WorldWideScience

Sample records for serum proteome public

  1. Calorimetric monitoring of the serum proteome in schizophrenia patients

    Energy Technology Data Exchange (ETDEWEB)

    Krumova, Sashka [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Rukova, Blaga [Department of Medical Genetics, Medical University of Sofia, 2 Zdrave Str., Sofia 1431 (Bulgaria); Todinova, Svetla [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria); Gartcheva, Lidia [National Specialized Hospital for Active Treating of Haematological Diseases, 6 Plovdivsko pole Str., Sofia 1756 (Bulgaria); Milanova, Vihra [Department of Psychiatry, Medical University of Sofia, 1 Sv. Georgi Sofiiski Str., Sofia 1431 (Bulgaria); Toncheva, Draga [Department of Medical Genetics, Medical University of Sofia, 2 Zdrave Str., Sofia 1431 (Bulgaria); Taneva, Stefka G., E-mail: stefka.germanova@ehu.es [Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113 (Bulgaria)

    2013-11-20

    Highlights: • DSC reveals modified thermal behavior of blood serum from schizophrenic patients. • The high-abundance portion of the serum proteome is thermally stabilized in Sz. • The Sz plasma thermograms are classified in four distinct calorimetric groups. • The effectiveness of drug treatment correlates with the plasma thermodynamic behavior. - Abstract: Schizophrenia (Sz) is a multifactorial mental disorder with high frequency. Due to its chronic and relapsing nature there is a strong need for biomarkers for early psychosis detection and objective evaluation of drug (usually antipsychotics) treatment effect. Here differential scanning calorimetry (DSC) is applied to thermodynamically characterize the blood serum proteome of paranoid schizophrenia patients on routine antipsychotic treatment in comparison to healthy controls. DSC revealed significant modifications in the thermodynamic behavior of blood sera from Sz patients, the overall thermal profile being changed in all Sz cases under study. The calorimetric profiles were classified in four distinct groups, reflecting different thermal stabilization of the high-abundance portion of the serum proteome. The observed positive (thermograms becoming closer to the healthy profile) or negative (thermograms deviating stronger from the healthy profile) proteome thermal stability switches and the Sz thermograms persistence in patients’ follow-up corresponded well with the effect of drug treatment.

  2. Calorimetric monitoring of the serum proteome in schizophrenia patients

    International Nuclear Information System (INIS)

    Krumova, Sashka; Rukova, Blaga; Todinova, Svetla; Gartcheva, Lidia; Milanova, Vihra; Toncheva, Draga; Taneva, Stefka G.

    2013-01-01

    Highlights: • DSC reveals modified thermal behavior of blood serum from schizophrenic patients. • The high-abundance portion of the serum proteome is thermally stabilized in Sz. • The Sz plasma thermograms are classified in four distinct calorimetric groups. • The effectiveness of drug treatment correlates with the plasma thermodynamic behavior. - Abstract: Schizophrenia (Sz) is a multifactorial mental disorder with high frequency. Due to its chronic and relapsing nature there is a strong need for biomarkers for early psychosis detection and objective evaluation of drug (usually antipsychotics) treatment effect. Here differential scanning calorimetry (DSC) is applied to thermodynamically characterize the blood serum proteome of paranoid schizophrenia patients on routine antipsychotic treatment in comparison to healthy controls. DSC revealed significant modifications in the thermodynamic behavior of blood sera from Sz patients, the overall thermal profile being changed in all Sz cases under study. The calorimetric profiles were classified in four distinct groups, reflecting different thermal stabilization of the high-abundance portion of the serum proteome. The observed positive (thermograms becoming closer to the healthy profile) or negative (thermograms deviating stronger from the healthy profile) proteome thermal stability switches and the Sz thermograms persistence in patients’ follow-up corresponded well with the effect of drug treatment

  3. Serum proteome profiling in canine idiopathic dilated cardiomyopathy using TMT-based quantitative proteomics approach.

    Science.gov (United States)

    Bilić, Petra; Guillemin, Nicolas; Kovačević, Alan; Beer Ljubić, Blanka; Jović, Ines; Galan, Asier; Eckersall, Peter David; Burchmore, Richard; Mrljak, Vladimir

    2018-05-15

    Idiopathic dilated cardiomyopathy (iDCM) is a primary myocardial disorder with an unknown aetiology, characterized by reduced contractility and ventricular dilation of the left or both ventricles. Naturally occurring canine iDCM was used herein to identify serum proteomic signature of the disease compared to the healthy state, providing an insight into underlying mechanisms and revealing proteins with biomarker potential. To achieve this, we used high-throughput label-based quantitative LC-MS/MS proteomics approach and bioinformatics analysis of the in silico inferred interactome protein network created from the initial list of differential proteins. To complement the proteomic analysis, serum biochemical parameters and levels of know biomarkers of cardiac function were measured. Several proteins with biomarker potential were identified, such as inter-alpha-trypsin inhibitor heavy chain H4, microfibril-associated glycoprotein 4 and apolipoprotein A-IV, which were validated using an independent method (Western blotting) and showed high specificity and sensitivity according to the receiver operating characteristic curve analysis. Bioinformatics analysis revealed involvement of different pathways in iDCM, such as complement cascade activation, lipoprotein particles dynamics, elastic fibre formation, GPCR signalling and respiratory electron transport chain. Idiopathic dilated cardiomyopathy is a severe primary myocardial disease of unknown cause, affecting both humans and dogs. This study is a contribution to the canine heart disease research by means of proteomic and bioinformatic state of the art analyses, following similar approach in human iDCM research. Importantly, we used serum as non-invasive and easily accessible biological source of information and contributed to the scarce data on biofluid proteome research on this topic. Bioinformatics analysis revealed biological pathways modulated in canine iDCM with potential of further targeted research. Also, several

  4. Comparison of serum fractionation methods by data independent label-free proteomics

    Directory of Open Access Journals (Sweden)

    D. Baiwir

    2015-12-01

    Full Text Available Off-line sample prefractionations applied prior to biomarker discovery proteomics are options to enable more protein identifications and detect low-abundance proteins. This work compared five commercial methods efficiency to raw serum analysis using label-free proteomics. The variability of the protein quantities determined for each process was similar to the unprefractionated serum. A 49% increase in protein identifications and 12.2% of reliable quantification were obtained. A 61 times lower limit of protein quantitation was reached compared to protein concentrations observed in raw serum. The concentrations of detected proteins were confronted to estimated reference values.

  5. A Routine 'Top-Down' Approach to Analysis of the Human Serum Proteome.

    Science.gov (United States)

    D'Silva, Arlene M; Hyett, Jon A; Coorssen, Jens R

    2017-06-06

    Serum provides a rich source of potential biomarker proteoforms. One of the major obstacles in analysing serum proteomes is detecting lower abundance proteins owing to the presence of hyper-abundant species (e.g., serum albumin and immunoglobulins). Although depletion methods have been used to address this, these can lead to the concomitant removal of non-targeted protein species, and thus raise issues of specificity, reproducibility, and the capacity for meaningful quantitative analyses. Altering the native stoichiometry of the proteome components may thus yield a more complex series of issues than dealing directly with the inherent complexity of the sample. Hence, here we targeted method refinements so as to ensure optimum resolution of serum proteomes via a top down two-dimensional gel electrophoresis (2DE) approach that enables the routine assessment of proteoforms and is fully compatible with subsequent mass spectrometric analyses. Testing included various fractionation and non-fractionation approaches. The data show that resolving 500 µg protein on 17 cm 3-10 non-linear immobilised pH gradient strips in the first dimension followed by second dimension resolution on 7-20% gradient gels with a combination of lithium dodecyl sulfate (LDS) and sodium dodecyl sulfate (SDS) detergents markedly improves the resolution and detection of proteoforms in serum. In addition, well established third dimension electrophoretic separations in combination with deep imaging further contributed to the best available resolution, detection, and thus quantitative top-down analysis of serum proteomes.

  6. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer.

    Science.gov (United States)

    Petricoin, Emanuel F; Liotta, Lance A

    2004-02-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity-based processes. Serum proteomic pattern diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. This approach has recently shown tremendous promise in the detection of early-stage cancers. The biomarkers found by SELDI-TOF-based pattern recognition analysis are mostly low molecular weight fragments produced at the specific tumor microenvironment.

  7. Preparation of the low molecular weight serum proteome for mass spectrometry analysis.

    Science.gov (United States)

    Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen

    2013-01-01

    The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.

  8. Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer

    Directory of Open Access Journals (Sweden)

    Stobiecki Maciej

    2009-07-01

    Full Text Available Abstract Background Mass spectrometric analysis of the blood proteome is an emerging method of clinical proteomics. The approach exploiting multi-protein/peptide sets (fingerprints detected by mass spectrometry that reflect overall features of a specimen's proteome, termed proteome pattern analysis, have been already shown in several studies to have applicability in cancer diagnostics. We aimed to identify serum proteome patterns specific for early stage breast cancer patients using MALDI-ToF mass spectrometry. Methods Blood samples were collected before the start of therapy in a group of 92 patients diagnosed at stages I and II of the disease, and in a group of age-matched healthy controls (104 women. Serum specimens were purified and the low-molecular-weight proteome fraction was examined using MALDI-ToF mass spectrometry after removal of albumin and other high-molecular-weight serum proteins. Protein ions registered in a mass range between 2,000 and 10,000 Da were analyzed using a new bioinformatic tool created in our group, which included modeling spectra as a sum of Gaussian bell-shaped curves. Results We have identified features of serum proteome patterns that were significantly different between blood samples of healthy individuals and early stage breast cancer patients. The classifier built of three spectral components that differentiated controls and cancer patients had 83% sensitivity and 85% specificity. Spectral components (i.e., protein ions that were the most frequent in such classifiers had approximate m/z values of 2303, 2866 and 3579 Da (a biomarker built from these three components showed 88% sensitivity and 78% specificity. Of note, we did not find a significant correlation between features of serum proteome patterns and established prognostic or predictive factors like tumor size, nodal involvement, histopathological grade, estrogen and progesterone receptor expression. In addition, we observed a significantly (p = 0

  9. Vacuum-assisted breast biopsy of suspected mammographic breast diagnoses: predictive value of serum proteomic profile

    International Nuclear Information System (INIS)

    Schittulli, F.; Ventrella, V.

    2009-01-01

    The project planned a series of actions oriented to different scientific questions: to complete the prospective collection of serum samples for serum proteomic analysis according to SOPs needed for the Italy-USA program; the identification of different mammographic signs for prediction of histological diagnosis of breast lesions through mammotone; the analysis of relationship between serum proteomic profile and micro histology characteristics of breast lesions

  10. Mass Spectrometry-Based Serum Proteomics for Biomarker Discovery and Validation.

    Science.gov (United States)

    Bhosale, Santosh D; Moulder, Robert; Kouvonen, Petri; Lahesmaa, Riitta; Goodlett, David R

    2017-01-01

    Blood protein measurements are used frequently in the clinic in the assessment of patient health. Nevertheless, there remains the need for new biomarkers with better diagnostic specificities. With the advent of improved technology for bioanalysis and the growth of biobanks including collections from specific disease risk cohorts, the plasma proteome has remained a target of proteomics research toward the characterization of disease-related biomarkers. The following protocol presents a workflow for serum/plasma proteomics including details of sample preparation both with and without immunoaffinity depletion of the most abundant plasma proteins and methodology for selected reaction monitoring mass spectrometry validation.

  11. Toxicoproteomics: serum proteomic pattern diagnostics for early detection of drug induced cardiac toxicities and cardioprotection.

    Science.gov (United States)

    Petricoin, Emanuel F; Rajapaske, Vinodh; Herman, Eugene H; Arekani, Ali M; Ross, Sally; Johann, Donald; Knapton, Alan; Zhang, J; Hitt, Ben A; Conrads, Thomas P; Veenstra, Timothy D; Liotta, Lance A; Sistare, Frank D

    2004-01-01

    Proteomics is more than just generating lists of proteins that increase or decrease in expression as a cause or consequence of pathology. The goal should be to characterize the information flow through the intercellular protein circuitry which communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. The nature of this information can be a cause, or a consequence, of disease and toxicity based processes as cascades of reinforcing information percolate through the system and become reflected in changing proteomic information content of the circulation. Serum Proteomic Pattern Diagnostics is a new type of proteomic platform in which patterns of proteomic signatures from high dimensional mass spectrometry data are used as a diagnostic classifier. While this approach has shown tremendous promise in early detection of cancers, detection of drug-induced toxicity may also be possible with this same technology. Analysis of serum from rat models of anthracycline and anthracenedione induced cardiotoxicity indicate the potential clinical utility of diagnostic proteomic patterns where low molecular weight peptides and protein fragments may have higher accuracy than traditional biomarkers of cardiotoxicity such as troponins. These fragments may one day be harvested by circulating nanoparticles designed to absorb, enrich and amplify the diagnostic biomarker repertoire generated even at the critical initial stages of toxicity.

  12. Identification of Hip BMD Loss and Fracture Risk Markers Through Population-Based Serum Proteomics: HIP BMD LOSS & FRACTURE RISK MARKERS BY POPULATION-BASED SERUM PROTEOMICS

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Carrie; Wiedrick, Jack; Shen, Jian; Jacobs, Jon M.; Baker, Erin M.; Baraff, Aaron; Piehowski, Paul D.; Lee, Christine; Baratt, Arie; Petyuk, Vladislav A.; Mcweeney, Shannon K.; Lim, Jeong Youn; Bauer, Douglas C.; Lane, Nancy E.; Cawthon, Peggy M.; Smith, Richard D.; Lapidus, Jodi; Orwoll, Eric S.

    2017-04-06

    Accelerated bone loss significantly increases the risk of osteoporosis and fracture. The mechanisms underlying bone loss remain incompletely understood, and there are few available biomarkers. We utilized a novel proteomics approach to identify serum peptides and proteins associated with bone loss in 1967 older men who were randomly chosen from the Osteoporotic Fracture in Men Study (MrOS study) (age ≥ 65 yrs). Men had 2-3 measures of femoral neck BMD over an average follow-up of 4.6 years. Change in BMD was estimated and then categorized into three groups: maintained BMD (n=453), expected loss (n=1185) and accelerated loss (n=237). A liquid chromatography–ion mobility separation-mass spectrometry (LC-IMS-MS) proteomics platform was used to identify and quantify peptides from serum proteins. The whole cohort was randomly divided into discovery (N= 960) and validation (N= 915) sub-cohorts. Linear regression models and a random forest approach were used to discover differentially abundant individual peptides and a proteomic signature that distinguished individuals with accelerated bone loss from those who maintained BMD. Network analyses were performed using the MetaCore knowledgebase. We identified 12 peptides that were associated with BMD loss in both discovery (P< 0.1 FDR) and replication sub-cohorts (P<0.05). Those 12 peptides mapped to the following proteins: ALS, LYVE1, RNAS1, C2, ICOSL, C163A, C7, HEMO, CD14, CERU, CRAC1 and CD59. Meta-analysis of peptidesassociated with bone loss identified 6 additional proteins including GRP78, IGF-2, SHBG, ENPP2, IBP2 and IBP6. We also identified a proteomic signature that was predictive of BMD loss with a discriminative value similar to serum bone marker carboxy-terminal collagen crosslink peptide (CTX). Interestingly, combining the proteomic signature with CTX significantly improved the ability to discriminate men with accelerated loss. In summary, we have identified potential new biomarkers for bone loss that provide

  13. Proteomic Analysis of Bovine Pregnancy-specific Serum Proteins by 2D Fluorescence Difference Gel Electrophoresis

    OpenAIRE

    Lee, Jae Eun; Lee, Jae Young; Kim, Hong Rye; Shin, Hyun Young; Lin, Tao; Jin, Dong Il

    2015-01-01

    Two dimensional-fluorescence difference gel electrophoresis (2D DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. The purpose of this study was to investigate bovine pregnancy-specific proteins in the proteome between bovine pregnant and non-pregnant serum using DIGE technique. Serums of 2 pregnant Holstein dairy cattle at day 21 after artificial insemination and those of 2...

  14. Simplifying the human serum proteome for discriminating patients with bipolar disorder of other psychiatry conditions.

    Science.gov (United States)

    de Jesus, Jemmyson Romário; Galazzi, Rodrigo Moretto; de Lima, Tatiani Brenelli; Banzato, Cláudio Eduardo Muller; de Almeida Lima E Silva, Luiz Fernando; de Rosalmeida Dantas, Clarissa; Gozzo, Fábio Cézar; Arruda, Marco Aurélio Zezzi

    2017-12-01

    An exploratory analysis using proteomic strategies in blood serum of patients with bipolar disorder (BD), and with other psychiatric conditions such as Schizophrenia (SCZ), can provide a better understanding of this disorder, as well as their discrimination based on their proteomic profile. The proteomic profile of blood serum samples obtained from patients with BD using lithium or other drugs (N=14), healthy controls, including non-family (HCNF; N=3) and family (HCF; N=9), patients with schizophrenia (SCZ; N=23), and patients using lithium for other psychiatric conditions (OD; N=4) were compared. Four methods for simplifying the serum samples proteome were evaluated for both removing the most abundant proteins and for enriching those of lower-abundance: protein depletion with acetonitrile (ACN), dithiothreitol (DTT), sequential depletion using DTT and ACN, and protein equalization using commercial ProteoMiner® kit (PM). For proteomic evaluation, 2-D DIGE and nanoLC-MS/MS analysis were employed. PM method was the best strategy for removing proteins of high abundance. Through 2-D DIGE gel image comparison, 37 protein spots were found differentially abundant (p<0.05, Student's t-test), which exhibited ≥2.0-fold change of the average value of normalized spot intensities in the serum of SCZ, BD and OD patients compared to subject controls (HCF and HCNF). From these spots detected, 13 different proteins were identified: ApoA1, ApoE, ApoC3, ApoA4, Samp, SerpinA1, TTR, IgK, Alb, VTN, TR, C4A and C4B. Proteomic analysis allowed the discrimination of patients with BD from patients with other mental disorders, such as SCZ. The findings in this exploratory study may also contribute for better understanding the pathophysiology of these disorders and finding potential serum biomarkers for these conditions. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.

    Science.gov (United States)

    Lin, Lin; Zheng, Jiaxin; Yu, Quan; Chen, Wendong; Xing, Jinchun; Chen, Chenxi; Tian, Ruijun

    2018-03-01

    Mass spectrometry (MS)-based serum proteome analysis is extremely challenging due to its high complexity and dynamic range of protein abundances. Developing high throughput and accurate serum proteomic profiling approach capable of analyzing large cohorts is urgently needed for biomarker discovery. Herein, we report a streamlined workflow for fast and accurate proteomic profiling from 1μL of blood serum. The workflow combined an integrated technique for highly sensitive and reproducible sample preparation and a new data-independent acquisition (DIA)-based MS method. Comparing with standard data dependent acquisition (DDA) approach, the optimized DIA method doubled the number of detected peptides and proteins with better reproducibility. Without protein immunodepletion and prefractionation, the single-run DIA analysis enables quantitative profiling of over 300 proteins with 50min gradient time. The quantified proteins span more than five orders of magnitude of abundance range and contain over 50 FDA-approved disease markers. The workflow allowed us to analyze 20 serum samples per day, with about 358 protein groups per sample being identified. A proof-of-concept study on renal cell carcinoma (RCC) serum samples confirmed the feasibility of the workflow for large scale serum proteomic profiling and disease-related biomarker discovery. Blood serum or plasma is the predominant specimen for clinical proteomic studies while the analysis is extremely challenging for its high complexity. Many efforts had been made in the past for serum proteomics for maximizing protein identifications, whereas few have been concerned with throughput and reproducibility. Here, we establish a rapid, robust and high reproducible DIA-based workflow for streamlined serum proteomic profiling from 1μL serum. The workflow doesn't need protein depletion and pre-fractionation, while still being able to detect disease-relevant proteins accurately. The workflow is promising in clinical application

  16. Bioinformatical Analysis of Organ-Related (Heart, Brain, Liver, and Kidney and Serum Proteomic Data to Identify Protein Regulation Patterns and Potential Sepsis Biomarkers

    Directory of Open Access Journals (Sweden)

    Andreas Hohn

    2018-01-01

    Full Text Available During the last years, proteomic studies have revealed several interesting findings in experimental sepsis models and septic patients. However, most studies investigated protein alterations only in single organs or in whole blood. To identify possible sepsis biomarkers and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart, brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis, we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum proteome, functions were associated with lipoproteins metabolism and, to a minor extent, with coagulation, inflammatory response, and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein regulation during sepsis.

  17. Glyco-centric lectin magnetic bead array (LeMBA − proteomics dataset of human serum samples from healthy, Barrett׳s esophagus and esophageal adenocarcinoma individuals

    Directory of Open Access Journals (Sweden)

    Alok K. Shah

    2016-06-01

    Full Text Available This data article describes serum glycoprotein biomarker discovery and qualification datasets generated using lectin magnetic bead array (LeMBA – mass spectrometry techniques, “Serum glycoprotein biomarker discovery and qualification pipeline reveals novel diagnostic biomarker candidates for esophageal adenocarcinoma” [1]. Serum samples collected from healthy, metaplastic Barrett׳s esophagus (BE and esophageal adenocarcinoma (EAC individuals were profiled for glycoprotein subsets via differential lectin binding. The biomarker discovery proteomics dataset consisting of 20 individual lectin pull-downs for 29 serum samples with a spiked-in internal standard chicken ovalbumin protein has been deposited in the PRIDE partner repository of the ProteomeXchange Consortium with the data set identifier PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002442. Annotated MS/MS spectra for the peptide identifications can be viewed using MS-Viewer (〈http://prospector2.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewer〉 using search key “jn7qafftux”. The qualification dataset contained 6-lectin pulldown-coupled multiple reaction monitoring-mass spectrometry (MRM-MS data for 41 protein candidates, from 60 serum samples. This dataset is available as a supplemental files with the original publication [1].

