is described, and a study for applications in gas and steam generators of 70 and 30 MW is evaluated for engineering and economic feasibility. Waste heat from the thermionic elements is used to preheat the combustor air, the heat absorbed by the elements plus further quenching of the exhaust gases with ammonia is projected to reduce NO(x) emissions to acceptable levels. Schematics, flow diagrams, and components of a computer model for cost projections are provided. It was found that temperatures around the emitters must be maintained above 1,600 K, with maximum efficiency and allowable temperature at 1,800 K, while collectors generate maximally at 950 K, with a corresponding work function of 1.5 eV. Cost sensitive studies indicate an installed price of $475/kW for the topping cycle, with improvements in thermionic converter characteristics bringing the cost to $375/kW at a busbar figure of 500 mills/kWh

  13. Instability Suppression in a Swirl-Stabilized Combustor Using Microjet Air Injection

    KAUST Repository

    LaBry, Zachary

    2010-01-04

    In this study, we examine the effectiveness of microjet air injection as a means of suppressing thermoacoustic instabilities in a swirl-stabilized, lean-premixed propane/air combustor. High-speed stereo PIV measurements, taken to explore the mechanism of combustion instability, reveal that the inner recirculation zone plays a dominant role in the coupling of acoustics and heat release that leads to combustion instability. Six microjet injector configurations were designed to modify the inner and outer recirculation zones with the intent of decoupling the mechanism leading to instability. Microjets that injected air into the inner recirculation zone, swirling in the opposite sense to the primary swirl were effective in suppressing combustion instability, reducing the overall sound pressure level by up to 17 dB within a certain window of operating conditions. Stabilization was achieved near an equivalence ratio of 0.65, corresponding to the region where the combustor transitions from a 40 Hz instability mode to a 110 Hz instability mode. PIV measurements made of the stabilized flow revealed significant modification of the inner recirculation zone and substantial weakening of the outer recirculation zone.

  14. Modeling of NO and N2O emissions from biomass circulating fluidized bed combustors

    International Nuclear Information System (INIS)

    Liu, H.; Gibbs, B.M.

    2002-01-01

    In order to correctly model biomass combustion in a circulating fluidized bed (CFB) combustor, it is necessary to examine the four main stages in the combustion of biomass particles. These include drying, devolatilization, volatile combustion and char combustion in a CFB combustor. This paper presents a newly developed model for nitric oxide (NO) and nitrous oxide (N 2 O) emissions from biomass-fired CFB combustors. A typical woody biomass of pinewood chips was selected for the model parameters. The drying and devolatilization of biomass particles was modeled with limited rates according to woody biomass fuels. The partition of fuel nitrogen between volatiles and char was chosen for pinewood based on available data from literature. It was assumed that the volatile nitrogen was composed of ammonia (NH 3 ), hydrogen cyanide (HCN) and nitrogen (N 2 ). The model included 25 chemical reactions, of which 20 belonged to global fuel-nitrogen reaction kinetics. A 12 MW CFB boiler was used to apply the model. Results were compared with experimental values as well as data from literature. The reaction between NO and char was found to be the key reaction that determines NO emissions. The catalytic effect of bed materials on the oxidation of NH 3 and the the homogeneous reaction of NH 3 with nitric oxide was also significant. 25 refs., 2 tabs., 5 figs

  15. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2014-01-01

    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  16. Numerical simulations of single and multi-staged injection of H2 in a supersonic scramjet combustor

    Directory of Open Access Journals (Sweden)

    L. Abu-Farah

    2014-12-01

    Full Text Available Computational fluid dynamics (CFD simulations of a single staged injection of H2 through a central wedge shaped strut and a multi-staged injection through wall injectors are carried out by using Ansys CFX-12 code. Unstructured tetrahedral grids for narrow channel and quarter geometries of the combustor are generated by using ICEM CFD. Steady three-dimensional (3D Reynolds-averaged Navier-stokes (RANS simulations are carried out in the case of no H2 injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection. Shear stress transport (SST based on k-ω turbulent model is adopted. Flow field visualization (complex shock waves interactions and static pressure distribution along the wall of the combustor are predicted and compared with the experimental schlieren images and measured wall static pressures for validation. A good agreement is found between the CFD predicted results and the measured data. The narrow and quarter geometries of the combustor give similar results with very small differences. Multi-staged injections of H2 enhance the turbulent H2/air mixing by forming vortices and additional shock waves (bow shocks.

  17. Flame Interactions and Thermoacoustics in Multiple-Nozzle Combustors

    Science.gov (United States)

    Dolan, Brian

    The first major chapter of original research (Chapter 3) examines thermoacoustic oscillations in a low-emission staged multiple-nozzle lean direct injection (MLDI) combustor. This experimental program investigated a relatively practical combustor sector that was designed and built as part of a commercial development program. The research questions are both practical, such as under what conditions the combustor can be safely operated, and fundamental, including what is most significant to driving the combustion oscillations in this system. A comprehensive survey of operating conditions finds that the low-emission (and low-stability) intermediate and outer stages are necessary to drive significant thermoacoustics. Phase-averaged and time-resolved OH* imaging show that dramatic periodic strengthening and weakening of the reaction zone downstream of the low-emission combustion stages. An acoustic modal analysis shows the pressure wave shapes and identifies the dominant thermoacoustic behavior as the first longitudinal mode for this combustor geometry. Finally, a discussion of the likely significant coupling mechanisms is given. Periodic reaction zone behavior in the low-emission fuel stages is the primary contributor to unsteady heat release. Differences between the fuel stages in the air swirler design, the fuel number of the injectors, the lean blowout point, and the nominal operating conditions all likely contribute to the limit cycle behavior of the low-emission stages. Chapter 4 investigates the effects of interaction between two adjacent swirl-stabilized nozzles using experimental and numerical tools. These studies are more fundamental; while the nozzle hardware is the same as the lean direct injection nozzles used in the MLDI combustion concept, the findings are generally applicable to other swirl-stabilized combustion systems as well. Much of the work utilizes a new experiment where the distance between nozzles was varied to change the level of interaction

  18. Analysis and Control of an Unstable Mode in a Combustor with Tuneable End Condition

    Directory of Open Access Journals (Sweden)

    Maria Heckl

    2013-09-01

    Full Text Available A major problem in the development of low-pollution combustion systems are thermo-acoustic instabilities, i.e. large-amplitude oscillations generated by a feedback between the unsteady heat release and acoustic waves. In order to develop robust control strategies, it is necessary to have a predictive model that captures the physics of the phenomenon. The aim of this paper is to present such a model for a dump combustor with a generic heat release law, and fitted at the inlet end with a perforated plate backed by a tuneable cavity. Our model leads to a simple governing equation for one acoustic mode in the combustor, and from this equation stability predictions can be made with a minimum of numerical effort. We will use it to examine the effect of various system parameters.

  19. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control

    Energy Technology Data Exchange (ETDEWEB)

    Quimby, J.M.

    1990-04-01

    The objective of this test program is the performance and economic evaluation of a pre charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons.

  20. Optimum diameter of a circulating fluidised bed combustor with negative wall heat flux

    CSIR Research Space (South Africa)

    Baloyi, J

    2015-07-01

    Full Text Available on irreversibilities in a 7 m circulating fluidised bed combustor with a negative wall heat flux, firing a mixture of air and solid pitch pine wood, was investigated. An analytical expression was derived that predicts the entropy generation rate, thereby...

  1. Combustor deployments of femtosecond laser written fiber Bragg grating arrays for temperature measurements surpassing 1000°C

    Science.gov (United States)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan; Yandon, Robert; Yun, Sangsig; Ramachandran, Nanthan; Charbonneau, Michel

    2017-05-01

    Femtosecond Infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to advanced power plant technologies and gas turbine engines, under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper reviews our fabrication and deployment of hundreds of fs-IR written FBGs, for monitoring temperature gradients of an oxy-fuel fluidized bed combustor and an aerospace gas turbine combustor simulator.

  2. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J; Hoppesteyn, P D.J.; Hein, K R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  3. Laser-based investigations in gas turbine model combustors

    Science.gov (United States)

    Meier, W.; Boxx, I.; Stöhr, M.; Carter, C. D.

    2010-10-01

    Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field-flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.

  4. Flow Field Dynamics in a High-g Ultra-Compact Combustor

    Science.gov (United States)

    2016-12-01

    Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...exceeded 10%, more than double the accepted state -of-the- art value of 5%. By way of a 2D CFD optimization, the ID of the centerbody was modified to create... States . 14. ABSTRACT The Ultra Compact Combustor (UCC) presents a novel solution to the advancement of aircraft gas turbine engine performance. A

  5. Three-component particle image velocimetry in a generic can-type gas turbine combustor

    CSIR Research Space (South Africa)

    Meyers, Bronwyn C

    2012-11-01

    Full Text Available -1 Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy November 2012/ Vol. 226(7) Three-componentParticle Image Velocimetry in a Generic Can-type Gas Turbine Combustor B C Meyers 1, 2* , G C Snedden 1 , J P...

  6. Nonlinear process in the mode transition in typical strut-based and cavity-strut based scramjet combustors

    Science.gov (United States)

    Yan, Li; Liao, Lei; Huang, Wei; Li, Lang-quan

    2018-04-01

    The analysis of nonlinear characteristics and control of mode transition process is the crucial issue to enhance the stability and reliability of the dual-mode scramjet engine. In the current study, the mode transition processes in both strut-based combustor and cavity-strut based combustor are numerically studied, and the influence of the cavity on the transition process is analyzed in detail. The simulations are conducted by means of the Reynolds averaged Navier-Stokes (RANS) equations coupled with the renormalization group (RNG) k-ε turbulence model and the single-step chemical reaction mechanism, and this numerical approach is proved to be valid by comparing the predicted results with the available experimental shadowgraphs in the open literature. During the mode transition process, an obvious nonlinear property is observed, namely the unevenly variations of pressure along the combustor. The hysteresis phenomenon is more obvious upstream of the flow field. For the cavity-strut configuration, the whole flow field is more inclined to the supersonic state during the transition process, and it is uneasy to convert to the ramjet mode. In the scram-to-ram transition process, the process would be more stable, and the hysteresis effect would be reduced in the ram-to-scram transition process.

  7. Flame stability and heat transfer analysis of methane-air mixtures in catalytic micro-combustors

    International Nuclear Information System (INIS)

    Chen, Junjie; Song, Wenya; Xu, Deguang

    2017-01-01

    Highlights: • The mechanisms of heat and mass transfer for loss of stability were elucidated. • Stability diagrams were constructed and design recommendations were made. • Flame characteristics were examined to determine extinction and blowout limits. • Heat loss greatly affects extinction whereas wall materials greatly affect blowout. • Radiation causes the flame to shift downstream. - Abstract: The flame stability and heat transfer characteristics of methane-air mixtures in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of wall thermal conductivity, surface emissivity, fuel, flow velocity, and equivalence ratio were explored to provide guidelines for optimal design. Furthermore, the underlying mechanisms of heat and mass transfer for loss of flame stability were elucidated. Finally, stability diagrams were constructed and design recommendations were made. It was found that the heat loss strongly affects extinction, whereas the wall thermal conductivity greatly affects blowout. The presence of homogeneous chemistry extends blowout limits, especially for inlet velocities higher than 6 m/s. Increasing transverse heat transfer rate reduces stability, whereas increasing transverse mass transfer rate improves stability. Surface radiation behaves similarly to the heat conduction within the walls, but opposite trends are observed. High emissivity causes the flame to shift downstream. Methane exhibits much broader blowout limits. For a combustor with gap size of 0.8 mm, a residence time higher than 3 ms is required to prevent breakthrough, and inlet velocities lower than 0.8 m/s are the most desirable operation regime. Further increase of the wall thermal conductivity beyond 80 W/(m·K) could not yield an additional increase in stability.

  8. An Overview of Spray Modeling With OpenNCC and its Application to Emissions Predictions of a LDI Combustor at High Pressure

    Science.gov (United States)

    Raju, M. S.

    2016-01-01

    The open national combustion code (Open- NCC) is developed with the aim of advancing the current multi-dimensional computational tools used in the design of advanced technology combustors. In this paper we provide an overview of the spray module, LSPRAY-V, developed as a part of this effort. The spray solver is mainly designed to predict the flow, thermal, and transport properties of a rapidly evaporating multi-component liquid spray. The modeling approach is applicable over a wide-range of evaporating conditions (normal, superheat, and supercritical). The modeling approach is based on several well-established atomization, vaporization, and wall/droplet impingement models. It facilitates large-scale combustor computations through the use of massively parallel computers with the ability to perform the computations on either structured & unstructured grids. The spray module has a multi-liquid and multi-injector capability, and can be used in the calculation of both steady and unsteady computations. We conclude the paper by providing the results for a reacting spray generated by a single injector element with 600 axially swept swirler vanes. It is a configuration based on the next-generation lean-direct injection (LDI) combustor concept. The results include comparisons for both combustor exit temperature and EINOX at three different fuel/air ratios.

  9. Reduced Order Modeling of Combustion Instability in a Gas Turbine Model Combustor

    Science.gov (United States)

    Arnold-Medabalimi, Nicholas; Huang, Cheng; Duraisamy, Karthik

    2017-11-01

    Hydrocarbon fuel based propulsion systems are expected to remain relevant in aerospace vehicles for the foreseeable future. Design of these devices is complicated by combustion instabilities. The capability to model and predict these effects at reduced computational cost is a requirement for both design and control of these devices. This work focuses on computational studies on a dual swirl model gas turbine combustor in the context of reduced order model development. Full fidelity simulations are performed utilizing URANS and Hybrid RANS-LES with finite rate chemistry. Following this, data decomposition techniques are used to extract a reduced basis representation of the unsteady flow field. These bases are first used to identify sensor locations to guide experimental interrogations and controller feedback. Following this, initial results on developing a control-oriented reduced order model (ROM) will be presented. The capability of the ROM will be further assessed based on different operating conditions and geometric configurations.

  10. Laser-Based Diagnostic Measurements of Low Emissions Combustor Concepts

    Science.gov (United States)

    Hicks, Yolanda R.

    2011-01-01

    This presentation provides a summary of primarily laser-based measurement techniques we use at NASA Glenn Research Center to characterize fuel injection, fuel/air mixing, and combustion. The report highlights using Planar Laser-Induced Fluorescence, Particle Image Velocimetry, and Phase Doppler Interferometry to obtain fuel injector patternation, fuel and air velocities, and fuel drop sizes and turbulence intensities during combustion. We also present a brief comparison between combustors burning standard JP-8 Jet fuel and an alternative fuels. For this comparison, we used flame chemiluminescence and high speed imaging.

  11. Design of a multipurpose laboratory scale analytical combustor

    International Nuclear Information System (INIS)

    Mohd Fairus Abdul Farid; Sivapalan Kathiravale; Muhd Noor Muhd Yunus; Mohamad Puad Abu; Norasalwa Zakaria; Khaironie Mohd Takip; Rohyiza Ba'an; Mohamad Azman Che Mat Isa

    2005-01-01

    The current method of digestion in order to determine the content of heavy metals and other elements in Municipal Solid Waste (MSW) is either too long or dangerous due to the usage of concentrated acids. As such, a Multi Purpose Portable Lab Scale Combustor was developed. It could also be used as a test rig under the various combustion conditions i.e. excess air combustion, gasification and pyrolysis. Another future of this rig, is to trap and analyse the combustion gasses produced from the different types of combustion processes. The rig can also be used to monitor weight loss against time during a combustion process. (Author)

  12. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    Science.gov (United States)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  13. Experimental investigation on combustion performance of cavity-strut injection of supercritical kerosene in supersonic model combustor

    Science.gov (United States)

    Sun, Ming-bo; Zhong, Zhan; Liang, Jian-han; Wang, Hong-bo

    2016-10-01

    Supersonic combustion with cavity-strut injection of supercritical kerosene in a model scramjet engine was experimentally investigated in Mach 2.92 facility with the stagnation temperatures of approximately 1430 K. Static pressure distribution in the axial direction was determined using pressure transducers installed along the centerline of the model combustor top walls. High speed imaging camera was used to capture flame luminosity and combustion region distribution. Multi-cavities were used to and stabilize the combustion in the supersonic combustor. Intrusive injection by thin struts was used to enhance the fuel-air mixing. Supercritical kerosene at temperatures of approximately 780 K and various pressures was prepared using a heat exchanger driven by the hot gas from a pre-burner and injected at equivalence ratios of approximately 1.0. In the experiments, combustor performances with different strut injection schemes were investigated and compared to direct wall injection scheme based on the measured static pressure distributions, the specific thrust increments and the images obtained by high-speed imaging camera. The experimental results showed that the injection by thin struts could obtain an enhanced mixing in the field but could not acquire a steady flame when mixing field cannot well match cavity separation region. There is no significant difference on performance between different schemes since the unsteady intermittent and oscillating flame leads to no actual combustion efficiency improvement.

  14. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    Directory of Open Access Journals (Sweden)

    Hou Peggy

    2004-01-01

    Full Text Available Heat-exchanger tubes in fluidized bed combustors (FBCs often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  15. Aviary heating: control of air temperature heated by a set biomass gasifier-combustor in a co-current flow, using a frequency inverter; Aquecimento de aviarios: controle da temperatura do ar aquecido por um conjunto gaseificador-combustor de biomassa de fluxo concorrente, utilizando um inversor de frequencia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, William Rosario dos [Universidade Presidente Antonio Carlos (UNIPAC), Ponte Nova, MG (Brazil); Silva, Jadir Nogueira; Oliveira Filho, Delly; Martins, Marcio Aredes; Oliveira, Jofran Luiz de [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: jadir@ufv.br, delly@ufv.br, aredes@ufv.br, jofran.oliveira@ufv.br

    2009-07-01

    One of the problems with using the gasifier for heating purposes in poultry facilities is the waste of energy during the day, once the equipment does not have control of the thermal and power generated. During this period, the difference in temperature between the air and the standard for the birds inside the building is lower than when compared with the nocturnal period. During the day, the temperature inside the poultry house is controlled by curtains, which occurs without diminishing the biomass burning. Another way to control the temperature is the shutdown of the system, which requires the constant attention of the operator. In this way, there is a potential for energy savings if the thermal power could be controlled according to the demand, which can be represented by the temperature gradient. The purpose of this study was to control the temperature of exhaustion air from a set combustor-gasifier (down draft), based on the model developed by Martin et al. (2006), through the control of speed of the fan engine and also controlling the flow contributions of primary and secondary air in the combustor. The experiment was carried out in the Energy and Pre-processing of Agricultural Products areas, at the Department of Agricultural Engineering - Federal University of Vicosa. (author)

  16. 39 CFR 230.15 - What must an Office of Inspector General employee do if served with a demand requiring the...

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false What must an Office of Inspector General employee do if served with a demand requiring the production of documents or an appearance in court? 230.15 Section 230.15 Postal Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION OFFICE OF...

  17. Flow visualization studies of transverse fuel injection patterns in a nonreacting Mach 2 combustor

    Science.gov (United States)

    Mcdaniel, J. C.

    1987-01-01

    Planar visualization images are recorded of transverse jet mixing in a supersonic combustor flowfield, without chemical reaction, using laser-induced fluorescence from iodine molecules. Digital image processing and three-dimensional display enable complete representations of fuel penetration boundary and shock surfaces corresponding to several injection geometries and pressures.

  18. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  19. On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads

    International Nuclear Information System (INIS)

    Berger, S.; Richard, S.; Duchaine, F.; Staffelbach, G.; Gicquel, L.Y.M.

    2016-01-01

    Highlights: • Coupling of LES, DOM and conduction is applied to an industrial combustor. • Thermal sensitivity of the combustor to convection and radiation is investigated. • CHT based on LES is feasible in an industrial context with acceptable CPU costs. • Radiation heat fluxes are of the same order of magnitude that the convective ones. • CHT with radiation are globally in good agreement with thermocolor test. - Abstract: The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, hot spots could appear causing a premature aging of the combustion chamber. Today, the characterization of wall temperatures is performed experimentally by complex thermocolor tests in advanced phases of the design process. To limit such expensive experiments and integrate the knowledge of the thermal environment earlier in the design process, efforts are currently performed to provide high fidelity numerical tools able to predict the combustion chamber wall temperature including the main physical phenomena: combustion, convection and mixing of hot products and cold flows, radiative transfers as well as conduction in the solid parts. In this paper, partitioned coupling approaches based on a Large Eddy Simulation (LES) solver, a Discrete Ordinate Method radiation solver and an unsteady conduction code are used to investigate the sensitivity of an industrial combustor thermal environment to convection and radiation. Four computations including a reference adiabatic fluid only simulation, Conjugate Heat Transfer, Radiation-Fluid Thermal Interaction and fully coupled simulations are performed and compared with thermocolor experimental data. From the authors knowledge, such comparative study with LES has never been published. It

  20. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  1. Thermo-acoustic characterization of the burner-turbine interface in a can-annular combustor using CFD

    NARCIS (Netherlands)

    Farisco, Federica

    2016-01-01

    Thermo-acoustic instabilities in high power density gas turbine engines need to be understood to avoid unexpected shutdown events. This dissertation is focused on the combustor-turbine interaction for acoustic waves. The first part of the study is based on the acoustic reflection coefficient

  2. Influence of Actively Controlled Heat Release Timing on the Performance and Operational Characteristics of a Rotary Valve, Acoustically Resonant Pulse Combustor

    KAUST Repository

    Lisanti, Joel; Roberts, William L.

    2017-01-01

    The influence of heat release timing on the performance and operational characteristics of a rotary valve, acoustically resonant pulse combustor is investigated both experimentally and numerically. Simulation results are obtained by solving the quasi-1D Navier-Stokes equations with forced volumetric heat addition. Experimental efforts modify heat release timing through modulated fuel injection and modification of the fluid dynamic mixing. Results indicate that the heat release timing has a profound effect on the operation and efficiency of the pulse combustor and that this timing can be difficult to control experimentally.

  3. Influence of Actively Controlled Heat Release Timing on the Performance and Operational Characteristics of a Rotary Valve, Acoustically Resonant Pulse Combustor

    KAUST Repository

    Lisanti, Joel

    2017-01-05

    The influence of heat release timing on the performance and operational characteristics of a rotary valve, acoustically resonant pulse combustor is investigated both experimentally and numerically. Simulation results are obtained by solving the quasi-1D Navier-Stokes equations with forced volumetric heat addition. Experimental efforts modify heat release timing through modulated fuel injection and modification of the fluid dynamic mixing. Results indicate that the heat release timing has a profound effect on the operation and efficiency of the pulse combustor and that this timing can be difficult to control experimentally.

  4. Thermo-hydrodynamic design of fluidized bed combustors estimating metal wastage

    CERN Document Server

    Lyczkowski, Robert W; Bouillard, Jacques X; Folga, Stephen M

    2012-01-01

    Thermo-Hydrodynamic Design of Fluidized Bed Combustors: Estimating Metal Wastage is a unique volume that finds that the most sensitive parameters affecting metal wastage are superficial fluidizing velocity, particle diameter, and particle sphericity.  Gross consistencies between disparate data sources using different techniques were found when the erosion rates are compared on the same basis using the concept of renormalization.  The simplified mechanistic models and correlations, when validated, can be used to renormalize any experimental data so they can be compared on a consistent basis using a master equation.

  5. Synergistic erosion/corrosion of superalloys in PFB coal combustor effluent

    Science.gov (United States)

    Benford, S. M.; Zellars, G. R.; Lowell, C. E.

    1981-01-01

    Two Ni-based superalloys were exposed to the high velocity effluent of a pressurized fluidized bed coal combustor. Targets were 15 cm diameter rotors operating at 40,000 rpm and small flat plate specimens. Above an erosion rate threshold, the targets were eroded to bare metal. The presence of accelerated oxidation at lower erosion rates suggests erosion/corrosion synergism. Various mechanisms which may contribute to the observed oxide growth enhancement include erosive removal of protective oxide layers, oxide and subsurface cracking, and chemical interaction with sulfur in the gas and deposits through damaged surface layers.

  6. Azimuthally spinning wave modes and heat release in an annular combustor

    Science.gov (United States)

    Nygard, Hakon; Mazur, Marek; Dawson, James R.; Worth, Nicholas A.

    2017-11-01

    In order to reduce NOx emissions from aeroengines and stationary gas turbines the fuel-air mixture can be made leaner, at the risk of introducing potentially damaging thermo-acoustic instabilities. At present this phenomenon is not understood well enough to eliminate these instabilities at the design stage. Recently, the presence of different azimuthal modes in annular combustors has been demonstrated both experimentally and numerically. These naturally occurring instabilities in annular geometry have been observed to constantly switch between spinning and standing modes, making it more difficult to analyse the flame structure and dynamics. Very recently this issue was partially addressed using novel acoustic forcing to generate a standing mode. In the present study this concept has been developed further by creating an azimuthal array of loud speakers, which for the first time permits predominantly spinning modes to be set up inside the combustion chamber. The use of pressure and high speed OH* measurements enables the study of the flame dynamics and heat release rate oscillations of the combustor, which will be reported in the current paper. The ability to precisely control the azimuthal mode of oscillation greatly enhances our further understanding of the phenomenon. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 677931 TAIAC).

  7. Shock-tunnel combustor testing for hypersonic vehicles

    Science.gov (United States)

    Loomis, Mark P.

    1994-01-01

    Proposed configurations for the next generation of transatmospheric vehicles will rely on air breathing propulsion systems during all or part of their mission. At flight Mach numbers greater than about 7 these engines will operate in the supersonic combustion ramjet mode (scramjet). Ground testing of these engine concepts above Mach 8 requires high pressure, high enthalpy facilities such as shock tunnels and expansion tubes. These impulse, or short duration facilities have test times on the order of a millisecond, requiring high speed instrumentation and data systems. One such facility ideally suited for scramjet testing is the NASA-Ames 16-Inch shock tunnel, which over the last two years has completed a series of tests for the NASP (National Aero-Space Plane) program at simulated flight Mach numbers ranging from 12-16. The focus of the experimental programs consisted of a series of classified tests involving a near-full scale hydrogen fueled scramjet combustor model in the semi-free jet method of engine testing whereby the compressed forebody flow ahead of the cowl inlet is reproduced (see appendix A). The AIMHYE-1 (Ames Integrated Modular Hypersonic Engine) test entry for the NASP program was completed in April 1993, while AIMHYE-2 was completed in May 1994. The test entries were regarded as successful, resulting in some of the first data of its kind on the performance of a near full scale scramjet engine at Mach 12-16. The data was distributed to NASP team members for use in design system verification and development. Due to the classified nature of the hardware and data, the data reports resulting from this work are classified and have been published as part of the NASP literature. However, an unclassified AIAA paper resulted from the work and has been included as appendix A. It contains an overview of the test program and a description of some of the important issues.

  8. Measurement of nitrogen species NO{sub y} at the exhaust of an aircraft engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, A [Office National d` Etudes et de Recherches Aerospatiales (ONERA), Palaiseau (France); Baudoin, C [Societe Nationale d` Etude et de Construction de Moteurs d` Aviation (SNECMA), Villaroche (France)

    1998-12-31

    A research programme named AEROTRACE was supported by the EC (CEC contract AERA-CT94-0003) in order to investigate trace species measurements at the exhaust of aero-engines. Within this project, NO{sub y}, NO, HNO{sub 3} and HONO were measured at the exhaust of aircraft engine combustors. Major species (NO{sub y},NO) were measured by using a chemiluminescence instrument. Minor species (HNO{sub 3},HONO) were measured by using filter packs. Two combustors were tested under various running conditions; the first one at ONERA (Task 2) and the second one at DRA (Task 5). Results show that EI{sub NOy} < 50 g/kg, EI{sub HNO3} < 0.2 g/kg and EI{sub HONO} < 0.55 g/kg. Regarding ratios, (HNO{sub 3})/(NO{sub y}) < 0.5%, (HONO)/(NO{sub y}) < 8%, (HONO)/(NO{sub 2}) {approx} 19.2%, and (HNO{sub 3})/(NO{sub 2}) {approx} 0.8% was found. (author) 9 refs.

  9. Measurement of nitrogen species NO{sub y} at the exhaust of an aircraft engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Palaiseau (France); Baudoin, C. [Societe Nationale d`Etude et de Construction de Moteurs d`Aviation (SNECMA), Villaroche (France)

    1997-12-31

    A research programme named AEROTRACE was supported by the EC (CEC contract AERA-CT94-0003) in order to investigate trace species measurements at the exhaust of aero-engines. Within this project, NO{sub y}, NO, HNO{sub 3} and HONO were measured at the exhaust of aircraft engine combustors. Major species (NO{sub y},NO) were measured by using a chemiluminescence instrument. Minor species (HNO{sub 3},HONO) were measured by using filter packs. Two combustors were tested under various running conditions; the first one at ONERA (Task 2) and the second one at DRA (Task 5). Results show that EI{sub NOy} < 50 g/kg, EI{sub HNO3} < 0.2 g/kg and EI{sub HONO} < 0.55 g/kg. Regarding ratios, (HNO{sub 3})/(NO{sub y}) < 0.5%, (HONO)/(NO{sub y}) < 8%, (HONO)/(NO{sub 2}) {approx} 19.2%, and (HNO{sub 3})/(NO{sub 2}) {approx} 0.8% was found. (author) 9 refs.

