WorldWideScience

Sample records for serum separation membrane

  1. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation.

    Science.gov (United States)

    Liu, Yang; Huang, Haitao; Huo, Pengfei; Gu, Jiyou

    2017-06-01

    This study focused on the preparation of a new kind of membrane material, zwitterionic cellulose acetate (ZCA), via a three-step procedure consist of oxidization, Schiff base and quaternary amination reaction, and the fabrication of antifouling ZCA ultrafiltration membrane by the non-solvent-induced phase separation method (NIPS). The morphologies, surface chemical structures and compositions of the obtained CA and ZCA membranes were thoroughly characterized by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Meanwhile, the thermal stability, porosity and average pore size of two investigated membranes were also studied. As a result, the ZCA membrane displayed significantly improved hydrophilicity and water permeability compared with those of the reference CA membrane, despite a slight decrease in the protein rejection ratio. According to the cycle ultrafiltration performance of bovine serum albumin (BSA) solution and protein adsorption experiment, ZCA membrane exhibited better flux recovery property and fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling performance. This new approach gives polymer-based membrane a long time life and excellent ultrafiltration performance, and seems promising for potential applications in the protein separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparison of Membrane Chromatography and Monolith Chromatography for Lactoferrin and Bovine Serum Albumin Separation

    Directory of Open Access Journals (Sweden)

    Chalore Teepakorn

    2016-09-01

    Full Text Available These last few decades, membranes and monoliths have been increasingly used as stationary phases for chromatography. Their fast mass transfer is mainly based on convection, which leads to reduced diffusion, which is usually observed in resins. Nevertheless, poor flow distribution, which causes inefficient binding, remains a major challenge for the development of both membrane and monolith devices. Moreover, the comparison of membranes and monoliths for biomolecule separation has been very poorly investigated. In this paper, the separation of two proteins, bovine serum albumin (BSA and lactoferrin (LF, with similar sizes, but different isoelectric points, was investigated at a pH of 6.0 with a BSA-LF concentration ratio of 2/1 (2.00 mg·mL−1 BSA and 1.00 mg·mL−1 LF solution using strong cation exchange membranes and monoliths packed in the same housing, as well as commercialized devices. The feeding flow rate was operated at 12.0 bed volume (BV/min for all devices. Afterward, bound LF was eluted using a phosphate-buffered saline solution with 2.00 M NaCl. Using membranes in a CIM housing from BIA Separations (Slovenia with porous frits before and after the membrane bed, higher binding capacities, sharper breakthrough curves, as well as sharper and more symmetric elution peaks were obtained. The monolith and commercialized membrane devices showed lower LF binding capacity and broadened and non-symmetric elution peaks.

  3. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Z.; Wessling, M.

    2003-01-01

    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  4. New separation technique. Catalytically functionated separation membrane

    Energy Technology Data Exchange (ETDEWEB)

    Urgami, Tadashi [Kansai Univ., Osaka (Japan)

    1989-02-01

    This report introduces research examples, showing the fundamental principle of the membrane by separating the catalytically functionated separation membrane into enzyme fixing separation membrane, polymerized metal complex separation membrane and polymer catalyst separation membrane. This membrane can achieve both functions of separation and catalytic reaction simultaneously and has sufficient possibility to combine powerful functions. Enzyme fixing separation membrane is prepared by carrier combination method, bridging method or covering method and the enzyme fixing method with polymerized complex in which enzyme is controlled to prevent the activity lowering as much as possible and enzyme is fixed from an aqueous solution into polymer membrane. This membrane is applied to the continuous manufacturing of invert sugar from cane sugar and adsorption and removing of harmful substances from blood by utilizing both micro-capsuled urease and active carbon. Alginic acid-copper (II) complex membrane is used for the polymerized metal complex membrane and polystyrene sulfonate membrane is used for the polymer catalyst separation membrane. 28 refs., 4 figs., 1 tabs.

  5. Membrane separation using nano-pores; Nano poa wo riyoshita makubunri

    Energy Technology Data Exchange (ETDEWEB)

    Manabe, S. [Fukuoka Women`s Univ., Fukuoka (Japan)

    1995-08-01

    The membrane constituted by nano-pore only (NF membrane) is sold on the market recently as the membranes used for the matter separations in addition to the reverse osmosis membrane for changing seawater into fresh water, dialysis membrane used for artificial kidney, ultrafiltration membrane used for the separation and condensation of protein and the micro-filter used for removing microbe. It is possible for the membrane constituted by nano-pore to remove the virus with the size being from 20 to 300 nm. In this paper, the pore structure of NF membrane is explained, and then its application as the membrane for removing virus is described. Especially, it is possible for NF membrane to remove the virus with smallest size (parvovirus, etc.), prion albumen (bovine serum pathogen, etc.) and the special gene such as cancer, and it is further applied to the condensation and refining of virus and genes. The broader application of nano-pore to the control of the transportation of micro-particles in the future is expected. 3 refs., 2 figs.

  6. Separation membrane development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.W. [Savannah River Technology Center, Aiken, SC (United States)

    1998-08-01

    A ceramic membrane has been developed to separate hydrogen from other gases. The method used is a sol-gel process. A thin layer of dense ceramic material is coated on a coarse ceramic filter substrate. The pore size distribution in the thin layer is controlled by a densification of the coating materials by heat treatment. The membrane has been tested by permeation measurement of the hydrogen and other gases. Selectivity of the membrane has been achieved to separate hydrogen from carbon monoxide. The permeation rate of hydrogen through the ceramic membrane was about 20 times larger than Pd-Ag membrane.

  7. Mathematical modelling of membrane separation

    DEFF Research Database (Denmark)

    Vinther, Frank

    This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate mathemat......This thesis concerns mathematical modelling of membrane separation. The thesis consists of introductory theory on membrane separation, equations of motion, and properties of dextran, which will be the solute species throughout the thesis. Furthermore, the thesis consist of three separate...... mathematical models, each with a different approach to membrane separation. The first model is a statistical model investigating the interplay between solute shape and the probability of entering the membrane. More specific the transition of solute particles from being spherical to becoming more elongated...

  8. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  9. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  10. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  11. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  12. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli; Salazar Moya, Octavio Ruben; Nunes, Suzana Pereira

    2016-01-01

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  13. Membrane manufacture for peptide separations

    KAUST Repository

    Kim, Dooli

    2016-06-07

    Nanostructured polymeric membranes are key tools in biomedical applications such as hemodialysis, protein separations, in the food industry, and drinking water supply from seawater. Despite of the success in different separation processes, membrane manufacture itself is at risk, since the most used solvents are about to be banned in many countries due to environmental and health issues. We propose for the first time the preparation of polyethersulfone membranes based on dissolution in the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate ([EMIM]DEP). We obtained a series of membranes tailored for separation of solutes with molecular weight of 30, 5, 1.3, and 1.25 kg mol-1 with respective water permeances of 140, 65, 30 and 20 Lm-2h-1bar-1. We demonstrate their superior efficiency in the separation of complex mixtures of peptides with molecular weights in the range of 800 to 3500 gmol-1. Furthermore, the thermodynamics and kinetics of phase separation leading to the pore formation in the membranes were investigated. The rheology of the solutions and the morphology of the prepared membranes were examed and compared to those of polyethersulfone in organic solvents currently used for membrane manufacture.

  14. Metal ion separations using reactive membranes

    International Nuclear Information System (INIS)

    Way, J.D.

    1993-01-01

    A membrane is a barrier between two phases. If one component of a mixture moves through the membrane faster than another mixture component, a separation can be accomplished. Membranes are used commercially for many applications including gas separations, water purification, particle filtration, and macromolecule separations (Abelson). There are two points to note concerning this definition. First, a membrane is defined based on its function, not the material used to make the membrane. Secondly, a membrane separation is a rate process. The separation is accomplished by a driving force, not by equilibrium between phases. Liquids that are immiscible with the feed and product streams can also be used as membrane materials. Different solutes will have different solubilities and diffusion coefficients in a liquid. The product of the diffusivity and the solubility is known as the permeability coefficient, which is proportional to the solute flux. Differences in permeability coefficient will produce a separation between solutes at constant driving force. Because the diffusion coefficients in liquids are typically orders of magnitude higher than in polymers, a larger flux can be obtained. Further enhancements can be accomplished by adding a nonvolatile complexation agent to the liquid membrane. One can then have either coupled or facilitated transport of metal ions through a liquid membrane. The author describes two implementations of this concept, one involving a liquid membrane supported on a microporous membrane, and the other an emulsion liquid membrane, where separation occurs to internal receiving phases. Applications and costing studies for this technology are reviewed, and a brief summary of some of the problems with liquid membranes is presented

  15. Membrane potential, serum calcium and serum selenium decrease in preeclampsia subjects in Owerri

    Directory of Open Access Journals (Sweden)

    Johnkennedy Nnodim

    2017-08-01

    Full Text Available Background Pre-eclampsia is a serious hypertensive condition of pregnancy associated with high maternal and fetal morbidity and mortality. Women who have had pre-eclampsia have a greater risk of developing hypertension, stroke and ischemic heart disease in later life. The etiology of pre-eclampsia remains unclear. Placental insufficiency plays a key role in the progression of this disease. The aim of this study was to determine membrane potential, serum calcium and serum selenium levels in preeclampsia subjects in Owerri.   Methods A case control study involving 200 primigravida (100 preeclamptic and 100 apparently healthy between the ages of 20 and 32 years attending General Hospital Owerri. Fasting venous blood was collected for the determination of serum selenium and serum calcium while membrane potential was calculated using the Nernst equation. The serum calcium was estimated using Randox Kit and serum selenium by atomic absorption spectrophotometry. The Independent Student t test was used for statistical analysis.   Results The results revealed that membrane potential and serum selenium as well as serum calcium were significantly decreased in preeclampsia when compared with the controls, at p<0.05.   Conclusion Our study demonstrated that the decrease in membrane potential, serum calcium and serum selenium levels may play a critical role in the pathogenesis of pre-eclampsia. There may be a need for increasing the dietary intake of these essential trace metals during pregnancy to prevent pre-eclampsia in Owerri.

  16. Membranes, methods of making membranes, and methods of separating gases using membranes

    Science.gov (United States)

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  17. Gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  18. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  19. Membrane-based technologies for biogas separations.

    Science.gov (United States)

    Basu, Subhankar; Khan, Asim L; Cano-Odena, Angels; Liu, Chunqing; Vankelecom, Ivo F J

    2010-02-01

    Over the past two decades, membrane processes have gained a lot of attention for the separation of gases. They have been found to be very suitable for wide scale applications owing to their reasonable cost, good selectivity and easily engineered modules. This critical review primarily focuses on the various aspects of membrane processes related to the separation of biogas, more in specific CO(2) and H(2)S removal from CH(4) and H(2) streams. Considering the limitations of inorganic materials for membranes, the present review will only focus on work done with polymeric materials. An overview on the performance of commercial membranes and lab-made membranes highlighting the problems associated with their applications will be given first. The development studies carried out to enhance the performance of membranes for gas separation will be discussed in the subsequent section. This review has been broadly divided into three sections (i) performance of commercial polymeric membranes (ii) performance of lab-made polymeric membranes and (iii) performance of mixed matrix membranes (MMMs) for gas separations. It will include structural modifications at polymer level, polymer blending, as well as synthesis of mixed matrix membranes, for which addition of silane-coupling agents and selection of suitable fillers will receive special attention. Apart from an overview of the different membrane materials, the study will also highlight the effects of different operating conditions that eventually decide the performance and longevity of membrane applications in gas separations. The discussion will be largely restricted to the studies carried out on polyimide (PI), cellulose acetate (CA), polysulfone (PSf) and polydimethyl siloxane (PDMS) membranes, as these membrane materials have been most widely used for commercial applications. Finally, the most important strategies that would ensure new commercial applications will be discussed (156 references).

  20. Gas separation using porous cement membrane.

    Science.gov (United States)

    Zhang, Weiqi; Gaggl, Maria; Gluth, Gregor J G; Behrendt, Frank

    2014-01-01

    Gas separation is a key issue in various industrial fields. Hydrogen has the potential for application in clean fuel technologies. Therefore, the separation and purification of hydrogen is an important research subject. CO2 capture and storage have important roles in "green chemistry". As an effective clean technology, gas separation using inorganic membranes has attracted much attention in the last several decades. Membrane processes have many applications in the field of gas separation. Cement is one type of inorganic material, with the advantages of a lower cost and a longer lifespan. An experimental setup has been created and improved to measure twenty different cement membranes. The purpose of this work was to investigate the influence of gas molecule properties on the material transport and to explore the influence of operating conditions and membrane composition on separation efficiency. The influences of the above parameters are determined, the best conditions and membrane type are found, it is shown that cementitious material has the ability to separate gas mixtures, and the gas transport mechanism is studied.

  1. Review of Membranes for Helium Separation and Purification

    Directory of Open Access Journals (Sweden)

    Colin A. Scholes

    2017-02-01

    Full Text Available Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

  2. Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture

    Science.gov (United States)

    Burham, Norhafizah; Azlan Hamzah, Azrul; Yunas, Jumril; Yeop Majlis, Burhanuddin

    2017-07-01

    This paper presents a technique for separating biological molecules in mixture using nanoporous silicon membrane. Nanopores were formed using electrochemical etching process (ECE) by etching a prefabricated silicon membrane in hydrofluoric acid (HF) and ethanol, and then directly bonding it with PDMS to form a complete filtration system for separating biological molecules. Tygon S3™ tubings were used as fluid interconnection between PDMS molds and silicon membrane during testing. Electrochemical etching parameters were manipulated to control pore structure and size. In this work, nanopores with sizes of less than 50 nm, embedded on top of columnar structures have been fabricated using high current densities and variable HF concentrations. Zinc oxide was diluted with deionized (DI) water and mixed with biological molecules and non-biological particles, namely protein standard, serum albumin and sodium chloride. Zinc oxide particles were trapped on the nanoporous silicon surface, while biological molecules of sizes up to 12 nm penetrated the nanoporous silicon membrane. The filtered particles were inspected using a Zetasizer Nano SP for particle size measurement and count. The Zetasizer Nano SP results revealed that more than 95% of the biological molecules in the mixture were filtered out by the nanoporous silicon membrane. The nanoporous silicon membrane fabricated in this work is integratable into bio-MEMS and Lab-on-Chip components to separate two or more types of biomolecules at once. The membrane is especially useful for the development of artificial kidney.

  3. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  4. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin

    2017-11-07

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  5. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  6. Comparison of gas membrane separation cascades using conventional separation cell and two-unit separation cells

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    The adoption of two-unit separation cells in radioactive rare gas membrane separation equipment enhances the separation factor, but increases the required membrane area and compressive power. An analytical economic evaluation was undertaken to compare the conventional separation cell with the two-unit separation cells, adopting as parameters the number of cascade stages, the membrane area and the operating power requirements. This paper describes the models used for evaluating the separation performance and the economics of cascade embodying these different concepts of separation cell taken up for study, and the results obtained for the individual concepts are mutually compared. It proved that, in respect of the number required of cascade stages, of operating power requirements and of the annual expenditure, better performance could always be expected of the two-unit separation cells as compared with the conventional separation cell, at least in the range of parameters adopted in this study. As regards the minimum membrane area, the conventional separation cell and the series-type separation cell yielded almost the same values, with the parallel-type separation cell falling somewhat behind. (auth.)

  7. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  8. Four-port gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P.; Fulton, Donald A.; Lokhandwala, Kaaeid A.; Kaschemekat, Jurgen

    2010-07-20

    A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.

  9. New Developments in Membrane-Based Chemical Separations

    National Research Council Canada - National Science Library

    Jirage, Kshama

    1998-01-01

    Membrane based chemical separations is an emerging field of research. This is because membrane-based separations are potentially less energy intensive and more cost effective than competing separation methods...

  10. Organic separations with membranes

    International Nuclear Information System (INIS)

    Funk, E.W.

    1993-01-01

    This paper presents an overview of present and emerging applications of membrane technology for the separation and purification of organic materials. This technology is highly relevant for programs aimed at minimizing waste in processing and in the treatment of gaseous and liquid effluents. Application of membranes for organic separation is growing rapidly in the petrochemical industry to simplify processing and in the treatment of effluents, and it is expected that this technology will be useful in numerous other industries including the processing of nuclear waste materials

  11. Chorioamniotic membrane separation and preterm premature rupture of membranes complicating in utero myelomeningocele repair.

    Science.gov (United States)

    Soni, Shelly; Moldenhauer, Julie S; Spinner, Susan S; Rendon, Norma; Khalek, Nahla; Martinez-Poyer, Juan; Johnson, Mark P; Adzick, N Scott

    2016-05-01

    Since the results of the Management of Myelomeningocele Study were published, maternal-fetal surgery for the in utero treatment of spina bifida has become accepted as a standard of care alternative. Despite promise with fetal management of myelomeningocele repair, there are significant complications to consider. Chorioamniotic membrane separation and preterm premature rupture of membranes are known complications of invasive fetal procedures. Despite their relative frequency associated with fetal procedures, few data exist regarding risk factors that may be attributed to their occurrence or the natural history of pregnancies that are affected with chorionic membrane separation or preterm premature rupture of membranes related to the procedure. The objective of this study was to review chorioamniotic membrane separation and preterm premature rupture of membranes in a cohort of patients undergoing fetal management of myelomeningocele repair including identification of risk factors and outcomes. This was a retrospective review of patients undergoing fetal management of myelomeningocele repair and subsequent delivery from January 2011 through December 2013 at 1 institution. Patients were identified through the institutional fetal management of myelomeningocele repair database and chart review was performed. Perioperative factors and outcomes among patients with chorioamniotic membrane separation and preterm premature rupture of membranes were compared to those without. Risk factors associated with the development of chorioamniotic membrane separation and preterm premature rupture of membranes were determined. A total of 88 patients underwent fetal management of myelomeningocele repair and subsequently delivered during the study period. In all, 21 patients (23.9%) were diagnosed with chorioamniotic membrane separation by ultrasound and preterm premature rupture of membranes occurred in 27 (30.7%). Among the chorioamniotic membrane separation patients, 10 (47.6%) were

  12. Process efficiency of casein separation from milk using polymeric spiral-wound microfiltration membranes.

    Science.gov (United States)

    Mercier-Bouchard, D; Benoit, S; Doyen, A; Britten, M; Pouliot, Y

    2017-11-01

    Microfiltration is largely used to separate casein micelles from milk serum proteins (SP) to produce a casein-enriched retentate for cheese making and a permeate enriched in native SP. Skim milk microfiltration is typically performed with ceramic membranes and little information is available about the efficiency of spiral-wound (SW) membranes. We determined the effect of SW membrane pore size (0.1 and 0.2 µm) on milk protein separation in total recirculation mode with a transmembrane pressure gradient to evaluate the separation efficiency of milk proteins and energy consumption after repeated concentration and diafiltration (DF). Results obtained in total recirculation mode demonstrated that pore size diameter had no effect on the permeate flux, but a drastic loss of casein was observed in permeate for the 0.2-µm SW membrane. Concentration-DF experiments (concentration factor of 3.0× with 2 sequential DF) were performed with the optimal 0.1-µm SW membrane. We compared these results to previous data we generated with the 0.1-µm graded permeability (GP) membrane. Whereas casein rejection was similar for both membranes, SP rejection was higher for the 0.1-µm SW membrane (rejection coefficient of 0.75 to 0.79 for the 0.1-µm SW membrane versus 0.46 to 0.49 for the GP membrane). The 0.1-µm SW membrane consumed less energy (0.015-0.024 kWh/kg of permeate collected) than the GP membrane (0.077-0.143 kWh/kg of permeate collected). A techno-economic evaluation led us to conclude that the 0.1-µm SW membranes may represent a better option to concentrate casein for cheese milk; however, the GP membrane has greater permeability and its longer lifetime (about 10 yr) potentially makes it an interesting option. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Relaxation phenomena in dense gas separation membranes

    NARCIS (Netherlands)

    Wessling, Matthias

    1993-01-01

    Solution-diffusion membranes are widely used for the separation of gaseous and liquid mixtures. The separation of air (O2/N2), landfill gas (CH4/CO2) and purge gas streams (NH3/H2) in the ammonia synthesis are examples for state-of-the-art membrane gas separation processes. For the separation of

  14. Latest development on the membrane formation for gas separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The first scientific observation related to gas separation was encountered by J.K Mitchell in 1831. However, the most remarkable and influential contribution to membrane gas separation technology was the systematic study by Thomas Graham in 1860. However only in 1979, membrane based gas separation technology was available and recognized as one of the most recent and advanced unit operations for gas separation processes. Membrane is fabricated by various methods and the parameters involved to a certain extent are very complicated. The phase inversion technique that is normally employed to produce membranes are dry/wet, wet, dry and thermal induced phase separation. Other techniques used to produce membrane are also reviewed. This paper reports the latest development in membrane formation for gas separation. The route to produce defect-free and ultrathin-skinned asymmetric membrane is also presented that represents the cutting edge technology in membrane gas separation process

  15. Carbon Dioxide Separation Using Thermally Optimized Membranes

    Science.gov (United States)

    Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.

    2002-05-01

    The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique

  16. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  17. Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

  18. Polymeric Gas-Separation Membranes for Petroleum Refining

    Directory of Open Access Journals (Sweden)

    Yousef Alqaheem

    2017-01-01

    Full Text Available Polymeric gas-separation membranes were commercialized 30 years ago. The interest on these systems is increasing because of the simplicity of concept and low-energy consumption. In the refinery, gas separation is needed in many processes such as natural gas treatment, carbon dioxide capture, hydrogen purification, and hydrocarbons separations. In these processes, the membranes have proven to be a potential candidate to replace the current conventional methods of amine scrubbing, pressure swing adsorption, and cryogenic distillation. In this paper, applications of polymeric membranes in the refinery are discussed by reviewing current materials and commercialized units. Economical evaluation of these membranes in comparison to traditional processes is also indicated.

  19. Separation of Hydrogen Isotopes by Palladium Alloy Membranes Separator

    International Nuclear Information System (INIS)

    Jiangfeng, S.; Deli, L.; Yifu, X.; Congxian, L.; Zhiyong, H.

    2007-01-01

    Full text of publication follows: Separation of hydrogen isotope with palladium alloy membranes is one of the promising methods for hydrogen isotope separation. It has several advantages, such as high separation efficiency, smaller tritium inventory, simple separation device, ect. Limited by the manufacture of membrane and cost of gas transportation pump, this method is still at the stage of conceptual study. The relationship between separation factors and temperatures, feed gas components, split ratios have not been researched in detail, and the calculated results of cascade separation have not been validated with experimental data. In this thesis, a palladium alloy membrane separator was designed to further study its separation performance between H 2 and D 2 . The separation factor of the single stage was affected by the temperature, the feed gas component, the split ratio and the gas flow rate, etc. The experimental results showed that the H 2 -D 2 separation factor decreased with the increasing of temperature. On the temperature from 573 K to 773 K, when the feed rate was 5 L/min, the separation factor of 66.2%H 2 - 33.8%D 2 decreased from 2.09 to 1.85 when the split ratio was 0.1 and from 1.74 to 1.52 when the split ratio was 0.2.The separation factor also decreased with the increasing of split ratio. At 573 K and the feed rate of 5 L/min, the separation factor of 15.0%H 2 and 85.0%D 2 decreased from 2.43 to 1.35 with the increasing of split ratio from 0.050 to 0.534,and for 66.2%H 2 -33.8%D 2 , the separation factor decreased from 2.87 to 1.30 with the increasing of split ratio from 0.050 to 0.688. When the separation factor was the biggest, the flow rate of feed gas was in a perfect value. To gain a best separation performance, perfect flow rate, lower temperature and reflux ratio should be chosen. (authors)

  20. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conducted by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.

  1. Gas separation membranes current status

    International Nuclear Information System (INIS)

    Puri, S.P.

    1996-01-01

    Membrane-based gas separation systems are now widely accepted and employed as unit operation in industrial gas, chemical and allied industries. Following their successful commercialization in the late Seventies to recover hydrogen from ammonia purge gas streams, membrane-based systems have gained acceptance in a wide variety of applications

  2. Gas separation performance of tapered cascade with membrane

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    Membrane gas separation cascades are analyzed at steady state. The method of calculating the flow rate and concentration profiles in the cascade are examined, using formulas expressing the various membrane separation cell characteristics. The method adopted is applicable to relatively high concentrations and separation factors. Considerations are further given on the steady state performance of four theoretical forms of cascade: (a) with common value of cut for all stages, (b) with symmetric separation cells, (c) with no mixing at the junction at each stage, and (d) ideal cascade. The analysis showed that, with membrane cells, the ideal cascade would have a pressure ratio varying from stage to stage. The symmetric separation cascade would provide a separation performance lower than the ideal cascade on account of the mixing at the junctions of streams possessing different concentrations, whereas the cut and separation factor of the no-mixing cascade requiring minimum membrane area exhibits zig-zag curves when plotted against stage number. Both these circumstances contribute to the lower separation performance obtained with these two forms as compared with the ideal cascade, and results in larger total membrane area; but these semi-ideal forms retain the advantage of easy practical treatment with their pressure ratio common to all stages. (auth.)

  3. Ion transport restriction in mechanically strained separator membranes

    Science.gov (United States)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  4. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  5. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  6. Polymeric molecular sieve membranes for gas separation

    Science.gov (United States)

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai

    2017-08-15

    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  7. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  8. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  9. Glovebox atmosphere detritiation process using gas separation membranes

    International Nuclear Information System (INIS)

    Le Digabel, M.; Truan, P.A.; Ducret, D.; Laquerbe, C.; Perriat, P.; Niepce, J.C.; Pelletier, T.

    2003-01-01

    The use of gas separation membranes in atmospheric detritiation systems has been studied. The main advantage of this new process is to reduce the number and/or the size of the equipment in comparison to conventional tritium removal systems. Owing to the constraints linked to tritium handling, the separation performances of several commercial hollow fiber organic membranes have been analyzed, under various operating conditions, with hydrogen/nitrogen or deuterium/nitrogen mixtures. The experiments are performed with small quantities of hydrogen or deuterium (5000 ppm). The experimental results allow to evaluate the separation efficiency of these membranes and to determine the appropriate operating conditions to apply to a membrane detritiation process

  10. Ceramic membranes for gas separation in advanced fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Meulenberg, W.A.; Baumann, S.; Ivanova, M.; Gestel, T. van; Bram, M.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF)

    2010-07-01

    The reduction or elimination of CO{sub 2} emissions from electricity generation power plants fuelled by coal or gas is a major target in the current socio-economic, environmental and political discussion to reduce green house gas emissions such as CO{sub 2}. This mission can be achieved by introducing gas separation techniques making use of membrane technology, which is, as a rule, associated with significantly lower efficiency losses compared with the conventional separation technologies. Depending on the kind of power plant process different membrane types (ceramic, polymer, metal) can be implemented. The possible technology routes are currently investigated to achieve the emission reduction. They rely on different separation tasks. The CO{sub 2}/N{sub 2} separation is the main target in the post-combustion process. Air separation (O{sub 2}/N{sub 2}) is the focus of the oxyfuel process. In the pre-combustion process an additional H{sub 2}/CO{sub 2} separation is included. Although all separation concepts imply different process requirements they have in common a need in membranes with high permeability, selectivity and stability. In each case CO{sub 2} is obtained in a readily condensable form. CO{sub 2}/N{sub 2} separation membranes like microporous membranes or polymer membranes are applicable in post-combustion stages. In processes with oxyfuel combustion, where the fuel is combusted with pure oxygen, oxygen transport membranes i.e. mixed ionic electronic conducting (MIEC) membranes with mainly perovskite or fluorite structure can be integrated. In the pre-combustion stages of the power plant process, H{sub 2}/CO{sub 2} separation membranes like microporous membranes e.g. doped silica or mixed protonic electronic conductors or metal membranes can be applied. The paper gives an overview about the considered ceramic materials for the different gas separation membranes. The manufacturing of bulk materials as well as supported thin films of these membranes along

  11. Theoretical investigation of gas separation in functionalized nanoporous graphene membranes

    Science.gov (United States)

    Wang, Yong; Yang, Qingyuan; Zhong, Chongli; Li, Jinping

    2017-06-01

    Graphene has enormous potential as a membrane-separation material with ultrahigh permeability and selectivity. The understanding of mass-transport mechanism in graphene membranes is crucial for applications in gas separation field. We computationally investigated the capability and mechanisms of functionalized nanoporous graphene membranes for gas separation. The functionalized graphene membranes with appropriate pore size and geometry possess excellent high selectivity for separating CO2/N2, CO2/CH4 and N2/CH4 gas mixtures with a gas permeance of ∼103-105 GPU, compared with ∼100 GPU for typical polymeric membranes. More important, we found that, for ultrathin graphene membranes, the gas separation performance has a great dependence not only with the energy barrier for gas getting into the pore of the graphene membranes, but also with the energy barrier for gas escaping from the pore to the other side of the membranes. The gas separation performance can be tuned by changing the two energy barriers, which can be realized by varying the chemical functional groups on the pore rim of the graphene. The novel mass-transport mechanism obtained in current study may provide a theoretical foundation for guiding the future design of graphene membranes with outstanding separation performance.

  12. Novel, Ceramic Membrane System For Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, S.

    2012-12-31

    Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing the benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.

  13. Functionalized Mesoporous Silica Membranes for CO2 Separation Applications

    Directory of Open Access Journals (Sweden)

    Hyung-Ju Kim

    2015-01-01

    Full Text Available Mesoporous silica molecular sieves are emerging candidates for a number of potential applications involving adsorption and molecular transport due to their large surface areas, high pore volumes, and tunable pore sizes. Recently, several research groups have investigated the potential of functionalized mesoporous silica molecular sieves as advanced materials in separation devices, such as membranes. In particular, mesoporous silica with a two- or three-dimensional pore structure is one of the most promising types of molecular sieve materials for gas separation membranes. However, several important challenges must first be addressed regarding the successful fabrication of mesoporous silica membranes. First, a novel, high throughput process for the fabrication of continuous and defect-free mesoporous silica membranes is required. Second, functionalization of mesopores on membranes is desirable in order to impart selective properties. Finally, the separation characteristics and performance of functionalized mesoporous silica membranes must be further investigated. Herein, the synthesis, characterization, and applications of mesoporous silica membranes and functionalized mesoporous silica membranes are reviewed with a focus on CO2 separation.

  14. Electrospun polyacrylonitrile nanofibrous membranes with varied fiber diameters and different membrane porosities as lithium-ion battery separators

    International Nuclear Information System (INIS)

    Ma, Xiaojing; Kolla, Praveen; Yang, Ruidong; Wang, Zhao; Zhao, Yong; Smirnova, Alevtina L.; Fong, Hao

    2017-01-01

    Highlights: • Nine types of electrospun polyacrylonitrile nanofibrous membranes were prepared. • These membranes had varied fiber diameters and different membrane porosities. • The membranes were explored as innovative Li-ion battery (LIB) separators. • The hot-pressed membrane with thin fibers had superior performance as LIB separator. - Abstract: In this study, nine types of polyacrylonitrile (PAN) nanofibrous membranes with varied fiber diameters and different membrane porosities are prepared by electrospinning followed by hot-pressing. Subsequently, these membranes are explored as Li-ion battery (LIB) separators. The impacts of fiber diameter and membrane porosity on electrolyte uptake, Li"+ ion transport through the membrane, electrochemical oxidation potential, and membrane performance as LIB separator (during charge/discharge cycling and rate capability tests of a cathodic half-cell) have been investigated. When compared to commercial Celgard PP separator, hot-pressed electrospun PAN nanofibrous membranes exhibit larger electrolyte uptake, higher thermal stability, wider electrochemical potential window, higher Li"+ ion permeability, and better electrochemical performance in LiMn_2O_4/separator/Li half-cell. The results also indicate that the PAN-based membrane/separator with small fiber diameters of 200–300 nm and hot-pressed under high pressure of 20 MPa surpasses all other membranes/separators and demonstrates the best performance, leading to the highest discharge capacity (89.5 mA h g"−"1 at C/2 rate) and cycle life (with capacity retention ratio being 97.7%) of the half-cell. In summary, this study has revealed that the hot-pressed electrospun PAN nanofibrous membranes (particularly those consisting of thin nanofibers) are promising as high-performance LIB separators.

  15. Two-dimensional materials for novel liquid separation membranes

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-01

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  16. Two-dimensional materials for novel liquid separation membranes.

    Science.gov (United States)

    Ying, Yulong; Yang, Yefeng; Ying, Wen; Peng, Xinsheng

    2016-08-19

    Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as

  17. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  18. Separation of tritiated water using graphene oxide membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Motkuri, Radha K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Frost, Anthony P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bratton, Wesley [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-06-28

    In future nuclear fuel reprocessing plants and possibly for nuclear power plants, the cleanup of tritiated water will be needed for hundreds of thousands of gallons of water with low activities of tritium. This cleanup concept utilizes graphene oxide laminar membranes (GOx) for the separation of low-concentration (10-3-10 µCi/g) tritiated water to create water that can be released to the environment and a much smaller waste stream with higher tritium concentrations. Graphene oxide membranes consist of hierarchically stacked, overlapping molecular layers and represent a new class of materials. A permeation rate test was performed with a 2-µm-thick cast Asbury membrane using mixed gas permeability testing with zero air (highly purified atmosphere) and with air humidified with either H2O or D2O to a nominal 50% relative humidity. The membrane permeability for both H2O and D2O was high with N2 and O2 at the system measurement limit. The membrane water permeation rate was compared to a Nafion® membrane and the GOx permeation was approximately twice as high at room temperature. The H2O vapor permeation rate was 5.9 × 102 cc/m2/min (1.2 × 10-6 g/min-cm2), which is typical for graphene oxide membranes. To demonstrate the feasibility of such isotopic water separation through GOX laminar membranes, an experimental setup was constructed to use pressure-driven separation by heating the isotopic water mixture at one side of the membrane to create steam while cooling the other side. Several membranes were tested and were prepared using different starting materials and by different pretreatment methods. The average separation result was 0.8 for deuterium and 0.6 for tritium. Higher or lower temperatures may also improve separation efficiency but neither has been tested yet. A rough estimate of cost compared to current technology was also included as an indication of potential viability of the process. The relative process costs were based on the rough size of facility to

  19. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  20. Highly Hydrothermally Stable Microporous Membranes for Hydroge Separation

    NARCIS (Netherlands)

    Wei, Qi; Wang, Fei; Wang, F.; Nie, Zuo-Ren; Song, C.; Wang, Yan-Li; Li, Qun-Yan

    2008-01-01

    Fluorocarbon-modified silica membranes were deposited on γ-Al2O3/α-Al2O3 supports by the sol−gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is

  1. Separations using biological carriers immobilized in porous polymeric and sol-gel template synthesized nanotubular membranes

    Science.gov (United States)

    Lakshmi, Brinda B.

    1998-12-01

    The overall goal of the dissertation was to use immobilized biological carriers in membranes to separate compounds as challenging as enantiomers. The membranes were prepared by a process called 'template synthesis'. Template synthesis has been used to synthesize semiconductor nanostructures and also membranes which do the enantioseparation by a process called facilitated transport. The immobilized proteins act as carriers facilitating the transport of the substrate molecules through the membrane. The apoenzymes are enzymes devoid of cofactor. Apoenzymes will possess the molecular recognition site for the substrate but will not catalyze the reaction. Apoenzymes immobilized in the pores of porous polycarbonate membrane was used as a carrier. The ends of the pores were closed with porous polypyrrole. Compounds as interesting as enantiomers were separated with these membranes. Template synthesis has been extended to the synthesis of many important semiconductor oxide naostructures like TiO2, SiO2, ZnO, Co3O4 and MnO2. These structures were made by dipping the alumina template membrane in the sol and heating. Ti0 2 tubules and fibers were obtained by this method. The fibers were used to study photocatalysis reaction of organic compounds in sunlight. Proteins were immobilized within the inner surface of the tubules using Sn chemistry. Bovine serum albumn (BSA) immobilized within the different diameter tubules showed varying degree of facilitation with phenylalanine. The membranes also show interesting switching of selectivity from L to D depending on the tube size and feed concentration.

  2. Membrane-based ethylene/ethane separation: The upper bound and beyond

    KAUST Repository

    Rungta, Meha

    2013-08-02

    Ethylene/ethane separation via cryogenic distillation is extremely energy-intensive, and membrane separation may provide an attractive alternative. In this paper, ethylene/ethane separation performance using polymeric membranes is summarized, and an experimental ethylene/ethane polymeric upper bound based on literature data is presented. A theoretical prediction of the ethylene/ethane upper bound is also presented, and shows good agreement with the experimental upper bound. Further, two ways to overcome the ethylene/ethane upper bound, based on increasing the sorption or diffusion selectivity, is also discussed, and a review on advanced membrane types such as facilitated transport membranes, zeolite and metal organic framework based membranes, and carbon molecular sieve membranes is presented. Of these, carbon membranes have shown the potential to surpass the polymeric ethylene/ethane upper bound performance. Furthermore, a convenient, potentially scalable method for tailoring the performance of carbon membranes for ethylene/ethane separation based on tuning the pyrolysis conditions has also been demonstrated. © 2013 American Institute of Chemical Engineers.

  3. Membrane-based ethylene/ethane separation: The upper bound and beyond

    KAUST Repository

    Rungta, Meha; Zhang, Chen; Koros, William J.; Xu, Liren

    2013-01-01

    Ethylene/ethane separation via cryogenic distillation is extremely energy-intensive, and membrane separation may provide an attractive alternative. In this paper, ethylene/ethane separation performance using polymeric membranes is summarized

  4. Microporous Organic Materials for Membrane-Based Gas Separation.

    Science.gov (United States)

    Zou, Xiaoqin; Zhu, Guangshan

    2018-01-01

    Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H 2 , CO 2 , O 2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hybrid and Mixed Matrix Membranes for Separations from Fermentations.

    Science.gov (United States)

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-02-29

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase.

  6. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    Science.gov (United States)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than

  7. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  8. RECENT PROGRESS OF OXYGEN/NITROGEN SEPARATION USING MEMBRANE TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    K. C. CHONG

    2016-07-01

    Full Text Available The oxygen-enriched air is highly demanded for various industrial applications such as medical, chemical and enhanced combustion processes. The conventional oxygen/nitrogen production is either cryogenic distillation or pressure swing adsorption (PSA. Both of these techniques possess the production capability of 20 to 300 tonnes of oxygen per day and oxygen purity of more than 95%. However, these techniques are energy intensive. Alternatively, membrane technology is an emerging technology in gas separation as it requires low energy consumption and relatively moderate production volume, if compared to the conventional gas production techniques. These advantages have spurred much interest from industries and academics to speed up the commercial viability of the O2/N2 separation via membrane technology. In this review, the conventional and membrane technologies in O2/N2 separation, as well as recent development of membrane fabrication techniques and materials are reviewed. The latest membrane performance in O2/N2 separation is also tabulated and discussed.

  9. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    Science.gov (United States)

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  10. Membrane Separation of 2-Ethyl Hexyl Amine/1-Decene

    KAUST Repository

    Bawareth, Bander

    2012-12-01

    1-Decene is a valuable product in linear alpha olefins plants that is contaminated with 2-EHA (2-ethyl hexyl amine). Using organic solvent nanofiltration membranes for this separation is quite challengeable. A membrane has to be a chemically stable in this environment with reasonable and stable separation factor. This paper shows that Teflon AF 2400 and cellulose acetate produced interesting results in 1-decene/2-EHA separation. The separation factor of Teflon AF 2400 is 3 with a stable permeance of 1.1x10-2 L/(m2·h·bar). Likewise, cellulose acetate gave 2-EHA/1-decene separation factor of 2 with a lower permeance of 3.67x10-3 L/(m2·h·bar). A series of hydrophilic membranes were tested but they did not give any separation due to high degree of swelling of 2-EHA with these polymers. The large swelling causes the membrane to lose its diffusivity selectivity because of an increase in the polymer\\'s chain mobility.

  11. Development and modification of glass membranes for aggressive gas separations

    Energy Technology Data Exchange (ETDEWEB)

    Lindbraaten, Arne

    2004-07-01

    Chlorine as a chemical is widespread in industry and found in a great variety of processes ranging from water purification to plastic production. In this thesis, a magnesium production factory was chosen as an example because it involved both chlorine - air separation and hydrogen -hydrogen chloride separation. Previously, various types of membrane materials have been tested out for their applicability in the chosen process. The materials previously tested either lacked sufficient membrane performance or sufficient membrane stability. As an attempt to improve both the membrane performance and stability, glass membranes are used in this thesis. Glass membranes are prepared from a borosilicate glass, via a phase separation followed by an acid leaching route. By choosing the appropriate phase separation temperature and acid to glass ratio, the membrane can be produced with an average pore diameter of 2 nm (or 4 nm). However, the 2 nm average pore size is still too large to separate gases with separation selectivities beyond the selectivities predicted from Knudsen diffusion theory. If the pores are narrowed, the selectivity may be raised while the flux hopefully is maintained. The narrowing of the pores was done by a silane coupling to the surface OH-groups on the glass. The silane coupling agent is of the dimethyl-acyl-chlorosilane type, where the length of the acyl chain varies from 1 carbon up to 18 carbons. Glass fibres are also tested in this work, which are produced without phase separation and their average pore size is smaller than the surface-modified glasses. To be able to compare the performance of the various membranes, performance measurements are performed and these measurements are evaluated by the separation power (product of the selectivity and the permeability of the fastest permeating compound). Because of the harsh chlorine or hydrogen chloride environment, to which the membranes are exposed in this work, the membrane stability is at least as

  12. Immobilized fluid membranes for gas separation

    Science.gov (United States)

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  13. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    Directory of Open Access Journals (Sweden)

    Christopher John Davey

    2016-02-01

    Full Text Available Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s, Greater understanding of the compatibility between the polymer and inorganic phase(s, Improved methods for homogeneously dispersing the inorganic phase.

  14. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  15. Membrane separation systems---A research and development needs assessment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. (Membrane Technology and Research, Inc., Menlo Park, CA (USA)); Cussler, E.L. (Minnesota Univ., Minneapolis, MN (USA). Dept. of Chemical Engineering and Materials Science); Eykamp, W. (California Univ., Berkeley, CA (USA)); Koros, W.J. (Texas Univ., Austin, TX (USA)); Riley, R.L. (Separation Systems Technology, San Diego, CA (USA)); Strathmann, H. (Fraunhofer-Institut fuer Grenzflaech

    1990-04-01

    Industrial separation processes consume a significant portion of the energy used in the United States. A 1986 survey by the Office of Industrial Programs estimated that about 4.2 quads of energy are expended annually on distillation, drying and evaporation operations. This survey also concluded that over 0.8 quads of energy could be saved in the chemical, petroleum and food industries alone if these industries adopted membrane separation systems more widely. Membrane separation systems offer significant advantages over existing separation processes. In addition to consuming less energy than conventional processes, membrane systems are compact and modular, enabling easy retrofit to existing industrial processes. The present study was commissioned by the Department of Energy, Office of Program Analysis, to identify and prioritize membrane research needs in light of DOE's mission. Each report will be individually cataloged.

  16. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-01-01

    , the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes

  17. Serum protein fractionation using supported molecular matrix electrophoresis.

    Science.gov (United States)

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2013-08-01

    Supported molecular matrix electrophoresis (SMME), in which a hydrophilic polymer such as PVA serves as a support within a porous PVDF membrane, was recently developed. This method is similar to cellulose acetate membrane electrophoresis but differs in the compatibility to glycan analysis of the separated bands. In this report, we describe the first instance of the application of SMME to human serum fractionation, and demonstrate the differences with serum fractionation by cellulose acetate membrane electrophoresis. The SMME membrane exhibited almost no EOF during electrophoresis, unlike the cellulose acetate membrane, but afforded comparative results for serum fractionation. The visualization of each fraction was achieved by conventional staining with dye such as Direct Blue-71, and objective quantification was obtained by densitometry after inducing membrane transparency with 1-nonene. Immunostaining was also achieved. Moreover, mass spectrometric analysis of both N-linked and O-linked glycans from the separated bands was demonstrated. Serum fractionation and glycan profiling of each fraction using SMME will enable novel insights into the relationships between various glycosylation profiles and disease states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Retrofit with membrane the Paraffin/Olefin separation

    Energy Technology Data Exchange (ETDEWEB)

    Motelica, A.; Bruinsma, O.S.L.; Kreiter, R.; Den Exter, M.J.; Vente, J.F. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-10-15

    Olefins, such as ethylene, propylene, and butadiene, are among the most produced intermediates in petrochemical industry. They are produced from a wide range of hydrocarbon feedstocks (ethane, propane, butane, naphtha, gas oil) via a cracking process. The last step in this process is the separation of olefins from other hydrocarbons, which is traditionally performed with distillation. As the physicochemical properties, such as volatility and boiling point, of the compounds are very similar, the purification becomes capital and energy intensive. For example, the top of an ethylene/ethane distillation column needs to be chilled to -30C and this requires large amount of electric energy consumption. The separation of butadiene from the C4-fraction is performed with the aid of an additional solvent. This solvent has to be regenerated at the cost of additional high temperature steam. To overcome these separation disadvantages of olefin/paraffin separation, different separation methods have been investigated and proposed in recent years. Suggested options are based on better heat integration of the overall process, or on novel separation systems such as Heat Integrated Distillation Columns, membrane separation, adsorption-desorption systems or on hybrid separation methods, for example, distillation combined with membrane separation.

  19. Studies on hydrogen separation membrane for IS process. Membrane preparation with porous α-alumina tube

    International Nuclear Information System (INIS)

    Hwang, Gab-Jin; Onuki, Kaoru; Shimizu, Saburo

    1998-01-01

    It was investigated the preparation technique of hydrogen separation membrane to enhance the decomposition ratio of hydrogen iodide in the thermochemical IS process. Hydrogen separation membranes based on porous α-alumina tubes having pore size of 100 nm and 10 nm were prepared by chemical vapor deposition using tetraethylorthosilicate (TEOS) as the Si source. In the hydrogen separation membrane, its pore was closed by the deposited silica and then the permeation of gas was affected by the hindrance diffusion. At 600degC, the selectivity ratios (H 2 /N 2 ) were 5.2 and 160 for the membranes based on porous α-alumina tube having pore size of 100 nm and 10 nm, respectively. (author)

  20. Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

    Science.gov (United States)

    Ma, Xiaoli

    Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H 8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H 6/C3H8 separation properties of MFI zeolite membrane and CMS membrane. MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H 6/C3H8 mixture separation. CMS membranes were synthesized by coating/pyrolysis method on mesoporous gamma-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H 6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N 2 and C3H6 and C3H6/C 3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores. CMS membranes demonstrate excellent C3H6/C 3H8 separation

  1. Radioactive rare gas separation using a separation cell with two kinds of membrane differing in gas permeability tendency

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Ozaki, Osamu; Sato, Hajime; Kimura, Shoji; Miyauchi, Terukatsu.

    1977-01-01

    A separation cell embodying two kinds of membrane-porous and nonporous, i.e. differing in gas permeability - has a separation factor higher than possible with a conventional separation cell with a single kind of membrane. The performance of such separation cells and of cascades constituted thereof are analyzed theoretically and measured experimentally for different conditions of operation, to determine the applicability of the concept to the separation of rare gases from gaseous waste out of nuclear plants. Theoretical considerations indicate that, in a cascade composed of symmetric separation cells, the separation performance can be improved by recycling part of the effluent from a cell back through the same cell (recycling cascade). It is shown that its performance is better than with the arrangement of diverting another effluent several stages upstream. With the recycling cascade, the symmetric separation recycling rate is determined by the depletion separation and enrichment separation factors relevant to the respective membranes. The separation performance of a 9-stage recycling cascade composed of separation cells with silicone rubber tubular membranes and cellulose acetate tubular membranes is derived for a case of Kr separation from N 2 -Kr mixture. The experimental data coincide well with the analytical results. From both the experimental and the analytical results, it is found that the attainable separation coefficient per stage of the cascade comes to average approximately 0.97. (auth.)

  2. Functionalized copolyimide membranes for the separation of gaseous and liquid mixtures

    Directory of Open Access Journals (Sweden)

    Nadine Schmeling

    2010-08-01

    Full Text Available Functionalized copolyimides continue to attract much attention as membrane materials because they can fulfill the demands for industrial applications. Thus not only good separation characteristics but also high temperature stability and chemical resistance are required. Furthermore, it is very important that membrane materials are resistant to plasticization since it has been shown that this phenomenon leads to a significant increase in permeability with a dramatic loss in selectivity. Plasticization effects occur with most polymer membranes at high CO2 concentrations and pressures, respectively. Plasticization effects are also observed with higher hydrocarbons such as propylene, propane, aromatics or sulfur containing aromatics. Unfortunately, these components are present in mixtures of high commercial relevance and can be separated economically by single membrane units or hybrid processes where conventional separation units are combined with membrane-based processes. In this paper the advantages of carboxy group containing 6FDA (4,4′-hexafluoroisopropylidene diphthalic anhydride -copolyimides are discussed based on the experimental results for non cross-linked, ionically and covalently cross-linked membrane materials with respect to the separation of olefins/paraffins, e.g. propylene/propane, aromatic/aliphatic separation e.g. benzene/cyclohexane as well as high pressure gas separations, e.g. CO2/CH4 mixtures. In addition, opportunities for implementing the membrane units in conventional separation processes are discussed.

  3. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation.