  18. Evaluation of three high abundance protein depletion kits for umbilical cord serum proteomics

    Directory of Open Access Journals (Sweden)

    Nie Jing

    2011-05-01

    Full Text Available Abstract Background High abundance protein depletion is a major challenge in the study of serum/plasma proteomics. Prior to this study, most commercially available kits for depletion of highly abundant proteins had only been tested and evaluated in adult serum/plasma, while the depletion efficiency on umbilical cord serum/plasma had not been clarified. Structural differences between some adult and fetal proteins (such as albumin make it likely that depletion approaches for adult and umbilical cord serum/plasma will be variable. Therefore, the primary purposes of the present study are to investigate the efficiencies of several commonly-used commercial kits during high abundance protein depletion from umbilical cord serum and to determine which kit yields the most effective and reproducible results for further proteomics research on umbilical cord serum. Results The immunoaffinity based kits (PROTIA-Sigma and 5185-Agilent displayed higher depletion efficiency than the immobilized dye based kit (PROTBA-Sigma in umbilical cord serum samples. Both the PROTIA-Sigma and 5185-Agilent kit maintained high depletion efficiency when used three consecutive times. Depletion by the PROTIA-Sigma Kit improved 2DE gel quality by reducing smeared bands produced by the presence of high abundance proteins and increasing the intensity of other protein spots. During image analysis using the identical detection parameters, 411 ± 18 spots were detected in crude serum gels, while 757 ± 43 spots were detected in depleted serum gels. Eight spots unique to depleted serum gels were identified by MALDI- TOF/TOF MS, seven of which were low abundance proteins. Conclusions The immunoaffinity based kits exceeded the immobilized dye based kit in high abundance protein depletion of umbilical cord serum samples and dramatically improved 2DE gel quality for detection of trace biomarkers.

  19. Analysis of proteomic changes of the serum of irradiated mice

    International Nuclear Information System (INIS)

    Wang Zhidong; Chen Xiaohua; Dong Bo; Zhang Junquan; Rao Yalan; Gao Ronglian; Hou Lili; Mao Bingzhi

    2005-01-01

    To explore the early diagnostic factors, new therapeutic targets and mechanisms of acute radiation disease. Proteomic changes of the serum of irradiated mice were studied using 2-DE and Q-TOF-MS approaches. One higher level expressed protein after the irradiation was found, and it was identified as α chain of haptoglobin by Q-TOF-MS. The authors confirmed the result by Western blotting with anti-haptoglobin antibody. Haptoglobin may involve in the process of acute radiation injury. (authors)

  20. [The proteomic profiling of blood serum of children with gastroesophageal reflux disease].

    Science.gov (United States)

    Korkotashvili, L V; Kolesov, S A; Jukova, E A; Vidmanova, T A; Kankova, N Yu; Bashurova, I A; Sidorova, A M; Kulakova, E V

    2015-03-01

    The mass-spectra of proteome of blood serum from healthy children and children with gastroesophageal reflux disease were received. The technology platform including direct proteome mass-spectrometer profiling after pre-fractional rectification using magnetic particles MB WCX was applied. The significant differences in mass-spectra were established manifesting in detection of more mass-spectrometer peaks and higher indicators of their intensity and area in group of healthy children. The study detected 39 particular peptides and low-molecular proteins predominantly intrinsic to healthy or ill children. It was established that two peptides with molecular mass 925 and 909 Da. are registered only in healthy patients and have no traces in group ofpatients with gastroesophageal reflux disease. The peptide 1564 Da is detected only in blood of children with gastroesophageal reflux disease and totally is absent in healthy children. The research data permitted to reveal specific patterns (signatures) of low-molecular proteins and peptides specific for blood serum of healthy children and patients with gastroesophageal reflux disease. The results testify the availability of singularities in metabolism of low-molecular proteins and can be used as a basis for development of minimally invasive mass-spectrometer system for its diagnostic.

  1. Proteomics Analysis for Finding Serum Markers of Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Yushan Cheng

    2014-01-01

    Full Text Available A combination of peptide ligand library beads (PLLB and 1D gel liquid chromatography-mass spectrometry/mass spectrometry (1DGel-LC-MS/MS was employed to analyze serum samples from patients with ovarian cancer and from healthy controls. Proteomic analysis identified 1200 serum proteins, among which 57 proteins were upregulated and 10 were downregulated in the sera from cancer patients. Retinol binding protein 4 (RBP4 is highly upregulated in the ovarian cancer serum samples. ELISA was employed to measure plasma concentrations of RBP4 in 80 samples from ovarian cancer patients, healthy individuals, myoma patients, and patients with benign ovarian tumor, respectively. The plasma concentrations of RBP4 ranging from 76.91 to 120.08 ng/mL with the mean value 89.13±1.67 ng/mL in ovarian cancer patients are significantly higher than those in healthy individuals (10.85±2.38 ng/mL. Results were further confirmed with immunohistochemistry, demonstrating that RBP4 expression levels in normal ovarian tissue were lower than those in ovarian cancer tissues. Our results suggested that RBP4 is a potential biomarker for diagnostic of screening ovarian cancer.

  2. Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm.

    Science.gov (United States)

    Kim, Eun Young; Lee, Min Young; Kim, Se Hyun; Ha, Kyooseob; Kim, Kwang Pyo; Ahn, Yong Min

    2017-06-02

    Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers. The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination. A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy. A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Serum quantitative proteomic analysis reveals potential zinc-associated biomarkers for nonbacterial prostatitis.

    Science.gov (United States)

    Yang, Xiaoli; Li, Hongtao; Zhang, Chengdong; Lin, Zhidi; Zhang, Xinhua; Zhang, Youjie; Yu, Yanbao; Liu, Kun; Li, Muyan; Zhang, Yuening; Lv, Wenxin; Xie, Yuanliang; Lu, Zheng; Wu, Chunlei; Teng, Ruobing; Lu, Shaoming; He, Min; Mo, Zengnan

    2015-10-01

    Prostatitis is one of the most common urological problems afflicting adult men. The etiology and pathogenesis of nonbacterial prostatitis, which accounts for 90-95% of cases, is largely unknown. As serum proteins often indicate the overall pathologic status of patients, we hypothesized that protein biomarkers of prostatitis might be identified by comparing the serum proteomes of patients with and without nonbacterial prostatitis. All untreated samples were collected from subjects attending the Fangchenggang Area Male Health and Examination Survey (FAMHES). We profiled pooled serum samples from four carefully selected groups of patients (n = 10/group) representing the various categories of nonbacterial prostatitis (IIIa, IIIb, and IV) and matched healthy controls using a mass spectrometry-based 4-plex iTRAQ proteomic approach. More than 160 samples were validated by ELISA. Overall, 69 proteins were identified. Among them, 42, 52, and 37 proteins were identified with differential expression in Category IIIa, IIIb, and IV prostatitis, respectively. The 19 common proteins were related to immunity and defense, ion binding, transport, and proteolysis. Two zinc-binding proteins, superoxide dismutase 3 (SOD3), and carbonic anhydrase I (CA1), were significantly higher in all types of prostatitis than in the control. A receiver operating characteristic curve estimated sensitivities of 50.4 and 68.1% and specificities of 92.1 and 83.8% for CA1 and SOD3, respectively, in detecting nonbacterial prostatitis. The serum CA1 concentration was inversely correlated to the zinc concentration in expressed-prostatic secretions. Our findings suggest that SOD3 and CA1 are potential diagnostic markers of nonbacterial prostatitis, although further large-scale studies are required. The molecular profiles of nonbacterial prostatitis pathogenesis may lay a foundation for discovery of new therapies. © 2015 Wiley Periodicals, Inc.

  4. Proteomic Analysis of Bovine Pregnancy-specific Serum Proteins by 2D Fluorescence Difference Gel Electrophoresis

    Science.gov (United States)

    Lee, Jae Eun; Lee, Jae Young; Kim, Hong Rye; Shin, Hyun Young; Lin, Tao; Jin, Dong Il

    2015-01-01

    Two dimensional-fluorescence difference gel electrophoresis (2D DIGE) is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. The purpose of this study was to investigate bovine pregnancy-specific proteins in the proteome between bovine pregnant and non-pregnant serum using DIGE technique. Serums of 2 pregnant Holstein dairy cattle at day 21 after artificial insemination and those of 2 non-pregnant were used in this study. The pre-electrophoretic labeling of pregnant and non-pregnant serum proteins were mixed with Cy3 and Cy5 fluorescent dyes, respectively, and an internal standard was labeled with Cy2. Labeled proteins with Cy2, Cy3, and Cy5 were separated together in a single gel, and then were detected by fluorescence image analyzer. The 2D DIGE method using fluorescence CyDye DIGE flour had higher sensitivity than conventional 2D gel electrophoresis, and showed reproducible results. Approximately 1,500 protein spots were detected by 2D DIGE. Several proteins showed a more than 1.5-fold up and down regulation between non-pregnant and pregnant serum proteins. The differentially expressed proteins were identified by MALDI-TOF mass spectrometer. A total 16 protein spots were detected to regulate differentially in the pregnant serum, among which 7 spots were up-regulated proteins such as conglutinin precursor, modified bovine fibrinogen and IgG1, and 6 spots were down-regulated proteins such as hemoglobin, complement component 3, bovine fibrinogen and IgG2a three spots were not identified. The identified proteins demonstrate that early pregnant bovine serum may have several pregnancy-specific proteins, and these could be a valuable information for the development of pregnancy-diagnostic markers in early pregnancy bovine serum. PMID:25925056

  5. Proteomic Analysis of Bovine Pregnancy-specific Serum Proteins by 2D Fluorescence Difference Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Jae Eun Lee

    2015-06-01

    Full Text Available Two dimensional-fluorescence difference gel electrophoresis (2D DIGE is an emerging technique for comparative proteomics, which improves the reproducibility and reliability of differential protein expression analysis between samples. The purpose of this study was to investigate bovine pregnancy-specific proteins in the proteome between bovine pregnant and non-pregnant serum using DIGE technique. Serums of 2 pregnant Holstein dairy cattle at day 21 after artificial insemination and those of 2 non-pregnant were used in this study. The pre-electrophoretic labeling of pregnant and non-pregnant serum proteins were mixed with Cy3 and Cy5 fluorescent dyes, respectively, and an internal standard was labeled with Cy2. Labeled proteins with Cy2, Cy3, and Cy5 were separated together in a single gel, and then were detected by fluorescence image analyzer. The 2D DIGE method using fluorescence CyDye DIGE flour had higher sensitivity than conventional 2D gel electrophoresis, and showed reproducible results. Approximately 1,500 protein spots were detected by 2D DIGE. Several proteins showed a more than 1.5-fold up and down regulation between non-pregnant and pregnant serum proteins. The differentially expressed proteins were identified by MALDI-TOF mass spectrometer. A total 16 protein spots were detected to regulate differentially in the pregnant serum, among which 7 spots were up-regulated proteins such as conglutinin precursor, modified bovine fibrinogen and IgG1, and 6 spots were down-regulated proteins such as hemoglobin, complement component 3, bovine fibrinogen and IgG2a three spots were not identified. The identified proteins demonstrate that early pregnant bovine serum may have several pregnancy-specific proteins, and these could be a valuable information for the development of pregnancy-diagnostic markers in early pregnancy bovine serum.

  6. Maternal serum proteome changes between the first and third trimester of pregnancy in rural southern Nepal.

    Science.gov (United States)

    Scholl, P F; Cole, R N; Ruczinski, I; Gucek, M; Diez, R; Rennie, A; Nathasingh, C; Schulze, K; Christian, P; Yager, J D; Groopman, J D; West, K P

    2012-05-01

    Characterization of normal changes in the serum proteome during pregnancy may enhance understanding of maternal physiology and lead to the development of new gestational biomarkers. In 23 Nepalese pregnant women who delivered at term, two-dimensional difference in-gel electrophoresis (DIGE) was used to assess changes in relative protein abundance between paired serum samples collected in the first and third trimesters. One-hundred and forty-five of over 700 protein spots in DIGE gels (pI 4.2-6.8) exhibited nominally significant (p < 0.05) differences in abundance across trimesters. Additional filtering using a Bonferroni correction reduced the number of significant (p < 0.00019) spots to 61. Mass spectrometric analysis detected 38 proteins associated with gestational age, cytoskeletal remodeling, blood pressure regulation, lipid and nutrient transport, and inflammation. One new protein, pregnancy-specific β-glycoprotein 4 was detected. A follow-up isotope tagging for relative and absolute quantitation (iTRAQ) experiment of six mothers from the DIGE study revealed 111 proteins, of which 11 exhibited significant (p < 0.05) differences between trimesters. Four of these proteins: gelsolin, complement C1r subcomponent, α-1-acid glycoprotein, and α-1B-glycoprotein also changed in the DIGE analysis. Although not previously associated with normal pregnancy, gelsolin decreased in abundance by the third trimester (p < 0.01) in DIGE, iTRAQ and Western analyses. Changes in abundance of proteins in serum that are associated with syncytiotrophoblasts (gelsolin, pregnancy-specific β-1 glycoprotein 1 and β-2-glycoprotein I) probably reflect dynamics of a placental proteome shed into maternal circulation during pregnancy. Measurement of changes in the maternal serum proteome, when linked with birth outcomes, may yield biomarkers for tracking reproductive health in resource poor settings in future studies. Published by Elsevier Ltd.

  7. Proteomics data exchange and storage: the need for common standards and public repositories.

    Science.gov (United States)

    Jiménez, Rafael C; Vizcaíno, Juan Antonio

    2013-01-01

    Both the existence of data standards and public databases or repositories have been key factors behind the development of the existing "omics" approaches. In this book chapter we first review the main existing mass spectrometry (MS)-based proteomics resources: PRIDE, PeptideAtlas, GPMDB, and Tranche. Second, we report on the current status of the different proteomics data standards developed by the Proteomics Standards Initiative (PSI): the formats mzML, mzIdentML, mzQuantML, TraML, and PSI-MI XML are then reviewed. Finally, we present an easy way to query and access MS proteomics data in the PRIDE database, as a representative of the existing repositories, using the workflow management system (WMS) tool Taverna. Two different publicly available workflows are explained and described.

  8. Genetic differences in the serum proteome of horses, donkeys and mules are detectable by protein profiling.

    Science.gov (United States)

    Henze, Andrea; Aumer, Franziska; Grabner, Arthur; Raila, Jens; Schweigert, Florian J

    2011-10-01

    Although horses and donkeys belong to the same genus, their genetic characteristics probably result in specific proteomes and post-translational modifications (PTM) of proteins. Since PTM can alter protein properties, specific PTM may contribute to species-specific characteristics. Therefore, the aim of the present study was to analyse differences in serum protein profiles of horses and donkeys as well as mules, which combine the genetic backgrounds of both species. Additionally, changes in PTM of the protein transthyretin (TTR) were analysed. Serum protein profiles of each species (five animals per species) were determined using strong anion exchanger ProteinChips® (Bio-Rad, Munich, Germany) in combination with surface-enhanced laser desorption ionisation-time of flight MS. The PTM of TTR were analysed subsequently by immunoprecipitation in combination with matrix-assisted laser desorption ionisation-time of flight MS. Protein profiling revealed species-specific differences in the proteome, with some protein peaks present in all three species as well as protein peaks that were unique for donkeys and mules, horses and mules or for horses alone. The molecular weight of TTR of horses and donkeys differed by 30 Da, and both species revealed several modified forms of TTR besides the native form. The mass spectra of mules represented a merging of TTR spectra of horses and donkeys. In summary, the present study indicated that there are substantial differences in the proteome of horses and donkeys. Additionally, the results probably indicate that the proteome of mules reveal a higher similarity to donkeys than to horses.

  9. Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum

    International Nuclear Information System (INIS)

    Gao, Hua-Jun; Chen, Ya-Jing; Zuo, Duo; Xiao, Ming-Ming; Li, Ying; Guo, Hua; Zhang, Ning; Chen, Rui-Bing

    2015-01-01

    Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths. Novel serum biomarkers are required to increase the sensitivity and specificity of serum screening for early HCC diagnosis. This study employed a quantitative proteomic strategy to analyze the differential expression of serum glycoproteins between HCC and normal control serum samples. Lectin affinity chromatography (LAC) was used to enrich glycoproteins from the serum samples. Quantitative mass spectrometric analysis combined with stable isotope dimethyl labeling and 2D liquid chromatography (LC) separations were performed to examine the differential levels of the detected proteins between HCC and control serum samples. Western blot was used to analyze the differential expression levels of the three serum proteins. A total of 2,280 protein groups were identified in the serum samples from HCC patients by using the 2D LC-MS/MS method. Up to 36 proteins were up-regulated in the HCC serum, whereas 19 proteins were down-regulated. Three differential glycoproteins, namely, fibrinogen gamma chain (FGG), FOS-like antigen 2 (FOSL2), and α-1,6-mannosylglycoprotein 6-β-N-acetylglucosaminyltransferase B (MGAT5B) were validated by Western blot. All these three proteins were up-regulated in the HCC serum samples. A quantitative glycoproteomic method was established and proven useful to determine potential novel biomarkers for HCC

  10. Integrative proteomics and tissue microarray profiling indicate the association between overexpressed serum proteins and non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yansheng Liu

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC can be improved by the early detection and risk screening among population. To meet this need, here we describe the application of extensive peptide level fractionation coupled with label free quantitative proteomics for the discovery of potential serum biomarkers for lung cancer, and the usage of Tissue microarray analysis (TMA and Multiple reaction monitoring (MRM assays for the following up validations in the verification phase. Using these state-of-art, currently available clinical proteomic approaches, in the discovery phase we confidently identified 647 serum proteins, and 101 proteins showed a statistically significant association with NSCLC in our 18 discovery samples. This serum proteomic dataset allowed us to discern the differential patterns and abnormal biological processes in the lung cancer blood. Of these proteins, Alpha-1B-glycoprotein (A1BG and Leucine-rich alpha-2-glycoprotein (LRG1, two plasma glycoproteins with previously unknown function were selected as examples for which TMA and MRM verification were performed in a large sample set consisting about 100 patients. We revealed that A1BG and LRG1 were overexpressed in both the blood level and tumor sections, which can be referred to separate lung cancer patients from healthy cases.

  11. Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Fillmore, Thomas L.; Schepmoes, Athena A.; Clauss, Therese RW; Gritsenko, Marina A.; Mueller, Patricia W.; Rewers, Marian; Atkinson, Mark A.; Smith, Richard D.; Metz, Thomas O.

    2013-01-14

    Using global liquid chromatography-mass spectrometry (LC-MS)-based proteomics analyses, we identified 24 serum proteins significantly variant between those with type 1 diabetes and healthy controls. Functionally, these proteins represent innate immune responses, the activation cascade of complement, inflammatory responses and blood coagulation. Targeted verification analyses were performed on 52 surrogate peptides representing these proteins with serum samples from an antibody standardization program cohort of 100 healthy control and 50 type 1 diabetic subjects, and 16 peptides were verified having very good discriminating power, with areas under the receiver operator characteristic curve ≥ 0.8. Further validation with blinded serum samples from an independent cohort (10 healthy control and 10 type 1 diabetic) demonstrated that peptides from platelet basic protein and C1 inhibitor achieved both 100% sensitivity and 100% specificity for classification of samples. The disease specificity of these proteins was assessed using serum from 50 age matched type 2 diabetic individuals, and a subset of proteins, particularly C1 inhibitor were exceptionally good discriminators between these two forms of diabetes. The panel of biomarkers distinguishing those with type 1 diabetes from healthy control and type 2 diabetes suggests dysregulated innate immune responses may be associated with the development of this disorder.

  12. Differential Proteomics Identification of HSP90 as Potential Serum Biomarker in Hepatocellular Carcinoma by Two-dimensional Electrophoresis and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    2010-03-01

    Full Text Available The aim of the current study is to identify the potential biomarkers involved in Hepatocellular carcinoma (HCC carcinogenesis. A comparative proteomics approach was utilized to identify the differentially expressed proteins in the serum of 10 HCC patients and 10 controls. A total of 12 significantly altered proteins were identified by mass spectrometry. Of the 12 proteins identified, HSP90 was one of the most significantly altered proteins and its over-expression in the serum of 20 HCC patients was confirmed using ELISA analysis. The observations suggest that HSP90 might be a potential biomarker for early diagnosis, prognosis, and monitoring in the therapy of HCC. This work demonstrates that a comprehensive strategy of proteomic identification combined with further validation should be adopted in the field of cancer biomarker discovery.

  13. Analyses of intricate kinetics of the serum proteome during and after colon surgery by protein expression time series

    NARCIS (Netherlands)

    Roelofsen, Johan; Alvarez Llamas, Gloria; Dijkstra, Martijn; Breitling, Rainer; Havenga, Klaas; Bijzet, Johannes; Zandbergen, Wouter; de Vries, Marcel; Ploeg, Rutger J.; Vonk, Roel J.

    Analyses of intricate kinetics of the serum proteome during and after colon surgery by protein expression time series.Roelofsen H, Alvarez-Llamas G, Dijkstra M, Breitling R, Havenga K, Bijzet J, Zandbergen W, de Vries MP, Ploeg RJ, Vonk RJ. Centre for Medical Biomics, University Medical Centre

  14. Partial-Body Irradiation in Patients with Prostate Cancer Treated with IMRT Has Little Effect on the Composition of Serum Proteome.