  10. Development and Modeling of Angled Effusion Cooling for the BR715 Low Emission Staged Combustor Core Demonstrator

    National Research Council Canada - National Science Library

    Gerendas, M

    2003-01-01

    .... The combustor cooling concept chosen was of the angled effusion type. Development of adequate modeling techniques and steady-state and transient rig tests to calibrate the thermal models was the key factor for the success...

  11. Effect of inlect swirl on the convergence behavior of a combustor flow computation algorithm

    International Nuclear Information System (INIS)

    Shyy, W.; Braaten, M.E.; Hwang, T.H.

    1987-01-01

    The flow in a single sector of gas-turbine combustor with dilution holes has been studied numerically. It is found that there are some distinctive differences between the numerical behavior of the solution algorithm for combusting and noncombusting flows in a single-cup gas turbine combustor enclosed by four-sided solid walls. With the use of an iterative solution procedure and the standard κ-ε turbulence model, converged steady-state solutions are obtained for noncombusting flows with or without the presence of swirl of dilution jets. However, for the combusting flows, the interaction between the strength of the swirl ratio and the jet-to-main flow velocity ratio affects the ability of the algorithm to achieve a converged steady-state solution. Increasing inlet swirl causes the flow field to oscillate as the iterations progress, and to fail to reach a steady-state solution, while increasing the flow through the dilution jets helps achieve a steady-state solution. The above phenomena are not observed for the flows with periodic boundary conditions along two side planes

  12. Numerical investigation on the combustion characteristics of methane/air in a micro-combustor with a hollow hemispherical bluff body

    International Nuclear Information System (INIS)

    Zhang, Li; Zhu, Junchen; Yan, Yunfei; Guo, Hongliang; Yang, Zhongqing

    2015-01-01

    Highlights: • A micro-combustor with a hollow hemisphere bluff body is developed. • Blow-off limit of reactor is expanded 2.5 times by the hollow hemisphere bluff body. • Methane conversion rate of combustor sharply increases at the location of bluff body. • Methane conversion rate is mainly affected by equivalence ratio and inlet velocity. • Recirculation zone expands blow-off limit and increases methane conversion rate. - Abstract: The combustion characteristics of methane in a cube micro-combustor with a hollow hemispherical bluff body were numerically investigated. The blow-off limit, recirculation zone length and methane conversion rate were examined. The results illustrate that the blow-off limit of the micro-combustor with a hollow hemispherical bluff body is 2.5 times higher than that without bluff body, which are 24.5 m/s and 9.5 m/s at the same equivalence ratio (ϕ = 1), respectively. With the use of hollow hemispherical bluff body, methane conversion sharply increases from 0.24% to 17.95% at 3 mm along the inlet-flow direction, where is the location of bluff-body, which is not affected by equivalence ratio and inlet velocity. The recirculation zone size has determined influence on residence time of the mixture gas, which increases with the increase of inlet velocity. Methane conversion rate is determined by equivalence ratio and inlet velocity. Methane conversion rate firstly increases and then decreases when the equivalence ratio and inlet velocity increase, reaching the maximum value (97.84%) at ϕ = 1 and 0.02 m/s. Methane conversion rate sharply increases from 45% to 97.84% when the inlet velocity increases from 0.008 m/s to 0.02 m/s

  13. Impact of start-up and shut-down losses on the economic benefit of an integrated hybrid solar cavity receiver and combustor

    International Nuclear Information System (INIS)

    Lim, Jin Han; Hu, Eric; Nathan, Graham J.

    2016-01-01

    Highlights: • We present the benefits of integrating a solar cavity receiver and a combustor. • The hybrid solar receiver combustor is compared with its equivalent hybrid. • The start-up losses of the back-up boiler are calculated for a variable resource. • Levelized cost of electricity is reduced by up to 17%. • Fuel consumption is reduced by up to 31%. - Abstract: The impact of avoiding the start-up and shut-down losses of a solar thermal power plant by directly integrating the back-up boiler into a tubular solar-only cavity receiver is studied using a multiple time-step, piecewise-continuous model. A steady-state analytical model of the mass and energy flows through both this device and a solar-only cavity receiver reported previously are incorporated within a model of the solar power generating plant with storage. The performance of the Hybrid Solar Receiver Combustor (HSRC) is compared with an equivalent reference conventional hybrid solar thermal system employing a solar-only cavity receiver and a back-up boiler. The model accounts for start-up and shut-down losses of the boiler, threshold losses of the solar-only cavity receiver and the amount of trace heating required to avoid cooling of the heat transfer fluid. The model is implemented for a 12 month/five year time-series of historical Direct Normal Irradiation (DNI) at 1 h time-steps to account for the variability in the solar resource at four sites spanning Australia and the USA. A method to optimize the size of the heliostat field is also reported, based on the dumped fraction of solar power from the heliostat field. The Levelized Cost of Electricity (LCOE) for the HSRC configuration was estimated to be reduced by up to 17% relative to the equivalent conventional hybrid solar thermal system depending on the cost of the fuel, the storage capacity and the solar resource, while the fuel consumption was estimated to be reduced by some 12–31%.

  14. Strongly Coupled Fluid-Structure Interaction in a Three-Dimensional Model Combustor during Limit Cycle Oscillations

    NARCIS (Netherlands)

    Shahi, Mina; Kok, Jacobus B.W.; Roman Casado, J.C.; Pozarlik, Artur Krzysztof

    2018-01-01

    Due to the high temperature of the flue gas flowing at high velocity and pressure, the wall cooling is extremely important for the liner of a gas turbine engine combustor. The liner material is heat-resistant steel with relatively low heat conductivity. To accommodate outside wall forced air

  15. Wall heat flux influence on the thermodynamic optimisation of irreversibilities of a circulating fluidised bed combustor

    CSIR Research Space (South Africa)

    Baloyi, J

    2016-07-01

    Full Text Available . The irreversibilities generated were arrived at by computing the entropy generation rates due to the combustion and frictional pressure drop processes. For the combustor where the wall condition was changed from adiabatic to negative heat flux (that is heat leaving...

  16. 7 CFR 1980.444 - Appraisal of property serving as collateral.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Appraisal of property serving as collateral. 1980.444... Program § 1980.444 Appraisal of property serving as collateral. (a) Appraisal reports prepared by independent qualified fee appraisers will be required on all property that will serve as collateral. In the...

  17. Device for improved air and fuel distribution to a combustor

    Science.gov (United States)

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  18. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 1: Temporally resolved swirl-flame thermometry

    KAUST Repository

    Dennis, Claresta N.

    2016-06-20

    Single-laser-shot temperature measurements at 5 kHz were performed in a gas turbine model combustor using femtosecond (fs) coherent anti-Stokes Raman scattering (CARS). The combustor was operated at two conditions; one exhibiting a low level of thermoacoustic instability and the other a high level of instability. Measurements were performed at 73 locations within each flame in order to resolve the spatial flame structure and compare to previously published studies. The measurement procedures, including the procedure for calibrating the laser system parameters, are discussed in detail. Despite the high turbulence levels in the combustor, signals were obtained on virtually every laser shot, and these signals were strong enough for spectral fitting analysis for determination of flames temperatures. The spatial resolution of the single-laser shot temperature measurements was approximately 600 µm, the precision was approximately ±2%, and the estimated accuracy was approximately ±3%. The dynamic range was sufficient for temperature measurements ranging from 300 K to 2200 K, although some detector saturation was observed for low temperature spectra. These results demonstrate the usefulness of fs-CARS for the investigation of highly turbulent combustion phenomena. In a companion paper, the time-resolved fs CARS data are analyzed to provide insight into the temporal dynamics of the gas turbine model combustor flow field.

  19. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS. Part 1: Temporally resolved swirl-flame thermometry

    KAUST Repository

    Dennis, Claresta N.; Slabaugh, Carson D.; Boxx, Isaac G.; Meier, Wolfgang; Lucht, Robert P.

    2016-01-01

    Single-laser-shot temperature measurements at 5 kHz were performed in a gas turbine model combustor using femtosecond (fs) coherent anti-Stokes Raman scattering (CARS). The combustor was operated at two conditions; one exhibiting a low level of thermoacoustic instability and the other a high level of instability. Measurements were performed at 73 locations within each flame in order to resolve the spatial flame structure and compare to previously published studies. The measurement procedures, including the procedure for calibrating the laser system parameters, are discussed in detail. Despite the high turbulence levels in the combustor, signals were obtained on virtually every laser shot, and these signals were strong enough for spectral fitting analysis for determination of flames temperatures. The spatial resolution of the single-laser shot temperature measurements was approximately 600 µm, the precision was approximately ±2%, and the estimated accuracy was approximately ±3%. The dynamic range was sufficient for temperature measurements ranging from 300 K to 2200 K, although some detector saturation was observed for low temperature spectra. These results demonstrate the usefulness of fs-CARS for the investigation of highly turbulent combustion phenomena. In a companion paper, the time-resolved fs CARS data are analyzed to provide insight into the temporal dynamics of the gas turbine model combustor flow field.

  20. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels

    KAUST Repository

    Vanteru, Mahendra Reddy; Katoch, Amit; Roberts, William L.; Kumar, Sudarshan

    2014-01-01

    Flameless combustion offers many advantages over conventional combustion, particularly uniform temperature distribution and lower emissions. In this paper, a new strategy is proposed and adopted to scale up a burner operating in flameless combustion mode from a heat release density of 5.4-21 MW/m(3) (thermal input 21.5-84.7 kW) with kerosene fuel. A swirl flow based configuration was adopted for air injection and pressure swirl type nozzle with an SMD 35-37 lm was used to inject the fuel. Initially, flameless combustion was stabilized for a thermal input of 21.5 kW ((Q) over dot '''= 5.37 MW/m(3)). Attempts were made to scale this combustor to higher intensities i.e. 10.2, 16.3 and 21.1 MW/m(3). However, an increase in fuel flow rate led to incomplete combustion and accumulation of unburned fuel in the combustor. Two major difficulties were identified as possible reasons for unsustainable flameless combustion at the higher intensities. (i) A constant spray cone angle and SMD increases the droplet number density. (ii) Reactants dilution ratio (R-dil) decreased with increased thermal input. To solve these issues, a modified combustor configuration, aided by numerical computations was adopted, providing a chamfer near the outlet to increase the R-dil. Detailed experimental investigations showed that flameless combustion mode was achieved at high intensities with an evenly distributed reaction zone and temperature in the combustor at all heat intensities. The emissions of CO, NOx and HC for all heat intensities (Phi = 1-0.6) varied between 11-41, 6-19 and 0-9 ppm, respectively. These emissions are well within the range of emissions from other flameless combustion systems reported in the literature. The acoustic emission levels were also observed to be reduced by 8-9 dB at all conditions. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  1. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels

    KAUST Repository

    Vanteru, Mahendra Reddy

    2014-06-21

    Flameless combustion offers many advantages over conventional combustion, particularly uniform temperature distribution and lower emissions. In this paper, a new strategy is proposed and adopted to scale up a burner operating in flameless combustion mode from a heat release density of 5.4-21 MW/m(3) (thermal input 21.5-84.7 kW) with kerosene fuel. A swirl flow based configuration was adopted for air injection and pressure swirl type nozzle with an SMD 35-37 lm was used to inject the fuel. Initially, flameless combustion was stabilized for a thermal input of 21.5 kW ((Q) over dot \\'\\'\\'= 5.37 MW/m(3)). Attempts were made to scale this combustor to higher intensities i.e. 10.2, 16.3 and 21.1 MW/m(3). However, an increase in fuel flow rate led to incomplete combustion and accumulation of unburned fuel in the combustor. Two major difficulties were identified as possible reasons for unsustainable flameless combustion at the higher intensities. (i) A constant spray cone angle and SMD increases the droplet number density. (ii) Reactants dilution ratio (R-dil) decreased with increased thermal input. To solve these issues, a modified combustor configuration, aided by numerical computations was adopted, providing a chamfer near the outlet to increase the R-dil. Detailed experimental investigations showed that flameless combustion mode was achieved at high intensities with an evenly distributed reaction zone and temperature in the combustor at all heat intensities. The emissions of CO, NOx and HC for all heat intensities (Phi = 1-0.6) varied between 11-41, 6-19 and 0-9 ppm, respectively. These emissions are well within the range of emissions from other flameless combustion systems reported in the literature. The acoustic emission levels were also observed to be reduced by 8-9 dB at all conditions. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  2. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    OpenAIRE

    Gazzino, Marco; Hong, Jongsup; Chaudhry, Gunaranjan; Brisson II, John G; Field, Randall; Ghoniem, Ahmed F

    2009-01-01

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases...

  3. EXPERIMENTAL STUDY OF HIGH LEVELS OF SO2 REMOVAL IN ATMOSPHERIC-PRESSURE FUIDIZED-BED COMBUSTORS

    Science.gov (United States)

    The report describes tests conducted in an atmospheric-pressure-fluidized-bed combustor (FBC) with a cross-section of 1 x 1.6 m) to demonstrate high levels of S02 removal when burning a high-sulfur coal and feeding limestone sorbent for S02 removal. The goal was to achieve 90-plu...

  4. HAZARDOUS WASTE INCINERATION: THE IN-SITU CAPTURE OF LEAD BY SORBENTS IN A LABORATORY DOWNFLOW COMBUSTOR

    Science.gov (United States)

    The paper discusses experiments on a 17-kW downflow combustor to determine how sorbent injection into the postflame influenced the particle size distribution of a lead (Pb) aerosol formed from a surrogate Pb-containing waste. n the absence of chlorine (CI), the Pb aerosol size di...

  5. International Experience in Developing Low-Emission Combustors for Land-Based, Large Gas-Turbine Units: Mitsubishi Heavy Industries' Equipment

    Science.gov (United States)

    Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.; Gutnik, M. N.; Ageev, A. V.

    2018-05-01

    This is the second paper in a series of publications summarizing the international experience in the development of low-emission combustors (LEC) for land-based, large (above 250 MW) gas-turbine units (GTU). The purpose of this series is to generalize and analyze the approaches used by various manufacturers in designing flowpaths for fuel and air in LECs, managing fuel combustion, and controlling the fuel flow. The efficiency of advanced GTUs can be as high as 43% (with an output of 350-500 MW) while the efficiency of 600-800 MW combined-cycle units with these GTUs can attain 63.5%. These high efficiencies require a compression ratio of 20-24 and a temperature as high as 1600°C at the combustor outlet. Accordingly, the temperature in the combustion zone also rises. All the requirements for the control of harmful emissions from these GTUs are met. All the manufacturers and designers of LECs for modern GTUs encounter similar problems, such as emissions control, combustion instability, and reliable cooling of hot path parts. Methods of their elimination are different and interesting from the standpoint of science and practice. One more essential requirement is that the efficiency and environmental performance indices must be maintained irrespective of the fuel composition or heating value and also in operation at part loads below 40% of rated. This paper deals with Mitsubishi Series M701 GTUs, F, G, or J class, which have gained a good reputation in the power equipment market. A design of a burner for LECs and a control method providing stable low-emission fuel combustion are presented. The advantages and disadvantages of the use of air bypass valves installed in each liner to maintain a nearly constant air to fuel ratio within a wide range of GTU loads are described. Methods for controlling low- and high-frequency combustion instabilities are outlined. Upgrading of the cooling system for the wall of a liner and a transition piece is of great interest. Change over

  6. Investigation of strut-ramp injector in a Scramjet combustor: Effect of strut geometry, fuel and jet diameter on mixing characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Rahul Kumar; De, Ashoke De [Indian Institute of Technology Kanpur, Kanpur (India)

    2017-03-15

    The strut-based injector has been found to be one of the most promising injector designs for a supersonic combustor, offering enhanced mixing of fuel and air. The mixing and flow field characteristics of the straight (SS) and Tapered strut (TS), with fixed ramp angle and height at free stream Mach number 2 in conjunction with fuel injection at Mach 2.3 have been investigated numerically and reported. In the present investigation, hydrogen (H{sub 2}) and ethylene (C{sub 2}H{sub 4}) are injected in oncoming supersonic flow from the back of the strut, where jet to free stream momentum ratio is maintained at 0.79 and 0.69 for H2 and C{sub 2}H{sub 4}, respectively. The predicted wall static pressure and species mole fractions at various downstream locations are compared with the experimental data for TS case with 0.6 mm jet diameter and found to be in good agreement. Further, the effect of jet diameter and strut geometry on the near field mixing in strut ramp configuration is discussed for both the fuels. The numerical results are assessed based on various parameters for the performance evaluation of different strut ramp configurations. The SS configuration for both the injectant has been found to be an optimum candidate; also it is observed that for higher jet diameter larger combustor length is required to achieve satisfactory near field mixing.

  7. Experimental Investigations of Extracted Rapeseed Combustion Emissions in a Small Scale Stationary Fluidized Bed Combustor

    Directory of Open Access Journals (Sweden)

    Dieter Steinbrecht

    2009-02-01

    Full Text Available The objective of this study was to observe the combustion process of extracted rapeseed (ER grist in a stationary fluidized bed combustor (SFBC and evaluate the chemical compositions of the flue gas emissions. The experimental tests of ER combustion in the 90 to 200 kW (Kilowatt SFB combustion test facility show that the optimal ER combustion temperature is within the range from 850 to 880° C. Temperature and the concentration of exhausted emissions (e.g. O2, CO, CO2, NO, NO2, SO2, Corg were measured with dedicated sensors distributed within the combustor, along its height and in the flue gas duct. The experimental results showed that with respect to German emission limits the concentration of SO2 and NOx in the flue gas were high whereas that of CO was low. This study furthermore is applicable for the abundant biomass residue resources in Vietnam (rice husk, rice straw, bagasse, cassava residues, coconut shell etc., which have similar chemical compositions to ER.

  8. Experimental investigations of extracted rapeseed combustion emissions in a small scale stationary fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Dinh Tung, N.; Steinbrecht, D. [Rostock University, Faculty of Mechanical Engineering and Marine Technology, Chair of Environmental Technology, Justus-von-Liebig-Weg 6, D - 18059 Rostock (Germany); Tung, N. D. [Hanoi University of Agriculture- Hanoi/Vietnam, Faculty of Mechanical Engineering, Trau Quy - Gia Lam - Hanoi (Viet Nam); Vincent, T. [Rostock University, Chair of Energy Systems, Justus-von-Liebig-Weg 6, D - 18059 Rostock (Germany)

    2009-07-01

    The objective of this study was to observe the combustion process of extracted rapeseed (ER) grist in a stationary fluidized bed combustor (SFBC) and evaluate the chemical compositions of the flue gas emissions. The experimental tests of ER combustion in the 90 to 200 kW SFB combustion test facility show that the optimal ER combustion temperature is within the range from 850 to 880 {sup o}C. Temperature and the concentration of exhausted emissions (e.g. O{sub 2}, CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, C{sub org}) were measured with dedicated sensors distributed within the combustor, along its height and in the flue gas duct. The experimental results showed that with respect to German emission limits the concentration of SO{sub 2} and NO{sub x} in the flue gas were high whereas that of CO was low. This study furthermore is applicable for the abundant biomass residue resources in Vietnam (rice husk, rice straw, bagasse, cassava residues, coconut shell etc.), which have similar chemical compositions to ER. (author)

  9. Low NO subx heavy fuel combustor concept program. Phase 1A: Coal gas addendum

    Science.gov (United States)

    Rosfjord, T.; Sederquist, R.

    1982-01-01

    The performance and emissions from a rich-lean combustor fired on simulated coal gas fuels were investigated using a 12.7-cm diameter axially-staged burner originally designed for operation with high heating value liquid fuels. A simple, tubular fuel injector was substituted for the liquid fuel nozzle; no other combustor modifications were made. Four test fuels were studied including three chemically bound nitrogen-free gas mixtures with higher heating values of 88, 227, and 308 kj/mol (103, 258 and 349 Btu/scf), and a 227 kj/mol (258 Btu/scf) heating value doped with ammonia to produce a fuel nitrogen content of 0.5% (wt). Stable, ultra-low nitrogen oxide, smoke-free combustion was attained for the nitrogen-free fuels. Results with the doped fuel indicated that less than 5% conversion of NH3 to nitrogen oxide levels below Environmental Protection Agency limits could be achieved. In some instances, excessive CO levels were encountered. It is shown that use of a burner design employing a less fuel-rich primary zone than that found optimum for liquid fuels would yield more acceptable CO emissions.

  10. Numerical investigation of spray combustion in jet mixing type combustor for low NOx emission

    International Nuclear Information System (INIS)

    Watanabe, Hirotatsu; Suwa, Yoshikazu; Matsushita, Yohsuke; Morozumi, Yoshio; Aoki, Hideyuki; Tanno, Shoji; Miura, Takatoshi

    2008-01-01

    The present paper describes a numerical investigation of spray combustion in a jet mixing type combustor. In this combustor, kerosene spray was injected with a pressure atomizer, and high speed combustion air was introduced towards the spray flow through some inlet air nozzles to improve mixing of the spray and the air. In the numerical simulation, the conservative equations of mass, momentum and energy in the turbulent flow field were solved in conjunction with the k-ε two equation turbulence model. The effects of the diameter and the number of air inlet nozzles on the combustion behavior and NO emission were numerically investigated. When the diameter of the inlet air nozzle decreased from 8 to 4 mm, the calculated NO mole fraction in the exhaust gas was drastically decreased by about 80%. An increase in the inlet velocity resulted in improvement of the mixing of the spray and the air, and hence, the high temperature region where thermal NO was formed became narrow. As a result, the exhaust NO mole fraction decreased. Furthermore, a decrease in exhaust NO mole fraction was explained by a decrease in the residence time in the high temperature region above 1800 K

  11. Co-combustion of waste with coal in a circulating fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Gulyurtlu, I.; Boavida, D.; Abelha, P.; Lopes, H.; Cabrita, I. [DEECA-INETI, Lisboa (Portugal)

    2002-07-01

    The results of a study of cocombustion of waste with coal is described. Various wastes (biomass, sludge, and refuse derived fuel) were burned with coal in a circulating fluidised bed combustor. Conditions that prevent segregated combustion, reduce production of nitrogen oxides, and attain high combustion efficiency were studied. The effects of variations in air staging in the riser, mixing of air with volatiles, coal/biomass ratio, methods of feeding biomass, and temperature are described. 5 refs., 3 figs., 5 tabs.

  12. Alternate-Fueled Combustor-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  13. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... SOURCES Standards of Performance for Large Municipal Waste Combustors for Which Construction is Commenced... section. (i) For affected facilities that commenced construction, modification, or reconstruction after September 20, 1994, and on or before December 19, 2005, the emission limit is 24 milligrams per dry standard...

  14. Technology of serving

    OpenAIRE

    Taskov, Nako

    2013-01-01

    The book “Technology of serving” was prepared according to the curriculum and it is intended for students at the faculty of tourism and business logistics in republic of Macedonia In its contents on the subject of Technology of serving it includes the following - the rooms for serving, the types of catering objects in which food and beverages are served, professional serving staff, equipment and inventory for serving, card selection services in serving .,getting to know drin...

  15. Development of a coupled reactor with a catalytic combustor and steam reformer for a 5 kW solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Kang, Sanggyu; Lee, Kanghun; Yu, Sangseok; Lee, Sang Min; Ahn, Kook-Young

    2014-01-01

    Highlights: • Proposes the scale-up strategy to develop a large-scale coupled reactor. • Investigation of performance of steam reformer coupled with catalytic combustor. • Experimental parameters are inlet temp., air excess ratio, SCR, fuel utilization. • Evaluation of the heat transfer distribution along the gas flow direction. • The mean value of methane conversion rate is approximately 93.4%. - Abstract: The methane (CH 4 ) conversion rate of a steam reformer can be increased by thermal integration with a catalytic combustor, called a coupled reactor. In the present study, a 5 kW coupled reactor has been developed based on a 1 kW coupled reactor in previous work. The geometric parameters of the space velocity, diameter and length of the coupled reactor selected from the 1 kW coupled reactor are tuned and applied to the design of the 5 kW coupled reactor. To confirm the scale-up strategy, the performance of 5 kW coupled reactor is experimentally investigated with variations of operating parameters such as the fuel utilization in the solid oxide fuel cell (SOFC) stack, the inlet temperature of the catalytic combustor, the excess air ratio of the catalytic combustor, and the steam to carbon ratio (SCR) in the steam reformer. The temperature distributions of coupled reactors are measured along the gas flow direction. The gas composition at the steam reformer outlet is measured to find the CH 4 conversion rate of the coupled reactor. The maximum value of the CH 4 conversion rate is approximately 93.4%, which means the proposed scale-up strategy can be utilized to develop a large-scale coupled reactor

  16. The erosion/corrosion of small superalloy turbine rotors operating in the effluent of a PFB coal combustor

    Science.gov (United States)

    Zellars, G. R.; Benford, S. M.; Rowe, A. P.; Lowell, C. E.

    1979-01-01

    The operation of a turbine in the effluent of a pressurized fluidized bed (PFB) coal combustor presents serious materials problems. Synergistic erosion/corrosion and deposition/corrosion interactions may favor the growth of erosion-resistant oxides on blade surfaces, but brittle cracking of these oxides may be an important source of damage along heavy particle paths. Integrally cast alloy 713LC and IN792 + Hf superalloy turbine rotors in a single-stage turbine with 6% partial admittance have been operated in the effluent of a PFB coal combustor for up to 164 hr. The rotor erosion pattern exhibits heavy particle separation with severe erosion at the leading edge, pressure side center, and suction side trailing edge at the tip. The erosion distribution pattern gives a spectrum of erosion/oxidation/deposition as a function of blade position. The data suggest that preferential degradation paths may exist even under the targeted lower loadings (less than 20 ppm).

  17. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  18. Characterizing G-Loading, Swirl Direction, and Rayleigh Losses in an Ultra Compact Combustor

    Science.gov (United States)

    2013-07-01

    low Mach numbers to avoid these pressure losses while burning. Radtke [25] used a modified version of the Anthenien et al. [9] rig to study pressure...losses in the combustor due to Rayleigh effects. Radtke saw this increase in Mach number when comparing reacting and non-reacting cases, seen in...Anderson, W., Radtke , J., King, P., Thornburg, H., Zelina, J., Sekar, B., “Effects of Main Swirl Direction on High-g Combustion,” 44th AIAA/ASME/SAE

  19. Outlook for the power requirements by the northeast U.S. power pool: Who will serve this market?

    International Nuclear Information System (INIS)

    Anderson, E.P.

    1993-01-01

    The size of the potential natural gas market in the northeast U.S. and how it will be served are discussed. One of the most promising markets for natural gas in this area is for power generation, using combined-cycle generating units that are efficient and have low environmental impact. It is estimated that by 2002 natural gas requirements for electrical power generation in the northeast could reach 750 billion cubic feet per year. This market will be served through several new gas pipelines and through expansion of the existing pipeline capacity. Projections for electricity production for the northeast, including the New York Power pool, show an increase from 236,423 GWh in 1992 to 275,558 GWh in 2002, an increase of ca 17%. Non-utility generation will increase its share from 14% in 1992 to 26% in 2002. Utility switching to natural gas during summer months to control nitrogen oxide emissions will give natural gas more flexibility to compete with other options to reduce air pollution. Pipeline capacity additions planned for the northeast are reviewed, including the Liberty pipeline, Empire State pipeline, Portland gas transmission system, Minuteman delivery system and Mayflower gas transmission system. There will be more than adequate reliable and flexible pipeline capacity created to meet the future demand for natural gas in this region. 14 figs

  20. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run...... areas between bed particles, ultimately led to bed agglomeration. The interfaces and the presence of gas bubbles in the cement suggest a bonding material with a high surface tension and a liquid state. The cement films originate by filling of irregularities on individual and partially agglomerated bed...

  1. Operational procedure for computer program for design point characteristics of a compressed-air generator with through-flow combustor for V/STOL applications

    Science.gov (United States)

    Krebs, R. P.

    1971-01-01

    The computer program described in this report calculates the design-point characteristics of a compressed-air generator for use in V/STOL applications such as systems with a tip-turbine-driven lift fan. The program computes the dimensions and mass, as well as the thermodynamic performance of a model air generator configuration which involves a straight through-flow combustor. Physical and thermodynamic characteristics of the air generator components are also given. The program was written in FORTRAN IV language. Provision has been made so that the program will accept input values in either SI units or U.S. customary units. Each air generator design-point calculation requires about 1.5 seconds of 7094 computer time for execution.

  2. Diode Laser Sensor for Gas Temperature and H2O Concentration in a Scramjet Combustor Using Wavelength Modulation Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Rieker, Gregory B; Li, Jonathan T; Jeffries, Jay B; Mathur, Tarun; Gruber, Mark R; Carter, Campbell D

    2005-01-01

    A diode laser absorption sensor which probes three spectral features of water vapor in the near infrared region to infer gas temperature and water vapor concentration near the exit of a scramjet combustor is presented...