    Science.gov (United States)

    Haase, Martin F; Jeon, Harim; Hough, Noah; Kim, Jong Hak; Stebe, Kathleen J; Lee, Daeyeon

    2017-11-01

    The decoration of porous membranes with a dense layer of nanoparticles imparts useful functionality and can enhance membrane separation and anti-fouling properties. However, manufacturing of nanoparticle-coated membranes requires multiple steps and tedious processing. Here, we introduce a facile single-step method in which bicontinuous interfacially jammed emulsions are used to form nanoparticle-functionalized hollow fiber membranes. The resulting nanocomposite membranes prepared via solvent transfer-induced phase separation and photopolymerization have exceptionally high nanoparticle loadings (up to 50 wt% silica nanoparticles) and feature densely packed nanoparticles uniformly distributed over the entire membrane surfaces. These structurally well-defined, asymmetric membranes facilitate control over membrane flux and selectivity, enable the formation of stimuli responsive hydrogel nanocomposite membranes, and can be easily modified to introduce antifouling features. This approach forms a foundation for the formation of advanced nanocomposite membranes comprising diverse building blocks with potential applications in water treatment, industrial separations and as catalytic membrane reactors.

  4. Hydrogen separation membranes annual report for FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.; Dorris, S. E; Emerson, J. E.; Lee, T. H.; Lu, Y.; Park, C. Y.; Picciolo, J. J. (Energy Systems)

    2011-03-14

    The objective of this work is to develop dense ceramic membranes for separating hydrogen from other gaseous components in a nongalvanic mode, i.e., without using an external power supply or electrical circuitry. The goal of this project is to develop dense hydrogen transport membranes (HTMs) that nongalvanically (i.e., without electrodes or external power supply) separate hydrogen from gas mixtures at commercially significant fluxes under industrially relevant operating conditions. These membranes will be used to separate hydrogen from gas mixtures such as the product streams from coal gasification, methane partial oxidation, and water-gas shift reactions. Potential ancillary uses of HTMs include dehydrogenation and olefin production, as well as hydrogen recovery in petroleum refineries and ammonia synthesis plants, the largest current users of deliberately produced hydrogen. This report describes the results from the development and testing of HTM materials during FY 2010.

  5. [Study on essential oil separation from Forsythia suspensa oil-bearing water body based on vapor permeation membrane separation technology].

    Science.gov (United States)

    Zhang, Qian; Zhu, Hua-Xu; Tang, Zhi-Shu; Pan, Yong-Lan; Li, Bo; Fu, Ting-Ming; Yao, Wei-Wei; Liu, Hong-Bo; Pan, Lin-Mei

    2018-04-01

    To investigate the feasibility of vapor permeation membrane technology in separating essential oil from oil-water extract by taking the Forsythia suspensa as an example. The polydimethylsiloxane/polyvinylidene fluoride (PDMS/PVDF) composite flat membrane and a polyvinylidene fluoride (PVDF) flat membrane was collected as the membrane material respectively. Two kinds of membrane osmotic liquids were collected by self-made vapor permeation device. The yield of essential oil separated and enriched from two kinds of membrane materials was calculated, and the microscopic changes of membrane materials were analyzed and compared. Meanwhile, gas chromatography-mass spectrometry (GC-MS) was used to compare and analyze the differences in chemical compositions of essential oil between traditional steam distillation, PVDF membrane enriched method and PDMS/PVDF membrane enriched method. The results showed that the yield of essential oil enriched by PVDF membrane was significantly higher than that of PDMS/PVDF membrane, and the GC-MS spectrum showed that the content of main compositions was higher than that of PDMS/PVDF membrane; The GC-MS spectra showed that the components of essential oil enriched by PVDF membrane were basically the same as those obtained by traditional steam distillation. The above results showed that vapor permeation membrane separation technology shall be feasible for the separation of Forsythia essential oil-bearing water body, and PVDF membrane was more suitable for separation and enrichment of Forsythia essential oil than PDMS/PVDF membrane. Copyright© by the Chinese Pharmaceutical Association.

  6. Membranes as separators of dispersed emulsion phases

    OpenAIRE

    Lefferts, A.G.

    1997-01-01

    The reuse or discharge of industrial waste waters, containing small fractions of dispersed oil, requires a purification treatment for which membranes can be used. If only little oil is present, removal of the dispersed phase might be preferable to the more commonly applied removal of the continuous phase. For this purpose dispersed phase separators can be applied, which combine the features of conventional coalescers and membrane filtration. The membrane surface promotes coalescence ...

  7. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes

    KAUST Repository

    Pan, Yichang

    2012-02-01

    The separation of propylene/propane mixtures is one of the most important but challenging processes in the petrochemical industry. A novel zeolitic imidazole framework (ZIF-8) membrane prepared by a facile hydrothermal seeded growth method showed excellent separation performances for a wide range of propylene/propane mixtures. The membrane showed a permeability of propylene up to 200. barrers and a propylene to propane separation factor up to 50 at optimal separation conditions, well surpassing the "upper-bound trade-off" lines of existing polymer and carbon membranes. The experimental data also showed that the membranes had excellent reproducibility, long-term stability and thermal stability. © 2011 Elsevier B.V.

  8. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  9. Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Meltem Yanilmaz

    2015-04-01

    Full Text Available Electrospun nanofiber membranes have been extensively studied as separators in Li-ion batteries due to their large porosity, unique pore structure, and high electrolyte uptake. However, the electrospinning process has some serious drawbacks, such as low spinning rate and high production cost. The centrifugal spinning technique can be used as a fast, cost-effective and safe technique to fabricate high-performance fiber-based separators. In this work, polymethylmethacrylate (PMMA/polyacrylonitrile (PAN membranes with different blend ratios were produced via centrifugal spinning and characterized by using different electrochemical techniques for use as separators in Li-ion batteries. Compared with commercial microporous polyolefin membrane, centrifugally-spun PMMA/PAN membranes had larger ionic conductivity, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. Centrifugally-spun PMMA/PAN membrane separators were assembled into Li/LiFePO4 cells and these cells delivered high capacities and exhibited good cycling performance at room temperature. In addition, cells using centrifugally-spun PMMA/PAN membrane separators showed superior C-rate performance compared to those using microporous polypropylene (PP membranes. It is, therefore, demonstrated that centrifugally-spun PMMA/PAN membranes are promising separator candidate for high-performance Li-ion batteries.

  10. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  11. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  12. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation

  13. Polymeric membranes containing silver salts for propylene/propane separation

    Directory of Open Access Journals (Sweden)

    L. D. Pollo

    2012-06-01

    Full Text Available The separation of olefin/paraffin mixtures is one of the most important processes of the chemical industry. This separation is typically carried out by distillation, which is an energy and capital intensive process. One promising alternative is the use of facilitated transport membranes, which contain specific carrier agents in the polymer matrix that interact reversibly with the double bond in the olefin molecule, promoting the simultaneous increase of its permeability and selectivity. In this study, polyurethane (PU membranes were prepared using two different silver salts (triflate and hexafluorantimonate. The membranes were structurally characterized and their performance for the separation of propylene/propane mixtures was evaluated. The results of the characterization analyses indicated that the triflate salt was the most efficient carrier agent. The membranes containing this salt showed the best performance, reaching an ideal selectivity of 10 and propylene permeability of 188 Barrer.

  14. Ethanol-water separation by pervaporation using silicone and polyvinyl alcohol membranes

    Directory of Open Access Journals (Sweden)

    Chinchiw, S.

    2006-09-01

    Full Text Available In this research, experiments were carried out to investigate the effects of operating parameters onthe pervaporation performance for the separation of ethanol-water solutions. Composite silicone membranessupported on polysulfone prepared with varied silicone contents and commercial polyvinyl alcohol (Pervap®2211, Sulzer membranes were used. The results showed that the composite silicone/polysulfone membranescoated with 3 wt% of silicone exhibited highest permeation flux with slightly lower separation factor forethanol. Furthermore, it was found that the composite silicone/polysulfone membranes were suitable for theseparation of ethanol from a dilute ethanol solutions. Both the separation factor and permeation flux of the composite membranes increased with increasing temperature and feed concentration. A membrane coated with a 7 wt% silicone gave highest separation factor of 7.32 and permeation flux of 0.44 kg/m2h at 5 wt% ethanol feed concentration and feed temperature of 70ºC. For polyvinyl alcohol membranes, the results showed that the membranes were suitable for the dehydration of concentrated ethanol solutions. The permeation flux increased and the separation factor for water decreased with increasing water feed concentration and temperature. The membrane gave highest separation factor of 248 and permeation flux of 0.02 kg/m2h at 5 wt% water feed concentration and feed temperature of 30ºC.

  15. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    Science.gov (United States)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  16. Stabilized ultrathin liquid membranes for gas separations

    International Nuclear Information System (INIS)

    Deetz, D.W.

    1987-01-01

    Although immobilized liquid membranes have the desirable properties of high selectivity and permeability, their practical application to gas phase separations is hindered because of the instability of the liquid phase and the relative thickness of current membranes. The problem of liquid instability, which is due to both liquid volatilization and flooding, can be reduced, or eliminated, by immobilizing the liquid phase in pores small enough to significantly reduce the molar free energy of the solution via the Kelvin effect. The obstacle of membrane thickness can be overcome by selectively immobilizing the liquid phase into the skin of a porous asymmetric membranes

  17. Phase separation and shape deformation of two-phase membranes

    International Nuclear Information System (INIS)

    Jiang, Y.; Lookman, T.; Saxena, A.

    2000-01-01

    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres, and tori. Using an exact periodic domain wall solution we solve for the shape and phase separating field, and estimate the degree of deformation of the membrane. The results are pertinent to preferential phase separation in regions of differing curvature on a variety of vesicles. (c) 2000 The American Physical Society

  18. Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance.

    Science.gov (United States)

    Wang, Bo; Ho, W S Winston; Figueroa, Jose D; Dutta, Prabir K

    2015-06-23

    Separation and sequestration of CO2 emitted from fossil energy fueled electric generating units and industrial facilities will help in reducing anthropogenic CO2, thereby mitigating its adverse climate change effects. Membrane-based gas separation has the potential to meet the technical challenges of CO2 separation if high selectivity and permeance with low costs for large-scale manufacture are realized. Inorganic zeolite membranes in principle can have selectivity and permeance considerably higher than polymers. This paper presents a strategy for zeolite growth within the pores of a polymer support, with crystallization time of an hour. With a thin coating of 200-300 nm polydimethylsiloxane (PDMS) on the zeolite-polymer composite, transport data for CO2/N2 separation indicate separation factors of 35-45, with CO2 permeance between 1600 and 2200 GPU (1 GPU = 3.35 × 10(-10) mol/(m(2) s Pa)) using dry synthetic mixtures of CO2 and N2 at 25 °C. The synthesis process results in membranes that are highly reproducible toward transport measurements and exhibit long-term stability (3 days). Most importantly, these membranes because of the zeolite growth within the polymer support, as contrasted to conventional zeolite growth on top of a support, are mechanically flexible.

  19. Zeolitic Imidazolate Framework-8 (ZIF-8) Membranes for Kr/Xe Separation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ting; Feng, Xuhui; Elsaidi, Sameh K.; Thallapally, Praveen K.; Carreon, Moises A.

    2017-01-30

    Herein, we demonstrate that a prototypical type of metal organic framework, zeolitic imidazolate framework-8 (ZIF-8), in membrane form, can effectively separate Kr/Xe gas mixtures at industrially relevant compositions. The best membranes separated Kr/Xe mixtures with average Kr permeances as high as 1.5 × 10-8 ± 0.2 mol/m2 s Pa and average separation selectivities of 14.2 ± 1.9 for molar feed compositions corresponding to Kr/Xe ratio encountered typically in air. Molecular sieving, competitive adsorption, and differences in diffusivities were identified as the prevailing separation mechanisms. These membranes potentially represent a less-energy-intensive alternative to cryogenic distillation, which is the benchmark technology used to separate this challenging gas mixture. To our best knowledge, this is the first example of any metal organic membrane composition displaying separation ability for Kr/Xe gas mixtures.

  20. Liquid membranes: an emerging area in separation science

    International Nuclear Information System (INIS)

    Mohapatra, P.K.; Manchanda, V.K.

    2010-01-01

    Full text: With the ever increasing energy demands, nuclear energy is poised to make a significant contribution as one of the major clean energy resources. The public acceptability of the nuclear energy programme, however, depends largely on the management of radioactive waste by mitigating its long term adverse impact on the environment. Separation of long-lived radionuclides such as actinides and fission products from high level radioactive waste is a challenging task for the chemists involved at the back end of the nuclear fuel cycle. Amongst the various separation techniques, liquid membrane based separation methods are becoming increasingly popular due to factors such as ligand economy, high efficiency and low power consumption. Techniques such as emulsion liquid membrane (ELM) and hollow fibre supported liquid membrane (HFSLM) methods are reported to be more efficient than the solvent extraction based separation methods which have limitations of emulsion/third phase or crud formation. HFSLM technique offers the advantages of active transport, possible usage of exotic carriers and easy scale-up. For the past few years, Radiochemistry Division has been actively involved in the development of HFSLM separation processes for actinide partitioning, lanthanide/actinide separation, Sr/Y separation as well as recovery of radio-cesium from nuclear waste solutions. Similarly, ELM has major advantages of fast processing and large volume reduction factors. This lecture will give an overview of the HFSLM and ELM work carried out at Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai

  1. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun

    2014-06-26

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new class of porous solid materials, MOFs are attractive for a variety of industrial applications including separation membranes-a rapidly developing research area. Many reports have discussed the synthesis and applications of MOFs and MOF thin films, but relatively few have addressed MOF membranes. This critical review provides an overview of the diverse MOF membranes that have been prepared, beginning with a brief introduction to the current techniques for the fabrication of MOF membranes. Gas and liquid separation applications with different MOF membranes are also included (175 references). This journal is © the Partner Organisations 2014.

  2. Biological black water treatment combined with membrane separation

    NARCIS (Netherlands)

    van Voorthuizen, E.M.; Zwijnenburg, A.; van der Meer, Walterus Gijsbertus Joseph; Temmink, Hardy

    2008-01-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent

  3. Specific oriented metal-organic framework membranes and their facet-tuned separation performance.

    Science.gov (United States)

    Mao, Yiyin; Su, Binbin; Cao, Wei; Li, Junwei; Ying, Yulong; Ying, Wen; Hou, Yajun; Sun, Luwei; Peng, Xinsheng

    2014-09-24

    Modulating the crystal morphology, or the exposed crystal facets, of metal-organic frameworks (MOFs) expands their potential applications in catalysis, adsorption, and separation. In this article, by immobilizing the citrate modulators on Au nanoparticles and subsequently being fixed on solid copper hydroxide nanostrands, a well-intergrown and oriented HKUST-1 cube crystal membrane was formed at room temperature. In contrast, in the absence of Au nanoparticles, well-intergrown and oriented cuboctahedron and octahedron membranes were formed in water/ethanol and ethanol, respectively. The gas separation performances of these HKUST-1 membranes were tuned via their exposed facets with defined pore sizes. The HKUST-1 cube membrane with exposed {001} facets demonstrated the highest permeance but lowest gas binary separation factors, while the octahedron membrane with exposed {111} facets presented the highest separation factors but lowest permeance, since the window size of {111} facets is 0.46 nm which is smaller than 0.9 nm of {001} facets. Separation of 0.38 nm CO2 from 0.55 nm SF6 was realized by the HKUST-1 octahedron membrane. As a proof of concept, this will open a new way to design MOF-related separation membranes by facet controlling.

  4. Maternal serum copper and zinc levels and premature rupture of the foetal membranes

    International Nuclear Information System (INIS)

    Rahmanian, M.; Jahed, F. S.; Yousefi, B.; Ghorbani, R.

    2014-01-01

    Objective: To examine the correlation of zinc and copper serum concentration level, body mass index, age and parity with premature rupture of the membranes. Methods: The cross-sectional study was conducted between 2009 and 2010 at the fertility ward of Amiralmomenin Hospital of Semnan University of Medical Sciences, Iran. It comprised 100 full-term pregnant women with and without premature rupture of the membranes and 50 non-pregnant women as controls. The diagnosis of rupture of membranes was made on the basis of gross leakage of fluid within the vagina and a positive nitrazin test. A sample of 5mL blood was collected. The levels of zinc and copper were determined by an enzyme-linked immunosorbent assay method. Mean values among the three equal groups were compared using standard analysis of variance. Statistical significance was set at p<0.05. Results: Pregnant women with (p<0.027) and without (p<0.019) premature rupture of the membranes had significantly lower serum zinc concentration than non-pregnant women. Inversely, the maternal serum copper concentration level was higher in both groups of pregnant women than in the controls (p<0.001). However, the results suggest that the decreased plasma zinc concentration and increased copper concentration in pregnant women were not the cause of premature rupture of the membranes at term. Conclusion: Zinc and copper concentration levels in maternal serum had no effect on premature rupture of the membranes. (author)

  5. Adsorbent filled polymeric membranes : applications to pervaporation and gas separation

    NARCIS (Netherlands)

    Duval, Jean-Marc

    1993-01-01

    Nowadays research in membrane technology aims at improving the efficiency of the separation process to make it more competitive in comparison to conventional separation techniques. The improvement of the membrane material is a way to achieve this goal, especially in the case of pervaporation and gas

  6. Recent progress in molecular simulation of nanoporous graphene membranes for gas separation

    Science.gov (United States)

    Fatemi, S. Mahmood; Baniasadi, Aminreza; Moradi, Mahrokh

    2017-07-01

    If an ideal membrane for gas separation is to be obtained, the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have welldefined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. Graphene is made up of a hexagonal honeycomb lattice of carbon atoms with sp 2 hybridization state forming a one-atom-thick sheet of graphite. Following conversion of the honeycomb lattices into nanopores with a specific geometry and size, a nanoporous graphene membrane that offers high efficiency as a separation membrane because of the ultrafast molecular permeation rate as a result of its one-atom thickness is obtained. Applications of nanoporous graphene membranes for gas separation have been receiving remarkably increasing attention because nanoporous graphene membranes show promising results in this area. This review focuses on the recent advances in nanoporous graphene membranes for applications in gas separation, with a major emphasis on theoretical works. The attractive properties of nanoporous graphene membranes introduce make them appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions.

  7. Boundaries of the Realizability Region of Membrane Separation Processes

    Science.gov (United States)

    Tsirlin, A. M.; Akhrenemkov, A. A.

    2018-01-01

    The region of realizability of membrane separation systems having a constant total membrane area has been determined for a definite output of a final product at a definite composition of a mixture flow. The law of change in the pressure in the mixture, corresponding to the minimum energy required for its separation, was concretized for media close in properties to ideal gases and solutions.

  8. Separation of Process Water using Hydroxy Sodalite Membranes

    NARCIS (Netherlands)

    Khajavi, S.

    2010-01-01

    This thesis describes the synthesis, characterization, and application of Hydroxy Sodalite (H-SOD) membranes in selective separation of water from aqueous solutions and reaction media. The emphasis has been put on the development of a tight membrane film that could be primarily used for water

  9. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  10. Membrane for distillation including nanostructures, methods of making membranes, and methods of desalination and separation

    KAUST Repository

    Lai, Zhiping; Huang, Kuo-Wei; Chen, Wei

    2016-01-01

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure provide membranes, methods of making the membrane, systems including the membrane, methods of separation, methods of desalination, and the like.

  11. Membrane for distillation including nanostructures, methods of making membranes, and methods of desalination and separation

    KAUST Repository

    Lai, Zhiping

    2016-01-21

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure provide membranes, methods of making the membrane, systems including the membrane, methods of separation, methods of desalination, and the like.

  12. Synthesis of asymmetric polyetherimide membrane for CO2/N2 separation

    Science.gov (United States)

    Ahmad, A. L.; Salaudeen, Y. O.; Jawad, Z. A.

    2017-06-01

    Large emission of carbon dioxide (CO2) to the environment requires mitigation to avoid unbearable consequences on global climate change. The CO2 emissions generated by fossil fuel combustion within the power and industrial sectors need to be quickly curbed. The gas emission can be abated using membrane technology; this is one of the most promising approaches for selective separation of CO2/N2. The purpose of the study is to synthesis an asymmetric polyetherimide (PEI) membrane and to establish its morphological characteristics for CO2/N2 separation. The PEI flat-sheet asymmetric membrane was fabricated using phase inversion with N-methyl-2-pyrrolidone (NMP) as solvent and water-isopropanol as a coagulant. Particularly, polymer concentration of 20, 25, and 30 wt. % were studied. In addition, the structure and morphology of the produced membrane were observed using scanning electron microscopy (SEM). Importantly, results showed that the membrane with high PEI concentration of 30 wt. % yield an optimal selectivity of 10.7 for CO2/Nitrogen (N2) separation at 1 bar and 25 ºC for pure gas, aided by the membrane surface morphology. The dense skin present was as a result of non-solvent (water) while isopropanol generates a porous sponge structure. This appreciable separation performance makes the PEI asymmetric membrane an attractive alternative for CO2/N2 separation.

  13. Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine

    Directory of Open Access Journals (Sweden)

    Shah Nasrullah

    2016-09-01

    Full Text Available Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively, and adsorption selectivity (2.72 and 2.98 respectively. However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.

  14. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  15. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  16. Bioinspired Diatomite Membrane with Selective Superwettability for Oil/Water Separation.

    Science.gov (United States)

    Lo, Yu-Hsiang; Yang, Ching-Yu; Chang, Haw-Kai; Hung, Wei-Chen; Chen, Po-Yu

    2017-05-03

    Membranes with selective superwettability for oil/water separation have received significant attention during the past decades. Hierarchical structures and surface roughness are believed to improve the oil repellency and the stability of Cassie-Baxter state. Diatoms, unicellular photosynthetic algae, possess sophisticated skeletal shells (called frustules) which are made of hydrated silica. Motivated by the hierarchical micro- and nanoscale features of diatom, we fabricate a hierarchical diatomite membrane which consists of aligned micro-sized channels by the freeze casting process. The fine nano-porous structures of frustules are well preserved after the post sintering process. The bioinspired diatomite membrane performs both underwater superoleophobicity and superhydrophobicity under various oils. Additionally, we demonstrate the highly efficient oil/water separation capabililty of the membranes in various harsh environments. The water flux can be further adjusted by tuning the cooling rates. The eco-friendly and robust bioinspired membranes produced by the simple, cost-effective freeze casting method can be potentially applied for large scale and efficient oil/water separation.

  17. Electrically Driven Ion Separations in Permeable Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, Merlin [Michigan State Univ., East Lansing, MI (United States)

    2017-04-21

    Membranes are attractive for a wide range of separations due to their low energy costs and continuous operation. To achieve practical fluxes, most membranes consist of a thin, selective skin on a highly permeable substrate that provides mechanical strength. Thus, this project focused on creating new methods for forming highly selective ultrathin skins as well as modeling transport through these coatings to better understand their unprecedented selectivities. The research explored both gas and ion separations, and the latter included transport due to concentration, pressure and electrical potential gradients. This report describes a series of highlights of the research and then provides a complete list of publications supported by the grant. These publications have been cited more than 4000 times. Perhaps the most stunning finding is the recent discovery of monovalent/divalent cation and anion selectivities around 1000 when modifying cation- and anion-exchange membranes with polyelectrolyte multilayers (PEMs). This discovery builds on many years of exciting research. (Citation numbers refer to the journal articles in the bibliography.)

  18. Niobia-silica and silica membranes for gas separation

    NARCIS (Netherlands)

    Boffa, V.

    2008-01-01

    This thesis describes the development of ceramic membranes suitable for hydrogen separation and CO2 recovery from gaseous streams. The research work was focused on the three different parts of which gas selective ceramic membranes are composed, i.e., the microporous gas selective silica layer, the

  19. Flue gas carbon capture using hollow fiber membrane diffuser-separator

    Science.gov (United States)

    Ariono, D.; Chandranegara, A. S.; Widodo, S.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, CO2 removal from flue gas using membrane diffuser-separator was investigated. Hollow fiber polypropylene membrane was used as the diffuser while pure water was used as the absorbent. Separation performance of the membrane diffuser-separator as a function of CO2 concentration (6-28%-vol.) and flow rate (gas: 0.8-1.55 L.min-1 and liquid: 0.2-0.7 L.min-1) was investigated and optimized. It was found that CO2 removal was significantly affected by CO2 concentration in the feed gas. On the other hand, CO2 flux was more influenced by flow rates of liquid and gas rather than concentration. The optimized CO2 removal (64%) and flux (1 x 10-4 mol.m-2.s-1) were obtained at the highest gas flow rate (1.55 L.min-1), the lowest liquid flow rate (0.2 L.min-1), and 6.2%-vol. of CO2 concentration. Outlet gas of the membrane diffuser system tends to carry some water vapor, which is affected by gas and liquid flow rate. Meanwhile, in the steady-state operation of the separator, the gas bubbles generated by the membrane diffuser take a long time to be completely degassed from the liquid phase, thus a portion of gas stream was exiting separator through liquid outlet.

  20. Structural Changes of PVDF Membranes by Phase Separation Control

    International Nuclear Information System (INIS)

    Lee, Semin; Kim, Sung Soo

    2016-01-01

    Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure

  1. Efficiency of serum protein removal from skim milk with ceramic and polymeric membranes at 50 degrees C.

    Science.gov (United States)

    Zulewska, J; Newbold, M; Barbano, D M

    2009-04-01

    Raw milk (2,710 kg) was separated at 4 degrees C, the skim milk was pasteurized (72 degrees C, 16 s), split into 3 batches, and microfiltered using pilot-scale ceramic uniform transmembrane pressure (UTP; Membralox model EP1940GL0.1microA, 0.1 microm alumina, Pall Corp., East Hills, NY), ceramic graded permeability (GP; Membralox model EP1940GL0.1microAGP1020, 0.1 microm alumina, Pall Corp.), and polymeric spiral-wound (SW; model FG7838-OS0x-S, 0.3 microm polyvinylidene fluoride, Parker-Hannifin, Process Advanced Filtration Division, Tell City, IN) membranes. There were differences in flux among ceramic UTP, ceramic GP, and polymeric SW microfiltration membranes (54.08, 71.79, and 16.21 kg/m2 per hour, respectively) when processing skim milk at 50 degrees C in a continuous bleed-and-feed 3x process. These differences in flux among the membranes would influence the amount of membrane surface area required to process a given volume of milk in a given time. Further work is needed to determine if these differences in flux are maintained over longer processing times. The true protein contents of the microfiltration permeates from UTP and GP membranes were higher than from SW membranes (0.57, 0.56, and 0.38%, respectively). Sodium-dodecyl-sulfate-PAGE gels for permeates revealed a higher casein proportion in GP and SW permeate than in UTP permeate, with the highest passage of casein through the GP membrane under the operational conditions used in this study. The slight cloudiness of the permeates produced using the GP and SW systems may have been due to the presence of a small amount of casein, which may present an obstacle in their use in applications when clarity is an important functional characteristic. More beta-lactoglobulin passed through the ceramic membranes than through the polymeric membrane. The efficiency of removal of serum proteins in a continuous bleed-and-feed 3x process at 50 degrees C was 64.40% for UTP, 61.04% for GP, and 38.62% for SW microfiltration

  2. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha; Koros, William J.

    2011-01-01

    and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air

  3. Nanoporous polymer--clay hybrid membranes for gas separation.

    Science.gov (United States)

    Defontaine, Guillaume; Barichard, Anne; Letaief, Sadok; Feng, Chaoyang; Matsuura, Takeshi; Detellier, Christian

    2010-03-15

    Nanohybrid organo-inorgano clay mineral-polydimethylsiloxane (PDMS) membranes were prepared by the reaction of pure and/or modified natural clay minerals (Sepiolite and montmorillonite) with PDMS in hexane, followed by evaporation of the solvent at 70 degrees C. The membranes were characterized by means of XRD, SEM, ATD-TG and solid state (29)Si magic angle spinning (MAS) and cross-polarization (CP) CP/MAS NMR. The morphology of the membranes depends on the content loading of clay mineral. For low content, the membrane composition is homogeneous, with well dispersed nanoparticles of clay into the polymer matrix, whereas for higher clay content, the membranes are constituted also of a mixture of well dispersed nanoparticles into the polymer, but in the presence of agglomerations of small clay particles. Quantitative (29)Si MAS NMR demonstrated a strong correlation between the clay content of the membrane and the average length of the PDMS chain, indicating that the nanohybrid material is made of clay particles covalently linked to the PDMS structure. This is particularly the case for Sepiolite with has a high density of Q(2) silanol sites. The separation performances of the prepared membranes were tested for CO(2)/CH(4) and O(2)/N(2) mixtures. The observed separation factors showed an increase of the selectivity in the case of CO(2)/CH(4) in comparison with membranes made from PDMS alone under the same conditions. 2009 Elsevier Inc. All rights reserved.

  4. Novel Ceramic-Polymer Composite Membranes for the Separation of Hazardous Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoram Cohen

    2001-12-01

    The present project was conceived to address the need for robust yet selective membranes suitable for operating in harsh ph, solvent, and temperature environments. An important goal of the project was to develop a membrane chemical modification technology that would allow one to tailor-design membranes for targeted separation tasks. The method developed in the present study is based on the process of surface graft polymerization. Using essentially the same base technology of surface modification the research was aimed at demonstrating that improved membranes can be designed for both pervaporation separation and ultrafiltration. In the case of pervaporation, the present study was the first to demonstrate that pervaporation can be achieved with ceramic support membranes modified with an essentially molecular layer of terminally anchored polymer chains. The main advantage of the above approach, relative to other proposed membranes, is that the separating polymer layer is covalently attached to the ceramic support. Therefore, such membranes have a potential use in organic-organic separations where the polymer can swell significantly yet membrane robustness is maintained due to the chemical linkage of the chains to be inorganic support. The above membrane technology was also useful in developing fouling resistant ultrafiltration membranes. The prototype membrane developed in the project was evaluated for the treatment of oil-in-water microemulsions, demonstrating lack of irreversible fouling common with commercial membranes.

  5. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review

    Directory of Open Access Journals (Sweden)

    Zhongde Dai

    2016-07-01

    Full Text Available The development of multilayer composite membranes for CO2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO2 separation performance in the past 15–20 years. In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO2/CH4 separation, CO2/N2 and CO2/H2 separation were summarized with detailed data, and challenges facing for the CO2 separation using composite membranes, such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented. Keywords: Composite membrane, CO2 separation, Membrane fabrication, Membrane aging, Long-term stability

  6. Metal oxide membranes for gas separation

    Science.gov (United States)

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  7. Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2010-04-01

    Full Text Available This paper describes the fabrication of novel modified polyethylene (PE membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer batteries. The modified PE membrane via plasma modification process plays a critical role in improving wettability and electrolyte retention, interfacial adhesion between separators and electrodes, and cycle performance of lithium-ion polymer batteries. This paper suggests that the performance of lithium-ion polymer batteries can be greatly enhanced by the plasma modification of commercial separators with proper functional materials for targeted application.

  8. Use of membrane separation processes for the separation of radionuclides from liquid and gas streams

    International Nuclear Information System (INIS)

    Vladisavljevic, G.T.; Rajkovic, M.B.

    1999-01-01

    Use of membranes for the separation and recovery of radionuclides from contaminated liquid and gas streams has been discussed in this paper. The special attention has been paid to the use of ion-exchange membranes for electrodialysis and Donnan dialysis, as well as the use of facilitated liquid membranes for liquid pertraction. (author)

  9. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  10. Highly hydrothermally stable microporous silica membranes for hydrogen separation.

    Science.gov (United States)

    Wei, Qi; Wang, Fei; Nie, Zuo-Ren; Song, Chun-Lin; Wang, Yan-Li; Li, Qun-Yan

    2008-08-07

    Fluorocarbon-modified silica membranes were deposited on gamma-Al2O3/alpha-Al2O3 supports by the sol-gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is observed that the water contact angle increases from 27.2+/-1.5 degrees for the pure silica membranes to 115.0+/-1.2 degrees for the modified ones with a (trifluoropropyl)triethoxysilane (TFPTES)/tetraethyl orthosilicate (TEOS) molar ratio of 0.6. The modified membranes preserve a microporous structure with a micropore volume of 0.14 cm3/g and a pore size of approximately 0.5 nm. A single gas permeation of H2 and CO2 through the modified membranes presents small positive apparent thermal activation energies, indicating a dominant microporous membrane transport. At 200 degrees C, a single H2 permeance of 3.1x10(-6) mol m(-2) s(-1) Pa(-1) and a H2/CO2 permselectivity of 15.2 were obtained after proper correction for the support resistance and the contribution from the defects. In the gas mixture measurement, the H2 permeance and the H2/CO2 separation factor almost remain constant at 200 degrees C with a water vapor pressure of 1.2x10(4) Pa for at least 220 h, indicating that the modified membranes are hydrothermally stable, benefiting from the integrity of the microporous structure due to the fluorocarbon modification.

  11. Ceria Based Composite Membranes for Oxygen Separation

    DEFF Research Database (Denmark)

    Gurauskis, Jonas; Ovtar, Simona; Kaiser, Andreas

    2014-01-01

    Mixed ionic-electronic conducting membranes for oxygen gas separation are attracting a lot of interest due to their promising potential for the pure oxygen and the syngas production. Apart from the need for a sufficiently high oxygen permeation fluxes, the prolonged stability of these membranes...... under the large oxygen potential gradients at elevated temperatures is decisive for the future applications. The gadolinium doped cerium oxide (CGO) based composite membranes are considered as promising candidates due to inherent stability of CGO phase. The CGO matrix is a main oxygen ion transporter......; meanwhile the primary role of a secondary phase in this membrane is to compensate the low electronic conductivity of matrix at intended functioning conditions. In this work thin film (15-20 μm) composite membranes based on CGO matrix and LSF electronic conducting phase were fabricated and evaluated...

  12. Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation

    KAUST Repository

    Wang, Chongqing

    2016-09-09

    Continuous ZIF-67 polycrystalline membranes with effective propylene/propane separation performances were successfully fabricated through the incorporation of zinc ions into the ZIF-67 framework. The separation factor increases from 1.4 for the pure ZIF-67 membrane to 50.5 for the 90% zinc-substituted ZIF-67 membrane.

  13. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    International Nuclear Information System (INIS)

    Groger, H.

    1997-01-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis

  14. Template-mediated synthesis of periodic membranes for improved liquid-phase separations

    Energy Technology Data Exchange (ETDEWEB)

    Groger, H. [American Research Corp. of Virginia, Radford, VA (United States)

    1997-10-01

    Solid/liquid separations of particulates in waste streams will benefit from design and development of ultrafiltration (UF) membranes with uniform, tailorable pore size and chemical, thermal, and mechanical stability. Such membranes will perform solid/liquid separations with high selectivity, permeance, lifetime, and low operating costs. Existing organic and inorganic membrane materials do not adequately meet all these requirements. An innovative solution to the need for improved inorganic membranes is the application of mesoporous ceramics with narrow pore-size distributions and tailorable pore size (1.5 to 10 nm) that have recently been shown to form with the use of organic surfactant molecules and surfactant assemblies as removable templates. This series of porous ceramics, designated MCM-41, consists of silica or aluminosilicates distinguished by periodic arrays of uniform channels. In this Phase I Small Business Innovation Research program, American Research Corporation of Virginia will demonstrate the use of supported MCM-41 thin films deposited by a proprietary technique, as UF membranes. Technical objectives include deposition in thin, defect-free periodic mesoporous MCM-41 membranes on porous supports; measurement of membrane separation factors, permeance, and fouling; and measurement of membrane lifetime as part of an engineering and economic analysis.

  15. Separation of aromatics by vapor permeation through solvent swollen membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ito, A.; Adachi, K.; Feng, Y. [Niigata University, Niigata (Japan)

    1995-12-20

    A vapor permeation process for aromatics separation from a hydrocarbon mixture was studied by means of the simultaneous permeation of dimethylsulfoxide vapor as an agent for membrane swelling and preferential permeation of aromatics. The separation performance of the process was demonstrated by a polyvinylalcohol membrane for mixed vapors of benzene/cyclohexane, xylene/octane and a model gasoline. The aromatic vapors preferentially permeated from these mixed vapor feeds. The separation factor was over 10. The separation mechanism of the process mainly depends on the relative salability of the vapors between aromatics and other hydrocarbons in dimethylsulfoxide. 14 refs., 9 figs., 1 tab.

  16. Selective separation of oil and water with special wettability mesh membranes

    KAUST Repository

    Liu, Defei

    2017-02-24

    Due to the different interfacial effects of oil and water, utilizing the special wettability of solid surfaces to design an oil and water separation process has been demonstrated to be an effective approach for oil/water separation. In this report, a simple process has been developed to fabricate special surface wettability mesh membranes. The carbon nanoparticles with diameters of 10 nm were first coated onto the surface of steel wires based on a candle soot coating process. These templates of carbon nanoparticles were then coated with a more stable layer of silica (SiO2) particles via a facile chemical vapor deposition route. After being modified by two separate methods, a superhydrophobic/superoleophilic membrane was obtained by the use of 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) and a oleophobic/superhydrophilic membrane was obtained by using poly(diallyldimethylammonium-perfluorooctanoate) (PDDA–PFO). Separation experiments show that these superhydrophobic/superoleophilic or oleophobic/superhydrophilic mesh membranes can be used to selectively separate oil/water with a high flux of more than 930 L m−2 h−1 and a collecting efficiency of over 97%. Furthermore, the repetitions of the separation experiments demonstrate that these superhydrophobic/superoleophilic or oleophobic/superhydrophilic mesh membranes are durable, stable and reusable, making them encouraging candidates for practical oil-polluted water treatment.

  17. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Directory of Open Access Journals (Sweden)

    Byung-Sik Lee

    2015-12-01

    Full Text Available The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst–Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  18. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Sik [KEPCO Engineering and Construction, Gimcheon (Korea, Republic of)

    2015-12-15

    The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.

  19. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  20. Membrane Modeling, Simulation and Optimization for Propylene/Propane Separation

    KAUST Repository

    Alshehri, Ali

    2015-06-01

    Energy efficiency is critical for sustainable industrial growth and the reduction of environmental impacts. Energy consumption by the industrial sector accounts for more than half of the total global energy usage and, therefore, greater attention is focused on enhancing this sector’s energy efficiency. It is predicted that by 2020, more than 20% of today’s energy consumption can be avoided in countries that have effectively implemented an action plan towards efficient energy utilization. Breakthroughs in material synthesis of high selective membranes have enabled the technology to be more energy efficient. Hence, high selective membranes are increasingly replacing conventional energy intensive separation processes, such as distillation and adsorption units. Moreover, the technology offers more special features (which are essential for special applications) and its small footprint makes membrane technology suitable for platform operations (e.g., nitrogen enrichment for oil and gas offshore sites). In addition, its low maintenance characteristics allow the technology to be applied to remote operations. For these reasons, amongst other, the membrane technology market is forecast to reach $16 billion by 2017. This thesis is concerned with the engineering aspects of membrane technology and covers modeling, simulation and optimization of membranes as a stand-alone process or as a unit operation within a hybrid system. Incorporating the membrane model into a process modeling software simplifies the simulation and optimization of the different membrane processes and hybrid configurations, since all other unit operations are pre-configured. Various parametric analyses demonstrated that only the membrane selectivity and transmembrane pressure ratio parameters define a membrane’s ability to accomplish a certain separation task. Moreover, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is only defined by the feed composition

  1. Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation.

    Science.gov (United States)

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; Xing, Kunyue; Voylov, Dmitry N; Cheng, Shiwang; Yin, Panchao; Kisliuk, Alexander; Mahurin, Shannon M; Sokolov, Alexei P; Saito, Tomonori

    2017-08-09

    Polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethane-rich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-link density of U-PDMS-NWs is tailored by varying the molecular weight (M n ) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young's modulus (1.3-122.2 MPa), ultimate tensile strength (1.1-14.3 MPa), and toughness (0.7-24.9 MJ/m 3 ). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[P CO 2 /P N 2 ] ≈ 41 and α[P CO 2 /P CH 4 ] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymer-membrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.

  2. Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

    KAUST Repository

    Bilaus, Rakan

    2014-01-01

    technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic

  3. Development of membrane moisture separator for BWR off-gas system

    International Nuclear Information System (INIS)

    Ogata, H.; Kawamura, S.; Kumasaka, M.; Nishikubo, M.

    2001-01-01

    In BWR plant off-gas treatment systems, dehumidifiers are used to maintain noble gas adsorption efficiency in the first half of the charcoal hold-up units. From the perspective of simplifying and reducing the cost of such a dehumidification system, Japanese BWR utilities and plant fabricators have been developing a dehumidification system employing moisture separation membrane of the type already proven in fields such as medical instrumentation and precision measuring apparatus. The first part of this development involved laboratory testing to simulate the conditions found in an actual off-gas system, the results of which demonstrated satisfactory results in terms of moisture separation capability and membrane durability, and suggested favorable prospects for application in actual off-gas systems. Further, in-plant testing to verify moisture separation capability and membrane durability in the presence of actual gases is currently underway, with results so far suggesting that the system is capable of obtaining good moisture separation capability. (author)

  4. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation.

    Science.gov (United States)

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Yang, Weishen

    2017-08-07

    Metal-organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass-transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet-based membranes remain as great challenges. A modified soft-physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub-10 nm-thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H 2 /CO 2 separation performance, with a separation factor of up to 166 and H 2 permeance of up to 8×10 -7  mol m -2  s -1  Pa -1 at elevated testing temperatures owing to a well-defined size-exclusion effect. This nanosheet-based membrane holds great promise as the next generation of ultrapermeable gas separation membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation.

    Science.gov (United States)

    Liu, Yupu; Shen, Dengke; Chen, Gang; Elzatahry, Ahmed A; Pal, Manas; Zhu, Hongwei; Wu, Longlong; Lin, Jianjian; Al-Dahyan, Daifallah; Li, Wei; Zhao, Dongyuan

    2017-09-01

    Membrane separation technologies are of great interest in industrial processes such as water purification, gas separation, and materials synthesis. However, commercial filtration membranes have broad pore size distributions, leading to poor size cutoff properties. In this work, mesoporous silica thin membranes with uniform and large vertical mesochannels are synthesized via a simple biphase stratification growth method, which possess an intact structure over centimeter size, ultrathin thickness (≤50 nm), high surface areas (up to 1420 m 2 g -1 ), and tunable pore sizes from ≈2.8 to 11.8 nm by adjusting the micelle parameters. The nanofilter devices based on the free-standing mesoporous silica thin membranes show excellent performances in separating differently sized gold nanoparticles (>91.8%) and proteins (>93.1%) due to the uniform pore channels. This work paves a promising way to develop new membranes with well-defined pore diameters for highly efficient nanosize-based separation at the macroscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phosphazene membranes for gas separations

    Science.gov (United States)

    Stewart, Frederick F.; Harrup, Mason K.; Orme, Christopher J.; Luther, Thomas A.

    2006-07-11

    A polyphosphazene having a glass transition temperature ("T.sub.g") of approximately -20.degree. C. or less. The polyphosphazene has at least one pendant group attached to a backbone of the polyphosphazene, wherein the pendant group has no halogen atoms. In addition, no aromatic groups are attached to an oxygen atom that is bound to a phosphorus atom of the backbone. The polyphosphazene may have a T.sub.g ranging from approximately -100.degree. C. to approximately -20.degree. C. The polyphosphazene may be selected from the group consisting of poly[bis-3-phenyl-1-propoxy)phosphazene], poly[bis-(2-phenyl-1-ethoxy)phosphazene], poly[bis-(dodecanoxypolyethoxy)-phosphazene], and poly[bis-(2-(2-(2-.omega.-undecylenyloxyethoxy)ethoxy)ethoxy)phosphazene]- . The polyphosphazene may be used in a separation membrane to selectively separate individual gases from a gas mixture, such as to separate polar gases from nonpolar gases in the gas mixture.

  7. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    OpenAIRE

    Ranieri, G; Mazzei, R; Wu, Z; Li, K; Giorno, L

    2016-01-01

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic ho...

  8. A review of recent advances in molecular simulation of graphene-derived membranes for gas separation

    Science.gov (United States)

    Fatemi, Seyyed Mahmood; Abbasi, Zeynab; Rajabzadeh, Halimeh; Hashemizadeh, Seyyed Ali; Deldar, Amir Noori

    2017-07-01

    To obtain an ideal membrane for gas separation the following three characteristics should be considered: the membrane should be as thin as possible, be mechanically robust, and have well-defined pore sizes. These features will maximize its solvent flux, preserve it from fracture, and guarantee its selectivity. These attractive properties of graphene-derived membranes introduce them as appropriate candidates for gas separation and gas molecular-sieving processes in nanoscale dimensions. The current effort has focused on two issues, including the review of the most newly progression on drilling holes in single graphene membranes for making ultrathin membranes for gas separation, and studying functionalized nanoporous sheet and graphene-derived membranes, including doped graphene, graphene oxide, fluorographene, and reduced graphene oxide from theoretical perspectives for making functional coatings for nano ultrafiltration for gas separation. We investigated the basic mechanism of separation by membranes derived from graphene and relevant possible applications. Functionalized nanoporous membranes as novel approach are characterized by low energy cost in realizing high throughput molecular-sieving separation.

  9. Polyether based block copolymer membranes for CO2 separation

    NARCIS (Netherlands)

    Reijerkerk, Sander

    2010-01-01

    The work described in this thesis is dedicated to the development of polymeric membrane materials for the separation of CO2 from light gases, and in particular to the separation of CO2 from nitrogen as required in a post-combustion capture conguration for the separation of CO2 from flue gases. An

  10. Air Separation Using Hollow Fiber Membranes

    Science.gov (United States)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over

  11. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cross-linked polymeric membranes for carbon dioxide separation

    Science.gov (United States)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon Mark; Long, Brian Keith; Jiang, De-en; Mays, Jimmy Wayne; Sokolov, Alexei P.; Saito, Tomonori

    2018-01-23

    A membrane useful in gas separation, the membrane comprising a cross-linked polysiloxane structure having a cross-link density of about 0.1.times.10.sup.-5 mol/cm.sup.3 to about 6.times.10.sup.-5 mol/cm.sup.3, where, in particular embodiments, the cross-linked polysiloxane structure has the following general structure: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5, and R.sup.6 are independently selected from hydrocarbon groups having at least 1 and up to 6 carbon atoms; A.sup.1 and A.sup.2 are independently selected from cyclic hydrocarbon groups; L.sup.1 and L.sup.2 are linking groups or covalent bonds; n is an integer of at least 1; r and s are independently selected from integers of at least 1; and p is an integer of at least 10. The invention also includes methods for making and using the above-described membranes for gas separation.

  13. Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification

    Science.gov (United States)

    Wei, Shuxian; Zhou, Sainan; Wu, Zhonghua; Wang, Maohuai; Wang, Zhaojie; Guo, Wenyue; Lu, Xiaoqing

    2018-05-01

    Porous graphene (PG) and nitrogen-substituted PG monolayers of 3N-PG and 6N-PG were designed as effective membranes for the separation of He and H2 over Ne, Ar, N2, CO, and CH4 by using density functional theory. Results showed that PG and 3N-PG exhibited suitable pore sizes and relatively high stabilities for He and H2 separation. PG and 3N-PG membranes also presented excellent He and H2 selectivities over Ne, Ar, N2, CO and CH4 at a wide temperature range. 6N-PG membrane exerted unexceptionable permeances of the studied gases, especially He and H2, which could remarkably improve the separation efficiency of He and H2. Analyses on the most stable adsorption configurations and maximum adsorption energies indicated weak Van der Waals interactions between the gases and the three PG-based membranes. Microscopic permeation process analyses based on the minimum energy pathway, energy profiles, and electron density isosurfaces elucidated the remarkable selectivities of He over Ne/CO/N2/Ar/CH4 and H2 over CO/N2/CH4 and the high permeances of He and H2 passing through the three PG-based membranes. This work not only highlighted the potential use of the three PG-based membranes for He separation and H2 purification but also provided a superior alternative strategy to design and screen membrane materials for gas separation.

  14. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  15. Preparation and characterization of poly (methyl methacrylate) and sulfonated poly (ether ether ketone) blend ultrafiltration membranes for protein separation applications

    International Nuclear Information System (INIS)

    Arthanareeswaran, G.; Thanikaivelan, P.; Raajenthiren, M.

    2009-01-01

    Poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate)/sulfonated poly (ether ether ketone) (SPEEK) blend membranes were prepared by phase inversion technique in various composition using N,N'-dimethylformamide as solvent. The prepared membranes were characterized in terms of pure water flux, water content, porosity and thermal stability. The addition of SPEEK to the casting solution resulted in membranes with high pure water flux, water content, porosity and slightly low thermal stability. The cross sectional views of the blend membranes under electron microscope confirm the porosity and water flux results. The effect of the addition of SPEEK into the PMMA matrix on the extent of bovine serum albumin (BSA) separation was studied. It was found that the permeate flux increased significantly while the rejection of BSA from aqueous solution reduced moderately during ultrafiltration (UF) process. The effect was attributed to the increase in porosity and charge of the membrane due to the addition of SPEEK into the PMMA blend solution

  16. Recent developments in membrane-based separations in biotechnology processes: review.

    Science.gov (United States)

    Rathore, A S; Shirke, A

    2011-01-01

    Membrane-based separations are the most ubiquitous unit operations in biotech processes. There are several key reasons for this. First, they can be used with a large variety of applications including clarification, concentration, buffer exchange, purification, and sterilization. Second, they are available in a variety of formats, such as depth filtration, ultrafiltration, diafiltration, nanofiltration, reverse osmosis, and microfiltration. Third, they are simple to operate and are generally robust toward normal variations in feed material and operating parameters. Fourth, membrane-based separations typically require lower capital cost when compared to other processing options. As a result of these advantages, a typical biotech process has anywhere from 10 to 20 membrane-based separation steps. In this article we review the major developments that have occurred on this topic with a focus on developments in the last 5 years.

  17. Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures.