    Science.gov (United States)

    Pietrowska, Monika; Jelonek, Karol; Polanska, Joanna; Wojakowska, Anna; Marczak, Lukasz; Chawinska, Ewa; Chmura, Aleksanda; Majewski, Wojciech; Miszczyk, Leszek; Widlak, Piotr

    2015-06-30

    Partial body irradiation during cancer radiotherapy (RT) induces a response of irradiated tissues that could be observed at the level of serum proteome. Here we aimed to characterize the response to RT in group of patients treated because of prostate cancer. Five consecutive blood samples were collected before, during, and after the end of RT in a group of 126 patients who received definitive treatment with a maximum dose of 76 Gy. Serum peptidome, which was profiled in the 2000-16,000 Da range using MALDI-MS. Serum proteins were identified and quantified using the shotgun LC-MS/MS approach. The majority of changes in serum peptidome were detected between pre-treatment samples and samples collected after 3-4 weeks of RT (~25% of registered peptides changed their abundances significantly), yet the intensity of observed changes was not correlated significantly with the degree of acute radiation toxicity or the volume of irradiated tissues. Furthermore, there were a few serum proteins identified, the abundances of which were different in pre-RT and post-RT samples, including immunity and inflammation-related factors. Observed effects were apparently weaker than in comparable groups of head and neck cancer patients in spite of similar radiation doses and volumes of irradiated tissues in both groups. We concluded that changes observed at the level of serum proteome were low for this cohort of prostate cancer patients, although the specific components involved are associated with immunity and inflammation, and reflect the characteristic acute response of the human body to radiation.

  15. Partial-Body Irradiation in Patients with Prostate Cancer Treated with IMRT Has Little Effect on the Composition of Serum Proteome

    Directory of Open Access Journals (Sweden)

    Monika Pietrowska

    2015-06-01

    Full Text Available Partial body irradiation during cancer radiotherapy (RT induces a response of irradiated tissues that could be observed at the level of serum proteome. Here we aimed to characterize the response to RT in group of patients treated because of prostate cancer. Five consecutive blood samples were collected before, during, and after the end of RT in a group of 126 patients who received definitive treatment with a maximum dose of 76 Gy. Serum peptidome, which was profiled in the 2000–16,000 Da range using MALDI-MS. Serum proteins were identified and quantified using the shotgun LC-MS/MS approach. The majority of changes in serum peptidome were detected between pre-treatment samples and samples collected after 3–4 weeks of RT (~25% of registered peptides changed their abundances significantly, yet the intensity of observed changes was not correlated significantly with the degree of acute radiation toxicity or the volume of irradiated tissues. Furthermore, there were a few serum proteins identified, the abundances of which were different in pre-RT and post-RT samples, including immunity and inflammation-related factors. Observed effects were apparently weaker than in comparable groups of head and neck cancer patients in spite of similar radiation doses and volumes of irradiated tissues in both groups. We concluded that changes observed at the level of serum proteome were low for this cohort of prostate cancer patients, although the specific components involved are associated with immunity and inflammation, and reflect the characteristic acute response of the human body to radiation.

  16. Clinical proteomic analysis of scrub typhus infection.

    Science.gov (United States)

    Park, Edmond Changkyun; Lee, Sang-Yeop; Yun, Sung Ho; Choi, Chi-Won; Lee, Hayoung; Song, Hyun Seok; Jun, Sangmi; Kim, Gun-Hwa; Lee, Chang-Seop; Kim, Seung Il

    2018-01-01

    Scrub typhus is an acute and febrile infectious disease caused by the Gram-negative α-proteobacterium Orientia tsutsugamushi from the family Rickettsiaceae that is widely distributed in Northern, Southern and Eastern Asia. In the present study, we analysed the serum proteome of scrub typhus patients to investigate specific clinical protein patterns in an attempt to explain pathophysiology and discover potential biomarkers of infection. Serum samples were collected from three patients (before and after treatment with antibiotics) and three healthy subjects. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry was performed to identify differentially abundant proteins using quantitative proteomic approaches. Bioinformatic analysis was then performed using Ingenuity Pathway Analysis. Proteomic analysis identified 236 serum proteins, of which 32 were differentially expressed in normal subjects, naive scrub typhus patients and patients treated with antibiotics. Comparative bioinformatic analysis of the identified proteins revealed up-regulation of proteins involved in immune responses, especially complement system, following infection with O. tsutsugamushi , and normal expression was largely rescued by antibiotic treatment. This is the first proteomic study of clinical serum samples from scrub typhus patients. Proteomic analysis identified changes in protein expression upon infection with O. tsutsugamushi and following antibiotic treatment. Our results provide valuable information for further investigation of scrub typhus therapy and diagnosis.

  17. Secreted autoantibody repertoires in Sjögren's syndrome and systemic lupus erythematosus: A proteomic approach.

    Science.gov (United States)

    Al Kindi, Mahmood A; Colella, Alex D; Chataway, Tim K; Jackson, Michael W; Wang, Jing J; Gordon, Tom P

    2016-04-01

    The structures of epitopes bound by autoantibodies against RNA-protein complexes have been well-defined over several decades, but little is known of the clonality, immunoglobulin (Ig) variable (V) gene usage and mutational status of the autoantibodies themselves at the level of the secreted (serum) proteome. A novel proteomic workflow is presented based on affinity purification of specific Igs from serum, high-resolution two-dimensional gel electrophoresis, and de novo and database-driven sequencing of V-region proteins by mass spectrometry. Analysis of anti-Ro52/Ro60/La proteomes in primary Sjögren's syndrome (SS) and anti-Sm and anti-ribosomal P proteomes in systemic lupus erythematosus (SLE) has revealed that these antibody responses are dominated by restricted sets of public (shared) clonotypes, consistent with common pathways of production across unrelated individuals. The discovery of shared sets of specific V-region peptides can be exploited for diagnostic biomarkers in targeted mass spectrometry platforms and for tracking and removal of pathogenic clones. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Global Proteome Analysis of Leptospira interrogans

    Science.gov (United States)

    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometr...

  19. Quantitative proteomic analysis by iTRAQ® for the identification of candidate biomarkers in ovarian cancer serum

    Directory of Open Access Journals (Sweden)

    Higgins LeeAnn

    2010-06-01

    Full Text Available Abstract Background Ovarian cancer is the most lethal gynecologic malignancy, with the majority of cases diagnosed at an advanced stage when treatments are less successful. Novel serum protein markers are needed to detect ovarian cancer in its earliest stage; when detected early, survival rates are over 90%. The identification of new serum biomarkers is hindered by the presence of a small number of highly abundant proteins that comprise approximately 95% of serum total protein. In this study, we used pooled serum depleted of the most highly abundant proteins to reduce the dynamic range of proteins, and thereby enhance the identification of serum biomarkers using the quantitative proteomic method iTRAQ®. Results Medium and low abundance proteins from 6 serum pools of 10 patients each from women with serous ovarian carcinoma, and 6 non-cancer control pools were labeled with isobaric tags using iTRAQ® to determine the relative abundance of serum proteins identified by MS. A total of 220 unique proteins were identified and fourteen proteins were elevated in ovarian cancer compared to control serum pools, including several novel candidate ovarian cancer biomarkers: extracellular matrix protein-1, leucine-rich alpha-2 glycoprotein-1, lipopolysaccharide binding protein-1, and proteoglycan-4. Western immunoblotting validated the relative increases in serum protein levels for several of the proteins identified. Conclusions This study provides the first analysis of immunodepleted serum in combination with iTRAQ® to measure relative protein expression in ovarian cancer patients for the pursuit of serum biomarkers. Several candidate biomarkers were identified which warrant further development.

  20. Proteomic profiling reveals α1-antitrypsin, α1-microglobulin, and clusterin as preeclampsia-related serum proteins in pregnant women.

    Science.gov (United States)

    Hsu, Te-Yao; Hsieh, T'sang-T'ang; Yang, Kuender D; Tsai, Ching-Chang; Ou, Chia-Yu; Cheng, Bi-Hua; Wong, Yi-Hsun; Hung, Hsuan-Ning; Chou, An-Kuo; Hsiao, Chang-Chun; Lin, Hao

    2015-10-01

    Preeclampsia is a major cause of mortality in pregnant women but the underlying mechanism remains unclear to date. In this study, we attempted to identify candidate proteins that might be associated with preeclampsia in pregnant women by means of proteomics tools. Differentially expressed proteins in serum samples obtained from pregnant women with severe preeclampsia (n = 8) and control participants (n = 8) were identified using two-dimensional gel electrophoresis (2-DE) followed by peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). Additional serum samples from 50 normal and 41 pregnant women with severe preeclampsia were analyzed by immunoassay for validation. Ten protein spots were found to be upregulated significantly in women with severe preeclampsia. These protein spots had the peptide mass fingerprints matched to α1-antitrypsin, α1-microglobulin, clusterin, and haptoglobin. Immunoassays in an independent series of serum samples showed that serum α1-antitrypsin, α1-microglobulin, and clusterin levels of severe preeclampsia patients (n = 41) were significantly higher than those in the normal participants (n = 50; α1-antitrypsin 295.95 ± 50.94 mg/dL vs. 259.31 ± 33.90 mg/dL, p = 0.02; α1-microglobulin 0.029 ± 0.004 mg/mL vs. 0.020 ± 0.004 mg/mL, p proteins by proteomics analysis enables further understanding of the pathophysiology of preeclampsia. Further studies are warranted to investigate the role of these biomarkers in prediction of this disease. Copyright © 2015. Published by Elsevier B.V.

  1. The HUPO proteomics standards initiative--overcoming the fragmentation of proteomics data.

    Science.gov (United States)

    Hermjakob, Henning

    2006-09-01

    Proteomics is a key field of modern biomolecular research, with many small and large scale efforts producing a wealth of proteomics data. However, the vast majority of this data is never exploited to its full potential. Even in publicly funded projects, often the raw data generated in a specific context is analysed, conclusions are drawn and published, but little attention is paid to systematic documentation, archiving, and public access to the data supporting the scientific results. It is often difficult to validate the results stated in a particular publication, and even simple global questions like "In which cellular contexts has my protein of interest been observed?" can currently not be answered with realistic effort, due to a lack of standardised reporting and collection of proteomics data. The Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organisation (HUPO), defines community standards for data representation in proteomics to facilitate systematic data capture, comparison, exchange and verification. In this article we provide an overview of PSI organisational structure, activities, and current results, as well as ways to get involved in the broad-based, open PSI process.

  2. Making proteomics data accessible and reusable: current state of proteomics databases and repositories.

    Science.gov (United States)

    Perez-Riverol, Yasset; Alpi, Emanuele; Wang, Rui; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2015-03-01

    Compared to other data-intensive disciplines such as genomics, public deposition and storage of MS-based proteomics, data are still less developed due to, among other reasons, the inherent complexity of the data and the variety of data types and experimental workflows. In order to address this need, several public repositories for MS proteomics experiments have been developed, each with different purposes in mind. The most established resources are the Global Proteome Machine Database (GPMDB), PeptideAtlas, and the PRIDE database. Additionally, there are other useful (in many cases recently developed) resources such as ProteomicsDB, Mass Spectrometry Interactive Virtual Environment (MassIVE), Chorus, MaxQB, PeptideAtlas SRM Experiment Library (PASSEL), Model Organism Protein Expression Database (MOPED), and the Human Proteinpedia. In addition, the ProteomeXchange consortium has been recently developed to enable better integration of public repositories and the coordinated sharing of proteomics information, maximizing its benefit to the scientific community. Here, we will review each of the major proteomics resources independently and some tools that enable the integration, mining and reuse of the data. We will also discuss some of the major challenges and current pitfalls in the integration and sharing of the data. © 2014 The Authors. PROTEOMICS published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quantitative proteomic analysis of serum from pregnant women carrying a fetus with conotruncal heart defect using isobaric tags for relative and absolute quantitation (iTRAQ labeling.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available To identify differentially expressed proteins from serum of pregnant women carrying a conotruncal heart defects (CTD fetus, using proteomic analysis.The study was conducted using a nested case-control design. The 5473 maternal serum samples were collected at 14-18 weeks of gestation. The serum from 9 pregnant women carrying a CTD fetus, 10 with another CHD (ACHD fetus, and 11 with a normal fetus were selected from the above samples, and analyzed by using isobaric tags for relative and absolute quantitation (iTRAQ coupled with two-dimensional liquid chromatography-tandem mass spectrometry(2D LC-MS/MS. The differentially expressed proteins identified by iTRAQ were further validated with Western blot.A total of 105 unique proteins present in the three groups were identified, and relative expression data were obtained for 92 of them with high confidence by employing the iTRAQ-based experiments. The downregulation of gelsolin in maternal serum of fetus with CTD was further verified by Western blot.The identification of differentially expressed protein gelsolin in the serum of the pregnant women carrying a CTD fetus by using proteomic technology may be able to serve as a foundation to further explore the biomarker for detection of CTD fetus from the maternal serum.

  4. Proteomic profile of serum of pregnant women carring a fetus with Down syndrome using nano uplc Q-tof ms/ms technology.

    Science.gov (United States)

    López Uriarte, Graciela Arelí; Burciaga Flores, Carlos Horacio; Torres de la Cruz, Víctor Manuel; Medina Aguado, María Magdalena; Gómez Puente, Viviana Maricela; Romero Gutiérrez, Liliana Nayeli; Martínez de Villarreal, Laura Elia

    2018-06-01

    Prenatal diagnosis of Down syndrome (DS) is based on the calculated risk of maternal age, biochemical and ultrasonographic markers and recently by cfDNA. Differences in proteomic profiles may give an opportunity to find new biomarkers. Characterize proteome of serum of mothers carrying DS fetus. Blood serum samples of three groups of women were obtained, (a) 10 non-pregnant, (b) 10 pregnant with healthy fetus by ultrasound evaluation, (c) nine pregnant with DS fetus. Sample preparation was as follows: Albumin/IgG depletion, desalting, and trypsin digestion; the process was performed in nanoUPLC MS/MS. Data analysis was made with Mass Lynx 4.1 and ProteinLynx Global Server 3.0, peptide and protein recognition by MASCOT algorithm and UNIPROT-Swissprot database. Each group showed different protein profiles. Some proteins were shared between groups. Only sera from pregnant women showed proteins related to immune and clot pathways. Mothers with DS fetus had 42 specific proteins. We found a different serum protein profile in mothers carrying DS fetuses that do not reflect expression of genes in the extra chromosome. Further studies will be necessary to establish the role of these proteins in aneuploid fetus and analyze their possible use as potential biomarkers.

  5. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection

    Directory of Open Access Journals (Sweden)

    Guo Huan-cheng

    2011-03-01

    Full Text Available Abstract Background Classical swine fever virus (CSFV belongs to the genus Pestivirus within the family Flaviviridae. Virulent strains of classical swine fever virus (CSFV cause severe disease in pigs characterized by immunosuppression, thrombocytopenia and disseminated intravascular coagulation, which causes significant economic losses to the pig industry worldwide. Methods To reveal proteomic changes in swine serum during the acute stage of lethal CSFV infection, 5 of 10 pigs were inoculated with the virulent CSFV Shimen strain, the remainder serving as uninfected controls. A serum sample was taken at 3 days post-infection from each swine, at a stage when there were no clinical symptoms other than increased rectal temperatures (≥40°C. The samples were treated to remove serum albumin and immunoglobulin (IgG, and then subjected to two-dimension differential gel electrophoresis. Results Quantitative intensity analysis revealed 17 protein spots showing at least 1.5-fold quantitative alteration in expression. Ten spots were successfully identified by MALDI-TOF MS or LTQ MS. Expression of 4 proteins was increased and 6 decreased in CSFV-infected pigs. Functions of these proteins included blood coagulation, anti-inflammatory activity and angiogenesis. Conclusion These proteins with altered expression may have important implications in the pathogenesis of classical swine fever and provide a clue for identification of biomarkers for classical swine fever early diagnosis.

  6. Serum proteome profiling identifies novel and powerful markers of cystic fibrosis liver disease.

    Directory of Open Access Journals (Sweden)

    Timo Rath

    Full Text Available BACKGROUND AND AIMS: Cystic Fibrosis associated liver disease (CFLD develops in approximately 30% of CF patients. However, routine sensitive diagnostic tools for CFLD are lacking. Within this study, we aimed to identify new experimental biomarkers for the detection of CFLD. METHODS: 45 CF patients were included in the study and received transient elastography. Differential regulation of 220 different serum proteins was assessed in a subgroup of patients with and without CFLD. Most interesting candidate proteins were further quantified and validated by ELISA in the whole patient cohort. To assess a potential relation of biomarker expression to the degree of hepatic fibrosis, serum biomarkers were further determined in 18 HCV patients where liver histology was available. RESULTS: 43 serum proteins differed at least 2-fold in patients with CFLD compared to those without liver disease as identified in proteome profiling. In ELISA quantifications, TIMP-4 and Endoglin were significantly up-regulated in patients with CFLD as diagnosed by clinical guidelines or increased liver stiffness. Pentraxin-3 was significantly decreased in patients with CFLD. Serum TIMP-4 and Endoglin showed highest values in HCV patients with liver cirrhosis compared to those with fibrosis but without cirrhosis. At a cut-off value of 6.3 kPa, transient elastography compassed a very high diagnostic accuracy and specificity for the detection of CFLD. Among the biomarkers, TIMP-4 and Endoglin exhibited a high diagnostic accuracy for CFLD. Diagnostic sensitivities and negative predictive values were increased when elastography and TIMP-4 and Endoglin were combined for the detection of CFLD. CONCLUSIONS: Serum TIMP-4 and Endoglin are increased in CFLD and their expression correlates with hepatic staging. Determination of TIMP-4 and Endoglin together with transient elastography can increase the sensitivity for the non-invasive diagnosis of CFLD.

  7. Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling.

    Science.gov (United States)

    Findeisen, Peter; Zapatka, Marc; Peccerella, Teresa; Matzk, Heike; Neumaier, Michael; Schadendorf, Dirk; Ugurel, Selma

    2009-05-01

    Currently known prognostic serum biomarkers of melanoma are powerful in metastatic disease, but weak in early-stage patients. This study was aimed to identify new prognostic biomarkers of melanoma by serum mass spectrometry (MS) proteomic profiling, and to validate candidates compared with established markers. Two independent sets of serum samples from 596 melanoma patients were investigated. The first set (stage I = 102; stage IV = 95) was analyzed by matrix assisted laser desorption and ionization time of flight (MALDI TOF) MS for biomarkers differentiating between stage I and IV. In the second set (stage I = 98; stage II = 91; stage III = 87; stage IV = 103), the serum concentrations of the candidate marker serum amyloid A (SAA) and the known biomarkers S100B, lactate dehydrogenase, and C reactive protein (CRP) were measured using immunoassays. MALDI TOF MS revealed a peak at m/z 11.680 differentiating between stage I and IV, which could be identified as SAA. High peak intensities at m/z 11.680 correlated with poor survival. In univariate analysis, SAA was a strong prognostic marker in stage I to III (P = .043) and stage IV (P = .000083) patients. Combination of SAA and CRP increased the prognostic impact to P = .011 in early-stage (I to III) patients. Multivariate analysis revealed sex, stage, tumor load, S100B, SAA, and CRP as independent prognostic factors, with an interaction between SAA and CRP. In stage I to III patients, SAA combined with CRP was superior to S100B in predicting patients' progression-free and overall survival. SAA combined with CRP might be used as prognostic serological biomarkers in early-stage melanoma patients, helping to discriminate low-risk patients from high-risk patients needing adjuvant treatment.

  8. Application of serum SELDI proteomic patterns in diagnosis of lung cancer

    Directory of Open Access Journals (Sweden)

    Zhou Bin

    2005-07-01

    Full Text Available Abstract Background Currently, no satisfactory biomarkers are available to screen for lung cancer. Surface-Enhanced Laser Desorption/ionization Time-of- Flight Mass Spectrometry ProteinChip system (SELDI-TOF-MS is one of the currently used techniques to identify biomarkers for cancers. The aim of this study is to explore the application of serum SELDI proteomic patterns to distinguish lung cancer patients from healthy individuals. Methods A total of 208 serum samples, including 158 lung cancer patients and 50 healthy individuals, were randomly divided into a training set (including 11 sera from patients with stages I/II lung cancer, 63 from patients with stages III/IV lung cancer and 20 from healthy controls and a blinded test set (including 43 sera from patients with stages I/II lung cancer, 41 from patients with stages III/IV lung cancer and 30 from healthy controls. All samples were analyzed by SELDI technology. The spectra were generated on weak cation exchange (WCX2 chips, and protein peaks clustering and classification analyses were made using Ciphergen Biomarker Wizard and Biomarker Pattern software, respectively. We additionally determined Cyfra21-1 and NSE in the 208 serum samples included in this study using an electrochemiluminescent immunoassay. Results Five protein peaks at 11493, 6429, 8245, 5335 and 2538 Da were automatically chosen as a biomarker pattern in the training set. When the SELDI marker pattern was tested with the blinded test set, it yielded a sensitivity of 86.9%, a specificity of 80.0% and a positive predictive value of 92.4%. The sensitivities provided by Cyfra21-1 and NSE used individually or in combination were significantly lower than that of the SELDI marker pattern (P P Conclusion These results suggest that serum SELDI protein profiling can distinguish lung cancer patients, especially NSCLC patients, from normal subjects with relatively high sensitivity and specificity, and the SELDI-TOF-MS is a potential tool

  9. Method validation for preparing serum and plasma samples from human blood for downstream proteomic, metabolomic, and circulating nucleic acid-based applications.