  3. Food and drink serving contract

    Directory of Open Access Journals (Sweden)

    Veselinović Janko

    2012-01-01

    Full Text Available Food and drink catering service is almost as old as the civilization itself. Even though this vocation is a part of the catering activity, Serbian law does not foresee this contract section as personalized. Key legal sources for this kind of contract are business customs. Food and drink serving contract is a mixed-type contract and its legal nature is very interesting due to its complexity. Specific for this contract is the fact that it is not an ordinary service, but also an activity which requires a degree of culinary skills, knowledge of customs of other nations, as well as other skills. The very category of a good professional in business economy / hospitality industry is very dynamic, as it needs to be evaluated according to all given circumstances, which may be rather unpredictable. By considering the legal nature, but also the rights and obligations of the contracting parties, we tried to point to the questions that require a special attention. Legal sources that indirectly refer to food and drink serving contracts were taken into account. Apart from the Law on Obligatory Relations, we also considered here the Law on Tourism also pointing to the comparative law and jurisprudence.

  4. Depicted serving size: cereal packaging pictures exaggerate serving sizes and promote overserving.

    Science.gov (United States)

    Tal, Aner; Niemann, Stina; Wansink, Brian

    2017-02-06

    Extensive work has focused on the effects of nutrition label information on consumer behavior on the one hand, and on the effects of packaging graphics on the other hand. However, little work has examined how serving suggestion depictions - graphics relating to serving size - influence the quantity consumers serve themselves. The current work examines the prevalence of exaggerated serving size depictions on product packaging (study 1) and its effects on food serving in the context of cereal (study 2). Study 1 was an observational field survey of cereal packaging. Study 2 was a mixed experimental cross-sectional design conducted at a U.S. university, with 51 student participants. Study 1 coded 158 US breakfast cereals and compared the serving sizes depicted on the front of the box with the suggested serving size stated on the nutrition facts panel. Study 2 measured the amount of cereal poured from exaggerated or accurate serving size depictions. Study 1 compared average servings via t-tests. Study 2 used a mixed model with cereal type as the repeated measure and a compound symmetry covariance matrix. Study 1 demonstrated that portion size depictions on the front of 158 cereal boxes were 65.84% larger (221 vs. 134 calories) than the recommended portions on nutrition facts panels of those cereals. Study 2 showed that boxes that depicted exaggerated serving sizes led people to pour 20% more cereal compared to pouring from modified boxes that depicted a single-size portion of cereal matching suggested serving size. This was 45% over the suggested serving size. Biases in depicted serving size depicted on cereal packaging are prevalent in the marketplace. Such biases may lead to overserving, which may consequently lead to overeating. Companies should depict the recommended serving sizes, or otherwise indicate that the depicted portion represents an exaggerated serving size.

  5. Depicted serving size: cereal packaging pictures exaggerate serving sizes and promote overserving

    Directory of Open Access Journals (Sweden)

    Aner Tal

    2017-02-01

    Full Text Available Abstract Background Extensive work has focused on the effects of nutrition label information on consumer behavior on the one hand, and on the effects of packaging graphics on the other hand. However, little work has examined how serving suggestion depictions - graphics relating to serving size - influence the quantity consumers serve themselves. The current work examines the prevalence of exaggerated serving size depictions on product packaging (study 1 and its effects on food serving in the context of cereal (study 2. Methods Study 1 was an observational field survey of cereal packaging. Study 2 was a mixed experimental cross-sectional design conducted at a U.S. university, with 51 student participants. Study 1 coded 158 US breakfast cereals and compared the serving sizes depicted on the front of the box with the suggested serving size stated on the nutrition facts panel. Study 2 measured the amount of cereal poured from exaggerated or accurate serving size depictions. Study 1 compared average servings via t-tests. Study 2 used a mixed model with cereal type as the repeated measure and a compound symmetry covariance matrix. Results Study 1 demonstrated that portion size depictions on the front of 158 cereal boxes were 64.7% larger (221 vs. 134 calories than the recommended portions on nutrition facts panels of those cereals. Study 2 showed that boxes that depicted exaggerated serving sizes led people to pour 17.8% more cereal compared to pouring from modified boxes that depicted a single-size portion of cereal matching suggested serving size. This was 42% over the suggested serving size. Conclusions Biases in depicted serving size depicted on cereal packaging are prevalent in the marketplace. Such biases may lead to overserving, which may consequently lead to overeating. Companies should depict the recommended serving sizes, or otherwise indicate that the depicted portion represents an exaggerated serving size.

  6. Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds

    Science.gov (United States)

    Yungster, Shaye; Chen, Kuo-Huey

    1997-01-01

    A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.

  7. Libraries serving dialogue

    CERN Document Server

    Dupont, Odile

    2014-01-01

    This book based on experiences of libraries serving interreligious dialogue, presents themes like library tools serving dialogue between cultures, collections dialoguing, children and young adults dialoguing beyond borders, story telling as dialog, librarians serving interreligious dialogue.

  8. Uncapacitated facility location problem with self-serving demands

    Directory of Open Access Journals (Sweden)

    E Monabbati

    2013-12-01

    Full Text Available In classical uncapacitated facility location problems (UFLP the goal is to satisfy requirements of some demand points by setting up some servers, among potential facility locations, such that the total cost including service costs and fixed costs are minimized. In this paper a generalization of UFLP is considered in which some demand points, called self-serving, could be served exclusively by a new server at that point. Numerical experiments show that near optimal solutions are achieved by the proposed method.

  9. Report covering examination of parts from downhole steam generators. [Combustor head and sleeve parts

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, F. S.; Meier, G. H.

    1983-08-01

    Combustor head and sleeve parts were examined by using optical and scanning electron metallography after use in oxygen/diesel and air/diesel downhole steam generators. The degradation of the different alloy components is described in terms of reactions with oxygen, sulfur and carbon in the presence of cyclic stresses, all generated by the combustion process. Recommendations are presented for component materials (alloys and coatings) to extend component lives in the downhole steam generators. 9 references, 22 figures, 3 tables.

  10. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    Science.gov (United States)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  11. The Effect of Air Preheat at Atmospheric Pressure on the Formation of NO(x) in the Quick-Mix Sections of an Axially Staged Combustor

    Science.gov (United States)

    Vardakas, M. A.; Leong, M. Y.; Brouwer, J.; Samuelsen, G. S.; Holdeman, J. D.

    1999-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of nitrogen oxides (NO(x)) in gas turbine systems. The success of this combustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and fuel-lean stages. Note that although these results were obtained from an experiment designed to study an RQL mixer, the link between mixing and NOx signatures is considerably broader than this application, in that the need to understand this link exists in most advanced combustors. The experiment reported herein was designed to study the effects of inlet air temperature on NO(x) formation in a mixing section. The results indicate that NO(x) emission is increased for all preheated cases compared to non-preheated cases. When comparing the various mixing modules, the affect of jet penetration is important, as this determines where NO(x) concentrations peak, and affects overall NO(x) production. Although jet air comprises 70 percent of the total airflow, the impact that jet air preheat has on overall NO(x) emissions is small compared to preheating both main and jet air flow.

  12. A micro fuel reformer integrated with a combustor and a microchannel evaporator

    Science.gov (United States)

    Yoshida, Kazushi; Tanaka, Shuji; Hiraki, Hisashi; Esashi, Masayoshi

    2006-09-01

    This paper describes the development of a micro fuel reformer integrated with a combustor and an evaporator. Fuel reforming tests were performed by using a mixture of methanol and water as reforming fuel and hydrogen as combustion fuel. It was found that the design of the microchannel evaporator is critical to obtain larger hydrogen output. Hydrogen output and CO concentration were investigated by varying the input combustion power at different fuel feeding rates. 32.9 sccm of hydrogen, which is equivalent to 5.9 W in lower heating value, was produced, when input combustion power was 11 W.

  13. Predicting Volleyball Serve-Reception

    NARCIS (Netherlands)

    Paulo, Ana; Zaal, Frank T J M; Fonseca, Sofia; Araujo, Duarte

    2016-01-01

    Serve and serve-reception performance have predicted success in volleyball. Given the impact of serve-reception on the game, we aimed at understanding what it is in the serve and receiver's actions that determines the selection of the type of pass used in serve-reception and its efficacy. Four

  14. Numerical studies of the integration of a trapped vortex combustor into traditional combustion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Patrignani, L.; Losurdo, M.; Bruno, C. [Sapienza Univ. de Roma, Rome (Italy)

    2010-09-15

    Exhaust emissions from furnace burners can be reduced by premixing reactants with combustion products. This paper discussed the use of a trapped vortex combustor (TVC) as a very promising technology for gas turbines. The TVC can reduce emissions and ensure that the temperature is uniform in the exhaust products, which is a key aspect for certain types of heat treatments, such as in steel rolling mills. The TVC for gas turbines is configured to mix air, fuel and hot products at turbulent scales fine enough to render the combustion mode flameless, or close to flameless. The vortex ensures a high recirculation factor between hot combustion products and reactants, and ultimately flame stability. In this study, the TVC configuration for an existing gas turbine was numerically investigated by means of RANS and LES. According to preliminary results of the fast-flameless combustion (FFC) strategy, the proposed TVC is a suitable candidate to reduce nitrogen oxide (NOx) emissions while keeping the pressure drop below 1 per cent. Both RANS and LES show that too much fuel burns along the main duct. Better fuel splitting or a different position for the injectors may enhance combustion inside the recirculation zone. Behaviour of the main vortices showed that a more accurate design of the internal shape of the combustor is needed to prevent excessive velocity fluctuation or vortex instabilities and therefore emissions. 13 refs., 9 figs.

  15. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  16. Development of Multi-perspective Diagnostics and Analysis Algorithms with Applications to Subsonic and Supersonic Combustors

    Science.gov (United States)

    Wickersham, Andrew Joseph

    There are two critical research needs for the study of hydrocarbon combustion in high speed flows: 1) combustion diagnostics with adequate temporal and spatial resolution, and 2) mathematical techniques that can extract key information from large datasets. The goal of this work is to address these needs, respectively, by the use of high speed and multi-perspective chemiluminescence and advanced mathematical algorithms. To obtain the measurements, this work explored the application of high speed chemiluminescence diagnostics and the use of fiber-based endoscopes (FBEs) for non-intrusive and multi-perspective chemiluminescence imaging up to 20 kHz. Non-intrusive and full-field imaging measurements provide a wealth of information for model validation and design optimization of propulsion systems. However, it is challenging to obtain such measurements due to various implementation difficulties such as optical access, thermal management, and equipment cost. This work therefore explores the application of FBEs for non-intrusive imaging to supersonic propulsion systems. The FBEs used in this work are demonstrated to overcome many of the aforementioned difficulties and provided datasets from multiple angular positions up to 20 kHz in a supersonic combustor. The combustor operated on ethylene fuel at Mach 2 with an inlet stagnation temperature and pressure of approximately 640 degrees Fahrenheit and 70 psia, respectively. The imaging measurements were obtained from eight perspectives simultaneously, providing full-field datasets under such flow conditions for the first time, allowing the possibility of inferring multi-dimensional measurements. Due to the high speed and multi-perspective nature, such new diagnostic capability generates a large volume of data and calls for analysis algorithms that can process the data and extract key physics effectively. To extract the key combustion dynamics from the measurements, three mathematical methods were investigated in this work

  17. CFD Analysis of Fuel Atomization, Secondary Droplet Breakup and Spray Dispersion in the Premix Duct of a LPP Combustor

    NARCIS (Netherlands)

    Schmehl, R.; Maier, G.; Wittig, S.

    2000-01-01

    The two phase flow in the premix duct of a LPP combustor is computed using a Lagrangian droplet tracking method. To reproduce the characteristic spray structure of an air-assisted pressure-swirl atomizer, a sheet spray model is de-rived from measured sheet parameters and combined with an advanced

  18. CATALYTIC COMBUSTION OF METHANE OVER Pt/γ-Al2O3 IN MICRO-COMBUSTOR WITH DETAILED CHEMICAL KINETIC MECHANISMS

    Directory of Open Access Journals (Sweden)

    JUNJIE CHEN

    2014-11-01

    Full Text Available Micro-scale catalytic combustion characteristics and heat transfer processes of preheated methane-air mixtures (φ = 0.4 in the plane channel were investigated numerically with detailed chemical kinetic mechanisms. The plane channel of length L = 10.0 mm, height H =1.0 mm and wall thickness δ = 0.1 mm, which inner horizontal surfaces contained Pt/γ-Al2O3 catalyst washcoat. The computational results indicate that the presence of the gas phase reactions extends mildly the micro-combustion stability limits at low and moderate inlet velocities due to the strong flames establishment, and have a more profound effect on extending the high-velocity blowout limits by allowing for additional heat release originating mainly from the incomplete CH4 gas phase oxidation in the plane channel. When the same mass flow rate (ρin × Vin is considered, the micro-combustion stability limits at p: 0.1 MPa are much narrower than at p: 0.6 MPa due to both gas phase and catalytic reaction activities decline with decreasing pressure. Catalytic micro-combustor can achieve stable combustion at low solid thermal conductivity ks < 0.1 W∙m-1•K-1, while the micro-combustion extinction limits reach their larger extent for the higher thermal conductivity ks = 20.0-100.0 W∙m-1•K-1. The existence of surface radiation heat transfers significantly effects on the micro-combustion stability limits and micro-combustors energy balance. Finally, gas phase combustion in catalytic micro-combustors can be sustained at the sub-millimeter scale (plane channel height of 0.25 mm.

  19. On the Role of Chemical Kinetics Modeling in the LES of Premixed Bluff Body and Backward-Facing Step Combustors

    KAUST Repository

    Chakroun, Nadim W.

    2017-01-05

    Recirculating flows in the wake of a bluff body, behind a sudden expansion or down-stream of a swirler, are pivotal for anchoring a flame and expanding the stability range. The size and structure of these recirculation zones and the accurate prediction of the length of these zones is a very important characteristic that computational simulations should have. Large eddy simulation (LES) techniques with an appropriate combustion model and reaction mechanism afford a balance between computational complexity and predictive accuracy. In this study, propane/air mixtures were simulated in a bluff-body stabilized combustor based on the Volvo test case and also in a backward-facing step combustor. The main goal is to investigate the role of the chemical mechanism and the accuracy of estimating the extinction strain rate on the prediction of important ow features such as recirculation zones. Two 2-step mechanisms were employed, one which gave reasonable extinction strain rates and another modi ed 2-step mechanism where it grossly over-predicted the values. This modified mechanism under-predicted recirculation zone lengths compared to the original mechanism and had worse agreement with experiments in both geometries. While the recirculation zone lengths predicted by both reduced mechanisms in the step combustor scale linearly with the extinction strain rate, the scaling curves do not match experimental results as none of the simpli ed mechanisms produce extinction strain rates that are consistent with those predicted by the comprehensive mechanisms. We conclude that it is very important that a chemical mechanism is able to correctly predict extinction strain rates if it is to be used in CFD simulations.

  20. Combustor with two stage primary fuel tube with concentric members and flow regulating

    Science.gov (United States)

    Parker, David Marchant; Whidden, Graydon Lane; Zolyomi, Wendel

    1999-01-01

    A combustor for a gas turbine having a centrally located fuel nozzle and inner, middle and outer concentric cylindrical liners, the inner liner enclosing a primary combustion zone. The combustor has an air inlet that forms two passages for pre-mixing primary fuel and air to be supplied to the primary combustion zone. Each of the pre-mixing passages has a circumferential array of swirl vanes. A plurality of primary fuel tube assemblies extend through both pre-mixing passages, with each primary fuel tube assembly located between a pair of swirl vanes. Each primary fuel tube assembly is comprised of two tubular members. The first member supplies fuel to the first pre-mixing passage, while the second member, which extends through the first member, supplies fuel to the second pre-mixing passage. An annular fuel manifold is divided into first and second chambers by a circumferentially extending baffle. The proximal end of the first member is attached to the manifold itself while the proximal end of the second member is attached to the baffle. The distal end of the first member is attached directly to the second member at around its mid-point. The inlets of the first and second members are in flow communication with the first and second manifold chambers, respectively. Control valves separately regulate the flow of fuel to the two chambers and, therefore, to the two members of the fuel tube assemblies, thereby allowing the flow of fuel to the first and second pre-mixing passages to be separately controlled.

  1. Reduction of nitrogen oxides by injection of urea in the freeboard of a pilot scale fluidized bed combustor

    NARCIS (Netherlands)

    Knol, Koen E.; Bramer, Eduard A.; Valk, M.

    1989-01-01

    The ‘thermal deNOx’ process using urea has been investigated in a 1 MW fluidized bed combustor. NOx reductions of up to 76% were obtainable by using this method. The experimental results show that urea is at least as active as NH3, which is commonly used in this application, but which is far more

  2. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  3. Toss differences between the slice serve and the kick serve in tennis

    Directory of Open Access Journals (Sweden)

    Jan Carboch

    2015-06-01

    Full Text Available Background: Pre-contact information of servers' motion is important for receiving players in tennis. Objective: The aim of this study is to examine whether serving players use the same ball toss for kick serve (KS and slice serve (SS at two different directions of serves, from the receiver's view. Methods: 10 male right-handed professional tennis players with an average ATP ranking of 533 were videotaped from the receiver's view using a high-speed video camera (200 Hz. Firstly, they served SS and then KS from deuce court. After reaching 3 successful SS and 3 KS to the correct location, the same procedure followed from the ad court. Kinematic analysis was used to obtain the point of ball release, vertical toss peak and racquet-ball contact. Results: Even though the release point was found nearly in the same location, the vertical toss peak of KS was horizontally to the right compared to SS and the point of racquet ball-contact of KS was even more to the right by approximately 30 cm from the receiver's view. Similar findings were obtained from deuce court and ad court. Conclusions: We found differences in the ball toss execution between KS and SS. The serve toss can provide useful information for receiving players. Serving players should use the same toss for each type of serve to hide their intention.

  4. A notational analysis of elite tennis serve and serve-return strategies on slow surface.

    Science.gov (United States)

    Gillet, Eric; Leroy, David; Thouvarecq, Régis; Stein, Jean-François

    2009-03-01

    A notational analysis of singles events at the French Open Grand Slam tournament was undertaken in 2005 and 2006 to characterize the game patterns and strategies of serve and serve-return and to determine their influence on the point issue on a clay court surface. One hundred sixteen men's singles matches were video analyzed. The flat serve (57.6%), particularly down the "T" location (50.3%), allowed servers to win significantly more points than the topspin (24.1%) and slice serves (18.3%). When the topspin was the first serve strategy, servers kept a high percentage of points won from the serve (52.4%). This strategy was essentially used on the second serve (91.6%) by playing the "T" location in the deuce court and the wide zone in the advantage court. Returns to the central zone allowed receivers to win more points (73.3% on first serve and 65.9% on second serve) than plays to external locations. The results highlight the high impact of the first shots of all opponents on the rally. Even on clay, the slowest court surface, serves and serve-returns remain the strokes that most influence the match results in modern tennis games.

  5. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control. Project quarterly report, December 1, 1989--February 28, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Quimby, J.M.

    1990-04-01

    The objective of this test program is the performance and economic evaluation of a pre charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons.

  6. Dynamic Data-Driven Prediction of Lean Blowout in a Swirl-Stabilized Combustor

    Directory of Open Access Journals (Sweden)

    Soumalya Sarkar

    2015-09-01

    Full Text Available This paper addresses dynamic data-driven prediction of lean blowout (LBO phenomena in confined combustion processes, which are prevalent in many physical applications (e.g., land-based and aircraft gas-turbine engines. The underlying concept is built upon pattern classification and is validated for LBO prediction with time series of chemiluminescence sensor data from a laboratory-scale swirl-stabilized dump combustor. The proposed method of LBO prediction makes use of the theory of symbolic dynamics, where (finite-length time series data are partitioned to produce symbol strings that, in turn, generate a special class of probabilistic finite state automata (PFSA. These PFSA, called D-Markov machines, have a deterministic algebraic structure and their states are represented by symbol blocks of length D or less, where D is a positive integer. The D-Markov machines are constructed in two steps: (i state splitting, i.e., the states are split based on their information contents, and (ii state merging, i.e., two or more states (of possibly different lengths are merged together to form a new state without any significant loss of the embedded information. The modeling complexity (e.g., number of states of a D-Markov machine model is observed to be drastically reduced as the combustor approaches LBO. An anomaly measure, based on Kullback-Leibler divergence, is constructed to predict the proximity of LBO. The problem of LBO prediction is posed in a pattern classification setting and the underlying algorithms have been tested on experimental data at different extents of fuel-air premixing and fuel/air ratio. It is shown that, over a wide range of fuel-air premixing, D-Markov machines with D > 1 perform better as predictors of LBO than those with D = 1.

  7. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  8. Serving Diverse Knowledge Systems in Academia

    Directory of Open Access Journals (Sweden)

    William F. Birdsall

    2009-06-01

    Full Text Available Libraries and academic disciplines are experiencing a major transformation to the digital era. A challenge for libraries is to adapt and coordinate their transformation with differing rates and types of changes in teaching, research, and scholarly communication among the disciplines they serve. This paper argues libraries need to acknowledge the diversity of knowledge systems and adopt a strategy that requires collaboration between libraries and multiple communities of knowing in the development and provision of heterogeneous services.

  9. The prediction of heat transfer coefficient in circulating fluidized bed combustors

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Al-qaq, A.M.

    2008-01-01

    In the present work, a theoretical study is performed to modify an existing model that is used to predict the heat transfer coefficient in circulating fluidized bed combustors. In the model, certain parameters were used as being of constant values, which leads to an error in the obtained value of the heat transfer coefficient. In this study and as a first step, the model is thoroughly studied and then the variation of the coefficient with these parameters is presented. Having done that, correlation for these parameters are obtained and then used in the model. Finally the modified model was tested against previously experimental and theoretical data that is available in literature. It was found that the accuracy of the model has been improved after it has been modified

  10. The prediction of heat transfer coefficient in circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Hamdan, M.A.; Al-qaq, A.M. [Department of Mechanical Engineering, University of Jordan Amman, Qween Rania Street, Amman, AL Jbeeha 11942 (Jordan)

    2008-11-15

    In the present work, a theoretical study is performed to modify an existing model that is used to predict the heat transfer coefficient in circulating fluidized bed combustors. In the model, certain parameters were used as being of constant values, which leads to an error in the obtained value of the heat transfer coefficient. In this study and as a first step, the model is thoroughly studied and then the variation of the coefficient with these parameters is presented. Having done that, correlation for these parameters are obtained and then used in the model. Finally the modified model was tested against previously experimental and theoretical data that is available in literature. It was found that the accuracy of the model has been improved after it has been modified. (author)

  11. Research brief : Serving Bowl Selection Biases the Amount of Food Served

    NARCIS (Netherlands)

    Kleef, van E.; Shimizu, M.; Wansink, B.

    2012-01-01

    Objective: To determine how common serving bowls containing food for multiple persons influence serving behavior and consumption and whether they do so independently of satiation and food evaluation. Methods: In this between-subjects experiment, 68 participants were randomly assigned to either a

  12. Retrofit design of rice husk feeding system in the production of amorphous silica ash in a pilot scale fluidized bed combustor

    International Nuclear Information System (INIS)

    Abdul, A.; Rozainee, M.; Anwar, J.; Wan Alwi, R.S.

    2010-01-01

    Full text: Rice husk is among the most important recovery resources for silica that is produced annually in huge quantities in many countries such as Malaysia which produces 2.38 (MT) of rice paddy. Rice husks accounts for 14-35 % of the weight of the paddy harvested, depending on the paddy variety and because of its abundance it poses serious environmental problems in the rice producing countries. Therefore, the thermo-chemical conversion of rice husks to useful silica ash by fluidized bed combustion is the proven and cost-effective technology for converting the renewable waste husks by making commercial use of this rice husk ash because of its self sustaining ability. However, feeding of rice husk into the reactor bed has become a difficult problem hindering the production of amorphous silica. This is due to the poor penetration and low bulk density as well as the flaky, abrasive and joined nature of rice husk. Most of the researches into fluidized bed combustion are on laboratory or bench scale and none had discussed pilot scale combustion of rice husk into amorphous silica. A recent attempt to solve this feeding problem from an experimental investigation in a bench-scale culminates into a pilot-scale fluidized bed combustor designed with a combined screw conveyor and an inclined pneumatic feeding by direct injection, yet the problem persists. This paper presents a retrofit design of the existing 0.5 m internal diameter pilot scale fluidized bed combustor by the use of combined screw feeding system. It is envisaged that at the end of the experimental investigation the retrofit design will address the problem associated with rice husk feeding in bubbling fluidized bed combustors. (author)

  13. Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors

    Science.gov (United States)

    VanOverbeke, Thomas J.

    1998-01-01

    The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except

  14. Experimental investigations of the influence from different operating conditions on the particle emissions from a small-scale pellets combustor

    International Nuclear Information System (INIS)

    Wiinikka, Henrik; Gebart, Rikard

    2004-01-01

    The purpose of this study is to determine how different design parameters in an idealised small-scale combustor affect the emission of particulates in the flue gas and to provide insight that can be used for design optimisation. The design parameters are the primary air factor, the total air factor and the magnitude of swirling flow in the combustion chamber. Particles from the reactor were collected from two different sampling lines, one located in the combustion zone, just above the fuel bed, and the other in the flue stack after the reactor. The measurements show that this burner gives very low emissions of particulates and CO in the flue gas. Furthermore, the concentration of particles in the flue gas is uncoupled to the concentration of particles immediately above the fuel bed, probably as a result of a well-designed secondary air supply. The variable that had the strongest effect on the total particulate emission from the combustor was the total air factor. In order to understand the qualitative differences in the flow nature between different operating conditions, CFD simulations of the flow field were also performed

  15. Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  16. A Helpful Serving

    Science.gov (United States)

    Rockower, David

    2006-01-01

    This article briefly describes how a fifth-grade class collaborated with a downtown diner for several months and then actually ran the restaurant for four hours. Through the Chatters Cafe, a local high school cafe that serves as a culinary arts training ground for high school students, fifth graders had the opportunity to prepare and serve dinner…

  17. Development of a pilot fluidized bed combustion to NOx reduction using natural gas: characterization and dimensioning; Desenvolvimento de um combustor piloto a leito fluidizado para reducao de NOx usando gas natural: caracterizacao e dimensionamento

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas A.; Lucena, Sergio [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2004-07-01

    At the present time, the operation of combustion systems and the design of combustors continue being important problems in the Engineering, and don't involve just the size increase of combustors, but also changes of characteristics in the details of projects. The combustors applications are directly related to the needs, like: material transformation for heating, drying or incineration; and all have the inconvenience of emanating of pollutant gaseous (such like NOx). In combustion systems of gases, NOx is basically created in the reaction between nitrogen and oxygen to high temperatures ({approx} 1200 deg C). Below such conditions, the contribution of thermal NOx is recognisably small. The efficient reduction, safe control and economical elimination of pollutant emissions in the systems of burning are the main focuses of environmental legislation and concern to several industrialized countries, besides Brazil. Furthermore, in appeal at the Environmental Laws and at the rising consumption of combustible gases (Natural Gas), new technologies more attractive and economically viable have been studied, for example the combustion systems in fluidized bed. In this kind of system is possible to obtain high combustion efficiency at low temperatures ({approx} 900 deg C) with NOx reduction. In this work is intended of characterizing and dimensioning an industrial fluidized bed combustor that uses Natural Gas like feedstock in the combustion system, with smaller amounts of emitted NOx. (author)

  18. Instrumentation requirements from the user's view

    International Nuclear Information System (INIS)

    Harsha, P.T.

    1988-01-01

    The use of combustor diagnostics is considered from the point of view of demonstration of performance of an airbreathing hypersonic engine. The basic need is seen to be that of providing the data necessary to verify performance predictions for the engine as installed in the airplane. This necessitates the use of a diagnostics capability that can provide the inputs required by the computational analyses that will be used to assess this performance. Because of the cost of ground test facilities, a premium is placed on measurement technique reliability and redundancy of instrumentation. A mix of nonintrusive optical techniques and probe-based measurements is seen to be the best approach using current diagnostics capability; one such instrument mix is outlined for a ramjet/scramjet test program. 11 references

  19. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor

    Science.gov (United States)

    Boxx, Isaac; Arndt, Christoph M.; Carter, Campbell D.; Meier, Wolfgang

    2012-03-01

    A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ` noisy') flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (` quiet') flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.

  20. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  1. Major gaseous and PAH emissions from a fluidized-bed combustor firing rice husk with high combustion efficiency

    International Nuclear Information System (INIS)

    Janvijitsakul, Kasama; Kuprianov, Vladimir I.