    Science.gov (United States)

    Altintas, Cigdem; Keskin, Seda

    2017-11-11

    Metal organic framework (MOF) membranes have been widely investigated for gas separation applications. Several MOFs have been recently examined for selective separation of C 2 H 6 . Considering the large number of available MOFs, it is not possible to fabricate and test the C 2 H 6 separation performance of every single MOF membrane using purely experimental methods. In this study, we used molecular simulations to assess the membrane-based C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 separation performances of 175 different MOF structures. This is the largest number of MOF membranes studied to date for C 2 H 6 separation. We computed adsorption selectivity, diffusion selectivity, membrane selectivity and gas permeability of MOFs for C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 mixtures. Our results show that a significant number of MOF membranes are C 2 H 6 selective for C 2 H 6 /C 2 H 4 separation in contrast to traditional nanoporous materials. Selectivity and permeability of MOF membranes were compared with other membrane materials, such as polymers, zeolites, and carbon molecular sieves. Several MOFs were identified to exceed the upper bound established for polymeric membranes and many MOF membranes exhibited higher gas permeabilities than zeolites and carbon molecular sieves. Examining the structure-performance relations of MOF membranes revealed that MOFs with cavity diameters between 6 and 9 Å, porosities lower than 0.50, and surface areas between 500-1000 m 2 g -1 have high C 2 H 6 selectivities. The results of this study will be useful to guide the experiments to the most promising MOF membranes for efficient separation of C 2 H 6 and to accelerate the development of new MOFs with high C 2 H 6 selectivities.

  18. Calculations of helium separation via uniform pores of stanene-based membranes

    Directory of Open Access Journals (Sweden)

    Guoping Gao

    2015-12-01

    Full Text Available The development of low energy cost membranes to separate He from noble gas mixtures is highly desired. In this work, we studied He purification using recently experimentally realized, two-dimensional stanene (2D Sn and decorated 2D Sn (SnH and SnF honeycomb lattices by density functional theory calculations. To increase the permeability of noble gases through pristine 2D Sn at room temperature (298 K, two practical strategies (i.e., the application of strain and functionalization are proposed. With their high concentration of large pores, 2D Sn-based membrane materials demonstrate excellent helium purification and can serve as a superior membrane over traditionally used, porous materials. In addition, the separation performance of these 2D Sn-based membrane materials can be significantly tuned by application of strain to optimize the He purification properties by taking both diffusion and selectivity into account. Our results are the first calculations of He separation in a defect-free honeycomb lattice, highlighting new interesting materials for helium separation for future experimental validation.

  19. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  20. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1989-01-01

    There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.

  1. Gas separation by composite solvent-swollen membranes

    Science.gov (United States)

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1989-04-25

    There is disclosed a composite immobilized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorus or sulfur atom, and having a boiling point of at least 100 C and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation. 3 figs.

  2. Plasma-modified polyethylene membrane as a separator for lithium-ion polymer battery

    International Nuclear Information System (INIS)

    Kim, Jun Young; Lee, Yongbeom; Lim, Dae Young

    2009-01-01

    The surface of polyethylene (PE) membranes as a separator for lithium-ion polymer battery was modified with acrylonitrile (AN) using the plasma technology. The plasma-induced acrylonitrile coated PE (PiAN-PE) membrane was characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and contact angle measurement. The electrochemical performance of the lithium-ion polymer cell fabricated with the PE and the PiAN-PE membranes were also analyzed. The surface characterization demonstrates that the enhanced adhesion of the PiAN-PE membrane resulted from the increased polar component of surface energy for the PiAN-PE membrane. The presence of the PiAN induced onto the surface of the membrane via the plasma modification plays a critical role in improving the wettability and electrolyte retention, the interfacial adhesion between the electrodes and the separator, the cycle performance of the resulting lithium-ion polymer cell assembly. The PiAN-PE membrane modified by the plasma treatment holds a great potential to be used as a high-performance and cost-effective separator for lithium-ion polymer battery.

  3. Preparation and characterization of new zeolite membranes. Application to gaseous separation; Preparation et caracterisation de nouvelles membranes de zeolithe application a la separation gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, M.

    1996-11-25

    Zeolites are interesting for the preparation of inorganic membranes which could be used for the continuous separation of gas and liquids by gas permeation and pervaporation. Zeolites membranes are obtained by hydrothermal synthesis and are characterized by XRD, SEM, TDA, IR, chemical analysis, EPMA, NMR, MAS NMR and gas permeation. After some tests of preparation of zeolite CHA and MFI self supporting membranes, the work is turned towards the preparation of zeolite MFI membranes supported by porous disks or {alpha} alumina, glass and tubes of carbon covered with a thin layer or zirconium dioxide. It is shown that the characteristics of the support (reactivity, pores dimensions, ...) strongly influence the quality of the prepared membrane. Two originals preparation processes are finalized. For the alumina disks, a gel precursor of zeolite is firs formed at the surface of the support by immersing successively that support in two non miscible liquids before the crystallisation. The gel is then converted into the zeolite by contact with water vapor. The zeolite layer obtained is localized at the surface of the support and present not only at the outside but also at the inside of the support. The characteristics of the zeolite layer can be controlled and the method can be adapted to various porous supports. The membrane obtained is interesting for hydrocarbons separations, for example the separation of methane and isobutane. In the case of Vycor glass disks, the reactivity of the support is first enhanced by contact with saturated water vapour. The temperature of the synthesis is then chosen relatively low in order to limit the attack of the support. With that method, a basic solution can be used without degradation of the support.The basicity leads to the formation of little crystals whose assembling is compact and homogeneous. The membrane obtained is interesting for example for the separation of normal butane and isobutane. (author) 71 refs.

  4. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    International Nuclear Information System (INIS)

    Fox, E.

    2009-01-01

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals

  5. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  6. Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation

    Science.gov (United States)

    Polishchuk, Kimberly Ann

    2013-03-05

    The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.

  7. On the use of ultrafiltration membranes in oily water separators

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, A.Y.; Nottegar, M. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering; Veinot, D.E. [Defence Research Establishment Atlantic, Halifax, NS (Canada)

    2000-07-01

    Laboratory studies were conducted on the use of ultrafiltration membranes for oil water purification from ships bilges. Bilge water is a complex and highly variable mixture of several components such as seawater, lubricating oil, greases, marine diesel fuel, hydraulic oil, detergents, metal oxides, corrosion inhibitors, asbestos and other wastes. This laboratory study examined the performance of ultrafiltration membranes when separating oily waste water of similar composition to that of bilge water. Ultrafiltration membranes are nanoporous materials produced from ceramic, polymeric or metallic substrates. The ability of the membrane to retain macromolecules, colloids, sub-micron particles and oil emulsions depends on the size of the nanopores. The best results in this study occurred when upper and lower bounds on the membrane pore size were found to exist. It was determined that ultrafiltration is a viable separation process for the treatment of bilge water for compliance with overboard discharge regulations. 7 refs., 1 tab., 3 figs.

  8. Recent advances on mixed matrix membranes for CO2 separation

    Institute of Scientific and Technical Information of China (English)

    Ming Wang; Zhi Wang; Song Zhao; Jixiao Wang; Shichang Wang

    2017-01-01

    Recent advances on mixed matrix membrane for CO2 separation are reviewed in this paper. To improve CO2 separation performance of polymer membranes, mixedmatrixmembranes (MMMs) are developed. The concept of MMM is illustrated distinctly. Suitable polymer and inorganic or organic fillers for MMMs are summarized.Possible interface morphologies between polymer and filler, and the effect of interface morphologies on gas transport properties of MMMs are summarized. The methods to improve compatibility between polymer and filler are introduced. There are eightmethods including silane coupling, Grignard treatment, incorporation of additive,grafting, in situ polymerization, polydopamine coating, particle fusion approach and polymer functionalization. To achieve higher productivity for industrial application,mixed matrix composite membranes are developed. The recent development on hollow fiber and flat mixedmatrix composite membrane is reviewed in detail. Last, the future trend of MMM is forecasted.

  9. Development of new microporous silica membranes for gas separation

    International Nuclear Information System (INIS)

    Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Serge de Perthuis; Camelia Barboiu; Alejandro Mourgues; Beatrice Sala; Anne Julbe; Jose Sanchez

    2006-01-01

    This paper presents the synthesis and the application of molecular sieving ceramic membranes to purify hydrogen or helium from various gas mixtures. The membranes prepared in this work consist of an ultra-microporous silica-based separative layer produced via a sol-gel process. Ultra microporous silica containing boron is synthesized by the acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate in ethanol. The layer is deposited inside a tubular asymmetric alumina support with a meso-porous y alumina inner layer. The thickness of the silica layers after treatment is about 200 nm, estimated from their cross-section SEM micrographs. Ultra-microporous membranes (with pore sizes less than 0.7 nm) are thus required to get high selectivity. Such membranes enable to carry out gas separation up to 500 deg C under a transmembrane pressure lower than 8 bars. He and H 2 permeance values close to 10 -7 mol.m -2 s -1 Pa -1 are obtained, associated with ideal selectivities α(He/CO 2 ) and α(H 2 /CO 2 ) between 10 and 20 at 300 deg C. (authors)

  10. Development of thin film inorganic membranes for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyo Jeong

    2012-08-22

    Membrane-based gas separation systems are noteworthy among technological options for carbon capture and storage (CCS), which is an important strategy to reduce CO{sub 2} emitted from point sources, e.g. mainly fossil power plants. In Oxyfuel-Combustion and Pre-Combustion of CCS power plant concepts oxygen separation from air is required. To meet this requirement oxygen transport membranes (OTM) consisting of gastight mixed ionic electronic conductors (MIEC) are proposed, which are associated with significantly lower efficiency losses compared with conventional air separation technologies. For cost effective application a maximum oxygen flux has to be achieved to reduce the membrane area. This can be met by reduction of membrane thickness. Therefore, the reduction of the membrane thickness to the micrometer range or even below is aimed in the present thesis. Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} (CGO) with fluorite crystal structure and La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) with perovskite crystal structure were developed as thin film membrane. CGO is expected to be more stable than other potential MIEC membranes in reducing atmospheres and to achieve sufficient oxygen permeation, e.g. in syngas production or petrol chemistry. LSCF is expected to be highly permeable with an acceptable chemical stability in Oxyfuel-combustion. Various porous ceramic substrates were prepared by vacuum-slip-casting and warm-pressing, and then characterized for porosity, gas-permeability and surface roughness. Subsequently, two approaches to fabrication of thin film membranes were investigated, which are wetchemical deposition (WCD) and physical vapor deposition (PVD). For WCD, nano-dispersions and colloidal sols were prepared for membrane top-layer and/or interlayer. When CGO nano-dispersion (NDCGO) was spin-coated as thin film membrane, the gastightness of sintered membranes was increased with decrease in spinning time and increase in concentration of

  11. GAS SEPARATION MEMBRANES COMPRISING PERMEABILITY ENHANCING ADDITIVES

    NARCIS (Netherlands)

    Wessling, Matthias; Sterescu, D.M.; Stamatialis, Dimitrios

    2007-01-01

    The present invention relates to polymer compositions comprising a (co)polymer comprising (a) an arylene oxide moiety and (b) a dendritic (co)polymer, a hyperbranched (co)polymer or a mixture thereof, and the use of these polymer compositions as membrane materials for the separation of gases. The

  12. Design study of fuel circulating system using Pd-alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Yamanaka, T.; Aizawa, T.; Kasahara, T.; Nishikawa, M.; Asami, N.

    1980-01-01

    Design study on the fuel circulating system (FCS) for a tokamak experimental fusion reactor (JXFR) has been carried out to establish the system concept, to plan the development program, and to evaluate the feasibility of diffusion system. The FCS consists of main vacuum system, fuel gas refiners, isotope separators, fuel feeders, and auxiliary systems. In the system design, Pd-alloy membrane permeation method is adopted for fuel refining and isotope separating. All impurities are effectively removed and hydrogen isotopes are sufficiently separated by Pd-alloy membrane. The isotope separation system consists of 1st (47 separators) and 2nd (46 separators) cascades for removing protium and separating deuterium, respectively. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane diffusion method is attractive for isotope separation and refining of fuel gas. The choice will have to be based on reliability, economic, and safety analyses

  13. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  14. Cross-flow-assembled ultrathin and robust graphene oxide membranes for efficient molecule separation

    Science.gov (United States)

    Ying, Yulong; Ying, Wen; Guo, Yi; Peng, Xinsheng

    2018-04-01

    A graphene oxide (GO) membrane is promising for molecule separation. However, it is still a big challenge to achieve highly stable pristine GO membranes, especially in water. In this work, an ultrathin and robust GO membrane is assembled via the cross-flow method. The as-prepared 12 nm thick GO membrane (GOCF membrane) presents high stability with water permeance of 1505 ± 65 litres per hour per square meter per bar (LHM bar-1) and Evans Blue (EB) rejection of 98.7 ± 0.4%, 21-fold enhancement in water permeance compared with that of a pristine GO membrane (50-70 LHM bar-1) and 100 times higher than that of commercial ultrafiltration membranes (15 LHM.bar-1, GE2540F30, MWCO 1000, GE Co., Ltd) with similar rejection. Attributed to the surface cross-flow, the GO nanosheets will be refolded, crumpled, or wrinkled, resulting in a very strong inter-locking structure among the GO membrane, which significantly enhances the stability and facilitates their separation performance. This cross-flow assembling technique is also easily extended to assemble GO membranes onto other various backing filter supports. Based on the Donnan effect and size sieving mechanism, selective membrane separation of dyes with a similar molecular structure from their mixture (such as Rhodamine B (RhB) and Rose Bengal, and RhB and EB) are achieved with a selectivity of 133 ± 10 and 227 ± 15, respectively. Assembly of this ultrathin GO membrane with high stability and separation performance, via a simple cross-flow method, shows great potential for water purification.

  15. Simulation Model of Membrane Gas Separator Using Aspen Custom Modeler

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dong-keun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Shin, Gahui; Yun, Jinwon; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-12-15

    Membranes are used to separate pure gas from gas mixtures. In this study, three different types of mass transport through a membrane were developed in order to investigate the gas separation capabilities of a membrane. The three different models typically used are a lumped model, a multi-cell model, and a discretization model. Despite the multi-cell model producing similar results to a discretization model, the discretization model was selected for this investigation, due to the cell number dependence of a multi-cell model. The mass transport model was then used to investigate the effects of pressure difference, flow rate, total exposed area, and permeability. The results showed that the pressure difference increased with the stage cut, but the selectivity was a trade-off for the increasing pressure difference. Additionally, even though permeability is an important parameter, the selectivity and stage cut of the membrane converged as permeability increased.

  16. Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation.

    Science.gov (United States)

    Ao, Chenghong; Yuan, Wei; Zhao, Jiangqi; He, Xu; Zhang, Xiaofang; Li, Qingye; Xia, Tian; Zhang, Wei; Lu, Canhui

    2017-11-01

    Inspired from fishscales, membranes with special surface wettability have been applied widely for the treatment of oily waste water. Herein, a novel superhydrophilic graphene oxide (GO)@electrospun cellulose nanofiber (CNF) membrane was successfully fabricated. This membrane exhibited a high separation efficiency, excellent antifouling properties, as well as a high flux for the gravity-driven oil/water separation. Moreover, the GO@CNF membrane was capable to effectively separate oil/water mixtures in a broad pH range or with a high concentration of salt, suggesting that this membrane was quite promising for future real-world practice in oil spill cleanup and oily wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Surface patterning of polymeric separation membranes and its influence on the filtration performance

    Science.gov (United States)

    Maruf, Sajjad

    Polymeric membrane based separation technologies are crucial for addressing the global issues such as water purification. However, continuous operations of these processes are often hindered by fouling which increases mass transport resistance of the membrane to permeation and thus the energy cost, and eventually replacement of the membrane in the system. In comparison to other anti-fouling strategies, the use of controlled surface topography to mitigate fouling has not been realized mainly due to the lack of methods to create targeted topography on the porous membrane surface. This thesis aims to develop a new methodology to create surface-patterned polymeric separation membrane to improve their anti-fouling characteristics during filtration. First, successful fabrication of sub-micron surface patterns directly on a commercial ultrafiltration (UF) membrane surface using nanoimprint lithographic (NIL) technique was demonstrated. Comprehensive filtration studies revealed that the presence of these sub-micron surface patterns mitigates not only the onset of colloidal particle deposition, but also lowers the rate of growth of cake layer after initial deposition, in comparison with un-patterned membranes. The anti-fouling effects were also observed for model protein solutions. Staged filtration experiments, with backwash cleaning, revealed that the permeate flux of the patterned membrane after protein fouling was considerably higher than that of the pristine or un-patterned membrane. In addition to the surface-patterning of UF membranes, successful fabrication of a surface-patterned thin film composite (TFC) membrane was shown for the first time. A two-step fabrication process was carried out by (1) nanoimprinting a polyethersulfone (PES) support using NIL, and (2) forming a thin dense film atop the PES support via interfacial polymerization (IP). Fouling experiments suggest that the surface patterns alter the hydrodynamics at the membrane-feed interface, which is

  18. Foam films as thin liquid gas separation membranes.

    Science.gov (United States)

    Ramanathan, Muruganathan; Müller, Hans Joachim; Möhwald, Helmuth; Krastev, Rumen

    2011-03-01

    In this letter, we testify the feasibility of using freestanding foam films as a thin liquid gas separation membrane. Diminishing bubble method was used as a tool to measure the permeability of pure gases like argon, nitrogen, and oxygen in addition to atmospheric air. All components of the foam film including the nature of the tail (fluorocarbon vs hydrocarbon), charge on the headgroup (anionic, cationic, and nonionic) and the thickness of the water core (Newton black film vs Common black film) were systematically varied to understand the permeation phenomena of pure gases. Overall results indicate that the permeability values for different gases are in accordance with magnitude of their molecular diameter. A smaller gaseous molecule permeates faster than the larger ones, indicating a new realm of application for foam films as size selective separation membranes.

  19. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.

    2011-04-06

    The methods and mechanisms of nonsolvent induced phase separation have been studied for more than fifty years. Today, phase inversion membranes are widely used in numerous chemical industries, biotechnology, and environmental separation processes. The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many commonly used membrane polymers. The key factors in membrane preparation discussed include the solvent type, polymer type and concentration, nonsolvent system type and composition, additives to the polymer solution, and film casting conditions. A brief introduction to membrane characterization is also given, which includes membrane porosity and pore size distribution characterization, membrane physical and chemical properties characterization, and thermodynamic and kinetic evaluation of the phase inversion process. One aim of this review is to lay out the basics for selecting polymer solvent nonsolvent systems with appropriate film casting conditions to produce membranes with the desired performance, morphology, and stability, and to choose the proper way to characterize these properties of nonsolvent induced phase inversion membranes. © 2011 American Chemical Society.

  20. Development of natural rubber membranes for separation of methyl tert-butyl ether and methanol

    International Nuclear Information System (INIS)

    Nur Azrini Ramlee; Ghazali Mohd Nawawi; Khairul Zaman Dahlan

    2010-01-01

    As a new commercial process, membrane separation raises significant expectations in the process plant of the future and therefore this research was being initiated to develop and characterize pervaporation membrane based on natural rubber (NR). Natural Rubber SMR-L grade which was supplied by Malaysia Rubber Research Institute (MRRI) was used for the development of the membranes via interpenetrating polymer network (IPN) techniques. Polystyrene (PS) was used to modify the natural rubber to further improve their mechanical and chemical properties. The membranes were prepared with various blend ratios of natural rubber, polystyrene and divinyl benzene as cross linker with constant 1 % of dicumyl peroxide as the initiator. The developed membranes were then characterized to study the functional group presence, membranes morphology, crosslink density, tear strength, adsorption of the membranes and pervaporation separation of Methyl-Tert-Butyl-Ether (MTBE) and Methanol. Pervaporation process was conducted by using varies of MTBE concentration 10, 30, 50 and 70 wt % and at differ operation temperature, 25 degree Celsius and 55 degree Celsius. Separation performance of IPN NR/ PS membranes were based on the presented permeation flux and separation factor. Examination through Fourier Transform Infrared Spectroscopy (FTIR), determined crosslink density and tear strength, 6 series of IPN NR/ PS membranes were successfully developed using natural rubber. Observation from Scanning Electron Microscopy (SEM) showed that the membranes were dense and appropriated for the pervaporation process application. From the pervaporation of MTBE and Methanol, IPN NR/ PS membranes of series D4N30 shown low permeation flux of MTBE but high separation factor while D2N70 membranes was vice versa for both temperature of 25 degree Celsius and 55 degree Celsius. (author)

  1. Separation of Gas Mixtures by New Type of Membranes – Dynamic Liquid Membranes.

    Czech Academy of Sciences Publication Activity Database

    Setničková, Kateřina; Šíma, Vladimír; Petričkovič, Roman; Řezníčková Čermáková, Jiřina; Uchytil, Petr

    2016-01-01

    Roč. 160, FEB 29 (2016), s. 132-135 ISSN 1383-5866 Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * methane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016

  2. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Zhang,Chunjing; Zhong,Shian; Yang,Zhengpeng

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  3. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    Science.gov (United States)

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  4. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean; Magdefrau, Neal; She, Ying; Thibaud-Erkey, Catherine

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at 95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE's goals prior to down-selection for larger-scale (100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ

  5. Separation of nitrogen-krypton by the freeze-dried cellulose acetate membrane

    International Nuclear Information System (INIS)

    Tanioka, Akihiko; Ishikawa, Kinzo; Kakuta, Akio; Ozaki, Osamu; Oono, Masanori.

    1977-01-01

    The utility of freeze-dried cellulose acetate membranes, which consist of a thin skin layer supported upon a more porous matrix substructure, was examined for separation of nitrogen-radioactive krypton 85. The high permeable and separative membranes were prepared by fixed freezed-drying of swollen membrane after evaporation of acetone for 4-6 minutes. The permeation rate of nitrogen was 10 -1 -10 -3 (cc/cm 2 .sec.atm). Knudsen flow was predominant, since the permeation rate was inversely proportional to square root of molecular weight of gases. The influence of viscous flow was also observed by slight dependence on the pressure. The mean pore size was calculated by the equation of gas permeation in porous media. There exist fine pores of 30-40A radii in the skin layer. The separation factor (dilution of Kr) was about 0.7 and the separation efficiency was 60%. The collision between different gas molecules (Present-de Bethunes' effect) and the influence of viscous flow depreciates the efficiency. The separation efficiency which was determined by the experiment coincided with the one predicted according to the Present-de Bethunes' equation, supposing that the pore size in skin layer was 10-25A. (auth.)

  6. Electrodialytic separation of alkali-element ions with the aid of ion-exchange membranes

    International Nuclear Information System (INIS)

    Gurskii, V.S.; Moskvin, L.N.

    1988-01-01

    Electrodialytic separation of ions bearing charges of the same sign with the aid of ion-exchange membranes has been examined in the literature in relation to the so-called ideal membranes, which do not exhibit selectivity with respect to one ion type in ion exchange. It has been shown that separation on such membranes is effective only for counterions differing in size of charge. A matter of greater importance from the practical standpoint is the possibility of using electrodialysis for separating ions bearing like charges and having similar properties, including ionic forms of isotopes of the same element. In this paper they report a comparative study of ion separation, with reference to the Cs-Na pair, by electrodialysis through various types of cation-exchange membranes. Changes of the solution concentration in the cathode compartment were monitored by measurement of 22 Na and 137 Cs activities

  7. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    International Nuclear Information System (INIS)

    Susanto, H.; Roihatin, A.; Aryanti, N.; Anggoro, D.D.; Ulbricht, M.

    2012-01-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 ± 4.2 o to 37.8 ± 4.2 o to 42.5 ± 4.3 o depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: ► We compared different methods to prepare low fouling ultrafiltration (UF) membranes.

  8. CO2/CH4 Separation via Polymeric Blend Membrane

    Directory of Open Access Journals (Sweden)

    H. Sanaeepur

    2013-01-01

    Full Text Available CO2/CH4 gas separation is a very important applicatable process in upgrading the natural gas and landfil gas recovery. In this work, to investigate the membrane separation process performance, the gas permeation results andCO2/CH4 separation characteristics of different prepared membranes (via blending different molecular weights of polyethylene glycol (PEG as a modifier with acrylonitrile-butadiene-styrene (ABS as a backbone structure have been studied. Furthermore, SEM analysis was carried out for morphological investigations. The effect of PEG content on gas transport properties on the selected sample was also studied. The effect of pressure on CO2 permeation was examined and showed that at the pressure beyond 4 bar, permeability is not affected by pressure. The results showed that more or less in all cases, incorporation of PEG molecules without any significant increase in CH4 permeability increases the CO2/CH4 selectivity. From the view point of gas separation applications the resultant data are within commercial attractive range

  9. Refining of biodiesel by ceramic membrane separation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong; Ou, Shiyi; Tan, Yanlai; Tang, Shuze [Department of Food Science and Engineering, Jinan University, Guangzhou 510632 (China); Wang, Xingguo; Liu, Yuanfa [School of Food Science and Technology, Jiangnan University, Wuxi 214112 (China)

    2009-03-15

    A ceramic membrane separation process for biodiesel refining was developed to reduce the considerable usage of water needed in the conventional water washing process. Crude biodiesel produced by refined palm oil was micro-filtered by ceramic membranes of the pore size of 0.6, 0.2 and 0.1 {mu}m to remove the residual soap and free glycerol, at the transmembrane pressure of 0.15 MPa and temperature of 60 C. The flux through membrane maintained at 300 L m{sup -} {sup 2} h{sup -} {sup 1} when the volumetric concentrated ratio reached 4. The content of potassium, sodium, calcium and magnesium in the whole permeate was 1.40, 1.78, 0.81 and 0.20 mg/kg respectively, as determined by inductively coupled plasma-atomic emission spectroscopy. These values are lower than the EN 14538 specifications. The residual free glycerol in the permeate was estimated by water extraction, its value was 0.0108 wt.%. This ceramic membrane technology was a potential environmental process for the refining of biodiesel. (author)

  10. Functionalized inorganic membranes for gas separation

    Science.gov (United States)

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Molaison, Jennifer Lynn [Marietta, GA; Schick, Louis Andrew ,; Ramaswamy, Vidya [Niskayuna, NY

    2008-07-08

    A porous membrane for separation of carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity. The porous membrane comprises a porous support layer comprising alumina, silica, zirconia or stabilized zirconia; a porous separation layer comprising alumina, silica, zirconia or stabilized zirconia, and a functional layer comprising a ceramic oxide contactable with the fluid stream to preferentially transport carbon dioxide. In particular, the functional layer may be MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3 or a mixture thereof; wherein A is Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; and A.sup.3 is Sr or Ba.

  11. Hydrogen enrichment and separation from synthesis gas by the use of a membrane reactor

    International Nuclear Information System (INIS)

    Sanchez, J.M.; Barreiro, M.M.; Marono, M.

    2011-01-01

    One of the objectives of the CHRISGAS project was to study innovative gas separation and gas upgrading systems that have not been developed sufficiently yet to be tested at a demonstration scale within the time frame of the project, but which show some attractive merits and features for further development. In this framework CIEMAT studied, at bench scale, hydrogen enrichment and separation from syngas by the use of membranes and membrane catalytic reactors. In this paper results about hydrogen separation from synthesis gas by means of selective membranes are presented. Studies dealt with the evaluation of permeation and selectivity to hydrogen of prepared and pre-commercial Pd-based membranes. Whereas prepared membranes turned out to be non-selective, due to discontinuities of the palladium layer, studies conducted with the pre-commercial membrane showed that by means of a membrane reactor it is possible to completely separate hydrogen from the other gas components and produce pure hydrogen as a permeate stream, even in the case of complex reaction system (H 2 /CO/CO 2 /H 2 O) under WGS conditions gas mixtures. The advantages of using a water-gas shift membrane reactor (MR) over a traditional fixed bed reactor (TR) have also been studied. The experimental device included the pre-commercial Pd-based membrane and a commercial high temperature Fe-Cr-based, WGS catalyst, which was packed in the annulus between the membrane and the reactor outer shell. Results show that in the MR concept, removal of H 2 from the reaction side has a positive effect on WGS reaction, reaching higher CO conversion than in a traditional packed bed reactor at a given temperature. On increasing pressure on the reaction side permeation is enhanced and hence carbon monoxide conversion increases. -- Highlights: → H 2 enrichment and separation using a bench-scale membrane reactor MR is studied. → Permeation and selectivity to H 2 of Pd-based membranes was determined. → Complete separation

  12. Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation.

    Science.gov (United States)

    Xiong, Laj; Gu, Shuang; Jensen, Kurt O; Yan, Yushan S

    2014-01-01

    Hydroxide-exchange membranes are developed for facilitated transport CO2 in post-combustion flue-gas feed. First, a correlation between the basicity of fixed-site functional groups and CO2 -separation performance is discovered. This relationship is used to identify phosphonium as a promising candidate to achieve high CO2 -separation performance. Consequently, quaternary phosphonium-based hydroxide-exchange membranes are demonstrated to have a separation performance that is above the Robeson upper bound. Specifically, a CO2 permeability as high as 1090 Barrer and a CO2 /N2 selectivity as high as 275 is achieved. The high performance observed in the membranes can be attributed to the quaternary phosphonium moiety. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Anisotropic membranes for gas separation

    Science.gov (United States)

    Gollan, Arye Z.

    1987-01-01

    A gas separation membrane has a dense separating layer about 10,000 Angstroms or less thick and a porous support layer 10 to 400 microns thick that is an integral unit with gradually and continuously decreasing pore size from the base of the support layer to the surface of the thin separating layer and is made from a casting solution comprising ethyl cellulose and ethyl cellulose-based blends, typically greater than 47.5 ethoxyl content ethyl cellulose blended with compatible second polymers, such as nitrocellulose. The polymer content of the casting solution is from about 10% to about 35% by weight of the total solution with up to about 50% of this polymer weight a compatible second polymer to the ethyl cellulose in a volatile solvent such as isopropanol, methylacetate, methanol, ethanol, and acetone. Typical nonsolvents for the casting solutions include water and formamide. The casting solution is cast in air from about zero to 10 seconds to allow the volatile solvent to evaporate and then quenched in a coagulation bath, typically water, at a temperature of 7.degree.-25.degree. C. and then air dried at ambient temperature, typically 10.degree.-30.degree. C.

  14. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    Directory of Open Access Journals (Sweden)

    Hertzog Bissett

    2011-09-01

    Full Text Available Composite inorganic membranes were synthesised for gas component separation of N2, CF4 and C3F6. Selectivities lower than Knudsen selectivities were obtained due to membrane defects. A composite ceramic membrane consisting of a ceramic support structure, a MFI intermediate zeolite layer and a Teflon top layer, was developed to improve separation.

  15. Ion-Exchanged SAPO-34 Membranes for Krypton-Xenon Separation: Control of Permeation Properties and Fabrication of Hollow Fiber Membranes.

    Science.gov (United States)

    Kwon, Yeon Hye; Min, Byunghyun; Yang, Shaowei; Koh, Dong-Yeun; Bhave, Ramesh R; Nair, Sankar

    2018-02-21

    Separation of radioisotope 85 Kr from 136 Xe is of importance in used nuclear fuel reprocessing. Membrane separation based on zeolite molecular sieves such as chabazite SAPO-34 is an attractive alternative to energy-intensive cryogenic distillation. We report the synthesis of SAPO-34 membranes with considerably enhanced performance via thickness reduction based upon control of a steam-assisted vapor-solid conversion technique followed by ion exchange with alkali metal cations. The reduction of membrane thickness leads to a large increase in Kr permeance from 7.5 to 26.3 gas permeation units (GPU) with ideal Kr/Xe selectivities >20 at 298 K. Cation-exchanged membranes show large (>50%) increases in selectivity at ambient or slight subambient conditions. The adsorption, diffusion, and permeation characteristics of ion-exchanged SAPO-34 materials and membranes are investigated in detail, with potassium-exchanged SAPO-34 membranes showing particularly attractive performance. We then demonstrate the fabrication of selective SAPO-34 membranes on α-alumina hollow fibers.

  16. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks.

    Science.gov (United States)

    Liu, Yi; Pan, Jia Hong; Wang, Nanyi; Steinbach, Frank; Liu, Xinlei; Caro, Jürgen

    2015-03-02

    Separation methods based on 2D interlayer galleries are currently gaining widespread attention. The potential of such galleries as high-performance gas-separation membranes is however still rarely explored. Besides, it is well recognized that gas permeance and separation factor are often inversely correlated in membrane-based gas separation. Therefore, breaking this trade-off becomes highly desirable. Here, the gas-separation performance of a 2D laminated membrane was improved by its partial self-conversion to metal-organic frameworks. A ZIF-8-ZnAl-NO3 layered double hydroxide (LDH) composite membrane was thus successfully prepared in one step by partial conversion of the ZnAl-NO3 LDH membrane, ultimately leading to a remarkably enhanced H2 /CH4 separation factor and H2 permeance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-01-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation

  18. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Wei-Heng Shih; Qiang Zhao; Tejas Patil

    2002-01-01

    The authors propose to use microporous silica as a suitable candidate for CO(sub 2)/N(sub 2) separation because the pore size is less than 10(angstrom). If a CO(sub 2)adsorbent is added to the microporous silica, the adsorption of CO(sub 2) can block the passage of N(sub 2) and an effective CO(sub 2)/N(sub 2) separator will be found. It was first demonstrated that microporous silica could be synthesized. The microporous silica was then impregnated with Ba(OH)(sub 2). The results of GC study showed that at temperatures between 50 C and 90 C, Ba-doped microporous silica can separate CO(sub 2) from N(sub 2) and the idea of a microporous membrane for CO(sub 2)/N(sub 2) separation is feasible. The new result gives strong support to the proposed research that was outlined in the Phase II proposal. They hope to be able to continue the research and build an effective CO(sub 2)/N(sub 2) membrane separator in the Phase II of this project

  19. Separation of gases through gas enrichment membrane composites

    Science.gov (United States)

    Swedo, Raymond J.; Kurek, Paul R.

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  20. Supported liquid inorganic membranes for nuclear waste separation

    Science.gov (United States)

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  1. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Directory of Open Access Journals (Sweden)

    Tunde V. Ojumu

    2012-10-01

    Full Text Available Future production of chemicals (e.g., fine and specialty chemicals in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  2. Glycosaminoglycan blotting on nitrocellulose membranes treated with cetylpyridinium chloride after agarose-gel electrophoretic separation.

    Science.gov (United States)

    Maccari, Francesca; Volpi, Nicola

    2002-09-01

    We describe a method for blotting and immobilizing several nonsulfated and sulfated complex polysaccharides on membranes made hydrophilic and positively charged by a cationic detergent after their separation by conventional agarose gel electrophoresis. Nitrocellulose membranes were derivatized with the cationic detergent cetylpyridinium chloride (CPC) and mixtures of glycosaminoglycans (GAGs) were capillary-blotted after their separation in agarose gel electrophoresis in barium acetate/1,2-diaminopropane. Single purified species of variously sulfated polysaccharides were transferred onto the derivatized membranes after electrophoresis with an efficiency of 100% and stained with alcian blue (irreversible staining) and toluidine blue (reversible staining) permitting about 0.1 nug threshold of detection. Nonsulfated polyanions, hyaluronic acid, a fructose-containing polysaccharide with a chondroitin backbone purified from Escherichia coli U1-41, and its defructosylated product, were also electrophoretically separated and transferred onto membranes. The limit of detection for desulfated GAGs was about 0.1-0.5 nug after irreversible or reversible staining. GAG extracts from bovine, lung and aorta, and human aorta and urine were separated by agarose gel electrophoresis and blotted on CPC-treated nitrocellulose membranes. The polysaccharide composition of these extracts was determined. The membrane stained with toluidine blue (reversible staining) was destained and the same lanes used for immunological detection or other applications. Reversible staining was also applied to recover single species of polysaccharides after electrophoretic separation of mixtures of GAGs and their transfer onto membranes. Single bands were released from the membrane with an efficiency of 70-100% for further biochemical characterization.

  3. Efficient 3He/4He separation in a nanoporous graphenylene membrane.

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-08-16

    Helium-3 is a precious noble gas, which is essential in many advanced technologies such as cryogenics, isotope labeling and nuclear weapons. The current imbalance of 3 He demand and supply shortage leads to the search for an efficient membrane with high performance for 3 He separation. In this study, based on first-principles calculations, we demonstrated that highly efficient 3 He harvesting can be achieved in a nanoporous graphenylene membrane with industrially-acceptable selectivity and permeance. The quantum tunneling effect leads to 3 He harvesting with high efficiency via kinetic sieving. Both the quantum tunneling effect and zero-point energy (ZPE) determine the 3 He/ 4 He separation via thermally-driven equilibrium sieving, where the ZPE effect dominates efficient 3 He/ 4 He separation between two reservoirs. The quantum effects revealed in this work suggest that the nanoporous graphenylene membrane is promising for efficient 3 He harvesting that can be exploited for industrial applications.

  4. High-flux membrane separation using fluid skimming dominated convective fluid flow

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    We here report on the separation of yeast cells, with micro-engineered membranes having pores that are typically five times larger than the cells. The separation is due to neither shear-induced diffusion, nor initial lift, but to an effect similar to fluid skimming. The separation performance is

  5. Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

    KAUST Repository

    Alhazmi, Abdulrahman

    2017-01-01

    The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from

  6. Effect of membrane hydrophilization on ultrafiltration performance for biomolecules separation

    Energy Technology Data Exchange (ETDEWEB)

    Susanto, H., E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Roihatin, A.; Aryanti, N.; Anggoro, D.D. [Department of Chemical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto-Tembalang, Semarang (Indonesia); Ulbricht, M. [Lehrstuhl fuer Technische Chemie, Universitaet Duisburg-Essen, Germany, Universitaetstr. 5, Essen (Germany)

    2012-10-01

    This paper compares the performance of different hydrophilization methods to prepare low fouling ultrafiltration (UF) membranes. The methods include post-modification with hydrophilic polymer and blending of hydrophilic agent during either conventional or reactive phase separation (PS). The post-modification was done by photograft copolymerization of water-soluble monomer, poly(ethylene glycol) methacrylate (PEGMA), onto a commercial polyethersulfone (PES) UF membrane. Hydrophilization via blend polymer membrane with hydrophilic additive was performed using non-solvent induced phase separation (NIPS). In reactive PS method, the cast membrane was UV-irradiated before coagulation. The resulting membrane characteristic, the performance and hydrophilization stability were systematically compared. The investigated membrane characteristics include surface hydrophilicity (by contact angle /CA/), surface chemistry (by FTIR spectroscopy), and surface morphology (by scanning electron microscopy). The membrane performance was examined by investigation of adsorptive fouling and ultrafiltration using solution of protein or polysaccharide or humic acid. The results suggest that all methods could increase the hydrophilicity of the membrane yielding less fouling. Post-modification decreased CA from 44.8 {+-} 4.2{sup o} to 37.8 {+-} 4.2{sup o} to 42.5 {+-} 4.3{sup o} depending on the degree of grafting (DG). The hydrophilization via polymer blend decreased CA from from 65 deg. to 54 deg. for PEG concentration of 5%. Nevertheless, decreasing hydraulic permeability was observed after post-modification as well as during polymer blend modification. Stability examination showed that there was leaching out of modifier agent from the membrane matrix prepared via conventional PS after 10 days soaking in both water and NaOH. Reactive PS could increase the stability of the modifier agent in membrane matrix. Highlights: Black-Right-Pointing-Pointer We compared different methods to prepare low

  7. High selectivity ZIF-93 hollow fiber membranes for gas separation.

    Science.gov (United States)

    Cacho-Bailo, Fernando; Caro, Guillermo; Etxeberría-Benavides, Miren; Karvan, Oğuz; Téllez, Carlos; Coronas, Joaquín

    2015-06-30

    Zeolitic imidazolate framework-93 (ZIF-93) continuous membranes were synthesized on the inner side of P84 co-polyimide hollow fiber supports by microfluidics. MOFs and polymers showed high compatibility and the membrane exhibited H2-CH4 and CO2-CH4 separation selectivities of 97 (100 °C) and 17 (35 °C), respectively.

  8. Separation of hydrogen from dilute streams (e.g. using membranes)

    Energy Technology Data Exchange (ETDEWEB)

    Brueschke, H.E.A. [Sulzer Chemtech GmbH Membrantechnik, Neunkirchen (Germany)

    2003-07-01

    As a conclusion it can be stated that the use of membranes in the separation and purification of hydrogen is still limited. In areas where hydrogen at not too high purity can be recovered from otherwise low value gas mixtures, like in the examples given above, the application of membranes has developed into a proven state-of-art technology. Where high purity hydrogen at high pressure is demanded, still fairly large work is ahead for membrane and process developers. (orig.)

  9. [Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas.

  10. Performance study of ultrafiltration membrane with bovine serum albumin as feed solution

    International Nuclear Information System (INIS)

    Syahril Ahmad

    2009-01-01

    Bovine serum albumin solutions at different temperature, pH, flow rate and operation pressure have been used as feed solution for studying performance of ultrafiltration membrane. Polysulfone membranes used for this experiment were in form of hollow fibers that have Molecular Weight Cut Off (MWCO) 60 kDa. Observation was focused on flux parameter and rejection coefficient towards protein during the process. Result shows that temperature, pH of BSA feed solution, flow rate and operation pressure can affect the flux and rejection coefficient of membrane. High temperature feed solution tend to decrease the flux but increase rejection coefficient. Rejection coefficient of membrane will increase while flux decreasing at pH of feed solution near to protein isoelectric point. High pressure of feed solution will increase flux but decrease rejection of membrane. Rejection of membrane will decrease and flux will increase when the process operated in slow flow rate. (author)

  11. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    Science.gov (United States)

    Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.

    1985-06-19

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations. 2 tabs.

  12. Preparation of hollow fiber membranes for gas separation

    NARCIS (Netherlands)

    Li, Shu-Guang

    1994-01-01

    Today, immersion precipitation is the most often used process for the preparation of gas separation membranes from polymeric materials. In this process a polymer solution in the form of a thin liquid film or hollow fiber is immersed in a nonsolvent bath where the polymer precipitates and forms a

  13. Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO2 Separations.

    Science.gov (United States)

    Wang, Shaofei; Xie, Yu; He, Guangwei; Xin, Qingping; Zhang, Jinhui; Yang, Leixin; Li, Yifan; Wu, Hong; Zhang, Yuzhong; Guiver, Michael D; Jiang, Zhongyi

    2017-11-06

    Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO 2 to implement efficient separations, gas separation membranes containing CO 2 -philic and non-CO 2 -philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO 2 -philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non-CO 2 -philic nanodomains, rendering low-friction diffusion. Owing to the orderly stacking of nanochannels through cross-linking and the heterogeneous nanodomains with moderate CO 2 affinity, a GO-PEGDA500 membrane exhibits a high CO 2 permeance of 175.5 GPU and a CO 2 /CH 4 selectivity of 69.5, which is the highest performance reported for dry-state GO-stacking membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Ghosh, Asim K.; Hoek, E.M.V.

    2013-01-01

    Four different types of nanocomposite reverse osmosis (RO) membranes were formed by interfacial polymerization of either polyamide (PA) or zeolite A-polyamide nanocomposite (ZA-PA) thin films over either pure polysulfone (PSf) or zeolite A-polysulfone nanocomposite (ZA-PSf) support membranes cast by wet phase inversion. All three nanocomposite membranes exhibited superior separation performance and interfacial properties relative to hand-cast TFC analogs including: (1) smoother, more hydrophilic surfaces (2) higher water permeability and salt rejection, and (3) improved resistance to physical compaction. Less compaction occurred for membranes with nanoparticles embedded in interfacially polymerized coating films, which adds further proof that flux decline associated with physical compaction is influenced by coating film properties in addition to support membrane properties. The new classes of nanocomposite membrane materials continue to offer promise of further improved RO membranes for use in desalination and advanced water purification. © 2011 Elsevier B.V.

  15. Design study of fuel circulating system using Pd alloy membrane isotope separation method

    International Nuclear Information System (INIS)

    Naito, T.; Yamada, T.; Aizawa, T.; Kasahara, T.; Yamanaka, T.

    1981-01-01

    It is expected that the method of permeating through Pd-alloy membrances is effective for isotope separation and the refining of fuel gas. In this paper, the design study of the Fuel Circulating System (FCS) using Pb-alloy membranes is described. The study is mainly focused on the main vacuum, fuel gas refining, isotope separating, and tritium containment systems. In the fuel gas refining system, impurities are effectively removed by using Pd-alloy membranes. For the isotope separation system, the diffusion method through Pd-alloy membranes was adopted. From the standpoint of the safety and economy, a three-stage tritium containment system was adopted to control tritium release to the environment as low as possible. The principal conclusion drawn from the design study was as follows. In the FCS, while cryogenic distillation method appears to be practicable, Pd-alloy membrane method is attractive for isotope separation and the refining of fuel gas. For a large amount of tritium inventory, handling and control technologies should be completed by the experimental evaluation and development of the components and materials used for the FCS. A three-stage containment system was adopted to control tritium release to environment as low as possible. Consideration to prevent tritium escape will be necessary for fuel gas refiners and isotope separators. (Kato, T.)

  16. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.

    Science.gov (United States)

    Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu

    2017-08-03

    In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.

  17. Size enlargement of radioactive and hazardous species and their separation by microfiltration and ultrafiltration membranes

    International Nuclear Information System (INIS)

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1993-01-01

    Separation and volume reduction of aqueous solutions involving membranes is evolving into an expanding and diversified field. Numerous commercially successful membranes and their applications are now available. Among different driving forces used in membrane separation, pressure-driven separation has gained wide application. Depending on the size of the dissolved species in solution to be separated, the pressure needed to achieve the desired separation varies. The microfiltration and ultrafiltration membrane systems are low-pressure processes that generally operate below 350 kPa. To exploit these membranes in applications involving the removal of dissolved contaminants from solutions, it is essential to create a suitable size for the dissolved contaminants, so that the membranes can effectively retain them while producing a filtrate stream essentially free of contaminants. Size enlargement of the dissolved contaminants can be achieved through solution conditioning with the addition of one or a combination of chemical reagents and powdered materials. Examples of typical additives include: pH chemicals, polyelectrolytes, microorganisms and powdered adsorption/ion-exchange materials. In many situations, adequate control and optimization of the system chemistry and hydraulic conditions provide high selectivity and efficiency for contaminant removal. This paper summarizes removal efficiency data for cadmium, lead, mercury, uranium, arsenic, strontium-90/85, cesium-137 and iron. These data resulted from various initiatives on membrane technology undertaken during the past five years by the Waste Processing Technology group at Chalk River Laboratories. The technology involves size enlargement of contaminants present in waste solution, and their separation using either microfiltration or ultrafiltration. The data support remedial applications involving treatment of contaminated groundwater and soils

  18. Hydrothermally stable molecular separation membranes from organically linked silica

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L.; Sah, A; Blank, D.H.A.; Ten Elshof, J.E. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kreiter, R.; Vente, J.F. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-06-15

    A highly hydrothermally stable microporous network material has been developed that can be applied in energy-efficient molecular sieving. The material was synthesized by employing organically bridged monomers in acid-catalysed sol-gel hydrolysis and condensation, and is composed of covalently bonded organic and inorganic moieties. Due to its hybrid nature, it withstands higher temperatures than organic polymers and exhibits high solvolytical and acid stability. A thin film membrane that was prepared with the hybrid material was found to be stable in the dehydration of n-butanol at 150C for almost two years. This membrane is the first that combines a high resistance against water at elevated temperatures with a high separation factor and permeance. It therefore has high potential for energy-efficient molecular separation under industrial conditions, including the dehydration of organic solvents. The organically bridged monomers induce increased toughness in the thin film layer. This suppresses hydrolysis of Si-O-Si network bonds and results in a high resistance towards stress-induced cracking. The large non-hydrolysable units thus remain well incorporated in the surrounding matrix such that the material combines high (pore) structural and mechanical stability. The sol mean particle size was found to be a viable parameter to tune the thickness of the membrane layer and thus optimize the separation performance. We anticipate that other hybrid organosilicas can be made in a similar fashion, to yield a whole new class of materials with superior molecular sieving properties and high hydrothermal stability.

  19. Mixed matrix membranes prepared from high impact polystyrene with dispersed TiO2 nanoparticles for gas separation

    Directory of Open Access Journals (Sweden)

    P. Safaei

    2016-01-01

    Full Text Available The current study presents synthesis and characterization of high impact polystyrene - TiO2 nanoparticles mixed matrix membranes for separation of carbon dioxide from nitrogen. The solution-casting method was used for preparation of membranes. The nano mixed matrix membranes were characterized using scanning electron microscopy to ensure the suitable dispersion of nano particles in high impact polystyrene matrix. The effect of TiO2 nanoparticles loading on membrane performance was investigated. The separation performance of synthesized membranes was investigated in separation of CO2 from CO2/N2 mixture. Effect of feed pressure and TiO2 content on separation of CO2 was studied. The results revealed that increase of feed pressure decreases flux of gases through the mixed matrix membrane. The results also confirmed that the best separation performance can be obtained at TiO2 nanoparticles loading of 7 wt.%.

  20. Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling

    Science.gov (United States)

    Lai, L. S.; Yeong, Y. F.; Lau, K. K.; Azmi, M. S.; Chew, T. L.

    2018-03-01

    In this work, ZIF-8 membrane synthesized through solvent evaporation secondary seeded growth was tested for single gas permeation and binary gases separation of H2 and CO2. Subsequently, a modified mathematical modeling combining the effects of membrane and support layers was applied to represent the gas transport properties of ZIF-8 membrane. Results showed that, the membrane has exhibited H2/CO2 ideal selectivity of 5.83 and separation factor of 3.28 at 100 kPa and 303 K. Besides, the experimental results were fitted well with the simulated results by demonstrating means absolute error (MAE) values ranged from 1.13 % to 3.88 % for single gas permeation and 10.81 % to 21.22 % for binary gases separation. Based on the simulated data, most of the H2 and CO2 gas molecules have transported through the molecular pores of membrane layer, which was up to 70 %. Thus, the gas transport of the gases is mainly dominated by adsorption and diffusion across the membrane.