    Science.gov (United States)

    Ammerlaan, Wim; Trezzi, Jean-Pierre; Lescuyer, Pierre; Mathay, Conny; Hiller, Karsten; Betsou, Fay

    2014-08-01

    Formal method validation for biospecimen processing in the context of accreditation in laboratories and biobanks is lacking. Serum and plasma processing protocols were validated for fitness-for-purpose in terms of key downstream endpoints, and this article demonstrates methodology for biospecimen processing method validation. Serum and plasma preparation from human blood was optimized for centrifugation conditions with respect to microparticle counts. Optimal protocols were validated for methodology and reproducibility in terms of acceptance criteria based on microparticle counts, DNA and hemoglobin concentration, and metabolomic and proteomic profiles. These parameters were also used to evaluate robustness for centrifugation temperature (4°C versus room temperature [RT]), deceleration (low, medium, high) and blood stability (after a 2-hour delay). Optimal protocols were 10-min centrifugation for serum and 20-min for plasma at 2000 g, medium brake, RT. Methodology and reproducibility acceptance criteria were met for both protocols except for reproducibility of plasma metabolomics. Overall, neither protocol was robust for centrifugation at 4°C versus RT. RT gave higher microparticles and free DNA yields in serum, and fewer microparticles with less hemolysis in plasma. Overall, both protocols were robust for fast, medium, and low deceleration, with a medium brake considered optimal. Pre-centrifugation stability after a 2-hour delay was seen at both temperatures for hemoglobin concentration and proteomics, but not for microparticle counts. We validated serum and plasma collection methods suitable for downstream protein, metabolite, or free nucleic acid-based applications. Temperature and pre-centrifugation delay can influence analytic results, and laboratories and biobanks should systematically record these conditions in the scope of accreditation.

  10. Identification of candidate diagnostic serum biomarkers for Kawasaki disease using proteomic analysis

    Science.gov (United States)

    Kimura, Yayoi; Yanagimachi, Masakatsu; Ino, Yoko; Aketagawa, Mao; Matsuo, Michie; Okayama, Akiko; Shimizu, Hiroyuki; Oba, Kunihiro; Morioka, Ichiro; Imagawa, Tomoyuki; Kaneko, Tetsuji; Yokota, Shumpei; Hirano, Hisashi; Mori, Masaaki

    2017-01-01

    Kawasaki disease (KD) is a systemic vasculitis and childhood febrile disease that can lead to cardiovascular complications. The diagnosis of KD depends on its clinical features, and thus it is sometimes difficult to make a definitive diagnosis. In order to identify diagnostic serum biomarkers for KD, we explored serum KD-related proteins, which differentially expressed during the acute and recovery phases of two patients by mass spectrometry (MS). We identified a total of 1,879 proteins by MS-based proteomic analysis. The levels of three of these proteins, namely lipopolysaccharide-binding protein (LBP), leucine-rich alpha-2-glycoprotein (LRG1), and angiotensinogen (AGT), were higher in acute phase patients. In contrast, the level of retinol-binding protein 4 (RBP4) was decreased. To confirm the usefulness of these proteins as biomarkers, we analyzed a total of 270 samples, including those collected from 55 patients with acute phase KD, by using western blot analysis and microarray enzyme-linked immunosorbent assays (ELISAs). Over the course of this experiment, we determined that the expression level of these proteins changes specifically in the acute phase of KD, rather than the recovery phase of KD or other febrile illness. Thus, LRG1 could be used as biomarkers to facilitate KD diagnosis based on clinical features. PMID:28262744

  11. A proteomic strategy to identify novel serum biomarkers for liver cirrhosis and hepatocellular cancer in individuals with fatty liver disease

    Directory of Open Access Journals (Sweden)

    Stewart Stephen

    2009-08-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD has a prevalence of over 20% in Western societies. Affected individuals are at risk of developing both cirrhosis and hepatocellular cancer (HCC. Presently there is no cost effective population based means of identifying cirrhotic individuals and even if there were, our ability to perform HCC surveillance in the at risk group is inadequate. We have performed a pilot proteomic study to assess this as a strategy for serum biomarker detection. Methods 2D Gel electrophoresis was performed on immune depleted sera from 3 groups of patients, namely those with (1 pre-cirrhotic NAFLD (2 cirrhotic NAFLD and (3 cirrhotic NAFLD with co-existing HCC. Five spots differentiating at least one of these three groups were characterised by mass spectroscopy. An ELISA assay was optimised and a cross sectional study assessing one of these serum spots was performed on serum from 45 patients with steatohepatitis related cirrhosis and HCC and compared to 77 patients with histologically staged steatohepatitis. Results Four of the spots identified were apolipoprotein isoforms, the pattern of which was able to differentiate the three groups. The 5th spot, seen in the serum of cirrhotic individuals and more markedly in those with HCC, was identified as CD5 antigen like (CD5L. By ELISA assay, although CD5L was markedly elevated in a number of cirrhotic individuals with HCC, its overall ability to distinguish non-cancer from cancer individuals as determined by AUC ROC analysis was poor. However, serum CD5L was dramatically increased, independently of age, sex, and the presence of necroinflammation, in the serum of individuals with NAFLD cirrhosis relative to those with pre-cirrhotic disease. Conclusion This novel proteomic strategy has identified a number of candidate biomarkers which may have benefit in the surveillance and diagnosis of individuals with chronic liver disease and/or HCC.

  12. Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics.

    Science.gov (United States)

    Chen, Yanyu; Xie, Yong; Xu, Lai; Zhan, Shaohua; Xiao, Yi; Gao, Yanpan; Wu, Bin; Ge, Wei

    2017-02-15

    Tumor cells of colorectal cancer (CRC) release exosomes into the circulation. These exosomes can mediate communication between cells and affect various tumor-related processes in their target cells. We present a quantitative proteomics analysis of the exosomes purified from serum of patients with CRC and normal volunteers; data are available via ProteomeXchange with identifier PXD003875. We identified 918 proteins with an overlap of 725 Gene IDs in the Exocarta proteins list. Compared with the serum-purified exosomes (SPEs) of normal volunteers, we found 36 proteins upregulated and 22 proteins downregulated in the SPEs of CRC patients. Bioinformatics analysis revealed that upregulated proteins are involved in processes that modulate the pretumorigenic microenvironment for metastasis. In contrast, differentially expressed proteins (DEPs) that play critical roles in tumor growth and cell survival were principally downregulated. Our study demonstrates that SPEs of CRC patients play a pivotal role in promoting the tumor invasiveness, but have minimal influence on putative alterations in tumor survival or proliferation. According to bioinformatics analysis, we speculate that the protein contents of exosomes might be associated with whether they are involved in premetastatic niche establishment or growth and survival of metastatic tumor cells. This information will be helpful in elucidating the pathophysiological functions of tumor-derived exosomes, and aid in the development of CRC diagnostics and therapeutics. © 2016 UICC.

  13. Exploration of Serum Proteomic Profiling and Diagnostic Model That Differentiate Crohn's Disease and Intestinal Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Fenming Zhang

    Full Text Available To explore the diagnostic models of Crohn's disease (CD, Intestinal tuberculosis (ITB and the differential diagnostic model between CD and ITB by analyzing serum proteome profiles.Serum proteome profiles from 30 CD patients, 21 ITB patients and 30 healthy controls (HCs were analyzed by using weak cationic magnetic beads combined with MALDI-TOF-MS technique to detect the differentially expressed proteins of serum samples. Three groups were made and compared accordingly: group of CD patients and HCs, group of ITB patients and HCs, group of CD patients and ITB patients. Wilcoxon rank sum test was used to screen the ten most differentiated protein peaks (P < 0.05. Genetic algorithm combining with support vector machine (SVM was utilized to establish the optimal diagnostic models for CD, ITB and the optimal differential diagnostic model between CD and ITB. The predictive effects of these models were evaluated by Leave one out (LOO cross validation method.There were 236 protein peaks differently expressed between group of CD patients and HCs, 305 protein peaks differently expressed between group of ITB patients and HCs, 332 protein peaks differently expressed between group of CD patients and ITB patients. Ten most differentially expressed peaks were screened out between three groups respectively (P < 0.05 to establish diagnostic models and differential diagnostic model. A diagnostic model comprising of four protein peaks (M/Z 4964, 3029, 2833, 2900 can well distinguish CD patients and HCs, with a specificity and sensitivity of 96.7% and 96.7% respectively. A diagnostic model comprising four protein peaks (M/Z 3030, 2105, 2545, 4210 can well distinguish ITB patients and HCs, with a specificity and sensitivity of 93.3% and 95.2% respectively. A differential diagnostic model comprising three potential biomarkers protein peaks (M/Z 4267, 4223, 1541 can well distinguish CD patients and ITB patients, with a specificity and sensitivity of 76.2% and 80

  14. Novel TIA biomarkers identified by mass spectrometry-based proteomics.

    Science.gov (United States)

    George, Paul M; Mlynash, Michael; Adams, Christopher M; Kuo, Calvin J; Albers, Gregory W; Olivot, Jean-Marc

    2015-12-01

    Transient ischemic attacks remain a clinical diagnosis with significant variability between physicians. Finding reliable biomarkers to identify transient ischemic attacks would improve patient care and optimize treatment. Our aim is to identify novel serum TIA biomarkers through the use of mass spectroscopy-based proteomics. Patients with transient neurologic symptoms were prospectively enrolled. Mass spectrometry-based proteomics, an unbiased method to identify candidate proteins, was used to test the serum of the patients for biomarkers of cerebral ischemia. Three candidate proteins were found, and serum concentrations of these proteins were measured by enzyme-linked immunosorbent assay in a second cohort of prospectively enrolled patients. The Student's t-test was used for comparison. The Benjamini-Hochberg false discovery rate controlling procedure for multiple comparison adjustments determined significance for the proteomic screen. Patients with transient ischemic attacks (n = 20), minor strokes (n = 15), and controls (i.e. migraine, seizure, n = 12) were enrolled in the first cohort. Ceruloplasmin, complement component C8 gamma (C8γ), and platelet basic protein were significantly different between the ischemic group (transient ischemic attack and minor stroke) and the controls (P = 0·0001, P = 0·00027, P = 0·00105, respectively). A second cohort of patients with transient ischemic attack (n = 22), minor stroke (n = 20), and controls' (n = 12) serum was enrolled. Platelet basic protein serum concentrations were increased in the ischemic samples compared with control (for transient ischemic attack alone, P = 0·019, for the ischemic group, P = 0·046). Ceruloplasmin trended towards increased concentrations in the ischemic group (P = 0·127); no significant difference in C8γ (P = 0·44) was found. Utilizing mass spectrometry-based proteomics, platelet basic protein has been identified as a candidate serum

  15. Development of a sandwich ELISA for the thrombin light chain identified by serum proteome analysis

    Directory of Open Access Journals (Sweden)

    Kazuyuki Sogawa

    2017-08-01

    Full Text Available We previously identified novel biomarker candidates in biliary tract cancer (BTC using serum proteome analysis. Among several candidates, we focused on thrombin light chain which is a 4204 Da peptide as the most promising biomarker for BTC. To move thrombin light chain toward potential diagnostic use, we developed an enzyme immunoassay that enables to measure serum thrombin light chain levels.Both one monoclonal antibody specific to the N-termini and one polyclonal antibody were used to develop a sandwich ELISA for thrombin light chain. The assay was evaluated by comparing the results with those obtained by the ClinProt™ system. Serum samples were obtained from 20 patients with BTC, 20 patients with BBTDs and 20 HVs using the ClinProt™ system and ELISA.The results of the established ELISA showed a positive correlation with the findings by ClinProt™ system (slope=0.3386, intercept=34.901, r2=0.9641. The performance of the ELISA was satisfactory in terms of recovery (97.9–102.5% and within-run (1.5–4.8% and between-day (1.9–6.7% reproducibility. Serum thrombin light chain levels were significantly greater in BTC (176.5±47.2 ng/mL than in BBTDs (128.6±17.4 ng/mL and HVs (127.6±16.0 ng/mL (p<0.001.The sandwich ELISA developed in this study will be useful for validation of the diagnostic significance of serum thrombin light chain levels in various cancers. Keywords: Thrombin light chain, Biliary tract cancer, Sandwich ELISA, Serum biomarker

  16. Proteomic profiling of occupational medicamentosa-like dermatitis induced by trichloroethylene in serum based on MALDI-TOF MS.

    Science.gov (United States)

    Liu, Wei; Hong, Wen-Xu; Zhang, Yanfang; Huang, Peiwu; Yang, Xifei; Ren, Xiaohu; Huang, Haiyan; Liu, Jianjun

    2015-11-01

    Trichloroethylene (TCE) has long been well known as a major pollutant that affects both occupational and general environments. Occupational medicamentosa-like dermatitis induced by TCE (OMLDT) is an autoimmune disease, which has become one of the critical occupational health issues in China. In this study, we analyzed 18 OMLDT patients and 29 professional TCE contact people on serum proteomic analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and ClinProTools bioinformatics software. The intensities of 35 protein/peptide peaks were significantly different between TCE contact controls and OMLDT patients. A pattern of six peaks (m/z 1,450.33, 1,866.16, 3,262.39, 4,109.55, 5,064.85 and 5,956.57) were selected to construct a diagnostic model to discriminate the OMLDT patients from controls with sensitivity and specificity of both 93.8 %. Our findings provide an alternative proteomic approach to differentiate the OMLDT patients from TCE contact workers with high sensitivity and high specificity, which will be of potential value in clinical diagnosis for occupational disease.

  17. CPTC and NIST-sponsored Yeast Reference Material Now Publicly Available | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The yeast protein extract (RM8323) developed by National Institute of Standards and Technology (NIST) under the auspices of NCI's CPTC initiative is currently available to the public at https://www-s.nist.gov/srmors/view_detail.cfm?srm=8323. The yeast proteome offers researchers a unique biological reference material. RM8323 is the most extensively characterized complex biological proteome and the only one associated with several large-scale studies to estimate protein abundance across a wide concentration range.

  18. Serum Proteome Signature of Radiation Response: Upregulation of Inflammation-Related Factors and Downregulation of Apolipoproteins and Coagulation Factors in Cancer Patients Treated With Radiation Therapy—A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Widlak, Piotr, E-mail: widlak@io.gliwice.pl [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Jelonek, Karol; Wojakowska, Anna; Pietrowska, Monika [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Polanska, Joanna [Institute of Automatics Control, Silesian University of Technology, Gliwice (Poland); Marczak, Łukasz [Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznan (Poland); Miszczyk, Leszek; Składowski, Krzysztof [Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland)

    2015-08-01

    Purpose: Ionizing radiation affects the proteome of irradiated cells and tissue, yet data concerning changes induced during radiation therapy (RT) in human blood are fragmentary and inconclusive. We aimed to identify features of serum proteome and associated processes involved in response to partial body irradiation during cancer treatment. Methods and Materials: Twenty patients with head and neck squamous cell cancer (HNSCC) and 20 patients with prostate cancer received definitive intensity modulated RT. Blood samples were collected before RT, just after RT, and 1 month after the end of RT. Complete serum proteome was analyzed in individual samples, using a shotgun liquid chromatography-tandem mass spectrometry approach which allowed identification of approximately 450 proteins. Approximately 100 unique proteins were quantified in all samples after exclusion of immunoglobulins, and statistical significance of differences among consecutive samples was assessed. Processes associated with quantified proteins and their functional interactions were predicted using gene ontology tools. Results: RT-induced changes were marked in the HNSCC patient group: 22 upregulated and 33 downregulated proteins were detected in post-RT sera. Most of the changes reversed during follow-up, yet levels of some proteins remained affected 1 month after the end of RT. RT-upregulated proteins were associated with acute phase, inflammatory response, and complement activation. RT-downregulated proteins were associated with transport and metabolism of lipids (plasma apolipoproteins) and blood coagulation. RT-induced changes were much weaker in prostate cancer patients, which corresponded to differences in acute radiation toxicity observed in both groups. Nevertheless, general patterns of RT-induced sera proteome changes were similar in both of the groups of cancer patients. Conclusions: In this pilot study, we proposed to identify a molecular signature of radiation response, based on specific

  19. Serum proteomic patterns of patients with non-small cell lung cancer treated by radiochemotherapy

    International Nuclear Information System (INIS)

    Li Xianglan; You Qingshan; Yang Yanmei; Ma Yuyan; Tang Yali; Cai Huilong

    2007-01-01

    Objective:To detect the serum proteomic patterns of patients with non-small cell lung (NSCLC) treated with radiochemotherapy by surface enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS) protein chip array techniques, and to screen differential expression protein and observe the changes between the patterns before and after the treatment. Methods: SELDI-TOF-MS and CM-10 protein chips were used to detect the serum proteomic patterns of 35 healthy persons (normal control) and 35 patients with NSCLC before radiochemotherapy. Twenty-six out of the 35 patients after the treatment were also studied. BioMarker Wizard 3.01 and BioMarker Pattern System 5. 01 were used in combination to analyze the data and to develop diagnostic models. Results: Sixteen differential expression protein peaks from a total of 251 protein peaks were automatically chosen, including 8 high expressions and 8 low expressions in patients with NSCLC. Of the 16 protein peaks, 6 protein peak patterns ( M 2 572.1, M 2 885.8, M 3 870.4, M 4 161.4, M 5 739.7 and M 8 164.3 mass/charge ratio [ m/z] ) were observed in model that could be used to distinguish lung cancer' from non-cancer diseases. The sensitivity and specificity results were 91% (32/35)and 83% (29/35). When the SELDI marker pattern was tested with the blinded test set, the sensitivity and specificity were 80% (28/35) and 71% (25/35). The 16 differential expression protein peaks of patients before and after the treatment were obviously different. But the peaks of patients after the treatment trended to those of the normal control. Of the 16 protein peaks, M 2 572.1, M 2 885.8, M 4 664.78, M 9 228.39 and M 9 396.42 were significantly changed. Conclusions: SELDI-TOF-MS is possibly significant for screening differential expression proteins and assessing the treatment efficacy and prognosis of patients, which needs to be demonstrated by further study. (authors)

  20. Fetal calf serum heat inactivation and lipopolysaccharide contamination influence the human T lymphoblast proteome and phosphoproteome

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-11-01

    Full Text Available Abstract Background The effects of fetal calf serum (FCS heat inactivation and bacterial lipopolysaccharide (LPS contamination on cell physiology have been studied, but their effect on the proteome of cultured cells has yet to be described. This study was undertaken to investigate the effects of heat inactivation of FCS and LPS contamination on the human T lymphoblast proteome. Human T lymphoblastic leukaemia (CCRF-CEM cells were grown in FCS, either non-heated, or heat inactivated, having low ( Results A total of four proteins (EIF3M, PRS7, PSB4, and SNAPA were up-regulated when CCRF-CEM cells were grown in media supplemented with heat inactivated FCS (HE as compared to cells grown in media with non-heated FCS (NHE. Six proteins (TCPD, ACTA, NACA, TCTP, ACTB, and ICLN displayed a differential phosphorylation pattern between the NHE and HE groups. Compared to the low concentration LPS group, regular levels of LPS resulted in the up-regulation of three proteins (SYBF, QCR1, and SUCB1. Conclusion The present study provides new information regarding the effect of FCS heat inactivation and change in FCS-LPS concentration on cellular protein expression, and post-translational modification in human T lymphoblasts. Both heat inactivation and LPS contamination of FCS were shown to modulate the expression and phosphorylation of proteins involved in basic cellular functions, such as protein synthesis, cytoskeleton stability, oxidative stress regulation and apoptosis. Hence, the study emphasizes the need to consider both heat inactivation and LPS contamination of FCS as factors that can influence the T lymphoblast proteome.

  1. Introducing Proteomics in the Undergraduate Curriculum: A Simple 2D Gel Electrophoresis Exercise with Serum Proteins

    Science.gov (United States)

    Kim, Thomas D.; Craig, Paul A.

    2010-01-01

    Two-dimensional gel electrophoresis (2DGE) remains an important tool in the study of biological systems by proteomics. While the use of 2DGE is commonplace in research publications, there are few instructional laboratories that address the use of 2DGE for analyzing complex protein samples. One reason for this lack is the fact that the preparation…

  2. Preservation Method and Phosphate Buffered Saline Washing Affect the Acute Myeloid Leukemia Proteome

    Directory of Open Access Journals (Sweden)

    Rebecca Wangen

    2018-01-01

    Full Text Available Acute myeloid leukemia (AML primary cells can be isolated from peripheral blood, suspended with media containing bovine serum and cryoprotectant, and stored in liquid nitrogen before being processed for proteomic analysis by mass spectrometry (MS. The presence of bovine serum and human blood proteins in AML samples can hamper the identifications of proteins, and thereby reduce the proteome coverage of the study. Herein, we have established the effect of phosphate buffered saline (PBS washing on AML patient samples stored in media. Although PBS washes effectively removed serum and blood contaminants, the saline wash resulted in cell burst and remarkable protein material loss. We also compared different methods to preserve the AML proteome from THP-1 and Molm-13 cell lines before MS analysis: (1 stored in media containing bovine serum and dimethyl sulfoxide (DMSO; (2 stored as dried cell pellets; and (3 stored as cell lysates in 4% sodium dodecyl sulfate (SDS. MS analysis of differently preserved AML cell samples shows that preservation with DMSO produce a high number of fragile cells that will burst during freezing and thawing. Our studies encourage the use of alternative preservation methods for future MS analysis of the AML proteome.