    2008-01-01

    This experimental work investigated major gaseous (CO and NO x ) and PAH emissions from a 400 kW th fluidized-bed combustor with a cone-shaped bed (referred to as 'conical FBC') firing rice husk with high, over 99%, combustion efficiency. Experimental tests were carried out at the fuel feed rate of 80 kg/h for different values of excess air (EA). As revealed by the experimental results, EA had substantial effects on the axial CO and NO x concentration profiles and corresponding emissions from the combustor. The concentration (mg/kg-ash) and specific emission (μg/kW h) of twelve polycyclic aromatic hydrocarbons (PAHs), acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene, were quantified in this work for different size fractions of ash emitted from the conical FBC firing rice husk at EA = 20.9%. The total PAHs emission was found to be predominant for the coarsest ash particles, due to the effects of a highly developed internal surface in a particle volume. The highest emission was shown by acenaphthylene, 4.1 μg/kW h, when the total yield of PAHs via fly ash was about 10 μg/kW h. (author)

  2. A Priori Analysis of a Compressible Flamelet Model using RANS Data for a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Quinlan, Jesse R.; Drozda, Tomasz G.; McDaniel, James C.; Lacaze, Guilhem; Oefelein, Joseph

    2015-01-01

    In an effort to make large eddy simulation of hydrocarbon-fueled scramjet combustors more computationally accessible using realistic chemical reaction mechanisms, a compressible flamelet/progress variable (FPV) model was proposed that extends current FPV model formulations to high-speed, compressible flows. Development of this model relied on observations garnered from an a priori analysis of the Reynolds-Averaged Navier-Stokes (RANS) data obtained for the Hypersonic International Flight Research and Experimentation (HI-FiRE) dual-mode scramjet combustor. The RANS data were obtained using a reduced chemical mechanism for the combustion of a JP-7 surrogate and were validated using avail- able experimental data. These RANS data were then post-processed to obtain, in an a priori fashion, the scalar fields corresponding to an FPV-based modeling approach. In the current work, in addition to the proposed compressible flamelet model, a standard incompressible FPV model was also considered. Several candidate progress variables were investigated for their ability to recover static temperature and major and minor product species. The effects of pressure and temperature on the tabulated progress variable source term were characterized, and model coupling terms embedded in the Reynolds- averaged Navier-Stokes equations were studied. Finally, results for the novel compressible flamelet/progress variable model were presented to demonstrate the improvement attained by modeling the effects of pressure and flamelet boundary conditions on the combustion.

  3. Effects of chemical equilibrium on turbine engine performance for various fuels and combustor temperatures

    Science.gov (United States)

    Tran, Donald H.; Snyder, Christopher A.

    1992-01-01

    A study was performed to quantify the differences in turbine engine performance with and without the chemical dissociation effects for various fuel types over a range of combustor temperatures. Both turbojet and turbofan engines were studied with hydrocarbon fuels and cryogenic, nonhydrocarbon fuels. Results of the study indicate that accuracy of engine performance decreases when nonhydrocarbon fuels are used, especially at high temperatures where chemical dissociation becomes more significant. For instance, the deviation in net thrust for liquid hydrogen fuel can become as high as 20 percent at 4160 R. This study reveals that computer central processing unit (CPU) time increases significantly when dissociation effects are included in the cycle analysis.

  4. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass

    International Nuclear Information System (INIS)

    Mahmoudi, Shiva; Baeyens, Jan; Seville, Jonathan P.K.

    2010-01-01

    Caledonian Paper (CaPa) is a major paper mill, located in Ayr, Scotland. For its steam supply, it previously relied on the use of a Circulating Fluidized Bed Combustor (CFBC) of 58 MW th , burning coal, wood bark and wastewater treatment sludge. It currently uses a bubbling fluidized bed combustor (BFBC) of 102 MW th to generate steam at 99 bar, superheated to 465 o C. The boiler is followed by steam turbines and a 15 kg/s steam circuit into the mill. Whereas previously coal, wood bark and wastewater treatment sludge were used as fuel, currently only plantation wood (mainly spruce), demolition wood, wood bark and sludge are used. Since these biosolids contain nitrogen, fuel NO x is formed at the combustion temperature of 850-900 o C. NO x emissions (NO + NO 2 ) vary on average between 300 and 600 mg/Nm 3 (dry gas). The current emission standard is 350 mg/Nm 3 but will be reduced in the future to a maximum of 233 mg/Nm 3 for stand-alone biomass combustors of capacity between 50 and 300 MW th according to the EU LCP standards. NO x abatement is therefore necessary. In the present paper we firstly review the NO x formation mechanisms, proving that for applications of fluidized bed combustion, fuel NO x is the main consideration, and the contribution of thermal NO x to the emissions insignificant. We then assess the deNO x techniques presented in the literature, with an updated review and special focus upon the techniques that are applicable at CaPa. From these techniques, Selective Non-catalytic Reduction (SNCR) using ammonia or urea emerges as the most appropriate NO x abatement solution. Although SNCR deNO x is a selective reduction, the reactions of NO x reduction by NH 3 in the presence of oxygen, and the oxidation of NH 3 proceed competitively. Both reactions were therefore studied in a lab-scale reactor and the results were transformed into design equations starting from the respective reaction kinetics. An overall deNO x yield can then be predicted for any

  5. Pilot fluidized bed combustor system applied to thermal energy production from light hydrocarbons - part I: description and hydrodynamics analysis; Sistema combustor piloto a leito fluidizado para producao de energia termica a partir de hidrocarbonetos leves. Parte I: descricao e analise hidrodinamica do sistema

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leandro P. de; Souza Junior, Francisco de Assis; Alves, Stella M.A.; Estevao, Paulo [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Lucena, Sergio; Souza, Phillipi R. de O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Lab. de Controle e Otimizacao de Processos; Santos, Douglas A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2008-07-01

    During the last years, the employment of light hydrocarbons in combustion systems for power generation has been announced by Brazilian Government's like a great bet for diversification the energetic matrix in spite of the provisional crisis. As consequence, high demand and growing R and D investments caused immediate reflexes in all economical and industrial sectors of the Natural Gas chain, mainly considering the gas from Campos, Santos and Espirito Santo offshore fields offered to the market. Regarding this, Northeast Region of Brazil shows itself to be attentive to the energy market tendencies and to environmental sector, creating conditions for developing new technologies and applications for the gas consumption. Among the possible applications of the gas consumption, the fluidized bed combustion systems are highlighted, like a real alternative for energy applying of the hydrocarbons produced, considering a good safety range to effective environmental demands. Thereby, the present work aimed to perform the description of a pilot fluidized bed combustor system with sand using light hydrocarbons - specifically, natural gas and LPG. Thereby, said pilot fluidized bed combustor operates isothermically without developing flames and/or hot spots. Besides the exposed, a hydrodynamic analysis of the system was made, identifying variables and parameters onto fluidized bed combustion process. (author.

  6. Wavelength modulation spectroscopy near 5 μm for carbon monoxide sensing in a high-pressure kerosene-fueled liquid rocket combustor

    Science.gov (United States)

    Lee, Daniel D.; Bendana, Fabio A.; Schumaker, S. Alexander; Spearrin, R. Mitchell

    2018-05-01

    A laser absorption sensor was developed for carbon monoxide (CO) sensing in high-pressure, fuel-rich combustion gases associated with the internal conditions of hydrocarbon-fueled liquid bipropellant rockets. An absorption feature near 4.98 μm, comprised primarily of two rovibrational lines from the P-branch of the fundamental band, was selected to minimize temperature sensitivity and spectral interference with other combustion gas species at the extreme temperatures (> 3000 K) and pressures (> 50 atm) in the combustion chamber environment. A scanned wavelength modulation spectroscopy technique (1 f-normalized 2 f detection) is utilized to infer species concentration from CO absorption, and mitigate the influence of non-absorption transmission losses and noise associated with the harsh sooting combustor environment. To implement the sensing strategy, a continuous-wave distributed-feedback (DFB) quantum cascade laser (QCL) was coupled to a hollow-core optical fiber for remote mid-infrared light delivery to the test article, with high-bandwidth light detection by a direct-mounted photovoltaic detector. The method was demonstrated to measure time-resolved CO mole fraction over a range of oxidizer-to-fuel ratios and pressures (20-70 atm) in a single-element-injector RP-2-GOx rocket combustor.

  7. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Science.gov (United States)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  8. Study of the mechanisms for flame stabilization in gas turbine model combustors using kHz laser diagnostics

    Science.gov (United States)

    Boxx, Isaac; Carter, Campbell D.; Stöhr, Michael; Meier, Wolfgang

    2013-05-01

    An image-processing routine was developed to autonomously identify and statistically characterize flame-kernel events, wherein OH (from a planar laser-induced fluorescence, PLIF, measurement) appears in the probe region away from the contiguous OH layer. This routine was applied to datasets from two gas turbine model combustors that consist of thousands of joint OH-velocity images from kHz framerate OH-PLIF and particle image velocimetry (PIV). Phase sorting of the kernel centroids with respect to the dominant fluid-dynamic structure of the combustors (a helical precessing vortex core, PVC) indicates through-plane transport of reacting fluid best explains their sudden appearance in the PLIF images. The concentration of flame-kernel events around the periphery of the mean location of the PVC indicates they are likely the result of wrinkling and/or breakup of the primary flame sheet associated with the passage of the PVC as it circumscribes the burner centerline. The prevailing through-plane velocity of the swirling flow-field transports these fragments into the imaging plane of the OH-PLIF system. The lack of flame-kernel events near the center of the PVC (in which there is lower strain and longer fluid-dynamic residence times) indicates that auto-ignition is not a likely explanation for these flame kernels in a majority of cases. The lack of flame-kernel centroid variation in one flame in which there is no PVC further supports this explanation.

  9. Mass serving theory application to the analysis of maintenance system functioning

    Directory of Open Access Journals (Sweden)

    Veljko Predrag Petrović

    2013-06-01

    Full Text Available This paper describes models and conditions for the application of the Mass Serving Theory in order to analyze relations between clients demanding the service and channels which provide the service as well as to design technological elements in the optimal regime for the given maintenance system. Based on the actual data collected and the statistical analysis of the expected intensity of combat vehicle arrivals and queuing at service for tehnical maintenance, the mathematical modeling of a real process of queuing was carried out and certain parameters quantified, in terms of determining the weaknesses of the existing models and the corrective actions needed. Introduction While solving many practical problems within the process of maintenance, the technological demands (TD for maintenance appear with the characteristics of stochasticity and stationarity. These properties provide the ability of the Mass Serving Theory (MST to be used, under certain conditions, for the dimensioning of technological elements (TE in the reporting maintenance system.The analysis of the mass serving system (MSS means the analysis of the input stream of clients, time and number of customers in a queue, time of serving and the output stream of clients as well. Mahtemathical models of the mass serving system applicable to maintenance processes There are many mathematical models developed in the MST to analyze the relationship between clients demanding the serving and channels that serve them. In the mathematical models of mass serving, the following parameters are commonly used as inputs: Input stream intensity,Serving intensity of the TE, Number of channels, i.e. TE; as outputs: Serving probability of TD,The average number of TD in a serving queue, and The average time of stay in the TD queue. In practice, during the system sizing, the number of channels is usually required, i.e. TE (n necessary to serve the TD, and in certain situations Input stream intensity and Serving

  10. Operating a production pilot factory serving several scientific domains

    Science.gov (United States)

    Sfiligoi, I.; Würthwein, F.; Andrews, W.; Dost, J. M.; MacNeill, I.; McCrea, A.; Sheripon, E.; Murphy, C. W.

    2011-12-01

    Pilot infrastructures are becoming prominent players in the Grid environment. One of the major advantages is represented by the reduced effort required by the user communities (also known as Virtual Organizations or VOs) due to the outsourcing of the Grid interfacing services, i.e. the pilot factory, to Grid experts. One such pilot factory, based on the glideinWMS pilot infrastructure, is being operated by the Open Science Grid at University of California San Diego (UCSD). This pilot factory is serving multiple VOs from several scientific domains. Currently the three major clients are the analysis operations of the HEP experiment CMS, the community VO HCC, which serves mostly math, biology and computer science users, and the structural biology VO NEBioGrid. The UCSD glidein factory allows the served VOs to use Grid resources distributed over 150 sites in North and South America, in Europe, and in Asia. This paper presents the steps taken to create a production quality pilot factory, together with the challenges encountered along the road.

  11. Operating a production pilot factory serving several scientific domains

    International Nuclear Information System (INIS)

    Sfiligoi, I; Würthwein, F; Andrews, W; Dost, J M; MacNeill, I; McCrea, A; Sheripon, E; Murphy, C W

    2011-01-01

    Pilot infrastructures are becoming prominent players in the Grid environment. One of the major advantages is represented by the reduced effort required by the user communities (also known as Virtual Organizations or VOs) due to the outsourcing of the Grid interfacing services, i.e. the pilot factory, to Grid experts. One such pilot factory, based on the glideinWMS pilot infrastructure, is being operated by the Open Science Grid at University of California San Diego (UCSD). This pilot factory is serving multiple VOs from several scientific domains. Currently the three major clients are the analysis operations of the HEP experiment CMS, the community VO HCC, which serves mostly math, biology and computer science users, and the structural biology VO NEBioGrid. The UCSD glidein factory allows the served VOs to use Grid resources distributed over 150 sites in North and South America, in Europe, and in Asia. This paper presents the steps taken to create a production quality pilot factory, together with the challenges encountered along the road.

  12. Large-Eddy / Reynolds-Averaged Navier-Stokes Simulations of a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Fulton, Jesse A.; Edwards, Jack R.; Hassan, Hassan A.; Rockwell, Robert; Goyne, Christopher; McDaniel, James; Smith, Chad; Cutler, Andrew; Johansen, Craig; Danehy, Paul M.; hide

    2012-01-01

    Numerical simulations of reacting and non-reacting flows within a scramjet combustor configuration experimentally mapped at the University of Virginia s Scramjet Combustion Facility (operating with Configuration A ) are described in this paper. Reynolds-Averaged Navier-Stokes (RANS) and hybrid Large Eddy Simulation / Reynolds-Averaged Navier-Stokes (LES / RANS) methods are utilized, with the intent of comparing essentially blind predictions with results from non-intrusive flow-field measurement methods including coherent anti-Stokes Raman spectroscopy (CARS), hydroxyl radical planar laser-induced fluorescence (OH-PLIF), stereoscopic particle image velocimetry (SPIV), wavelength modulation spectroscopy (WMS), and focusing Schlieren. NC State's REACTMB solver was used both for RANS and LES / RANS, along with a 9-species, 19- reaction H2-air kinetics mechanism by Jachimowski. Inviscid fluxes were evaluated using Edwards LDFSS flux-splitting scheme, and the Menter BSL turbulence model was utilized in both full-domain RANS simulations and as the unsteady RANS portion of the LES / RANS closure. Simulations were executed and compared with experiment at two equivalence ratios, PHI = 0.17 and PHI = 0.34. Results show that the PHI = 0.17 flame is hotter near the injector while the PHI = 0.34 flame is displaced further downstream in the combustor, though it is still anchored to the injector. Reactant mixing was predicted to be much better at the lower equivalence ratio. The LES / RANS model appears to predict lower overall heat release compared to RANS (at least for PHI = 0.17), and its capability to capture the direct effects of larger turbulent eddies leads to much better predictions of reactant mixing and combustion in the flame stabilization region downstream of the fuel injector. Numerical results from the LES/RANS model also show very good agreement with OH-PLIF and SPIV measurements. An un-damped long-wave oscillation of the pre-combustion shock train, which caused

  13. Salty or sweet? Nutritional quality, consumption, and cost of snacks served in afterschool programs.

    Science.gov (United States)

    Beets, Michael W; Weaver, Robert G; Tilley, Falon; Turner-McGrievy, Gabrielle; Huberty, Jennifer; Ward, Dianne S; Freedman, Darcy A

    2015-02-01

    Snacks served in afterschool programs (ASPs, 3-6 pm) represent an important opportunity to promote healthy eating. ASP policies suggest a fruit/vegetable is served daily, while sugar-sweetened foods/beverages and artificially flavored snacks are eliminated. Limited information exists on the types of snacks served in ASPs, if snacks meet existing nutrition policies, whether children eat the snacks, and their cost. Direct observation of snacks served and consumed was collected in 20 ASPs serving over 1700 elementary age children. The number of days that snacks were served/week was evaluated for compliance with nutrition policies. Costs of snacks were collected via receipts. Programs served desserts and artificially flavored salty snacks on 2.7 and 2.1 days/week. Fruits and vegetables were served 0.6 and 0.1 days/week, respectively. Sugar-sweetened beverages were served 1.8 days/week. Of the children (N = 383) observed, 75% to 100% consumed the snack served, with 95% and 100% of served fruits/vegetables consumed. No ASP served fruit/vegetables daily, 18 served sugar-sweetened foods, 16 served artificially flavored snacks, and 14 served sugar-sweetened beverages. Desserts and salty snacks cost $0.27-$0.32/snack vs $0.38-$0.40/snack for vegetables/fruits. The quality of snacks failed to meet nutrition policies and consists of predominately high-sugar and artificially flavored options. Strategies to improve snack offerings in ASPs while addressing price barriers are required. © 2015, American School Health Association.

  14. Salty or Sweet? Nutritional quality, consumption, and cost of snacks served in afterschool programs

    Science.gov (United States)

    Beets, Michael W.; Weaver, R. Glenn; Tilley, Falon; Turner-McGrievy, Brie; Huberty, Jennifer; Ward, Dianne S.; Freedman, Darcy A.

    2015-01-01

    BACKGROUND Snacks served in afterschool programs (ASPs, 3–6pm) represent an important opportunity to promote healthy eating. ASP policies suggest a fruit/vegetable is served daily, while sugar-sweetened foods/beverages and artificially-flavored snacks are eliminated. Limited information exists on the types of snacks served in ASPs, if snacks meet existing nutrition policies, whether children eat the snacks, and their cost. METHODS Direct observation of snacks served and consumed was collected in 20 ASPs serving over 1,700 elementary-age children. The number of days snacks were served/week was evaluated for compliance with nutrition policies. Costs of snacks were collected via receipts. RESULTS Programs served desserts and artificially-flavored salty-snacks on 2.7 and 2.1 days/week. Fruits and vegetables were served 0.6 and 0.1 days/wk, respectively. Sugar-sweetened-beverages were served 1.8 days/wk. Of the children (N=383) observed, 75–100% consumed the snack served, with 95% and 100% of served fruits/vegetables consumed. No ASP served fruit/vegetables daily, 18 served sugar-sweetened foods, 16 served artificially-flavored snacks, and 14 served sugar-sweetened-beverages. Desserts and salty-snacks cost $0.27–$0.32/snack vs. $0.38–$0.40/snack for vegetables/fruits. CONCLUSIONS The quality of snacks failed to meet nutrition policies and consists of predominately high-sugar and artificially-flavored options. Strategies to improve snack offerings in ASPs while addressing price barriers are required. PMID:25564980

  15. A Cross-Wavelet Transform Aided Rule Based Approach for Early Prediction of Lean Blow-out in Swirl-Stabilized Dump Combustor

    Directory of Open Access Journals (Sweden)

    Debangshu Dey

    2015-03-01

    Full Text Available Lean or ultralean combustion is one of the popular strategies to achieve very low emission levels. However, it is extremely susceptible to lean blow-out (LBO. The present work explores a Cross-wavelet transform (XWT aided rule based scheme for early prediction of lean blowout. XWT can be considered as an advancement of wavelet analysis which gives correlation between two waveforms in time-frequency space. In the present scheme a swirl-stabilized dump combustor is used as a laboratory-scale model of a generic gas turbine combustor with LPG as fuel. Various time series data of CH chemiluminescence signal are recorded for different flame conditions by varying equivalence ratio, flow rate and level of air-fuel premixing. Some features are extracted from the cross-wavelet spectrum of the recorded waveforms and a reference wave. The extracted features are observed to classify the flame condition into three major classes: near LBO, moderate and healthy. Moreover, a Rough Set based technique is also applied on the extracted features to generate a rule base so that it can be fed to a real time controller or expert system to take necessary control action to prevent LBO. Results show that the proposed methodology performs with an acceptable degree of accuracy.

  16. An experimental study of the velocity-forced flame response of a lean-premixed multi-nozzle can combustor for gas turbines

    Science.gov (United States)

    Szedlmayer, Michael Thomas

    The velocity forced flame response of a multi-nozzle, lean-premixed, swirl-stabilized, turbulent combustor was investigated at atmospheric pressure. The purpose of this study was to analyze the mechanisms that allowed velocity fluctuations to cause fluctuations in the rate of heat release in a gas turbine combustor experiencing combustion instability. Controlled velocity fluctuations were introduced to the combustor by a rotating siren device which periodically allowed the air-natural gas mixture to flow. The velocity fluctuation entering the combustor was measured using the two-microphone method. The resulting heat release rate fluctuation was measured using CH* chemiluminescence. The global response of the flame was quantified using the flame transfer function with the velocity fluctuation as the input and the heat release rate fluctuation as the output. Velocity fluctuation amplitude was initially maintained at 5% of the inlet velocity in order to remain in the linear response regime. Flame transfer function measurements were acquired at a wide range of operating conditions and forcing frequencies. The selected range corresponds to the conditions and instability frequencies typical of real gas turbine combustors. Multi-nozzle flame transfer functions were found to bear a qualitative similarity to the single-nozzle flame transfer functions in the literature. The flame transfer function gain exhibited alternating minima and maxima while the phase decreased linearly with increasing forcing frequency. Several normalization techniques were applied to all flame transfer function data in an attempt to collapse the data into a single curve. The best collapse was found to occur using a Strouhal number which was the ratio of the characteristic flame length to the wavelength of the forced disturbance. Critical values of Strouhal number are used to predict the shedding of vortical structures in shear layers. Because of the collapse observed when the flame transfer functions

  17. Predictive models of circulating fluidized bed combustors: SO[sub 2] sorption in the CFB loop

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.; Therdthianwong, A. (Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering)

    1993-02-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Sorption of S0[sub 2] with calcined limestone was studied in a PYROFLOW type CFB loop at conditions approximating those found in a CFB combustor. Initially the CFB loop contained 150 micron CaO particles of a density of 3.3 g/cm[sup 3] and air at 1143[degrees]K and 3.25 atm. Atzero time, air containing 600 ppm SO[sub 2], was introduced into the riser bottom at 1143[degrees]K. The effect of gas velocity, sorbent inventory and inlet pressure on the sorption of SO[sub 2], were studied isothermally by running our hydrodynamic code with the S0[sub 2] sorption conservation of species equation. At a velocity of 5m/sec., reported to be a typical velocity by PYROPOWER, there is reasonably good S0[sub 2] removal. At 10 m/sec the S0[sub 2] removal is poor. The best SO[sub 2], removal is for a velocity of 5 m/s and a high bed inventory, initial bed height, H = 9m. Most of the S0[sub 2] is removed in the first two meters of the reactor. However, the S0[sub 2] removal is not complete at the bed outlet. This is due to mixing. At the left wall of the reactor (wall opposite the solids inlet) the S0[sub 2] removal was poor due to gas bypassing caused by the asymmetrical solids inlet. Simulation of the PYROPOWER loop with a symmetrical inlet gave us an order of magnitude improvement over the conventional PYROPOWER system. These results demonstrate the practical utility of the predictive model that we have developed over the last three years.

  18. Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel

    International Nuclear Information System (INIS)

    Kuprianov, Vladimir I.; Kaewklum, Rachadaporn; Chakritthakul, Songpol

    2011-01-01

    This work reports an experimental study on firing 80 kg/h rice husk in a swirling fluidized-bed combustor (SFBC) using an annular air distributor as the swirl generator. Two NO x emission control techniques were investigated in this work: (1) air staging of the combustion process, and (2) firing rice husk as moisturized fuel. In the first test series for the air-staged combustion, CO, NO and C x H y emissions and combustion efficiency were determined for burning 'as-received' rice husk at fixed excess air of 40%, while secondary-to-primary air ratio (SA/PA) was ranged from 0.26 to 0.75. The effects of SA/PA on CO and NO emissions from the combustor were found to be quite weak, whereas C x H y emissions exhibited an apparent influence of air staging. In the second test series, rice husks with the fuel-moisture content of 8.4% to 35% were fired at excess air varied from 20% to 80%, while the flow rate of secondary air was fixed. Radial and axial temperature and gas concentration (O 2 , CO, NO) profiles in the reactor, as well as CO and NO emissions, are discussed for the selected operating conditions. The temperature and gas concentration profiles for variable fuel quality exhibited significant effects of both fuel-moisture and excess air. As revealed by experimental results, the emission of NO from this SFBC can be substantially reduced through moisturizing rice husk, while CO is effectively mitigated by injection of secondary air into the bed splash zone, resulting in a rather low emission of CO and high (over 99%) combustion efficiency of the combustor for the ranges of operating conditions and fuel properties.

  19. The NASA pollution-reduction technology program for small jet aircraft engines

    Science.gov (United States)

    Fear, J. S.

    1976-01-01

    Three advanced combustor concepts, designed for the AiResearch TFE 731-2 turbofan engine, were evaluated in screening tests. Goals for carbon monoxide and unburned hydrocarbons were met or closely approached with two of the concepts with relatively modest departures from conventional combustor design practices. A more advanced premixing/prevaporizing combustor, while appearing to have the potential for meeting the oxides of nitrogen goal as well, will require extensive development to make it a practical combustion system. Smoke numbers for the two combustor concepts were well within the EPA smoke standard. Phase 2, Combustor-Engine Compatibility Testing, which is in its early stages, and planned Phase 3, Combustor-Engine Demonstration Testing, are also described.

  20. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  1. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  2. Virtual Globes: Serving Science and Society

    Directory of Open Access Journals (Sweden)

    Salman Qureshi

    2012-08-01

    Full Text Available Virtual Globes reached the mass market in 2005. They created multi-million dollar businesses in a very short time by providing novel ways to explore data geographically. We use the term “Virtual Globes” as the common denominator for technologies offering capabilities to annotate, edit and publish geographic information to a world-wide audience and to visualize information provided by the public and private sectors, as well as by citizens who volunteer new data. Unfortunately, but not surprising for a new trend or paradigm, overlapping terms such as “Virtual Globes”, “Digital Earth”, “Geospatial Web”, “Geoportal” or software specific terms are used heterogeneously. We analyze the terminologies and trends in scientific publications and ask whether these developments serve science and society. While usage can be answered quantitatively, the authors reason from the literature studied that these developments serve to educate the masses and may help to democratize geographic information by extending the producer base. We believe that we can contribute to a better distinction between software centered terms and the generic concept as such. The power of the visual, coupled with the potential of spatial analysis and modeling for public and private purposes raises new issues of reliability, standards, privacy and best practice. This is increasingly addressed in scientific literature but the required body of knowledge is still in its infancy.

  3. A numerical study on acoustic behavior in gas turbine combustor with acoustic resonator

    International Nuclear Information System (INIS)

    Park, I Sun; Sohn, Chae Hoon

    2005-01-01

    Acoustic behavior in gas turbine combustor with acoustic resonator is investigated numerically by adopting linear acoustic analysis. Helmholtz-type resonator is employed as acoustic resonator to suppress acoustic instability passively. The tuning frequency of acoustic resonator is adjusted by varying its length. Through harmonic analysis, acoustic-pressure responses of chamber to acoustic excitation are obtained and the resonant acoustic modes are identified. Acoustic damping effect of acoustic resonator is quantified by damping factor. As the tuning frequency of acoustic resonator approaches the target frequency of the resonant mode to be suppressed, mode split from the original resonant mode to lower and upper modes appears and thereby complex patterns of acoustic responses show up. Considering mode split and damping effect as a function of tuning frequency, it is desirable to make acoustic resonator tuned to broad-band frequencies near the maximum frequency of those of the possible upper modes

  4. A laser-induced-fluorescence visualization study of transverse, sonic fuel injection in a nonreacting supersonic combustor

    Science.gov (United States)

    Mcdaniel, J. C.; Graves, J., Jr.

    1986-01-01

    The present paper reports work which has been conducted in the first phase of a research program which is to provide a data base of spatially-resolved measurements in nonreacting supersonic combustors. In the measurements, a nonintrusive diagnostic technique based on the utilization of laser-induced fluorescence (LIF) is employed. The reported work had the objective to conduct LIF visualization studies of the injection of a simulated fuel into a Mach 2.07 airstream for comparison with corresponding numerical calculations. Attention is given to injection from a single orifice into a constant-area duct, injection from a single orifice behind a rearward-facing step, and injection from staged orifices behind a rearward-facing step.

  5. Lower risk of incident dementia among Chinese older adults having three servings of vegetables and two servings of fruits a day.

    Science.gov (United States)

    Lee, Allen T C; Richards, Marcus; Chan, Wai C; Chiu, Helen F K; Lee, Ruby S Y; Lam, Linda C W

    2017-09-01

    dietary modification can potentially reduce dementia risk, but the importance of fruits and the amount of vegetables and fruits required for cognitive maintenance are uncertain. We examined whether the minimal daily requirement of vegetables and fruits recommended by the World Health Organization (WHO) would independently lower dementia risk. in this population-based observational study, we examined the diet of 17,700 community-living dementia-free Chinese older adults who attended the Elderly Health Centres in Hong Kong at baseline and followed their cognitive status for 6 years. In line with the WHO recommendation, we defined the cutoff for minimal intake of vegetables and fruits as at least three and two servings per day, respectively. The study outcome was incident dementia in 6 years. Dementia was defined by presence of clinical dementia in accordance with the 10th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10) or Clinical Dementia Rating of 1-3. multivariable logistic regression analysis showed that the estimated odds ratios for incident dementia were 0.88 (95% confidence interval 0.73-1.06; P = 0.17) for those consuming at least three servings of vegetables per day, 0.86 (0.74-0.99; P dementia in older adults. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com

  6. Aerosol sampling of an experimental fluidized bed coal combustor

    International Nuclear Information System (INIS)

    Newton, G.J.; Peele, E.R.; Carpenter, R.L.; Yeh, H.C.