  1. Novel nanocomposite Kevlar fabric membranes: Fabrication characterization, and performance in oil/water separation

    Science.gov (United States)

    Karimnezhad, Hanieh; Rajabi, Laleh; Salehi, Ehsan; Derakhshan, Ali Ashraf; Azimi, Sara

    2014-02-01

    Nanocomposite membranes with hydrophilic surface were fabricated for separation of oil (n-hexane) from oil/water emulsion. Three different nanomaterials namely, para-aminobenzoate alumoxane (PAB-A), boehmite-epoxide and polycitrate alumoxane (PC-A) were coated on the Kevlar fabric (support), according to a three-step dip-coating protocol. FTIR, SEM, TEM, UV/vis spectrophotometer, and wettability analyses were used to characterize the composite membranes. The three coating layers interacted chemically with one another and also physically with the Kevlar fabric. Water uptake measurements indicated that the membrane is a hydrophilic one. SEM and TEM analyses showed the smooth surface of the composite membrane and three-dimensional dendrimeric hyper-branched structure of (PC-A), respectively. A dead-end filtration setup was applied to test the membranes performance under natural gravity force. Effect of pH as an important variable affecting separation process was investigated with the neutral pH provided the optimum condition for the separation. Oil rejection and permeate fluxes were also monitored. The optimum flux and rejection obtained, were 7392 (Lm-2 h-1) and 89.06% at pH 7, respectively. Fouling occurred as a gel layer on the membrane surface. The deposited oil droplets on the surface of the membrane were successfully washed away with satisfactory permeate flux recovery (FRR = 88.88% at neutral pH), using hot distilled water and acidic solution as eluents.

  2. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.

    Science.gov (United States)

    Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish

    2018-06-12

    Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2  h -1  bar -1  compared with 4-7 L m -2  h -1  bar -1 ) over similarly rated commercial membranes.

  3. Enhanced separation of membranes during free flow zonal electrophoresis in plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2007-07-15

    Free flow zonal electrophoresis (FFZE) is a versatile technique that allows for the separation of cells, organelles, membranes, and proteins based on net surface charge during laminar flow through a thin aqueous layer. We have been optimizing the FFZE technique to enhance separation of plant vacuolar membranes (tonoplast) from other endomembranes to pursue a directed proteomics approach to identify novel tonoplast transporters. Addition of ATP to a mixture of endomembranes selectively enhanced electrophoretic mobility of acidic vesicular compartments during FFZE toward the positive electrode. This has been attributed to activation of the V-ATPase generating a more negative membrane potential outside the vesicles, resulting in enhanced migration of acidic vesicles, including tonoplast, to the anode (Morré, D. J.; Lawrence, J.; Safranski, K.; Hammond, T.; Morré, D. M. J. Chromatogr., A 1994, 668, 201-213). We confirm that ATP does induce a redistribution of membranes during FFZE of microsomal membranes isolated from several plant species, including Arabidopsis thaliana, Thellungiella halophila, Mesembryanthemum crystallinum, and Ananas comosus. However, we demonstrate, using V-ATPase-specific inhibitors, nonhydrolyzable ATP analogs, and ionophores to dissipate membrane potential, that the ATP-dependent migrational shift of membranes under FFZE is not due to activation of the V-ATPase. Addition of EDTA to chelate Mg2+, leading to the production of the tetravalent anionic form of ATP, resulted in a further enhancement of membrane migration toward the anode, and manipulation of cell surface charge by addition of polycations also influenced the ATP-dependent migration of membranes. We propose that ATP enhances the mobility of endomembranes by screening positive surface charges on the membrane surface.

  4. Novel studies of molecular orientation in synthetic polymeric membranes for gas separation

    International Nuclear Information System (INIS)

    Ismail, Ahmad Fauzi

    1998-01-01

    The main objective of this investigation was to produce a super-selective asymmetric membrane for gas separation. To achieve this, molecular orientation induced by rheological conditions during membrane fabrication was investigated and related to the gas separation performance of flat sheet and hollow fiber membranes. Infrared dichroism, a spectroscopic technique, was developed in the first phase of the research to directly measure molecular orientation in flat sheet membranes. The degree of molecular orientation was found to increase with increasing shear during fabrication which enhanced both pressure-normalised flux and selectivity of the coated membranes. The rheology of polymer solutions and the mechanism of molecular orientation have been treated in detail for membrane production. This is a novel approach since previous fundamental work has focused on the phase inversion process. The current study showed that rheological conditions during membrane fabrication have the utmost importance in enhancing membrane selectivity. The effects of molecular orientation at greater shear, as experienced by hollow fiber membranes during extrusion through the spinneret channel, were investigated in the second phase of this research. In order to produce a good quality fiber, a unique tube-in-orifice spinneret and a modified hollow fiber spinning rig were designed and fabricated. Thus the combined effects of reduced water activity in the bore coagulant during hollow fiber spinning and rheologically induced molecular orientation were investigated. The selectivity of the coated high shear hollow fiber membranes was heightened and even surpassed the recognised intrinsic selectivity of the polymer. Pressure-normalised flux also increased with increasing shear rate. In the third phase of this research phase inversion conditions were further optimised to give a superior skin layer and thus provide an even better platform for the advantageous effects of molecular orientation. These

  5. Emerging trends in chemical separations with liquid membranes: an overview

    International Nuclear Information System (INIS)

    Shukla, J.P.

    1997-01-01

    It can be concluded that varied configurations of liquid membranes (LMs) will definitely play an important role in metal separations particularly in situations where other conventional chemical separation techniques fail to deliver goods. Potential areas include decontamination of biotoxic/ radioactive wastes, recovery of precious and strategic metals from lean/ extremely dilute solutions, add on to existing units, hydrometallurgy, etc

  6. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana

    2018-02-26

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring bio-polyphenol morin. For the manufacture of this type of OSN membrane a crosslinked PAN support was coated by interfacial polymerization using morin as the monomer of the aqueous phase and terephtaloyl chloride as the monomer of the organic phase. These membranes showed an exceptional performance and resistance to NMP by having a a permeance of 0.3L/m2 h bar in NMP with a rejection of 96% of Brilliant Blue dye which has a molecular weight of 825.97g/mol, making these membranes attractive for harsh industrial separation processes due to their ease of manufacture, low cost, and excellent performance.

  7. Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN

    NARCIS (Netherlands)

    Czyperek, M.; Zapp, P.; Bouwmeester, Henricus J.M.; Modigell, M.; Ebert, K.; Voigt, I.; Meulenberg, W.A.; Singheiser, L.; Stöver, D.

    2010-01-01

    The objective of the “MEM-BRAIN” project is the development and integration of ceramic and polymeric gas separation membranes for zero-emission fossil power plants. This will be achieved using membranes with a high permeability and selectivity for either CO2, O2 or H2, for the three CO2 capture

  8. Separation Process by Porous Membranes: A Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Acto de Lima Cunha

    2014-07-01

    Full Text Available A major problem associated with the membrane separation processes is the permeate flux drop, limiting the widespread of industrial application of this process. This occurs due to the accumulation of solute concentration near the membrane surface. An exact quantification of the concentration polarization as a function of process conditions is essential to estimate the system performance satisfactorily. In this sense, this work aims to predict the behavior of the concentration polarization boundary layer along the length of a permeable tubular membrane, over various operation conditions. The numerical solution of the Navier-Stokes equation, coupled to Darcy's and mass transfer equations, is obtained by the commercial software ANSYS CFX 12, considering a two-dimensional computational domain. The study evaluates the effects of axial Reynolds and Schmidt numbers on the concentration polarization boundary layer thickness during the cross-flow filtration process. Numerical results have shown that the mathematical model is able to predict the formation and growth of the concentration polarization boundary layer along the length of the tubular membrane.

  9. Fullerene and dendrimer based nano-composite gas separation membranes

    NARCIS (Netherlands)

    Sterescu, D.M.

    2007-01-01

    This thesis describes the development of new materials for membrane based gas separation processes. Long-term stable, loosely packed (high free volume) amorphous polymer films were prepared by introduction of super-molecular pendant groups, which possess hardsphere properties to avoid dense

  10. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    Science.gov (United States)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  11. Synthesis and separation properties of an α-alumina-supported high-silica MEL membrane

    NARCIS (Netherlands)

    Kosinov, N.; Hensen, E.J.M.

    2013-01-01

    A thin high-silica MEL membrane was synthesized on a porous a-alumina hollow fiber support by a secondary growth approach. The membrane quality was evaluated by permporometry, single-gas permeation and butane isomer separation. Comparison of the pervaporation performance of MEL membranes with a MFI

  12. Swift heavy ion induced modification in polycarbonate membrane for gas separation

    International Nuclear Information System (INIS)

    Rajesh Kumar; Prasad, Rajendra; Vijay, Y.K.; Das, D.

    2003-01-01

    Polymeric membranes are extensively used for commercial gas separation applications. Makrofol-KG (polycarbonate) is a glassy polymer. 40 μm thick sheet of Makrofol-KG was irradiated with 40 Ar (14.9 MeV/n) of fluence 10 3 ions/cm 2 and 20 μm thick sheet with 5.3 MeV α-particles of fluence 10 7 ions/cm 2 . The permeability of these polycarbonate membranes for H 2 and CO 2 was measured and also after etching in 6 N NaOH at 60 degC for different periods. Permeability is found to be increased with etching time. At a definite time, critical etching time, the permeability rapidly increases in PC. Positron annihilation lifetimes for unirradiated and irradiated membranes were measured with fast fast coincidence system to study the correlation of free volume hole concentration with gas separation properties. (author)

  13. Fabrication of perforated isoporous membranes via a transfer-free strategy: enabling high-resolution separation of cells.

    Science.gov (United States)

    Ou, Yang; Lv, Chang-Jiang; Yu, Wei; Mao, Zheng-Wei; Wan, Ling-Shu; Xu, Zhi-Kang

    2014-12-24

    Thin perforated membranes with ordered pores are ideal barriers for high-resolution and high-efficiency selective transport and separation of biological species. However, for self-assembled thin membranes with a thickness less than several micrometers, an additional step of transferring the membranes onto porous supports is generally required. In this article, we present a facile transfer-free strategy for fabrication of robust perforated composite membranes via the breath figure process, and for the first time, demonstrate the application of the membranes in high-resolution cell separation of yeasts and lactobacilli without external pressure, achieving almost 100% rejection of yeasts and more than 70% recovery of lactobacilli with excellent viability. The avoidance of the transfer step simplifies the fabrication procedure of composite membranes and greatly improves the membrane homogeneity. Moreover, the introduction of an elastic triblock copolymer increases the interfacial strength between the membrane and the support, and allows the preservation of composite membranes in a dry state. Such perforated ordered membranes can also be applied in other size-based separation systems, enabling new opportunities in bioseparation and biosensors.

  14. Study of Aging ion exchange membranes used in separation processes

    International Nuclear Information System (INIS)

    Bellakhal, N.; Ghalloussi, R.; Dammak, L.

    2009-01-01

    Presently, the most important application of ion exchange membranes (IEM) is the electrodialysis. This technique consists of a membrane separation using a series of anion exchange membranes alternately and cations, often used for the desalination of brackish water. These membranes are confronted with problems of aging. Indeed, the more they are used more physical and chemical properties will change. A comparative study of the behavior of both EMI and new but the same treatment is carried out by measuring a magnitude transfer characteristic: ion permeability. Ionic permeability is a physical quantity can have an idea about the selectivity of the membrane towards the charged species and the p orosity o f the membrane. It is a transport of ions (cations + anions) through the membrane. Thus, determining the ion permeability is to determine the diffusion flux of a strong electrolyte through a membrane separating two compartments (one containing electrolytes and other water initially ultrapure who will gradually electrolyte through the membrane). The measurement technique used is that by conductimetric detection because of the ease of its implementation and its accuracy. Thus, the variation of the concentration of the electrolyte is continuously monitored by measuring the conductivity of the solution diluted with time. The curves s = f (t) MEA and MEC new and used varying concentration of the electrolyte membranes show that let in less waste of strong electrolyte (NaCl and HCl) than new ones. This can be explained by: - The functional sites are combined with polyvalent ions present even in trace amounts in the solution process and become inactive. The membrane loses its hydrophilic character and turns into a film almost hydrophobic. - The chemical attacks and electrodialysis operations have degraded and eliminated much of the fixed sites leading to the same effects on the hydrophilic membrane. - These two assumptions have been reinforced by the extent of exchange

  15. Microfluidic devices for investigation of biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna

    to microfluidic designs involving protein delivery to biomimetic membranes developed for sensor and separation applications. Finally, an OMP functionality modulation with β-cyclodextrin (β-CD) was shown and revealed the protein potential application as a sensor. Moreover, the β-CD blocker may be used to prevent...... for industrial applications. Among them are the inherent fragility of lipid membranes, the challenge of up-scaling the effective membrane area and the quantification of the protein delivery to the lipid membrane which may determined the biomimetic membrane application. This PhD thesis addresses the above...

  16. Functionalized membranes for environmental remediation and selective separation

    Science.gov (United States)

    Xiao, Li

    Membrane process including microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) have provided numerous successful applications ranging from drinking water purification, wastewater treatment, to material recovery. The addition of functional moiety in the membranes pores allows such membranes to be used in challenging areas including tunable separations, toxic metal capture, and catalysis. In this work, polyvinylidene fluoride (PVDF) MF membrane was functionalized with temperature responsive (poly(N-isopropylacrylamide), PNIPAAm) and pH responsive (polyacrylic acid, PAA) polymers. It's revealed that the permeation of various molecules (water, salt and dextran) through the membrane can be thermally or pH controlled. The introduction of PAA as a polyelectrolyte offers an excellent platform for the immobilization of metal nanoparticles (NPs) applied for degradation of toxic chlorinated organics with significantly increased longevity and stability. The advantage of using temperature and pH responsive polymers/hydrogels also includes the high reactivity and effectiveness in dechlorination. Further advancement on the PVDF functionalization involved the alkaline treatment to create partially defluorinated membrane (Def-PVDF) with conjugated double bounds allowing for the covalent attachment of different polymers. The PAA-Def-PVDF membrane shows pH responsive behavior on both the hydraulic permeability and solute retention. The sponge-like PVDF (SPVDF) membranes by phase inversion were developed through casting PVDF solution on polyester backing. The SPVDF membrane was demonstrated to have 4 times more surface area than commercial PVDF MF membrane, allowing for enhanced nanoparticles loading for chloro-organics degradation. The advanced functionalization method and process were also validated to be able to be scaled-up through the evaluation of full-scale functionalized membrane provided by Ultura Inc. California, USA. Nanofiltration (NF

  17. Membranes for separation of carbon dioxide

    Science.gov (United States)

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  18. The effect of different dialyzer membrane on the clearance of serum β2-MG in maintenance hemodialysis patients

    International Nuclear Information System (INIS)

    Lu Yun; Xue Jun; Lin Xiangtong; Deng Shouzhen; Li Ding

    2001-01-01

    Objective: To investigate the effect of different membrane on the clearance of serum β 2 -MG in maintenance hemodialysis patients. Method: 106 maintenance hemodialysis patients randomized divided into group A and group B. Group A used cellulose triacetate membrane (N-130E), Group B used polysulfone membrane (F6). The levels of serum β 2 -MG before and after hemodialysis were compared in Group A and B, respectively. Results: Before hemodialysis, the level of serum β 2 -MG was not significant different between Group A and B (46.74 ± 19.46 mg/L vs 47.49 ± 16.71 mg/L, P>0.05). In Group A, compared with that before hemodialysis, the level of serum β 2 -MG after hemodialysis decreased significantly. (46.74±19.46 mg/L vs 39.76 ±17.66 mg/L, before HD vs after HD, P 2 -MG between before and after hemodialysis (47.49±16.71 mg/L vs 50.19±22.76 mg/L, P>0.05). Conclusion: N-130E dialyzer is better than F6 dialyzer as the effect of clearance serum β 2 -MG is concerned

  19. Use of reverse osmosis membranes for the separation of lemongrass essential oil and supercritical CO2

    Directory of Open Access Journals (Sweden)

    L.A.V. Sarmento

    2004-06-01

    Full Text Available Although it is still used very little by industry, the process of essential oil extraction from vegetable matrices with supercritical CO2 is regarded as a potentially viable technique. The operation of separating the extract from the solvent is carried out by reducing the pressure in the system. Separation by membranes is an alternative that offers lower energy consumption and easier operation than traditional methods of separation. Combining the processes essential oil extraction with supercritical CO2 and separation by membranes permits the separation of solvent and oil without the need for large variations in extraction conditions. This results in a large energy savings in the case of solvent repressurisation and reuse. In this study, the effectiveness of reverse osmosis membranes in separating lemongrass essential oil from mixtures with supercritical CO2 was tested. The effects of feed oil concentration and transmembrane pressure on CO2 permeate flux and oil retention were studied for three membrane models.

  20. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation

    KAUST Repository

    Xu, Liren; Rungta, Meha; Koros, William J.

    2011-01-01

    materials in realistic gas separations. The very challenging ethylene/ethane separation is the primary target of this work. Matrimid® derived CMS hollow fiber membranes have been investigated in this work. Resultant CMS fiber showed interesting separation

  1. Separator Membrane from Crosslinked Poly(Vinyl Alcohol and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    Charu Vashisth Rohatgi

    2015-03-01

    Full Text Available In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride (PMVE-MA. Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity, thermal and electrochemical properties using differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, thermo-gravimetric analysis (TGA and electrochemical impedance spectroscopy (EIS. The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications.

  2. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    Science.gov (United States)

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  3. Study on methane separation from steam reforming product gas with polyimide membrane

    International Nuclear Information System (INIS)

    Koiso, Hiroshi; Inagaki, Yoshiyuki; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    In the HTTR hydrogen production system by steam reforming of natural gas (main component: CH 4 ), CH 4 conversion rate is limited to approximately 65% due to high pressure and low temperature conditions (4.5 MPa, 800degC). The one of the measures to improve CH 4 conversion is recycling of residual CH 4 extracted from steam reforming product gas with a gas separator. Experimental and analytical studies on CH 4 separation from gas mixture composed of CH 4 , H 2 , CO 2 and CO were carried out to investigate gas separation characteristics of a polyimide membrane gas separator. Measured permeability of each gas in gas mixture was reduced from 1/3 to 1/14 of that obtained with a single gas (catalog value). The polyimide membrane could extracted CH 4 of approximately 80% from gas mixture, then, H 2 and CO 2 more than 98% were removed. It was confirmed that the polyimide membrane could be available to residual CH 4 recycling. The analytical results by a difference method gave good prospects of experimental results such as permeated flow rate, mol-fraction profiles and so on. Therefore, it can be said the analysis method was established. (author)

  4. Charge- and Size-Selective Molecular Separation using Ultrathin Cellulose Membranes

    KAUST Repository

    Puspasari, Tiara

    2016-08-30

    To date, it is still a challenge to prepare high-flux and highselectivity microporous membranes thinner than 20 nm without introducing defects. In this work, we report for the first time the application of cellulose membranes for selective separation of small molecules. A freestanding cellulose membrane as thin as 10 nm has been prepared through regeneration of trimethylsilyl cellulose (TMSC). The freestanding membrane can be transferred to any desired substrate and shows a normalized flux as high as 700 L m−2 h−1 bar−1 when supported by a porous alumina disc. According to filtration experiments, the membrane exhibits precise size-sieving performances with an estimated pore size between 1.5–3.5 nm depending on the regeneration period and initial TMSC concentration. A perfect discrimination of anionic molecules over neutral species is demonstrated. Moreover, the membrane demonstrates high reproducibility, high scale-up potential, and excellent stability over two months.

  5. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents

    NARCIS (Netherlands)

    Duval, J.M.; Duval, J.-M.; Folkers, Albertje; Mulder, M.H.V.; Desgrandchamps, G.; Smolders, C.A.; Smolders, C.A.

    1993-01-01

    The effect of the introduction of specific adsorbents on the gas separation properties of polymeric membranes has been studied. For this purpose both carbon molecular sieves and zeolites are considered. The results show that zeolites such as silicate-1, 13X and KY improve to a large extent the

  6. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation

    KAUST Repository

    Xu, Liren

    2011-09-01

    Carbon molecular sieve (CMS) membranes have shown promising separation performance compared to conventional polymeric membranes. Translating the very attractive separation properties from dense films to hollow fibers is important for applying CMS materials in realistic gas separations. The very challenging ethylene/ethane separation is the primary target of this work. Matrimid® derived CMS hollow fiber membranes have been investigated in this work. Resultant CMS fiber showed interesting separation performance for several gas pairs, especially high selectivity for C2H4/C2H6. Our comparative study between dense film and hollow fiber revealed very similar selectivity for both configurations; however, a significant difference exists in the effective separation layer thickness between precursor fibers and their resultant CMS fibers. SEM results showed that the deviation was essentially due to the collapse of the porous substructure of the precursor fiber. Polymer chain flexibility (relatively low glass transition temperature (Tg) for Matrimid® relative to actual CMS formation) appears to be the fundamental cause of substructure collapse. This collapse phenomenon must be addressed in all cases involving intense heat-treatment near or above Tg. We also found that the defect-free property of the precursor fiber was not a simple predictor of CMS fiber performance. Even some precursor fibers with Knudsen diffusion selectivity could be transformed into highly selective CMS fibers for the Matrimid® precursor. To overcome the permeance loss problem caused by substructure collapse, several engineering approaches were considered. Mixed gas permeation results under realistic conditions demonstrate the excellent performance of CMS hollow fiber membrane for the challenging ethylene/ethane separation. © 2011 Elsevier B.V.

  7. Using a Microfluidic-Microelectric Device to Directly Separate Serum/Blood Cells from a Continuous Whole Bloodstream Flow

    Science.gov (United States)

    Wang, Ming-Wen; Jeng, Kuo-Shyang; Yu, Ming-Che; Su, Jui-Chih

    2012-03-01

    To make the rapid separation of serum/blood cells possible in a whole bloodstream flow without centrifugation and Pasteur pipette suction, the first step is to use a microchannel to transport the whole bloodstream into a microdevice. Subsequently, the resulting serum/blood cell is separated from the whole bloodstream by applying other technologies. Creating the serum makes this subsequent separation possible. To perform the actual separation, a microchannel with multiple symmetric curvilinear microelectrodes has been designed on a glass substrate and fabricated with micro-electromechanical system technology. The blood cells can be observed clearly by black-field microscopy imaging. A local dielectrophoretic (DEP) force, obtained from nonuniform electric fields, was used for manipulating and separating the blood cells from a continuous whole bloodstream. The experimental studies show that the blood cells incur a local dielectrophoretic field when they are suspended in a continuous flow (v = 0.02-0.1 cm/s) and exposed to AC fields at a frequency of 200 kHz. Using this device, the symmetric curvilinear microelectrodes provide a local dielectrophoretic field that is sufficiently strong for separating nearby blood cells and purifying the serum in a continuous whole bloodstream flow.

  8. High-Flux Zeolitic Imidazolate Framework Membranes for Propylene/Propane Separation by Postsynthetic Linker Exchange.

    Science.gov (United States)

    Lee, Moon Joo; Kwon, Hyuk Taek; Jeong, Hae-Kwon

    2018-01-02

    While zeolitic imidazolate framework, ZIF-8, membranes show impressive propylene/propane separation, their throughput needs to be greatly improved for practical applications. A method is described that drastically reduces the effective thickness of ZIF-8 membranes, thereby substantially improving their propylene permeance (that is, flux). The new strategy is based on a controlled single-crystal to single-crystal linker exchange of 2-methylimidazole in ZIF-8 membrane grains with 2-imidazolecarboxaldehyde (ZIF-90 linker), thereby enlarging the effective aperture size of ZIF-8. The linker-exchanged ZIF-8 membranes showed a drastic increase in propylene permeance by about four times, with a negligible loss in propylene/propane separation factor when compared to as-prepared membranes. The linker-exchange effect depends on the membrane synthesis method. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The B-domain of factor VIII reduces cell membrane attachement to host cells in serum free conditions

    DEFF Research Database (Denmark)

    Kolind, Mille Petersen; Nørby, Peder Lisby; Flintegaard, Thomas Veje

    2010-01-01

    engineered extensively throughout the years to increase the low production yields that initially were obtained from mammalian cell cultures. The scope of this work was to investigate the interaction of rFVIII with the cell membrane surface of the producing cells in serum free medium. We wondered whether...... binding of rFVIII to the cell membrane could be a factor diminishing the production yield. We studied the contribution of the rFVIII B-domain to membrane attachment by transfecting several constructs containing increasing lengths of the B-domain into cells under serum free conditions. We found that 90......% of rFVIII is attached to the cell membrane of the producing cell when the rFVIII variant contains a short B-domain (21 aa). By increasing the length of the B-domain the membrane attached fraction can be reduced to 50% of the total expressed rFVIII. Further, our studies show that the N...

  10. Separation of some metal ions using coupled transport supported liquid membranes

    International Nuclear Information System (INIS)

    Chaudhary, M.A.

    1993-01-01

    Liquid membrane extraction processes has become very popular due to their superiority in many ways over other separation techniques. In coupled transport membranes the metal ions can be transported across the membrane against their concentration gradient under the influence of chemical potential difference. Liquid membranes consisting of a carrier-cum-diluent, supported in microporous polymeric hydrophobic films have been studied for transport of metal ions like U(VI), Cr(VI), Be(II), V(V), Ti(IV), Zn(II), Cd(II), Hf(IV), W(VI), and Co(II). The present paper presents basic data with respect to flux and permeabilities of these metal ions across membranes based on experimental results and theoretical equations, using different carriers and diluents and provides a brief reference to possibility of such membranes for large scale applications. (author)

  11. Effect of template on chiral separation of phenylalanine using molecularly imprinted membrane in aqueous medium

    International Nuclear Information System (INIS)

    Haq, N.U.

    2014-01-01

    Wet phase inversion method was used to prepare L-Phenylalanine (L-Phe) and D-Phenylalanine (D-Phe) imprinted poly ((acrylonitrile)-co-(acrylic acid)) membranes for chiral separation. Ultrafiltration experiments were conducted to evaluate the chiral separation ability of the prepared membrane towards racemate aqueous solution of Phenylalanine. The continuous permselectivity was observed by novel membrane. The chiral resolution ability of L-Phe imprinted membrane was much better than that of D-Phe. It was observed that both membranes simultaneously, selectively reject, selectively adsorbed and selectively permeate solute. The achieved adsorption selectivities of L-Phe imprinted membrane (AlphaAds)L and D-Phe imprinted membrane (AlphaAds)D were 2.6 and 2.40 respectively. Permselectivity of L-Phe imprinted membrane (AlphaPerm)L was 2.56 while D-Phe imprinted membrane permselectivity (AlphaPerm)D was 2.03. The rejection selectivities of L-Phe and D-Phe imprinted membranes were (AlphaRej)L=0.32 and (AlphaRej)D =0.28 respectively. (author)

  12. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    Science.gov (United States)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater

  13. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation

    KAUST Repository

    Karunakaran, Madhavan

    2014-03-01

    A simple and efficient approach towards the fabrication of a skinned membrane with highly ordered pores in the nanometer range is presented here. We successfully combined the self-assembly of PS-b-PEO block copolymer and water induced phase separation for the preparation of isoporous PS-b-PEO block copolymer membranes. We produced for the first time asymmetric isoporous PS-b-PEO membranes with a 100nm thin isoporous separating layer using water at room temperature as coagulant. This was possible by careful selection of the block lengths and the solvent system. FESEM, AFM and TEM measurements were employed to characterize the nanopores of membranes. The pure water fluxes were measured and the flux of membrane was exceptionally high (around 800Lm-2h-1bar-1). Protein rejection measurements were carried out for this membrane and the membrane had a retention of about 67% of BSA and 99% of γ-globulin. © 2013 Elsevier B.V.

  14. Coupling of separation and reaction in zeolite membrane reactor for hydroisomerization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gora, L.; Jansen, J.C. [Ceramic Membrane Centre, The Pore, DelftChemTech, Delft Univ. of Technology, Delft (Netherlands)

    2005-03-01

    A zeolite membrane reactor has been developed for the hydroisomerization of hydrocarbons, in which the linear molecules are separated from branched ones on the silicalite-1 membrane prior to conversion of the permeated linear hydrocarbons to equilibrium levels on the catalyst bed. Model studies using C{sub 6} components are conducted. n-C{sub 6} separated from 2MP (selectivity 24) is converted for 72% with 36% selectivity towards di-branched isomers (at 393 K). The results indicate that platinum containing chlorinated alumina/silicalite-1 membrane reactor has a potential in upgrading octane values and offers advantages such as higher efficiency, better process control and lower consumption of energy. (orig.)

  15. Coupling of separation and reaction in zeolite membrane reactor for hydroisomerization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gora, L.; Maloncy, M.L.; Jansen, J.C. [Ceramic Membrane Centre, The Pore, DelftChemTech, Delft Univ. of Technology (Netherlands)

    2004-07-01

    A zeolite membrane reactor has been developed for the hydroisomerization of hydrocarbons, in which the linear molecules are separated from branch ones on the silicalite-1 membrane prior to conversion of the permeated linear hydrocarbons to equilibrium levels on the catalyst bed. A model studies using C6 components are conduct. Separated n-C6 from 2MP (selectivity 24) is converted for 72% with 36% selectivity towards di-branched isomers (at 393 K). The results indicate that platinum containing chlorinated alumina/silicalite-1 membrane reactor has a potential in upgrading octane values and offers advantages such as higher efficiency, better process control and lower consumption of energy. (orig.)

  16. Dynamic modeling of ultrafiltration membranes for whey separation processes

    NARCIS (Netherlands)

    Saltik, M.B.; Ozkan, L.; Jacobs, M.; van der Padt, A.

    2017-01-01

    In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process

  17. Gas separation properties of new polyoxadiazole and polytriazole membranes

    NARCIS (Netherlands)

    Hensema, E.R.; Hensema, E.R.; Borges-Sena, M.E.R.; Mulder, M.H.V.; Smolders, C.A.; Smolders, C.A.

    1994-01-01

    The gas separation properties of new aromatic poly-1,2,4-triazole and poly-1,3,4-oxadiazole membranes have been systematically investigated. Various functional groups were incorporated as pendent groups onto the polymer backbone of poly-1,2,4-triazoles. A wide permeability/selectivity spectrum was

  18. Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes

    Science.gov (United States)

    Zhang, Qinglei; Lu, Xiaolong; Liu, Juanjuan; Zhao, Lihua

    2015-01-01

    In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were improved by optimizing membrane morphology and structure. The results showed that the PVDF membrane had better mechanical and separation properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF membrane tensile stress at break, tensile elongation and bursting pressure were 11.3 MPa, 395% and 0.625 MPa, respectively. Ultrafiltration (UF) flux of pure water reached 108.2 L∙h−1∙m−2 and rejection of Albumin from bovine serum was 82.3%. The PVDF dialyzers were prepared by centrifugal casting. The influences of membrane area and simulate fluid flow rate on dialysis performance were investigated. The results showed that the clearance rate of urea and Lysozyme (LZM) were improved with increasing membrane area and fluid flow rate while the rejection of albumin from bovine serum (BSA) had little influence. The high-flux PVDF dialyzer UF coefficient reached 62.6 mL/h/mmHg. The PVDF dialyzer with membrane area 0.69 m2 has the highest clearance rate to LZM and urea. The clearance rate of LZM was 66.8% and urea was 87.7%. PMID:25807890

  19. Design of a tubular ceramic membrane for gas separation in a PEMFC system

    Energy Technology Data Exchange (ETDEWEB)

    Kamarudin, S.K.; Daud, W.R.W.; Mohammad, A.W.; Som, A.Md.; Takriff, M.S. [Department of Chemical and Process Engineering, National University of Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2004-01-01

    The objective of this study is to introduce a shortcut in the method of design for a tubular ceramic membrane (TCM) for gas separation. Generally, it explains the permeation of the multi component gas using cross flow models in a porous membrane and the surface area of the membrane required. The novel aspect of this method is that the expression for the length of the membrane is simplified to a number unit (NTU) and a height of transfer unit (HTU). The HTU term for porous membranes is characterised by the physical properties of the membrane; the feed flow rate, n{sub F}, membrane thickness, l{sub M}, feed pressure, P{sub F}, K the permeability of gas and the diameter of the membrane, D{sub M}. The integral for NTU of a porous membrane is the solution for the local permeate along the length of the membrane. It is found that, NTU mainly depends on the rejection stream, x{sub R,}, along the membrane and it describes the relative degree of separation. The Proton Electrolyte Membrane Fuel Cell (PEMFC) system is taken as the case study. CO is the main culprit in reducing the performance of the PEMFC and will act as a catalyst poison for the fuel cell anode at a concentration as low as 100 ppm. Thus, the reformate, from primary reforming, contains a significant amount of CO and must be purified. The effect of some important parameters such as temperature, pressure and the thickness of membrane to the degree of separation are presented in this paper. From the results, it can be seen that the system could reduce the CO concentration from 2000 - 500 ppm. Basically the TCM will operate, in series, with a pressure swing adsorber in order to further reduce the concentration of CO to less than 10 ppm before entering the fuel cell stack. However, this paper only focuses on the design of the TCM. Besides this, it is observed that the purity of the hydrogen increased from 72.8 - 96% (at {theta} = 0.5) after the membrane. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  20. Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation.

    Science.gov (United States)

    Boutilier, Michael S H; Sun, Chengzhen; O'Hern, Sean C; Au, Harold; Hadjiconstantinou, Nicolas G; Karnik, Rohit

    2014-01-28

    Gas transport through intrinsic defects and tears is a critical yet poorly understood phenomenon in graphene membranes for gas separation. We report that independent stacking of graphene layers on a porous support exponentially decreases flow through defects. On the basis of experimental results, we develop a gas transport model that elucidates the separate contributions of tears and intrinsic defects on gas leakage through these membranes. The model shows that the pore size of the porous support and its permeance critically affect the separation behavior, and reveals the parameter space where gas separation can be achieved regardless of the presence of nonselective defects, even for single-layer membranes. The results provide a framework for understanding gas transport in graphene membranes and guide the design of practical, selectively permeable graphene membranes for gas separation.

  1. Solute removal capacity of high cut-off membrane plasma separators.

    Science.gov (United States)

    Ohkubo, Atsushi; Kurashima, Naoki; Nakamura, Ayako; Miyamoto, Satoko; Iimori, Soichiro; Rai, Tatemitsu

    2013-10-01

    In vitro blood filtration was performed by a closed circuit using high cut-off membrane plasma separators, EVACURE EC-2A10 (EC-2A) and EVACURE EC-4A10 (EC-4A). Samples were obtained from sampling sites before the plasma separator, after each plasma separator, and from the ultrafiltrate of each separator. The sieving coefficient (S.C.) of total protein (TP), albumin (Alb), IgG, interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), fibrinogen (Fib), antithrombin III (AT-III), and coagulation factor XIII (FXIII) were calculated. The S.C. of each solute using EC-2A and EC-A4 were as follows; TP: 0.25 and 0.56, Alb: 0.32 and 0.73, IgG: 0.16 and 0.50, IL-6:0.73 and 0.95, IL-8:0.85 and 0.82, TNF-α: 1.07 and 0.99, Fib: 0 and 0, FXIII: 0.07 and 0.17, respectively. When compared with the conventional type of membrane plasma separators, EVACURE could efficiently remove cytokines while retaining coagulation factors such as fibrinogen. Moreover, EC-2A prevented protein loss, whereas EC-4A could remove approximately 50% of IgG. © 2013 The Authors. Therapeutic Apheresis and Dialysis © 2013 International Society for Apheresis.

  2. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.

    Science.gov (United States)

    Wang, Ting; Zhao, Li; Shen, Jiang-nan; Wu, Li-guang; Van der Bruggen, Bart

    2015-07-07

    Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.

  3. On controllability of an integrated bioreactor and periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    the influence of membrane fouling. Previously, the REED and fermentation processes have been modeled and investigated separately (Prado- Rubio et al., 2011a; Boonmee, 2003). Additionally, a simple quasi-sequential strategy for integrated process design and control structure development has been proposed (Prado...... to understand the controlled operation of the integrated process, it is convenient to use a model based approach supported by experimental evidence. Recently, an integrated bioreactor and electrically driven membrane separation process (Reverse Electro- Enhanced Dialysis - REED) has been proposed as a method...... at a certain lactate concentration level. Hence, productivity can be enhanced by the in situ lactate removal from the cultivation broth during pH controlled fermentation. This can be done by means of ion exchange membranes and electrical potential gradients. The novelty of the integrated process lies...

  4. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos, Luis Francisco

    2017-01-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication

  5. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suryani, Puput Eka [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia); Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Purnama, Herry [Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Susanto, Heru, E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia)

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  6. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas

    KAUST Repository

    Thompson, Joshua A.

    2014-07-01

    Zeolitic imidazolate framework (ZIF) materials are a promising subclass of metal-organic frameworks (MOF) for gas separations. However, due to the deleterious effects of gate-opening phenomena associated with organic linker rotation near the limiting pore apertures of ZIFs, there have been few demonstrations of improved gas separation properties over pure polymer membranes when utilizing ZIF materials in composite membranes for CO2-based gas separations. Here, we report a study of composite ZIF/polymer membranes, containing mixed-linker ZIF materials with ZIF-8 crystal topologies but composed of different organic linker compositions. Characterization of the mixed-linker ZIFs shows that the mixed linker approach offers control over the porosity and pore size distribution of the materials, as determined from nitrogen physisorption and Horváth-Kawazoe analysis. Single gas permeation measurements on mixed-matrix membranes reveal that inclusion of mixed-linker ZIFs yields membranes with better ideal CO2/CH4 selectivity than membranes containing ZIF-8. This improvement is shown to likely occur from enhancement in the diffusion selectivity of the membranes associated with controlling the pore size distribution of the ZIF filler. Mixed-gas permeation experiments show that membranes with mixed-linker ZIFs display an effective plasticization resistance that is not typical of the pure polymeric matrix. Overall, we demonstrate that mixed-linker ZIFs can improve the gas separation properties in composite membranes and may be applicable to aggressive CO2 concentrations in natural gas feeds. © 2013 Elsevier Inc. All rights reserved.

  7. Basic characteristics of hollow-filament polyimide membrane in gas separation and application to tritium monitors

    International Nuclear Information System (INIS)

    Sasaki, Sh.; Suzuki, T.; Kondo, K.; Tega, E.; Shimada, A.; Akahori, S.; Okuno, K.

    2003-01-01

    The separation efficiency of hollow-filament polyimide membranes for 3 H and 41 Ar is preliminarily examined for a potential application to continuous gas monitoring systems for analysis of stack emission from accelerator facilities. The basic gas separation characteristics of the membranes are experimentally investigated, and a preliminary gas monitor design is proposed. The membranes are capable of selectively enriching hydrogen by more than 25 times, with negligible variation with respect to the species of isotope. (author)

  8. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  9. Development and characterization of polyethersulfone/TiO2 mixed matrix membranes for CO2/CH4 separation

    Science.gov (United States)

    Galaleldin, S.; Mannan, H. A.; Mukhtar, H.

    2017-12-01

    In this study, mixed matrix membranes comprised of polyethersulfone as the bulk polymer phase and titanium dioxide (TiO2) nanoparticles as the inorganic discontinuous phase were prepared for CO2/CH4 separation. Membranes were synthesized at filler loading of 0, 5, 10 and 15 wt % via dry phase inversion method. Morphology, chemical bonding and thermal characteristics of membranes were scrutinized utilizing different techniques, namely: Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform InfraRed (FTIR) spectra and Thermogravimetric analysis (TGA) respectively. Membranes gas separation performance was evaluated for CO2 and CH4 gases at 4 bar feed pressure. The highest separation performance was achieved by mixed matrix membrane (MMM) at 5 % loading of TiO2.

  10. FABRICATION AND CHARACTERIZATION OF POLYIMIDE/POLYETHERSULFONE-FUMED SILICA MIXED MATRIX MEMBRANE FOR GAS SEPARATION

    Directory of Open Access Journals (Sweden)

    A. F. Ismail

    2012-01-01

    Full Text Available This study is performed primarily to investigate the feasibility of fumed silica as inorganic material towards gas separation performance of mixed matrix membrane. In this study, polyimide/polyethersulfone (PES-fumed silica mixed matrix membranes were casted using dry/wet technique. The results from the FESEM, DSC and FTIR analysis confirmed that the structure and physical properties of membrane is influenced by inorganic filler. FESEM’s cross-section view indicated good compatibility between polymer and fumed silica for all of range fumed silica used in this study. The gas separation performance of the mixed matrix membranes with fumed silica were relatively higher compared to that of the neat PI/PES membrane. PI/PES-fumed silica 5 wt% yielded significant selectivity enhancement of 7.21 and 40.47 for O2/N2, and CO2/CH4, respectively.

  11. Enhanced Gas Separation through Nanoconfined Ionic Liquid in Laminated MoS2 Membrane.

    Science.gov (United States)

    Chen, Danke; Ying, Wen; Guo, Yi; Ying, Yulong; Peng, Xinsheng

    2017-12-20

    Two-dimensional (2D) materials-based membranes show great potential for gas separation. Herein an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), was confined in the 2D channels of MoS 2 -laminated membranes via an infiltration process. Compared with the corresponding bulk [BMIM][BF 4 ], nanoconfined [BMIM][BF 4 ] shows an obvious incremental increase in freezing point and a shift of vibration bands. The resulting MoS 2 -supported ionic liquid membrane (MoS 2 SILM) exhibits excellent CO 2 separation performance with high CO 2 permeance (47.88 GPU) and superb selectivity for CO 2 /N 2 (131.42), CO 2 /CH 4 (43.52), and CO 2 /H 2 (14.95), which is much better than that of neat [BMIM][BF 4 ] and [BMIM][BF 4 ]-based membranes. The outstanding performance of MoS 2 SILMs is attributed to the nanoconfined [BMIM][BF 4 ], which enables fast transport of CO 2 . Long-term operation also reveals the durability and stability of the prepared MoS 2 SILMs. The method of confining ILs in the 2D nanochannels of 2D materials may pave a new way for CO 2 capture and separation.

  12. Ceramic membranes applied in separation of hot gases; Membranas Ceramicas para Separacion de Gases en Caliente

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of this project is to develop and evaluate inorganic membranes of a ceramic type, with nanometric pore size, applied in separation of contaminants and fuel enrichment, gas mixture in coal gasification . etc. Using ceramic materials have the advantage of being highly physical and chemical resistance, which makes these membranes more adequate then metal equivalent for these applications. A support manufacture and the development of natricum membranes technology to estimate the potential fields of applications and industrial viability of ceramic membranes are the intermediate goals so that the project could be considered successful one. The project has been carried out jointly by the following entities: TGI, S. A. (Tecnologia y Gestion de la Innovacion, Spain). CIEMAT (Centro de Investigaciones energeticas, Medioambientales y Tecnologicas, Spain) and CSIC-UAM (Centro mixto Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid. Instituto de Ciencias de Materiales, Spain). The range of activities proposed in this project is to get the sufficient knowledge of preparation and behaviour of separation membranes to be able to procede to the desing and manufacture of an industrial filter. The project phases include; the ameiloration of ceramic support processing methods, the fluid dynamic evaluation, technology for membrane desing and manufacturing, the mounting (setting up) of an experimental installation for testing and evaluation. As a previous step a state of the art review about the following topics was made: high temperature inorganic membranes, technology separation mechanisms, gasifications process and its previous experience applications of membranes and determination of membranes specifications and characteristics of testing conditions. At the end a new inorganic ceramic membrane, with nanometric pore size and useful in several industrial processes (filtration, separation of contaminants, fuel enrichment, purification of gas mixtures

  13. A Mechanistic Study of Chemically Modified Inorganic Membranes for Gas and Liquid Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering

    2011-01-21

    This final report will summarize the progress made during the period August 1, 1993 - October 31, 2010 with support from DOE grant number DE-FG03-93ER14363. The objectives of the research have been to investigate the transport mechanisms in micro- and mesoporous, metal oxide membranes and to examine the relationship between the microstructure of the membrane, the membrane surface chemistry, and the separation performance of the membrane. Examples of the membrane materials under investigation are the microporous silica hollow fiber membrane manufactured by PPG Industries, chemically modified mesoporous oxide membranes, and polymer membranes containing microporous oxides (mixed matrix membranes). Analytical techniques such as NMR, FTIR and Raman spectroscopy, thermal analysis, and gas adsorption were used to investigate membrane microstructure and to probe the chemical interactions occurring at the gas-membrane interface.

  14. Carbon nanotubes-assisted polyacrylamide gel electrophoresis for enhanced separation of human serum proteins and application in liverish diagnosis.

    Science.gov (United States)

    Jiang, Fubin; Wang, Yanan; Hu, Xinfang; Shao, Na; Na, Na; Delanghe, Joris R; Ouyang, Jin

    2010-11-01

    The application of pore-gradient polyacrylamide gel electrophoresis (PG-PAGE) incorporated with carbon nanotube modified by Triton X-100 and carboxylation so as to improve the separation of human serum proteins is reported. The novel PG-PAGE was made by adding water-soluble single-walled carbon nanotubes (CNTs) when preparing the polyacrylamide gel. Significant improvements in separation of complement C3 protein and haptoglobin (Hp) in human serum were achieved. It was estimated that the interactions between the hydrophilic groups on the proteins and the surface of the CNTs result in different adsorption kinetics of complement C3 and Hp subtype on the nanoparticles incorporated in the gel, thus enhancing the separation of the two proteins in serum. This new CNT matrix-assisted PG-PAGE method for enhanced separation of complement C3 and Hp in human serum was successfully applied to distinguish the samples from liverish patients and healthy people.

  15. Nuclide separation modeling through reverse osmosis membranes in radioactive liquid waste

    OpenAIRE

    Lee, Byung-Sik

    2015-01-01

    The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst–Plank equation, which handles the convective flux, diffusive flux, and electromigration f...

  16. [Computer modeling the dependences of the membrane potential for polymeric membrane separated non-homogeneous electrolyte solutions on concentration Rayleigh number].

    Science.gov (United States)

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Bilewicz-Wyrozumska, Teresa; Slezak, Andrzej

    2006-01-01

    On the basis of model equation describing the membrane potential delta psi(s) on concentration Rayleigh number (R(C)), mechanical pressure difference (deltaP), concentration polarization coefficient (zeta s) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics delta psi(s) = f(Rc)(delta P, zeta s, Ch/Cl) for steady values of zeta s, R(C) and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and Zeta(s).

  17. Substituted polynorbornenes as promising materials for gas separation membranes

    International Nuclear Information System (INIS)

    Finkelshtein, Evgenii Sh; Bermeshev, Maksim V; Gringolts, Mariya L; Starannikova, L E; Yampolskii, Yu P

    2011-01-01

    Published results concerning the synthesis and study of the transport characteristics of polynorbornenes are considered and analyzed. Conclusions are drawn regarding the effect of the backbone rigidity and the nature of side groups on the gas permeability level. The prospects of using addition organosilicon polynorbornenes as gas separating membrane materials are discussed.

  18. Carbon Molecular Sieve Membranes Derived from Tröger's Base-Based Microporous Polyimide for Gas Separation.

    Science.gov (United States)

    Wang, Zhenggong; Ren, Huiting; Zhang, Shenxiang; Zhang, Feng; Jin, Jian

    2018-03-09

    Carbon molecular sieve (CMS)-based membranes have attracted great attention because of their outstanding gas-separation performance. The polymer precursor is a key point for the preparation of high-performance CMS membranes. In this work, a microporous polyimide precursor containing a Tröger's base unit was used for the first time to prepare CMS membranes. By optimizing the pyrolysis procedure and the soaking temperature, three TB-CMS membranes were obtained. Gas-permeation tests revealed that the comprehensive gas-separation performance of the TB-CMS membranes was greatly enhanced relative to that of most state-of-the-art CMS membranes derived from polyimides reported so far. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Preparation of Novel Thin-Film Composite Nanofiltration Membranes for Separation of Amoxicillin

    Directory of Open Access Journals (Sweden)

    A. Akbari

    2014-04-01

    Full Text Available Several novel composite membranes were prepared to separate and recycle amoxicillin from pharmaceutical wastewater via nanofiltration process. The synthesis of these membranes included three stages: 1- preparation of polysulfone ultrafiltration membranes as a support via phase separation process, 2- modification of its surface by interfacial polymerization as a selective layer (polyamide, and 3- self-assembly of TiO2 nanoparticles on the selective layer as an anti-fouling agent. The rejection of all nanofiltration membranes was more than 99% and only its flux was changed proportional to different conditions. In the presence and absence of TiO2 nanoparticles, the pure water flux of polyamide thin-film membrane also obtained 44.4 and 38.4 L/h.m2 at 4 bar pressure, respectively. These were equal to 34 L/h.m2 for amoxicillin solutions. The results showed that TiO2 nanoparticles increased hydrophilicity of polyamide selective layer and therefore, nanoparticles decreased the fouling level. SEM images illustrated the excellent establishment of polyamide layer and distribution of TiO2 nanoparticles on the selective layer. The properties of membrane surface were taken into consideration by using AFM, indicating the increment of surface roughness with interfacial polymerization and TiO2 nanoparticles self-assembly. The pore size of membranes was in the nanoscale (2.653 and 2.604 nm without and with TiO2 nanoparticles self-assembly, respectively

  20. Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO 2 separation

    KAUST Repository

    Wu, Yingzhen

    2018-06-01

    Water-swollen hydrogel membranes are good candidates for CO2 separations due to the favorable solubility of CO2 in water. However, the excessive amount of water often causes the poor mechanical property and low selectivity. Herein, we propose a bioadhesion-inspired method to construct robust and high-performance CO2 separation membranes via in situ generation of polydopamine (PDA) nanoaggregates within poly (vinyl alcohol) (PVA) matrix. PDA nanoaggregates entangled with PVA chains and formed hydrogen bonding with hydroxyl groups from PVA chains. Physical cross-linking occurred between PVA chains and PDA nanoaggregates. Compared with the PVA membrane, the PVA-PDA hybrid membrane with the dopamine content of 0.5mol% exhibited a 1.7-fold increase in tensile strength and a 2.2-fold increase in the tensile modulus. The membranes were used for CO2/CH4 separation. The physical cross-linking resulted in a PVA chain rigidification region around PDA nanoaggregates, which hindered the penetration of larger-size gas molecules and thus enhancing the CO2/CH4 selectivity. Moreover, the abundant amine groups from PDA nanoaggregates could facilitate CO2 transport. The optimized hybrid hydrogel membrane exhibited CO2/CH4 selectivity of 43.2, which was 43.85% higher than that of the PVA membrane. The bioadhesion-inspired method opens up new opportunities to exploit the potential application of hydrogel membranes.