  3. Application of serum SELDI proteomic patterns in diagnosis of lung cancer

    International Nuclear Information System (INIS)

    Yang, Shuan-ying; Xiao, Xue-yuan; Zhang, Wang-gang; Zhang, Li-juan; Zhang, Wei; Zhou, Bin; Chen, Guoan; He, Da-cheng

    2005-01-01

    Currently, no satisfactory biomarkers are available to screen for lung cancer. Surface-Enhanced Laser Desorption/ionization Time-of- Flight Mass Spectrometry ProteinChip system (SELDI-TOF-MS) is one of the currently used techniques to identify biomarkers for cancers. The aim of this study is to explore the application of serum SELDI proteomic patterns to distinguish lung cancer patients from healthy individuals. A total of 208 serum samples, including 158 lung cancer patients and 50 healthy individuals, were randomly divided into a training set (including 11 sera from patients with stages I/II lung cancer, 63 from patients with stages III/IV lung cancer and 20 from healthy controls) and a blinded test set (including 43 sera from patients with stages I/II lung cancer, 41 from patients with stages III/IV lung cancer and 30 from healthy controls). All samples were analyzed by SELDI technology. The spectra were generated on weak cation exchange (WCX2) chips, and protein peaks clustering and classification analyses were made using Ciphergen Biomarker Wizard and Biomarker Pattern software, respectively. We additionally determined Cyfra21-1 and NSE in the 208 serum samples included in this study using an electrochemiluminescent immunoassay. Five protein peaks at 11493, 6429, 8245, 5335 and 2538 Da were automatically chosen as a biomarker pattern in the training set. When the SELDI marker pattern was tested with the blinded test set, it yielded a sensitivity of 86.9%, a specificity of 80.0% and a positive predictive value of 92.4%. The sensitivities provided by Cyfra21-1 and NSE used individually or in combination were significantly lower than that of the SELDI marker pattern (P < 0.005 or 0.05, respectively). Based on the results of the test set, we found that the SELDI marker pattern showed a sensitivity of 91.4% in the detection of non-small cell lung cancers (NSCLC), which was significantly higher than that in the detection of small cell lung cancers (P < 0.05); The

  4. Serum protein profiling and proteomics in autistic spectrum disorder using magnetic bead-assisted mass spectrometry.

    Science.gov (United States)

    Taurines, Regina; Dudley, Edward; Conner, Alexander C; Grassl, Julia; Jans, Thomas; Guderian, Frank; Mehler-Wex, Claudia; Warnke, Andreas; Gerlach, Manfred; Thome, Johannes

    2010-04-01

    The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Proteomic profiling has been used in the past for biomarker research in several non-psychiatric and psychiatric disorders and could provide new insights, potentially presenting a useful tool for generating such biomarkers in autism. Serum protein pre-fractionation with C8-magnetic beads and protein profiling by matrix-assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-ToF-MS) were used to identify possible differences in protein profiles in patients and controls. Serum was obtained from 16 patients (aged 8-18) and age-matched controls. Three peaks in the MALDI-ToF-MS significantly differentiated the ASD sample from the control group. Sub-grouping the ASD patients into children with and without comorbid Attention Deficit and Hyperactivity Disorder, ADHD (ASD/ADHD+ patients, n = 9; ASD/ADHD- patients, n = 7), one peak distinguished the ASD/ADHD+ patients from controls and ASD/ADHD- patients. Our results suggest that altered protein levels in peripheral blood of patients with ASD might represent useful biomarkers for this devastating psychiatric disorder.

  5. Proteomic profiling of renal allograft rejection in serum using magnetic bead-based sample fractionation and MALDI-TOF MS.

    Science.gov (United States)

    Sui, Weiguo; Huang, Liling; Dai, Yong; Chen, Jiejing; Yan, Qiang; Huang, He

    2010-12-01

    Proteomics is one of the emerging techniques for biomarker discovery. Biomarkers can be used for early noninvasive diagnosis and prognosis of diseases and treatment efficacy evaluation. In the present study, the well-established research systems of ClinProt Micro solution incorporated unique magnetic bead sample preparation technology, which, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), have become very successful in bioinformatics due to its outstanding performance and reproducibility for discovery disease-related biomarker. We collected fasting blood samples from patients with biopsy-confirmed acute renal allograft rejection (n = 12), chronic rejection (n = 12), stable graft function (n = 12) and also from healthy volunteers (n = 13) to study serum peptidome patterns. Specimens were purified with magnetic bead-based weak cation exchange chromatography and analyzed with a MALDI-TOF mass spectrometer. The results indicated that 18 differential peptide peaks were selected as potential biomarkers of acute renal allograft rejection, and 6 differential peptide peaks were selected as potential biomarkers of chronic rejection. A Quick Classifier Algorithm was used to set up the classification models for acute and chronic renal allograft rejection. The algorithm models recognize 82.64% of acute rejection and 98.96% of chronic rejection episodes, respectively. We were able to identify serum protein fingerprints in small sample sizes of recipients with renal allograft rejection and establish the models for diagnosis of renal allograft rejection. This preliminary study demonstrated that proteomics is an emerging tool for early diagnosis of renal allograft rejection and helps us to better understand the pathogenesis of disease process.

  6. Proteomic approaches in cancer risk and response assessment.

    Science.gov (United States)

    Petricoin, Emanuel F; Liotta, Lance A

    2004-02-01

    Proteomics is more than just a list-generating exercise where increases or decreases in protein expression are identified. Proteomic technologies will ultimately characterize information-flow through the protein circuitry that interconnects the extracellular microenvironment to the serum or plasma macroenvironment through intracellular signaling systems and their control of gene transcription. The nature of this information can be a cause or a consequence of disease processes and how patients respond to therapy. Analysis of human cancer as a model for how proteomics can have an impact at the bedside can take advantage of several promising new proteomic technologies. These technologies are being developed for early detection and risk assessment, therapeutic targeting and patient-tailored therapy.

  7. ProteomicsDB.

    Science.gov (United States)

    Schmidt, Tobias; Samaras, Patroklos; Frejno, Martin; Gessulat, Siegfried; Barnert, Maximilian; Kienegger, Harald; Krcmar, Helmut; Schlegl, Judith; Ehrlich, Hans-Christian; Aiche, Stephan; Kuster, Bernhard; Wilhelm, Mathias

    2018-01-04

    ProteomicsDB (https://www.ProteomicsDB.org) is a protein-centric in-memory database for the exploration of large collections of quantitative mass spectrometry-based proteomics data. ProteomicsDB was first released in 2014 to enable the interactive exploration of the first draft of the human proteome. To date, it contains quantitative data from 78 projects totalling over 19k LC-MS/MS experiments. A standardized analysis pipeline enables comparisons between multiple datasets to facilitate the exploration of protein expression across hundreds of tissues, body fluids and cell lines. We recently extended the data model to enable the storage and integrated visualization of other quantitative omics data. This includes transcriptomics data from e.g. NCBI GEO, protein-protein interaction information from STRING, functional annotations from KEGG, drug-sensitivity/selectivity data from several public sources and reference mass spectra from the ProteomeTools project. The extended functionality transforms ProteomicsDB into a multi-purpose resource connecting quantification and meta-data for each protein. The rich user interface helps researchers to navigate all data sources in either a protein-centric or multi-protein-centric manner. Several options are available to download data manually, while our application programming interface enables accessing quantitative data systematically. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. iTRAQ-Based Proteomics Analysis of Serum Proteins in Wistar Rats Treated with Sodium Fluoride: Insight into the Potential Mechanism and Candidate Biomarkers of Fluorosis

    Directory of Open Access Journals (Sweden)

    Yan Wei

    2016-09-01

    Full Text Available Fluorosis induced by exposure to high level fluoride is quite widespread in the world. The manifestations of fluorosis include dental mottling, bone damage, and impaired malfunction of soft tissues. However, the molecular mechanism of fluorosis has not been clarified until now. To explore the underlying mechanisms of fluorosis and screen out serum biomarkers, we carried out a quantitative proteomics study to identify differentially expressed serum proteins in Wistar rats treated with sodium fluoride (NaF by using a proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ. We fed Wistar rats drinking water that had 50, 150, and 250 mg/L of dissolved NaF for 24 weeks. For the experimental duration, each rat was given an examination of the lower incisors to check for the condition of dental fluorosis (DF. By the end of the treatment, fluoride ion concentration in serum and lower incisors were detected. The results showed that NaF treatment can induce rat fluorosis. By iTRAQ analysis, a total of 37 differentially expressed serum proteins were identified between NaF-treated and control rats. These proteins were further analyzed by bioinformatics, out of which two proteins were validated by enzyme-linked immunoadsorbent assays (ELISA. The major proteins were involved in complement and coagulation cascade, inflammatory response, complement activation, defense response, and wound response, suggesting that inflammation and immune reactions may play a key role in fluorosis pathogenesis. These proteins may contribute to the understanding of the mechanism of fluoride toxicity, and may serve as potential biomarkers for fluorosis.

  9. Clinical proteomics: Applications for prostate cancer biomarker discovery and detection.

    Science.gov (United States)

    Petricoin, Emanuel F; Ornstein, David K; Liotta, Lance A

    2004-01-01

    The science of proteomics comprises much more than simply generating lists of proteins that change in expression as a cause of or consequence of pathophysiology. The goal of proteomics should be to characterize the information flow through the intercellular protein circuitry that communicates with the extracellular microenvironment and then ultimately to the serum/plasma macroenvironment. Serum proteomic pattern diagnostics is a new type of proteomic concept in which patterns of ion signatures generated from high dimensional mass spectrometry data are used as diagnostic classifiers. This recent approach has exciting potential for clinical utility of diagnostic patterns because low molecular weight metabolites, peptides, and protein fragments may have higher accuracy than traditional biomarkers of cancer detection. Intriguingly, we now have discovered that this diagnostic information exists in a bound state, complexed with circulating highly abundant carrier proteins. These diagnostic fragments may one day be harvested by circulating nanoparticles, designed to absorb, enrich, and amplify the repertoire of diagnostic biomarkers generated-even at the critical, initial stages of carcinogenesis. Copyright 2004 Elsevier Inc.

  10. Quantitative Proteomic Analysis of Serum Exosomes from Patients with Locally Advanced Pancreatic Cancer Undergoing Chemoradiotherapy.

    Science.gov (United States)

    An, Mingrui; Lohse, Ines; Tan, Zhijing; Zhu, Jianhui; Wu, Jing; Kurapati, Himabindu; Morgan, Meredith A; Lawrence, Theodore S; Cuneo, Kyle C; Lubman, David M

    2017-04-07

    Pancreatic cancer is the third leading cause of cancer-related death in the USA. Despite extensive research, minimal improvements in patient outcomes have been achieved. Early identification of treatment response and metastasis would be valuable to determine the appropriate therapeutic course for patients. In this work, we isolated exosomes from the serum of 10 patients with locally advanced pancreatic cancer at serial time points over a course of therapy, and quantitative analysis was performed using the iTRAQ method. We detected approximately 700-800 exosomal proteins per sample, several of which have been implicated in metastasis and treatment resistance. We compared the exosomal proteome of patients at different time points during treatment to healthy controls and identified eight proteins that show global treatment-specific changes. We then tested the effect of patient-derived exosomes on the migration of tumor cells and found that patient-derived exosomes, but not healthy controls, induce cell migration, supporting their role in metastasis. Our data show that exosomes can be reliably extracted from patient serum and analyzed for protein content. The differential loading of exosomes during a course of therapy suggests that exosomes may provide novel insights into the development of treatment resistance and metastasis.

  11. Application of bioinformatics to optimization of serum proteome in ...

    African Journals Online (AJOL)

    SAM

    2014-05-14

    OSCC) from oral leukoplakia ... study the sera proteomes of 32 healthy volunteers, 6 patients with oral mucosa leukoplakia, 28 OSCC patients, and 8 .... American Ciphergen SELDI Protein Biology System II plus (PBS. II plus) and ...

  12. Serum proteomic changes after randomized prolonged erythropoietin treatment and/or endurance training: detection of novel biomarkers.

    Directory of Open Access Journals (Sweden)

    Britt Christensen

    Full Text Available Despite implementation of the biological passport to detect erythropoietin abuse, a need for additional biomarkers remains. We used a proteomic approach to identify novel serum biomarkers of prolonged erythropoiesis-stimulating agent (ESA exposure (Darbepoietin-α and/or aerobic training.Thirty-six healthy young males were randomly assigned to the following groups: Sedentary-placebo (n = 9, Sedentary-ESA (n = 9, Training-placebo (n = 10, or Training-ESA (n = 8. They were treated with placebo/Darbepoietin-α subcutaneously once/week for 10 weeks followed by a 3-week washout period. Training consisted of supervised biking 3/week for 13 weeks at the highest possible intensity. Serum was collected at baseline, week 3 (high dose Darbepoietin-α, week 10 (reduced dose Darbepoietin-α, and after a 3-week washout period.Serum proteins were separated according to charge and molecular mass (2D-gel electrophoresis. The identity of proteins from spots exhibiting altered intensity was determined by mass spectrometry.Six protein spots changed in response to Darbepoietin-α treatment. Comparing all 4 experimental groups, two protein spots (serotransferrin and haptoglobin/haptoglobin related protein showed a significant response to Darbepoietin-α treatment. The haptoglobin/haptoglobin related protein spot showed a significantly lower intensity in all subjects in the training-ESA group during the treatment period and increased during the washout period.An isoform of haptoglobin/haptoglobin related protein could be a new anti-doping marker and merits further research.ClinicalTrials.gov NCT01320449.

  13. A novel proteomic biomarker panel as a diagnostic tool for patients with ovarian cancer

    DEFF Research Database (Denmark)

    Høgdall, Claus; Fung, Eric T; Christensen, Ib J

    2011-01-01

    Previous reports have shown that the proteomic markers apolipoprotein A1, hepcidin, transferrin, inter-alpha trypsin IV internal fragment, transthyretin, connective-tissue activating protein 3 and beta-2 microglobulin may discriminate between a benign pelvic mass and ovarian cancer (OC). The aim...... was to determine if these serum proteomic biomarkers alone as well as in combination with age and serum CA125, could be helpful in triage of women with a pelvic mass....

  14. Analysis of the variability of human normal urine by 2D-GE reveals a "public" and a "private" proteome.

    Science.gov (United States)

    Molina, Laurence; Salvetat, Nicolas; Ameur, Randa Ben; Peres, Sabine; Sommerer, Nicolas; Jarraya, Fayçal; Ayadi, Hammadi; Molina, Franck; Granier, Claude

    2011-12-10

    The characterization of the normal urinary proteome is steadily progressing and represents a major interest in the assessment of clinical urinary biomarkers. To estimate quantitatively the variability of the normal urinary proteome, urines of 20 healthy people were collected. We first evaluated the impact of the sample conservation temperature on urine proteome integrity. Keeping the urine sample at RT or at +4°C until storage at -80°C seems the best way for long-term storage of samples for 2D-GE analysis. The quantitative variability of the normal urinary proteome was estimated on the 20 urines mapped by 2D-GE. The occurrence of the 910 identified spots was analysed throughout the gels and represented in a virtual 2D gel. Sixteen percent of the spots were found to occur in all samples and 23% occurred in at least 90% of urines. About 13% of the protein spots were present only in 10% or less of the samples, thus representing the most variable part of the normal urinary proteome. Twenty proteins corresponding to a fraction of the fully conserved spots were identified by mass spectrometry. In conclusion, a "public" urinary proteome, common to healthy individuals, seems to coexist with a "private" urinary proteome, which is more specific to each individual. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Analysis of pig serum proteins based on shotgun liquid ...

    African Journals Online (AJOL)

    Recent advances in proteomics technologies have opened up significant opportunities for future applications. We used shotgun liquid chromatography, coupled with tandem mass spectrometry (LC-MS/MS) to determine the proteome profile of healthy pig serum. Samples of venous blood were collected and subjected to ...

  16. Evaluation of a type 1 diabetes serum cohort by SELDI-TOF MS protein profiling

    DEFF Research Database (Denmark)

    Albrethsen, J.; Kaas, A.; Schonle, E.

    2009-01-01

    Proteomics analysis of serum from patients with type 1 diabetes (T1D) may lead to novel biomarkers for prediction of disease and for patient monitoring. However, the serum proteome is highly sensitive to sample processing and before proteomics biomarker research serum cohorts should preferably...... be examined for potential bias between sample groups. S ELDI-TOF MS protein profiling was used for preliminary evaluation of a biological-bank with 766 serum samples from 270 patients with T1D, collected at 18 different paediatric centers representing 15 countries in Europe and Japan over 2 years (2000......-2002). Samples collected 1 (n = 270), 6 (n = 248), and 12 (n = 248) months after T1D diagnosis were grouped across centers and compared. The serum protein profiles varied with collection site and day of analysis; however, markers of sample processing were not systematically different between samples collected...

  17. Knowledge Translation: Moving Proteomics Science to Innovation in Society.

    Science.gov (United States)

    Holmes, Christina; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-06-01

    Proteomics is one of the pivotal next-generation biotechnologies in the current "postgenomics" era. Little is known about the ways in which innovative proteomics science is navigating the complex socio-political space between laboratory and society. It cannot be assumed that the trajectory between proteomics laboratory and society is linear and unidirectional. Concerned about public accountability and hopes for knowledge-based innovations, funding agencies and citizens increasingly expect that emerging science and technologies, such as proteomics, are effectively translated and disseminated as innovation in society. Here, we describe translation strategies promoted in the knowledge translation (KT) and science communication literatures and examine the use of these strategies within the field of proteomics. Drawing on data generated from qualitative interviews with proteomics scientists and ethnographic observation of international proteomics conferences over a 5-year period, we found that proteomics science incorporates a variety of KT strategies to reach knowledge users outside the field. To attain the full benefit of KT, however, proteomics scientists must challenge their own normative assumptions and approaches to innovation dissemination-beyond the current paradigm relying primarily on publication for one's scientific peers within one's field-and embrace the value of broader (interdisciplinary) KT strategies in promoting the uptake of their research. Notably, the Human Proteome Organization (HUPO) is paying increasing attention to a broader range of KT strategies, including targeted dissemination, integrated KT, and public outreach. We suggest that increasing the variety of KT strategies employed by proteomics scientists is timely and would serve well the omics system sciences community.

  18. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant

    Directory of Open Access Journals (Sweden)

    Lina Zhang

    2016-06-01

    Full Text Available Here we provide data from shot-gun proteomics, using filtered-aided sample preparation (FASP, dimethyl labeling and LC–MS/MS, to quantify the changes in the repertoire of human milk proteins over lactation. Milk serum proteins were analyzed at week 1, 2, 3 4, 8, 16, and 24 in milk from four individual mothers. A total of 247 proteins were identified, of which 200 proteins were quantified. The data supplied in this article supports the accompanying publication (Zhang et al., 2006 [1]. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2016 [2] via the PRIDE partner repository with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003465.

  19. Sherlock Holmes and the proteome--a detective story.

    Science.gov (United States)

    Righetti, Pier Giorgio; Boschetti, Egisto

    2007-02-01

    The performance of a hexapeptide ligand library in capturing the 'hidden proteome' is illustrated and evaluated. This library, insolubilized on an organic polymer and available under the trade name 'Equalizer Bead Technology', acts by capturing all components of a given proteome, by concentrating rare and very rare proteins, and simultaneously diluting the abundant ones. This results in a proteome of 'normalized' relative abundances, amenable to analysis by MS and any other analytical tool. Examples are given of analysis of human urine and serum, as well as cell and tissue lysates, such as Escherichia coli and Saccharomyces cerevisiae extracts. Another important application is impurity tracking and polishing of recombinant DNA products, especially biopharmaceuticals meant for human consumption.

  20. Serum Proteome Changes in Healthy Subjects with Different Genotypes of NOS1AP in the Chinese Population

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2013-01-01

    Full Text Available Type 2 diabetes and its chronic complications have become a worldwide epidemic nowadays. However, its molecular mechanism is still unknown. We have previously identified a novel variant rs12742393 of NOS1AP for type 2 diabetes susceptibility in the Chinese population. In this study, we analyzed the total serum profiling among three genotypes of rs12742393 to discover potential crosstalk under the variant and the disease through proteomic analyses for the first time. We used OFFGEL peptide fractionation, LC-MS/MS analysis, and label-free quantification to profile the fasting human serum samples of the genotypes in rs12742393 (n=4, for CC, AC, and AA, resp.. Four proteins were identified, including apoA4, alpha1-ACT, HABP2, and keratin 10, with blood levels changed significantly between CC and AA homozygotes of rs12742393. Compared with AA group, the levels of apoA4 increased (P=0.000265, whereas the concentration of alpha1-ACT, HABP2, and keratin 10 decreased in CC group (P=0.011116, 0.021175, and 0.015661, resp.. Then we selected additional fasting serum samples for ELISA and western blot validation. However, no significant differences were identified by neither ELISA nor western blot (P>0.05. The protein profiling changes between the genotypes of rs12742393 indicated that this SNP might play a role in the development of type 2 diabetes.

  1. Combined serum and EPS-urine proteomic analysis using iTRAQ technology for discovery of potential prostate cancer biomarkers.

    Science.gov (United States)

    Zhang, Mo; Chen, Lizhu; Yuan, Zhengwei; Yang, Zeyu; Li, Yue; Shan, Liping; Yin, Bo; Fei, Xiang; Miao, Jianing; Song, Yongsheng

    2016-11-01

    Prostate cancer (PCa) is one of the most common malignant tumors and a major cause of cancer-related death for men worldwide. The aim of our study was to identify potential non-invasive serum and expressed prostatic secretion (EPS)-urine biomarkers for accurate diagnosis of PCa. Here, we performed a combined isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to compare protein profiles using pooled serum and EPS-urine samples from 4 groups of patients: benign prostate hyperplasia (BPH), high grade prostatic intraepithelial neoplasia (HGPIN), localized PCa and metastatic PCa. The differentially expressed proteins were rigorously selected and further validated in a large and independent cohort using classical ELISA and Western blot assays. Finally, we established a multiplex biomarker panel consisting of 3 proteins (serum PF4V1, PSA, and urinary CRISP3) with an excellent diagnostic capacity to differentiate PCa from BPH [area under the receiver operating characteristic curve (AUC) of 0.941], which showed an evidently greater discriminatory ability than PSA alone (AUC, 0.757) (P<0.001). Importantly, even when PSA level was in the gray zone (4-10 ng/mL), a combination of PF4V1 and CRISP3 could achieve a relatively high diagnostic efficacy (AUC, 0.895). Furthermore, their combination also had the potential to distinguish PCa from HGPIN (AUC, 0.934). Our results demonstrated that the combined application of serum and EPS-urine biomarkers can improve the diagnosis of PCa and provide a new prospect for non-invasive PCa detection.