    1977-01-01

    Fluidized bed combustion of coal, lignite or other materials has a potential for widespread use in central electric generating stations in the near future. This technology may allow widespread use of low-grade and/or high sulfur fuels due to its high energy utilization at low combustion temperature and its ability to meet emission criteria by using limestone bed material. Particulate and gaseous products resulting from fuel combustion and fluidization of bed material are discharged and proceed out the exhaust clean-up system. Sampling philosophy, methodology and equipment used to obtain aerosol samples from the exhaust system of the 18-inch fluidized bed combustor (FBC) at the Morgantown Energy Research Center (MERC) are described. Identification of sampling sites led to design of an aerosol sampling train which allowed a known quantity of the effluent streams to be sampled. Depending on the position, a 15 to 25 l/min sample is extracted from the duct, immediately diluted and transferred to a sampling/aging chamber. Transmission and scanning electron microscope samples, two types of cascade impactor samples, vapor-phase and particulate-phase organic samples, spiral duct aerosol centrifuge samples, optical size measurements and filter samples were obtained. Samples are undergoing physical, chemical and biological tests to help establish human health risk estimates for fluidized bed coal combustion and to provide information for use in design and evaluation of control technologies

  7. Restaurant Policies and Practices for Serving Raw Fish in Minnesota.

    Science.gov (United States)

    Hedeen, Nicole

    2016-10-01

    The number of restaurants serving sushi within Minnesota is continuously increasing. The practices and protocols of serving raw fish are complex and require detailed planning to ensure that food served to patrons will not cause illness. Although the popularity of sushi is increasing, there is a lack of research on food safety issues pertaining to preparation of raw fish and sushi rice. To address this gap, the Minnesota Department of Health Environmental Health Specialists Network Food program collected descriptive data on restaurant practices and policies concerning the service of raw fish and sushi rice in 40 Minnesota restaurants. At each restaurant, a specialist interviewed a restaurant manager, conducted an observation of the sushi prep areas in the restaurant kitchen, and reviewed parasite destruction letters and invoices from fish supplier(s). Over half of the restaurants (59%) were missing one or more of the parasite destruction letters from their fish supplier(s) guaranteeing that fish had been properly frozen to the time and temperature requirements in the Minnesota Food Code. A total of 42 parasite destruction letters from suppliers were observed; 10% were considered "adequate" letters. The majority of the letters were missing details pertaining to the types of fish frozen, the length of time fish were frozen, or details on what temperatures fish were held frozen or a combination of all three. Most restaurants were using time as a public health control for their sushi rice. For those restaurants using time as a public health control, 26% had a written procedure on-site, and approximately 53% were keeping track of time. Bare hand contact during sushi prep was observed in 17% of restaurants, and in more than 40% of the restaurants, at least one fish was mislabeled on the menu. Findings from this study indicate that many Minnesota restaurants are not complying with the Food Code requirements pertaining to parasite destruction for the service of raw fish or

  8. Cooling Requirements for the Ultra-Compact Combustor

    Science.gov (United States)

    2012-03-01

    are listed below. • Establish a baseline model and investigate where reactions will occur • Apply film-cooling technolgies and analyze cooling...REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 The public reporting burden for this collection of information is estimated to average 1...completing and reviewing the collection of information . Send comments regarding this burden estimate or any other aspect of this collection of information

  9. Different temporal bases for body and arm movements in volleyball serve reception

    NARCIS (Netherlands)

    Benerink, N. H.; Bootsma, R. J.; Zaal, F. T. J. M.

    2015-01-01

    In many sports, successfully intercepting a ball requires players to move both their body and their arms. Yet, studies of interception typically focus on one or the other. We performed an analysis of the moments of first foot and arm movements of elite-level volleyball players during serve

  10. Energy extraction from wine dregs by self-sustained burning with fluidized-bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Leu, J.H. [Yu-Da Inst. of Business Technology, Taiwan (China). Dept. of Marketing and Logistics Management; Chung, Y.N.; Pan, T.S.; Chen, C.S. [Dayeh Univ., Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    Wine dregs typically have moisture contents of between 70 and 80 per cent, and the disposal of wine dregs in Taiwan is both costly and time-consuming. This paper described a method of extracting energy from wine dregs through the use of a pre-drying technique with a fluidized bed technology. A bubble-type fluidized bed combustor was used to combust high moisture Chinese Kaoliang wine lees. The system consisted of an incinerator, a feeding system, a heat recovery system, and an air pollution control system. Results of the experimental study showed that 92.3 per cent combustion was achieved for the wine lees at temperatures of 860 degrees C. Sulfur oxide (SO{sub x}) emissions and nitrogen oxide (NO{sub x}) emissions were negligible. Carbon monoxide (CO) emissions were suppressed to 92 ppm by modulating operating temperatures, axial temperature distributions, and primary and excess air. 3 refs., 3 tabs., 7 figs.

  11. The effects of carbohydrate ingestion on the badminton serve after fatiguing exercise.

    Science.gov (United States)

    Bottoms, Lindsay; Sinclair, Jonathan; Taylor, Katrina; Polman, Remco; Fewtrell, David

    2012-01-01

    The badminton serve requires great skill and may be affected by fatigue. The aim of the present study was to determine whether carbohydrate ingestion affects badminton performance. Nine male badminton players (age 25 ± 7 years, mass 80.6 ± 8.0 kg) attended the laboratory on three occasions. The first visit involved an incremental exercise test to exhaustion to determine peak heart rate. Participants were given 1 L of a carbohydrate-electrolyte drink or a matched placebo during the experimental trials. The accuracy of 10 long and 10 short serves was determined before and after exercise. The fatiguing exercise was 33 min in duration (83 ± 10% and 84 ± 8% peak heart rate for the placebo and carbohydrate trial respectively). Capillary blood samples (20 μL) were taken before and after exercise for determination of blood glucose and lactate. There was deterioration in long serve accuracy with fatigue (P = 0.002), which carbohydrate ingestion had a tendency to prevent (P = 0.077). There was no effect of fatigue (P = 0.402) or carbohydrate ingestion (P = 0.109) on short serve accuracy. There was no difference in blood glucose concentration between trials (P = 0.851). Blood lactate concentration was higher during the placebo trial (P = 0.016). These results suggest that only the long serve is influenced by fatigue and carbohydrate had a tendency to prevent the deterioration in performance.

  12. Military Cultural Competency: Understanding How to Serve Those Who Serve

    Science.gov (United States)

    Bonura, Kimberlee Bethany; Lovald, Nicole

    2015-01-01

    The aim of this essay is to define and describe the different constituents of the military population, and present the challenges this demographic faces when pursuing higher education. The essay also discusses key aspects higher education professionals must understand in order to better serve military populations, such as federal regulations and…

  13. Self-serving bias effects on job analysis ratings.

    Science.gov (United States)

    Cucina, Jeffrey M; Martin, Nicholas R; Vasilopoulos, Nicholas L; Thibodeuax, Henry F

    2012-01-01

    The purpose of this study was to investigate whether worker-oriented job analysis importance ratings were influenced by subject matter experts' (SME) standing (as measured by self-rated performance) on a competency. This type of relationship (whereby SMEs indicate that the traits they have are important for successful job performance) is an example of the self-serving bias (which is widely described in the social cognition literature and rarely described in the industrial/organizational psychology literature). An archival dataset covering 57 clerical and technical occupations with 26,682 participants was used. Support was found for the relationship between self-rated performance and importance ratings. Significant relationships (typically in the .30s) were observed for all 31 competencies that were studied. Controls were taken to account for common method bias and differences in the competencies required for each of the 57 occupations. Past research has demonstrated the effects of the self-serving bias on personality-based job analysis ratings. This study was the first to extend these findings to traditional job analysis, which covers other competencies in addition to personality. In addition, this study is the first to use operational field data instead of laboratory data.

  14. Certification Report: Army Aviation Alternative Fuels Certification Program

    Science.gov (United States)

    2016-08-01

    Fuel Injector Coking Rig Description • Combustor Section Rig • Full Annular Rig • Sea Level and Simulated Altitude Engine Testing...purpose requirements in ASTM D4054 and MIL-HDBK- 510 for aviation fuel, as modified by the tri-service group to include diesel engine-related properties...atomized and vaporized when passing through the fuel nozzles into the combustor. In the combustor, it is vaporized, ignited and burned to provide the

  15. Advanced technology for reducing aircraft engine pollution

    Science.gov (United States)

    Jones, R. E.

    1973-01-01

    The proposed EPA regulations covering emissions of gas turbine engines will require extensive combustor development. The NASA is working to develop technology to meet these goals through a wide variety of combustor research programs conducted in-house, by contract, and by university grant. In-house efforts using the swirl-can modular combustor have demonstrated sizable reduction in NO emission levels. Testing to reduce idle pollutants has included the modification of duplex fuel nozzles to air-assisted nozzles and an exploration of the potential improvements possible with combustors using fuel staging and variable geometry. The Experimental Clean Combustor Program, a large contracted effort, is devoted to the testing and development of combustor concepts designed to achieve a large reduction in the levels of all emissions. This effort is planned to be conducted in three phases with the final phase to be an engine demonstration of the best reduced emission concepts.

  16. 77 FR 9703 - Notice of Funding Opportunity and Solicitation for Grant Applications (SGA) for Serving Young...

    Science.gov (United States)

    2012-02-17

    ... $30 million to serve juvenile offenders ages 18-21 who have been involved in the juvenile justice system from the age of 14 or above and have never been convicted as an adult under Federal or State Law..., eligibility requirements, review and selection procedures and other program requirements governing this...

  17. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    Science.gov (United States)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  18. NRPC ServCat priorities

    Data.gov (United States)

    Department of the Interior — This document lists the Natural Resource Program Center’s priority ServCat documents. It is recommended that these documents- which include annual narrative reports,...

  19. Development of a module combustor biomass-motor Stirling applied to a isolated generation system and based on induction generator; Desenvolvimento de um modulo combustor biomassa-motor Stirling aplicado a sistemas de geracao isolada e baseados em gerador de inducao

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, Humberto; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Nucleo de Excelencia em Geracao Termeletrica e Distribuida

    2004-07-01

    In some areas in Brazil the great distance of the generating and consuming centers, together with the low consumption of electric energy of these areas, they make unfeasible investments with transmission and distribution. The use of the biomass as fuel in the distributed generation, is low pollutions, it is renewable, besides possessing a low cost when compared to the fossil fuels [Barros, 2003]. By the way the generation distributed through renewable fuels, becomes an attractive solution for generation in distant and isolated areas of the electric system. Inside of this context, this paper proposes the use of a module combustor, biomass-motor Stirling, based on induction generator, applied to isolated areas, such as the north and northeast areas of the Brazil. (author)

  20. Large scale organized motion in isothermal swirling flow through an axisymmetric dump combustor

    International Nuclear Information System (INIS)

    Daddis, E.D.; Lieber, B.B.; Nejad, A.S.; Ahmed, S.A.

    1990-01-01

    This paper reports on velocity measurements that were obtained in a model axisymmetric dump combustor which included a coaxial swirler by means of a two component laser Doppler velocimeter (LDV) at a Reynolds number of 125,000. The frequency spectrum of the velocity fluctuations is obtained via the Fast Fourier Transform (FFT). The velocity field downstream of the dump plane is characterized, in addition to background turbulence, by large scale organized structures which are manifested as sharp spikes of the spectrum at relatively low frequencies. The decomposition of velocity disturbances to background turbulence and large scale structures can then be achieved through spectral methods which include matched filters and spectral factorization. These methods are demonstrated here for axial velocity obtained one step height downstream of the dump plane. Subsequent analysis of the various velocity disturbances shows that large scale structures account for about 25% of the apparent normal stresses at this particular location. Naturally, large scale structures evolve spatially and their contribution to the apparent stress tensor may vary depending on the location in the flow field

  1. Numerical Analysis of Turbulent Combustion in a Model Swirl Gas Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Ali Cemal Benim

    2016-01-01

    Full Text Available Turbulent reacting flows in a generic swirl gas turbine combustor are investigated numerically. Turbulence is modelled by a URANS formulation in combination with the SST turbulence model, as the basic modelling approach. For comparison, URANS is applied also in combination with the RSM turbulence model to one of the investigated cases. For this case, LES is also used for turbulence modelling. For modelling turbulence-chemistry interaction, a laminar flamelet model is used, which is based on the mixture fraction and the reaction progress variable. This model is implemented in the open source CFD code OpenFOAM, which has been used as the basis for the present investigation. For validation purposes, predictions are compared with the measurements for a natural gas flame with external flue gas recirculation. A good agreement with the experimental data is observed. Subsequently, the numerical study is extended to syngas, for comparing its combustion behavior with that of natural gas. Here, the analysis is carried out for cases without external flue gas recirculation. The computational model is observed to provide a fair prediction of the experimental data and predict the increased flashback propensity of syngas.

  2. Investigation of LPP combustors under elevated pressure conditions; Untersuchungen zu LPP-Flugtriebwerksbrennkammern unter erhoehtem Druck

    Energy Technology Data Exchange (ETDEWEB)

    Fink, R.

    2001-05-01

    The development of new combustor concepts for aero engines to meet future emissions regulations in based on a detailed knowledge of the combustion process and the velocity field. In the presented thesis, non intrusive measurements were performed in a model combustion chamber under almost realistic pressure and temperature conditions. The species OH, NO, unburned hydrocarbons and fuel droplets were detected in 2 dimensions with the Laser Induced Fluorescence (LIF). The velocity field was measured with the Particle Image Velocimetry technique (PIV). [German] Die Weiterentwicklung neuer Brennkammerkonzepte zur Erfuellung zukuenftiger Schadstoffemissionsrichtlinien erfordert genaue Kenntnisse der ablaufenden Verbrennungs- und Stroemungsvorgaenge in der Brennkammer. Bei den in der Arbeit vorgestellten Untersuchungen wurden in einer LPP-Modellbrennkammer unter annaehernd realistischen Eintrittsbedingungen die Spezies OH, NO, unverbrannte Kohlenwasserstoffe sowie noch fluessiger Brennstoff zweidimensional anhand der Laserinduzierten Fluoreszenz (LIF) nachgewiesen. Das Stroemungsfeld wurde mit Hilfe der Particle Image Velocimetry (PIV) gemessen.

  3. Serving some and serving all: how providers navigate the challenges of providing racially targeted health services.

    Science.gov (United States)

    Zhou, Amy

    2017-10-01

    Racially targeted healthcare provides racial minorities with culturally and linguistically appropriate health services. This mandate, however, can conflict with the professional obligation of healthcare providers to serve patients based on their health needs. The dilemma between serving a particular population and serving all is heightened when the patients seeking care are racially diverse. This study examines how providers in a multi-racial context decide whom to include or exclude from health programs. This study draws on 12 months of ethnographic fieldwork at an Asian-specific HIV organization. Fieldwork included participant observation of HIV support groups, community outreach programs, and substance abuse recovery groups, as well as interviews with providers and clients. Providers managed the dilemma in different ways. While some programs in the organization focused on an Asian clientele, others de-emphasized race and served a predominantly Latino and African American clientele. Organizational structures shaped whether services were delivered according to racial categories. When funders examined client documents, providers prioritized finding Asian clients so that their documents reflected program goals to serve the Asian population. In contrast, when funders used qualitative methods, providers could construct an image of a program that targets Asians during evaluations while they included other racial minorities in their everyday practice. Program services were organized more broadly by health needs. Even within racially targeted programs, the meaning of race fluctuates and is contested. Patients' health needs cross cut racial boundaries, and in some circumstances, the boundaries of inclusion can expand beyond specific racial categories to include racial minorities and underserved populations more generally.

  4. The NASA Pollution-Reduction Technology Program for small jet aircraft engines - A status report

    Science.gov (United States)

    Fear, J. S.

    1976-01-01

    A three-phase experimental program is described which has the objective of enabling EPA Class T1 jet engines to meet the 1979 EPA emissions standards. In Phase I, three advanced combustor concepts, designed for the AiResearch TFE 731-2 turbofan engine, were evaluated in screening tests. Goals for carbon monoxide and unburned hydrocarbons were met or closely approached with two of the concepts with relatively modest departures from conventional combustor design practices. A more advanced premixing/prevaporizing combustor, while appearing to have the potential for meeting the oxides of nitrogen goal as well, will require extensive development to make it a practical combustion system. Smoke numbers for the two combustor concepts which will be carried forward into Phase II of the program were well within the EPA smoke standard. Phase II, Combustor-Engine Compatibility Testing, which is in its early stages, and planned Phase III, Combustor-Engine Demonstration Testing, are also described.

  5. Pollution reduction technology program for turboprop engines

    Science.gov (United States)

    Tomlinson, J. G.

    1977-01-01

    The reduction of CO, HC, and smoke emissions while maintaining acceptable NO(x) emissions without affecting fuel consumption, durability, maintainability, and safety was accomplished. Component combustor concept screening directed toward the demonstration of advanced combustor technology required to meet the EPA exhaust emissions standards for class P2 turboprop engines was covered. The combustion system for the Allison 501-D22A engine was used, and three combustor design concepts - reverse flow, prechamber, and staged fuel were evaluated.

  6. Predictive models of circulating fluidized bed combustors: SO{sub 2} sorption in the CFB loop. Fourteenth technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D.; Therdthianwong, A. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering

    1993-02-01

    The overall objective of this investigation is to develop experimentally verified models for circulating fluidized bed (CFB) combustors. Sorption of S0{sub 2} with calcined limestone was studied in a PYROFLOW type CFB loop at conditions approximating those found in a CFB combustor. Initially the CFB loop contained 150 micron CaO particles of a density of 3.3 g/cm{sup 3} and air at 1143{degrees}K and 3.25 atm. Atzero time, air containing 600 ppm SO{sub 2}, was introduced into the riser bottom at 1143{degrees}K. The effect of gas velocity, sorbent inventory and inlet pressure on the sorption of SO{sub 2}, were studied isothermally by running our hydrodynamic code with the S0{sub 2} sorption conservation of species equation. At a velocity of 5m/sec., reported to be a typical velocity by PYROPOWER, there is reasonably good S0{sub 2} removal. At 10 m/sec the S0{sub 2} removal is poor. The best SO{sub 2}, removal is for a velocity of 5 m/s and a high bed inventory, initial bed height, H = 9m. Most of the S0{sub 2} is removed in the first two meters of the reactor. However, the S0{sub 2} removal is not complete at the bed outlet. This is due to mixing. At the left wall of the reactor (wall opposite the solids inlet) the S0{sub 2} removal was poor due to gas bypassing caused by the asymmetrical solids inlet. Simulation of the PYROPOWER loop with a symmetrical inlet gave us an order of magnitude improvement over the conventional PYROPOWER system. These results demonstrate the practical utility of the predictive model that we have developed over the last three years.

  7. Mutagenicity in salmonella of nitro-organic compounds in extracts of fly ash of a fluidized-bed combustor

    International Nuclear Information System (INIS)

    Remsen, J.F.; Harris, W.R.

    1983-01-01

    The mutagenicity of a crude benzene/methanol extract of fly ash from an atmospheric fluidized-bed combustor was tested in Salmonella. Six strains were used including three which were mutants in a nitroreductase gene locus. The numbers of revertants from his- to his+ as a function of the amount of fly ash extracted were determined. The results showed that the major mutagens in the crude extract were nitro compounds from the fact that reversion rates in the nitro-reductase-deficient strains were significantly lower than in the parent strains from which they were derived. The responses of three parental strains, TA1538, TA98, and TA100, were quite similar, thus no conclusions could be made about frameshift versus base-substitution mutagens. No identification of specific nitro-organic compounds has been made

  8. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  9. High-resolution fast temperature mapping of a gas turbine combustor simulator with femtosecond infrared laser written fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Ramachandran, Nanthan; Mihailov, Stephen J.

    2017-02-01

    Femtosecond infrared (fs-IR) written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to the advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring the sidewall and exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients contrasted with thermocouple data, discussion of deployment strategies and comments on reliability.

  10. Phase I Final Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xijia [National Energy Technology Lab. (NETL), Albany, OR (United States); Fetvedt, Jeremy [National Energy Technology Lab. (NETL), Albany, OR (United States); Dimmig, Walker [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2017-10-15

    This Final Scientific Report addresses the accomplishments achieved during Phase I of DE- FE0023985, Coal Syngas Combustor Development for Supercritical CO2 Power Cycles. The primary objective of the project was to develop a coal syngas-fueled combustor design for use with high-pressure, high-temperature, oxy-fuel, supercritical CO2 power cycles, with particular focus given to the conditions required by the Allam Cycle. The primary goals, from the Statement of Project Objectives, were to develop: (1) a conceptual design of a syngas-fueled combustor-turbine block for a 300MWe high-pressure, oxy-fuel, sCO2 power plant; (2) the preliminary design of a 5MWt test combustor; and (3) the definition of a combustor test program. Accomplishments for each of these goals are discussed in this report.

  11. DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    NEIL K. MCDOUGALD

    2005-04-30

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using

  12. Characterization of Transient Plasma Ignition Flame Kernel Growth for Varying Inlet Conditions

    Science.gov (United States)

    2009-12-01

    from Intercity Manufacturing. Without their expertise in precision machining this thesis would not have been possible. Their countless hours spent...somewhere within the combustor due to the time required to produce the required conditions, and will be travelling at near Mach 5 speeds for most...atmospheric pressure. This sudden drop in pressure creates a rarefaction wave that travels forward in the combustor. The blowdown time for a 1 meter long

  13. Development of a portable power system with meso-scale vortex combustor and thermo-electric device

    International Nuclear Information System (INIS)

    Shimokuri, D; Hara, T; Ishizuka, S

    2014-01-01

    In this study, a small scale power generation system with a meso-scale vortex combustor has been developed. The system was consisted of a couple of thermo-electric device and a heat medium. The medium was made of duralumin, 40 × 40 × 20 mm and 52 g weight, and the vortex combustion chamber of 7 mm inner diameter was embedded in it. It was found that a stable flame could be established in the narrow 7 mm channel even the mean axial velocity reached 1.2 m/s. And furthermore, the vortex flow significantly enhanced the heat transfer from the burned gas to combustion chamber, and as a result, the medium was heated to 300°C quickly (within 5 minutes) by the combustion of propane / air mixture for 145W input energy. The system could successfully generate 1.98 W (4.3 V and 0.46 A), which corresponded to the energy conversion rate of 0.7 % per unit thermo-electric device

  14. Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity

    Science.gov (United States)

    Zhang, Yan-Xiang; Wang, Zhen-Guo; Sun, Ming-Bo; Yang, Yi-Xin; Wang, Hong-Bo

    2018-03-01

    This study is carried out to experimentally investigate the combustion characteristics of the hydrogen jet flame stabilized by the rearwall-expansion cavity in a model scramjet combustor. The flame distributions are characterized by the OH* spontaneous emission images, and the dynamic features of the flames are studied through the high speed framing of the flame luminosity. The combustion modes are further analyzed based on the visual flame structure and wall pressure distributions. Under the present conditions, the combustion based on the rearwall-expansion cavity appears in two distinguished modes - the typical cavity shear-layer stabilized combustion mode and the lifted-shear-layer stabilized combustion mode. In contrast with the shear-layer stabilized mode, the latter holds stronger flame. The transition from shear-layer stabilized combustion mode to lifted-shear-layer stabilized mode usually occurs when the equivalence ratio is high enough. While the increases of the offset ratio and upstream injection distance both lead to weaker jet-cavity interactions, cause longer ignition delay, and thus delay the mode transition. The results reveal that the rearwall-expansion cavity with an appropriate offset ratio should be helpful in delaying mode transition and preventing thermal choke, and meanwhile just brings minor negative impact on the combustion stability and efficiency.

  15. Variations in serving sizes of Australian snack foods and confectionery.

    Science.gov (United States)

    Watson, Wendy L; Kury, Alexandra; Wellard, Lyndal; Hughes, Clare; Dunford, Elizabeth; Chapman, Kathy

    2016-01-01

    This study examined the serving size and energy content per serving of Australian packaged snack foods and confectionery products. Nutrition Information Panel data for 23 sub-categories of packaged snack foods (n = 3481) were extracted from The George Institute for Global Health's 2013 branded food composition database. Variations in serving size and energy content per serving were examined. Energy contents per serving were compared to recommendations in the Australian Dietary Guidelines. Serving sizes varied within and between snack food categories. Mean energy content per serving varied from 320 kJ to 899 kJ. More energy per serving than the recommended 600 kJ was displayed by 22% (n = 539) of snack foods classified in the Australian Dietary Guidelines as discretionary foods. The recommendation for energy content per serving was exceeded in 60% (n = 635) of snack foods from the Five Food Groups. Only 37% (n = 377) of confectionery products displayed the industry-agreed serving size of 25 g. Energy content per serving of many packaged snack foods do not align with the Australian Dietary Guidelines and the industry agreed serving size has not been taken up widely within the confectionery category. Given the inconsistencies in serving sizes, featuring serving size in front-of-pack information may hinder the objective of a clear and simple nutrition message. Messaging to help consumers make healthier choices should consider the variation in serving sizes on packaged snack foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Combustion heating value gas in a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G [CTDD, British Coal Corporation, Cheltenham (United Kingdom); Cannon, M [European Gas Turbines Ltd., Lincoln (United Kingdom)

    1997-12-31

    Advanced coal and/or biomass based power generation systems offer the potential for high efficiency electricity generation with minimum environmental impact. An important component for many of these advanced power generation cycles is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at turbine inlet temperatures of typically 1 100 - 1 260 deg C and with minimum pollutant emissions, is a key issue. A phased combustor development programme is under-way burning low calorific value fuel gas (3.6 - 4.1 MJ/m{sup 3}) with low emissions, particularly NO{sub x} derived from fuel-bound nitrogen. The first and second phases of the combustor development programme have been completed. The first phase used a generic tubo-annular, prototype combustor based on conventional design principles. Combustor performance for this first prototype combustor was encouraging. The second phase assessed five design variants of the prototype combustor, each variant achieving a progressive improvement in combustor performance. The operating conditions for this assessment were selected to represent a particular medium sized industrial gas turbine operating as part of an Air Blown Gasification Cycle (ABGC). The test conditions assessed therefore included the capability to operate the combustor using natural gas as a supplementary fuel, to suit one possible start-up procedure for the cycle. The paper presents a brief overview of the ABGC development initiative and discusses the general requirements for a gas turbine operating within such a cycle. In addition, it presents full combustor performance results for the second phase of turbine combustor development and discusses the rationale for the progressive design modifications made within that programme. The strategy for the further development of the combustor to burn low calorific value fuel gas with very low conversion of fuel-bound nitrogen to NO{sub x} is presented. (orig.) 6 refs.

  17. Combustion heating value gas in a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsall, G. [CTDD, British Coal Corporation, Cheltenham (United Kingdom); Cannon, M. [European Gas Turbines Ltd., Lincoln (United Kingdom)

    1996-12-31

    Advanced coal and/or biomass based power generation systems offer the potential for high efficiency electricity generation with minimum environmental impact. An important component for many of these advanced power generation cycles is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at turbine inlet temperatures of typically 1 100 - 1 260 deg C and with minimum pollutant emissions, is a key issue. A phased combustor development programme is under-way burning low calorific value fuel gas (3.6 - 4.1 MJ/m{sup 3}) with low emissions, particularly NO{sub x} derived from fuel-bound nitrogen. The first and second phases of the combustor development programme have been completed. The first phase used a generic tubo-annular, prototype combustor based on conventional design principles. Combustor performance for this first prototype combustor was encouraging. The second phase assessed five design variants of the prototype combustor, each variant achieving a progressive improvement in combustor performance. The operating conditions for this assessment were selected to represent a particular medium sized industrial gas turbine operating as part of an Air Blown Gasification Cycle (ABGC). The test conditions assessed therefore included the capability to operate the combustor using natural gas as a supplementary fuel, to suit one possible start-up procedure for the cycle. The paper presents a brief overview of the ABGC development initiative and discusses the general requirements for a gas turbine operating within such a cycle. In addition, it presents full combustor performance results for the second phase of turbine combustor development and discusses the rationale for the progressive design modifications made within that programme. The strategy for the further development of the combustor to burn low calorific value fuel gas with very low conversion of fuel-bound nitrogen to NO{sub x} is presented. (orig.) 6 refs.