  1. Thin film composite membranes of glossy polymers for gas separation : preparation and characterization

    NARCIS (Netherlands)

    Ebert, Katrin

    1995-01-01

    The application of polymeric composite membranes can be very interesting in the field of gas separation. The two main parameters which determine the applicability of membranes are the selectivity and the permeability. Good selectivities can be achieved by developing proper materials, high permeation

  2. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    Directory of Open Access Journals (Sweden)

    Edson V. Perez

    2016-09-01

    Full Text Available Gas separation for industrial, energy, and environmental applications requires low energy consumption and small footprint technology to minimize operating and capital costs for the processing of large volumes of gases. Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands. The key component, the membrane, must then be engineered to allow for high gas flux, high selectivity, and chemical and mechanical stability at the operating conditions of feed composition, pressure, and temperature. Among the new type of membranes studied that show promising results are the inorganic-based and the metal-organic framework-based mixed-matrix membranes (MOF-MMMs. A MOF is a unique material that offers the possibility of tuning the porosity of a membrane by introducing diffusional channels and forming a compatible interface with the polymer. This review details the origins of these membranes and their evolution since the first inorganic/polymer and MOF/polymer MMMs were reported in the open literature. The most significant advancements made in terms of materials, properties, and testing conditions are described in a chronological fashion.

  3. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation

    KAUST Repository

    Ning, Xue; Koros, William J.

    2014-01-01

    A commercial polyimide, Matrimid® 5218, was pyrolyzed under an inert argon atmosphere to produce carbon molecular sieve (CMS) dense film membranes for nitrogen/methane separation. The resulting CMS dense film separation performance was evaluated

  4. Selective separation of oil and water with mesh membranes by capillarity

    KAUST Repository

    Yu, Yuanlie; Chen, Hua; Liu, Yun; Craig, Vincent S.J.; Lai, Zhiping

    2016-01-01

    The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. © 2016 Elsevier B.V.

  5. Selective separation of oil and water with mesh membranes by capillarity

    KAUST Repository

    Yu, Yuanlie

    2016-05-29

    The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. © 2016 Elsevier B.V.

  6. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF Membranes

    Directory of Open Access Journals (Sweden)

    Kanji Matsumoto

    2013-06-01

    Full Text Available Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model.

  7. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes

    Science.gov (United States)

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-01-01

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621

  8. Role of functional nanoparticles to enhance the polymeric membrane performance for mixture gas separation

    NARCIS (Netherlands)

    Ingole, Pravin G.; Baig, Muhammad Irshad; Choi, Wook; An, Xinghai; Choi, Won Kil; Lee, Hyung Keun

    2017-01-01

    To improve the water vapor/gas separation the hydroxylated TiO2(OH-TiO2) nanopartilces have been synthesized and surface of polysulfone (PSf) hollow fiber membrane (HFM) has been coated as thin film nanocomposite (TFN) membranes. To remove the water vapor from mixture gas, hollow fiber membrane has

  9. Ionic Liquid Membranes for Carbon Dioxide-Methane Separation

    Czech Academy of Sciences Publication Activity Database

    Uchytil, Petr; Schauer, Jan; Petričkovič, Roman; Setničková, Kateřina; Suen, S.Y.

    2011-01-01

    Roč. 383, 1-2 (2011), s. 262-271 ISSN 0376-7388 R&D Projects: GA ČR GA104/09/1165; GA ČR GCP106/10/J038; GA MŠk ME 889 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40500505 Keywords : ionic liquid membrane * gas separation * gas transport Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.850, year: 2011

  10. Study of a dense metal membrane reactor for hydrogen separation from hydroiodic acid decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, Silvano; Borelli, Rodolfo; Borgognoni, Fabio [ENEA, Dipartimento FPN, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Favuzza, Paolo; Tarquini, Pietro [ENEA, Dipartimento TER, C.R. ENEA Casaccia, Via Anguillarese 301, Roma (Italy); Rizzello, Claudio [Tesi Sas, Via Bolzano 28, Roma (Italy)

    2008-10-15

    A membrane reactor has been studied for separating the hydrogen produced by the dissociation of hydroiodic acid in the thermochemical-sulfur iodine process. A dense metal membrane tube of wall thickness 0.250 mm has been considered in this analysis for hosting a fixed-bed catalyst: the selective separation of hydrogen from an azeotropic H{sub 2}O-HI mixture has been studied in the temperature range of 700-800 K. The materials being considered for the construction of the membrane tube are niobium and tantalum; as a matter of fact, the most commonly used Pd-Ag membranes cannot withstand the corrosive environment generated by the hydroiodic acid. The Damkohler-Peclet analysis has been used for designing the membrane reactor, while a finite element method has simulated its behaviour: the effect of the temperature and pressure on the HI conversion and hydrogen yield has been evaluated. (author)

  11. Separation of CO{sub 2}/N{sub 2} by means of a carbon membrane

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Y.; Braun, G. [Cologne University of Applied Sciences, Cologne (Germany); Kaltenborn, N.; Voigt, I. [Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Hermsdorf (Germany); Brunner, G. [Hamburg University of Technology (TUHH), Hamburg (Germany)

    2012-03-15

    The permeation and separation performance of an ultramicroporous carbon membrane for separation of CO{sub 2}/N{sub 2} mixtures were investigated. The experiments were conducted using the steady-state measurement method with pure gases (dead-end mode) and a CO{sub 2}/N{sub 2} gas mixture (20/80 mol.-%) (cross-flow mode) in the temperature range from 293 K to 363 K and at feed pressures of up to 1.4 MPa and atmospheric pressure on the permeate side. The membrane exhibited a selectivity of about 25 and permeability of about 500 Barrer for CO{sub 2} in the mixture with N{sub 2}. The single-gas measurements do not reflect the membrane performance correctly. An adsorption-selective effect is assumed to be the main separation mechanism. Moreover, membrane-aging effects causing blocking due to pore constrictions through adsorption were observed. These pore constrictions lower the permeability, but they raise the selectivity. Operation at high temperatures leads to a reduction of aging effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation.

    Science.gov (United States)

    Reinehr, Christian Oliveira; Treichel, Helen; Tres, Marcus Vinicius; Steffens, Juliana; Brião, Vandré Barbosa; Colla, Luciane Maria

    2017-06-01

    In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m 2 h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

  13. Membrane Materials and Technology for Xylene Isomers Separation and Isomerization via Pervaporation

    KAUST Repository

    Bilaus, Rakan

    2014-11-01

    P-xylene is one of the highly influential commodities in the petrochemical industry. It is used to make 90% of the world’s third largest plastic production, polyethylene terephthalate (PET). With a continuously increasing demand, the current technology’s high energy intensity has become a growing concern. Membrane separation technology is a potential low-energy alternative. Polymeric membranes were investigated in a pervaporation experiment to separate xylene isomers. Polymers of intrinsic microporosity (PIMs) as well as polyimides (PIM-PI), including thermally cross-linked PIM-1, PIM-6FDA-OH and thermally-rearranged PIM-6FDA-OH were investigated as potential candidates. Although they exhibited extremely high permeability to xylenes, selectivity towards p-xylene was poor. This was attributed to the polymers low chemical resistance which was apparent in their strong tendency to swell in xylenes. Consequently, a perfluoro-polymer, Teflon AF 2400, with a high chemical resistance was tested, which resulted in a slightly improved selectivity. A super acid sulfonated perfluoro-polymer (Nafion-H) was used as reactive membrane for xylenes isomerization. The membrane exhibited high catalytic activity, resulting in 19.5% p-xylene yield at 75ᵒC compared to 20% p-xylene yield at 450ᵒC in commercial fixed bed reactors. Nafion-H membrane outperforms the commercial technology with significant energy savings.

  14. Carbon Nano tubes Based Mixed Matrix Membrane for Gas Separation

    International Nuclear Information System (INIS)

    Sanip, S.M.; Ismail, A.F.; Goh, P.S.; Norrdin, M.N.A.; Soga, T.; Tanemura, M.; Yasuhiko, H.

    2011-01-01

    Carbon nano tubes based mixed matrix membrane (MMM) was prepared by the solution casting method in which the functionalized multi walled carbon nano tubes (f-MWNTs) were embedded into the polyimide membrane and the resulting membranes were characterized. The effect of nominal MWNTs content between 0.5 and 1.0 wt % on the gas separation properties were looked into. The morphologies of the MMM also indicated that at 0.7 % loading of f- MWNTs, the structures of the MMM showed uniform finger-like structures which have facilitated the fast gas transport through the polymer matrix. It may also be concluded that addition of open ended and shortened MWNTs to the polymer matrix can improve its permeability by increasing diffusivity through the MWNTs smooth cavity. (author)

  15. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  16. Membrane-based, sedimentation-assisted plasma separator for point-of-care applications.

    Science.gov (United States)

    Liu, Changchun; Mauk, Michael; Gross, Robert; Bushman, Frederic D; Edelstein, Paul H; Collman, Ronald G; Bau, Haim H

    2013-11-05

    Often, high-sensitivity, point-of-care (POC) clinical tests, such as HIV viral load, require large volumes of plasma. Although centrifuges are ubiquitously used in clinical laboratories to separate plasma from whole blood, centrifugation is generally inappropriate for on-site testing. Suitable alternatives are not readily available to separate the relatively large volumes of plasma from milliliters of blood that may be needed to meet stringent limit-of-detection specifications for low-abundance target molecules. We report on a simple-to-use, low-cost, pump-free, membrane-based, sedimentation-assisted plasma separator capable of separating a relatively large volume of plasma from undiluted whole blood within minutes. This plasma separator consists of an asymmetric, porous, polysulfone membrane housed in a disposable chamber. The separation process takes advantage of both gravitational sedimentation of blood cells and size exclusion-based filtration. The plasma separator demonstrated a "blood in-plasma out" capability, consistently extracting 275 ± 33.5 μL of plasma from 1.8 mL of undiluted whole blood within less than 7 min. The device was used to separate plasma laden with HIV viruses from HIV virus-spiked whole blood with recovery efficiencies of 95.5% ± 3.5%, 88.0% ± 9.5%, and 81.5% ± 12.1% for viral loads of 35,000, 3500, and 350 copies/mL, respectively. The separation process is self-terminating to prevent excessive hemolysis. The HIV-laden plasma was then injected into our custom-made microfluidic chip for nucleic acid testing and was successfully subjected to reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP), demonstrating that the plasma is sufficiently pure to support high-efficiency nucleic acid amplification.

  17. Development of Hydrogen Separation Module with Structured Catalyst for Use in Membrane Reformer

    International Nuclear Information System (INIS)

    Isamu Yasuda; Tatsuya Tsuneki; Yoshinori Shirasaki; Toru Shimamori; Hidekazu Shigaki; Hiroyuki Tanaka

    2006-01-01

    A new type of hydrogen separation module for use in a membrane reformer was proposed and developed. The new module, what we call MOC (Membrane On Catalyst), was designed to have a membrane of palladium-based alloy prepared on the surface of the tubular structured catalyst that has catalytic activity for steam reforming reaction, thermal expansion matching with the membrane material, proper porosity, mechanical strength and thermal conductivity. The best composition of the structured catalyst was identified in the composites of metallic Ni and YSZ (Yttria-Stabilized Zirconia). A hydrogen separation module was manufactured by electroless plating of Pd with thickness of 7 to 15 microns on the surface of porous sintered tube of Ni-YSZ with an approximate size of 9 mm in diameter and 100 mm in length. The hydrogen permeability measurements have shown hydrogen flux of 25 to 35 cc/min at 550 to 600 C, which is higher than the permeability of the conventional modules using rolled Pd film. (authors)

  18. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation

    KAUST Repository

    Ning, Xue

    2014-01-01

    A commercial polyimide, Matrimid® 5218, was pyrolyzed under an inert argon atmosphere to produce carbon molecular sieve (CMS) dense film membranes for nitrogen/methane separation. The resulting CMS dense film separation performance was evaluated using both pure and mixed N2/CH4 permeation tests. The effects of final pyrolysis temperature on N 2/CH4 separation are reported. The separation performance of all CMS dense films significantly exceeds the polymer precursor dense film. The CMS dense film pyrolyzed at 800 C shows very attractive separation performance that surpasses the polymer membrane upper bound line, with N 2 permeability of 6.8 Barrers and N2/CH4 permselectivity of 7.7 from pure gas permeation, and N2 permeability of 5.2 Barrers and N2/CH4 permselectivity of 6.0 from mixed gas permeation. The temperature dependences of permeabilities, sorption coefficients, and diffusion coefficients of the membrane were studied, and the activation energy for permeation and diffusion, as well as the apparent heats of sorption are reported. The high permselectivity of this dense film is shown to arise from a significant entropic contribution in the diffusion selectivity. The study shows that the rigid \\'slit-shaped\\' CMS pore structure can enable a strong molecular sieving effect to effectively distinguish the size and shape difference between N2 and CH4. © 2013 Elsevier Ltd. All rights reserved.

  19. Preparation of a Facilitated Transport Membrane Composed of Carboxymethyl Chitosan and Polyethylenimine for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Jiang-Nan Shen

    2013-02-01

    Full Text Available The miscibility of carboxymethyl chitosan/polyethylenimine (CMCS/PEI blends was analyzed by FT-IR, TGA and SEM. Defect-free CMCS/PEI blend membranes were prepared with polysulfone (PSf ultrafiltration membranes as support layer for the separation of CO2/N2 mixtures. The results demonstrate that the CMCS/PEI blend is miscible, due to the hydrogen bonding interaction between the two targeted polymers. For the blended membrane without water, the permeability of CO2 gas is 3.6 × 10−7 cm3 cm−2 s−1 cmHg−1 and the corresponding separation factor for CO2 and N2 gas is about 33 at the pressure of 15.2 cmHg. Meanwhile, the blended membrane with water has the better permselectivity. The blended membrane containing water with PEI content of 30 wt% has the permeance of 6.3 × 10−4 cm3 cm−2 s−1 cmHg−1 for CO2 gas and a separation factor of 325 for CO2/N2 mixtures at the same feed pressure. This indicates that the CO2 separation performance of the CMCS/PEI blend membrane is higher than that of other facilitated transport membranes reported for CO2/N2 mixture separation.

  20. Software for the simulation of gases separation instalations with zeolite membranes

    OpenAIRE

    Yoenia M. Martínez Díaz; Dr. Carlos R. González González; MSc. Osmar Leyet Fernández; Dr. Omar J. Ochoa Rodríguez

    2013-01-01

    The simulation of gases separation processes is a very important field of the scientific work; it affects directly the chemical technologies related to petroleum refining, petrochemical, fine chemistry, gaseous fuels (methane, synthetic gas and hydrogen) and biotechnology, among other economic activities. This paper, presents an important tool for the simulation of gas separation processes using zeolite membranes in several configurations. The tool is based on a mathematic...

  1. Performance of Carbon Nanotube/Polysulfone (CNT/Psf Composite Membranes during Oil–Water Mixture Separation: Effect of CNT Dispersion Method

    Directory of Open Access Journals (Sweden)

    Michael Olawale Daramola

    2017-03-01

    Full Text Available Effect of the dispersion method employed during the synthesis of carbon nanotube (CNT/polysulfone-infused composite membranes on the quality and separation performance of the membranes during oil–water mixture separation is demonstrated. Carbon nanotube/polysulfone composite membranes containing 5% CNT and pure polysulfone membrane (with 0% CNT were synthesized using phase inversion. Three CNT dispersion methods referred to as Method 1 (M1, Method 2 (M2, and Method 3 (M3 were used to disperse the CNTs. Morphology and surface property of the synthesized membranes were checked with scanning electron microscopy (SEM and Fourier-transform infrared (FTIR spectroscopy, respectively. Separation performance of the membranes was evaluated by applying the membrane to the separation of oil–water emulsion using a cross-flow filtration setup. The functional groups obtained from the FTIR spectra for the membranes and the CNTs included carboxylic acid groups (O–H and carbonyl group (C=O which are responsible for the hydrophilic properties of the membranes. The contact angles for the membranes obtained from Method 1, Method 2, and Method 3 were 76.6° ± 5.0°, 77.9° ± 1.3°, and 77.3° ± 4.5°, respectively, and 88.1° ± 2.1° was obtained for the pure polysulfone membrane. The oil rejection (OR for the synthesized composite membranes from Method 1, Method 2, and Method 3 were 48.71%, 65.86%, and 99.88%, respectively, indicating that Method 3 resulted in membrane of the best quality and separation performance.

  2. Evaluation of the permeability of microporous membranes polyamide 6 / clay bentonite for water-oil separation

    International Nuclear Information System (INIS)

    Medeiros, P.S.S.; Medeiros, K.M.; Araujo, E.M.; Lira, H.L.

    2014-01-01

    The petroleum refining industries have faced major problems in relation to the treatment of their effluents before disposal into the environment. Among the conventional technologies treatment of these effluents, the process of oil-water separation by means of membranes has been extensively used, for having enormous potentiality. Therefore, in this study, hybrid membranes of polyamide 6/ bentonite clay were produced by the technique of phase inversion and by precipitation of the solution from the nanocomposites obtained by melt intercalation. The clay was organically modified with the quaternary ammonium salt (Cetremide®). The nanocomposites were obtained from (PA6) with untreated (AST) and treated clay (ACT), which were subsequently characterized by X-ray diffraction (XRD). Already membranes were characterized by XRD, scanning electron microscopy (SEM) and flow measurements. From the XRD results, it was observed an exfoliated and/or partially exfoliated structure for the nanocomposites and for the membranes. From SEM images it was observed that the presence of AST and ACT clays in the polymeric matrix caused changes in membrane morphology and pore formation. The flow with distilled water in the membranes showed a decrease initially and then followed by stability. All membranes tested in the process of separating emulsions of oil in water, particularly those of nanocomposites obtained a significant reduction of oil concentration in the permeate, thus showing that these membranes have a great potential to be applied to the water-oil separation. (author)

  3. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Ricardo Couto

    2015-01-01

    Full Text Available In this work, a supported ionic liquid membrane (SILM was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA] ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2 and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73 for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids.

  4. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying

    2012-05-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  5. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations

    KAUST Repository

    Dai, Ying; Johnson, J.R.; Karvan, Oğuz; Sholl, David S.; Koros, W.J.

    2012-01-01

    Organic-inorganic hybrid (mixed matrix) membranes can potentially extend the separation performance of traditional polymeric materials while maintaining processing convenience. Although many dense films studies have been reported, there have been few reported cases of these materials being successfully extended to asymmetric hollow fibers. In this work we report the first successful production of mixed matrix asymmetric hollow fiber membranes containing metal-organic-framework (MOF) ZIF-8 fillers. Specifically, we have incorporated ZIF-8 into a polyetherimide (Ultem ® 1000) matrix and produced dual-layer asymmetric hollow fiber membranes via the dry jet-wet quench method. The outer separating layer of these composite fibers contains 13wt% (17vol%) of ZIF-8 filler. These membranes have been tested over a range of temperatures and pressures for a variety of gas pairs. An increase in separation performance for the CO 2/N 2 gas pairs was observed for both pure gas and mixed gas feeds. © 2012 Elsevier B.V.

  6. Incomplete separation of radioiodinated thyroid hormones in serum using specific antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Perrild, H; Skovsted, L; Korsgaard Christensen, L [Department of Internal Medicine and Endocrinology, Herlev Hospital, DK-2730 Herlev, Denmark

    1980-01-01

    Alkaline Sephadex G-25 columns were used to separate labelled 3,5,3',5'-thyroxine, 3,5,3'-triiodothyronine, 3,3',5'-triiodothyronine and 3,3'-diiodothyronine from the serum binding proteins followed by a quantitative elution of each hormone by coupling to its respective antibody. It is shown that although these antibodies (diluted 1:1500-1:100 000) in our radioimmunoassays are highly specific they show a high degree of non-specific binding when they are used in the concentrations necessary to get a maximal recovery of the hormones in column separating experiments.

  7. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    Science.gov (United States)

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-02-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

  8. An Underwater Superoleophobic Sepiolite Fibrous Membrane (SFM) for Oil­‐in­‐water Emulsion Separation

    KAUST Repository

    Yao, Pinjiang

    2014-12-01

    Separating oil/water emulsions is significant for the ecosystem and the petroleum and processing industry. To this end, we prepared an underwater superoleophobic membrane inspired by unique wettability of the fish scales. This membrane was fabricated by a facile vacuum filtration process of sepiolite nanofibers and chitosan, and after the cross-linking via glutaraldehyde, a self-standing membrane was obtained. The as-prepared membrane exhibited excellent capability of separating both the surfactant-free and surfactant-stabilized oil-in-water emulsions with high efficiency. This sepiolite fibrous membrane offers a convenient, reliable and efficient way for the large-scale de-emulsification process.

  9. Gamma radiation grafting process for preparing separator membranes for electrochemical cells

    International Nuclear Information System (INIS)

    Agostino, V.F. D'; Lee, J.Y.

    1982-01-01

    An irradiation grafting process for preparing separator membranes for use in electrochemical cells, comprises contacting a polymeric base film with an aqueous solution of a hydrophilic monomer and a polymerization retardant; and irradiating said contacted film to form a graft membrane having low electrical resistivity and having monomer molecules uniformly grafted thereon. In the examples (meth) acrylic acid is grafted on to polyethylene, polypropylene and polytetrafluoroethylene in the presence of ferrous sulphate or cupric sulphate as polymerization retardants. (author)

  10. Progress on Incorporating Zeolites in Matrimid®5218 Mixed Matrix Membranes towards Gas Separation

    Directory of Open Access Journals (Sweden)

    Roberto Castro-Muñoz

    2018-06-01

    Full Text Available Membranes, as perm-selective barriers, have been widely applied for gas separation applications. Since some time ago, pure polymers have been used mainly for the preparation of membranes, considering different kinds of polymers for such preparation. At this point, polyimides (e.g., Matrimid®5218 are probably one of the most considered polymers for this purpose. However, the limitation on the performance relationship of polymeric membranes has promoted their enhancement through the incorporation of different inorganic materials (e.g., zeolites into their matrix. Therefore, the aim of this work is to provide an overview about the progress of zeolite embedding in Matrimid®5218, aiming at the preparation of mixed matrix membranes for gas separation. Particular attention is paid to the relevant experimental results and current findings. Finally, we describe the prospects and future trends in the field.

  11. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren; Zhang, Chen; Rungta, Meha; Qiu, Wulin; Liu, Junqiang; Koros, William J.

    2014-01-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family

  12. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  13. Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation

    Science.gov (United States)

    Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica

    2015-12-22

    Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.

  14. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes

    KAUST Repository

    Pan, Yichang; Li, Tao; Lestari, Gabriella; Lai, Zhiping

    2012-01-01

    The separation of propylene/propane mixtures is one of the most important but challenging processes in the petrochemical industry. A novel zeolitic imidazole framework (ZIF-8) membrane prepared by a facile hydrothermal seeded growth method showed

  15. The development of zirconia membrane oxygen separation technology

    International Nuclear Information System (INIS)

    Chiacchi, F.T.; Badwal, S.P.S.; Velizko, V.

    2000-01-01

    The oxygen separation technology based on ceramic membranes constructed from stabilised zirconia is currently under development for applications ranging from oxygen generation or air enrichment for medical use to control of oxygen concentration or oxygen removal from gas streams and enclosures for semiconductor, food packaging and process control instrumentation industries. The technology is based on a rugged tubular design with extensive thermal cycling capability. Several single and three tube devices have been operated for periods up to 5000h. An eight tube module, as a building block for larger scale oxygen production or removal devices, has been constructed and is being evaluated. In this paper, the construction of the device, oxygen generating capacity, life time tests and performance of the ceramic membrane device under development at CSIRO will be discussed. Copyright (2000) The Australian Ceramic Society

  16. Calculation of separation selectivity of aqueous electrolytic solutions with reverse osmosis membranes

    International Nuclear Information System (INIS)

    Ognevskij, A.V.; Fomichev, S.V.; Khvostov, V.F.; Kochergin, N.V.; AN SSSR, Moscow

    1988-01-01

    Viscosity and dielectric permittivity of a bound water layer in micropores of cellulose acetate membranes used for electrolyte ion separation by reverse osmosis method are calculated using the water cluster model and the proposed structural temperature parameter. Based on the model representations presented an algorithmof reverse osmosis membrane selectivity calculation in diluted aqueous solutions ofelectrolytes containing Cs + , Sr 2+ , I - and other ions is constructed

  17. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.

    Science.gov (United States)

    Tremblay-Marchand, D; Doyen, A; Britten, M; Pouliot, Y

    2016-07-01

    Microfiltration (MF) is a well-known process that can be used in the dairy industry to separate caseins from serum proteins (SP) in skim milk using membranes with a pore diameter of 0.1μm. Graded permeability ceramic membranes have been studied widely as means of improving milk fractionation by overcoming problems encountered with other MF membranes. The ideal operating parameters for process efficiency in terms of membrane selectivity, permeate flux, casein loss, SP transmission, energy consumption, and dilution with water remain to be determined for this membrane. Our objective was to evaluate the effects of transmembrane pressure (TMP), volumetric concentration factor (VCF), and diafiltration on overall process efficiency. Skim milk was processed using a pilot-scale MF system equipped with 0.72-m(2) graded permeability membranes with a pore size of 0.1μm. In the first experiment, in full recycle mode, TMP was set at 124, 152, 179, or 207 kPa by adjusting the permeate pressure at the outlet. Whereas TMP had no significant effect on permeate and retentate composition, 152 kPa was found to be optimal for SP removal during concentration and concentration or diafiltration experiments. When VCF was increased to 3×, SP rejection coefficient increased along with energy consumption and total casein loss, whereas SP removal rate decreased. Diafiltering twice allowed an increase in total SP removal but resulted in a substantial increase in energy consumption and casein loss. It also reduced the SP removal rate by diluting permeate. The membrane surface area required for producing cheese milk by blending whole milk, cream, and MF retentate (at different VCF) was estimated for different cheese milk casein concentrations. For a given casein concentration, the same quantity of permeate and SP would be produced, but less membrane surface area would be needed at a lower retentate VCF. Microfiltration has great potential as a process of adding value to conventional

  18. Fabrication and Characterization of Polyimide-CNTs hybrid membrane to enhance high performance CO2 separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2015-03-01

    Full Text Available This study investigates the CO2 separation performance of a hybrid membranes flat sheet based on polyimide incorporated with carbon nanotubes (CNTs particles. CNTs was selected and its loading were a 1 wt% in total solid. The hybrid composite membranes were fabricated in order to increase their separation performance for the gaseous mixture of CO2 and CH4. Hybrid Composite  membrane incorporated carbon nanotubes were mannufactured  by the dry-wet phase inversion technique using flat sheet membrane casting machine system,  in which the CNTs were embedded into the polyimide membrane and the resulting membranes were characterized. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The results revealed that the good multi-wall carbon nanotubes dispersion leads to enhanced gas permeation properties. It is also concluded that addition of carbon nanotubes particles into the matrix of Polyimide polymer has significant effect on the membrane structure and properties.

  19. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2).

    Science.gov (United States)

    Chew, Thiam-Leng; Ahmad, Abdul L; Bhatia, Subhash

    2010-01-15

    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian; Koros, William J.; Johnson, J.R.; Karvan, Oguz

    2013-01-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  1. Dense film polyimide membranes for aggressive sour gas feed separations

    KAUST Repository

    Kraftschik, Brian

    2013-02-01

    Dense film membranes of the copolyimide 6FDA-DAM:DABA (3:2) are studied for simultaneous removal of CO2 and H2S from sour natural gas streams. Pure and mixed gas permeation as well as pure gas sorption data are reported at 35°C and pressures up to 62bar. The H2S partial pressures used are representative of highly aggressive field operations. Penetrant-induced plasticization effects are evident at feed pressures below 1bar in pure H2S feeds; sub-Tg thermal annealing is used to effectively mitigate this effect, and these annealed films are used throughout the study. Surprisingly, H2S/CH4 selectivity nearly doubles for mixed gas testing in comparison to the pure component ideal selectivity values and approaches the level of a state-of-the-art glassy polymer, cellulose acetate (CA), at H2S partial pressures above 2bar. Furthermore, permeation experiments using a 9.95% H2S, 19.9% CO2, 70.15% CH4 mixture at low feed pressures give CO2/CH4 selectivity of up to 49-over 30% greater than the pure component selectivity for 6FDA-DAM:DABA (3:2). The overall sour gas separation performance of this polyimide is comparable to high-performance rubbery polymer membranes, which have been reported for only moderate H2S partial pressure feeds, and is superior to that for CA based on a practical combined acid gas separation efficiency metric that we introduce. Finally, methods for continued development of the current polyimide membrane material for aggressive sour gas separations are presented. © 2012 Elsevier B.V.

  2. Tuning of Preparational Factors Affecting the Morphological Structure and Gas Separation Property of Asymmetric Polysulfone Membranes

    Science.gov (United States)

    Yuenyao, C.; Ruangdit, S.; Chittrakarn, T.

    2017-09-01

    The aim of this work was to study the effect of preparational factors such as solvent type, evaporation time (ET) and non-solvent additive, on the morphological structure, physical and gas separation properties of the prepared membrane samples by tuning of these parameters. Flat sheet asymmetric polysulfone (PSF) membranes were prepared by the dry/wet phase inversion process combined with the double coagulation bath method. The alteration of the prepared membranes were analyzed through scientific techniques such as Scanning Electron Microscope (SEM) and Dynamic Mechanical Thermal Analysis (DMTA). Furthermore, gas separation performance of membrane samples was measured in term of gas permeation and ideal selectivity of CO2/CH4. Experimental results showed that the change of preparational factors affected to the gas permeation of asymmetric PSF membranes. For example, the selective layer thickness increased with increasing of ET. This lead to increase significantly of ideal selectivity of CO2/CH4. The CO2/CH4 ideal selectivity was also increased with increase of ethanol (non-solvent additive) concentration in casting solution. In summary, the tuning of preparational factors affected to morphological structure, physical and gas separation properties of PSF membranes.

  3. Novel ceramic-polymer composite membranes for the separation of liquid waste. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    Cohen, Y.

    1997-01-01

    'The project on ceramic-supported polymer membranes focuses on the development of a novel class of membranes for the separation of organics from both organic-aqueous and organic-organic mixtures, Theses membranes are fabricated by a graft polymerization process where polymer chains are grown onto the surface of a ceramic support membrane. The surface graft polymerization process, developed at UCLA, results in the formation of a thin polymer layer covalently bonded to the membrane pore surface as a layer of terminally anchored polymeric chains. Through the selection of the polymer most appropriate for the desired separation task, the graft polymerized surface layer can be synthesized to impart specific separation properties to the membrane. It is expected that this project will lead to the demonstration of a new technology for the tailor design of a new class of selective and robust ceramic-supported polymer membranes. This new approach will allow the rapid deployment of task-specific membranes for the separation of waste constituents for subsequent recovery, treatment or disposal. Progress to date includes the preparation of successful silica-polyvinylpyrrolidone (PVP) membrane for the treatment of oil-in-water emulsions and a silica-polyvinylacetate (PVAc) pervaporation membrane for the separation of organics from water. Current work is ongoing to study the performance of the pervaporation membrane for the removal of chlorinated organics from water and to develop a pervaporation membrane for organic-organic separation. In another aspect of the study, the authors are studying the hydrophilic PVP CSP membrane for oil-in-water emulsion treatment with the goal of determining the optimal membrane polymer surface structure as a function of various operating conditions (e.g., tube-side Reynolds number and transmembrane pressure), Work is also in progress to characterize the polymer layer by AFM and internal reflection FTIR, and to model the conformation of the polymer

  4. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes

    Science.gov (United States)

    Idris, Alamin; Man, Zakaria; Maulud, Abdulhalim S.; Khan, Muhammad Saad

    2017-01-01

    The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications. PMID:28379173

  5. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes

    Directory of Open Access Journals (Sweden)

    Alamin Idris

    2017-04-01

    Full Text Available The phase separation behavior of bisphenol-A-polycarbonate (PC, dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications.

  6. Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. I. Membrane separation from the cytoskeleton

    DEFF Research Database (Denmark)

    Evans, Evan; Heinrich, Volkmar; Leung, Andrew

    2005-01-01

    to final detachment, the typical force history exhibited the following sequence of events: i), an initial linear-elastic displacement of the PMN surface, ii), an abrupt crossover to viscoplastic flow that signaled membrane separation from the interior cytoskeleton and the beginning of a membrane tether......, and iii), the final detachment from the probe tip by usually one precipitous step of P-selectin:PSGL-1 dissociation. In this first article I, we focus on the initial elastic response and its termination by membrane separation from the cytoskeleton, initiating tether formation. Quantifying membrane...

  7. PALLADIUM/COPPER ALLOY COMPOSITE MEMBRANES FOR HIGH TEMPERATURE HYDROGEN SEPARATION FROM COAL-DERIVED GAS STREAMS; F

    International Nuclear Information System (INIS)

    J. Douglas Way; Robert L. McCormick

    2001-01-01

    Recent advances have shown that Pd-Cu composite membranes are not susceptible to the mechanical, embrittlement, and poisoning problems that have prevented widespread industrial use of Pd for high temperature H(sub 2) separation. These membranes consist of a thin ((approx)10(micro)m) film of metal deposited on the inner surface of a porous metal or ceramic tube. Based on preliminary results, thin Pd(sub 60)Cu(sub 40) films are expected to exhibit hydrogen flux up to ten times larger than commercial polymer membranes for H(sub 2) separation, and resist poisoning by H(sub 2)S and other sulfur compounds typical of coal gas. Similar Pd-membranes have been operated at temperatures as high as 750 C. The overall objective of the proposed project is to demonstrate the feasibility of using sequential electroless plating to fabricate Pd(sub 60)Cu(sub 40) alloy membranes on porous supports for H(sub 2) separation. These following advantages of these membranes for processing of coal-derived gas will be demonstrated: High H(sub 2) flux; Sulfur tolerant, even at very high total sulfur levels (1000 ppm); Operation at temperatures well above 500 C; and Resistance to embrittlement and degradation by thermal cycling. The proposed research plan is designed to providing a fundamental understanding of: Factors important in membrane fabrication; Optimization of membrane structure and composition; Effect of temperature, pressure, and gas composition on H(sub 2) flux and membrane selectivity; and How this membrane technology can be integrated in coal gasification-fuel cell systems

  8. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.

    Science.gov (United States)

    Bouša, Daniel; Friess, Karel; Pilnáček, Kryštof; Vopička, Ondřej; Lanč, Marek; Fónod, Kristián; Pumera, Martin; Sedmidubský, David; Luxa, Jan; Sofer, Zdeněk

    2017-08-22

    The preparation and gas-separation performance of self-standing, high-flux, graphene oxide (GO) membranes is reported. Defect-free, 15-20 μm thick, mechanically stable, unsupported GO membranes exhibited outstanding gas-separation performance towards H 2 /CO 2 that far exceeded the corresponding 2008 Robeson upper bound. Remarkable separation efficiency of GO membranes for H 2 and bulky C 3 or C 4 hydrocarbons was achieved with high flux and good selectivity at the same time. On the contrary, N 2 and CH 4 molecules, with larger kinetic diameter and simultaneously lower molecular weight, relative to that of CO 2 , remained far from the corresponding H 2 /N 2 or H 2 /CH 4 upper bounds. Pore size distribution analysis revealed that the most abundant pores in GO material were those with an effective pore diameter of 4 nm; therefore, gas transport is not exclusively governed by size sieving and/or Knudsen diffusion, but in the case of CO 2 was supplemented by specific interactions through 1) hydrogen bonding with carboxyl or hydroxyl functional groups and 2) the quadrupole moment. The self-standing GO membranes presented herein demonstrate a promising route towards the large-scale fabrication of high-flux, hydrogen-selective gas membranes intended for the separation of H 2 /CO 2 or H 2 /alkanes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M. (SRI); Greene, M.(Lummus)

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort

  10. NOVEL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION IN GASIFICATION PROCESSES IN VISION 21 ENERGY PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schwartz

    2004-12-01

    This report describes the work performed, accomplishments and conclusion obtained from the project entitled ''Novel Composite Membranes for Hydrogen Separation in Gasification Processes in Vision 21 Energy Plants'' under the United States Department of Energy Contract DE-FC26-01NT40973. ITN Energy Systems was the prime contractor. Team members included: the Idaho National Engineering and Environmental Laboratory; Nexant Consulting; Argonne National Laboratory and Praxair. The objective of the program was to develop a novel composite membrane structure for hydrogen separation as a key technology module within the future ''Vision 21'' fossil fuel plants. The separation technology module is targeted for use within the gasification module of the ''Vision 21'' fossil fuel plant. The high performance and low-cost manufacturing of the proposed technology will benefit the deployment of ''Vision 21'' fossil fuel plant processes by improving the energy efficiency, flexibility and environmental performance of these plants. Of particular importance is that this technology will also produce a stream of pure carbon dioxide. This allows facile sequestration or other use of this greenhouse gas. These features will benefit the U.S. in allowing for the continued use of domestic fossil fuels in a more energy efficient and environmentally acceptable manner. The program developed and evaluated composite membranes and catalysts for hydrogen separation. Components of the monolithic modules were fabricated by plasma spray processing. The engineering and economic characteristics of the proposed Ion Conducting Ceramic Membrane (ICCM) approach, including system integration issues, were also assessed. This resulted in a comprehensive evaluation of the technical and economic feasibility of integration schemes of ICCM hydrogen separation technology within Vision 21 fossil fuel plants. Several results and conclusion

  11. Detection of trace fluoride in serum and urine by online membrane-based distillation coupled with ion chromatography.

    Science.gov (United States)

    Lou, Chaoyan; Guo, Dandan; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2017-06-02

    An online membrane-based distillation (MBD) coupled with ion chromatography (IC) method was proposed for automatic detection of trace fluoride (F - ) in serum and urine samples. The system consisted of a sample vessel, a lab-made membrane module and an ion chromatograph. Hydrophobic polytetrafluoroethylene (PTFE) hollow fiber membrane was used in MBD which was directly performed in serum and urine samples to eliminate the matrix interferences and enrich fluoride, while enabling automation. The determination of fluoride in biological samples was carried out by IC with suppressed conductometric detection. The proposed method feasibly determined trace fluoride in serum and urine matrices with the optimized parameters, such as acid concentration, distillation temperature, and distillation time, etc. Fluoride exhibited satisfactory linearity in the range of 0.01-5.0mg/L with a correlation coefficient of 0.9992. The limit of detection (LOD, S/N=3) and limit of quantification (LOQ, S/N=10) were 0.78μg/L and 2.61μg/L, respectively. The relative standard deviations of peak area and peak height were all less than 5.15%. The developed method was validated for the determination of fluoride in serum and urine with good spiked recoveries ranging between 97.1-101.9%. This method also can be proposed as a suitable alternative for the analysis of fluoride in other complex biological samples. Copyright © 2017. Published by Elsevier B.V.

  12. R&D Opportunities for Membranes and Separation Technologies in Building Applications

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2017-10-01

    This report recommends innovative membrane and separation technologies that can assist the Building Technologies Office in achieving its 2030 goal. This report identifies research and development (R&D) initiatives across several building applications where further investigations could result in impactful savings.

  13. Reverse osmosis performance of cellulose acetate membranes in the separation of uranium from dilute solutions

    International Nuclear Information System (INIS)

    Sastri, V.S.; Ashbrook, A.W.

    1976-01-01

    Batch 316-type cellulose acetate membranes were characterized in terms of pure water permeability constant, solute transport parameter, and mass transfer coefficient with a reference system of aqueous sodium chloride solution. These membranes were used in the determination of reverse osmosis characteristics such as product rate and solute separation in the case of uranium sulfate solutions of different concentrations (100 to 8000 ppM) in the feed solutions. A long-term test extending over a week has been carried out with dilute uranium solutions. Reverse osmosis treatment of synthetic mine water sample showed satisfactory performance of the membranes in the separation of metal ions

  14. Data supporting the validation of a simulation model for multi-component gas separation in polymeric membranes.

    Science.gov (United States)

    Giordano, Lorena; Roizard, Denis; Bounaceur, Roda; Favre, Eric

    2016-12-01

    The article describes data concerning the separation performances of polymeric hollow-fiber membranes. The data were obtained using a model for simulating gas separation, described in the research article entitled "Interplay of inlet temperature and humidity on energy penalty for CO 2 post-combustion capture: rigorous analysis and simulation of a single stage gas permeation process" (L. Giordano, D. Roizard, R. Bounaceur, E. Favre, 2016) [1]. The data were used to validate the model by comparison with literature results. Considering a membrane system based on feed compression only, data from the model proposed and that from literature were compared with respect to the molar composition of permeate stream, the membrane area and specific energy requirement, varying the feed pressure and the CO 2 separation degree.

  15. Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Ming Tan

    2017-09-01

    Full Text Available Supported ionic liquid membranes (SILMs have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4] was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2 at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped.

  16. Application of reverse osmosis membrane for separation of toxic metal in water

    International Nuclear Information System (INIS)

    Syahril Ahmad

    2010-01-01

    Experimental separation of toxic metal in water has been done using reverse osmosis membrane made from composite material. Experiment was done by simulation in which metals that will be observed solved with water in different concentration and then used as feed solution in reverse osmosis process. Metals observed were Cr"6"+, Mn"2"+ and Pb"2"+ and reverse osmosis process was done at pressure of 40 Bar for all metals. Experiment result showed that value of feed solution concentration would affect flux and coefficient rejection of membrane. Composite membrane with polyacrylamide as active layer of membrane can reject metals observed with value of rejection coefficient more than 90%, except for Mn"2"+metal that have concentration 250 ppm and 500 ppm. (author)

  17. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations.

    Science.gov (United States)

    Bhut, Bharat V; Weaver, Justin; Carter, Andrew R; Wickramasinghe, S Ranil; Husson, Scott M

    2011-11-01

    This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps. Copyright © 2011 Wiley Periodicals, Inc.

  18. Polyimide hollow fiber membranes for CO2 separation from wet gas mixtures

    Directory of Open Access Journals (Sweden)

    F. Falbo

    2014-12-01

    Full Text Available Matrimid®5218 hollow fiber membranes were prepared using the dry-wet spinning process. The transport properties were measured with pure gases (H2, CO2, N2, CH4 and O2 and with a mixture (30% CO2 and 70% N2 in dry and wet conditions at 25 ºC, 50 ºC, 60 ºC and 75 ºC and up to 600 kPa. Interesting values of single gas selectivity up to 60 ºC (between 31 and 28 for CO2/N2 and between 33 and 30 for CO2/CH4 in dry condition were obtained. The separation factor measured for the mixture was 20% lower compared to the single gas selectivity, in the whole temperature range analyzed. In saturation conditions the data showed that water influences the performance of the membranes, inducing a reduction of the permeance of all gases. Moreover, the presence of water caused a decrease of single gas selectivity and separation factor, although not so significant, highlighting the very high water resistance of hollow fiber membrane modules.

  19. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    Dey, T.K.; Bindal, R.C.; Prabhakar, S.; Tewari, P.K.

    2010-01-01

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na 2 SO 4 , CaCl 2 and MgSO 4 ) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl 2 and low rejection for Na 2 SO 4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  20. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE REVERSE OSMOSIS MEMBRANES - PHASE II FINAL REPORT

    Science.gov (United States)

    Extensive experimental studies showed that thin-film, composite membranes can be used effectively for the separation of selected hazardous organic compounds. This waste treatment technique offers definite advantages in terms of high solute separations at low pressures (<2MPa) and...

  1. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    Science.gov (United States)

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  2. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-11-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation – that is, air enrichment, hydrogen recovery and natural gas sweetening. By virtue of rigid and contorted chains that pack inefficiently in the solid state, polymers of intrinsic microporosity (PIMs) have the potential to unite the solution-processability, mechanical flexibility and organic tunability of commercially relevant polymers with the microporosity characteristics of porous crystalline materials. The performance enhancements of PIMs over conventional low-free-volume polymers have been primarily permeability-driven, compromising the selectivity essential to commercial viability. An approach to unite high permeability with high selectivity for performance transcending the state-of-the-art in air and hydrogen separations was demonstrated via a fused-ring integration of a three-dimensional, shape persistent triptycene moiety optimally substituted with short, branched isopropyl chains at the 9,10-bridgeheads into a highly inflexible backbone. The resulting polymers exhibited selectivities (i.e., O2/N2, H2/N2, H2/CH4) similar to or higher than commercial materials matched with permeabilities up to three hundred times higher. However, the intra-chain rigidity central to such conventional PIM-design principles was not a singular solution to suppression of CO2-induced plasticization in CO2/CH4 mixedgas separations. Plasticization diminishes the sieving capacity of the membrane, resulting in costly hydrocarbon losses that have significantly limited the commercialization of new polymers. Unexpectedly, the most permeable and selective PIMs designed for air and hydrogen separations strongly plasticized in 50:50 CO2/CH4 mixtures, enduring up to three-fold increases in mixed-gas CH4 permeability by 30 bar and strong drops in

  3. Studies on as separation behaviour of polymer blending PI/PES hybrid mixed membrane: Effect of polymer concentration and zeolite loading

    Directory of Open Access Journals (Sweden)

    Ahmad Fauzi Ismail

    2014-04-01

    Full Text Available This study is performed primarily to investigate the effect of polymer concentration of polyimide/polyethersulfone (PI/PES blending on the gas separation performance of hybrid mixed matrix membrane. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The efefct of PI/PES concentrations and zeolite loading on the dope solution were investigated for gas separation performance. The results from the Field Emission Scanning Electron Microscopy (FESEM analysis confirmed that polymer concentration and zeolite loading was affected the morphology of membrane and gas separation performance. ‘Sieve-in-a-cage’ morphology observed the poor adhesion between polymer and zeolite at higher zeolite loading. The gas separation performance of the mixed matrix membranes were relatively higher compared to that of the neat polymeric membrane.

  4. Pervaporation Separation of Water-Ethanol Mixtures Using Organic-Inorganic Nanocomposite Membranes

    Science.gov (United States)

    Preyssler type heteropolyacid viz., H14[NaP5W30O110] incorporated chitosan nanocomposite membranes (NCMs) were prepared by solution casting, characterized using a variety of techniques and employed in the pervaporation separation of water-ethanol mixtures as a function of feed wa...

  5. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—II. Operation in presence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    This is the second communication of a series dealing with an experimental and modelling study on propane catalytic combustion in a membrane reactor with separate feed of reactants. In paper I the behaviour of the reactor in the absence of trans-membrane pressure gradients was presented and

  6. EXPERIMENTAL DESIGN AND RESPONSE SURFACE MODELING OF PI/PES-ZEOLITE 4A MIXED MATRIX MEMBRANE FOR CO2 SEPARATION

    Directory of Open Access Journals (Sweden)

    T. D. KUSWORO

    2015-09-01

    Full Text Available This paper investigates the effect of preparation of polyimide/polyethersulfone (PI/PES blending-zeolite mixed matrix membrane through the manipulation of membrane production variables such as polymer concentration, blending composition and zeolite loading. Combination of central composite design and response surface methodology were applied to determine the main effect and interaction effects of these variables on membrane separation performance. The quadratic models between each response and the independent parameters were developed and the response surface models were tested with analysis of variance (ANOVA. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The separation performance of mixed matrix membrane had been tested using pure gases such as CO2 and CH4. The results showed that zeolite loading was the most significant variable that influenced the CO2/CH4 selectivity among three variables and the experimental results were in good agreement with those predicted by the proposed regression models. The gas separation performance of the membrane was relatively higher as compare to polymeric membrane. Therefore, combination of central composite design and response surface methodology can be used to prepare optimal condition for mixed matrix membrane fabrication. The incorporation of 20 wt% zeolite 4A into 25 wt% of PI/PES matrix had resulted in a high separation performance of membrane material.

  7. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    Science.gov (United States)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity

  8. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  9. Continuous Hydrolysis and Liquid–Liquid Phase Separation of an Active Pharmaceutical Ingredient Intermediate Using a Miniscale Hydrophobic Membrane Separator

    DEFF Research Database (Denmark)

    Cervera Padrell, Albert Emili; Morthensen, Sofie Thage; Lewandowski, Daniel Jacob

    2012-01-01

    Continuous hydrolysis of an active pharmaceutical ingredient intermediate, and subsequent liquid–liquid (L-L) separation of the resulting organic and aqueous phases, have been achieved using a simple PTFE tube reactor connected to a miniscale hydrophobic membrane separator. An alkoxide product......, obtained in continuous mode by a Grignard reaction in THF, reacted with acidic water to produce partially miscible organic and aqueous phases containing Mg salts. Despite the partial THF–water miscibility, the two phases could be separated at total flow rates up to 40 mL/min at different flow ratios, using...