  2. Increased circulating resistin levels in early-onset breast cancer patients of normalbody mass index correlate with lymphnode negative involvement and longerdisease free survival: a multi-center POSH cohort serum proteomics study

    OpenAIRE

    Zeidan, Bashar; Manousopoulou, Antigoni; Garay Baquero, Diana J.; White, Cory H.; Larkin, Samantha E.T.; Potter, Kathleen N.; Roumeliotis, Theodoros I.; Papachristou, Evangelia K.; Copson, Ellen; Cutress, Ramsey I.; Beers, Stephen A.; Eccles, Diana; Townsend, Paul A.; Garbis, Spiros D.

    2018-01-01

    BackgroundEarly-onset breast cancer (EOBC) affects about one in 300 women aged 40 years or younger and is associated with worse outcomes than later onset breast cancer. This study explored novel serum proteins as surrogate markers of prognosis in patients with EOBC.MethodsSerum samples from EOBC patients (stages 1–3) were analysed using agnostic high-precision quantitative proteomics. Patients received anthracycline-based chemotherapy. The discovery cohort (n = 399) either had more than 5-yea...

  3. Combinatorial hexapeptide ligand libraries (ProteoMiner): an innovative fractionation tool for differential quantitative clinical proteomics.

    Science.gov (United States)

    Hartwig, Sonja; Czibere, Akos; Kotzka, Jorg; Passlack, Waltraud; Haas, Rainer; Eckel, Jürgen; Lehr, Stefan

    2009-07-01

    Blood serum samples are the major source for clinical proteomics approaches, which aim to identify diagnostically relevant or treatment-response related proteins. But, the presence of very high-abundance proteins and the enormous dynamic range of protein distribution hinders whole serum analysis. An innovative tool to overcome these limitations, utilizes combinatorial hexapeptide ligand libraries (ProteoMiner). Here, we demonstrate that ProteoMiner can be used for comparative and quantitative analysis of complex proteomes. We spiked serum samples with increasing amounts (3 microg to 300 microg) of whole E. coli lysate, processed it with ProteoMiner and performed quantitative analyses of 2D-gels. We found, that the concentration of the spiked bacteria proteome, reflected by the maintained proportional spot intensities, was not altered by ProteoMiner treatment. Therefore, we conclude that the ProteoMiner technology can be used for quantitative analysis of low abundant proteins in complex biological samples.

  4. Proteomics in Argentina - limitations and future perspectives: A special emphasis on meat proteomics.

    Science.gov (United States)

    Fadda, Silvina; Almeida, André M

    2015-11-01

    Argentina is one of the most relevant countries in Latin America, playing a major role in regional economics, culture and science. Over the last 80 years, Argentinean history has been characterized by several upward and downward phases that had major consequences on the development of science in the country and most recently on proteomics. In this article, we characterize the evolution of Proteomics sciences in Argentina over the last decade and a half. We describe the proteomics publication output of the country in the framework of the regional and international contexts, demonstrating that Argentina is solidly anchored in a regional context, showing results similar to other emergent and Latin American countries, albeit still far from the European, American or Australian realities. We also provide a case-study on the importance of Proteomics to a specific sector in the area of food science: the use of bacteria of technological interest, highlighting major achievements obtained by Argentinean proteomics scientists. Finally, we provide a general picture of the endeavors being undertaken by Argentinean Proteomics scientists and their international collaborators to promote the Proteomics-based research with the new generation of scientists and PhD students in both Argentina and other countries in the Southern cone. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of mass spectrometry-based proteomics for biomarker discovery in neurological disorders

    Directory of Open Access Journals (Sweden)

    Venugopal Abhilash

    2009-01-01

    Full Text Available Mass spectrometry-based quantitative proteomics has emerged as a powerful approach that has the potential to accelerate biomarker discovery, both for diagnostic as well as therapeutic purposes. Proteomics has traditionally been synonymous with 2D gels but is increasingly shifting to the use of gel-free systems and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS. Quantitative proteomic approaches have already been applied to investigate various neurological disorders, especially in the context of identifying biomarkers from cerebrospinal fluid and serum. This review highlights the scope of different applications of quantitative proteomics in understanding neurological disorders with special emphasis on biomarker discovery.

  6. Proteome profiling analysis of human ovarian cancer serum samples

    International Nuclear Information System (INIS)

    Cognetti, F.; Citro, G.

    2009-01-01

    Mass Spectrometry represents a powerful tool in cancer research to discovery of potential bio markers through peak identification from serum profiling. By using high resolution MALDITOF and bioinformatic analysis almost 400 serum sample homogeneously distributed between biopsy confirmed ovarian cancer and high risk serum samples were analyzed. Each serum sample run in duplicate and whole serum sample preparation procedure has been performed by Hamilton Star Robot in order to reduce bias and the replicates with a low Pearson coefficient are removed. After automated reverse phase magnetic beads separation the samples were tested in MALDI-TOF

  7. The Proteomics Big Challenge for Biomarkers and New Drug-Targets Discovery

    Science.gov (United States)

    Savino, Rocco; Paduano, Sergio; Preianò, Mariaimmacolata; Terracciano, Rosa

    2012-01-01

    In the modern process of drug discovery, clinical, functional and chemical proteomics can converge and integrate synergies. Functional proteomics explores and elucidates the components of pathways and their interactions which, when deregulated, lead to a disease condition. This knowledge allows the design of strategies to target multiple pathways with combinations of pathway-specific drugs, which might increase chances of success and reduce the occurrence of drug resistance. Chemical proteomics, by analyzing the drug interactome, strongly contributes to accelerate the process of new druggable targets discovery. In the research area of clinical proteomics, proteome and peptidome mass spectrometry-profiling of human bodily fluid (plasma, serum, urine and so on), as well as of tissue and of cells, represents a promising tool for novel biomarker and eventually new druggable targets discovery. In the present review we provide a survey of current strategies of functional, chemical and clinical proteomics. Major issues will be presented for proteomic technologies used for the discovery of biomarkers for early disease diagnosis and identification of new drug targets. PMID:23203042

  8. Preliminary characterizations of a serum biomarker for sarcoidosis by comparative proteomic approach with tandem-mass spectrometry in ethnic Han Chinese patients.

    Science.gov (United States)

    Zhang, Yuan; Chen, Xianqiu; Hu, Yang; Du, Shanshan; Shen, Li; He, Yifan; Zhang, Yuxuan; Zhang, Xia; Li, Huiping; Yung, Rex C

    2013-02-11

    The diagnosis of sarcoidosis is still a significant challenge in China because of the need to exclude other diseases including granulomatous infections and malignancies that may be clinically and radiographically similar. The specific aim of the study is to search for serum protein biomarkers of sarcoidosis and to validate their clinical usefulness in differential diagnosis. Serum samples were collected from patients with sarcoidosis (n = 37), and compared to those from patients with tuberculosis (n = 20), other pulmonary diseases (n = 20), and healthy volunteers (n = 20) for determination of sarcoidosis-specific or -associated protein expression profiles. The first part of this study focused on proteomic analysis of serum from patients with sarcoidosis to identify a pattern of peptides capable of differentiating the studied populations using the ClinProt profiling technology based on mass spectrometry. Enzyme Linked Immunosorbent Assay (ELISA) was then used to verify corresponding elevation of the serum protein concentration of the potential biomarkers in the same patients sets. Receiver operating characteristic curve (ROC) analyses was performed to determine the optimal cutoff value for diagnosis. Immunohistochemistry was carried out to further confirm the protein expression patterns of the biomarkers in lung tissue. An unique protein peak of M/Z 3,210 Daltons (Da) was found to be differentially expressed between the sarcoidosis and control groups and was identified as the N-terminal peptide of 29 amino acids (94-122) of serum amyloid A (SAA). ELISA confirmed that the serum SAA level was significantly higher in the sarcoidosis group than that of the other 3 control groups (p biomarker for ruling-out the diagnosis of sarcoidosis in Chinese subjects.

  9. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Christian Niehage

    Full Text Available Multipotent mesenchymal stromal cells (MSCs are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2% or high (10% serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention.

  10. Preliminary characterizations of a serum biomarker for sarcoidosis by comparative proteomic approach with tandem-mass spectrometry in ethnic Han Chinese patients

    Directory of Open Access Journals (Sweden)

    Zhang Yuan

    2013-02-01

    Full Text Available Abstract Background The diagnosis of sarcoidosis is still a significant challenge in China because of the need to exclude other diseases including granulomatous infections and malignancies that may be clinically and radiographically similar. The specific aim of the study is to search for serum protein biomarkers of sarcoidosis and to validate their clinical usefulness in differential diagnosis. Methods Serum samples were collected from patients with sarcoidosis (n = 37, and compared to those from patients with tuberculosis (n = 20, other pulmonary diseases (n = 20, and healthy volunteers (n = 20 for determination of sarcoidosis-specific or -associated protein expression profiles. The first part of this study focused on proteomic analysis of serum from patients with sarcoidosis to identify a pattern of peptides capable of differentiating the studied populations using the ClinProt profiling technology based on mass spectrometry. Enzyme Linked Immunosorbent Assay (ELISA was then used to verify corresponding elevation of the serum protein concentration of the potential biomarkers in the same patients sets. Receiver operating characteristic curve (ROC analyses was performed to determine the optimal cutoff value for diagnosis. Immunohistochemistry was carried out to further confirm the protein expression patterns of the biomarkers in lung tissue. Results An unique protein peak of M/Z 3,210 Daltons (Da was found to be differentially expressed between the sarcoidosis and control groups and was identified as the N-terminal peptide of 29 amino acids (94-122 of serum amyloid A (SAA. ELISA confirmed that the serum SAA level was significantly higher in the sarcoidosis group than that of the other 3 control groups (p p  Conclusion This is the first study to investigate serum protein markers in Chinese subjects with sarcoidosis. This study shows that the serum SAA expression profiles were different between the sarcoidosis and non

  11. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    International Nuclear Information System (INIS)

    Kulkarni, Shilpa; Koller, Antonius; Mani, Kartik M.; Wen, Ruofeng; Alfieri, Alan; Saha, Subhrajit; Wang, Jian; Patel, Purvi; Bandeira, Nuno; Guha, Chandan

    2016-01-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  12. Identifying Urinary and Serum Exosome Biomarkers for Radiation Exposure Using a Data Dependent Acquisition and SWATH-MS Combined Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Shilpa [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Koller, Antonius [Proteomics Center, Stony Brook University School of Medicine, Stony Brook, New York (United States); Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Mani, Kartik M. [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wen, Ruofeng [Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York (United States); Alfieri, Alan; Saha, Subhrajit [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Wang, Jian [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Patel, Purvi [Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York (United States); Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York (United States); Bandeira, Nuno [Center for Computational Mass Spectrometry, University of California, San Diego, California (United States); Department of Computer Science and Engineering, University of California, San Diego, California (United States); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California (United States); Guha, Chandan, E-mail: cguha@montefiore.org [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); and others

    2016-11-01

    Purpose: Early and accurate assessment of radiation injury by radiation-responsive biomarkers is critical for triage and early intervention. Biofluids such as urine and serum are convenient for such analysis. Recent research has also suggested that exosomes are a reliable source of biomarkers in disease progression. In the present study, we analyzed total urine proteome and exosomes isolated from urine or serum for potential biomarkers of acute and persistent radiation injury in mice exposed to lethal whole body irradiation (WBI). Methods and Materials: For feasibility studies, the mice were irradiated at 10.4 Gy WBI, and urine and serum samples were collected 24 and 72 hours after irradiation. Exosomes were isolated and analyzed using liquid chromatography mass spectrometry/mass spectrometry-based workflow for radiation exposure signatures. A data dependent acquisition and SWATH-MS combined workflow approach was used to identify significantly exosome biomarkers indicative of acute or persistent radiation-induced responses. For the validation studies, mice were exposed to 3, 6, 8, or 10 Gy WBI, and samples were analyzed for comparison. Results: A comparison between total urine proteomics and urine exosome proteomics demonstrated that exosome proteomic analysis was superior in identifying radiation signatures. Feasibility studies identified 23 biomarkers from urine and 24 biomarkers from serum exosomes after WBI. Urinary exosome signatures identified different physiological parameters than the ones obtained in serum exosomes. Exosome signatures from urine indicated injury to the liver, gastrointestinal, and genitourinary tracts. In contrast, serum showed vascular injuries and acute inflammation in response to radiation. Selected urinary exosomal biomarkers also showed changes at lower radiation doses in validation studies. Conclusions: Exosome proteomics revealed radiation- and time-dependent protein signatures after WBI. A total of 47 differentially secreted

  13. Mining novel biomarkers for prognosis of gastric cancer with serum proteomics

    Directory of Open Access Journals (Sweden)

    Sui Mei-Hua

    2009-09-01

    Full Text Available Abstract Background Although gastric caner (GC remains the second cause of cancer-related death, useful biomarkers for prognosis are still unavailable. We present here the attempt of mining novel biomarkers for GC prognosis by using serum proteomics. Methods Sera from 43 GC patients and 41 controls with gastritis as Group 1 and 11 GC patients as Group 2 was successively detected by Surface Enhanced Laser Desorption/ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS with Q10 chip. Peaks were acquired by Ciphergen ProteinChip Software 3.2.0 and analyzed by Zhejiang University-ProteinChip Data Analysis System (ZJU-PDAS. CEA level were evaluated by chemiluminescence immunoassay. Results After median follow-up periods of 33 months, Group 1 with 4 GC patients lost was divided into 20 good-prognosis GC patients (overall survival more than 24 months and 19 poor-prognosis GC patients (no more than 24 months. The established prognosis pattern consisted of 5 novel prognosis biomarkers with 84.2% sensitivity and 85.0% specificity, which were significantly higher than those of carcinoembryonic antigen (CEA and TNM stage. We also tested prognosis pattern blindly in Group 2 with 66.7% sensitivity and 80.0% specificity. Moreover, we found that 4474-Da peak elevated significantly in GC and was associated with advanced stage (III+IV and short survival (p Conclusion We have identified a number of novel biomarkers for prognosis prediction of GC by using SELDI-TOF-MS combined with sophisticated bioinformatics. Particularly, elevated expression of 4474-Da peak showed very promising to be developed into a novel biomarker associated with biologically aggressive features of GC.

  14. Comparative evaluation of seven commercial products for human serum enrichment/depletion by shotgun proteomics.

    Science.gov (United States)

    Pisanu, Salvatore; Biosa, Grazia; Carcangiu, Laura; Uzzau, Sergio; Pagnozzi, Daniela

    2018-08-01

    Seven commercial products for human serum depletion/enrichment were tested and compared by shotgun proteomics. Methods were based on four different capturing agents: antibodies (Qproteome Albumin/IgG Depletion kit, ProteoPrep Immunoaffinity Albumin and IgG Depletion Kit, Top 2 Abundant Protein Depletion Spin Columns, and Top 12 Abundant Protein Depletion Spin Columns), specific ligands (Albumin/IgG Removal), mixture of antibodies and ligands (Albumin and IgG Depletion SpinTrap), and combinatorial peptide ligand libraries (ProteoMiner beads), respectively. All procedures, to a greater or lesser extent, allowed an increase of identified proteins. ProteoMiner beads provided the highest number of proteins; Albumin and IgG Depletion SpinTrap and ProteoPrep Immunoaffinity Albumin and IgG Depletion Kit resulted the most efficient in albumin removal; Top 2 and Top 12 Abundant Protein Depletion Spin Columns decreased the overall immunoglobulin levels more than other procedures, whereas specifically gamma immunoglobulins were mostly removed by Albumin and IgG Depletion SpinTrap, ProteoPrep Immunoaffinity Albumin and IgG Depletion Kit, and Top 2 Abundant Protein Depletion Spin Columns. Albumin/IgG Removal, a resin bound to a mixture of protein A and Cibacron Blue, behaved less efficiently than the other products. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Integration of Serum Protein Biomarker and Tumor Associated Autoantibody Expression Data Increases the Ability of a Blood-Based Proteomic Assay to Identify Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Meredith C Henderson

    Full Text Available Despite significant advances in breast imaging, the ability to accurately detect Breast Cancer (BC remains a challenge. With the discovery of key biomarkers and protein signatures for BC, proteomic technologies are currently poised to serve as an ideal diagnostic adjunct to imaging. Research studies have shown that breast tumors are associated with systemic changes in levels of both serum protein biomarkers (SPB and tumor associated autoantibodies (TAAb. However, the independent contribution of SPB and TAAb expression data for identifying BC relative to a combinatorial SPB and TAAb approach has not been fully investigated. This study evaluates these contributions using a retrospective cohort of pre-biopsy serum samples with known clinical outcomes collected from a single site, thus minimizing potential site-to-site variation and enabling direct assessment of SPB and TAAb contributions to identify BC. All serum samples (n = 210 were collected prior to biopsy. These specimens were obtained from 18 participants with no evidence of breast disease (ND, 92 participants diagnosed with Benign Breast Disease (BBD and 100 participants diagnosed with BC, including DCIS. All BBD and BC diagnoses were based on pathology results from biopsy. Statistical models were developed to differentiate BC from non-BC (i.e., BBD and ND using expression data from SPB alone, TAAb alone, and a combination of SPB and TAAb. When SPB data was independently used for modeling, clinical sensitivity and specificity for detection of BC were 74.7% and 77.0%, respectively. When TAAb data was independently used, clinical sensitivity and specificity for detection of BC were 72.2% and 70.8%, respectively. When modeling integrated data from both SPB and TAAb, the clinical sensitivity and specificity for detection of BC improved to 81.0% and 78.8%, respectively. These data demonstrate the benefit of the integration of SPB and TAAb data and strongly support the further development of

  16. Genomes to Proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Grigoriev, Igor [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Daly, Don S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webb-Robertson, Bobbie-Jo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baker, Scott E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  17. A Novel Panel of Serum Biomarkers for MPM Diagnosis

    Directory of Open Access Journals (Sweden)

    A. Bonotti

    2017-01-01

    Full Text Available Exposure to asbestos is the main cause of malignant pleural mesothelioma (MPM, a highly aggressive cancer of the pleura. Since the only tools for early detection are based on radiological tests, some authors focused on serum markers (i.e., mesothelin. The aim of this study was the evaluation of new serum biomarkers to be used individually or in combination, in order to improve the outcome of patients whose disease would be diagnosed at an earlier stage. Serum and plasma were available from 43 subjects previously exposed to asbestos and 27 MPM patients, all being epithelioid type. All the new markers found differentially expressed in MPM and healthy subjects, by proteomic and genomic approaches, have been validated in the serum by the use of specific ELISA. The combined approach, using tools of genomics and proteomics, is found to be highly innovative for this type of disease and led to the identification of new serum markers in the diagnosis of MPM. These results, if confirmed in a larger series, may have a strong impact in this area, because early detection of this cancer in people at high risk could significantly improve the course of the disease and the clinical approach to an individualized therapy.

  18. PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange Datasets.

    Science.gov (United States)

    Perez-Riverol, Yasset; Xu, Qing-Wei; Wang, Rui; Uszkoreit, Julian; Griss, Johannes; Sanchez, Aniel; Reisinger, Florian; Csordas, Attila; Ternent, Tobias; Del-Toro, Noemi; Dianes, Jose A; Eisenacher, Martin; Hermjakob, Henning; Vizcaíno, Juan Antonio

    2016-01-01

    The original PRIDE Inspector tool was developed as an open source standalone tool to enable the visualization and validation of mass-spectrometry (MS)-based proteomics data before data submission or already publicly available in the Proteomics Identifications (PRIDE) database. The initial implementation of the tool focused on visualizing PRIDE data by supporting the PRIDE XML format and a direct access to private (password protected) and public experiments in PRIDE.The ProteomeXchange (PX) Consortium has been set up to enable a better integration of existing public proteomics repositories, maximizing its benefit to the scientific community through the implementation of standard submission and dissemination pipelines. Within the Consortium, PRIDE is focused on supporting submissions of tandem MS data. The increasing use and popularity of the new Proteomics Standards Initiative (PSI) data standards such as mzIdentML and mzTab, and the diversity of workflows supported by the PX resources, prompted us to design and implement a new suite of algorithms and libraries that would build upon the success of the original PRIDE Inspector and would enable users to visualize and validate PX "complete" submissions. The PRIDE Inspector Toolsuite supports the handling and visualization of different experimental output files, ranging from spectra (mzML, mzXML, and the most popular peak lists formats) and peptide and protein identification results (mzIdentML, PRIDE XML, mzTab) to quantification data (mzTab, PRIDE XML), using a modular and extensible set of open-source, cross-platform libraries. We believe that the PRIDE Inspector Toolsuite represents a milestone in the visualization and quality assessment of proteomics data. It is freely available at http://github.com/PRIDE-Toolsuite/. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. BioInfra.Prot: A comprehensive proteomics workflow including data standardization, protein inference, expression analysis and data publication.