  18. Serving the world's poor, profitably.

    Science.gov (United States)

    Prahalad, C K; Hammond, Allen

    2002-09-01

    By stimulating commerce and development at the bottom of the economic pyramid, multi-nationals could radically improve the lives of billions of people and help create a more stable, less dangerous world. Achieving this goal does not require MNCs to spearhead global social-development initiatives for charitable purposes. They need only act in their own self-interest. How? The authors lay out the business case for entering the world's poorest markets. Fully 65% of the world's population earns less than $2,000 per year--that's 4 billion people. But despite the vastness of this market, it remains largely untapped. The reluctance to invest is easy to understand, but it is, by and large, based on outdated assumptions of the developing world. While individual incomes may be low, the aggregate buying power of poor communities is actually quite large, representing a substantial market in many countries for what some might consider luxury goods like satellite television and phone services. Prices, and margins, are often much higher in poor neighborhoods than in their middle-class counterparts. And new technologies are already steadily reducing the effects of corruption, illiteracy, inadequate infrastructure, and other such barriers. Because these markets are in the earliest stages of economic development, revenue growth for multi-nationals entering them can be extremely rapid. MNCs can also lower costs, not only through low-cost labor but by transferring operating efficiencies and innovations developed to serve their existing operations. Certainly, succeeding in such markets requires MNCs to think creatively. The biggest change, though, has to come from executives: Unless business leaders confront their own preconceptions--particularly about the value of high-volume, low-margin businesses--companies are unlikely to master the challenges or reap the rewards of these developing markets.

  19. Coordination and variability in the elite female tennis serve.

    Science.gov (United States)

    Whiteside, David; Elliott, Bruce Clifford; Lay, Brendan; Reid, Machar

    2015-01-01

    Enhancing the understanding of coordination and variability in the tennis serve may be of interest to coaches as they work with players to improve performance. The current study examined coordinated joint rotations and variability in the lower limbs, trunk, serving arm and ball location in the elite female tennis serve. Pre-pubescent, pubescent and adult players performed maximal effort flat serves while a 22-camera 500 Hz motion analysis system captured three-dimensional body kinematics. Coordinated joint rotations in the lower limbs and trunk appeared most consistent at the time players left the ground, suggesting that they coordinate the proximal elements of the kinematic chain to ensure that they leave the ground at a consistent time, in a consistent posture. Variability in the two degrees of freedom at the elbow became significantly greater closer to impact in adults, possibly illustrating the mechanical adjustments (compensation) these players employed to manage the changing impact location from serve to serve. Despite the variable ball toss, the temporal composition of the serve was highly consistent and supports previous assertions that players use the location of the ball to regulate their movement. Future work should consider these associations in other populations, while coaches may use the current findings to improve female serve performance.

  20. Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments

    Science.gov (United States)

    Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.

    2018-06-01

    At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.

  1. Laser ignition of a multi-injector LOX/methane combustor

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-06-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  2. Laser ignition of a multi-injector LOX/methane combustor

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-02-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  3. 28 CFR 522.14 - Inmates serving civil contempt commitments.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Inmates serving civil contempt... ADMISSION, CLASSIFICATION, AND TRANSFER ADMISSION TO INSTITUTION Civil Contempt of Court Commitments § 522.14 Inmates serving civil contempt commitments. We treat inmates serving civil contempt commitments in...

  4. 27 CFR 31.42 - Restaurants serving liquors with meals.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Restaurants serving... Part Certain Organizations, Agencies, and Persons § 31.42 Restaurants serving liquors with meals. Proprietors of restaurants and other persons who serve liquors with meals to paying customers, even if no...

  5. Results of performance and emission testing when co-firing blends of dRDF/COAL in a 440 MWe cyclone fired combustor

    International Nuclear Information System (INIS)

    Ohlsson, O.O.

    1993-01-01

    Argonne National Laboratory (ANL) together with the University of North Texas (UNT) have developed an improved method for converting refuse (residential, commercial and institutional waste) into an environmentally safe and economical fuel. In this method, recyclable metals, glass, and some plastic products are separated from the refuse. The remaining fraction, consisting primarily of cellulosic materials is then combined with a calcium hydroxide binding additive and formed into cylindrical pellets. These pellets are dense and odorless, can be stored for extended periods of time without biological or chemical degradation, and due to their increased bulk density are more durable and can be more easily conveyed, handled, and transported than other types of waste-derived fuel pellets. Laboratory and pilot-scale research studies, followed by full-scale combustion tests undertaken by DOE, ANL and UNT, in June--July of 1987 have indicated that binder-enhanced dRDF pellets can be successfully cofired with high sulfur coal in spreader-stoker combustors. The results of these combustion tests indicated significant reductions of SO 2 , NO x and CO 2 in the flue gases, and the reduction of heavy metals and organics in the ash residue. Dioxins and furans, both in the flue gas and in the ash residues were below detectable levels. Additional commercial-scale combustion tests have recently been conducted by DOE, NREL, ANL and several industrial participants including Otter Tail Power Company, Reuter, Inc., XL Recycling and Marblehead Lime Company, under a collaborative research and development agreement (CRADA). A large 440 MW e cyclone-fired combustor was tested at Big Stone City, South Dakota on October 26--27, 1992. This paper describes the cyclone-fired combustion tests, the flue gas emission and ash samples that were collected, the analyses that were performed on these samples, and the final test results

  6. Experimental Combustion Dynamics Behavior of a Multi-Element Lean Direct Injection (LDI) Gas Turbine Combustor

    Science.gov (United States)

    Acosta, Waldo A.; Chang, Clarence T.

    2016-01-01

    An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.

  7. Drama is Served

    DEFF Research Database (Denmark)

    Svømmekjær, Heidi Frank

    2015-01-01

    This article focuses on how the theme of food is used for making social, gender, and other distinctions in the weekly Danish radio series The Hansen Family (The Danish Broadcasting Corporation, 1929-49) and in relation to other radio programmes from the 1930s and 1940s. These distinctions serve t...... with the wife. To Mrs. Hansen, it is the fruit of hard labour rather than a meal to be enjoyed. On a more general level, food is a limited resource, which often causes social tensions to burst onto the surface of human interaction....

  8. 77 FR 57035 - Notice of Commission's Implementation of Procedure of Serving Parties in an Electronic Format

    Science.gov (United States)

    2012-09-17

    ... statute or regulation. Henceforth, that service will be made in an electronic format, rather than by mail... Commission's Implementation of Procedure of Serving Parties in an Electronic Format AGENCY: Federal... when required by statute or regulation. Henceforth, that service will be made in an electronic format...

  9. Development of an axially staged annular combustor with low residence times in the main stage. Final report; Entwicklung eines gestuften Brenners in Ringanordnung mit kleiner Aufenthaltszeit in der Hauptzone. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H.J. [BMW Rolls-Royce GmbH, Dahlewitz (Germany). Abt. Brennkammerentwicklung; Theisen, D. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Flugantriebe

    1998-05-28

    Within the project presented an axially staged annular combustor has been investigated. Staged combustion significantly reduces emissions of nitrogen oxide without sacrifying combustion efficiency and stability during low power conditions. The cold flow in the combustion module was analysed in water analogy tests. Stability of the main fuel injectors was investigated in a low pressure sector rig, high pressure tests were focused on nitric oxides and smoke emissions and on the detection of the temperature pattern at the combustor exit. Based on these results a second configuration was derived. Improved mixing of the pilot stage exhaust gases into the primary zone of the main stage was achieved. This configuration revealed a considerable reduction of nitric oxide emissions as well as a more even exit temperature pattern. The aerothermal design and optimisation of the staged combustor and the interpretation of the experimental results were supported by means of CFD calculations. The accuracy of the prediction of pollutant emissions could be enhanced by the incorporation of an advanced laminar-flamelet combustion model. Fuel/air mixing as well as the combustion process were investigated in a planar model of the staged combustor at LFA, University of Munich, by means of laser-spectroscopic methods. Under atmospheric conditions 2D concentrations of OH, O{sub 2}, and NO were measured. Characteristic differences of the combustion process for the staged and unstaged mode, respectively, were detected. The general applicability of planar temperature measurement by means of `2 lines thermometry` could be demonstrated. (orig.) [Deutsch] Im Rahmen des hier vorgestellten Vorhabens wurde eine axial gestufte Ringbrennkammer untersucht, die eine deutliche Senkung der Stickoxidemissionen bewirkt, ohne den Ausbrand und die Stabilitaet im unteren Lastbereich zu verschlechtern. In Wasseranalogieversuchen wurde die kalte Stroemung analysiert und optimiert. Die Stabilitaet der

  10. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    Science.gov (United States)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  11. Development of pressurized coal partial combustor; Kaatsu sekitan bubun nenshoro gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T [Center for Coal Utilization, Japan, Tokyo (Japan); Kawamura, K [Kawasaki Heavy Industries, Ltd., Kobe (Japan); Tanaka, T [Chubu Electric Power Co. Inc., Nagoya (Japan); Muramatsu, T [Electric Power Development Co. Ltd., Tokyo (Japan)

    1996-09-01

    The coal partial combustor (CPC) uses a combustion technology with which coal is burned at elevated temperatures and under revolution, the constituents are captured on the furnace wall and removed as molten slag from the furnace. This is a combustion technology to reduce load of ash on subsequent devices. To generate a molten condition, it is necessary to raise the combustion temperature as high as possible (to about 1600 degC in the furnace), but this is effective for a gas turbine composite power generation system. An efficiency of higher than 45% may be expected at the power transmission terminal. As an operation on subsidy from the Agency of Natural Resources and Energy, the normal-pressure CPC technology has already been established, and a research on pressurized CPC is being progressed since fiscal 1991. The research is in progress with a schedule that elemental tests for 7 tons per day production are conducted until fiscal 1995, a 25 tons per day pilot plant will be completed by November 1997, and verification tests for long-term continuous operation will be implemented until 1998. The 7 tons per day elemental tests have identified gasification performance and slag extraction performance using five types of coal having different properties. 7 refs., 10 figs., 4 tabs.

  12. Biomechanical analysis of three tennis serve types using a markerless system.

    Science.gov (United States)

    Abrams, Geoffrey D; Harris, Alex H S; Andriacchi, Thomas P; Safran, Marc R

    2014-02-01

    The tennis serve is commonly associated with musculoskeletal injury. Advanced players are able to hit multiple serve types with different types of spin. No investigation has characterised the kinematics of all three serve types for the upper extremity and back. Seven NCAA Division I male tennis players performed three successful flat, kick and slice serves. Serves were recorded using an eight camera markerless motion capture system. Laser scanning was utilised to accurately collect body dimensions and data were computed using inverse kinematic methods. There was no significant difference in maximum back extension angle for the flat, kick or slice serves. The kick serve had a higher force magnitude at the back than the flat and slice as well as larger posteriorly directed shoulder forces. The flat serve had significantly greater maximum shoulder internal rotation velocity versus the slice serve. Force and torque magnitudes at the elbow and wrist were not significantly different between the serves. The kick serve places higher physical demands on the back and shoulder while the slice serve demonstrated lower overall kinetic forces. This information may have injury prevention and rehabilitation implications.

  13. Leader self-definition and leader self-serving behavior

    NARCIS (Netherlands)

    Rus, Diana; van Knippenberg, Daan; Wisse, Barbara

    The present research investigated the relationship between leader self-definition processes and leader self-serving behaviors. We hypothesized that self-definition as a leader interacts with social reference information (descriptive and injunctive) in predicting leader self-serving actions Six

  14. Les réserves extractivistes, état des lieux

    OpenAIRE

    Aubertin, Catherine

    2014-01-01

    La lutte des seringueiros a popularisé la notion de réserves extractivistes. Au départ calquée sur le modèle de la réserve indigène, la réserve extractiviste devait apporter une solution foncière aux conflits avec les patrons en garantissant, grâce à des expropriations menées par l’État, un droit d’usage collectif aux seringueiros et le maintien de leur outil de production, la forêt. L’histoire des réserves extractivistes est significative des modifications politiques enregistrées ces dix der...

  15. 7 CFR 226.20 - Requirements for meals.

    Science.gov (United States)

    2010-01-01

    ..., respectively) for the meal pattern requirements contained in this section. (p) Family-style meal service. Meals may be served in a family-style setting. (q) Offer versus serve. (1) Each adult day care center shall..., 1983] Editorial Note: For Federal Register citations affecting § 226.20, see the List of CFR Sections...

  16. Enhancement of the Open National Combustion Code (OpenNCC) and Initial Simulation of Energy Efficient Engine Combustor

    Science.gov (United States)

    Miki, Kenji; Moder, Jeff; Liou, Meng-Sing

    2016-01-01

    In this paper, we present the recent enhancement of the Open National Combustion Code (OpenNCC) and apply the OpenNCC to model a realistic combustor configuration (Energy Efficient Engine (E3)). First, we perform a series of validation tests for the newly-implemented advection upstream splitting method (AUSM) and the extended version of the AUSM-family schemes (AUSM+-up). Compared with the analytical/experimental data of the validation tests, we achieved good agreement. In the steady-state E3 cold flow results using the Reynolds-averaged Navier-Stokes(RANS), we find a noticeable difference in the flow fields calculated by the two different numerical schemes, the standard Jameson- Schmidt-Turkel (JST) scheme and the AUSM scheme. The main differences are that the AUSM scheme is less numerical dissipative and it predicts much stronger reverse flow in the recirculation zone. This study indicates that two schemes could show different flame-holding predictions and overall flame structures.

  17. Avoidable and unavoidable exergy destructions of a fluidized bed coal combustor and a heat recovery steam generator

    International Nuclear Information System (INIS)

    Callak, Meliha; Balkan, Firuz; Hepbasli, Arif

    2015-01-01

    Highlights: • Performing advanced exergy analysis of a fluidized-bed combustion for the first time. • Comparing conventional and modified exergy efficiencies of the subsystems. • Deducting inefficiencies of the system components for possible improvements. - Abstract: Advanced exergy analysis was performed using the actual operational data taken from a fluidized bed coal combustor (FBCC) and a heat recovery steam generator (HRSG) in a textile plant located at Torbalı, Izmir. First, the conventional exergy analysis of the units was carried out. The exergetic efficiencies of the units were found to be 44.2% and 46.2%, respectively. Advanced exergy analysis was then performed by splitting the exergy destructions of the units into avoidable and unavoidable parts. The avoidable exergy destruction rates of the FBCC and the HRSG were determined to be 2999 kW and 760 kW according to the measurements. Correspondingly, the exergy efficiencies were modified to 53.1% and 48.1%, respectively

  18. Data archiving and serving system implementation in CLEP's GRAS Core System

    Science.gov (United States)

    Zuo, Wei; Zeng, Xingguo; Zhang, Zhoubin; Geng, Liang; Li, Chunlai

    2017-04-01

    The Ground Research & Applications System(GRAS) is one of the five systems of China's Lunar Exploration Project(CLEP), it is responsible for data acquisition, processing, management and application, and it is also the operation control center during satellite in-orbit and payload operation management. Chang'E-1, Chang'E-2 and Chang'E-3 have collected abundant lunar exploration data. The aim of this work is to present the implementation of data archiving and Serving in CLEP's GRAS Core System software. This first approach provides a client side API and server side software allowing the creation of a simplified version of CLEPDB data archiving software, and implements all required elements to complete data archiving flow from data acquisition until its persistent storage technology. The client side includes all necessary components that run on devices that acquire or produce data, distributing and streaming to configure remote archiving servers. The server side comprises an archiving service that stores into PDS files all received data. The archiving solution aims at storing data coming for the Data Acquisition Subsystem, the Operation Management Subsystem, the Data Preprocessing Subsystem and the Scientific Application & Research Subsystem. The serving solution aims at serving data for the various business systems, scientific researchers and public users. The data-driven and component clustering methods was adopted in this system, the former is used to solve real-time data archiving and data persistence services; the latter is used to keep the continuous supporting ability of archive and service to new data from Chang'E Mission. Meanwhile, it can save software development cost as well.

  19. Development and testing of industrial scale, coal fired combustion system, Phase 3. Eighteenth quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Zauderer, B.

    1996-08-18

    In the second quarter of calendar year 1996, 16 days of combust- boiler tests were performed, including 2 days of tests on a parallel DOE sponsored project on sulfur retention in a slagging combustor. Between tests, modifications and improvements that were indicated by these tests were implemented. This brings the total number of test days to the end of June in the task 5 effort to 28, increased to 36 as of the date of this Report, 8/18/96. This compares with a total of 63 test days needed to complete the task 5 test effort. It is important to note that the only major modification to the Williamsport combustor has been the addition of a new downstream section, which lengthens the combustor and improves the combustor-boiler interface. The original combustor section, which includes the fuel, air, and cooling water delivery systems remained basically unchanged. Only the refractory liner was completely replaced, a task which occurs on an annual basis in all commercial slagging utility combustors. Therefore, this combustor has been operated since 1988 without replacement. The tests in the present reporting period are of major significance in that beginning with the first test on March 31st, for the first time slagging opening conditions were achieved in the upgraded combustor. The first results showed that the present 20 MMBtu/hr combustor design is far superior to the previous one tested since 1988 in Williamsport, PA. The most important change is that over 95% of the slag was drained from the slag tap in the combustor. This compares with an range of one-third to one-half in Williamsport. In the latter, the balance of the slag flowed out of the exit nozzle into the boiler floor. In addition, the overall system performance, including the combustor, boiler, and stack equipment, ranged from good to excellent. Those areas requiring improvement were of a nature that could be corrected with some work. but in no case were the problems encountered of a barrier type.

  20. Numerical Simulations of Two-Phase Reacting Flow in a Single-Element Lean Direct Injection (LDI) Combustor Using NCC

    Science.gov (United States)

    Liu, Nan-Suey; Shih, Tsan-Hsing; Wey, C. Thomas

    2011-01-01

    A series of numerical simulations of Jet-A spray reacting flow in a single-element lean direct injection (LDI) combustor have been conducted by using the National Combustion Code (NCC). The simulations have been carried out using the time filtered Navier-Stokes (TFNS) approach ranging from the steady Reynolds-averaged Navier-Stokes (RANS), unsteady RANS (URANS), to the dynamic flow structure simulation (DFS). The sub-grid model employed for turbulent mixing and combustion includes the well-mixed model, the linear eddy mixing (LEM) model, and the filtered mass density function (FDF/PDF) model. The starting condition of the injected liquid spray is specified via empirical droplet size correlation, and a five-species single-step global reduced mechanism is employed for fuel chemistry. All the calculations use the same grid whose resolution is of the RANS type. Comparisons of results from various models are presented.

  1. Information requirements for enterprise systems

    OpenAIRE

    Sommerville, Ian; Lock, Russell; Storer, Tim

    2012-01-01

    In this paper, we discuss an approach to system requirements engineering, which is based on using models of the responsibilities assigned to agents in a multi-agency system of systems. The responsibility models serve as a basis for identifying the stakeholders that should be considered in establishing the requirements and provide a basis for a structured approach, described here, for information requirements elicitation. We illustrate this approach using a case study drawn from civil emergenc...

  2. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  3. Minority Serving Institutions Reporting System Database

    Data.gov (United States)

    Social Security Administration — The database will be used to track SSA's contributions to Minority Serving Institutions such as Historically Black Colleges and Universities (HBCU), Tribal Colleges...

  4. 45 CFR 2554.21 - How are papers served?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false How are papers served? 2554.21 Section 2554.21... SERVICE PROGRAM FRAUD CIVIL REMEDIES ACT REGULATIONS Hearing Provisions § 2554.21 How are papers served... pleading and paper filed in the proceeding shall contain a caption setting forth the title of the action...

  5. Fluid dynamic simulation of the fluidized bed using propane-air fuel; Simulacao dinamica de um combustor de leito fluidizado utilizando como combustivel o ar-propanado

    Energy Technology Data Exchange (ETDEWEB)

    Lima Junior, L.P.; Lucena, S.; Silva, D.J. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Engenharia Quimica]. E-mail: limajun@br.inter.net

    2004-07-01

    This paper has for purpose to present the modeling and simulation of the homogeneous combustion of the mixture of propane-air in a combustor of fluidized bed with inert particles, basing on a stationary model with phases in series, being taken into account the thermal changes and mass changes among the phases and it changes thermal with the wall for radiation. Computational methods are used for such simulation and CFX 4.4 as dynamic flowing computation software (CFD), kindred of more proximity with the real aspects. Being studied like this dynamic and kinetic flowing parameters of the involved components. (author)

  6. Impact of online channel use on customer revenues and costs to serve : Considering product portfolios and self-selection

    NARCIS (Netherlands)

    Gensler, S.; Leeflang, P.S.H.; Skiera, B.

    Developing a strategy for online channels requires knowledge of the effects of customers' online use on their revenue and cost to serve, which ultimately influence customer profitability. The authors theoretically discuss and empirically examine these effects. An empirical study of retail banking

  7. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    International Nuclear Information System (INIS)

    Liu, Jonathan T.C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-01-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 μm spectral region (2v1and v1+ v3overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations

  8. 13 CFR 142.20 - How are papers served?

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false How are papers served? 142.20... ACT REGULATIONS Hearing Provisions § 142.20 How are papers served? Except for service of a complaint or a notice of hearing under §§ 142.11 and 142.14(b) respectively, service of papers must be made as...

  9. Comparative Analysis of Return of Serve Comparative Analysis of Return of Serve as Counter- as Counter-attack in Modern Tennis attack in Modern Tennis attack in Modern Tennis

    Directory of Open Access Journals (Sweden)

    Petru Eugen MERGHEŞ

    2017-02-01

    Full Text Available High performance modern tennis is characterised by high dynamism, speed in thinking and action, precision and high technical and tactical skills. In this study, we used direct observation and statistical recording of nine matches during two competition years in the tennis players Roger Federer, Rafael Nadal and Andre Agassi. In these tennis players, we studied mainly the return of serve, one of the most important shots in tennis, together with serve, as first shots in a point. We have chosen the three tennis players because they are the best example of return of serve as shown by the matches recorded and interpreted. The study we have carried out shows that return of serve makes Agassi a winner in most matches. The high percentage in Federer’s serves makes his adversaries have a lower percentage in return of serve, which prevents them to win against his serve. High percentage in return of serve results in more points on the adversary’s serve and an opportunity to start the offensive point. After comparing the three tennis players mentioned above, we can see that the highest percentage of points won on return of serve belongs to Agassi, which ranks him among the best return of serve tennis players in the world. The tennis player with the highest percentage in return of service is the one who wins the match, which shows, once again, the importance of the return of serve. Return of serve can be a strong counter-attack weapon if used at its highest level.

  10. Robust design requirements specification: a quantitative method for requirements development using quality loss functions

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard; Christensen, Martin Ebro; Howard, Thomas J.

    2016-01-01

    Product requirements serve many purposes in the product development process. Most importantly, they are meant to capture and facilitate product goals and acceptance criteria, as defined by stakeholders. Accurately communicating stakeholder goals and acceptance criteria can be challenging and more...

  11. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation

    Science.gov (United States)

    Mcdaniel, James C.; Fletcher, Douglas G.; Hartfield, Roy J.; Hollo, Steven D.

    1991-01-01

    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported.

  12. Numerical study of the enhancement of combustion performance in a scramjet combustor due to injection of electric-discharge-activated oxygen molecules

    International Nuclear Information System (INIS)

    Starik, A M; Bezgin, L V; Kopchenov, V I; Loukhovitski, B I; Sharipov, A S; Titova, N S

    2013-01-01

    A comprehensive analysis of the efficiency of an approach based on the injection of a thin oxygen stream, subjected to a tailored electric discharge, into a supersonic H 2 –air flow to enhance the combustion performance in the mixing layer and in the scramjet combustor is conducted. It is shown that for such an approach there exist optimal values of reduced electric field E/N and transversal dimension d of the injected oxygen stream, which provide the minimal length of induction zone in the mixing layer. The optimal values of E/N and d depend on air flow parameters and the specific energy put into the oxygen. The injection of a thin oxygen stream (d = 1 mm) subjected to an electric discharge with E/N = 50–100 Td, which produces mostly singlet oxygen O 2 (a  1 Δ g ) and O 2 (b 1 Σ g + ) molecules and atomic oxygen, allows one to arrange stable combustion in a scramjet duct at an extremely low air temperature T air  = 900 K and pressure P air  = 0.3 bar even at a small specific energy put into the oxygen E s  = 0.2 J ncm −3 , and to provide rather high combustion completeness η = 0.73. The advance in the energy released during combustion is much higher (hundred times), in this case, than the energy supplied to the oxygen stream in the electric discharge. This approach also makes it possible to ensure the rather high combustion completeness in the scramjet combustor with reduced length. The main reason for the combustion enhancement of the H 2 –air mixture in the scramjet duct is the intensification of chain-branching reactions due to the injection of a small amount of cold non-equilibrium oxygen plasma comprising highly reactive species, O 2 (a  1 Δ g ) and O 2 (b 1 Σ g + ) molecules and O atoms, into the H 2 –air supersonic flow. (paper)

  13. Testing of combustor chamber material in arc jet flow mixing with transverse injected water%高温含水气流条件下燃烧室材料考核的电弧加热试验模拟方法

    Institute of Scientific and Technical Information of China (English)

    涂建强; 陈连忠; 许考

    2015-01-01

    在燃烧室的内流热环境下,燃烧室壁面的部分防热材料(如 C/SiC 或超高温陶瓷)与碳氢燃料燃烧产物水蒸气发生的氧化反应速率比与空气中的氧气还要快。水蒸气的存在加剧了防热材料的氧化。另外,水蒸气还能与材料表面玻璃状的 SiO2保护层发生挥发性的化学反应,破坏了 SiO2保护层。这些因素对燃烧室防热材料的防热效果有明显的影响。本文采用等离子电弧加热矩形湍流导管试验方法模拟超燃冲压发动机燃烧室的内流热环境,并在试验喷管前的混合稳压室内横向喷射4%~5%的常温水与高温气体混合,模拟燃烧室内水蒸气的组份、浓度和温度,采用数值计算的方法分析混合稳压室内水与高温气体的掺混程度,研究含水的高温气体的总温(总焓)计算方法。%In the combustor inner flow thermal environment,the oxidation reaction of com-bustor inner surface thermal protection material,such as C/SiC and Ultra High Temperature Ce-ramic (UHTC),is more rapid in water vapor as a product of combustion than in oxygen.The water vapor also reacts with silica glass,formed in the combustor inner surface to prevent oxida-tion,to destroy the protective layer by volatilization.It has a serious impact on the combustor thermal protection performance.In the paper,the combustor inner flow thermal environment has been simulated by plasma arc heating supersonic rectangular Turbulent Flow Duct (TFD).At the same time,the ambient-temperature water,whose mass flow rate is 4%~5% of the flow, has been transversely injected into the mixing chamber,located at the end of the arc heater and before the nozzle,in order to mix with the high-temperature air and simulate the component, mass flow rate and temperature of water vapor coming from hydrocarbon combustion.The mix-ing quality between the water and the high-temperature air in the mixing chamber has been ana-lyzed by numerical

  14. Do children eat less at meals when allowed to serve themselves?

    Science.gov (United States)

    Savage, Jennifer S; Haisfield, Lisa; Fisher, Jennifer O; Marini, Michele; Birch, Leann L

    2012-07-01

    The effect of self-serving on young children's energy intake is not well understood. The objective was to examine individual differences in the effects of plated and self-served entrée portions on children's energy intake. Two within-subjects experiments were used to examine ad libitum intake at meals in 63 children aged 3-5 y when 400 g of a pasta entrée was either plated or available for children to self-serve. Child age, sex, BMI, and responsiveness to increasing portion size (defined as individual slope estimates relating ad libitum intake of the entrée across a range of entrée portions) were evaluated as predictors of self-served portions. Children's entrée and meal intakes did not differ between the self-served and plated conditions for the total sample or by child weight status. However, larger self-served entrée portions were associated with greater entrée and meal intakes. Children who served themselves larger entrée portions tended to be overweight and more responsive to portion size (ie, greater increases in entrée intake as plated portion size increased). Last, self-served portion predicted both entrée and meal intake over and above BMI z score and responsiveness to portion. Contrary to our hypothesis, relative to plated portions, allowing children to self-serve the entrée portion did not reduce energy intake. Children who were more responsive to portion-size effects were likely to self-serve and eat larger entrée portions. Self-serving is not a one-size-fits-all approach; some children may need guidance and rules to learn how to self-select appropriate portion sizes.

  15. Why do they serve?

    DEFF Research Database (Denmark)

    Vincent, Stéphanie; Glad, Ane

    2016-01-01

    that after the mission, peace-keepers are generally more disappointed than peace-enforcers. Our results also show that self-benefit motives are important for younger soldiers with only a high school education, and that this group usually serves as peace-enforcers during their gap year....... the survey both before and after deployment. Soldiers are deployed to different missions under the same circumstances. To conceptualize motives among soldiers, we use factor analysis and find three factors: challenge, self-benefit, and fidelity. Challenge represents an occupational orientation; fidelity...

  16. Requirements and Guidelines for Dental Hygiene Education Programs.

    Science.gov (United States)

    American Dental Association, Chicago, IL. Council on Dental Education.

    The purpose of this report is to serve as a guide for dental hygiene education program development, and to serve as a stimulus for improving established programs. The first section of the report discusses the function of the Council on Dental Education and the trends in hygiene program development. In section II the requirements for an accredited…

  17. Experiments and numerical studies on a Syngas-fired Ultra low NOx combustor

    KAUST Repository

    S, Krishna; Ravikrishna, R. V.