  10. Reactive molecular dynamic simulations on the gas separation performance of porous graphene membrane.

    Science.gov (United States)

    Esfandiarpoor, Somaye; Fazli, Mostafa; Ganji, Masoud Darvish

    2017-11-29

    The separation of gases molecules with similar diameter and shape is an important area of research. For example, the major challenge to set up sweeping carbon dioxide capture and storage (CCS) in power plants is the energy requisite to separate the CO 2 from flue gas. Porous graphene has been proposed as superior material for highly selective membranes for gas separation. Here we design some models of porous graphene with different sizes and shape as well as employ double layers porous graphene for efficient CO 2 /H 2 separation. The selectivity and permeability of gas molecules through various nanopores were investigated by using the reactive molecular dynamics simulation which considers the bond forming/breaking mechanism for all atoms. Furthermore, it uses a geometry-dependent charge calculation scheme that accounts appropriately for polarization effect which can play an important role in interacting systems. It was found that H-modified porous graphene membrane with pore diameter (short side) of about 3.75 Å has excellent selectivity for CO 2 /H 2 separation. The mechanism of gas penetration through the sub-nanometer pore was presented for the first time. The accuracy of MD simulation results validated by valuable DFT method. The present findings show that reactive MD simulation can propose an economical means of separating gases mixture.

  11. Effects of dope extrusion rate on the morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes for O2/N2 separation

    Directory of Open Access Journals (Sweden)

    Ahmad Fausi Ismail

    2002-11-01

    Full Text Available The objective of this study was to investigate the influence of dope extrusion rates on morphology and gas separation performance of asymmetric polysulfone hollow fiber membranes. Asymmetric polysulfone hollow fiber membranes for gas separation were prepared from a solution consisting of 26.0 wt. % of polysulfone, 30.4 wt. % of N, N-dimethylacetamide, 30.4 wt. % of tetrahydrofuran and 13.2 wt. % ethanol. The dry/wet phase separation process was applied to a dry/wet spinning process. Fibers were spun at various dope extrusion rates (DER ranging from 1.5 - 3.0 cm3/min and hence at different levels of shear. The results suggest that as the dope extrusion rate is increased, the selectivity will increase until a critical level of shear is reached, beyond which the membrane performance deteriorates. Pressure-normalized-fluxes and selectivities were evaluated by using pure oxygen and nitrogen as test gases.

  12. A Generic Model for Prediction of Separation Performance of Olefin/Paraffin Mixture by Glassy Polymer Membranes

    Directory of Open Access Journals (Sweden)

    A.A. Ghoreyshi

    2008-02-01

    Full Text Available The separation of olefin/paraffin mixtures is an important process in petrochemical industries, which is traditionally performed by low temperature distillation with a high-energy consumption, or complex extractive distillationand adsorption techniques. Membrane separation process is emerging as an alternative for traditional separation processes with respect to low energy and simple operation. Investigations made by various researchers on polymeric membranes it is found that special glassy polymers render them as suitable materials for olefin/paraffin mixture separation. In this regard, having some knowledge on the possible transport mechanism of these processes would play a significant role in their design and applications. In this study, separation behavior of olefin/paraffin mixtures through glassy polymers was modeled by three different approaches: the so-called dual transport model, the basic adsorption-diffusion theory and the general Maxwell-Stefan formulation. The systems chosen to validate the developed transport models are separation of ethane-ethylene mixture by 6FDA-6FpDA polyimide membrane and propane-propylene mixture by 6FDA-TrMPD polyimide membrane for which the individual sorption and permeation data are available in the literature. Acritical examination of dual transport model shows that this model fails clearly to predict even the proper trend for selectivities. The adjustment of pemeabilities by accounting for the contribution of non-selective bulk flow in the transport model introduced no improvement in the predictability of the model. The modeling results based on the basic adsorption-diffusion theory revealed that in this approach only using mixed permeability data, an acceptable result is attainable which fades out the advantages of predictibility of multicomponent separation performance from pure component data. Finally, the results obtained from the model developed based on Maxwell-Stefan formulation approach show a

  13. Membrane gas separation. January 1970-September 1989 (Citations from the NTIS data base). Report for January 1970-September 1989

    International Nuclear Information System (INIS)

    1989-09-01

    This bibliography contains citations concerning the research and development of gas separation and purification utilizing plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (This updated bibliography contains 100 citations, 18 of which are new entries to the previous edition.)

  14. Membrane gas separation. January 1970-September 1988 (Citations from the NTIS data base). Report for January 1970-September 1988

    International Nuclear Information System (INIS)

    1988-09-01

    This bibliography contains citations concerning the research and development of gas separation and purification utilizing plastic and metal membranes. Among the topics included are isotope separation, osmotic techniques, reverse osmosis, and preparation of membranes for specific separation processes. The permeability of polymer membranes is discussed in terms of physical properties as well as molecular structure. The selectivity of polymeric films for a variety of gases is also included. (This updated bibliography contains 150 citations, 27 of which are new entries to the previous edition.)

  15. Membrane separation principle used for gas drying processes in fuel cells and life support systems

    International Nuclear Information System (INIS)

    Nigsch, H.A.; Fleck, W.U.

    1991-07-01

    Different membrane separation principles as applied to fuel cell powerplants and ECLSS are described. A new separator type that enables smaller weight and geometries and requires less energy than conventional mechanical separator techniques for space applications is presented. Module optimization and investigations concerning ECLSS applications are discussed. 5 refs

  16. Technology of ceramic and polymeric membranes for oil/water separation; Tecnologia de membranas ceramicas e polimericas para separacao oleo/agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.A; Souto, K.M; Silva, Adriano A.; Lira, H.L.; Carvalho, L.H.; Costa, A.C.F.M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    In last years, separation techniques by membranes and membranes grew of a laboratory simple tool for an industrial process with a considerable technical and commercial impact. Today, membranes have been being widely used in the treatment of the oily/water, because they offer chemical, thermal resistance and resistance the pressure for a wide variety of alimentation terms. Membrane can be defined as a barrier that separates two phases and that restricts, total or partially, the transportation of one or several present chemical species in the phases. The morphology of the membrane and nature of the material that constitutes are some characteristics that are going to define application kind. The ideal structure for these filters is the asymmetric, formed by one or more layers of different pores size, with gradual reduction of the pores size, when approaches the side filtrate. Having in mind that the environmental legislations more process with membranes offers a new option to face these challenges. The membranes typically used in the oil and water separation act as a barrier for the emulsified oil and solubilization. In the petroleum production and refined oil water mixed with oil is prosecuted in great volumes in lots of processes, this mixture should be treated to separate the oil of water before it can return to the environment or even to be reused in the process. This review aims relate studies done with ceramic and polymeric membranes using a separation oil/water system mounted in laboratory scale in UFCG/CCT/ANP/PHH25. The results show that filtration membranes, micro filtration and ultrafiltration were very effective in oil/water separation. (author)

  17. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor

    KAUST Repository

    Ma, Xiaohua

    2013-10-01

    We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800 C, respectively. At 440 C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530 C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110 Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600 C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040 Barrer with a high selectivity over CH4 of 38. Above 600 C, the strong emergence of ultramicroporosity (<7 Å) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. © 2013 Elsevier Ltd. All rights reserved.

  18. Multi-component transport in polymers: hydrocarbon / hydrogen separation by reverse selectivity membrane; Transport multi-composants dans les polymeres: separation hydrocarbures / hydrogene par membrane a selectivite inverse

    Energy Technology Data Exchange (ETDEWEB)

    Mauviel, G.

    2003-12-15

    Hydrogen separation by reverse selectivity membranes is investigated. The first goal is to develop materials showing an increased selectivity. Silicone membranes loaded with inorganic fillers have been prepared, but the expected enhancement is not observed. The second goal is to model the multi- component transport through rubbers. Indeed the permeability model is not able to predict correctly permeation when a vapour is present. Thus many phenomena have to be considered: diffusional inter-dependency, sorption synergy, membrane swelling and drag effect. The dependence of diffusivities with the local composition is modelled according to free-volume theory. The model resolution allows to predict the permeation flow-rates of mixed species from their pure sorption and diffusion data. For the systems under consideration, the diffusional inter-dependency is shown to be preponderant. Besides, sorption synergy importance is pointed out, whereas it is most often neglected. (author)

  19. Les techniques de séparation de gaz par membranes Gas Separation Techniques by Membranes

    Directory of Open Access Journals (Sweden)

    Avrillon R.

    2006-11-01

    through the membrane by applying a pressure difference on either side of the membrane. This pressure difference causes a difference in dissolved gas concentration between the two faces of the membrane and hence a diffusional gas flow through the membrane. Choice of Polymer - The gas sorption capacity of the polymer depends on its free volume and its physical affinity for the gas. For a gas mixture, differences in affinity are selectivity factors. The mobility of sorbed molecules depends on the free volume of the polymer and on the degree of rigidity of the chains. Vitreous polymers are more selective in this respect than rubbery polymers. This is why they are generally chosen for manufacturing gas permeation membranes. Permeability and selectivity are somewhat antinomic properties, especially when the selectivity is of a diffusional type, i. e. when the polymer acts as a molecular sieve. The definition of new polymers providing a better compromise between permeability and selectivity thus goes via research on the relationships between structure and the permeability to the gas to be separated. In polymers in a vitreous state, the chains are fixed overall, but small local movements, for example such as the rotation of an aromatic nucleus around bonds in the para position, remain possible. It seems that such small movements are beneficial for permeability, while not detracting very much from the selectivity. Structures of chains that are unfavorable for compact piling increase permeability in general to the detriment of selectivity. This is true for chains having non-coplanar aromatic nuclei or ones having bulky groups. Tables 2, 3 and 4 give some structural and permeability data for various polyimides. Figures 4 and 5 show the performances for hydrogen/ methane and carbon-dioxide/methane separations of various polyimides synthesized in our laboratories. Asymmetric MembranesThe membranes used in practice have a particular structure that is called asymmetric, which combines

  20. Investigation of Cross-Linked and Additive Containing Polymer Materials for Membranes with Improved Performance in Pervaporation and Gas Separation

    Directory of Open Access Journals (Sweden)

    Karl Kleinermanns

    2012-10-01

    Full Text Available Pervaporation and gas separation performances of polymer membranes can be improved by crosslinking or addition of metal-organic frameworks (MOFs. Crosslinked copolyimide membranes show higher plasticization resistance and no significant loss in selectivity compared to non-crosslinked membranes when exposed to mixtures of CO2/CH4 or toluene/cyclohexane. Covalently crosslinked membranes reveal better separation performances than ionically crosslinked systems. Covalent interlacing with 3-hydroxypropyldimethylmaleimide as photocrosslinker can be investigated in situ in solution as well as in films, using transient UV/Vis and FTIR spectroscopy. The photocrosslinking yield can be determined from the FTIR-spectra. It is restricted by the stiffness of the copolyimide backbone, which inhibits the photoreaction due to spatial separation of the crosslinker side chains. Mixed-matrix membranes (MMMs with MOFs as additives (fillers have increased permeabilities and often also selectivities compared to the pure polymer. Incorporation of MOFs into polysulfone and Matrimid® polymers for MMMs gives defect-free membranes with performances similar to the best polymer membranes for gas mixtures, such as O2/N2 H2/CH4, CO2/CH4, H2/CO2, CH4/N2 and CO2/N2 (preferentially permeating gas is named first. The MOF porosity, its particle size and content in the MMM are factors to influence the permeability and the separation performance of the membranes.

  1. Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation.

    Science.gov (United States)

    Hunger, Katharina; Schmeling, Nadine; Jeazet, Harold B Tanh; Janiak, Christoph; Staudt, Claudia; Kleinermanns, Karl

    2012-10-22

    Pervaporation and gas separation performances of polymer membranes can be improved by crosslinking or addition of metal-organic frameworks (MOFs). Crosslinked copolyimide membranes show higher plasticization resistance and no significant loss in selectivity compared to non-crosslinked membranes when exposed to mixtures of CO2/CH4 or toluene/cyclohexane. Covalently crosslinked membranes reveal better separation performances than ionically crosslinked systems. Covalent interlacing with 3-hydroxypropyldimethylmaleimide as photocrosslinker can be investigated in situ in solution as well as in films, using transient UV/Vis and FTIR spectroscopy. The photocrosslinking yield can be determined from the FTIR-spectra. It is restricted by the stiffness of the copolyimide backbone, which inhibits the photoreaction due to spatial separation of the crosslinker side chains. Mixed-matrix membranes (MMMs) with MOFs as additives (fillers) have increased permeabilities and often also selectivities compared to the pure polymer. Incorporation of MOFs into polysulfone and Matrimid® polymers for MMMs gives defect-free membranes with performances similar to the best polymer membranes for gas mixtures, such as O2/N2 H2/CH4, CO2/CH4, H2/CO2, CH4/N2 and CO2/N2 (preferentially permeating gas is named first). The MOF porosity, its particle size and content in the MMM are factors to influence the permeability and the separation performance of the membranes.

  2. Characterization of Thermally Cross-Linkable Hollow Fiber Membranes for Natural Gas Separation

    KAUST Repository

    Chen, Chien-Chiang

    2013-01-23

    The performance of thermally cross-linkable hollow fiber membranes for CO2/CH4 separation and the membrane stability against CO2 plasticization was investigated. The fiber membranes were thermally cross-linked at various conditions. Cross-linking temperature was found to have a significant effect, while shorter soak time and the presence of trace oxidizer (O2 or N2O) had a negligible effect. The cross-linked fibers were tested using high CO2 content feeds (50-70% CO2) at a variety of feed pressures (up to 1000 psia), temperatures, and permeate pressures (up to 100 psia) to evaluate membrane performance under various realistic operating conditions. The results demonstrated that cross-linking improves membrane selectivity and effectively eliminates swelling-induced hydrocarbon loss at high pressures. Excellent stability under aggressive feeds (with CO2 partial pressure up to 700 psia) suggests that cross-linked hollow fiber membranes have great potential for use in diverse aggressive applications, even beyond the CO2/CH4 example explored in this work. © 2012 American Chemical Society.

  3. Membrane Separation of Gas Mixtures under the Influence of Resonance Radiation.

    Czech Academy of Sciences Publication Activity Database

    Levdansky, Valerij Vladimirovič; Izák, Pavel

    2017-01-01

    Roč. 173, FEB (2017), s. 93-98 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S Institutional support: RVO:67985858 Keywords : membranes * gas mixture * separation Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 3.359, year: 2016

  4. The effect of silica toward polymer membrane for water separation process

    Science.gov (United States)

    Jamalludin, Mohd Riduan; Rosli, M. U.; Ishak, Muhammad Ikman; Khor, C. Y.; Shahrin, Suhaimi; Ismail, Ras Izzati; Lailina N., M.; Leng Y., L.; Jahidi, H.

    2017-09-01

    The aim of this present work was to investigate the effect of different percentage rice husk silica (RHS) particles composition towards polymer mixed matrix membrane microstructure and performance in water separation process. The polymer membranes were prepared by a phase inversion method using polysulfone (PSf), N-methyl-2-pyrrolidone (NMP) as solvent, distilled water as non-solvent and fixed RHS at 400°C as an additive. The microstructures of PSf/PEG/RHS sample were characterized by performing scanning electron microscope (SEM). The performance was measured by using pure water flux and humic acid for the rejection test. The analyzed result of SEM analysis revealed that the addition of RHS obviously improved the microstructure of the membrane especially at the top and sub layer at the range of 1 until 3 wt. %. This was proven by the pure water flux (PWF) value measured from 114.47 LMH to 154.04 LMH and rejection from value 83% to 96% at this specified range substantially higher than the mixed matrix membrane with synthetic silica. In fact, the presence of RHS particles not only improved the properties and performance of membrane but also possess biodegradable properties which can minimize the pollution and provide a membrane green technology system.

  5. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation.

    Science.gov (United States)

    Li, Jian; Zhao, Zhihong; Li, Dianming; Tian, Haifeng; Zha, Fei; Feng, Hua; Guo, Lin

    2017-09-21

    Oil/water separation is of great importance for the treatment of oily wastewater, including immiscible light/heavy oil-water mixtures, oil-in-water or water-in-oil emulsions. Smart surfaces with responsive wettability have received extensive attention especially for controllable oil/water separation. However, traditional smart membranes with a switchable wettability between superhydrophobicity and superhydrophilicity are limited to certain responsive materials and continuous external stimuli, such as pH, electrical field or light irradiation. Herein, a candle soot coated mesh (CSM) with a larger pore size and a candle soot coated PVDF membrane (CSP) with a smaller pore size with underwater superoleophobicity and underoil superhydrophobicity were successfully fabricated, which can be used for on-demand immiscible oil/water mixtures and surfactants-stabilized oil/water emulsion separation, respectively. Without any continuous external stimulus, the wettability of our membranes could be reversibly switched between underwater superoleophobicity and underoil superhydrophobicity simply by drying and washing alternately, thus achieving effective and switchable oil/water separation with excellent separation efficiency. We believe that such smart materials will be promising candidates for use in the removal of oil pollutants in the future.

  6. New polymer material for CO_2 capture by membrane separation process

    International Nuclear Information System (INIS)

    Solimando, Xavier

    2016-01-01

    In this PhD thesis, two types of membrane materials were developed for CO_2 separation. The first ones associate a reference polymer material (Pebax) with new pseudo-peptidic bio-conjugates additives. These pseudo-peptide-polymer bio-conjugates were obtained by a 'grafting-to' synthetical pathway from alkyne-functionalized 1:1[a/a-Na-Bn-hydrazino] dimer and tetramer pseudopeptides. Poly(diethylene glycol acrylate) (PEDEGA) oligomeric part was synthesized under controlled conditions using Single Electron Transfer Living Radical Polymerization (SET-LRP) from an azido-functionalized initiator allowing direct coupling via CuAAC 'click' chemistry. The influence of these additives on CO_2 sorption and separation properties was analyzed in terms of properties-morphology-structure relationships. These original additives allowed to enhance CO_2 separation performances of the reference membrane, increasing CO_2 permeability by 46%, and maintaining good selectivities aCO_2/N_2 = 44 et aCO_2/CH_4 = 13. In another work, two families of poly(urethane-imide)s (PUIs) with controlled architecture were developed for obtaining membrane materials with high content in ethylene-oxide units while avoiding their crystallization. Linear multi-blocks PUIs were first synthesized by polycondensation with different sizes of Jeff amine polyether soft block, corresponding to soft block contents varying from 40 to 70%wt. To further increase the soft phase content until a very high level (85%wt), grafted multi-blocks PUIs were obtained by a 'grafting-to' strategy from an alkyne-functionalized precursor PUI and azido-PEDEGA oligomers with different molar weights. The evolution of their CO_2 separation performances were correlated to their soft phase content, morphology and CO_2 sorption ability. For the maximum soft phase content (85%wt), high performances were obtained for CO_2 separation (PCO_2 = 196 Barrer; aCO_2/N_2 = 39 et aCO_2/CH_4 = 12). Compared to the precursor PUI, the grafting strategy

  7. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—I. Operation in absence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    A pilot plant study on propane catalytic combustion in a membrane reactor with separate reactant feeds is presented. The membrane consisted of a porous alumina tube activated by insertion into its pores of a Pt/γ-Al2O3 catalyst. The role of reactants concentration and of the feed flow rates were

  8. Microporous poly(acrylonitrile-methyl methacrylate) membrane as a separator of rechargeable lithium battery

    International Nuclear Information System (INIS)

    Zhang, S.S.; Ervin, M.H.; Xu, K.; Jow, T.R.

    2004-01-01

    We studied microporous poly(acrylonitrile-methyl methacrylate), AMMA, membrane as the separator of Li/LiMn 2 O 4 cell. The porous AMMA membrane was prepared by the phase inversion method with N,N-dimethylformamide (DMF) as the solvent and water as the non-solvent. We observed that morphology of the resulting membrane was strongly affected by the concentration of polymer solution: low concentration produced finger-like pores with dense skin on two surfaces of the membrane, while high concentration yielded open voids with dense layer on the other surface of the membrane. Regardless of their morphology, both membranes could be rapidly wetted by the liquid electrolyte (1.0 m LiBF 4 dissolved in 1:3 wt.% mixture of ethylene carbonate (EC) and γ-butyrolactone (GBL)), and could be swollen at elevated temperatures, which resulted in the formation of a microporous gel electrolyte (MGE). It was shown that the resulting MGE not only had high ionic conductivity and but also had good compatibility with metal lithium even at 60 deg. C. Cyclic voltammetric test showed that the MGE had an electrochemical window of 4.9 V versus Li + /Li. At room temperature, the Li/MGE/LiMn 2 O 4 cell showed excellent cycliability with a specific capacity of 121-125 mA h g -1 LiMn 2 O 4 . It was shown that even at 60 deg. C good mechanical strength of the MGE remained. Therefore, the MGE is suitable for the application of battery separator at elevated temperatures

  9. Antimicrobial membrane surfaces via efficient polyethyleneimine immobilization and cationization

    Science.gov (United States)

    Qiu, Wen-Ze; Zhao, Zi-Shu; Du, Yong; Hu, Meng-Xin; Xu, Zhi-Kang

    2017-12-01

    Biofouling control is a major task in membrane separation processes for water treatment and biomedical applications. In this work, N-alkylated polyethylenimine (PEI) is facilely and efficiently introduced onto the membrane surfaces via the co-deposition of catechol (CCh) and PEI, followed by further grafting of PEIs (600 Da, 70 kDa and 750 kDa) and cationization with methyl iodide (CH3I). The physical and chemical properties of the constructed membrane surfaces are characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and water contact angle measurements. Antibacterial assay reveals that the optimized membrane surfaces possess around 95% antibacterial efficiency against Gram-positive Staphylococcus aureus (S. aureus) with weak adhesion of bacteria cells after 24 h of bacterial contact. Additionally, the membrane surfaces also exhibit much enhanced antifouling property during the filtration of opposite charged bovine serum albumin (BSA). These results demonstrate a useful strategy for the surface modification of separation membranes by a kind of antimicrobial and antifouling coating.

  10. Estimation of phase separation temperatures for polyethersulfone/solvent/non-solvent systems in RTIPS and membrane properties

    DEFF Research Database (Denmark)

    Liu, Min; Liu, Sheng-Hui; Skov, Anne Ladegaard

    2018-01-01

    was observed. When the membrane-forming temperature was higher than the cloud point, membranes with a bi-continuous structure were acquired and showed a higher pure water permeation flux than that of membranes prepared with the non-solvent induced phase separation (NIPS) process. The pure water permeation flux...... and the mean pore size of membranes prepared with the RTIPS process decreased in line with an increase of PES molecular weight. When the membrane formation mechanism was the RTIPS process, the mechanical properties were better than those of the corresponding membranes prepared with the NIPS process....

  11. pH control structure design for a periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    2012-01-01

    A bioreactor integrated with an electrically driven membrane separation process (Reverse Electro-Enhanced Dialysis – REED) is under investigation as potential technology for intensifying lactic acid bioproduction. In this contribution the pH regulation issue in the periodically operated REED module...

  12. Therapeutic drug monitoring of flucytosine in serum using a SERS-active membrane system

    Science.gov (United States)

    Berger, Adam G.; White, Ian M.

    2017-02-01

    A need exists for near real-time therapeutic drug monitoring (TDM), in particular for antibiotics and antifungals in patient samples at the point-of-care. To truly fit the point-of-care need, techniques must be rapid and easy to use. Here we report a membrane system utilizing inkjet-fabricated surface enhanced Raman spectroscopy (SERS) sensors that allows sensitive and specific analysis despite the elimination of sophisticated chromatography equipment, expensive analytical instruments, and other systems relegated to the central lab. We utilize inkjet-fabricated paper SERS sensors as substrates for 5FC detection; the use of paper-based SERS substrates leverages the natural wicking ability and filtering properties of microporous membranes. We investigate the use of microporous membranes in the vertical flow assay to allow separation of the flucytosine from whole blood. The passive vertical flow assay serves as a valuable method for physical separation of target analytes from complex biological matrices. This work further establishes a platform for easy, sensitive, and specific TDM of 5FC from whole blood.

  13. Novel Protic Ionic Liquid Composite Membranes with Fast and Selective Gas Transport Nanochannels for Ethylene/Ethane Separation.

    Science.gov (United States)

    Dou, Haozhen; Jiang, Bin; Xiao, Xiaoming; Xu, Mi; Tantai, Xiaowei; Wang, Baoyu; Sun, Yongli; Zhang, Luhong

    2018-04-25

    Protic ionic liquids (PILs) were utilized for the fabrication of composite membranes containing silver salt as the C 2 H 4 transport carrier to perform C 2 H 4 /C 2 H 6 separation for the first time. The intrinsic nanostructures of PILs were adopted to construct fast and selective C 2 H 4 transport nanochannels. The investigation of structure-performance relationships of composite membranes suggested that transport nanochannels (polar domains of PILs) could be tuned by the sizes of cations, which greatly manipulated activity of the carrier and determined the separation performances of membranes. The role of different carriers in the facilitated transport was studied, which revealed that the PILs were good solvents for dissolution and activation of the carrier due to their hydrogen bond networks and waterlike properties. The operating conditions of separation process were investigated systemically and optimized, confirming C 2 H 4 /C 2 H 6 selectivity was enhanced with the increase of silver salt concentration, the flow rate of sweep gas, and the feed ratio of C 2 H 4 to C 2 H 6 , as well as the decrease of the transmembrane pressure and operating temperature. Furthermore, the composite membranes exhibited long-term stability and obtained very competitive separation performances compared with other results. In summary, PIL composite membranes, which possess good long-term stability, high C 2 H 4 /C 2 H 6 selectivity, and excellent C 2 H 4 permeability, may have a good perspective in industrial C 2 H 4 /C 2 H 6 separation.

  14. Transient response simulation of gas separation membrane module for an atmosphere detritiation system

    International Nuclear Information System (INIS)

    Sugiyama, Takahiko; Tanaka, Masahiro; Munakata, Kenzo; Yamamoto, Ichiro

    2012-01-01

    Transient response of a gas separation membrane module for the atmosphere detritiation system was numerically simulated with a mass transfer model. The module contains thousands of hollow fiber type polyimide membranes. The simulation model took into account permeation of water vapor through the dense layer of the membrane, diffusive transfer through the porous support layer and adsorption/desorption of water vapor into the matrix of the porous layer. The slow responses of the water vapor concentration in the retentate and the permeation rate were well reproduced by the present simulation, and transient changes in a follow fiber membrane were investigated in detail. The inventory and the mean residence time of water vapor at 303 K were estimated for the commercial membrane module (UMS-B2, Ube industries, Ltd.) as 5.7 × 10 −3 mol and 380 s, respectively.

  15. Total cholesterol in serum determined by isotope dilution/mass spectrometry, with liquid-chromatographic separation

    International Nuclear Information System (INIS)

    Takatsu, Akiko; Nishi, Sueo

    1988-01-01

    We describe an accurate, precise method for determination of total serum cholesterol by isotope dilution/mass spectrometry (IDMS) with liquid chromatographic separation. After adding [3,4- 13 C] cholesterol to serum and hydrolyzing the cholesterol esters, we extract the total cholesterol. High-performance liquid chromatography (HPLC) is used to separate the extracted cholesterol for measurement by electron-impact mass spectrometry with use of a direct-insertion device. To evaluate the specificity and the accuracy of this method, we also studied the conventional IDMS method, which involves converting cholesterol to the trimethylsilyl ether and assay by gas chromatography-mass spectrometry with use of a capillary column. The coefficient of variation for the HPLC method was a little larger than for the conventional method, but mean values by each method agreed within 1% for all sera tested. (author)

  16. Hybrid membrane--PSA system for separating oxygen from air

    Science.gov (United States)

    Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  17. Hydrogen separation process

    Science.gov (United States)

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  18. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  19. Separation of BSA through FAU-type zeolite ceramic composite membrane formed on tubular ceramic support: Optimization of process parameters by hybrid response surface methodology and biobjective genetic algorithm.

    Science.gov (United States)

    Vinoth Kumar, R; Ganesh Moorthy, I; Pugazhenthi, G

    2017-08-09

    In this study, Faujasite (FAU) zeolite was coated on low-cost tubular ceramic support as a separating layer through hydrothermal route. The mixture of silicate and aluminate solutions was used to create a zeolitic separation layer on the support. The prepared zeolite ceramic composite membrane was characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), particle size distribution (PSD), field emission scanning electron microscopy (FESEM), and zeta potential measurements. The porosity of ceramic support (53%) was reduced by the deposition of FAU (43%) zeolite layer. The pore size and water permeability of the membrane were evaluated as 0.179 µm and 1.62 × 10 -7  m 3 /m 2  s kPa, respectively, which are lower than that of the support (pore size of 0.309 µm and water permeability of 5.93 × 10 -7  m 3 /m 2  s kPa). The permeate flux and rejection potential of the prepared membrane were evaluated by microfiltration of bovine serum albumin (BSA). To study the influences of three independent variables such as operating pressure (68.94-275.79 kPa), concentration of BSA (100-500 ppm), and solution pH (2-4) on permeate flux and percentage of rejection, the response surface methodology (RSM) was used. The predicted models for permeate flux and rejection were further subjected to biobjective genetic algorithm (GA). The hybrid RSM-GA approach resulted in a maximum permeate flux of 2.66 × 10 -5  m 3 /m 2  s and BSA rejection of 88.02%, at which the optimum conditions were attained as 100 ppm BSA concentration, 2 pH solution, and 275.79 kPa applied pressure. In addition, the separation efficiency was compared with other membranes applied for BSA separation to know the potential of the fabricated FAU zeolite ceramic composite membrane.

  20. Study of supercritical CO2 extraction and nanofiltration membrane separation coupling

    International Nuclear Information System (INIS)

    Sarrade, S.

    1994-12-01

    The aim of this thesis is to study the coupling of two extraction techniques, nanofiltering and supercritical fluids, designing and building an experimental device that enables both supercritical CO 2 extraction and nanofiltering membrane separation. The purpose is to reach high splitting up levels on small molecule mixtures. The document is divided in four parts : a bibliographic study on these two techniques; a description of the membranes and the products, as well as the experimental device; the characterization and modelization of transfer mechanism in aqueous solutions; a presentation of the results obtained by coupling the two techniques. (TEC). 45 tabs., 70 figs., 98 refs

  1. The uranium separation from Ru using Tbp solvent by membrane emulsion method

    International Nuclear Information System (INIS)

    Bintarti, A. N.; Bambang, EHB. J.; Pramono, J.

    1998-01-01

    An extraction process for uranium (U) separation from ruthenium (Ru) by tributyl phosphate (Tbp) as a solvent with kerosene as a diluent and surfactant the Span-80 as emulator has been performed. A sodium carbonate solution having ph 10-11 was used as the internal phase. the feed contained U and Ru in HNO 3 solution, while butanol was used as the membrane sp liter. the membrane used for extraction had a composition of 5% vol surfactant, 10% vol Tbp, 35% vol kerosene and 50% vol Na 2 CO 3 solution. The mixing time and speed were varied in value, so were the acidity levels, ranging from 0.5 M, 0.75 M up to 1 M. The result of the experimental separation of a mixture containing 5000 ppm U and 325 ppm Ru showed that a molarity of 0.5 M HNO 3 in the feed, 15 minutes mixing time, and 800 rpm mixing speed were found to be the best conditions for the extraction. Such condition had resulted in achieving the value of stripping distribution coefficient K d for U= 0.5660 with 49.73% U recovery efficiency and a practically zero separation factor from Ru

  2. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations.

    Science.gov (United States)

    Hillman, Febrian; Brito, Jordan; Jeong, Hae-Kwon

    2018-02-14

    The relatively slow and complex fabrication processes of polycrystalline metal-organic framework (MOF) membranes often times restrict their way to commercialization, despite their potential for molecular separation applications. Herein, we report a rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework (ZIF) membranes consisting of 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker) linkers, termed ZIF-7-8 membranes. The fast-volumetric microwave heating in conjunction with a unique counter diffusion of metal and linker solutions enabled unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes in ∼90 s, the fastest MOF membrane preparation up to date. Furthermore, we were able to tune the molecular sieving properties of the ZIF-7-8 membranes by varying the benzimidazole-to-2-methylimidazole (bIm-to-mIm) linker ratio in the hybrid frameworks. The tuning of their molecular sieving properties led to the systematic change in the permeance and selectivity of various small gases. The unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for the commercial gas separation applications of ZIF membranes.

  3. Evaluation and Characterization of Membranes for HI/H2O/I2 Water Separation for the S-I Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Frederick F. Stewart

    2005-09-01

    In the Sulfur-Iodine (S-I) thermochemical cycle, iodine is added to the product of the Bunsen reaction to facilitate the separation of sulfuric acid (H2SO4) from hydriodic acid (HI). The amount of iodine can be as high as 83% of the overall mass load of the Bunsen product stream, which potentially introduces a large burden on the cycle’s efficiency. Removal of water from the HI and I2 mixture would substantially reduce the amount of required additional iodine. In this work, Nafion® membranes have been studied for their use as de-watering membranes. Specifically, two thicknesses of Nafion membranes have been found to be effective in this application. The thicker membrane, Nafion-117®, produces moderate fluxes of water with very high separation factors. On the other hand, the thinner membrane, Nafion-112®, yielded very large fluxes of water, however with smaller separation factors. All membranes were found to be durable and did not degrade in contact with the feed stream over periods of time up to three months.

  4. A Scalable Method toward Superhydrophilic and Underwater Superoleophobic PVDF Membranes for Effective Oil/Water Emulsion Separation.

    Science.gov (United States)

    Yuan, Tao; Meng, Jianqiang; Hao, Tingyu; Wang, Zihong; Zhang, Yufeng

    2015-07-15

    A superhydrophilic and underwater superoleophobic PVDF membrane (PVDFAH) has been prepared by surface-coating of a hydrogel onto the membrane surface, and its superior performance for oil/water emulsion separation has been demonstrated. The coated hydrogel was constructed by an interfacial polymerization based on the thiol-epoxy reaction of pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) with diethylene glycol diglycidyl ether (PEGDGE) and simultaneously tethered on an alkaline-treated commercial PVDF membrane surface via the thio-ene reaction. The PVDFAH membranes can be fabricated in a few minutes under mild conditions and show superhydrophilic and underwater superoleophobic properties for a series of organic solvents. Energy dispersive X-ray (EDX) analysis shows that the hydrogel coating was efficient throughout the pore lumen. The membrane shows superior oil/water emulsion separation performance, including high water permeation, quantitative oil rejection, and robust antifouling performance in a series oil/water emulsions, including that prepared from crude oil. In addition, a 24 h Soxhlet-extraction experiment with ethanol/water solution (50:50, v/v) was conducted to test the tethered hydrogel stability. We see that the membrane maintained the water contact angle below 5°, indicating the covalent tethering stability. This technique shows great promise for scalable fabrication of membrane materials for handling practical oil emulsion purification.

  5. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  6. THE COLLOIDAL BEHAVIOR OF SERUM GLOBULIN

    Science.gov (United States)

    Hitchcock, David I.

    1922-01-01

    1. The globulin prepared from ox serum by dilution and precipitation with carbon dioxide has been found, by electrometric titration experiments, to behave like an amphoteric electrolyte, reacting stoichiometrically with acids and bases. 2. The potential difference developed between a solution of globulin chloride, phosphate, or acetate and a solution of the corresponding acid, free from protein, separated from the globulin by a collodion membrane, was found to be influenced by hydrogen ion concentration and salt concentration in the way predicted by Donnan's theory of membrane equilibrium. In experiments with sodium globulinate and sodium hydroxide it was found that the potential difference could be similarly explained. 3. The osmotic pressure of such solutions could be qualitatively accounted for by the Donnan theory, but exhibited a discrepancy which is explicable by analogy with certain experiments of Loeb on gelatin. 4. The application of Loeb's theory of colloidal behavior, which had previously been found to hold in the case of gelatin, casein, egg albumin, and edestin, has thus been extended to another protein, serum globulin. PMID:19871977

  7. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2005-02-03

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were

  8. Influence of casein on flux and passage of serum proteins during microfiltration using polymeric spiral-wound membranes at 50°C.

    Science.gov (United States)

    Zulewska, Justyna; Barbano, David M

    2013-04-01

    Raw milk (approximately 1,800 kg) was separated at 4°C, pasteurized (at 72°C for 16s), and split into 2 batches. One batch (620 kg) was microfiltered (MF) using pilot-scale ceramic uniform transmembrane pressure Membralox membranes (model EP1940GL0.1 μA, 0.1-μm alumina; Pall Corp., East Hills, NY) to produce retentate and permeate. The permeate from the MF uniform transmembrane pressure was casein-free skim milk (CFSM). The CFSM was MF using polymeric spiral-wound (SW) membranes (model FG7838-OS0x-S, 0.3 μm; Parker-Hannifin Corp., Process Advanced Filtration Division, Tell City, IN) at a concentration factor of 3× and temperature of 50°C. Following the processing of CFSM, the second batch of skim milk (1,105 kg) was processed using the same polymeric membranes to determine how casein content in the feed material for MF with polymeric membranes affects the performance of the system. There was little resistance to passage of milk serum proteins (SP) through a 0.3-μm polyvinylidene fluoride (PVDF) SW membrane at 50°C and no detectable increase in hydraulic resistance of the membrane when processing CFSM. Therefore, milk SP contributed little, if any, to fouling of the PVDF membrane. In contrast, when processing skim milk containing a normal concentration of casein, the flux was much lower than when processing CFSM (17.2 vs. 80.2 kg/m(2) per hour, respectively) and the removal of SP from skim milk with a single-pass 3× bleed-and-feed MF system was also much lower than from CFSM (35.2 vs. 59.5% removal, respectively). Thus, when processing skim milk with a PVDF SW membrane, casein was the major protein foulant that increased hydraulic resistance and reduced passage of SP through the membrane. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Efficacy of Ultrasonic Homogenization in the Separation of Benzene-n-Heptane Mixture by Liquid Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.S.; Chung, T.S. [Department of Chemical Engineering, Sung Kyun Kwan University, Seoul (Korea)

    1999-04-01

    In the separation of benzene-n-heptane mixture by liquid membrane, the efficacy of ultrasonic homogenization in emulsification was studied with two anionic surfactants. The two anionic surfactants used were triethanolamine lauryl sulfate and sodium polyoxyethylene(2) lauryl ether sulfate. The two anionic surfactants used were triethanolamine lauryl sulfate and sodium polyoxyethylene(2) lauryl ether stifle. The highest value of the separation factor obtained by ultrasonic homogenization was approximately three times as large as that for triethanolamine lauryl sulfate and one and a half times as large as that for sodium polyoxyethylene(2) lauryl sulfate when the mechanical stirring was used on the same operational conditions. The lowest membrane breakup was observed when the highest value of the separation factor was achieved with sodium polyoxyethylene(2) lauryl sulfate. 14 refs., 7 figs., 1 tab.

  10. An Untrodden Path: Versatile Fabrication of Self-Supporting Polymer-Stabilized Percolation Membranes (PSPMs) for Gas Separation.

    Science.gov (United States)

    Friebe, Sebastian; Mundstock, Alexander; Schneider, Daniel; Caro, Jürgen

    2017-05-11

    The preparation and scalability of zeolite or metal organic framework (MOF) membranes remains a major challenge, and thus prevents the application of these materials in large-scale gas separation. Additionally, several zeolite or MOF materials are quite difficult or nearly impossible to grow as defect-free layers, and require expensive macroporous ceramic or polymer supports. Here, we present new self-supporting zeolite and MOF composite membranes, called Polymer-Stabilized Percolation Membranes (PSPMs), consisting of a pressed gas selective percolation network (in our case ZIF-8, NaX and MIL-140) and a gas-impermeable infiltrated epoxy resin for cohesion. We demonstrate the performance of these PSPMs by separating binary mixtures of H 2 /CO 2 and H 2 /CH 4 . We report the brickwork-like architecture featuring selective percolation pathways and the polymer as a stabilizer, compare the mechanical stability of said membranes with competing materials, and give an outlook on how economic these membranes may become. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development of nanocomposites polyamide66/ bentonite clay membranes obtained by solution for water-oil separation

    International Nuclear Information System (INIS)

    Medeiros, Keila Machado de

    2010-01-01

    Microporous membranes were obtained from nanocomposites polyamide66 and regional bentonite clay, through the technique of immersion precipitation. The nanocomposites were obtained by solution with a pre-established reaction time. The clay was treated with quaternary ammonium salt (Cetremide®) in order to make it organophilic. Untreated and treated clay were characterized by X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR), X-ray diffraction (XRD) and thermogravimetry (TG), which confirmed the insertion of the Cetremide® salt in the layers of clay and their thermal stability. While the membranes were characterized by XRD, TG, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and flow measurements. The results of XRD, TG and DSC confirmed the thermal stability and morphological structure with intercalated/partially exfoliated lamellae of clay in the polymer matrix. By SEM, it was revealed an asymmetric morphology consisting of a skin layer and a porous sublayer. The higher clay content in the membrane give the lower film thickness. This influencing directly the flow measurements of the membranes produced from the nanocomposites. In general, the initial flow with distilled water through the membranes decrease and stabilise after 60 min, this due to a compression or swelling occurred in the membranes. In tests of water-oil separation it was found that the relationship J/J0 tends to be greater when using emulsions with lower concentration. The water-oil separation tests at concentrations of 300 and 500 ppm for all membranes showed a significant reduction in oil concentration in the permeate, thus showing that these membranes have potential for this application. (author)

  12. Degradation of organic pollutants by an integrated photo-Fenton-like catalysis/immersed membrane separation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan, E-mail: jiedeng05@sina.com [School of Environment, Guang Xi University, Nanning 530004 (China); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Tang, Yankui; Wang, Yinghui [School of Environment, Guang Xi University, Nanning 530004 (China)

    2013-01-15

    Highlights: ► The photo-Fenton-like reaction and membrane separation was coupled. ► FeVO{sub 4} was used as catalyst in the PFM reactor. ► Dynamics simulation would direct the actual application of the reactor. -- Abstract: To resolve the continuously reuse problem of fine catalysts, a new reactor was investigated by coupling the heterogeneous photo-Fenton-like oxidation with membrane separation. The reactor consisted of a Xe lamp, a submerged membrane module and FeVO{sub 4} as catalyst with high activity. Results showed that the catalyst was successfully left in the reactor. It was proved by the kinetics study of membrane fouling that the avoidless membrane fouling was brought mainly by surface cake, at catalyst concentration of 4 g/L, it accounted for more than 90% of the total resistance. The kinetics study of catalytic degradation of AO II under sub-critical flux showed the optimal concentration of catalyst was 0.5 g/L and under this concentration the membrane fouling was negligible. For a residence time of 60 min, the degradation efficiency of AO II reached more than 99% and the chemical oxygen demand (COD) removal efficiency was as high as 91%. The model of continuous stirred tank reactor could predict well for the degradation which was consistent with hydrodynamics study. Moreover, the PFM reactor shows a long-term behavior with both membrane and catalyst in it and merits consideration for scaled-up trials.

  13. Zeolitic imidazolate framework membranes and methods of making and using same for separation of c2- and c3+ hydrocarbons and separation of propylene and propane mixtures

    KAUST Repository

    Lai, Zhiping

    2012-12-06

    Certain embodiments are directed to processes for fabrication of zeolitic imidazolate framework (ZIF) membranes. These ZIF membranes can be used in separating C2-hydrocarbons from C3+ hydrocarbons and propylene/propane mixtures.

  14. Zeolitic imidazolate framework membranes and methods of making and using same for separation of c2- and c3+ hydrocarbons and separation of propylene and propane mixtures

    KAUST Repository

    Lai, Zhiping; Pan, Yichang

    2012-01-01

    Certain embodiments are directed to processes for fabrication of zeolitic imidazolate framework (ZIF) membranes. These ZIF membranes can be used in separating C2-hydrocarbons from C3+ hydrocarbons and propylene/propane mixtures.

  15. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  16. Preparation of Ethylene Vinyl Acetate/Zeolite 4A Mixed Matrix Membrane for CO2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Iman Khalilinejad

    2016-07-01

    Full Text Available A great contribution in research activities on carbon dioxide (CO2 separation, as the most important challenge in greenhouse gases control, has been made to develop new polymeric membranes. In this case, mixed matrix membranes (MMMs, comprised of rigid particles dispersed in a continuous polymeric matrix, was proposed as an effective method to improve the separation properties of polymeric membranes. In this research, ethylene vinyl acetate (EVA copolymer and zeolite 4A powders were applied to prepare MMMs using solution casting/solvent evaporation method and CO2/N2 separation performance of the membranes was examined under different feed pressures (3-8 bar and operating temperatures (25-50°C. Morphological and structural characterizations of the membranes were evaluated using scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, density and solvent-induced swelling measurements. The gas permeability measurements through the constant-volume method showed the permeability of two gases increased in the presence of zeolite 4A nanoparticles in the polymer matrix. Calculation of diffusivity coefficients of gases revealed that improvement in the diffusivity of all gases into membrane matrix was the main reason for permeability enhancement. In addition, the increase in the CO2/N2 ideal selectivity with the presence of zeolite 4A nanoparticles in the polymer matrix was attributed to the increment in CO2/N2 diffusion selectivity. Under optimum condition, with the addition of 10 wt% zeolite 4A nanoparticles into the membrane matrix, the CO2 permeability increased from 20.81 to 35.24 Barrer and its related selectivity increased 20% compared to that of neat EVA membrane. Furthermore, the membrane performances increased upon feed pressure rise, while the selectivity decreased with the increase in temperature.

  17. Fabrication and Assessment of ZnO Modified Polyethersulfone Membranes for Fouling Reduction of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Tshepo Duncan Dipheko

    2017-01-01

    Full Text Available ZnO/PES composite membranes were fabricated by phase inversion method using DMAc as a solvent. The structure of ZnO was investigated using TEM, SEM, XRD, and TGA. TEM images of ZnO nanoparticles were well-defined, small, and spherically shaped with agglomerated nanoparticles particles of 50 nm. The SEM and XRD results were an indication that ZnO nanoparticles were present in the prepared ZnO/PES composites membranes. Contact angle measurements were used to investigate surface structures of the composite membranes. The amount of ZnO nanoparticles on PES membranes was varied to obtain the optimal performance of the composite membranes in terms of pure water flux, flux recovery, and fouling resistance using the protein bovine serum albumin (BSA as a model organic foulant. The results showed that addition of ZnO to PES membranes improved the hydrophilicity, permeation, and fouling resistance properties of the membranes. Pure water flux increased from a low of 250 L/m2h for the neat membrane to a high of 410 L/m2h for the composite membranes. A high flux recovery of 80–94% was obtained for the composite membranes. The optimal performance of the composite membranes was obtained at 1.5 wt% of ZnO.

  18. Concentration gradient driven molecular dynamics: a new method for simulations of membrane permeation and separation.

    Science.gov (United States)

    Ozcan, Aydin; Perego, Claudio; Salvalaglio, Matteo; Parrinello, Michele; Yazaydin, Ozgur

    2017-05-01

    In this study, we introduce a new non-equilibrium molecular dynamics simulation method to perform simulations of concentration driven membrane permeation processes. The methodology is based on the application of a non-conservative bias force controlling the concentration of species at the inlet and outlet of a membrane. We demonstrate our method for pure methane, ethane and ethylene permeation and for ethane/ethylene separation through a flexible ZIF-8 membrane. Results show that a stationary concentration gradient is maintained across the membrane, realistically simulating an out-of-equilibrium diffusive process, and the computed permeabilities and selectivity are in good agreement with experimental results.

  19. Separation of FFA from Partially Hydrogenated Soybean Oil Hydrolysate by Means of Membrane Processing

    DEFF Research Database (Denmark)

    Jala, Ram Chandra Reddy; Guo, Zheng; Xu, Xuebing

    2011-01-01

    Different types of commercial porous and non-porous polymeric membranes have been investigated for their capabilities to separate free fatty acids (FFA) from hydrolysate of partially hydrogenated soybean oil. A regenerated cellulose (RC, PLAC) membrane exhibited the most prominent difference...... in rejection between FFA and glycerides and the highest flux (27 kg h−1 m−2) in hydrolysate ethanol solution. The results also showed that, besides the pore size of membrane, the membrane flux depended largely on the property matching between membrane and solvent, as observed (40 kg h−1 m−2) flux was achieved...... with methanol but no flux detected with hexane for PLAC. The polyvinyl alcohol (PVA, NTR-729 HF) and Polyamide (PA, NTR-759HR) membranes gave the second and third highest flux (10.1 and 5.7 kg h−1 m−2, respectively), where solute rejections for NTR-759HR were 95.9% for triacylglycerols (TG), 83...