    Science.gov (United States)

    Turewicz, Michael; Kohl, Michael; Ahrens, Maike; Mayer, Gerhard; Uszkoreit, Julian; Naboulsi, Wael; Bracht, Thilo; Megger, Dominik A; Sitek, Barbara; Marcus, Katrin; Eisenacher, Martin

    2017-11-10

    The analysis of high-throughput mass spectrometry-based proteomics data must address the specific challenges of this technology. To this end, the comprehensive proteomics workflow offered by the de.NBI service center BioInfra.Prot provides indispensable components for the computational and statistical analysis of this kind of data. These components include tools and methods for spectrum identification and protein inference, protein quantification, expression analysis as well as data standardization and data publication. All particular methods of the workflow which address these tasks are state-of-the-art or cutting edge. As has been shown in previous publications, each of these methods is adequate to solve its specific task and gives competitive results. However, the methods included in the workflow are continuously reviewed, updated and improved to adapt to new scientific developments. All of these particular components and methods are available as stand-alone BioInfra.Prot services or as a complete workflow. Since BioInfra.Prot provides manifold fast communication channels to get access to all components of the workflow (e.g., via the BioInfra.Prot ticket system: bioinfraprot@rub.de) users can easily benefit from this service and get support by experts. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Serum depletion induces changes in protein expression in the trophoblast-derived cell line HTR-8/SVneo.

    Science.gov (United States)

    Novoa-Herran, Susana; Umaña-Perez, Adriana; Canals, Francesc; Sanchez-Gomez, Myriam

    2016-01-01

    How nutrition and growth factor restriction due to serum depletion affect trophoblast function remains poorly understood. We performed a proteomic differential study of the effects of serum depletion on a first trimester human immortalized trophoblast cell line. The viability of HTR-8/SVneo trophoblast cells in culture with 0, 0.5 and 10 % fetal bovine serum (FBS) were assayed via MTT at 24, 48 and 64 h. A comparative proteomic analysis of the cells grown with those FBS levels for 24 h was performed using two-dimensional electrophoresis (2DE), followed by mass spectrometry for protein spot identification, and a database search and bioinformatics analysis of the expressed proteins. Differential spots were identified using the Kolmogorov-Smirnov test ( n  = 3, significance level 0.10, D > 0.642) and/or ANOVA ( n  = 3, p  depletion differentially affect cell growth and protein expression. Differential expression was seen in 25 % of the protein spots grown with 0.5 % FBS and in 84 % of those grown with 0 % FBS, using 10 % serum as the physiological control. In 0.5 % FBS, this difference was related with biological processes typically affected by the serum, such as cell cycle, regulation of apoptosis and proliferation. In addition to these changes, in the serum-depleted proteome we observed downregulation of keratin 8, and upregulation of vimentin, the glycolytic enzymes enolase and pyruvate kinase (PKM2) and tumor progression-related inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) enzyme. The proteins regulated by total serum depletion, but not affected by growth in 0.5 % serum, are members of the glycolytic and nucleotide metabolic pathways and the epithelial-to-mesenchymal transition (EMT), suggesting an adaptive switch characteristic of malignant cells. This comparative proteomic analysis and the identified proteins are the first evidence of a protein expression response to serum depletion in a trophoblast cell model. Our results show that

  1. Proteomics methods applied to malaria: Plasmodium falciparum

    International Nuclear Information System (INIS)

    Cuesta Astroz, Yesid; Segura Latorre, Cesar

    2012-01-01

    Malaria is a parasitic disease that has a high impact on public health in developing countries. The sequencing of the plasmodium falciparum genome and the development of proteomics have enabled a breakthrough in understanding the biology of the parasite. Proteomics have allowed to characterize qualitatively and quantitatively the parasite s expression of proteins and has provided information on protein expression under conditions of stress induced by antimalarial. Given the complexity of their life cycle, this takes place in the vertebrate host and mosquito vector. It has proven difficult to characterize the protein expression during each stage throughout the infection process in order to determine the proteome that mediates several metabolic, physiological and energetic processes. Two dimensional electrophoresis, liquid chromatography and mass spectrometry have been useful to assess the effects of antimalarial on parasite protein expression and to characterize the proteomic profile of different p. falciparum stages and organelles. The purpose of this review is to present state of the art tools and advances in proteomics applied to the study of malaria, and to present different experimental strategies used to study the parasite's proteome in order to show the advantages and disadvantages of each one.

  2. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  3. Proteomics for discovery of candidate colorectal cancer biomarkers

    Science.gov (United States)

    Álvarez-Chaver, Paula; Otero-Estévez, Olalla; Páez de la Cadena, María; Rodríguez-Berrocal, Francisco J; Martínez-Zorzano, Vicenta S

    2014-01-01

    Colorectal cancer (CRC) is the second most common cause of cancer-related deaths in Europe and other Western countries, mainly due to the lack of well-validated clinically useful biomarkers with enough sensitivity and specificity to detect this disease at early stages. Although it is well known that the pathogenesis of CRC is a progressive accumulation of mutations in multiple genes, much less is known at the proteome level. Therefore, in the last years many proteomic studies have been conducted to find new candidate protein biomarkers for diagnosis, prognosis and as therapeutic targets for this malignancy, as well as to elucidate the molecular mechanisms of colorectal carcinogenesis. An important advantage of the proteomic approaches is the capacity to look for multiple differentially expressed proteins in a single study. This review provides an overview of the recent reports describing the different proteomic tools used for the discovery of new protein markers for CRC such as two-dimensional electrophoresis methods, quantitative mass spectrometry-based techniques or protein microarrays. Additionally, we will also focus on the diverse biological samples used for CRC biomarker discovery such as tissue, serum and faeces, besides cell lines and murine models, discussing their advantages and disadvantages, and summarize the most frequently identified candidate CRC markers. PMID:24744574

  4. Proteomic and metabolomic approaches to biomarker discovery

    CERN Document Server

    Issaq, Haleem J

    2013-01-01

    Proteomic and Metabolomic Approaches to Biomarker Discovery demonstrates how to leverage biomarkers to improve accuracy and reduce errors in research. Disease biomarker discovery is one of the most vibrant and important areas of research today, as the identification of reliable biomarkers has an enormous impact on disease diagnosis, selection of treatment regimens, and therapeutic monitoring. Various techniques are used in the biomarker discovery process, including techniques used in proteomics, the study of the proteins that make up an organism, and metabolomics, the study of chemical fingerprints created from cellular processes. Proteomic and Metabolomic Approaches to Biomarker Discovery is the only publication that covers techniques from both proteomics and metabolomics and includes all steps involved in biomarker discovery, from study design to study execution.  The book describes methods, and presents a standard operating procedure for sample selection, preparation, and storage, as well as data analysis...

  5. Maternal serum protein profile and immune response protein subunits as markers for non-invasive prenatal diagnosis of trisomy 21, 18, and 13

    KAUST Repository

    Narasimhan, Kothandaraman

    2013-02-01

    Objectives: To use proteomics to identify and characterize proteins in maternal serum from patients at high-risk for fetal trisomy 21, trisomy 18, and trisomy 13 on the basis of ultrasound and maternal serum triple tests. Methods: We performed a comprehensive proteomic analysis on 23 trisomy cases and 85 normal cases during the early second trimester of pregnancy. Protein profiling along with conventional sodium dodecyl sulfate polyacrylamide gel electrophoresis/Tandem mass spectrometry analysis was carried out to characterize proteins associated with each trisomy condition and later validated using Western blot. Results: Protein profiling approach using surface enhanced laser desorption/ionization time-of-flight mass (SELDI-TOF/MS) spectrometry resulted in the identification of 37 unique hydrophobic proteomic features for three trisomy conditions. Using sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by Matrix Assisted Laser Desorption Ionization - Time of Flight/Time of Flight (MALDI-TOF/TOF) and western blot, glyco proteins such as alpha-1-antitrypsin, apolipoprotein E, apolipoprotein H, and serum carrier protein transthyretin were identified as potential maternal serum markers for fetal trisomy condition. The identified proteins showed differential expression at the subunit level. Conclusions: Maternal serum protein profiling using proteomics may allow non-invasive diagnostic testing for the most common trisomies and may complement ultrasound-based methods to more accurately determine pregnancies with fetal aneuploidies. © 2013 John Wiley & Sons, Ltd.

  6. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kossowska, Barbara, E-mail: barbara@immchem.am.wroc.pl [Department of Chemistry and Immunochemistry, Wroclaw Medical University, Bujwida 44a, 50-345 Wroclaw (Poland); Dudka, Ilona, E-mail: ilona.dudka@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Bugla-Ploskonska, Gabriela, E-mail: gabriela.bugla-ploskonska@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Szymanska-Chabowska, Anna, E-mail: aszyman@mp.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Doroszkiewicz, Wlodzimierz, E-mail: wlodzimierz.doroszkiewicz@microb.uni.wroc.pl [Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw (Poland); Gancarz, Roman, E-mail: roman.gancarz@pwr.wroc.pl [Medicinal Chemistry and Microbiology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Andrzejak, Ryszard, E-mail: ryszard@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland); Antonowicz-Juchniewicz, Jolanta, E-mail: jola@chzaw.am.wroc.pl [Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeze L. Pasteura 4, 50-367 Wroclaw (Poland)

    2010-10-15

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.

  7. Proteomic analysis of serum of workers occupationally exposed to arsenic, cadmium, and lead for biomarker research: A preliminary study

    International Nuclear Information System (INIS)

    Kossowska, Barbara; Dudka, Ilona; Bugla-Ploskonska, Gabriela; Szymanska-Chabowska, Anna; Doroszkiewicz, Wlodzimierz; Gancarz, Roman; Andrzejak, Ryszard; Antonowicz-Juchniewicz, Jolanta

    2010-01-01

    The main factor of environmental contamination is the presence of the heavy metals lead, cadmium, and arsenic. The aim of serum protein profile analysis of people chronically exposed to heavy metals is to find protein markers of early pathological changes. The study was conducted in a group of 389 healthy men working in copper foundry and 45 age-matched non-exposed healthy men. Toxicological test samples included whole blood, serum, and urine. Thirty-seven clinical parameters were measured. Based on the parameters values of the healthy volunteers, the centroid in 37-dimensional space was calculated. The individuals in the metal-exposed and control groups were ordered based on the Euclidean distance from the centroid defined by the first component according to Principal Component Analysis (PCA). Serum samples of two individuals, one from the control and one from the metal-exposed group, were chosen for proteomic analysis. In optimized conditions of two-dimensional gel electrophoresis (2-DE), two protein maps were obtained representing both groups. Twenty-eight corresponding protein spots from both protein maps were chosen and identified based on PDQuest analysis and the SWISS-2DPAGE database. From a panel of six proteins with differences in expression greater than a factor of two, three potential markers with the highest differences were selected: hemoglobin-spot 26 (pI 7.05, Mw 10.53), unidentified protein-spot 27 (pI 6.73, Mw 10.17), and unidentified protein-spot 25 (pI 5.75, Mw 12.07). Further studies are required to prove so far obtained results. Identified proteins could serve as potential markers of preclinical changes and could be in the future included in biomonitoring of people exposed to heavy metals.

  8. Proteomic biomarkers predicting lymph node involvement in serum of cervical cancer patients. Limitations of SELDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Van Gorp Toon

    2012-06-01

    Full Text Available Abstract Background Lymph node status is not part of the staging system for cervical cancer, but provides important information for prognosis and treatment. We investigated whether lymph node status can be predicted with proteomic profiling. Material & methods Serum samples of 60 cervical cancer patients (FIGO I/II were obtained before primary treatment. Samples were run through a HPLC depletion column, eliminating the 14 most abundant proteins ubiquitously present in serum. Unbound fractions were concentrated with spin filters. Fractions were spotted onto CM10 and IMAC30 surfaces and analyzed with surface-enhanced laser desorption time of flight (SELDI-TOF mass spectrometry (MS. Unsupervised peak detection and peak clustering was performed using MASDA software. Leave-one-out (LOO validation for weighted Least Squares Support Vector Machines (LSSVM was used for prediction of lymph node involvement. Other outcomes were histological type, lymphvascular space involvement (LVSI and recurrent disease. Results LSSVM models were able to determine LN status with a LOO area under the receiver operating characteristics curve (AUC of 0.95, based on peaks with m/z values 2,698.9, 3,953.2, and 15,254.8. Furthermore, we were able to predict LVSI (AUC 0.81, to predict recurrence (AUC 0.92, and to differentiate between squamous carcinomas and adenocarcinomas (AUC 0.88, between squamous and adenosquamous carcinomas (AUC 0.85, and between adenocarcinomas and adenosquamous carcinomas (AUC 0.94. Conclusions Potential markers related with lymph node involvement were detected, and protein/peptide profiling support differentiation between various subtypes of cervical cancer. However, identification of the potential biomarkers was hampered by the technical limitations of SELDI-TOF MS.

  9. Analytical methods for proteome data obtained from SDS-PAGE multi-dimensional separation and mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gun Wook Park

    2010-03-01

    Full Text Available For proteome analysis, various experimental protocols using mass spectrometry have been developed over thelast decade. The different protocols have differing performances and degrees of accuracy. Furthermore, the “best”protocol for a proteomic analysis of a sample depends on the purpose of the analysis, especially in connection withdisease proteomics, including biomarker discovery and therapeutics analyses of human serum or plasma. Theprotein complexity and the wide dynamic range of blood samples require high-dimensional separation technology.In this article, we review proteome analysis protocols in which both Sodium Dodecyl Sulfate-Polyacryl Amide GelElectrophoresis(SDS-PAGE and liquid chromatography are used for peptide and protein separations. Multidimensionalseparation technology supplies a high-quality dataset of tandem mass spectra and reveals signals fromlow-abundance proteins, although it can be time-consuming and laborious work. We survey shotgun proteomicsprotocols using SDS-PAGE and liquid chromatography and introduce bioinformatics tools for the analysis ofproteomics data. We also review efforts toward the biological interpretation of the proteome.

  10. Birth of plant proteomics in India: a new horizon.

    Science.gov (United States)

    Narula, Kanika; Pandey, Aarti; Gayali, Saurabh; Chakraborty, Niranjan; Chakraborty, Subhra

    2015-09-08

    In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  12. PACOM: A Versatile Tool for Integrating, Filtering, Visualizing, and Comparing Multiple Large Mass Spectrometry Proteomics Data Sets.

    Science.gov (United States)

    Martínez-Bartolomé, Salvador; Medina-Aunon, J Alberto; López-García, Miguel Ángel; González-Tejedo, Carmen; Prieto, Gorka; Navajas, Rosana; Salazar-Donate, Emilio; Fernández-Costa, Carolina; Yates, John R; Albar, Juan Pablo

    2018-04-06

    Mass-spectrometry-based proteomics has evolved into a high-throughput technology in which numerous large-scale data sets are generated from diverse analytical platforms. Furthermore, several scientific journals and funding agencies have emphasized the storage of proteomics data in public repositories to facilitate its evaluation, inspection, and reanalysis. (1) As a consequence, public proteomics data repositories are growing rapidly. However, tools are needed to integrate multiple proteomics data sets to compare different experimental features or to perform quality control analysis. Here, we present a new Java stand-alone tool, Proteomics Assay COMparator (PACOM), that is able to import, combine, and simultaneously compare numerous proteomics experiments to check the integrity of the proteomic data as well as verify data quality. With PACOM, the user can detect source of errors that may have been introduced in any step of a proteomics workflow and that influence the final results. Data sets can be easily compared and integrated, and data quality and reproducibility can be visually assessed through a rich set of graphical representations of proteomics data features as well as a wide variety of data filters. Its flexibility and easy-to-use interface make PACOM a unique tool for daily use in a proteomics laboratory. PACOM is available at https://github.com/smdb21/pacom .

  13. Quantitative Evaluation of Serum Proteins Uncovers a Protein Signature Related to Maturity-Onset Diabetes of the Young (MODY).

    Science.gov (United States)

    Tuerxunyiming, Muhadasi; Xian, Feng; Zi, Jin; Yimamu, Yilihamujiang; Abuduwayite, Reshalaiti; Ren, Yan; Li, Qidan; Abudula, Abulizi; Liu, SiQi; Mohemaiti, Patamu

    2018-01-05

    Maturity-onset diabetes of the young (MODY) is an inherited monogenic type of diabetes. Genetic mutations in MODY often cause nonsynonymous changes that directly lead to the functional distortion of proteins and the pathological consequences. Herein, we proposed that the inherited mutations found in a MODY family could cause a disturbance of protein abundance, specifically in serum. The serum samples were collected from a Uyghur MODY family through three generations, and the serum proteins after depletion treatment were examined by quantitative proteomics to characterize the MODY-related serum proteins followed by verification using target quantification of proteomics. A total of 32 serum proteins were preliminarily identified as the MODY-related. Further verification test toward the individual samples demonstrated the 12 candidates with the significantly different abundance in the MODY patients. A comparison of the 12 proteins among the sera of type 1 diabetes, type 2 diabetes, MODY, and healthy subjects was conducted and revealed a protein signature related with MODY composed of the serum proteins such as SERPINA7, APOC4, LPA, C6, and F5.

  14. Global Proteome Analysis of the NCI-60 Cell Line Panel

    Directory of Open Access Journals (Sweden)

    Amin Moghaddas Gholami

    2013-08-01

    Full Text Available The NCI-60 cell line collection is a very widely used panel for the study of cellular mechanisms of cancer in general and in vitro drug action in particular. It is a model system for the tissue types and genetic diversity of human cancers and has been extensively molecularly characterized. Here, we present a quantitative proteome and kinome profile of the NCI-60 panel covering, in total, 10,350 proteins (including 375 protein kinases and including a core cancer proteome of 5,578 proteins that were consistently quantified across all tissue types. Bioinformatic analysis revealed strong cell line clusters according to tissue type and disclosed hundreds of differentially regulated proteins representing potential biomarkers for numerous tumor properties. Integration with public transcriptome data showed considerable similarity between mRNA and protein expression. Modeling of proteome and drug-response profiles for 108 FDA-approved drugs identified known and potential protein markers for drug sensitivity and resistance. To enable community access to this unique resource, we incorporated it into a public database for comparative and integrative analysis (http://wzw.tum.de/proteomics/nci60.

  15. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics

    Directory of Open Access Journals (Sweden)

    Sorette M

    2004-12-01

    Full Text Available Abstract Background Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. Results Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. Conclusion The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings.

  16. Plasma Proteome Biomarkers of Inflammation in School Aged Children in Nepal.

    Directory of Open Access Journals (Sweden)

    Sun Eun Lee

    Full Text Available Inflammation is a condition stemming from complex host defense and tissue repair mechanisms, often simply characterized by plasma levels of a single acute reactant. We attempted to identify candidate biomarkers of systemic inflammation within the plasma proteome. We applied quantitative proteomics using isobaric mass tags (iTRAQ tandem mass spectrometry to quantify proteins in plasma of 500 Nepalese children 6-8 years of age. We evaluated those that co-vary with inflammation, indexed by α-1-acid glycoprotein (AGP, a conventional biomarker of inflammation in population studies. Among 982 proteins quantified in >10% of samples, 99 were strongly associated with AGP at a family-wise error rate of 0.1%. Magnitude and significance of association varied more among proteins positively (n = 41 than negatively associated (n = 58 with AGP. The former included known positive acute phase proteins including C-reactive protein, serum amyloid A, complement components, protease inhibitors, transport proteins with anti-oxidative activity, and numerous unexpected intracellular signaling molecules. Negatively associated proteins exhibited distinct differences in abundance between secretory hepatic proteins involved in transporting or binding lipids, micronutrients (vitamin A and calcium, growth factors and sex hormones, and proteins of largely extra-hepatic origin involved in the formation and metabolic regulation of extracellular matrix. With the same analytical approach and the significance threshold, seventy-two out of the 99 proteins were commonly associated with CRP, an established biomarker of inflammation, suggesting the validity of the identified proteins. Our findings have revealed a vast plasma proteome within a free-living population of children that comprise functional biomarkers of homeostatic and induced host defense, nutrient metabolism and tissue repair, representing a set of plasma proteins that may be used to assess dynamics and extent of

  17. PCAS – a precomputed proteome annotation database resource

    Directory of Open Access Journals (Sweden)

    Luo Jingchu

    2003-11-01

    Full Text Available Abstract Background Many model proteomes or "complete" sets of proteins of given organisms are now publicly available. Much effort has been invested in computational annotation of those "draft" proteomes. Motif or domain based algorithms play a pivotal role in functional classification of proteins. Employing most available computational algorithms, mainly motif or domain recognition algorithms, we set up to develop an online proteome annotation system with integrated proteome annotation data to complement existing resources. Results We report here the development of PCAS (ProteinCentric Annotation System as an online resource of pre-computed proteome annotation data. We applied most available motif or domain databases and their analysis methods, including hmmpfam search of HMMs in Pfam, SMART and TIGRFAM, RPS-PSIBLAST search of PSSMs in CDD, pfscan of PROSITE patterns and profiles, as well as PSI-BLAST search of SUPERFAMILY PSSMs. In addition, signal peptide and TM are predicted using SignalP and TMHMM respectively. We mapped SUPERFAMILY and COGs to InterPro, so the motif or domain databases are integrated through InterPro. PCAS displays table summaries of pre-computed data and a graphical presentation of motifs or domains relative to the protein. As of now, PCAS contains human IPI, mouse IPI, and rat IPI, A. thaliana, C. elegans, D. melanogaster, S. cerevisiae, and S. pombe proteome. PCAS is available at http://pak.cbi.pku.edu.cn/proteome/gca.php Conclusion PCAS gives better annotation coverage for model proteomes by employing a wider collection of available algorithms. Besides presenting the most confident annotation data, PCAS also allows customized query so users can inspect statistically less significant boundary information as well. Therefore, besides providing general annotation information, PCAS could be used as a discovery platform. We plan to update PCAS twice a year. We will upgrade PCAS when new proteome annotation algorithms

  18. Clinical proteomics

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Frederiksen, Hanne; Johannsen, Trine Holm

    2018-01-01

    Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS)-platforms...... standards and calibrants. The present challenge is to examine if targeted proteomics of IGF-I can truly measure up to the routine performance that must be expected from a clinical testing platform.......Clinical proteomics aims to deliver cost-effective multiplexing of potentially hundreds of diagnostic proteins, including distinct protein isoforms. The analytical strategy known as targeted proteomics is particularly promising because it is compatible with robust mass spectrometry (MS......)-platforms already implemented in many clinical laboratories for routine quantitation of small molecules (i.e. uHPLC coupled to triple-quadrupole MS). Progress in targeted proteomics of circulating insulin-like growth factor 1 (IGF-I) have provided valuable insights about tryptic peptides, transitions, internal...