    2017-01-01

    Exhaust measurements of temperature and pollutants in a syngas-fired model trapped vortex combustor for stationary power generation applications are reported. The performance was further evaluated for configurations where mixing enhancement was obtained using struts in the mainstream flow. Mainstream premixing of fuel was also studied to investigate its effect on emissions. The exhaust temperature pattern factor was found to be poor for baseline cases, but improved with the introduction of struts. NO emissions were steadily below 3-ppm across various flow conditions, whereas CO emissions tended to increase with increasing Momentum Flux Ratios (MFRs) and mainstream fuel addition. Combustion efficiencies ~96% were observed for all conditions. The performance characteristics were found to be favourable at higher MFRs with low pattern factors and high combustion efficiencies. Numerical simulations employing RANS and LES with Presumed Probability Distribution Function (PPDF) model were also carried out. Mixture fraction profiles in the TVC cavity for non-reacting conditions show that LES simulations are able to capture the mean mixing field better than the RANS-based approach. This is attributed to the prediction of the jet decay rate and is reflected on the mean velocity magnitude fields, which reinforce this observation at different sections in the cavity. Both RANS and LES simulations show close agreement with the experimentally measured OH concentration, however, the RANS approach does not perform satisfactorily in capturing the trend of velocity magnitude. LES simulations clearly capture the trend observed in exhaust measurements which is primarily attributed to the flame stabilization mechanism.

  18. Experiments and numerical studies on a Syngas-fired Ultra low NOx combustor

    KAUST Repository

    S, Krishna

    2017-06-06

    Exhaust measurements of temperature and pollutants in a syngas-fired model trapped vortex combustor for stationary power generation applications are reported. The performance was further evaluated for configurations where mixing enhancement was obtained using struts in the mainstream flow. Mainstream premixing of fuel was also studied to investigate its effect on emissions. The exhaust temperature pattern factor was found to be poor for baseline cases, but improved with the introduction of struts. NO emissions were steadily below 3-ppm across various flow conditions, whereas CO emissions tended to increase with increasing Momentum Flux Ratios (MFRs) and mainstream fuel addition. Combustion efficiencies ~96% were observed for all conditions. The performance characteristics were found to be favourable at higher MFRs with low pattern factors and high combustion efficiencies. Numerical simulations employing RANS and LES with Presumed Probability Distribution Function (PPDF) model were also carried out. Mixture fraction profiles in the TVC cavity for non-reacting conditions show that LES simulations are able to capture the mean mixing field better than the RANS-based approach. This is attributed to the prediction of the jet decay rate and is reflected on the mean velocity magnitude fields, which reinforce this observation at different sections in the cavity. Both RANS and LES simulations show close agreement with the experimentally measured OH concentration, however, the RANS approach does not perform satisfactorily in capturing the trend of velocity magnitude. LES simulations clearly capture the trend observed in exhaust measurements which is primarily attributed to the flame stabilization mechanism.

  19. Organizational Requirements in E-business

    NARCIS (Netherlands)

    Choenni, R.S.; van Leijen, H.; Bakker, R

    The integration of e-business processes with other traditional organizational processes is an important factor to serve customers effectively. Organizations must be flexible enough to cooperate with their partners. The article focuses on the two most important organizational requirements for

  20. 75 FR 58283 - National Hispanic-Serving Institutions Week, 2010

    Science.gov (United States)

    2010-09-23

    ... National Hispanic-Serving Institutions Week, 2010 By the President of the United States of America A... compete and thrive. Hispanic-Serving Institutions (HSIs) are key members of our higher education system... prosperous tomorrow for our Nation. NOW, THEREFORE, I, BARACK OBAMA, President of the United States of...

  1. Technical and economic feasibility of alternative fuel use in process heaters and small boilers

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

  2. Characterizing dinner meals served and consumed by low-income preschool children.

    Science.gov (United States)

    Nicklas, Theresa A; O'Neil, Carol E; Stuff, Janice E; Hughes, Sheryl O; Liu, Yan

    2012-12-01

    A dinner meal is consumed by approximately 95% of preschool children, yet few studies have characterized the dinner meal within a broader environmental context. The primary goal of this study was to identify the average quantities of foods served and consumed at the dinner meal by preschool children. A secondary goal was to look at factors that influenced the total amounts of food and energy consumed among preschoolers at the dinner meal. Food intake at a family dinner meal was measured using digital photography in African-American and Hispanic-American preschool children (n = 231). Pictorial records were converted to gram and energy estimates of food served and consumed; grams were converted to kilocalories for each food using Nutrition Data System for Research (NDSR) nutritional software. Foods were categorized by groups/subgroups. Comparison of means and coefficient of variation was examined overall and by food groups for food grams (and energy) served, consumed, and wasted. The relationship of mother/child characteristics to amounts served and consumed were analyzed by regression and analysis of variance (ANOVA). Plate waste was high; 30% of the foods served to the child at the dinner meal were not consumed. The amounts of food and beverage served and consumed varied within and among the food groups studied. The proportion of children served a major food group at the dinner meal varied considerably: 44% fruit/juice, 97% vegetables, 99% grains, 97% meats, 74% dairy, 66% sweetened beverages, 92% fat and oils, and 40% sweets and sugars. The amount of food served was positively associated with the amount consumed (p dinner meal was positively associated with energy intake consumed (p < 0.0001). Plate waste and variation in amounts served and consumed was substantial. The amount of food served was positively associated with the amount of food consumed by preschool children.

  3. EPR compared to international requirements (Mainly EUR)

    International Nuclear Information System (INIS)

    Broecker, B.

    1996-01-01

    A number of European Utilities have entered an agreement to write common requirements dedicated to future light water nuclear power plants to be built in Europe. The activities are known under the sign EUR (European Utilities Requirements). EPR, the future European Pressurized water Reactor, is the first installation of this type which will be operational from the year 2000 onwards, must fulfill the European requirements. EPR will serve as a test whether these requirements are realistic and well balanced. At the basic design stage of EPR, this paper concentrates on four main topics: the requirements which are new compared with existing reactors and which put a major challenge to the designer; the requirements today still open and the way they can be met by the EPR or not; the points for which already today the EPR special requirements exceed the EUR; the examples where the design of the EPR has given feedback which has led to a change of the EUR. EPR and EUR are different approaches to the reactor of the future. EUR is a set of requirements which leaves a flexibility to the designer while EPR is a real project which defines the technical solutions. EPR will fulfill the EUR and will at the same time serve as a test whether these requirements are realistic. EPR will also fulfill international requirements with minor changes. (J.S.). 7 figs

  4. Effect of secondary air injection on the combustion efficiency of sawdust in a fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    K. V. N. Srinivasa Rao

    2008-03-01

    Full Text Available Agricultural wastes like bagasse, paddy husks, sawdust and groundnut shells can be effectively used as fuels for fluidized bed combustion; otherwise these biomass fuels are difficult to handle due to high moisture and fines content. In the present work the possibility of using sawdust in the fluidized bed combustor, related combustion efficiencies and problems encountered in the combustion process are discussed. The temperature profiles for sawdust with an increase in fluidizing velocity along the vertical height above the distributor plate indicate that considerable burning of fuel particles is taking place in the freeboard zone rather than complete burning within the bed. Therefore, an enlarged disengagement section is provided to improve the combustion of fines. The temperature profiles along the bed height are observed at different feed rates. The feed rate of sawdust corresponding to the maximum possible temperature was observed to be 10.2 kg/h. It is observed that 50-60% excess air is optimal for reducing carbon loss during the burning of sawdust. The maximum possible combustion efficiency with sawdust is 99.2% and is observed with 65% excess air.

  5. Portion and Serving Sizes of Commonly Consumed Foods, in ...

    African Journals Online (AJOL)

    Portion sizes were determined from weight equivalents of each food type consumed, average portion sizes for each food type were determined using the statistical ... Serving sizes determined: a serving of the various foods as expressed in household measures include; 1.3 slices of bread, 13.5 tablespoons of Ewedu soup, ...

  6. 20 CFR 639.8 - How is the notice served?

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false How is the notice served? 639.8 Section 639.8 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR WORKER ADJUSTMENT AND RETRAINING NOTIFICATION § 639.8 How is the notice served? Any reasonable method of delivery to the parties...

  7. HIGH SERVE - service for nuclear technology. Buyers' guide

    International Nuclear Information System (INIS)

    1986-01-01

    The Deutsches Atomforum e.V. (German Atomic Forum) has organised a specialist conference with the title 'HIGH SERVE - service for nuclear technology' for October 1986. In parallel with the conference, an exhibition will make it possible for interested firms to present their service and product ranges. The experience gained in the preparation of this exhibition has been used to produce the 'HIGH SERVE - buyers guide'. The intention is to make the market more comprehensible. (orig./HP) [de

  8. Experimental analysis of thermo-acoustic instabilities in a generic gas turbine combustor by phase-correlated PIV, chemiluminescence, and laser Raman scattering measurements

    Science.gov (United States)

    Arndt, Christoph M.; Severin, Michael; Dem, Claudiu; Stöhr, Michael; Steinberg, Adam M.; Meier, Wolfgang

    2015-04-01

    A gas turbine model combustor for partially premixed swirl flames was equipped with an optical combustion chamber and operated with CH4 and air at atmospheric pressure. The burner consisted of two concentric nozzles for separately controlled air flows and a ring of holes 12 mm upstream of the nozzle exits for fuel injection. The flame described here had a thermal power of 25 kW, a global equivalence ratio of 0.7, and exhibited thermo-acoustic instabilities at a frequency of approximately 400 Hz. The phase-dependent variations in the flame shape and relative heat release rate were determined by OH* chemiluminescence imaging; the flow velocities by stereoscopic particle image velocimetry (PIV); and the major species concentrations, mixture fraction, and temperature by laser Raman scattering. The PIV measurements showed that the flow field performed a "pumping" mode with varying inflow velocities and extent of the inner recirculation zone, triggered by the pressure variations in the combustion chamber. The flow field oscillations were accompanied by variations in the mixture fraction in the inflow region and at the flame root, which in turn were mainly caused by the variations in the CH4 concentration. The mean phase-dependent changes in the fluxes of CH4 and N2 through cross-sectional planes of the combustion chamber at different heights above the nozzle were estimated by combining the PIV and Raman data. The results revealed a periodic variation in the CH4 flux by more than 150 % in relation to the mean value, due to the combined influence of the oscillating flow velocity, density variations, and CH4 concentration. Based on the experimental results, the feedback mechanism of the thermo-acoustic pulsations could be identified as a periodic fluctuation of the equivalence ratio and fuel mass flow together with a convective delay for the transport of fuel from the fuel injector to the flame zone. The combustor and the measured data are well suited for the validation of

  9. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  10. Emission studies from combustion of empty fruit bunch pellets in a fluidized bed combustor

    Science.gov (United States)

    Fazli Othaman, Muhamad; Sabudin, Sulastri; Faizal Mohideen Batcha, Mohd

    2017-08-01

    Malaysia is producing a very large amount of biomass annually from milling activities of oil palm. This biomass is currently being used efficiently in many ways including as fuel for boilers together with fossil fuels. This paper reports the emission characteristics from biomass combustion in a swirling fluidized bed combustor (SFBC). Pelletized empty fruit bunch (PEFB), one of largest biomass produced from oil palm industries were used as fuel in the present study. Combustion experiments were conducted with several quantitiesof excess air: 20%, 40%, 60% and 80% for a constant fuel feedrate of 30kg/hr. The effect of excess air was investigated for three major emissions gaseous namely CO, CO2 and NOx. Fly ash produced from the combustion was also analysed to find the contents of unburnt carbon and other impurities. From the results, it was found that the emission of CO decreased from 64 ppm to 40 ppm while the amount of CO2 increased slightly with the increasing of excess air from 20% to 80%. The NOx emission also increased from 290 ppm to 350 ppm because of N2 in the EA reacts with O2 due to high combustion temperature. The combustion efficiencies of about 99% obtained in the present study, showing the prospects of using SFBC in commercial scale.

  11. Exploring College Students' Identification with an Organizational Identity for Serving Latinx Students at a Hispanic Serving Institution (HSI) and an Emerging HSI

    Science.gov (United States)

    Garcia, Gina A.; Dwyer, Brighid

    2018-01-01

    Hispanic Serving Institutions (HSIs; postsecondary institutions that enroll 25% or more Latinx students) are increasing in significance. But to what extent do students attending an HSI, or an emerging HSI (enrolls 15-24% Latinx students), identify with an organizational identity for serving Latinx students? There is a need to understand how…

  12. 12 CFR 602.23 - Responses to demands served on FCA employees.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Responses to demands served on FCA employees. 602.23 Section 602.23 Banks and Banking FARM CREDIT ADMINISTRATION ADMINISTRATIVE PROVISIONS RELEASING....23 Responses to demands served on FCA employees. (a) An employee served with a demand or a subpoena...

  13. Unintended pregnancies among women serving in the Israeli military.

    Science.gov (United States)

    Rottenstreich, Misgav; Loitner, Limor; Dar, Shir; Kedem, Ron; Smorgick, Noam; Vaknin, Zvi

    2017-07-01

    The objective was to identify the prevalence of and variables associated with unintended pregnancy among young, unmarried women serving in the Israeli military. We performed a retrospective cohort study of unmarried women drafted by the Israeli military between 2013 and 2015 at the age of 18 years. We used multivariable logistic regression to examine associations between unintended pregnancy and women's education, IQ, immigration status, country of origin, neighborhood socioeconomic status and history of psychiatric illness. Most women (n=127,262) did not become pregnant while serving in the Israeli military. Unintended pregnancy was reported by 2365, with an additional 6 women reporting pregnancy resulting from sexual assault and 5 an intended pregnancy. Annual rates of unintended pregnancy among young women serving in the Israeli military declined from 1.69% in 2013 to 1.56% in 2014 and 1.33% in 2015. In multivariable models, unintended pregnancy was more common among women soldiers who had not graduated from high school (adjusted relative risk [RR], 5.3; 95% confidence interval [CI], 4.69-6.04) and those who were first-generation immigrants (adjusted RR, 2.1; 95% CI, 1.90-2.35). Unintended pregnancy is rare among women serving into the Israeli military. Increasing contraceptive use among women who have not graduated from high school may further reduce rates of unintended pregnancy among women serving in the Israeli military. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. WEAPONS COMPLEX OF RUSSIAN SERVING TATARS IN XV-XVII TH CENTURIES

    Directory of Open Access Journals (Sweden)

    Б А Илюшин

    2014-12-01

    Full Text Available The article considers the issue of the offensive and defensive armament of the serving Tatars of the Moscow state in the XV-XVIIth centuries, its research degree in the national historiography, the opportunities and prospects of its enhanced studying. The serving Tatars were one of the categories of the Moscow state nobility, which is reflected, first of all, in written sources. The weapons complex of Russian serving Tatars included minimal armour. European sources do not mention armour and helms or shield. But noble Tatars could have costly armour of many types that were used in that epoch by peoples of Eastern Europe and Middle East - Russians, Persians, Turks. The basic weapons of the serving Tatars were bows and arrows. In the close combat they were using sabres, and (rarely spears. The fire weapon was not used by the serving Tatars (or they used it very rarely and it was not characteristic for their weapons complex, because it was ineffective in their tactics. The serving Tatars were light mobile horse archers that preferred battles of long-distance.

  15. Acquaintance molestation and youth-serving organizations.

    Science.gov (United States)

    Lanning, Kenneth V; Dietz, Park

    2014-10-01

    This article is based not only on the research literature but also on the extensive field experience of the authors in consulting with investigators, attorneys, and organizations on the prevention, investigation, prosecution, and civil litigation of molestation of children within or in connection with youth-serving organizations. Acquaintance molesters have often pursued careers or sought out paid or volunteer work with organizations through which they can meet children. To address the problem of such offenders, it is necessary for youth-serving organizations to recognize the diversity of sexual activity, the phenomena of "nice-guy" offenders and compliant child victims, and the grooming/seduction process, each of which is reviewed here. The four most important protection practices for organizations are screening; management, and supervision; response to suspicions, allegations, and complaints; and prevention and awareness programs. The authors recommend general approaches to each of these and describe the reasons many organizations resist implementing available preventive measures. © The Author(s) 2014.

  16. Getting Grip on Security Requirements Elicitation by Structuring and Reusing Security Requirements Sources

    Directory of Open Access Journals (Sweden)

    Christian Schmitt

    2015-07-01

    Full Text Available This paper presents a model for structuring and reusing security requirements sources. The model serves as blueprint for the development of an organization-specific repository, which provides relevant security requirements sources, such as security information and knowledge sources and relevant compliance obligations, in a structured and reusable form. The resulting repository is intended to be used by development teams during the elicitation and analysis of security requirements with the goal to understand the security problem space, incorporate all relevant requirements sources, and to avoid unnecessary effort for identifying, understanding, and correlating applicable security requirements sources on a project-wise basis. We start with an overview and categorization of important security requirements sources, followed by the description of the generic model. To demonstrate the applicability and benefits of the model, the instantiation approach and details of the resulting repository of security requirements sources are presented.

  17. TWRS configuration management requirement source document

    International Nuclear Information System (INIS)

    Vann, J.M.

    1997-01-01

    The TWRS Configuration Management (CM) Requirement Source document prescribes CM as a basic product life-cycle function by which work and activities are conducted or accomplished. This document serves as the requirements basis for the TWRS CM program. The objective of the TWRS CM program is to establish consistency among requirements, physical/functional configuration, information, and documentation for TWRS and TWRS products, and to maintain this consistency throughout the life-cycle of TWRS and the product, particularly as changes are being made

  18. High variation in manufacturer-declared serving size of packaged discretionary foods in Australia.

    Science.gov (United States)

    Haskelberg, Hila; Neal, Bruce; Dunford, Elizabeth; Flood, Victoria; Rangan, Anna; Thomas, Beth; Cleanthous, Xenia; Trevena, Helen; Zheng, Jazzmin Miaobing; Louie, Jimmy Chun Yu; Gill, Timothy; Wu, Jason H Y

    2016-05-28

    Despite the potential of declared serving size to encourage appropriate portion size consumption, most countries including Australia have not developed clear reference guidelines for serving size. The present study evaluated variability in manufacturer-declared serving size of discretionary food and beverage products in Australia, and how declared serving size compared with the 2013 Australian Dietary Guideline (ADG) standard serve (600 kJ). Serving sizes were obtained from the Nutrition Information Panel for 4466 packaged, discretionary products in 2013 at four large supermarkets in Sydney, Australia, and categorised into fifteen categories in line with the 2013 ADG. For unique products that were sold in multiple package sizes, the percentage difference between the minimum and the maximum serving size across different package sizes was calculated. A high variation in serving size was found within the majority of food and beverage categories - for example, among 347 non-alcoholic beverages (e.g. soft drinks), the median for serving size was 250 (interquartile range (IQR) 250, 355) ml (range 100-750 ml). Declared serving size for unique products that are available in multiple package sizes also showed high variation, particularly for chocolate-based confectionery, with median percentage difference between minimum and maximum serving size of 183 (IQR 150) %. Categories with a high proportion of products that exceeded the 600 kJ ADG standard serve included cakes and muffins, pastries and desserts (≥74 % for each). High variability in declared serving size may confound interpretation and understanding of consumers interested in standardising and controlling their portion selection. Future research is needed to assess if and how standardising declared serving size might affect consumer behaviour.

  19. Plasma assisted NO{sub x} reduction in existing coal combustors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yao, S.C.; Russell, T.

    1991-12-31

    The feasibility of NO{sub x} reduction using plasma injection has been investigated. Both numerical and experimental methods were used in the development of this new NO{sub x}reduction technique. The numerical analysis was used to investigate various flow mechanisms in order to provide fundamental support in the development of this new NO{sub x} control technique. The calculations using this approach can give the information of the particle trajectories and distributions which are important for the design of the in-flame plasma injection configuration. The group model also established the necessary ground for further complete modeling of the whole process including the chemical kinetics. Numerical calculations were also performed for a turbulent gas flow field with variable properties. The results provided fundamental understanding of mixing effects encountered in the experiments at Pittsburgh Energy and Technology Center. A small scale experiment facility was designed and constructed at the heterogeneous combustion laboratory at Carnegie Mellon University. A series of tests were conducted in this setup to investigate the potential of the ammonia plasma injection for NO{sub x} reduction and parametric effects of this process. The experimental results are very promising. About 86% NO{sub x} reduction was achieved using ammonia radicals produced by argon plasma within the present test range. The total percentage of NO{sub x} reduction increases when ammonia flowrate, argon flow rate and initial NO concentration increase and when plasma power and the amount of excess air in the combustor decrease. A combined transport and reaction model was postulated for understanding the mechanism of NO{sub x} reduction using the plasma injection.

  20. 77 FR 13173 - Best Equipped Best Served

    Science.gov (United States)

    2012-03-05

    ... on the best equipped, best performing, best served concept for implementation in the 2012-2014... Advisory Committee (NAC). FAA is seeking stakeholder input on the technical and operational feasibility of...

  1. Serving the fuel cycle: preparing tomorrow's packagings

    International Nuclear Information System (INIS)

    Roland, V.

    2001-01-01

    The main fleet of transport packagings serving today the fuel cycle was born more than 20 years ago. Or was it they? The present paper will show that serving the fuel cycle by preparing tomorrow's logistics is actually an on-going process, rather than a rupture. We shall review the great packagings of the fuel cycle: In the front end, the major actors are the UF 4 , UF 6 , enriched UF 6 , UO 2 powders, fresh fuel packagings. In the back end of the fuel cycle, we find the dry transport casks of the TN-12, TN-17, TN-13, family and also the Excellox wet flasks. In the waste management, a whole fleet of containers, culminating in the TN Gemini, are available or being created. (author)

  2. How internal and external supervisors influence employees' self-serving decisions

    NARCIS (Netherlands)

    de Waal, Melanie; Rink, Floor; Stoker, Janka

    2015-01-01

    The current investigation examined the effects of internal and external supervisors (i.e., formally installed institutions that hold employees accountable for their actions) on employees’ self-serving decisions. In two studies, it was found that internal supervisors reduced self-serving decisions

  3. Alyeska/SERVS technological innovations for oil spill response

    International Nuclear Information System (INIS)

    Hillman, S.O.

    1996-01-01

    An overview of technological innovations in spill response by Alyeska Pipeline Service Company/SERVS (ship escort response vessel system), was presented. The company has developed a number of spill response techniques which have needed new strategies and modified equipment for fulfillment of the Prince William Sound Tanker Oil Discharge Prevention and Contingency Plan. One of the strategies was the training of personnel to be ready to deploy massive quantities of equipment on short notice to potential spill sites over an 11,000 square mile water body with more than 3,200 miles of wilderness shoreline. Specific response equipment and decision-making tools have been developed in direct support of large scale programs. Along with oil slick tracking buoys and mini barges, SERVS has developed high capacity skimmers with recovery capacities approaching 2,000 to 3,000 barrels of liquid per hour and strategy boom-towing vessels which divert oil into a long U shaped containment boom. SERVS fishing vessel program, hatchery protection and remote response center equipment program, and wildlife treatment facilities were also described. 10 refs., 13 figs

  4. Coating and melt induced agglomeration in a poultry litter fired fluidized bed combustor

    International Nuclear Information System (INIS)

    Billen, Pieter; Creemers, Benji; Costa, José; Van Caneghem, Jo; Vandecasteele, Carlo

    2014-01-01

    The combustion of poultry litter, which is rich in phosphorus, in a fluidized bed combustor (FBC) is associated with agglomeration problems, which can lead to bed defluidization and consequent shutdown of the installation. Whereas earlier research indicated coating induced agglomeration as the dominant mechanism for bed material agglomeration, it is shown experimentally in this paper that both coating and melt induced agglomeration occur. Coating induced agglomeration mainly takes place at the walls of the FBC, in the freeboard above the fluidized bed, where at the prevailing temperature the bed particles are partially molten and hence agglomerate. In the ash, P 2 O 5 forms together with CaO thermodynamically stable Ca 3 (PO 4 ) 2 , thus reducing the amount of calcium silicates in the ash. This results in K/Ca silicate mixtures with lower melting points. On the other hand, in-bed agglomeration is caused by thermodynamically unstable, low melting HPO 4 2− and H 2 PO 4 − salts present in the fuel. In the hot FBC these salts may melt, may cause bed particles to stick together and may subsequently react with Ca salts from the bed ash, forming a solid bridge of the stable Ca 3 (PO 4 ) 2 between multiple particles. - Highlights: • Coating induced agglomeration not due to K phosphates, but due to K silicates. • Melt induced agglomeration due to H 2 PO 4 − and HPO 4 2− salts in the fuel. • Wall agglomeration corresponds to coating induced mechanism. • In-bed agglomeration corresponds to melt induced mechanism

  5. Low-Emission combustion of fuel in aeroderivative gas turbines

    Science.gov (United States)

    Bulysova, L. A.; Vasil'ev, V. D.; Berne, A. L.

    2017-12-01

    The paper is the first of a planned set of papers devoted to the world experience in development of Low Emission combustors (LEC) for industrial Gas Turbines (GT). The purpose of the article is to summarize and analyze the most successful experience of introducing the principles of low-emission combustion of the so-called "poor" (low fuel concentration in air when the excess air ratio is about 1.9-2.1) well mixed fuelair mixtures in the LEC for GTs and ways to reduce the instability of combustion. The consideration examples are the most successful and widely used aero-derivative GT. The GT development meets problems related to the difference in requirements and operation conditions between the aero, industrial, and power production GT. One of the main problems to be solved is the LEC development to mitigate emissions of the harmful products first of all the Nitrogen oxides NOx. The ways to modify or convert the initial combustors to the LEC are shown. This development may follow location of multiburner mixers within the initial axial envelope dimensions or conversion of circular combustor to the can type one. The most interesting are Natural Gas firing GT without water injection into the operating process or Dry Low emission (DLE) combustors. The current GT efficiency requirement may be satisfied at compressor exit pressure above 3 MPa and Turbine Entry temperature (TET) above 1500°C. The paper describes LEC examples based on the concept of preliminary prepared air-fuel mixtures' combustion. Each combustor employs its own fuel supply control concept based on the fuel flow-power output relation. In the case of multiburner combustors, the burners are started subsequently under a specific scheme. The can type combustors have combustion zones gradually ignited following the GT power change. The combustion noise problem experienced in lean mixtures' combustion is also considered, and the problem solutions are described. The GT test results show wide ranges of stable

  6. Economic importance and growth rate of broiler chickens served ...

    African Journals Online (AJOL)

    weight gain were N307.13 and N87.50 /kg for the birds served 120 ml FPLE/litre of water compared to control (N208.17 and N96.52/kg), respectively. An average NP of N273.56 was made for the broiler chickens served 30-120 ml FPLE/l of water with reference to control (N208.17), which was a difference of N64.39 per bird.

  7. Three Dimensional Transient Turbulent Simulations of Scramjet Fuel Injection and Combustion

    Science.gov (United States)

    Bahbaz, Marwane

    2011-11-01

    Scramjet is a propulsion system that is more effective for hypersonic flights (M >5). The main objective of the simulation is to understand both the mixing and combustion process of air flow using hydrogen fuel in high speed environment s. The understanding of this phenomenon is used to determine the number of fuel injectors required to increase combustion efficiency and energy transfer. Due to the complexity of this simulation, multiple software tools are used to achieve this objective. First, Solid works is used to draw a scramjet combustor with accurate measurements. Second software tool used is Gambit; It is used to make several types of meshes for the scramjet combustor. Finally, Open Foam and CFD++ are software used to process and post process the scramjet combustor. At this stage, the simulation is divided into two categories. The cold flow category is a series of simulations that include subsonic and supersonic turbulent air flow across the combustor channel with fuel interaction from one or more injectors'. The second category is the combustion simulations which involve fluid flow and fuel mixing with ignition. The simulation and modeling of scramjet combustor will assist to investigate and understand the combustion process and energy transfer in hypersonic environment.

  8. The National Insurance Academy: Serving India's Insurance Professionals and Researchers

    Science.gov (United States)

    Sane, Bhagyashree

    2011-01-01

    This article discusses how a special library can meet the needs of a specific industry. The author focuses on India's National Insurance Academy (NIA) Library, which serves the insurance industry of India and some neighboring countries. It is where the author serves as the chief librarian.