  20. An Underwater Superoleophobic Sepiolite Fibrous Membrane (SFM) for Oil­‐in­‐water Emulsion Separation

    KAUST Repository

    Yao, Pinjiang

    2014-01-01

    was fabricated by a facile vacuum filtration process of sepiolite nanofibers and chitosan, and after the cross-linking via glutaraldehyde, a self-standing membrane was obtained. The as-prepared membrane exhibited excellent capability of separating both

  1. Separation of metallic cations by means of coupled filtration on a ceramic membrane. Use of a complexing heteropolyanion

    International Nuclear Information System (INIS)

    Brun, Stephane

    1999-01-01

    In the field of the high level nuclear waste reprocessing, the Nuclear French Agency is currently carrying out studies on several processes (including the SESAME process) which aim at separating radioactive elements in order to dispose them specifically or to transmute them. One of these processes concerns the selective extraction of americium at an upper oxidation state than Ill. This work deals with the separation of Am(IV) from Ln(Ill) by means of complexation-coupled tangential filtration on alumina-titanium ceramic membranes. The chosen selective complexing agent is a lacunar heteropolyanion from the tungstophosphate family α_2P_2W_1_7O_6_1"1"0"-, which synthesis and various properties in solution have been studied. The polyanion stability in 0.5 M nitric solution strongly depends on the quality of the synthesised product. Two analytical techniques were developed to check the quality of the synthesised sets: "3"1P NMR and arsenazo-lanthanum complexometric titration. The separation studies on the cerium (IV)-neodymium (Ill) system were carried out to simulate americium(IV)/lanthanides(Ill) system. For the two alumina-titanium membranes studied (ultrafiltration and nano-filtration), the solvent flow can be described through a capillary mechanism which is characteristic of porous membranes. The ion transfer through the membranes, mainly governed by electrostatic interactions, strongly depends on the ionic strength at the membrane-solution interface. The best separation results, using nano-filtration, still remain below the expected performances, with a Ce(IV)/Nd(Ill) separation factor of 35 on a single stage in 0,5 M nitric medium. (author) [fr

  2. Tröger’s Base Ladder Polymer for Membrane-Based Hydrocarbon Separation

    KAUST Repository

    Alhazmi, Abdulrahman

    2017-05-01

    The use of polymeric membranes for natural gas separation has rapidly increased during the past three decades, particularly for carbon dioxide separation from natural gas. Another valuable application is the separation of heavy hydrocarbons from methane (fuel gas conditioning), more importantly for remote area and off-shore applications. A new potential polymeric membrane that might be utilized for natural gas separations is a Tröger’s base ladder polymer (PIM-Trip-TB-2). This glassy polymeric membrane was synthesized by the polymerization reaction of 9, 10-dimethyl-2,6 (7) diaminotriptycene with dimethoxymethane. In this research, the polymer was selected due to its high surface area and highly interconnected microporous structure. Sorption isotherms of nitrogen (N2), oxygen (O¬2), methane (CH4), carbon dioxide (CO2), ethane (C2H6), propane (C3H8), and n-butane (n-C4H10) were measured at 35 °C over a range of pressures using a Hiden Intelligent Gravimetric Analyzer, IGA. The more condensable gases (C2H6, CO2, C3H8, and n-C4H10) showed high solubility due to their high affinity to the polymer matrix. The permeation coefficients were determined for various gases at 35 °C and pressure difference of 5 bar via the constant-pressure/variable-volume method. The PIM-Trip-TB-2 film exhibited high performance for several high-impact applications, such as O2/N2, H2/N2 and H2/CH4. Also, physical aging for several gases was examined by measuring the permeability coefficients at different periods of time. Moreover, a series of mixed-gas permeation tests was performed using 2 vol.% n-C4H10/98 vol.% CH4 and the results showed similar transport characteristics to other microporous polymers with pores of less than 2 nm. The work performed in this research suggested that PIM-Trip-TB-2 is suitable for the separation of: (i) higher hydrocarbons from methane and (ii) small, non-condensable gases such as O2/N2 and H2/CH4.

  3. Amino-Functionalized ZIF-7 Nanocrystals: Improved Intrinsic Separation Ability and Interfacial Compatibility in Mixed-Matrix Membranes for CO2 /CH4 Separation.

    Science.gov (United States)

    Xiang, Long; Sheng, Luqian; Wang, Chongqing; Zhang, Lixiong; Pan, Yichang; Li, Yanshuo

    2017-08-01

    Highly permeable and selective, as well as plasticization-resistant membranes are desired as promising alternatives for cost- and energy-effective CO 2 separation. Here, robust mixed-matrix membranes based on an amino-functionalized zeolitic imidazolate framework ZIF-7 (ZIF-7-NH 2 ) and crosslinked poly(ethylene oxide) rubbery polymer are successfully fabricated with filler loadings up to 36 wt%. The ZIF-7-NH 2 materials synthesized from in situ substitution of 2-aminobenzimidazole into the ZIF-7 structure exhibit enlarged aperture size compared with monoligand ZIF-7. The intrinsic separation ability for CO 2 /CH 4 on ZIF-7-NH 2 is remarkably enhanced as a result of improved CO 2 uptake capacity and diffusion selectivity. The incorporation of ZIF-7-NH 2 fillers simultaneously makes the neat polymer more permeable and more selective, surpassing the state-of-the-art 2008 Robeson upper bound. The chelating effect between metal (zinc) nodes of fillers and ester groups of a polymer provides good bonding, enhancing the mechanical strength and plasticization resistance of the neat polymer membrane. The developed novel ZIF-7 structure with amino-function and the resulting nanocomposite membranes are very attractive for applications like natural-gas sweetening or biogas purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.; Pan, Yinjin; Li, Minghua; Hoek, Eric M. V.

    2011-01-01

    . The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many

  5. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    Science.gov (United States)

    Huang, Fenglin; Liu, Wenting; Li, Peiying; Ning, Jinxia; Wei, Qufu

    2016-01-01

    A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm) was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–shell composite nanofibrous membrane showed good wettability (16.5°, contact angle), high porosity (69.77%), and super electrolyte compatibility (497%, electrolyte uptake). It had a higher ionic conductivity (13.897 mS·cm−1) than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g−1) was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries. PMID:28787873

  6. Effects of ZnO Nanoparticle on the Gas Separation Performance of Polyurethane Mixed Matrix Membrane.

    Science.gov (United States)

    Soltani, Banafsheh; Asghari, Morteza

    2017-08-11

    Polyurethane (PU)-ZnO mixed matrix membranes (MMM) were fabricated and characterized for gas separation. A thermogravimetric analysis (TGA), a scanning electron microscope (SEM) test and an atomic-force microscopy (AFM) revealed that the physical properties and thermal stability of the membranes were improved through filler loading. Hydrogen Bonding Index, obtained from the Fourier transform infrared spectroscopy (FTIR), demonstrate that the degree of phase separation in PU-ZnO 0.5 wt % MMM was more than the neat PU, while in PU-ZnO 1.0 wt % MMM, the phase mixing had increased. Compared to the neat membrane, the CO₂ permeability of the MMMs increased by 31% for PU-ZnO 0.5 wt % MMM and decreased by 34% for 1.0 wt % ZnO MMM. The CO₂/CH₄ and CO₂/N₂ selectivities of PU-ZnO 0.5 wt % were 18.75 and 64.75, respectively.

  7. Separation of carbon dioxide from flue gas by mixed matrix membranes using dual phase microporous polymeric constituents.

    Science.gov (United States)

    Sekizkardes, Ali K; Kusuma, Victor A; Dahe, Ganpat; Roth, Elliot A; Hill, Lawrence J; Marti, Anne; Macala, Megan; Venna, Surendar R; Hopkinson, David

    2016-09-27

    This study presents the fabrication of a new mixed matrix membrane using two microporous polymers: a polymer of intrinsic microporosity PIM-1 and a benzimidazole linked polymer, BILP-101, and their CO 2 separation properties from post-combustion flue gas. 17, 30 and 40 wt% loadings of BILP-101 into PIM-1 were tested, resulting in mechanically stable films showing very good interfacial interaction due to the inherent H-bonding capability of the constituent materials. Gas transport studies showed that BILP-101/PIM-1 membranes exhibit high CO 2 permeability (7200 Barrer) and selectivity over N 2 (15). The selected hybrid membrane was further tested for CO 2 separation using actual flue gas from a coal-fired power plant.

  8. Research and development of lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi

    2013-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6 Li. In Japan, new lithium isotope separation technique using ionic-liquid impregnated organic membranes have been developed. The improvement in the durability of the ionic-liquid impregnated organic membrane is one of the main issues for stable, long-term operation of electrodialysis cells while maintaining good performance. Therefore, we developed highly-durable ionic-liquid impregnated organic membrane. Both ends of the ionic-liquid impregnated organic membrane were covered by a nafion 324 overcoat to prevent the outflow of the ionic liquid. The transmission of Lithium aqueous solution after 10 hours under the highly-durable ionic-liquid impregnated organic membrane is almost 13%. So this highly-durable ionic-liquid impregnated organic membrane for long operating of electrodialysis cells has been developed through successful prevention of ion liquid dissolution. (J.P.N.)

  9. Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost

    Science.gov (United States)

    Olagunju, O. A.; Musonge, P.

    2017-07-01

    This study investigates the performance of a packed bed membrane reactor in the transesterification process of triglycerides to methyl ester using soyabean oil as feedstock. A TiO2/Al2O3 ceramic microporous membrane was selected due to its chemical inert nature and thermal stability to selectively remove the product from the reaction medium. CaO impregnated on the surface of activated carbon was packed into the membrane and acted as catalyst. The synthesized catalyst had a total loading of 40.50 % and was characterized by XRD and temperature-programmed desorption of CO2 (CO2-TPD). The crude biodiesel produced was micro-filtered by the ceramic membrane with a pore size of 0.02 μm to retain the unreacted oil and free glycerol, at the transmembrane pressure of 100 KPa. The best condition was achieved with a temperature of 65 °C, methanol/oil molar ratio of 6:1 for 150 minutes, which resulted in the highest FAME yield of 94 %. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The product obtained was mainly composed of methyl esters. Glycerol was not detected in the product stream due to the ability of the membrane to retain the glycerol and the unreacted oil in the medium, which solved the issue of glycerol separation from biodiesel.

  10. A continuous membrane microbioreactor system for development of integrated pectin modification and separation processes

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham Bin; Pinelo, Manuel; Samanta, Kama

    2011-01-01

    present a continuous membrane microbioreactor prototype for development of enzyme catalyzed degradation of pectin. Membrane reactors are becoming increasingly important for the novel ‘biorefining’ type of processes that either require product removal to avoid product inhibition or rest on partial...... hydrolysis of the substrate to obtain e.g. value-added oligosaccharides from complex biopolymers. The microbioreactor prototype was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) and designed as a loop reactor (working volume approximately 190μL) integrated...... with a regenerated cellulose membrane for separation of low molecular weight products. The main technical considerations and challenges related to establishing the continuous membrane microbioreactor are discussed. The workability of the prototype was validated by comparing the process data at microscale to those...

  11. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation.

    Science.gov (United States)

    Tao, Yehan; Xue, Qingzhong; Liu, Zilong; Shan, Meixia; Ling, Cuicui; Wu, Tiantian; Li, Xiaofang

    2014-06-11

    First-principle density functional theory (DFT) calculation and molecular dynamic (MD) simulation are employed to investigate the hydrogen purification performance of two-dimensional porous graphene material (PG-ESX). First, the pore size of PG-ES1 (3.2775 Å) is expected to show high selectivity of H2 by DFT calculation. Then MD simulations demonstrate the hydrogen purification process of the PG-ESX membrane. The results indicate that the selectivity of H2 over several other gas molecules that often accompany H2 in industrial steam methane reforming or dehydrogenation of alkanes (such as N2, CO, and CH4) is sensitive to the pore size of the membrane. PG-ES and PG-ES1 membranes both exhibit high selectivity for H2 over other gases, but the permeability of the PG-ES membrane is much lower than the PG-ES1 membrane because of the smaller pore size. The PG-ES2 membrane with bigger pores demonstrates low selectivity for H2 over other gases. Energy barrier and electron density have been used to explain the difference of selectivity and permeability of PG-ESX membranes by DFT calculations. The energy barrier for gas molecules passing through the membrane generally increase with the decreasing of pore sizes or increasing of molecule kinetic diameter, due to the different electron overlap between gas and a membrane. The PG-ES1 membrane is far superior to other carbon membranes and has great potential applications in hydrogen purification, energy clean combustion, and making new concept membrane for gas separation.

  12. Effect of addition of Proline, ionic liquid [Choline][Pro] on CO2 separation properties of poly(amidoamine) dendrimer / poly(ethylene glycol) hybrid membranes

    Science.gov (United States)

    Duan, S. H.; Kai, T.; Chowdhury, F. A.; Taniguchi, I.; Kazama, S.

    2018-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(ethylene glycol) (PEGDMA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PEGDMA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, proline, choline and ionic liquid [Choline][Pro] compounds were selected as rate promoters that were used to prepare PAMAM/PEGDMA hybrid membranes. The effect of addition of proline, choline, IL [Choline][Pro] on separation performance of PAMAM/PEGDMA) hybrid membranes for CO2/H2 separation was investigated. Amino acid proline, choline, and IL [Choline][Pro] were used to promote CO2 and amine reaction. With the addition of [Choline][Pro] into PAMAM/PEG membrane, CO2 permeance of PAMAM/PEG hybrid membranes are increased up to 46% without any change of selectivity of membrane for CO2.

  13. (Ce,Gd)O2−δ-based dual phase membranes for oxygen separation

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Hendriksen, Peter Vang

    2014-01-01

    and characterized with respect to sinterability, oxygen permeation rate, phase interaction, and microstructure. These factors are important when considering the development of composite membranes with CGO as the oxide ion conducting phase. Composite membranes with relative densities >91% were fabricated using....... The results indicate a promising prospect for further tailoring and optimization of CGO-based composites for application in oxygen separation....

  14. Ionizable polyethers as specific metal ion carriers in liquid-liquid extraction and liquid membrane separations

    International Nuclear Information System (INIS)

    Walkowiak, W.; Charewicz, W.A.; Bartsch, R.A.; Ndip, G.M.

    1988-01-01

    Consideration is given to results of investigations into competitive extraction and penetration through a liquid membrane of alkali and alkaline earth cations from aqueous solutions by a series of lipophilic and ionizable acyclic polyethers of various molecular structure. It is shown that specificity and selectiviy of cation carriers in liquid-liquid extraction and liquid membrane separation depend on molecular structure of acyclic polyethers

  15. Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas

    KAUST Repository

    Omole, Imona C.

    2011-03-01

    The performance of defect-free cross-linkable polyimide asymmetric hollow fiber membranes was characterized using an aggressive feed stream containing up to 1000ppm toluene. The membrane was shown to be stable against toluene-induced plasticization compared with analogs made from Matrimid®, a commercial polyimide. Permeation and sorption analysis suggest that the introduction of toluene vapors in the feed subjects the membrane to antiplasticization, as the permeance decreases significantly (to less than 30%) under the most aggressive conditions tested. Separation efficiencies reflected by permselectivities were less affected. The effect of the toluene on the membrane was shown to be reversible when the toluene was removed. © 2010 Elsevier B.V.

  16. Toluene impurity effects on CO2 separation using a hollow fiber membrane for natural gas

    KAUST Repository

    Omole, Imona C.; Bhandari, Dhaval A.; Miller, Stephen J.; Koros, William J.

    2011-01-01

    The performance of defect-free cross-linkable polyimide asymmetric hollow fiber membranes was characterized using an aggressive feed stream containing up to 1000ppm toluene. The membrane was shown to be stable against toluene-induced plasticization compared with analogs made from Matrimid®, a commercial polyimide. Permeation and sorption analysis suggest that the introduction of toluene vapors in the feed subjects the membrane to antiplasticization, as the permeance decreases significantly (to less than 30%) under the most aggressive conditions tested. Separation efficiencies reflected by permselectivities were less affected. The effect of the toluene on the membrane was shown to be reversible when the toluene was removed. © 2010 Elsevier B.V.

  17. A strain-controlled C2N monolayer membrane for gas separation in PEMFC application

    Science.gov (United States)

    Deng, Shengwei; Hu, Hui; Zhuang, Guilin; Zhong, Xing; Wang, Jianguo

    2018-05-01

    Ultrathin membranes with controllable pore sizes have great potential to realize high-selectivity gas separation at low energy cost, especially for those mixtures with narrow size distributions. Using a combination of van der Waals-corrected density functional theory (DFT) calculations and molecular dynamics (MD) simulation, we examine the separation ability of biaxial stretched monolayer C2N nanosheets which is applied to the O2 separation from CO/CO2/O2 mixtures in the cathode of proton exchange membrane fuel cells (PEMFC). The DFT calculations show that the diffusion energy barrier for molecules passing through the membrane followed by CO, CO2 and O2 in descending order, and an overall decrease of energy barriers due to the widen the pore size is observed with the increase of applied strains. Furthermore, MD results show that the nanosheet can effectively purify O2 from CO2 and CO with a strain from 8% to 10%. It confirms that the selectivity is determined by the electronic structure related interaction in addition to the kinetic diameter of individual molecules. The O2 permeability is improved progressively with further increase of strain, and small amount of CO2 begins to permeate through the nanosheet at relatively large strain, while the excellent CO isolation is not compromised until the theoretical maximum strain.

  18. Effect of solvent concentration on performance of polysulfone membrane for filtration and separation

    Science.gov (United States)

    Syafiq Mohamad Sofian, Muhamad; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran

    2017-08-01

    This study was conducted to investigate the effect of solvent concentration on the performance of polysulfone membrane via airbrush spray method. The solvent concentration was varied from 73% to 80% in dope solution. The study also investigated airbrush processing parameter such as spray time and distance at different solvent concentration. The prepared membrane was characterized in respect to its morphology and the performance of the membrane were evaluated via gas permeability performance. This study found that the membrane fiber size was reduced as solvent concentration increases. When time increased the diameter of fiber also increased. The distance also affected the fiber size, when the distance increased the diameter of fiber became smaller. 80% of solvent concentration has better filtration and separation ability compared to other solvent due to its porosity and morphology. From the gas permeability cell testing it shows that the permeability is increasing as the solvent concentration decrease.

  19. Synthesis of a composite inorganic membrane for the separation of nitrogen, tetrafluoromethane and hexafluoropropylene

    Directory of Open Access Journals (Sweden)

    Hertzog Bissett

    2013-09-01

    Full Text Available The advanced use of inorganic membranes, such as zeolites, in large-scale industrial processes is hindered by the inability to manufacture continuous and defect-free membranes. We therefore aimed to construct such a defect-free membrane. Various zeolites were synthesised on the inner surface of ?-alumina support tubes by a hydrothermal process. Gas permeation properties were investigated at 298 K for single component systems of N2, CF4 and C3F6. Ideal selectivities lower than Knudsen selectivities were obtained as a result of defects from intercrystalline slits and crack formation during synthesis and template removal. A composite ceramic membrane consisting of a ceramic support structure, a mordenite framework inverted intermediate zeolite layer and a Teflon AF 2400 top layer was developed to improve separation. The Teflon layer sealed possible defects present in the separation layer forcing the gas molecules to follow the path through the zeolite pores. Ideal selectivities of 88 and 71 were obtained for N2/CF4 and N2/C3F6 respectively. Adsorption experiments performed on materials present in the membrane structure suggested that although adsorption of C3F6 onto Teflon AF 2400 compared to CF4 results in a considerable contribution to permeation for the composite ceramic membrane, the sealing effect of the zeolite layer by the Teflon layer is the reason for the large N2/CF4 and N2/C3F6 selectivities obtained. The Teflon layer effectively sealed intercrystalline areas in-between zeolite crystals, which resulted in high ideal selectivies for N2/CF4 and N2/C3F6.

  20. Membrane systems for energy efficient separation of light gases

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Archuleta, T.; Barbero, R. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separation opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.

  1. Influence of Active Layer on Separation Potentials of Nanofiltration Membranes for Inorganic Ions.

    Science.gov (United States)

    Wadekar, Shardul S; Vidic, Radisav D

    2017-05-16

    Active layers of two fully aromatic and two semi-aromatic nanofiltration membranes were studied along with surface charge at different electrolyte composition and effective pore size to elucidate their influence on separation mechanisms for inorganic ions by steric, charge, and dielectric exclusion. The membrane potential method used for pore size measurement is underlined as the most appropriate measurement technique for this application owing to its dependence on the diffusional potentials of inorganic ions. Crossflow rejection experiments with dilute feed composition indicate that both fully aromatic membranes achieved similar rejection despite the differences in surface charge, which suggests that rejection by these membranes is exclusively dependent on size exclusion and the contribution of charge exclusion is weak. Rejection experiments with higher ionic strength and different composition of the feed solution confirmed this hypothesis. On the other hand, increase in the ionic strength of feed solution when the charge exclusion effects are negligible due to charge screening strongly influenced ion rejection by semi-aromatic membranes. The experimental results confirmed that charge exclusion contributes significantly to the performance of semi-aromatic membranes in addition to size exclusion. The contribution of dielectric exclusion to overall ion rejection would be more significant for fully aromatic membranes.

  2. Dysprosium separation from aqueous phase by non-dispersive solvent extraction employing hollow fibre membrane module

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Kain, V.

    2017-01-01

    Rare earth elements (REEs) consist of fourteen lanthanides and three elements which are Sc, Y and La resulting in total 17 REEs. In the last decade, these rare earths elements which have unique physical and chemical properties have been highly in demand for their application in almost all walks of life. Various methods such as ion exchange, precipitation and solvent extraction have been used to recover these elements from aqueous solutions. These traditional methods have some inherent disadvantages like handling of hazardous organic chemicals, ineffectiveness to recover a very low concentration of contaminated source etc. In this regard, an important method i.e. liquid membrane offers separation scheme; which combines the characteristics, of solvent extraction and solid membrane separation, to overcome the disadvantages of conventional techniques. Various experiments were carried out to evaluate the effect of feed acidity, metal ion concentration, carrier concentration, feed composition, flow rates and phase ratio on the transport of rare earths metal ions across the membrane

  3. A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, B.R. [Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Noori, Md.T. [Department of Agriculture and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 (India); Ghangrekar, M.M., E-mail: ghangrekar@civil.iitkgp.ernet.in [Department of Civil Engineering, Indian Institute of Technology, Kharagpur, 721302 (India)

    2016-10-01

    Composite membranes were developed from PVA-borosilicate (MP) and PVA-Nafion-borosilicate (MPN) for application in microbial fuel cells (MFCs). The membranes were characterized in terms of water uptake, PBS uptake, oxygen diffusion and proton conductivity. Proton conductivity for MPN (0.07 Scm{sup −1}) was found to be higher as compared to that of MP (0.03 Scm{sup −1}). Oxygen diffusion coefficient for MPN was 1.47 fold lower than that for MP. As a result, MFC with PVA-Nafion-borosilicate membrane exhibited maximum power density of 6.8 Wm{sup −3}, which was 151% higher than the power produced by MFC having PVA-borosilicate membrane and it was comparable with MFC using Nafion 117 (7.1 Wm{sup −3}) membrane separator. This study demonstrates that borosilicate glass membrane incorporated with PVA-Nafion matrix can be a suitable alternative to costly polymeric membrane to increase power output of MFC. Using such membranes MFC can be fabricated at around 11 fold reduced cost as compared to Nafion 117. - Highlights: • Novel membranes using PVA and borosilicate composite were fabricated. • Proton diffusion for MPN was comparable with Nafion117. • MFC-PN produced power density comparable to MFC with Nafion 117 membrane. • MPN was fabricated at almost 11 times reduced cost than Nafion 117 membranes.

  4. Polymeric membrane systems of potential use for battery separators

    Science.gov (United States)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  5. Finsler Geometry Modeling of Phase Separation in Multi-Component Membranes

    Directory of Open Access Journals (Sweden)

    Satoshi Usui

    2016-08-01

    Full Text Available A Finsler geometric surface model is studied as a coarse-grained model for membranes of three components, such as zwitterionic phospholipid (DOPC, lipid (DPPC and an organic molecule (cholesterol. To understand the phase separation of liquid-ordered (DPPC rich L o and liquid-disordered (DOPC rich L d , we introduce a binary variable σ ( = ± 1 into the triangulated surface model. We numerically determine that two circular and stripe domains appear on the surface. The dependence of the morphological change on the area fraction of L o is consistent with existing experimental results. This provides us with a clear understanding of the origin of the line tension energy, which has been used to understand these morphological changes in three-component membranes. In addition to these two circular and stripe domains, a raft-like domain and budding domain are also observed, and the several corresponding phase diagrams are obtained.

  6. Analysis of Gas Separated for Silica Membrane in Hydrogen Gas Production by Using Nuclear Reactor Thermal

    International Nuclear Information System (INIS)

    Pandiangan, Tumpal

    2007-01-01

    One of the hydrogen production method that have been developed is a thermo-chemical method. This method is permissible to increase thermal efficiency up to 70 % and to decrease of operational temperature from 800℃ down to 450 ℃. One of several factor that can increase of the hydrogen production thermal efficiency at the above method is to apply a separated membrane that have a relative good for permeansce and selectivity performance. It had been carried out for analyzing of time and temperature CVD (Chemical Vapouration Deposition) that is affected to permeansce and power selecting performance of the membrane. The layering membrane silica process was carried out by means of the CVD method at atmosphere pressure. The membrane silica layering that was observed was developed by a CVD method in atmospheric pressure. The silica membrane was formed at the out side surface of the alumina gamma cylinder that had been coated by alumina gamma which it has average porosity about of 0.01 mic.meter. A permeansce and separation power performance of the membrane silica that was carried out by means of CVD method at 600 ℃ on H 2 , He and N 2 are : 2 x 10 -10 , 9 x 10 -9 and 4 x 10 -7 mol Pa/m 2 s and the selected power of H 2 /N 2 = 45. The permeansce of that membrane is relative good but the selected power is relative not so good. (author)

  7. Maternal serum C-reactive protein in early pregnancy and occurrence of preterm premature rupture of membranes and preterm birth.

    Science.gov (United States)

    Moghaddam Banaem, Lida; Mohamadi, Bita; Asghari Jaafarabadi, Mohamad; Aliyan Moghadam, Narges

    2012-05-01

    The aim of this study was to determine the relationship between maternal serum C-reactive protein (CRP) levels in the first 20 weeks of pregnancy and later occurrence of preterm premature rupture of membranes and preterm birth. A prospective cohort study that measured maternal serum CRP levels in 778 pregnant women in the first half of pregnancy was performed in the city of Noor (north Iran), and included follow-up of patients up to time of delivery. Preterm premature rupture of membranes and preterm birth were defined as the occurrence of membranes rupture and birth, respectively before 37 weeks of gestation. Of the 778 pregnancies studied, 19 (2.41%) preterm premature rupture of membranes and 58 (7.3%) preterm births were seen. Median CRP levels in preterm premature rupture of membranes and preterm birth cases were much higher than in term deliveries (7 and 6.8 respectively vs 2.4 mg/L; 66.67 and 64.76, respectively vs 24.38 nmol/L). CRP levels >4 mg/L had statistically significant relationships with preterm premature rupture of membranes (OR 5.91, 95% CI 2.07-16.89) and preterm birth (OR 8.95, 95% CI 4.60-17.43). With a cut-off level of 4 mg/L of CRP, sensitivity, specificity, and likelihood ratios (LR(+) and LR(-) ) for preterm birth were 81, 70, 2.70, 0.28%, respectively, and for preterm premature rupture of membranes they were 79, 67, 2.41 and 0.31%, respectively. It seems that the inflammatory marker, CRP, can be used in the early stages of pregnancy to identify women at risk of experiencing preterm premature rupture of membranes and preterm birth. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.

  8. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Fenglin Huang

    2016-01-01

    Full Text Available A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–shell composite nanofibrous membrane showed good wettability (16.5°, contact angle, high porosity (69.77%, and super electrolyte compatibility (497%, electrolyte uptake. It had a higher ionic conductivity (13.897 mS·cm−1 than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g−1 was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries.

  9. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions.

    Science.gov (United States)

    Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang

    2017-07-06

    Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.

  10. Computational Screening of MOF-Based Mixed Matrix Membranes for CO2/N2 Separations

    Directory of Open Access Journals (Sweden)

    Zeynep Sumer

    2016-01-01

    Full Text Available Atomically detailed simulations were used to examine CO2/N2 separation potential of metal organic framework- (MOF- based mixed matrix membranes (MMMs in this study. Gas permeability and selectivity of 700 new MMMs composed of 70 different MOFs and 10 different polymers were calculated for CO2/N2 separation. This is the largest number of MOF-based MMMs for which computational screening is done to date. Selecting the appropriate MOFs as filler particles in polymers resulted in MMMs that have higher CO2/N2 selectivities and higher CO2 permeabilities compared to pure polymer membranes. We showed that, for polymers that have low CO2 permeabilities but high CO2 selectivities, the identity of the MOF used as filler is not important. All MOFs enhanced the CO2 permeabilities of this type of polymers without changing their selectivities. Several MOF-based MMMs were identified to exceed the upper bound established for polymers. The methods we introduced in this study will create many opportunities to select the MOF/polymer combinations with useful properties for CO2 separation applications.

  11. Pilot-scale multistage membrane process for the separation of CO2 from LNG-fired flue gas

    KAUST Repository

    Choi, Seung Hak

    2013-06-01

    In this study, a multistage pilot-scale membrane plant was constructed and operated for the separation of CO2 from Liquefied Natural Gas (LNG)-fired boiler flue gas of 1000 Nm3/day. The target purity and recovery of CO2 were 99 vol.% and 90%, respectively. For this purpose, asymmetric polyethersulfone (PES) hollow fibers membranes has been developed in our previous work and has evaluated the effects of operating pressure and feed concentration of CO2 on separation performance. The operating and permeation data obtained were also analyzed in relation with the numerical simulation data using countercurrent flow model. Based on these results, in this study, four-staged membrane process including dehumidification process has been designed, installed, and operated to demonstrate the feasibility of multistage membrane systems for removing CO2 from flue gases. The operation results using this plant were compared to the numerical simulation results on multistage membrane process. The experimental results matched well with the numerical simulation data. The concentration and the recovery of CO2 in the permeate stream of final stage were ranged from 95-99 vol.% and 70-95%, respectively, depending on the operating conditions. This study demonstrated the applicability of the membrane-based pilot plant for CO2 recovery from flue gas. © 2013 Elsevier B.V. All rights reserved.

  12. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    International Nuclear Information System (INIS)

    Khan, Jeeshan; Tripathi, Bijay P.; Saxena, Arunima; Shahi, Vinod K.

    2007-01-01

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH - formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H + produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications

  13. Mixed protonic-electronic conductors for hydrogen separation membranes

    Science.gov (United States)

    Song, Sun-Ju

    2003-10-01

    The chemical functionality of mixed protonic-electronic conductors arises out of the nature of the defect structure controlled by thermodynamic defect equilibria of the materials, and results in the ability to transport charged species. This dissertation is to develop a fundamental understanding of defect chemistry and transport properties of mixed protonic-electronic conducting perovskites for hydrogen separation membranes. Furthermore, it was aimed to develop the algorithm to predict how these properties affect the permeability in chemical potential gradients. From this objective, first of all, the appropriate equations governing proton incorporation into perovskite oxides were suggested and the computer simulation of defect concentrations across a membrane oxide under various conditions were performed. Electrical properties of p-type electronic defects at oxidizing conditions and n-type electrical properties of SrCe 0.95Eu0.05O3-delta at reducing atmospheres were studied. Defect equilibrium diagrams as a function of PO2 , PH2O ) produced from the Brouwer method were verified by computational simulation and electrical conductivity measurements. The chemical diffusion of hydrogen through oxide membranes was described within the framework of Wagner's chemical diffusion theory and it was solved without any simplifying assumptions on functional dependence of partial conductivity due to the successful numerical modeling of partial conductivities as a function of both hydrogen and oxygen partial pressures. Finally the hydrogen permeability of Eu and Sm doped SrCeO3-delta was studied as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure gradient. The dopant dependence of hydrogen permeability was explained in terms of the difference in ionization energy and ionic radius of dopant.

  14. The role of placental MHC class I expression in immune-assisted separation of the fetal membranes in cattle.

    Science.gov (United States)

    Benedictus, Lindert; Koets, Ad P; Rutten, Victor P M G

    2015-11-01

    The bovine fetus, like that of other species, is a semi-allograft and the regulation of materno-fetal alloimmunity is critical to prevent its immunological rejection. In cattle, a materno-fetal alloimmune response may be beneficial at parturition. It is hypothesized that upregulation of major histocompatibility complex (MHC) class I on the fetal membranes toward the end of gestation induces a maternal alloimmune response that activates innate immune effector mechanisms, aiding in the loss of the adherence between the fetal membranes and the uterus. Loss of fetal-maternal adherence is pivotal for the timely expulsion of the fetal membranes and the absence (or reduction) of the maternal immune response may lead to retained fetal membranes, a common reproductive disorder of cattle. Currently, there is no effective treatment for retained fetal membranes and a better understanding of materno-fetal alloimmune-assisted separation of the fetal membranes may lead to novel targets for the treatment of retained fetal membranes. In this review, the regulation of materno-fetal alloimmunity during pregnancy in cattle, with a focus on placental MHC class I expression, and the importance of maternal alloimmunity for the timely separation of the fetal membranes, are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Pentiptycene-based polyurethane with enhanced mechanical properties and CO2-plasticization resistance for thin film gas separation membranes.

    Science.gov (United States)

    Pournaghshband Isfahani, Ali; Sadeghi, Morteza; Wakimoto, Kazuki; Shrestha, Binod Babu; Bagheri, Rouhollah; Sivaniah, Easan; Ghalei, Behnam

    2018-04-30

    Development of thin film composite (TFC) membranes offers an opportunity to achieve the permeability/selectivity requirements for optimum CO2 separation performance. However, the durability and performance of thin film gas separation membranes are mostly challenged by weak mechanical properties and high CO2 plasticization. Here, we designed new polyurethane (PU) structures with bulky aromatic chain extenders that afford preferred mechanical properties for ultra-thin film formation. An improvement of about 1500% in Young's modulus and 600% in hardness was observed for pentiptycene-based PUs compared to typical PU membranes. Single (CO2, H2, CH4, and N2) and mixed (CO2/N2 and CO2/CH4) gas permeability tests were performed on the PU membranes. The resulting TFC membranes showed a high CO2 permeance up to 1400 GPU (10-6 cm3(STP) cm-2s-1 cmHg-1) and the CO2/N2 and CO2/H2 selectivities of about 22 and 2.1, respectively. The enhanced mechanical properties of pentiptycene-based PUs results in high performance thin membranes with the similar selectivity of the bulk polymer. The thin film membranes prepared from pentiptycene-based PUs also showed a two-fold enhanced plasticization resistance compared to non-pentiptycene containing PU membranes.

  16. Carbon Nanotube- and Carbon Fiber-Reinforcement of Ethylene-Octene Copolymer Membranes for Gas and Vapor Separation

    Czech Academy of Sciences Publication Activity Database

    Sedláková, Zuzana; Clarizia, G.; Bernardo, P.; Jansen, J.C.; Slobodian, P.; Svoboda, P.; Kárászová, Magda; Friess, K.; Izák, Pavel

    2014-01-01

    Roč. 4, č. 1 (2014), s. 20-39 ISSN 2077-0375 R&D Projects: GA ČR GAP106/10/1194 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111; MicroPERLA(IT) PON01_01840 Institutional support: RVO:67985858 Keywords : membrane separation * mixed membrane matrix * transport properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  17. Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same

    Science.gov (United States)

    Gerald II, Rex E.; Ruscic, Katarina J.; Sears, Devin N.; Smith, Luis J.; Klingler, Robert J.; Rathke, Jerome W.

    2012-07-24

    The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

  18. Effects of dietary fat on lipid composition of serum and erythrocytes of the swine and in vitro incorporation of fatty acids into erythrocyte membranes

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    1974-01-01

    Changes in ftty acid patterns of lipids in serum and erythrocytes induced by dietary fats and in vitro incorporation of fatty acids into erythrocyte membranes were investigated with pigs. On feeding various diets, it was found that fatty acid composition of serum and erythrocytes could be modified and altered toward the fatty acid pattern of the diet. In vitro, the incorporation of labelled fatty acids into erythrocyte membranes was accelerated by the addition of cofactors such as lysolecithin, CoA and ATP. Dietary fats also had certain effects on the incorporation of fatty acids into erythrocyte membranes. Erythrocytes, collected from the blood of pigs fed corn oil, incorporated and also released more labelled linoleate than those of pigs fed hydrogenated soybean oil. Palmitic acid was more slowly incorporated into erythrocyte membranes than linoleic acid in the pigs fed both a commercial chow and scheduled meals, indicating selective esterification of fatty acids in the erythrocyte membranes. (author)

  19. Synthesis of Silicalite Membrane with an Aluminum-Containing Surface for Controlled Modification of Zeolitic Pore Entries for Enhanced Gas Separation

    Directory of Open Access Journals (Sweden)

    Shaowei Yang

    2018-02-01

    Full Text Available The separation of small molecule gases by membrane technologies can help performance enhancement and process intensification for emerging advanced fossil energy systems with CO2 capture capacity. This paper reports the demonstration of controlled modification of zeolitic channel size for the MFI-type zeolite membranes to enhance the separation of small molecule gases such as O2 and N2. Pure-silica MFI-type zeolite membranes were synthesized on porous α-alumina disc substrates with and without an aluminum-containing thin skin on the outer surface of zeolite membrane. The membranes were subsequently modified by on-stream catalytic cracking deposition (CCD of molecular silica to reduce the effective openings of the zeolitic channels. Such a pore modification caused the transition of gas permeation from the N2-selective gaseous diffusion mechanism in the pristine membrane to the O2-selective activated diffusion mechanism in the modified membrane. The experimental results indicated that the pore modification could be effectively limited within the aluminum-containing surface of the MFI zeolite membrane to minimize the mass transport resistance for O2 permeation while maintaining its selectivity. The implications of pore modification on the size-exclusion-enabled gas selectivity were discussed based on the kinetic molecular theory. In light of the theoretical analysis, experimental investigation was performed to further enhance the membrane separation selectivity by chemical liquid deposition of silica into the undesirable intercrystalline spaces.

  20. The practical use of resistance modelling to interpret the gas separation properties of hollow fiber membranes

    International Nuclear Information System (INIS)

    Ahmad Fauzi Ismail; Shilton, S.J.

    2000-01-01

    A simple resistance modelling methodology is presented for gas transport through asymmetric polymeric membranes. The methodology allows fine structural properties such as active layer thickness and surface porosity, to be determined from experimental gas permeation data. This paper, which could be regarded as a practical guide, shows that resistance modeling, if accompanied by realistic working assumptions, need not be difficult and can provide a valuable insight into the relationships between the membrane fabrication conditions and performance of gas separation membranes. (Author)

  1. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water

    KAUST Repository

    Duong, Hoang Hanh Phuoc; Chung, Neal Tai-Shung

    2014-01-01

    Large amounts of oily wastewater have been produced from various industries. The main challenge of oily wastewater treatments is to separate the stable emulsified oil particles from water. Therefore, the aim of this study is to investigate the effectiveness of forward osmosis (FO) processes to treat the stable oil-water emulsions. The FO technique has been demonstrated successfully for the treatment of a wide range of oil-water emulsions from a low to a very high concentration up to 200,000. ppm. The dependence of separation performance on oily feed concentration and flow rate has been investigated. Water can be separated from oily feeds containing 500. ppm or 200,000. ppm emulsified oil at a relatively high flux of 16.5±1.2. LMH or 11.8±1.6. LMH respectively by using a thin film composite membrane PAN-TFC and 1. M NaCl as the draw solution. Moreover, this membrane can achieve an oil rejection of 99.88% to produce water with a negligible oil level. Due to the presence of emulsified oil particles in the oily feed solutions, the membrane fouling has been addressed in this study. Better anti-fouling TFC FO membranes are needed. © 2013 Elsevier B.V.

  2. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water

    KAUST Repository

    Duong, Hoang Hanh Phuoc

    2014-02-01

    Large amounts of oily wastewater have been produced from various industries. The main challenge of oily wastewater treatments is to separate the stable emulsified oil particles from water. Therefore, the aim of this study is to investigate the effectiveness of forward osmosis (FO) processes to treat the stable oil-water emulsions. The FO technique has been demonstrated successfully for the treatment of a wide range of oil-water emulsions from a low to a very high concentration up to 200,000. ppm. The dependence of separation performance on oily feed concentration and flow rate has been investigated. Water can be separated from oily feeds containing 500. ppm or 200,000. ppm emulsified oil at a relatively high flux of 16.5±1.2. LMH or 11.8±1.6. LMH respectively by using a thin film composite membrane PAN-TFC and 1. M NaCl as the draw solution. Moreover, this membrane can achieve an oil rejection of 99.88% to produce water with a negligible oil level. Due to the presence of emulsified oil particles in the oily feed solutions, the membrane fouling has been addressed in this study. Better anti-fouling TFC FO membranes are needed. © 2013 Elsevier B.V.

  3. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi

    2013-08-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower molecules. In this work, we combine membrane synthesis, detailed microstructural characterization, and mixed gas permeation measurements to demonstrate that nanoporous flake/polymer membranes allows significant improvement in gas permeability while maintaining selectivity. We begin with the primary-amine-intercalated porous layered silicate SAMH-3 and show that it can be exfoliated using a high shear rate generated by a high-speed mixer. The exfoliated SAMH-3 flakes were used to form SAMH-3/cellulose acetate (CA) membranes. Their microstructure was analyzed by small angle X-ray scattering (SAXS), revealing a high degree of exfoliation of AMH-3 layers in the CA membrane with a small number of layers (4-8) in the exfoliated flakes. TEM analysis visualized the thickness of the flakes as 15-30nm, and is consistent with the SAXS analysis. The CO2/CH4 gas separation performance of the CA membrane was significantly increased by incorporating only 2-6wt% of SAMH-3 flakes. There was a large increase in CO2 permeability with maintenance of selectivity. This cannot be explained by conventional models of transport in flake-containing membranes, and indicates complex transport paths in the membrane. It is also in contrast to the much higher loadings of isotropic particles required for similar enhancements. The present approach may allow avoidance of particle aggregation and poor interfacial adhesion associated with larger quantities of inorganic fillers. © 2013 Elsevier B.V.

  4. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations

    KAUST Repository

    Xu, Liren

    2014-06-01

    This paper reports the formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes. 6FDA-polyimides are of great interest for advanced gas separation membranes, and 6FDA-DAM polyimide is a representative polymer in this family with attractive dense film properties for several potential applications. The work reported here for the 6FDA-DAM polyimide provides insight for the challenging fabrication of defect-free asymmetric hollow fiber membranes for this class of 6FDA-polyimides, which behave rather different from lower free volume polymers. Specifically, the 6FDA based materials show relatively slow phase separation rate in water quench baths, which presents a challenge for fiber spinning. For convenience, we refer to the behavior as more "non-solvent resistant" in comparison to other lower free volume polymers, since the binodal phase boundary is displaced further from the conventional position near the pure polymer-solvent axis on a ternary phase diagram in conventional polymers like Matrimid® and Ultem®. The addition of lithium nitrate to promote phase separation has a useful impact on 6FDA-DAM asymmetric hollow fiber formation. 6FDA-DAM phase diagrams using ethanol and water as non-solvent are reported, and it was found that water is less desirable as a non-solvent dope additive for defect-free fiber spinning. Phase diagrams are also reported for 6FDA-DAM dope formulation with and without the addition of lithium nitrate, and defect-free asymmetric hollow fiber membranes are reported for both cases. The effect of polymer molecular weight on defect-free fiber spinning was also investigated. Gas transport properties and morphology of hollow fibers were characterized. With several thorough case studies, this work provides a systematic guideline for defect-free fiber formation from 6FDA-polymers. © 2014 Elsevier B.V.

  5. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  6. Two-Ply Composite Membranes with Separation Layers from Chitosan and Sulfoethylcellulose on a Microporous Support Based on Poly(diphenylsulfone-N-phenylphthalimide

    Directory of Open Access Journals (Sweden)

    Svetlana V. Kononova

    2017-12-01

    Full Text Available Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone-N-phenylphthalimide and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the separation of aqueous alcohol (ethanol, propan-2-ol mixtures of different compositions. When the mixtures to be separated consist of less than 15 wt % water in propan-2-ol, the membranes composed of polyelectrolytes with the same molar fraction of ionogenic groups (-NH3+ for chitosan and -SO3− for sulfoethylcellulose show high permselectivity (the water content in the permeate was 100%. Factors affecting the structure of a non-porous layer of the polyelectrolyte complex formed on the substrate surface and the contribution of that complex to changes in the transport properties of membranes are discussed. The results indicate significant prospects for the use of chitosan and sulfoethylcellulose for the formation of highly selective pervaporation membranes.

  7. Nanostructured poly(styrene-b-butadiene-b-styrene) (SBS) membranes for the separation of nitrogen from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Buonomenna, Maria Giovanna; Golemme, Giovanni [Department of Chemical Engineering and Materials, University of Calabria, and Consorzio INSTM, Rende (Italy); Tone, Caterina Maria; De Santo, Maria Penelope; Ciuchi, Federica [IPCF-CNR UOS Cosenza, c/o Physics Department, University of Calabria, Rende (Italy); Perrotta, Enrico [Department of Ecology, University of Calabria, Rende (Italy)

    2012-04-24

    The preparation and characterization of new, tailor-made polymeric membranes using poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymers for gas separation are reported. Structural differences in the copolymer membranes, obtained by manipulation of the self-assembly of the block copolymers in solution, are characterized using atomic force microscopy, transmission electron microscopy, and the transport properties of three gases (CO{sub 2}, N{sub 2}, and CH{sub 4}). The CH{sub 4}/N{sub 2} ideal selectivity of 7.2, the highest value ever reported for block copolymers, with CH{sub 4} permeability of 41 Barrer, is obtained with a membrane containing the higher amount of polybutadiene (79 wt%) and characterized by a hexagonal array of columnar polystyrene cylinders normal to the membrane surface. Membranes with such a high separation factor are able to ease the exploitation of natural gas with high N{sub 2} content. The CO{sub 2}/N{sub 2} ideal selectivity of 50, coupled with a CO{sub 2} permeability of 289 Barrer, makes SBS a good candidate for the preparation of membranes for the post-combustion capture of carbon dioxide. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Hybrid gas separation membranes containing star-shaped polystyrene with the fullerene (C60) core

    Czech Academy of Sciences Publication Activity Database

    Pulyalina, A. Y.; Rostovtseva, V. A.; Pientka, Zbyněk; Vinogradova, L. V.; Polotskaya, G. A.

    2018-01-01

    Roč. 58, č. 4 (2018), s. 296-303 ISSN 0965-5441 Institutional support: RVO:61389013 Keywords : gas separation * hybrid membranes * star-shaped macromolecules Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 0.493, year: 2016

  9. Separation of Hydridocarbonyltris(triphenylphosphine) Rhodium (I) Catalyst Using Solvent Resistant Nano filtration Membrane

    International Nuclear Information System (INIS)

    Razak, N.S.A.; Hilmi Mukhtar; Maizatul, S. Shaharun; Mohd, F. Taha

    2013-01-01

    An investigation was conducted into the nano filtration of rhodium tris(triphenyl-phosphine) [HRh(CO)(PPh3)3] catalyst used in the hydroformylation of olefins. The large size of the catalyst (>400 Da) - relative to other components of the reaction provides the opportunity for a membrane separation based on retention of the catalyst species while permeating the solvent. The compatibility of the solvent-polyimide membrane (STARMEMTM 122 and STARMEMTM 240) combinations was assessed in terms of the membrane stability in solvent plus non-zero solvent flux at 2.0 MPa. The morphology of the membrane was studied by field emission scanning electron microscopy (FESEM). The solvent flux and membrane rejection of HRh(CO)(PPh3)3 was then determined for the catalyst-solvent-membrane combination in a dead-end pressure cell. Good HRh(CO)(PPh3)3 rejection (>0.93) coupled with good solvent fluxes (>72 L/ m 2 h 1 at 2.0 MPa) were obtained in one of the systems tested. The effect of pressure and catalyst concentration on the solvent flux and catalyst rejection was conducted. Increasing pressure substantially improved both solvent flux and catalyst rejection, while increasing catalyst concentration was found to be beneficial in terms of substantial increases in catalyst rejection without significantly affecting the solvent flux. (author)

  10. Separation of hemagglutination-inhibiting immunoglobulin M antibody to rubella virus in human serum by high-performance liquid chromatography.

    OpenAIRE

    Kobayashi, N; Suzuki, M; Nakagawa, T; Matumoto, M

    1986-01-01

    High-performance liquid chromatography was successfully used to separate hemagglutination-inhibiting immunoglobulin M (IgM) rubella virus antibody from IgG rubella virus antibody in human serum. The fractionation by high-performance liquid chromatography was as effective as sucrose density gradient centrifugation in separating IgM antibody from IgG antibody.

  11. An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation

    International Nuclear Information System (INIS)

    Belaissaoui, Bouchra; Cabot, Gilles; Cabot, Marie-Sophie; Willson, David; Favre, Eric

    2012-01-01

    Post-combustion Carbon Capture and Storage (CCS) is currently intensively investigated as a key issue for the mitigation of greenhouse gases emissions. A very large number of studies is dedicated to coal power plants. In this paper, the possibility to achieve carbon capture on a gas turbine, based on a combination of flue gas recycle and membrane separation is reported. Membrane processes are effectively known to offer attractive performances in terms of energy efficiency, as soon as concentrated and/or pressure mixtures have to be treated. Two different flow schemes have been simulated and compared: flue gas recycle with air combustion and flue gas recycle with an oxygen enriched feed mixture. The energy requirement of the different processes, expressed in GJ (thermal basis) per ton of recovered CO 2 , and the size of the membrane capture process (expressed in m 2 of membrane area) have been systematically estimated for different membrane separation performances. It is shown that an overall energy requirement down to 2.6 GJ per ton can possibly be achieved when optimal operating conditions, based on oxygen enriched air (OEA) combustion together with a highly selective membrane (CO 2 /N 2 selectivity of 200) are combined. Additional possibilities in order to minimise the energy penalty of the process are discussed. -- Highlights: ► A carbon capture process for gas turbine has been investigated for the first time, with membrane separation unit. ► Air combustion systematically induces CO 2 capture specific energy requirement far above alternative capture processes. ► Remarkably, a very low energy requirement can be achieved (down to 2.6 GJ/ton) with Oxygen Enriched Air combustion. ► Target membrane selectivities and optimal oxygen content for combustion have been identified.