  9. Lunch is ready… but not healthy: An analysis of lunches served in childcare centres in two Canadian provinces.

    Science.gov (United States)

    Ward, Stephanie; Bélanger, Mathieu; Donovan, Denise; Vatanparast, Hassan; Engler-Stringer, Rachel; Leis, Anne; Carrier, Natalie

    2017-11-09

    Childcare centres (CCs) typically offer one meal and snacks daily. This study compared what is served in CCs with what the nutritional recommendations are; described and compared the nutritional composition of lunches served in CCs in New Brunswick and Saskatchewan; and examined differences between French and English, and urban and rural centres. The study involved 61 randomly selected CCs in New Brunswick and Saskatchewan, Canada. Lunch content was measured on two consecutive days by weighing each food item served to children and by visually documenting the food items using digital photography. Food items were categorized into food groups according to Health Canada's Eating Well with Canada's Food Guide, and nutrients were analyzed using a nutritional analysis software. One-sample t tests compared lunch content with nutritional recommendations. Independent t tests compared the nutrient and food group content of lunches in New Brunswick and Saskatchewan, French and English, and urban and rural CCs. On average, CCs did not meet provincial recommendations. Lunches in both provinces were low in calories (<517 kcal) and fibre (<7 g). Overall, Saskatchewan centres served greater amounts of food than New Brunswick centres (p < 0.05). French-speaking centres provided less fat (p = 0.047), less saturated fat (p = 0.01), and fewer servings of meat and alternatives (p = 0.02), and more trans fat (p = 0.03) than English-speaking centres. There were no differences between rural and urban centres. Few CC lunches met nutritional recommendations. Interventions are required to improve the quality of foods offered in CCs. Reviewing or developing comprehensive nutrition guidelines is warranted.

  10. 45 CFR 2551.81 - What type of clients are eligible to be served?

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false What type of clients are eligible to be served... FOR NATIONAL AND COMMUNITY SERVICE SENIOR COMPANION PROGRAM Clients Served § 2551.81 What type of clients are eligible to be served? Senior Companions serve only adults, primarily older adults, who have...

  11. Methods of measuring the level of logistics serving in international business

    Directory of Open Access Journals (Sweden)

    Simona BĂLĂŞESCU

    2015-06-01

    Full Text Available This paper raise the issue of logistics service of customers in international markets. The study aims optimizing logistics serving using the case of a company in Romania which has several foreign customers. The main objectives of the investigation are related to the measurement of logistic service level for the company’s foreign clients and to an evaluation of the present potential of the logistic serving strategy of this company. The instruments used for the analysis are the economic outputs, information from foreign customers and the theory about the level of logistic serving. The results of the analysis are used for making a proposal of a set of projects aiming the improvement of the serving quality of foreign customers.

  12. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-10-01

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. Clearly, the key to successful gas turbine development is based on understanding the effects of geometry and operating conditions on combustion instability, emissions (including UHC, CO and NO{sub x}) and performance. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors.

  13. CH2M Hill Hanford Group, Inc., Standards and Requirements Identification Document (SRID) Requirements Management System and Requirements Specification

    International Nuclear Information System (INIS)

    JOHNSON, A.L.

    2000-01-01

    The current Tank Farm Contractor (TFC) for the U. S. Department of Energy, Office of River Protection (ORP), River Protection Project (RPP), CH2M Hill Hanford Group, Inc. (CHG), will use a computer based requirements management system. The system will serve as a tool to assist in identifying, capturing, and maintaining the Standards/Requirements Identification Document (S/RID) requirements and links to implementing procedures and other documents. By managing requirements as one integrated set, CHG will be able to carry out its mission more efficiently and effectively. CHG has chosen the Dynamic Object Oriented Requirements System (DOORS(trademark)) as the preferred computer based requirements management system. Accordingly, the S/RID program will use DOORS(trademark). DOORS(trademark) will replace the Environmental Requirements Management Interface (ERMI) system as the tool for S/RID data management. The DOORS(trademark) S/RID test project currently resides on the DOORSTM test server. The S/RID project will be migrated to the DOORS(trademark) production server. After the migration the S/RID project will be considered a production project and will no longer reside on the test server

  14. Reference serving sizes for the Brazilian population: An analysis of processed food labels

    Directory of Open Access Journals (Sweden)

    Nathalie Kliemann

    2014-06-01

    Full Text Available OBJECTIVE: To compare serving sizes reported on processed food labels with reference serving sizes according to nutrition labeling legislation and the "Food Guide for the Brazilian Population". METHODS: This cross-sectional study analyzed the labels of 2,072 processed foods in a supermarket of Florianópolis, Santa Caratina, Brazil. The foods were classified according to the Brazilian food labeling legislation. Central tendency and variability values were calculated for the serving sizes and energy values reported on the labels, as well as the ratio between the reported and reference energy value. The Spearman correlation test was performed between the reference serving size and the reference energy density, and also between the reference serving size and energy density of each study food. RESULTS: Nutrition labeling and the Food Guide presented reference servings with different sizes and energy values. The serving sizes reported on the labels did not follow either of the references and presented heterogeneous values, with a maximum range of 55-240 g among ready and semi-ready pre-prepared dishes. The reported energy values were between 0.1 times smaller and 2.4 times larger than the reference values. The reference serving sizes presented a highly inverse correlation with the reference energy density (Spearman coefficient= 0.9 and a very low inverse correlation with the energy density of the foods analyzed (Spearman coefficient= 0.2. CONCLUSION: This study showed the need for standardizing reference serving size information for the Brazilian population as well as reviewing nutrition labeling legislation in order to standardize the serving sizes reported on labels and to update the reference energy density used to calculate serving sizes.

  15. A Study on Technology Architecture and Serving Approaches of Electronic Government System

    Science.gov (United States)

    Liu, Chunnian; Huang, Yiyun; Pan, Qin

    As E-government becomes a very active research area, a lot of solutions to solve citizens' needs are being deployed. This paper provides technology architecture of E-government system and approaches of service in Public Administrations. The proposed electronic system addresses the basic E-government requirements of user friendliness, security, interoperability, transparency and effectiveness in the communication between small and medium sized public organizations and their citizens, businesses and other public organizations. The paper has provided several serving approaches of E-government, which includes SOA, web service, mobile E-government, public library and every has its own characteristics and application scenes. Still, there are a number of E-government issues for further research on organization structure change, including research methodology, data collection analysis, etc.

  16. Indirect-fired gas turbine bottomed with fuel cell

    Science.gov (United States)

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  17. The relationship between mother to child calories served and maternal perception of hunger.

    Science.gov (United States)

    Stromberg, S E; Janicke, D M

    2016-06-01

    Research has examined self-serving portions in adults and children and has shown that larger portion size is related to more calories consumed. The present study examines factors that may influence the portion sizes a mother serves her child at a mealtime. The present observational study included a community-based sample of 29 mother-child dyads. Dyads attended a 1-h session in which they shared a meal together. A buffet of food was provided and the mother was asked to serve her child and herself. The amount of food served and consumed by the child was recorded. Main independent variables of interest included maternal body mass index (BMI), child BMI Z-score, and maternal perception of personal and child hunger. The primary dependent variable was the total calories the mother served her child. Regression models and a moderated mediation were used to examine the relation between variables. Calories served to the child was positively associated with calories consumed by the child. Maternal perception of her own hunger was related to her perception of her child's hunger. Furthermore, maternal perception of child hunger explained the relationship between maternal perception of personal hunger and total calories served to the child, although only for obese mothers. Mothers may be serving their children larger portion sizes based on their personal weight and their perception of their child's hunger. To help children obtain or maintain a healthy weight, obesity prevention and intervention programmes should help mothers serve more appropriate serving sizes to their children. © 2015 The British Dietetic Association Ltd.

  18. An experimental study of interacting swirl flows in a model gas turbine combustor

    Science.gov (United States)

    Vishwanath, Rahul B.; Tilak, Paidipati Mallikarjuna; Chaudhuri, Swetaprovo

    2018-03-01

    In this experimental work, we analyze the flow structures emerging from the mutual interaction between adjacent swirling flows at variable degrees of swirl, issued into a semi-confined chamber, as it could happen in a three cup sector of an annular premixed combustor of a modern gas turbine engine. Stereoscopic particle image velocimetry ( sPIV) is used to characterize both the non-reacting and reacting flow fields in the central diametrical (vertical) plane of the swirlers and the corresponding transverse (horizontal) planes at different heights above the swirlers. A central swirling flow with a fixed swirl vane angle is allowed to interact with its neighboring flows of varied swirl levels, with constant inlet bulk flow velocity through the central port. It is found that the presence of straight jets with zero swirl or co-rotating swirling jets with increasing swirl on both sides of the central swirling jet, significantly alters its structures. As such, an increase in the amount of swirl in the neighboring flows increases the recirculation levels in central swirling flow leading to a bubble-type vortex breakdown, not formed otherwise. It is shown with the aid of Helmholtz decomposition that the transition from conical to bubble-type breakdown is captured well by the radial momentum induced by the azimuthal vorticity. Simultaneous sPIV and OH-planar laser-induced fluorescence (PLIF) are employed to identify the influence of the neighboring jets on the reacting vortex breakdown states. Significant changes in the vortex breakdown size and structure are observed due to variation in swirl levels of the neighboring jets alongside reaction and concomitant flow dilatation.

  19. Low NO sub x heavy fuel combustor concept program. Phase 1A: Combustion technology generation coal gas fuels

    Science.gov (United States)

    Sherlock, T. P.

    1982-01-01

    Combustion tests of two scaled burners using actual coal gas from a 25 ton/day fluidized bed coal gasifier are described. The two combustor configurations studied were a ceramic lined, staged rich/lean burner and an integral, all metal multiannual swirl burner (MASB). The tests were conducted over a range of temperature and pressures representative of current industrial combustion turbine inlet conditions. Tests on the rich lean burner were conducted at three levels of product gas heating values: 104, 197 and 254 btu/scf. Corresponding levels of NOx emissions were 5, 20 and 70 ppmv. Nitrogen was added to the fuel in the form of ammonia, and conversion efficiencies of fuel nitrogen to NOx were on the order of 4 percent to 12 percent, which is somewhat lower than the 14 percent to 18 percent conversion efficiency when src-2 liquid fuel was used. The MASB was tested only on medium btu gas (220 to 270 btu/scf), and produced approximately 80 ppmv NOx at rated engine conditions. Both burners operated similarly on actual coal gas and erbs fuel, and all heating values tested can be successfully burned in current machines.

  20. Leader power and self-serving behavior : The moderating role of accountability

    NARCIS (Netherlands)

    Rus, Diana; van Knippenberg, Daan; Wisse, Barbara

    This study explored whether accountability influences the relationship between power and leader self-serving behavior. Across three studies, using both experimental manipulations and individual difference measures, we found that accountability mitigated the effects of power on leader self-serving

  1. Assessing the Implications of Allowing Transgender Personnel to Serve Openly

    Science.gov (United States)

    2016-01-01

    Openly? There are 18 countries that allow transgender personnel to serve openly in their mili- taries: Australia, Austria, Belgium, Bolivia , Canada...clinical and cultural competence for the proper care of transgender patients. Surgical procedures quite similar to those used for gender transition...tries that allow transgender personnel to serve openly in their militaries: Austra- lia, Austria, Belgium, Bolivia , Canada, Czech Republic, Denmark

  2. The Accounting Profession: Serving the Public Interest or Capital Interest?

    Directory of Open Access Journals (Sweden)

    Mary A Kaidonis

    2008-12-01

    Full Text Available As an integral facet of society, the accounting profession has a role in the State and thecorporate sector, and is also expected to serve the public interest. The capacity for theAustralian accounting profession to serve the public interest is considered in the context oflegislation and the accounting standard setting process. Specific reference is made to theCLERP Act 1999 and ASIC Act 2001. It is argued that the combined effect of these Acts is tolegislate bias so that accounting standards privilege the specific needs of holders of capital,that is capital interest. The assumption that capital markets are surrogate for the publicinterest is contested. Accordingly, if the accounting profession follows national objectives tosupport capital markets, it may undermine its role in serving society.

  3. Assessing Requirements Quality through Requirements Coverage

    Science.gov (United States)

    Rajan, Ajitha; Heimdahl, Mats; Woodham, Kurt

    2008-01-01

    In model-based development, the development effort is centered around a formal description of the proposed software system the model. This model is derived from some high-level requirements describing the expected behavior of the software. For validation and verification purposes, this model can then be subjected to various types of analysis, for example, completeness and consistency analysis [6], model checking [3], theorem proving [1], and test-case generation [4, 7]. This development paradigm is making rapid inroads in certain industries, e.g., automotive, avionics, space applications, and medical technology. This shift towards model-based development naturally leads to changes in the verification and validation (V&V) process. The model validation problem determining that the model accurately captures the customer's high-level requirements has received little attention and the sufficiency of the validation activities has been largely determined through ad-hoc methods. Since the model serves as the central artifact, its correctness with respect to the users needs is absolutely crucial. In our investigation, we attempt to answer the following two questions with respect to validation (1) Are the requirements sufficiently defined for the system? and (2) How well does the model implement the behaviors specified by the requirements? The second question can be addressed using formal verification. Nevertheless, the size and complexity of many industrial systems make formal verification infeasible even if we have a formal model and formalized requirements. Thus, presently, there is no objective way of answering these two questions. To this end, we propose an approach based on testing that, when given a set of formal requirements, explores the relationship between requirements-based structural test-adequacy coverage and model-based structural test-adequacy coverage. The proposed technique uses requirements coverage metrics defined in [9] on formal high-level software

  4. Are men well served by family planning programs?

    Science.gov (United States)

    Hardee, Karen; Croce-Galis, Melanie; Gay, Jill

    2017-01-23

    Although the range of contraceptives includes methods for men, namely condoms, vasectomy and withdrawal that men use directly, and the Standard Days Method (SDM) that requires their participation, family planning programming has primarily focused on women. What is known about reaching men as contraceptive users? This paper draws from a review of 47 interventions that reached men and proposes 10 key considerations for strengthening programming for men as contraceptive users. A review of programming shows that men and boys are not particularly well served by programs. Most programs operate from the perspective that women are contraceptive users and that men should support their partners, with insufficient attention to reaching men as contraceptive users in their own right. The notion that family planning is women's business only is outdated. There is sufficient evidence demonstrating men's desire for information and services, as well as men's positive response to existing programming to warrant further programming for men as FP users. The key considerations focus on getting information and services where men and boys need it; addressing gender norms that affect men's attitudes and use while respecting women's autonomy; reaching adolescent boys; including men as users in policies and guidelines; scaling up successful programming; filling gaps with implementation research and monitoring & evaluation; and creating more contraceptive options for men.

  5. 34 CFR 686.12 - Agreement to serve.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Agreement to serve. 686.12 Section 686.12 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION TEACHER EDUCATION ASSISTANCE FOR COLLEGE AND HIGHER EDUCATION (TEACH) GRANT PROGRAM...

  6. Direct numerical simulation of bluff-body-stabilized premixed flames

    KAUST Repository

    Arias, Paul G.

    2014-01-10

    To enable high fidelity simulation of combustion phenomena in realistic devices, an embedded boundary method is implemented into direct numerical simulations (DNS) of reacting flows. One of the additional numerical issues associated with reacting flows is the stable treatment of the embedded boundaries in the presence of multicomponent species and reactions. The implemented method is validated in two test con gurations: a pre-mixed hydrogen/air flame stabilized in a backward-facing step configuration, and reactive flows around a square prism. The former is of interest in practical gas turbine combustor applications in which the thermo-acoustic instabilities are a strong concern, and the latter serves as a good model problem to capture the vortex shedding behind a bluff body. In addition, a reacting flow behind the square prism serves as a model for the study of flame stabilization in a micro-channel combustor. The present study utilizes fluid-cell reconstruction methods in order to capture important flame-to-solid wall interactions that are important in confined multicomponent reacting flows. Results show that the DNS with embedded boundaries can be extended to more complex geometries without loss of accuracy and the high fidelity simulation data can be used to develop and validate turbulence and combustion models for the design of practical combustion devices.

  7. Influence of a Prolonged Tennis Match Play on Serve Biomechanics.

    Directory of Open Access Journals (Sweden)

    Caroline Martin

    Full Text Available The aim of this study was to quantify kinematic, kinetic and performance changes that occur in the serve throughout a prolonged tennis match play. Serves of eight male advanced tennis players were recorded with a motion capture system before, at mid-match, and after a 3-hour tennis match. Before and after each match, electromyographic data of 8 upper limb muscles obtained during isometric maximal voluntary contraction were compared to determine the presence of muscular fatigue. Vertical ground reaction forces, rating of perceived exertion, ball speed, and ball impact height were measured. Kinematic and upper limb kinetic variables were computed. The results show decrease in mean power frequency values for several upper limb muscles that is an indicator of local muscular fatigue. Decreases in serve ball speed, ball impact height, maximal angular velocities and an increase in rating of perceived exertion were also observed between the beginning and the end of the match. With fatigue, the majority of the upper limb joint kinetics decreases at the end of the match. No change in timing of maximal angular velocities was observed between the beginning and the end of the match. A prolonged tennis match play may induce fatigue in upper limb muscles, which decrease performance and cause changes in serve maximal angular velocities and joint kinetics. The consistency in timing of maximal angular velocities suggests that advanced tennis players are able to maintain the temporal pattern of their serve technique, in spite of the muscular fatigue development.

  8. Review of modern low emissions combustion technologies for aero gas turbine engines

    Science.gov (United States)

    Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Nalianda, Devaiah; Li, Yi-Guang; Wang, Lu

    2017-10-01

    Pollutant emissions from aircraft in the vicinity of airports and at altitude are of great public concern due to their impact on environment and human health. The legislations aimed at limiting aircraft emissions have become more stringent over the past few decades. This has resulted in an urgent need to develop low emissions combustors in order to meet legislative requirements and reduce the impact of civil aviation on the environment. This article provides a comprehensive review of low emissions combustion technologies for modern aero gas turbines. The review considers current high Technologies Readiness Level (TRL) technologies including Rich-Burn Quick-quench Lean-burn (RQL), Double Annular Combustor (DAC), Twin Annular Premixing Swirler combustors (TAPS), Lean Direct Injection (LDI). It further reviews some of the advanced technologies at lower TRL. These include NASA multi-point LDI, Lean Premixed Prevaporised (LPP), Axially Staged Combustors (ASC) and Variable Geometry Combustors (VGC). The focus of the review is placed on working principles, a review of the key technologies (includes the key technology features, methods of realising the technology, associated technology advantages and design challenges, progress in development), technology application and emissions mitigation potential. The article concludes the technology review by providing a technology evaluation matrix based on a number of combustion performance criteria including altitude relight auto-ignition flashback, combustion stability, combustion efficiency, pressure loss, size and weight, liner life and exit temperature distribution.

  9. NP Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Rotman, Lauren [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tierney, Brian [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  10. [Personality traits of drivers serving a custodial sentence for drink driving].

    Science.gov (United States)

    Pawłowska, Beata; Rzeszutko, Ewa

    2015-01-01

    The aim of the work was the analysis of personality traits of men serving a custodial sentence for driving under the influence of alcohol. The study included 44 males serving a custodial sentence for drink driving, 45 males serving a custodial sentence for assault and robbery as well as 32 men with no criminal record, who had never driven a motor vehicle under the influence of alcohol. The following research methods were used during the study: the Socio-demographic Questionnaire designed by the authors, the KRS, the Cattell's IPAT, the NI, the ACL and the Life style Questionnaire. The obtained results indicate significant statistical differences between the men serving the custodial sentence for drink driving as regards stress coping, anxiety level, intensified need to look for new experiences as well as anti-social personality traits. The men serving a custodial sentence for drink driving show intensified traits of antisocial personality, higher level of anxiety, intensified impulsiveness irritability, distrust, aggression, egocentrism, eccentricity, intensified need for recognition, breaking social standards, experiencing various stimuli, new impressions, greater adaptation difficulties, less self-discipline, lower self-esteem as well as more frequently used destructive, escapist and emotional stress coping strategies as compared to the people with no criminal record, who never drove while under the influence of alcohol. As regards the intensity of personality disorders, stress coping strategies and self-image no significant differences were found between the men serving a custodial sentence for drink driving and those imprisoned for assault and robbery.

  11. Environmental Finance Center Serving EPA's Region 8 States

    Science.gov (United States)

    The National Rural Water Association, headquartered in Duncan Oklahoma, has been selected through a competitive grants process to establish a regional Environmental Finance Center (EFC) serving EPA Region 8 states.

  12. Development of a pulsed coal combustor fired with CWM (coal-water mixture): Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M.N.; Durai-Swamy, K.

    1986-11-01

    This report presents the results of an R and D program aimed at developing a new burner technology for coal-water mixture (CWM) fuels to enable the substitution of these new fuels in utility and industrial boilers and process heaters currently firing oil and gas. The application of pulse combustion to CWM fuels is chosen to alleviate many of the physical plant and environmental constraints presently associated with the direct use of these fuels in equipment designed for oil and gas firing. Pulse combustion has been shown to be capable of high-intensity burning of coal for acceptably complete combustion within relatively small equipment volumes. It also has the inherent capability to agglomerate ash particles, thus rendering ash more easily separable from the combustion gas prior to its entrance into the convective section of the boiler or heater, thereby reducing ash buildup and pluggage. Pulse combustion is also well-suited to staged combustion for NO/sub x/ control and has excellent potential for enhanced in-furnace SO/sub 2/ removal due to the enhanced levels of mass transfer brought about by the vigorous flow oscillations. The primary objective of the Phase 2 work was to develop a detailed program for laboratory development and evaluation of the pulse CWM combustor and system design concepts. 112 refs., 40 figs., 94 tabs.

  13. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  14. Biomechanical analysis of abdominal injury in tennis serves. A case report.

    Science.gov (United States)

    Tubez, François; Forthomme, Bénédicte; Croisier, Jean-Louis; Cordonnier, Caroline; Brüls, Olivier; Denoël, Vincent; Berwart, Gilles; Joris, Maurice; Grosdent, Stéphanie; Schwartz, Cédric

    2015-06-01

    The serve is an important stroke in any high level tennis game. A well-mastered serve is a substantial advantage for players. However, because of its repeatability and its intensity, this stroke is potentially deleterious for upper limbs, lower limbs and trunk. The trunk is a vital link in the production and transfer of energy from the lower limbs to the upper limbs; therefore, kinematic disorder could be a potential source of risk for trunk injury in tennis. This research studies the case of a professional tennis player who has suffered from a medical tear on the left rectus abdominis muscle after tennis serve. The goal of the study is to understand whether the injury could be explained by an inappropriate technique. For this purpose, we analyzed in three dimensions the kinematic and kinetic aspects of the serve. We also performed isokinetic tests of the player's knees. We then compared the player to five other professional players as reference. We observed a possible deficit of energy transfer because of an important anterior pelvis tilt. Some compensation made by the player during the serve could be a possible higher abdominal contraction and a larger shoulder external rotation. These particularities could induce an abdominal overwork that could explain the first injury and may provoke further injuries. Key pointsIn the proximal-distal sequence, energy is transmitted from lower limbs to upper limps via trunk.The 3D analysis tool is an indispensable test for an objective evaluation of the kinematic in the tennis serve.Multiple evaluations techniques are useful for fuller comprehension of the kinematics and contribute to the awareness of the player's staff concerning pathologies and performance.

  15. The Relationship Between Maximum Isometric Strength and Ball Velocity in the Tennis Serve

    Directory of Open Access Journals (Sweden)

    Baiget Ernest

    2016-12-01

    Full Text Available The aims of this study were to analyze the relationship between maximum isometric strength levels in different upper and lower limb joints and serve velocity in competitive tennis players as well as to develop a prediction model based on this information. Twelve male competitive tennis players (mean ± SD; age: 17.2 ± 1.0 years; body height: 180.1 ± 6.2 cm; body mass: 71.9 ± 5.6 kg were tested using maximum isometric strength levels (i.e., wrist, elbow and shoulder flexion and extension; leg and back extension; shoulder external and internal rotation. Serve velocity was measured using a radar gun. Results showed a strong positive relationship between serve velocity and shoulder internal rotation (r = 0.67; p < 0.05. Low to moderate correlations were also found between serve velocity and wrist, elbow and shoulder flexion – extension, leg and back extension and shoulder external rotation (r = 0.36 – 0.53; p = 0.377 – 0.054. Bivariate and multivariate models for predicting serve velocity were developed, with shoulder flexion and internal rotation explaining 55% of the variance in serve velocity (r = 0.74; p < 0.001. The maximum isometric strength level in shoulder internal rotation was strongly related to serve velocity, and a large part of the variability in serve velocity was explained by the maximum isometric strength levels in shoulder internal rotation and shoulder flexion.

  16. Variables that Predict Serve Efficacy in Elite Men's Volleyball with Different Quality of Opposition Sets.

    Science.gov (United States)

    Valhondo, Álvaro; Fernández-Echeverría, Carmen; González-Silva, Jara; Claver, Fernando; Moreno, M Perla

    2018-03-01

    The objective of this study was to determine the variables that predicted serve efficacy in elite men's volleyball, in sets with different quality of opposition. 3292 serve actions were analysed, of which 2254 were carried out in high quality of opposition sets and 1038 actions were in low quality of opposition sets, corresponding to a total of 24 matches played during the Men's European Volleyball Championships held in 2011. The independent variables considered in this study were the serve zone, serve type, serving player, serve direction, reception zone, receiving player and reception type; the dependent variable was serve efficacy and the situational variable was quality of opposition sets. The variables that acted as predictors in both high and low quality of opposition sets were the serving player, reception zone and reception type. The serve type variable only acted as a predictor in high quality of opposition sets, while the serve zone variable only acted as a predictor in low quality of opposition sets. These results may provide important guidance in men's volleyball training processes.

  17. How Finland Serves Gifted and Talented Pupils

    Science.gov (United States)

    Tirri, Kirsi; Kuusisto, Elina

    2013-01-01

    The purpose of this article is to provide an overview of the ways gifted and talented pupils are served in Finland. The trend toward individualism and freedom of choice as well as national policy affecting gifted education are discussed. Empirical research on Finnish teachers' attitudes toward gifted education with respect to the national…

  18. Reducing the standard serving size of alcoholic beverages prompts reductions in alcohol consumption.

    Science.gov (United States)

    Kersbergen, Inge; Oldham, Melissa; Jones, Andrew; Field, Matt; Angus, Colin; Robinson, Eric

    2018-05-14

    To test whether reducing the standard serving size of alcoholic beverages would reduce voluntary alcohol consumption in a laboratory (study 1) and a real-world drinking environment (study 2). Additionally, we modelled the potential public health benefit of reducing the standard serving size of on-trade alcoholic beverages in the United Kingdom. Studies 1 and 2 were cluster-randomized experiments. In the additional study, we used the Sheffield Alcohol Policy Model to estimate the number of deaths and hospital admissions that would be averted per year in the United Kingdom if a policy that reduces alcohol serving sizes in the on-trade was introduced. A semi-naturalistic laboratory (study 1), a bar in Liverpool, UK (study 2). Students and university staff members (study 1: n = 114, mean age = 24.8 years, 74.6% female), residents from local community (study 2: n = 164, mean age = 34.9 years, 57.3% female). In study 1, participants were assigned randomly to receive standard or reduced serving sizes (by 25%) of alcohol during a laboratory drinking session. In study 2, customers at a bar were served alcohol in either standard or reduced serving sizes (by 28.6-33.3%). Outcome measures were units of alcohol consumed within 1 hour (study 1) and up to 3 hours (study 2). Serving size condition was the primary predictor. In study 1, a 25% reduction in alcohol serving size led to a 20.7-22.3% reduction in alcohol consumption. In study 2, a 28.6-33.3% reduction in alcohol serving size led to a 32.4-39.6% reduction in alcohol consumption. Modelling results indicated that decreasing the serving size of on-trade alcoholic beverages by 25% could reduce the number of alcohol-related hospital admissions and deaths per year in the United Kingdom by 4.4-10.5% and 5.6-13.2%, respectively. Reducing the serving size of alcoholic beverages in the United Kingdom appears to lead to a reduction in alcohol consumption within a single drinking occasion. © 2018 The Authors. Addiction

  19. Serve and Return: Communication Foundations for Early Childhood Music Policy Stakeholders

    Science.gov (United States)

    Reynolds, Alison M.; Burton, Suzanne L.

    2017-01-01

    Serve-and-return interactions between a young child and caregiver are cited as integral to healthy child development and language development. In this article, the authors assert that serve-and-return interactions offer a relevant model for policy development in early childhood music education. They share contemporary evidence that music learning…

  20. [Evaluation of the presence of hygienic and sanitary indicator microorganisms in food served in public schools in Porto Alegre, Brazil].

    Science.gov (United States)

    de Oliveira, Ana Beatriz Almeida; Capalonga, Roberta; Silveira, Joice Trindade; Tondo, Eduardo Cesar; Cardoso, Marisa Ribeiro de Itapema

    2013-04-01

    The objective of this study was to evaluate the presence of hygienic and sanitary indicator microorganisms in samples of food served in public schools in Porto Alegre. All the food served in the meal of the session visited was analyzed for Escherichia coli, coagulase-positive Staphylococcus, Salmonella sp. and Shigella sp. Of the total of 196 food products analyzed in 120 schools, 4 contained and Escherichia coli score above the permitted level, and 2 contained coagulase-positive Staphylococcus. Neither Shigella nor Salmonella genus were detected. In the majority of schools studied, it was found that food was of an adequate hygienic-sanitary standard. However, only municipal schools had the supervision of a technician responsible for school food. In the state schools, 60% had never been visited by a nutritionist and in these schools several procedures failed to comply with legal requirements. In most of the schools studied, the food served to students was within adequate standards, though the problems detected revealed the need for the implementation of Best Practices in the school environment.