  12. Separation of several alcohol-benzene mixtures by pervaporation through styrene graft polyethylene membranes

    International Nuclear Information System (INIS)

    Murata, Kenichi

    1989-01-01

    The permeation of pure liquids, such as methanol, ethanol, 1-propanol, 2-propanol and benzene, and the permeability and selectivity of 50 vol% binary mixtures of these alcohols and benzene were investigated by pervaporation technique. The used membranes (21%, 40%, and 72% graftings) were obtained by graft polymerization of styrene to polyethylene film (thickness 10 μm) by γ-radiation. The permeation rates of each of these alcohols and benzene were measured by pervaporation through the graft membranes. Those of these alcohols were very small as well as those through the original membrane. On the other hand, the permeabilities for benzene through the graft membranes were larger than that through the original membrane. The temperature dependence of the permeation rate for benzene was expressed by Arrhenius-type relationships, and the apparent activation energies were calculated to be 10.7 (21%), 10.2 (40%) and 10.0 (72%) kcal/mol. In the permeation of 50 vol% several alcohol-benzene mixtures, the permeabilities through the graft membranes were also larger than that through the original membrane, and increased with the grafting. The temperature dependence of the permeation for these mixtures was showed by Arrhenius relationships, and the apparent activation energies were calculated to be in the range of 8.4∼11.0 kcal/mol. The separation factors of the graft membranes calculated from composition of the permeates were always smaller than that of the original membrane, but became larger with increase of molecular volume of alcohol in alcohol-benzene mixtures. (author)

  13. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes

    International Nuclear Information System (INIS)

    Jindaratsamee, Pinyarat; Shimoyama, Yusuke; Morizaki, Hironobu; Ito, Akira

    2011-01-01

    The permeability of carbon dioxide (CO 2 ) through imidazolium-based ionic liquid membranes was measured by a sweep gas method. Six species of ionic liquids were studied in this work as follows: [emim][BF 4 ], [bmim][BF 4 ], [bmim][PF 6 ], [bmim][Tf 2 N], [bmim][OTf], and [bmim][dca]. The ionic liquids were supported with a polyvinylidene fluoride porous membrane. The measurements were performed at T = (303.15 to 343.15) K. The partial pressure difference between feed and permeate sides was 0.121 MPa. The permeability of the CO 2 increases with temperature for the all ionic liquid species. Base on solution diffusion theory, it can be explained that the diffusion coefficient of CO 2 in an ionic liquid affects the temperature dependence more strongly than the solubility coefficient. The greatest permeability was obtained with the [bmim][Tf 2 N] membrane. The membrane of [bmim][PF 6 ] presents the lowest permeability. The separation coefficient between CO 2 and N 2 through the ionic liquid membranes was also investigated at the volume fraction of CO 2 at feed side 0.10. The separation coefficient decreases with the increase of temperature for the all ionic liquid species. The membrane of [emim][BF 4 ] and [bmim][BF 4 ] gives the highest separation coefficient at constant temperature. The lowest separation coefficient was obtained from [bmim][Tf 2 N] membrane which presents the highest permeability of CO 2 .

  14. Membrane Separation Processes for Post-Combustion Carbon Dioxide Capture: State of the Art and Critical Overview

    Directory of Open Access Journals (Sweden)

    Belaissaoui Bouchra

    2014-11-01

    Full Text Available Membrane processes have been initially seldom considered within a post-combustion carbon dioxide capture framework. More traditional processes, particularly gas-liquid absorption in chemical solvents, are often considered as the most appropriate solution for the first generation of technologies. In this paper, a critical state of the art of gas separation membranes for CO2 capture is proposed. In a first step, the key performances (selectivity, permeability of different membrane materials such as polymers, inorganic membranes, hybrid matrices and liquid membranes, including recently reported results, are reviewed. In a second step, the process design characteristics of a single stage membrane unit are studied. Purity and energy constraints are analysed as a function of operating conditions and membrane materials performances. The interest of multistage and hybrid systems, two domains which have not sufficiently investigated up to now, are finally discussed. The importance of technico-economical analyses is highlighted in order to better estimate the optimal role of membranes for CCS applications.

  15. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine) Dendrimer/Poly(vinyl alcohol) Hybrid Membranes for CO2 Separation.

    Science.gov (United States)

    Duan, Shuhong; Kai, Teruhiko; Saito, Takashi; Yamazaki, Kota; Ikeda, Kenichi

    2014-04-08

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(vinyl alcohol) (PVA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies.

  16. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  17. Accelerating the design of molecularly imprinted nanocomposite membranes modified by Au@polyaniline for selective enrichment and separation of ibuprofen

    Science.gov (United States)

    Wu, Xiuling; Wu, Yilin; Dong, Hongjun; Zhao, Juan; Wang, Chen; Zhou, Shi; Lu, Jian; Yan, Yongsheng; Li, He

    2018-01-01

    A novel system for harvesting molecularly imprinted nanocomposite membranes (MINcMs) with Au-modified polyaniline (Au@polyaniline) nanocomposite structure was developed for selective enrichment and separation of ibuprofen. This unique nanocomposite structure obviously enhanced the adsorption capacity, perm-selectivity performance, and regeneration ability of MINcMs. The as-prepared MINcMs showed outstanding adsorption capacity (22.02 mg g-1) of ibuprofen, which was four times higher than that of non-imprinted nanocomposite membranes (NINcMs). Furthermore, the selectivity factor of MINcMs for ibuprofen reached up to 4.67 and the perm-selectivity factor β was about 8.74, which indicated MINcMs had a good selective separation performance of ibuprofen. We envision that this novel synthesis method will open a new direction to manipulation of molecularly imprinted membrane materials and provide a simple yet convenient way to selective separation of ibuprofen.

  18. Peripheral Protein Unfolding Drives Membrane Bending.

    Science.gov (United States)

    Siaw, Hew Ming Helen; Raghunath, Gokul; Dyer, R Brian

    2018-06-20

    Dynamic modulation of lipid membrane curvature can be achieved by a number of peripheral protein binding mechanisms such as hy-drophobic insertion of amphipathic helices and membrane scaffolding. Recently, an alternative mechanism was proposed in which crowding of peripherally bound proteins induces membrane curvature through steric pressure generated by lateral collisions. This effect was enhanced using intrinsically disordered proteins that possess high hydrodynamic radii, prompting us to explore whether membrane bending can be triggered by the folding-unfolding transition of surface-bound proteins. We utilized histidine-tagged human serum albumin bound to Ni-NTA-DGS containing liposomes as our model system to test this hypothesis. We found that reduction of the disulfide bonds in the protein resulted in unfolding of HSA, which subsequently led to membrane tubule formation. The frequency of tubule formation was found to be significantly higher when the proteins were unfolded while being localized to a phase-separated domain as opposed to randomly distributed in fluid phase liposomes, indicating that the steric pressure generated from protein unfolding is directly responsible for membrane deformation. Our results are critical for the design of peripheral membrane protein-immobilization strategies and open new avenues for exploring mechanisms of membrane bending driven by conformational changes of peripheral membrane proteins.

  19. Biotransformation of endorphins by a synaptosomal plasma membrane preparation of rat brain and by human serum

    NARCIS (Netherlands)

    Burbach, J.P.H.; Loeber, J.G.; Verhoef, J.; Kloet, E.R. de; Wied, D. de

    1979-01-01

    β-Endorphin (β-LPH 61–91), γ-endorphin (61–77), des-tyrosine-γ-endorphin (62–77), α-endorphin (61–76), and β-LPH 61–69 either labeled with [125I] at the N-terminal 61-tyrosine residue or unlabeled were incubated with a crude synaptosomal plasma membrane fraction of rat brain or in human serum. At

  20. Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO2/N-2 Separation: Effect of Composition and Thickness on Membrane Properties and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, PT; Voss, BA; Wiesenauer, EF; Gin, DL; Nobe, RD

    2013-07-03

    An aspartame-based, low molecular-weight organic gelator (LMOG) was used to form melt-infused and composite membranes with two different imidazolium-based room-temperature ionic liquids (RTILs) for CO2 separation from N-2. Previous work demonstrated that LMOGs can gel RTILs at low, loading levels, and this aspartame-based LMOG was selected because it has been reported to gel a large number of RTILs. The imidazolium-based RTILs were used because of their inherent good properties for CO2/light gas separations. Analysis of the resulting bulk RTIL/LMOG physical gels showed that these materials have high sol-gel transition temperatures (ca. 135 degrees C) suitable for flue gas applications. Gas permeabilities and burst pressure measurements of thick, melt infused membranes revealed a trade-off between high CO2 permeabilities and good mechanical stability as a function of the LMOG loading. Defect-free, composite membranes of the gelled RTILs were successfully fabricated by choosing an appropriate porous membrane support (hydrophobic PTFE) using a suitable coating technique (roller coating). The thicknesses of the applied composite gel layers ranged from 10.3 to 20.7 mu m, which represents an order of magnitude decrease in active layer thickness, compared to the original melt-infused gel RTIL membranes.

  1. Morphologies and separation characteristics of polyphenyl sulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Nur Aimie Abdullah; Lau, Woei Jye; Ismail, Ahmad Fauzi [Universiti Teknologi Malaysia, Skudai (Malaysia)

    2015-04-15

    The performance of polyphenylsulfone (PPSU) solvent resistant nanofiltration (SRNF)-based flat sheet membranes prepared from phase inversion method was investigated by varying the concentration of polymer in the dope solution and condition of membrane pretreatment process. The membrane properties were characterized by SEM, FTIR, AFM and contact angle goniometer, while their performance was evaluated by measuring methanol flux and rejection of different molecular weight of dyes (ranging from 269 to 1,470 g/mol) in methanol. The experimental results showed that the polymer concentration has great impact not only on the final membrane morphology but also its separation characteristics. Increasing polymer concentration from 17 to 25wt% tended to suppress finger-like structure and more pear-like pores were developed, causing methanol flux to decrease. This can be explained by the decrease in molecular weight cut off (MWCO) of the membrane prepared at high polymer concentration. With respect to the effect of membrane pretreatment conditions, the rejection of membrane was negatively affected with longer immersion period in methanol solution prior to filtration experiment. The variation in membrane rejection can be attributed to the rearrangement of the polymer chain, which results in membrane swelling and/or change of membrane surface hydrophilicity.

  2. Morphologies and separation characteristics of polyphenyl sulfone-based solvent resistant nanofiltration membranes: Effect of polymer concentration in casting solution and membrane pretreatment condition

    International Nuclear Information System (INIS)

    Sani, Nur Aimie Abdullah; Lau, Woei Jye; Ismail, Ahmad Fauzi

    2015-01-01

    The performance of polyphenylsulfone (PPSU) solvent resistant nanofiltration (SRNF)-based flat sheet membranes prepared from phase inversion method was investigated by varying the concentration of polymer in the dope solution and condition of membrane pretreatment process. The membrane properties were characterized by SEM, FTIR, AFM and contact angle goniometer, while their performance was evaluated by measuring methanol flux and rejection of different molecular weight of dyes (ranging from 269 to 1,470 g/mol) in methanol. The experimental results showed that the polymer concentration has great impact not only on the final membrane morphology but also its separation characteristics. Increasing polymer concentration from 17 to 25wt% tended to suppress finger-like structure and more pear-like pores were developed, causing methanol flux to decrease. This can be explained by the decrease in molecular weight cut off (MWCO) of the membrane prepared at high polymer concentration. With respect to the effect of membrane pretreatment conditions, the rejection of membrane was negatively affected with longer immersion period in methanol solution prior to filtration experiment. The variation in membrane rejection can be attributed to the rearrangement of the polymer chain, which results in membrane swelling and/or change of membrane surface hydrophilicity

  3. High throughput screening of Pd-alloys for H2 separation membranes studied by hydrogenography and CVM

    Energy Technology Data Exchange (ETDEWEB)

    Westerwaal, R.J.; Dam, B. [Delft University of Technology, Department of Chemical Engineering, Materials for Energy Conversion and Storage, Julianaweg 136, 2628 BL Delft (Netherlands); Den Besten, C.; Slaman, M. [Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Nanuc, D.E.; Boettger, A.J. [Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Haije, W.G. [Energy research Centre of The Netherlands, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2011-01-15

    The search for and development of stable Pd-based membranes for hydrogen separation applications with resistance to hydrogen embrittlement and cracking is a challenging and time-consuming task. Membrane failure is most often caused by the occurrence of the {alpha}-{beta} phase transition during hydrogen absorption and desorption by the Pd-alloy below the critical temperature. By finding a suitable alloy with a critical temperature below room temperature, the membrane lifetime can be extended tremendously. Here we present a combinatorial approach that enables the fast screening of phase transitions in multi-component Pd-alloys for hydrogen separation membranes by experiments and thermodynamic calculations. The method is applied to the well-documented Pd-Cu alloy compositions. Hydrogenography, a compositional gradient thin film technique, is used to experimentally investigate the alloy compositions. Using a new phenomenological method to determine the critical temperature from hydrogenography measurements, we show that the experimental results and the calculations, using the Cluster Variation Method (CVM), agree well with the phase boundaries and critical temperatures reported in literature. Our results show that the combined capabilities of hydrogenography and CVM enable an efficient screening of promising multi-component alloys for which thermodynamic data are scarce or absent.

  4. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  5. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation

    KAUST Repository

    Rungta, Meha; Xu, Liren; Koros, William J.

    2012-01-01

    Development of dense film carbon molecular sieve (CMS) membranes for ethylene/ethane (C 2H 4/C 2H 6) separation is reported. A commercial polyimide, Matrimid®, was pyrolyzed under vacuum and inert argon atmosphere, and the resultant CMS films were

  6. CORRELATION BETWEEN POLYMER PACKING AND GAS TRANSPORT PROPERTIES FOR CO2/N2 SEPARATION IN GLASSY FLUORINATED POLYIMIDE MEMBRANE

    Directory of Open Access Journals (Sweden)

    P. C. TAN

    2016-07-01

    Full Text Available Gas separation performance of a membrane highly hinges on its physical properties. In this study, the interplay between polymer packing of a membrane and its gas transport behaviours (permeability and selectivity was investigated through a series of 6FDA-DAM:DABA (3:2 polyimide membranes with different polymer compactness. The chemical structure and the polymer packing of the resulting membrane were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR and packing density measurement, respectively. CO2/N2 separation efficiency of the membrane was evaluated at 25oC with feed pressure up to 6 bar. N2 permeability was found to rely on the membrane’s packing density, which signified its greater dependence on molecular sieving. In contrast, sorption showed a more vital role in determining the CO2 permeability. In this work, the membrane with a final thickness of 97±2 µm had successfully surpassed the Robeson’s 2008 upper bound plot with a CO2 permeability of 83 Barrer and CO2/N2 selectivity of 97 at 3 bar permeation.

  7. Data supporting the validation of a simulation model for multi-component gas separation in polymeric membranes

    Directory of Open Access Journals (Sweden)

    Lorena Giordano

    2016-12-01

    The data were obtained using a model for simulating gas separation, described in the research article entitled “Interplay of inlet temperature and humidity on energy penalty for CO2 post-combustion capture: rigorous analysis and simulation of a single stage gas permeation process” (L. Giordano, D. Roizard, R. Bounaceur, E. Favre, 2016 [1]. The data were used to validate the model by comparison with literature results. Considering a membrane system based on feed compression only, data from the model proposed and that from literature were compared with respect to the molar composition of permeate stream, the membrane area and specific energy requirement, varying the feed pressure and the CO2 separation degree.

  8. PEBAX®/PAN Hollow Fiber Membranes for CO2/CH4 Separation

    Czech Academy of Sciences Publication Activity Database

    Esposito, E.; Clarizia, G.; Bernardo, P.; Jansen, J. C.; Sedláková, Zuzana; Izák, Pavel; Curcio, S.; de Cindio, B.; Tasselli, F.

    2015-01-01

    Roč. 94, SI (2015), s. 53-61 ISSN 0255-2701. [International Congress of Chemical and Process Engineering CHISA 2014 /21./ and Conference PRES 2014 /17./. Prague, 23.08.2014-27.08.2014] R&D Projects: GA ČR GA14-12695S Grant - others:INRP(IT) MicroPERLA:PON01_01840 Institutional support: RVO:67985858 Keywords : composite membrane * hollow fibers * CO2/CH4 separation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.154, year: 2015

  9. Development of a new class of flexible polymeric membranes for sensing, nanofiltration & cascaded separation

    Science.gov (United States)

    Du, Nian

    The last decade has witnessed an explosion of interests in the science and technology of engineered nanomaterials. While the benefits of nanotechnology are widely publicized, the discussion about the transformation of nanomaterials in the environment, and their potential impacts on human health has just begun. Nanoscale particles, whether ultrafine, nano, engineered, intentional, or incidental, pose significant health effects. New approaches for environmental monitoring of nanomaterials at high sensitivity and in real-time are particularly needed. Since nanoparticles must be isolated from complex environmental and biological matrices, the most effective and simple method of isolating engineered nanomaterials from air or water is filtration. Hence the overall project objective of this work is to develop innovative methods that can simultaneously remove, detect and inactivate diverse nanostructured materials. At the center of the technology is a novel class of polymeric filters capable of simultaneously removing and detecting metal and metal oxide nanoparticles. This project reports the development of a new class of self-standing, flexible, phase-inverted, poly(amic) acid membranes with experimentally-controlled nanopores ranging from less than 10nm to greater than 100nm. Compared to most commercial filter membranes, phase-inverted PAA membranes were found to exhibit superior durability and higher efficiency. The filtration efficiency was ˜99.97% for a number of nanoparticles including Quantum Dots, TiO2, Au and Ag. This work also showed that PAA membranes could be used to separate mixtures of nanoparticles. Although the separation does not show much selectivity according to the NPs’ chemical composition, it shows the ability to separate efficiently based on nanoparticle size. PAA showed an excellent performance not only for nanoparticle isolation at sub-nanometer size ranges, but also as a platform for the detection of engineered nanoparticles at low ppb levels

  10. The development of membrane based high purity oily water separators for use in Arctic waters

    Energy Technology Data Exchange (ETDEWEB)

    Peng, H.; Tremblay, A.Y. [Ottawa Univ., ON (Canada). Dept. of Chemical Engineering, Industrial Membrane Centre; Veinot, D.E. [Defence Research and Development Canada, Halifax, NS (Canada)

    2005-07-01

    With increased exploration and industrial activity in the Canadian Arctic, interest in the Northwest Passage as a shipping route has also increased. The oily wastewater produced by ships must be treated prior to discharge, particularly in the sensitive Arctic environment where biodegradation of organics is very slow due to cold climatic conditions and low sunlight. As such, safe techniques are needed for the treatment of oily wastewater released from ships. However, bilge water is difficult to treat because it contains seawater, particulates, used oils and detergents. Membrane based oily water separators (OWS) are considered to be a key technology for the treatment of bilge water onboard ships. The issues that must be taken into account in the ship-born use of membrane based OWS include the proper treatment of the oily brine before discharge; the substantial reduction in volume that is required; the complexity of the technology; labour associated with the operation of the system due to filter changes and cleaning; and, system automation to simplify its operation. In this study, a membrane-based process for treating bilge water was developed to meet stringent discharge regulations for discharge in Arctic waters. Currently, this discharge limit is set at 0 ppm. A pilot scale membrane cascade system was designed and evaluated. Multilumen ceramic membranes were used in the first stage and Sepa{sup R} test cells were used in the second stage. Optimal membrane pore size was determined. The study investigated the separation of oil and grease using different molecular weight cut-off (MWCO) membranes. The study revealed that through proper membrane design, it is possible to remove oil and grease from bilge water to a level permitting its discharge to Arctic waters. However, it was recommended that low level aromatic diesel fuels be used in ships operating in Arctic waters since the presence of soluble aromatics in diesel fuel increases the technical difficulty of reaching

  11. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  12. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine Dendrimer/Poly(vinyl alcohol Hybrid Membranes for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Shuhong Duan

    2014-04-01

    Full Text Available Poly(amidoamine (PAMAM dendrimers were incorporated into cross-linked poly(vinyl alcohol (PVA matrix to improve carbon dioxide (CO2 separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies.

  13. Molecularly Designed Stabilized Asymmetric Hollow Fiber Membranes for Aggressive Natural Gas Separation.

    Science.gov (United States)

    Liu, Gongping; Li, Nanwen; Miller, Stephen J; Kim, Danny; Yi, Shouliang; Labreche, Ying; Koros, William J

    2016-10-24

    New rigid polyimides with bulky CF 3 groups were synthesized and engineered into high-performance hollow fiber membranes. The enhanced rotational barrier provided by properly positioned CF 3 side groups prohibited fiber transition layer collapse during cross-linking, thereby greatly improving CO 2 /CH 4 separation performance compared to conventional materials for aggressive natural gas feeds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture

    KAUST Repository

    Liu, Yunyang

    2010-05-01

    Continuous and c-oriented ZIF-69 membranes were successfully synthesized on porous alpha-alumina substrates by an in situ solvothermal method. The membranes were characterized by XRD, SEM and single-gas permeation tests. The BET measurements on crystals taken from the same mother liquor that was used for membrane synthesis yield a Langmuir surface area of 1138 m(2)/g. The stability of the membrane towards heat and different solvents were studied. Single-gas permeation experiments through ZIF-69 membranes were carried out by a vacuum method at room temperature using H-2, CH4, CO, CO2 and SF6, respectively. The permeances were in the order of H-2 > CO2 > CH4 > CO > SF6. The separation of CO2/CO gas mixture was investigated by gas chromatograph (GC) and the permselectivity of CO2/CO was 3.5 +/- 0.1 with CO2 permeance of 3.6 +/- 0.3 x 10(-8) mol m(-2) s(-1) Pa-1 at room temperature. (C) 2010 Elsevier B.V. All rights reserved.

  15. Separation of methane-nitrogen mixtures using synthesis vertically aligned carbon nanotube membranes

    Science.gov (United States)

    Gilani, Neda; Daryan, Jafar Towfighi; Rashidi, Alimorad; Omidkhah, Mohammad Reza

    2012-03-01

    In this paper, capabilities of carbon nanotube (CNT) membranes fabricated in cylindrical pores of anodic aluminum oxide (AAO) substrate to separate the binary mixtures of CH4/N2 are studied experimentally. For this purpose, the permeability and selectivity of three CNT/AAO membranes with different growth time as 6 h, 12 h and 18 h are investigated. CNTs are grown vertically through holes of AAO with average pore diameter of 45 nm by chemical vapor deposition (CVD) of acetylene gas. CNT/AAO membranes with the same CNTs' outer diameters and different inner diameters are synthesized. The AAO are characterized by SEM analysis. In addition, SEM, TEM, BET N2 adsorption analysis and Raman spectroscopy are employed to characterize aligned CNTs. Study on permeability and selectivity of membranes for three binary mixtures of CH4/N2 showed that when the CNT inner diameters are 34 nm and 24 nm, viscous flow is the governing mechanism and insignificant selectivities of 1.2-1.24 are achieved. However, the membrane with CNT inner diameter and wall thickness of 8 nm and 16 nm respectively is considerably selective for CH4 over N2. It was also found that CH4 mole fraction in the feed and upstream feed pressure have major effect on permeability and selectivity. The membrane with 18 h synthesis time showed the selectivity is in the range of 1.8-3.85. The enhancement factor for N2 single gas diffusivity was also found to be about three times larger than that predicted by Knudsen diffusion model.

  16. Nanostructured Membranes Functionalized with Gold Nanoparticles for Separation and Recovery of Monoclonal Antibodies

    KAUST Repository

    Soldan, Giada

    2017-11-01

    The need of purified biomolecules, such as proteins or antibodies, has required the biopharmaceutical industries to look for new recovering solutions to reduce time and costs of bioseparations. In the last decade, the emergent field of membrane chromatography has gained attention as possible substituent of the common used protein A affinity chromatography for bioseparations. In this scenario, gold nanoparticles can be used as means for offering affinity, mainly because of their biocompatible and reversible binding behavior, together with their high surface area-to-volume ratio, which offers a large number of binding sites. This work introduces a new procedure for purification of monoclonal antibodies based on polymeric membranes functionalized with gold nanoparticles. This novel approach shortens the process of purification by promoting selective binding of antibodies, while separating a mixture of biomolecules during a filtration process. The effects of gold nanoparticles and the surrounding ligand on the proteins adsorption and filtration are investigated. The results confirm that the functionalization helps in inducing a selective binding, preventing the non-selective one, and it also improves the selectivity of the separation process.

  17. Fabrication of Functionalized MOFs Incorporated Mixed Matrix Hollow Fiber Membrane for Gas Separation

    Directory of Open Access Journals (Sweden)

    Haitao Zhu

    2017-01-01

    Full Text Available The metal-organic framework (MOFs of MIL-53 was functionalized by aminosilane grafting and then incorporated into Ultem®1000 polymer matrix to fabricate mixed matrix hollow fiber membrane (MMHFM with high separation performance. SEM, XRD, and TGA were performed to characterize the functionalized MIL-53 and prepared MMHFM. The filler particles were embedded in membrane successfully and dispersed well in the polymer matrix. The incorporation of MOFs endowed MMHFM better thermal stability. Moreover, effects of solvent ratio in spinning dope, spinning condition, and testing temperature on gas separation performance of MMHFM were investigated. By optimizing dope composition, air gap distance, and bore fluid composition, MMHFM containing functionalized MIL-53 achieved excellent gas permeance and CO2/N2 selectivity. The CO2 permeance increased from 12.2 GPU for pure Ultem HFM to 30.9 GPU and the ideal CO2/N2 selectivity was enhanced from 25.4 to 34.7 simultaneously. Additionally, gas permeance increased but the selectivity decreased with the temperature increase, which followed the solution-diffusion based transport mechanism.

  18. Improving Liquid Entry Pressure of Polyvinylidene Fluoride (PVDF Membranes by Exploiting the Role of Fabrication Parameters in Vapor-Induced Phase Separation VIPS and Non-Solvent-Induced Phase Separation (NIPS Processes

    Directory of Open Access Journals (Sweden)

    Faisal Abdulla AlMarzooqi

    2017-02-01

    Full Text Available Polyvinylidene fluoride (PVDF is a popular polymer material for making membranes for several applications, including membrane distillation (MD, via the phase inversion process. Non-solvent-induced phase separation (NIPS and vapor-induced phase separation (VIPS are applied to achieve a porous PVDF membrane with low mass-transfer resistance and high contact angle (hydrophobicity. In this work, firstly, the impacts of several preparation parameters on membrane properties using VIPS and NIPS were studied. Then, the performance of the selected membrane was assessed in a lab-scale direct-contact MD (DCMD unit. The parametric study shows that decreasing PVDF concentration while increasing both relative humidity (RH and exposure time increased the contact angle and bubble-point pore size (BP. Those trends were investigated further by varying the casting thickness. At higher casting thicknesses and longer exposure time (up to 7.5 min, contact angle (CA increased but BP significantly decreased. The latter showed a dominant trend leading to liquid entry pressure (LEP increase with thickness.

  19. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, M; Kochergin, V; Hess, R; Foust, T; Herbst, R; Mann, N

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, while these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract

  20. Promising monolayer membranes for CO{sub 2}/N{sub 2}/CH{sub 4} separation: Graphdiynes modified respectively with hydrogen, fluorine, and oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lianming, E-mail: lmzhao@upc.edu.cn; Sang, Pengpeng; Guo, Sheng; Liu, Xiuping; Li, Jing; Zhu, Houyu; Guo, Wenyue, E-mail: wyguo@upc.edu.cn

    2017-05-31

    Graphical abstract: Graphdiyne monolayer membrane modified by fluorine or oxygen can effectively separate CO{sub 2}/N{sub 2}/CH{sub 4} mixtures. - Highlights: • Three graphdiyne-like membranes were designed and their stabilities were confirmed. • The DFT and MD results claimed a tunable gas separation property of the membranes. • Graphdiyne modified with F or O can effectively separate CO{sub 2}/N{sub 2}/CH{sub 4} mixtures. - Abstract: Three graphdiyne-like monolayers were designed by substituting one-third diacetylenic linkages with heteroatoms hydrogen, fluorine, and oxygen (GDY-X, X = H, F, and O), respectively. The CO{sub 2}/N{sub 2}/CH{sub 4} separation performance of the designed graphdiyne-like monolayers was investigated by using both first-principle density functional theory (DFT) and molecular dynamic (MD) simulations. The stabilities of GDY-X monolayers were confirmed by the calculated cohesive energies and phonon dispersion spectra. Both the DFT and MD calculations demonstrated that although the GDY-H membrane has poor selectivity for CO{sub 2}/N{sub 2}/CH{sub 4} gases, the GDY-F and GDY-O membranes can excellently separate CO{sub 2} and N{sub 2} from CH{sub 4} in a wide temperature range. Moreover, the CO{sub 2}/N{sub 2} mixture can be effectively separated by GDY-O at temperatures lower than 300 K. Based on the kinetic theory, extremely high permeances were found for CO{sub 2} and N{sub 2} passing through the GDY-X membranes (10{sup −4}–10{sup −2} mol/m{sup 2} s Pa at 298 K). In addition, the influence of relative concentration on selectivity was also investigated for gases in the binary mixtures. This work provides an effective way to modify graphdiyne for the separation of large molecular gases, which is quite crucial in the gas separation industry.

  1. Enhanced stability of Zr-doped Ba(CeTb)O(3-δ)-Ni cermet membrane for hydrogen separation.

    Science.gov (United States)

    Wei, Yanying; Xue, Jian; Fang, Wei; Chen, Yan; Wang, Haihui; Caro, Jürgen

    2015-07-25

    A mixed protonic and electronic conductor material BaCe(0.85)Tb(0.05)Zr(0.1)O(3-δ) (BCTZ) is prepared and a Ni-BCTZ cermet membrane is synthesized for hydrogen separation. Stable hydrogen permeation fluxes can be obtained for over 100 h through the Ni-BCTZ membrane in both dry and humid conditions, which exhibits an excellent stability compared with Ni-BaCe(0.95)Tb(0.05)O(3-δ) membrane due to the Zr doping.

  2. Study on CO2/ N2 separation: the effect of rubbery polymer coating on PVDF membrane

    Science.gov (United States)

    Zuwairi, M. Z.; Rahman, S. A.

    2017-06-01

    The emission of harmful gases such as carbon dioxide (CO2) via gas processing plant and daily human activities gave negative impacts to the environment and global inhabitant. Flat sheet asymmetric membranes were produced from homogenous solution of Poly(vinylideneflouride) (PVDF) via phase inversion method using N-methyl-2-pyrrolidone (NMP) as the solvent. While the poly ether b-amide (PEBAX) was dissolve by using of (70 ethanol and 30 water) as a solvent and and lithium chloride as a additives. The morphology and cross section of the produced membranes were observed by Scanning Electron Microscope (SEM). Then, the membranes were tested for chemical analysis to define the presence of PEBAX in the membrane by using Fourier Transform Infrared (FTIR) spectroscopy. The permeation performances of the membranes were evaluated in terms of permeability and selectivity of the membranes by using gas permeation test. Increasing the PEBAX content significantly increased the selectivity of the PVDF membrane to separate the CO2/N2 gases but decreased the amount of the gases that passed through the membrane.

  3. Synthesis and characterization of imprinted sorbent for separation of gramine from bovine serum albumin

    International Nuclear Information System (INIS)

    Luliński, Piotr; Klejn, Dorota; Maciejewska, Dorota

    2016-01-01

    The aim of this study was to develop an efficient sorbent for separation of N,N-dimethyl-3-aminomethylindole (gramine) from bovine serum albumin. An imprinting technology was involved in the synthesis of polymers from nine different functional monomers in the presence of ethylene glycol dimethacrylate as a cross-linker. The analysis of binding capacities showed that the highest specificity towards gramine was achieved when 4-vinylbenzoic acid was used as the functional monomer in methanol to form the bulk imprinted polymer, MIP1 (imprinting factor equal to 21.3). The Scatchard analysis of MIP1 showed two classes of binding sites with the dissociation constants K_d equal to 0.105 and 6.52 μmol L"−"1. The composition and morphology of polymers were defined by "1"3C CP/MAS NMR, BET and SEM-EDS analyses. The recognition mechanism of MIP1 was tested using the structurally related bioanalytes, and the dominant role of indole moiety and ethylamine side chain was revealed. A new MISPE protocol was optimized for separation of gramine. The total recoveries on MIP1 were equal to 94 ± 12 % from standard solutions and 85 ± 11 % from bovine serum albumin. - Highlights: • Indole alkaloid (gramine) imprinted polymer was synthesized. • Very high specifity of sorbent towards gramine was achieved. • Physico-chemical characteristics of novel material was presented. • Efficient MISPE protocol was proposed for separation of gramine from model sample.

  4. Synthesis and characterization of imprinted sorbent for separation of gramine from bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Luliński, Piotr; Klejn, Dorota; Maciejewska, Dorota, E-mail: dmaciejewska@wum.edu.pl

    2016-08-01

    The aim of this study was to develop an efficient sorbent for separation of N,N-dimethyl-3-aminomethylindole (gramine) from bovine serum albumin. An imprinting technology was involved in the synthesis of polymers from nine different functional monomers in the presence of ethylene glycol dimethacrylate as a cross-linker. The analysis of binding capacities showed that the highest specificity towards gramine was achieved when 4-vinylbenzoic acid was used as the functional monomer in methanol to form the bulk imprinted polymer, MIP1 (imprinting factor equal to 21.3). The Scatchard analysis of MIP1 showed two classes of binding sites with the dissociation constants K{sub d} equal to 0.105 and 6.52 μmol L{sup −1}. The composition and morphology of polymers were defined by {sup 13}C CP/MAS NMR, BET and SEM-EDS analyses. The recognition mechanism of MIP1 was tested using the structurally related bioanalytes, and the dominant role of indole moiety and ethylamine side chain was revealed. A new MISPE protocol was optimized for separation of gramine. The total recoveries on MIP1 were equal to 94 ± 12 % from standard solutions and 85 ± 11 % from bovine serum albumin. - Highlights: • Indole alkaloid (gramine) imprinted polymer was synthesized. • Very high specifity of sorbent towards gramine was achieved. • Physico-chemical characteristics of novel material was presented. • Efficient MISPE protocol was proposed for separation of gramine from model sample.

  5. Separation of Binary Mixtures of Propylene and Propane by Facilitated Transport through Silver Incorporated Poly(Ether-Block-Amide Membranes

    Directory of Open Access Journals (Sweden)

    Surya Murali R.

    2015-02-01

    Full Text Available The separation of propylene and propane is a challenging task in petroleum refineries due to the similar molecular sizes and physical properties of two gases. Composite Poly(ether-block-amide (Pebax-1657 membranes incorporated with silver tetra fluoroborate (AgBF4 in concentrations of 0-50% of the polymer weight were prepared by solution casting and solvent evaporation technique. The membranes were characterized by Scanning Electron Microscopy (SEM, Fourier Transform InfraRed (FTIR and wide-angle X-ray Diffraction (XRD to study surface and cross-sectional morphologies, effect of incorporation on intermolecular interactions and degree of crystallinity, respectively. Experimental data was measured with an indigenously built high-pressure gas separation manifold having an effective membrane area of 42 cm2. Permeability and selectivity of membranes were determined for three different binary mixtures of propylene-propane at pressures varying in the range 2-6 bar. Selectivity of C3H6/C3H8 enhanced from 2.92 to 17.22 and 2.11 to 20.38 for 50/50 and 66/34 C3H6+C3H8 feed mixtures, respectively, with increasing loading of AgBF4. Pebax membranes incorporated with AgBF4 exhibit strong potential for the separation of C3H6/C3H8 mixtures in petroleum refineries.

  6. Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H2/CO2 Separation in WGS Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu [Grambling State Univ., LA (United States); Siriwardane, Upali [Louisiana Tech Univ., Ruston, LA (United States)

    2011-12-15

    The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H2 separation and Cellulose Acetate membranes for CO2 separation. .

  7. A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy.

    Science.gov (United States)

    Li, Deke; Gou, Xuelian; Wu, Daheng; Guo, Zhiguang

    2018-04-05

    The wide application of superhydrophobic membranes has been limited due to their complicated preparation technology and weak durability. Inspired by the mechanical flexibility of nanofibrous biomaterials, nanofibrils have been successfully generated from Kevlar, which is one of the strongest synthetic fibers, by appropriate hydrothermal treatment. In this study, a robust superhydrophobic PDMS/PVDF@KNFs membrane is prepared via a simple one-step process and subsequent curing without combination with inorganic fillers. The as-prepared PDMS/PVDF@KNFs membrane not only shows efficient oil/water separation ability and oil absorption capacity but also has excellent superhydrophobicity stability after deformation. The resultant membrane shows stretchability, flexibility and flame retardance because of the reinforcing effect and the excellent flame retardancy of Kevlar. We believe that this simple fabrication of PDMS/PVDF@KNFs has promising applications in filtering membranes and wearable devices.

  8. Matrimid®/polysulfone blend mixed matrix membranes containing ZIF-8 nanoparticles for high pressure stability in natural gas separation

    NARCIS (Netherlands)

    Shahid, S.; Nijmeijer, K.

    2017-01-01

    Plasticization is of important concern in high pressure natural gas separation. Majority of the pure polymers and MOF-MMM systems suffer from plasticization at low pressures. Combination of polymer blending and MMM approach could lead to plasticization resistant membranes with improved membrane

  9. Metal-organic frameworks in mixed-matrix membranes for gas separation.

    Science.gov (United States)

    Tanh Jeazet, Harold B; Staudt, Claudia; Janiak, Christoph

    2012-12-14

    Mixed-matrix membranes (MMMs) with metal-organic frameworks (MOFs) as additives (fillers) exhibit enhanced gas permeabilities and possibly also selectivities when compared to the pure polymer. Polyimides (Matrimid®) and polysulfones are popular polymer matrices for MOF fillers. Presently investigated MOFs for MMMs include [Cu(SiF(6))(4,4'-BIPY)(2)], [Cu(3)(BTC)(2)(H(2)O)(3)] (HKUST-1, Cu-BTC), [Cu(BDC)(DMF)], [Zn(4)O(BDC)(3)] (MOF-5), [Zn(2-methylimidazolate)(2)] (ZIF-8), [Zn(purinate)(2)] (ZIF-20), [Zn(2-carboxyaldehyde imidazolate)(2)] (ZIF-90), Mn(HCOO)(2), [Al(BDC)(μ-OH)] (MIL-53(Al)), [Al(NH(2)-BDC)(μ-OH)] (NH(2)-MIL-53(Al)) and [Cr(3)O(BDC)(3)(F,OH)(H(2)O)(2)] (MIL-101) (4,4'-BIPY = 4,4'-bipyridine, BTC = benzene-1,3,5-tricarboxylate, BDC = benzene-1,4-dicarboxylate, terephthalate). MOF particle adhesion to polyimide and polysulfone organic polymers does not represent a problem. MOF-polymer MMMs are investigated for the permeability of the single gases H(2), N(2), O(2), CH(4), CO(2) and of the gas mixtures O(2)/N(2), H(2)/CH(4), CO(2)/CH(4), H(2)/CO(2), CH(4)/N(2) and CO(2)/N(2) (preferentially permeating gas named first). Permeability increases can be traced to the MOF porosity. Since the porosity of MOFs can be tuned very precisely, which is not possible with polymeric material, MMMs offer the opportunity of significantly increasing the selectivity compared to the pure polymeric matrix. Additionally in most of the cases the permeability is increased for MMM membranes compared to the pure polymer. Addition of MOFs to polymers in MMMs easily yields performances similar to the best polymer membranes and gives higher selectivities than those reported to date for any pure MOF membrane for the same gas separation. MOF-polymer MMMs allow for easier synthesis and handability compared to pure MOF membranes.

  10. Multicomponent Matrimid Membrane for Gas Separation

    KAUST Repository

    Irerua, Olayinka

    2012-07-01

    Matrimid was utilized for the preparation of membranes with asymmetric structures. A combination of well-known solvents for Matrimid which include 1- methyl-2-Pyrrolidone (NMP), tetrahydrofuran (THF), dichloromethane, tetrachloroethane as well as non-solvents n-butanol, xylene, and acetic acid were used. Cast solutions were prepared at room temperature for different combinations and compositions of polymer/solvent/non-solvent systems. PEG and Octa-(amino phenyl) POSS were introduced in some of the cast solutions. The membranes obtained were characterized by permeation test for gas permeabilities and selectivities, Scanning Electron Microscopy (SEM) and Nuclear Magnetic Resonance (NMR) Spectroscopy. The gas permeation test showed that the use of mixture of dichloromethane and tetrachloroethane as solvents with xylene non-solvent and acetic acid as stabilizer gave membranes with very high gas selectivity of 133 for CO2/N2 and 492 for CO2/CH4. Also, cast solutions containing PEG resulted in membranes with slightly enhanced selectivities from 30 to 42 for CO2/N2. Permeation results for CO2, N2 and H2 and the selectivities for gas pairs such as CO2/N2, CO2/CH4, are discussed in relation to the effect of pressure on the membrane permeance, they are also compared with existing results.

  11. Mixed-Matrix Membranes for CO2 and H2 Gas Separations Using Metal-Organic Framework and Mesoporus Hybrid Silicas

    International Nuclear Information System (INIS)

    Musselman, Inga; Balkus, Kenneth Jr.; Ferraris, John

    2009-01-01

    In this work, we have investigated the separation performance of polymer-based mixed-matrix membranes containing metal-organic frameworks and mesoporous hybrid silicas. The MOF/Matrimid(reg s ign) and MOP-18/Matrimid(reg s ign) membranes exhibited improved dispersion and mechanical strength that allowed high additive loadings with reduced aggregation, as is the case of the 80 wt% MOP-18/Matrimid(reg s ign) and the 80% (w/w) Cu-MOF/Matrimid(reg s ign) membranes. Membranes with up to 60% (w/w) ZIF-8 content exhibited similar mechanical strength and improved dispersion. The H 2 /CO 2 separation properties of MOF/Matrimid(reg s ign) mixed-matrix membranes was improved by either keeping the selectivity constant and increasing the permeability (MOF-5, Cu-MOF) or by improving both selectivity and permeability (ZIF-8). In the case of MOF-5/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.6 and the H 2 permeability increased from 24.4 to 53.8 Barrers. For the Cu-MOF/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.05 and the H 2 permeability increased from 17.1 to 158 Barrers. These two materials introduced porosity and uniform paths that enhanced the gas transport in the membranes. When ZIF-8/Matrimid(reg s ign) mixed-matrix membranes were studied, the H 2 /CO 2 selectivity increased from 2.9 to 4.4 and the permeability of H 2 increased from 26.5 to 35.8 Barrers. The increased H 2 /CO 2 selectivity in ZIF-8/Matrimid(reg s ign) membranes was explained by the sieving effect introduced by the ZIF-8 crystals (pore window 0.34 nm) that restricted the transport of molecules larger than H 2 . Materials with microporous and/or mesoporous cavities like carbon aerogel composites with zeolite A and zeolite Y, and membranes containing mesoporous ZSM-5 showed sieving effects for small molecules (e.g. H 2 and CO 2 ), however, the membranes were most selective for CO 2 due to the strong interaction of the zeolites with

  12. The impact of chemical cleaning on separation efficiency and properties of reverse osmosis membrane

    KAUST Repository

    Baatiyyah, Hani

    2018-04-01

    One of most major concerns from both cost-effective and technical point of view in membrane process industry is membrane cleaning. The aim of the project was to investigate the variations in membrane surface properties and separation efficiency of reverse osmosis membrane. Compativtive analysis have to be performed on four RO membrane before and after exposing the virgin membrane into chemical cleaning to identify and analysis the impact of the chemical cleaning on the performance of RO membrane. Commerical chemical cleaning used in this project were caustic and acidic cleaning agent. The project’s aim is the investigation of simulation software’s precision for the four membranes performance projection at different conditions of the feed water. The assessment of the membranes performance was done in the Innovation Cluster at pilot plant that was industrial in size. The main commercial elements used were the thin-film composite membranes with a spiral-wound of 8-inch polyamide. Ultrafiltration (UF) and seawater RO membrane pretreatment process was done for the red sea sourced feed water. A pressure vessel dimensioned at 8-inch was operated in conjunction with an individual element at 8 -20 m3/hr feed flow rate, with an 8 to 12 % recovery and an average 35,000-42,000 mg/L of total dissolved solids (TDS) composition for the feed water. To achieve the project’s aim in assessing the membranes, three phase experimental stages were completed. The membranes performance was assessed in terms of their water flux, salt rejection, boron rejection, bicarbonate rejection and permeate quality. In addition, the membrane surfaces were characterized after exposing the fresh membranes with a chemical cleaning reagent. The experimental results showed an increase in both permeate flow and salt passage for all studied elements. The changes in the membranes performance were systematically explained based on the changes in the charge density and chemical structure of the membranes

  13. Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance.

    Science.gov (United States)

    Wang, Zhenggong; Wang, Dong; Zhang, Shenxiang; Hu, Liang; Jin, Jian

    2016-05-01

    High-performance metal-organic framework (MOF)/polyimide (PI) mixed matrix membranes (MMMs) are fabricated by a facile strategy by designing the MOF/PI matrix interface via poly dopamine coating. The overall separation performance of the designed MMMs surpasses the state-of-the-art 2008 Robeson upper bound for the H2 /CH4 and H2 /N2 gas pairs and approaches the 2008 upper bound for the O2 /N2 gas pair. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junfen, E-mail: junfensun@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, North People Road 2999, Shanghai 201620 (China); Wu, Lishun [Department of Chemistry and Chemical Engineering, Heze University, Daxue Road 2269, Heze, Shandong Province 274015 (China)

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  15. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.; Kim, DooLi.; Nunes, Suzana. P.

    2017-01-01

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  16. Polyethersulfone/Graphene Oxide Ultrafiltration Membranes from Solutions in Ionic Liquid

    KAUST Repository

    Mahalingam, Dinesh. K.

    2017-07-18

    Novel high flux polyethersulfone (PES) ultrafiltration membranes were fabricated by incorporating different amounts of graphene oxide (GO) sheets to PES as nanofillers. The membranes were prepared from solutions in 50/50 1-ethyl-3-methylimidazolium-diethylphosphate/N,N-dimethyl formamide. It was observed that the water permeance increased from 550 to 800 L m-2h-1bar-1, with incorporation of 1 wt% GO, keeping a molecular weight cut-off (MWCO) of approximately 32-34 kg mol-1. Cross-sectional scanning electron microscopy images of GO/PES membranes showed the formation of ultrathin selective layer unlike pristine membranes. Contact angle measurements confirmed the increase of hydrophilicity, by increasing the GO concentration. The rejection of humic acid and bovine serum albumin was demonstrated. The mechanical properties were improved, compared with the pristine membranes. The performance was just above the trade-off relationship between permeance and separation factor for PES membranes reported in the literature.

  17. Electrochemical Characterization of a Polymer Inclusion Membrane Made of Cellulose Triacetate and Aliquat 336 and Its Application to Sulfonamides Separation

    Directory of Open Access Journals (Sweden)

    Juana Benavente

    2018-01-01

    Full Text Available An electrochemical characterization of a polymer inclusion membrane (PIM fabricated with the ionic liquid (IL Aliquat 336 (26% and the polymer cellulose triacetate (CTA (76% is presented. Considering the use of PIMs in separation systems to remove pollutants from water, the characterization was performed with NaCl solutions by measuring membrane potential, electrochemical impedance spectroscopy, and salt diffusion and results were compared with those obtained from dry membranes. Results showed a significant reduction in the membrane diffusive permeability and electrical conductivity as well as the transport number of cation Na+ across the PIM when compared with solution values, which could be mainly related to the dense character of the membrane. Membrane application in the separation of different sulfonamides (sulfathiazole, sulfapyridine, sulfamethazine, and sulfamethoxazole from water, with 1 M NaCl solution as striping phase, was also considered. These results indicated that the different chemical characteristics of the compounds, as well as the compact structure of the PIM, limited the transport of the organic molecules though it.

  18. Application of directly coupled HPLC MMR to separation and characterization of lipoproteins from human serum

    DEFF Research Database (Denmark)

    Daykin, C. A.; Corcoran, O.; Hansen, S. H.

    2001-01-01

    method for the separation of highdensity lipoprotein, low-density lipoprotein, and very low-density lipoprotein from intact serum or plasma. The separation was achieved using a hydroxyapatite column and elution with pH 7.4 phosphate buffer with 100-muL injections of whole plasma. Coelution of HDL...... run time was 90 min with stopped-now 600-MHz NMR spectra of each lipoprotein being collected using 128 scans, in 7 min. The H-1 NMR chemical shifts of lipid signals were identical to conventional NMR spectra of freshly prepared lipoprotein standards, confirming that the lipoproteins were not degraded...

  19. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

    KAUST Repository

    Zhang, Chen

    2014-05-29

    ZIF-8/6FDA-DAM, a proven mixed-matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual-layer ZIF-8/6FDA-DAM mixed-matrix hollow fiber membranes with ZIF-8 nanoparticle loading up to 30 wt % using the conventional dry-jet/wet-quench fiber spinning technique. The mixed-matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed-matrix dense films. Critical variables controlling successful formation of mixed-matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high-loading mixed-matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed-matrix membranes. © 2014 American Institute of Chemical Engineers.

  20. Ion-Exchange Membrane Chromatography as an Alternative Method of Separation of Potato y Virus

    Directory of Open Access Journals (Sweden)

    Treder Krzysztof

    2015-12-01

    Full Text Available Procedures of separation of virus particles from a plant material are multistage. Furthermore often they are difficult in terms of methodology and require use of expensive, highly specialist equipment and yield of separation is often low. The antigen obtained is often degraded and contains admixtures of other proteins. Therefore, generation of high quality and specificity antibodies based on such antigen is very difficult and quality of the antibodies has impact on reliability, sensitivity and unambiguity of results of immunodiagnostic tests (e.g. ELISA that are currently conventionally used to detect vegetable viruses. In this study three conventionally-performed methods of separation of potato virus Y (PVY were compared and a method of separation based on membrane chromatography, as an alternative separation technique, has been presented. It has been demonstrated that in proper process conditions good quality virus preparation can be obtained.