  19. Characterization of potential ionizing radiation biomarkers by a proteomic approach

    Energy Technology Data Exchange (ETDEWEB)

    Guipaud, O; Vereycken-Holler, V; Benderitter, M [Institut de Radioprotection et de Surete Nucleaire, Lab. de Radiopathologie, 92 - Fontenay aux Roses (France); Royer, N; Vinh, J [Ecole Superieure de Physique et de Chimie Industrielles, 75 - Paris (France)

    2006-07-01

    Radio-induced lesions are tissue specific, hardly predictable, and can arise months or years later. The finding of prognostic bio-markers is of fundamental relevance for the settlement of therapeutic or preventive strategies. Using two-dimensional gel electrophoresis and mass spectrometry, a proteomic study was applied to look for differentially expressed proteins, i.e. potential bio-markers candidates, in mouse serums after a local irradiation of the dorsal skin. Our results clearly indicated that serum protein content was dynamically modified after a local skin irradiation. A set of specific proteins were early down- or up-regulated and could turn out to be good candidates as diagnostic or prognostic bio-markers. (author)

  20. Characterization of potential ionizing radiation biomarkers by a proteomic approach

    International Nuclear Information System (INIS)

    Guipaud, O.; Vereycken-Holler, V.; Benderitter, M.; Royer, N.; Vinh, J.

    2006-01-01

    Radio-induced lesions are tissue specific, hardly predictable, and can arise months or years later. The finding of prognostic bio-markers is of fundamental relevance for the settlement of therapeutic or preventive strategies. Using two-dimensional gel electrophoresis and mass spectrometry, a proteomic study was applied to look for differentially expressed proteins, i.e. potential bio-markers candidates, in mouse serums after a local irradiation of the dorsal skin. Our results clearly indicated that serum protein content was dynamically modified after a local skin irradiation. A set of specific proteins were early down- or up-regulated and could turn out to be good candidates as diagnostic or prognostic bio-markers. (author)

  1. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant.

    Science.gov (United States)

    Zhang, Lina; de Waard, Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A; van Hooijdonk, Toon; Vervoort, Jacques; van Goudoever, Johannes B; Hettinga, Kasper

    2016-09-16

    To objective of this study was to better understand the biological functions of breast milk proteins in relation to the growth and development of infants over the first six months of life. Breast milk samples from four individual women collected at seven time points in the first six months after delivery were analyzed by filter aided sample preparation and dimethyl labeling combined with liquid chromatography tandem mass spectrometry. A total of 247 and 200 milk serum proteins were identified and quantified, respectively. The milk serum proteome showed a high similarity (80% overlap) on the qualitative level between women and over lactation. The quantitative changes in milk serum proteins were mainly caused by three groups of proteins, enzymes, and transport and immunity proteins. Of these 21 significantly changed proteins, 30% were transport proteins, such as serum albumin and fatty acid binding protein, which are both involved in transporting nutrients to the infant. The decrease of the enzyme bile salt-activated lipase as well as the immunity proteins immunoglobulins and lactoferrin coincide with the gradual maturation of the digestive and immune system of infants. The human milk serum proteome didn't differ qualitatively but it did quantitatively, both between mothers and as lactation advanced. The changes of the breast milk serum proteome over lactation corresponded with the development of the digestive and immune system of infants. Breast milk proteins provide nutrition, but also contribute to healthy development of infants. Despite the previously reported large number of identified breast milk proteins and their changes over lactation, less is known on the changes of these proteins in individual mothers. This study is the first to determine the qualitative and quantitative changes of milk proteome over lactation between individual mothers. The results indicate that the differences in the milk proteome between individual mothers are more related to the

  2. Candidate proteomic biomarkers for non-alcoholic fatty liver disease (steatosis and non-alcoholic steatohepatitis) discovered with mass-spectrometry: a systematic review.

    Science.gov (United States)

    Lădaru, Anca; Bălănescu, Paul; Stan, Mihaela; Codreanu, Ioana; Anca, Ioana Alina

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in the liver which is accompanied by a series of metabolic deregulations. There are sustained research efforts focusing upon biomarker discovery for NAFLD diagnosis and its prognosis in order investigate and follow-up patients as minimally invasive as possible. The objective of this study is to critically review proteomic studies that used mass spectrometry techniques and summarize relevant proteomic NAFLD candidate biomarkers. Medline and Embase databases were searched from inception to December 2014. A final number of 22 records were included that identified 251 candidate proteomic biomarkers. Thirty-three biomarkers were confirmed - 14 were found in liver samples, 21 in serum samples, and two from both serum and liver samples. Some of the biomarkers identified have already been extensively studied regarding their diagnostic and prognostic capacity. However, there are also more potential biomarkers that still need to be addressed in future studies.

  3. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Larry Gold

    2010-12-01

    Full Text Available The interrogation of proteomes ("proteomics" in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma. Our current assay measures 813 proteins with low limits of detection (1 pM median, 7 logs of overall dynamic range (~100 fM-1 µM, and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD. We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  4. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Science.gov (United States)

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N; Carter, Jeff; Dalby, Andrew B; Eaton, Bruce E; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R; Kim, Nancy; Koch, Tad H; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D; Vrkljan, Mike; Walker, Jeffrey J; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K; Wolfson, Alexey; Wolk, Steven K; Zhang, Chi; Zichi, Dom

    2010-12-07

    The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  5. Biochemical Markers of Brain Injury: An Integrated Proteomics-Based Approach

    Science.gov (United States)

    2006-02-01

    some variability between protein assay measurements. Using densitometric analysis after 1D-PAGE, microfiltration alone showed an 11 ( 5% sample reduction...KOPETSCH, O., WOSZCZYK, A., et al. (2003). Serum S-100B protein as a molecular marker in severe trau- matic brain injury. Restor . Neurol. Neurosci. 21...proteomics. Implications in the search for preventive initiatives to slow the clinical progression of Alzheimer’s disease dementia. Restor . Neurol. Neurosci

  6. Proteomic Investigation of Falciparum and Vivax Malaria for Identification of Surrogate Protein Markers

    Science.gov (United States)

    Ray, Sandipan; Renu, Durairaj; Srivastava, Rajneesh; Gollapalli, Kishore; Taur, Santosh; Jhaveri, Tulip; Dhali, Snigdha; Chennareddy, Srinivasarao; Potla, Ankit; Dikshit, Jyoti Bajpai; Srikanth, Rapole; Gogtay, Nithya; Thatte, Urmila; Patankar, Swati; Srivastava, Sanjeeva

    2012-01-01

    This study was conducted to analyze alterations in the human serum proteome as a consequence of infection by malaria parasites Plasmodium falciparum and P. vivax to obtain mechanistic insights about disease pathogenesis, host immune response, and identification of potential protein markers. Serum samples from patients diagnosed with falciparum malaria (FM) (n = 20), vivax malaria (VM) (n = 17) and healthy controls (HC) (n = 20) were investigated using multiple proteomic techniques and results were validated by employing immunoassay-based approaches. Specificity of the identified malaria related serum markers was evaluated by means of analysis of leptospirosis as a febrile control (FC). Compared to HC, 30 and 31 differentially expressed and statistically significant (p<0.05) serum proteins were identified in FM and VM respectively, and almost half (46.2%) of these proteins were commonly modulated due to both of the plasmodial infections. 13 proteins were found to be differentially expressed in FM compared to VM. Functional pathway analysis involving the identified proteins revealed the modulation of different vital physiological pathways, including acute phase response signaling, chemokine and cytokine signaling, complement cascades and blood coagulation in malaria. A panel of identified proteins consists of six candidates; serum amyloid A, hemopexin, apolipoprotein E, haptoglobin, retinol-binding protein and apolipoprotein A-I was used to build statistical sample class prediction models. By employing PLS-DA and other classification methods the clinical phenotypic classes (FM, VM, FC and HC) were predicted with over 95% prediction accuracy. Individual performance of three classifier proteins; haptoglobin, apolipoprotein A-I and retinol-binding protein in diagnosis of malaria was analyzed using receiver operating characteristic (ROC) curves. The discrimination of FM, VM, FC and HC groups on the basis of differentially expressed serum proteins demonstrates

  7. Proteomic investigation of falciparum and vivax malaria for identification of surrogate protein markers.

    Directory of Open Access Journals (Sweden)

    Sandipan Ray

    Full Text Available This study was conducted to analyze alterations in the human serum proteome as a consequence of infection by malaria parasites Plasmodium falciparum and P. vivax to obtain mechanistic insights about disease pathogenesis, host immune response, and identification of potential protein markers. Serum samples from patients diagnosed with falciparum malaria (FM (n = 20, vivax malaria (VM (n = 17 and healthy controls (HC (n = 20 were investigated using multiple proteomic techniques and results were validated by employing immunoassay-based approaches. Specificity of the identified malaria related serum markers was evaluated by means of analysis of leptospirosis as a febrile control (FC. Compared to HC, 30 and 31 differentially expressed and statistically significant (p<0.05 serum proteins were identified in FM and VM respectively, and almost half (46.2% of these proteins were commonly modulated due to both of the plasmodial infections. 13 proteins were found to be differentially expressed in FM compared to VM. Functional pathway analysis involving the identified proteins revealed the modulation of different vital physiological pathways, including acute phase response signaling, chemokine and cytokine signaling, complement cascades and blood coagulation in malaria. A panel of identified proteins consists of six candidates; serum amyloid A, hemopexin, apolipoprotein E, haptoglobin, retinol-binding protein and apolipoprotein A-I was used to build statistical sample class prediction models. By employing PLS-DA and other classification methods the clinical phenotypic classes (FM, VM, FC and HC were predicted with over 95% prediction accuracy. Individual performance of three classifier proteins; haptoglobin, apolipoprotein A-I and retinol-binding protein in diagnosis of malaria was analyzed using receiver operating characteristic (ROC curves. The discrimination of FM, VM, FC and HC groups on the basis of differentially expressed serum proteins demonstrates

  8. Soybean Proteome Database 2012: Update on the comprehensive data repository for soybean proteomics

    Directory of Open Access Journals (Sweden)

    Hajime eOhyanagi

    2012-05-01

    Full Text Available The Soybean Proteome Database (SPD was created to provide a data repository for functional analyses of soybean responses to flooding stress, thought to be a major constraint for establishment and production of this plant. Since the last publication of the SPD, we thoroughly enhanced the contents of database, particularly protein samples and their annotations from several organelles. The current release contains 23 reference maps of soybean (Glycine max cv. Enrei proteins collected from several organs, tissues and organelles including the maps for plasma membrane, cell wall, chloroplast and mitochondrion, which were electrophoresed on two-dimensional polyacrylamide gels. Furthermore, the proteins analyzed with gel-free proteomics technique have been added and available online. In addition to protein fluctuations under flooding, those of salt and drought stress have been included in the current release. An omics table also has been provided to reveal relationships among mRNAs, proteins and metabolites with a unified temporal-profile tag in order to facilitate retrieval of the data based on the temporal profiles. An intuitive user interface based on dynamic HTML enables users to browse the network as well as the profiles of multiple omes in an integrated fashion. The SPD is available at: http://proteome.dc.affrc.go.jp/Soybean/.

  9. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth

    Directory of Open Access Journals (Sweden)

    Kai P. Law

    2015-05-01

    Full Text Available Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered.

  10. Mass Spectrometry-Based Proteomics for Pre-Eclampsia and Preterm Birth

    Science.gov (United States)

    Law, Kai P.; Han, Ting-Li; Tong, Chao; Baker, Philip N.

    2015-01-01

    Pregnancy-related complications such as pre-eclampsia and preterm birth now represent a notable burden of adverse health. Pre-eclampsia is a hypertensive disorder unique to pregnancy. It is an important cause of maternal death worldwide and a leading cause of fetal growth restriction and iatrogenic prematurity. Fifteen million infants are born preterm each year globally, but more than one million of those do not survive their first month of life. Currently there are no predictive tests available for diagnosis of these pregnancy-related complications and the biological mechanisms of the diseases have not been fully elucidated. Mass spectrometry-based proteomics have all the necessary attributes to provide the needed breakthrough in understanding the pathophysiology of complex human diseases thorough the discovery of biomarkers. The mass spectrometry methodologies employed in the studies for pregnancy-related complications are evaluated in this article. Top-down proteomic and peptidomic profiling by laser mass spectrometry, liquid chromatography or capillary electrophoresis coupled to mass spectrometry, and bottom-up quantitative proteomics and targeted proteomics by liquid chromatography mass spectrometry have been applied to elucidate protein biomarkers and biological mechanism of pregnancy-related complications. The proteomes of serum, urine, amniotic fluid, cervical-vaginal fluid, placental tissue, and cytotrophoblastic cells have all been investigated. Numerous biomarkers or biomarker candidates that could distinguish complicated pregnancies from healthy controls have been proposed. Nevertheless, questions as to the clinically utility and the capacity to elucidate the pathogenesis of the pre-eclampsia and preterm birth remain to be answered. PMID:26006232

  11. 'Gate effect' in templated polyacrylamide membranes influences the electrotransport of proteins and finds applications in proteome analysis.

    Science.gov (United States)

    Bossi, Alessandra; Andreoli, Matteo; Bonini, Francesca; Piletsky, Sergey

    2007-09-01

    Templating is an effective way for the structural modifications of a material and hence for altering its functional properties. Here protein imprinting was exploited to alter polymeric polyacrylamide (PAA) membranes. The sieving properties and selection abilities of the material formed were evaluated by studying the electrically driven transport of various proteins across templated PAA membranes. The sieving properties correlated with the templating process and depended on the quantity of template used during the polymerisation. For 1 mg/mL protein-templated membranes a 'gate effect' was shown, which induced a preferential migration of the template and of similar-size proteins. Such template preferential electrotransport was exploited for the selective removal of certain proteins in biological fluids prior to proteome analysis (depletion of albumin from human serum); the efficiency of the removal was demonstrated by analysing the serum proteome by two-dimensional electrophoresis experiments.

  12. GeLC-MS: A Sample Preparation Method for Proteomics Analysis of Minimal Amount of Tissue.

    Science.gov (United States)

    Makridakis, Manousos; Vlahou, Antonia

    2017-10-10

    Application of various proteomics methodologies have been implemented for the global and targeted proteome analysis of many different types of biological samples such as tissue, urine, plasma, serum, blood, and cell lines. Among the aforementioned biological samples, tissue has an exceptional role into clinical research and practice. Disease initiation and progression is usually located at the tissue level of different organs, making the analysis of this material very important for the understanding of the disease pathophysiology. Despite the significant advances in the mass spectrometry instrumentation, tissue proteomics still faces several challenges mainly due to increased sample complexity and heterogeneity. However, the most prominent challenge is attributed to the invasive procedure of tissue sampling which restricts the availability of fresh frozen tissue to minimal amounts and limited number of samples. Application of GeLC-MS sample preparation protocol for tissue proteomics analysis can greatly facilitate making up for these difficulties. In this chapter, a step by step guide for the proteomics analysis of minute amounts of tissue samples using the GeLC-MS sample preparation protocol, as applied by our group in the analysis of multiple different types of tissues (vessels, kidney, bladder, prostate, heart) is provided.

  13. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    Science.gov (United States)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  14. Serum Metabonomics of Mild Acute Pancreatitis.

    Science.gov (United States)

    Xu, Hongmin; Zhang, Lei; Kang, Huan; Zhang, Jiandong; Liu, Jie; Liu, Shuye

    2016-11-01

    Mild acute pancreatitis (MAP) is a common acute abdominal disease, and exhibits rising incidence in recent decades. As an important component of systemic biology, metabonomics is a new discipline developed following genomics and proteomics. In this study, the objective was to analyze the serum metabonomics of patients with MAP, aiming to screen metabolic markers with potential diagnostic values. An analysis platform with ultra performance liquid chromatography-high-resolution mass spectrometry was used to screen the difference metabolites related to MAP diagnosis and disease course monitoring. A total of 432 endogenous metabolites were screened out from 122 serum samples, and 49 difference metabolites were verified, among which 12 difference metabolites were identified by nonparametric test. After material identification, eight metabolites exhibited reliable results, and their levels in MAP serum were higher than those in healthy serum. Four metabolites exhibited gradual downward trend with treatment process going on, and the differences were statistically significant (P Metabonomic analysis has revealed eight metabolites with potential diagnostic values toward MAP, among which four metabolites can be used to monitor the disease course. © 2016 Wiley Periodicals, Inc.

  15. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    Directory of Open Access Journals (Sweden)

    Tue Bjerg Bennike

    2015-12-01

    In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935.

  16. Guidelines for reporting quantitative mass spectrometry based experiments in proteomics.

    Science.gov (United States)

    Martínez-Bartolomé, Salvador; Deutsch, Eric W; Binz, Pierre-Alain; Jones, Andrew R; Eisenacher, Martin; Mayer, Gerhard; Campos, Alex; Canals, Francesc; Bech-Serra, Joan-Josep; Carrascal, Montserrat; Gay, Marina; Paradela, Alberto; Navajas, Rosana; Marcilla, Miguel; Hernáez, María Luisa; Gutiérrez-Blázquez, María Dolores; Velarde, Luis Felipe Clemente; Aloria, Kerman; Beaskoetxea, Jabier; Medina-Aunon, J Alberto; Albar, Juan P

    2013-12-16

    Mass spectrometry is already a well-established protein identification tool and recent methodological and technological developments have also made possible the extraction of quantitative data of protein abundance in large-scale studies. Several strategies for absolute and relative quantitative proteomics and the statistical assessment of quantifications are possible, each having specific measurements and therefore, different data analysis workflows. The guidelines for Mass Spectrometry Quantification allow the description of a wide range of quantitative approaches, including labeled and label-free techniques and also targeted approaches such as Selected Reaction Monitoring (SRM). The HUPO Proteomics Standards Initiative (HUPO-PSI) has invested considerable efforts to improve the standardization of proteomics data handling, representation and sharing through the development of data standards, reporting guidelines, controlled vocabularies and tooling. In this manuscript, we describe a key output from the HUPO-PSI-namely the MIAPE Quant guidelines, which have developed in parallel with the corresponding data exchange format mzQuantML [1]. The MIAPE Quant guidelines describe the HUPO-PSI proposal concerning the minimum information to be reported when a quantitative data set, derived from mass spectrometry (MS), is submitted to a database or as supplementary information to a journal. The guidelines have been developed with input from a broad spectrum of stakeholders in the proteomics field to represent a true consensus view of the most important data types and metadata, required for a quantitative experiment to be analyzed critically or a data analysis pipeline to be reproduced. It is anticipated that they will influence or be directly adopted as part of journal guidelines for publication and by public proteomics databases and thus may have an impact on proteomics laboratories across the world. This article is part of a Special Issue entitled: Standardization and

  17. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    Directory of Open Access Journals (Sweden)

    Lingsheng Chen

    Full Text Available The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2 from 10 μL serum. Among them, 559 (n = 2 proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  18. Comparative proteomics in alkaptonuria provides insights into inflammation and oxidative stress.

    Science.gov (United States)

    Braconi, Daniela; Bernardini, Giulia; Paffetti, Alessandro; Millucci, Lia; Geminiani, Michela; Laschi, Marcella; Frediani, Bruno; Marzocchi, Barbara; Santucci, Annalisa

    2016-12-01

    Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism associated with a defective catabolism of phenylalanine and tyrosine leading to increased systemic levels of homogentisic acid (HGA). Excess HGA is partly excreted in the urine, partly accumulated within the body and deposited onto connective tissues under the form of an ochronotic pigment, leading to a range of clinical manifestations. No clear genotype/phenotype correlation was found in AKU, and today there is the urgent need to identify biomarkers able to monitor AKU progression and evaluate response to treatment. With this aim, we provided the first proteomic study on serum and plasma samples from alkaptonuric individuals showing pathological SAA, CRP and Advanced Oxidation Protein Products (AOPP) levels. Interesting similarities with proteomic studies on other rheumatic diseases were highlighted together with proteome alterations supporting the existence of oxidative stress and inflammation in AKU. Potential candidate biomarkers to assess disease severity, monitor disease progression and evaluate response to treatment were identified as well. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Building ProteomeTools based on a complete synthetic human proteome

    Science.gov (United States)

    Zolg, Daniel P.; Wilhelm, Mathias; Schnatbaum, Karsten; Zerweck, Johannes; Knaute, Tobias; Delanghe, Bernard; Bailey, Derek J.; Gessulat, Siegfried; Ehrlich, Hans-Christian; Weininger, Maximilian; Yu, Peng; Schlegl, Judith; Kramer, Karl; Schmidt, Tobias; Kusebauch, Ulrike; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Wenschuh, Holger; Moehring, Thomas; Aiche, Stephan; Huhmer, Andreas; Reimer, Ulf; Kuster, Bernhard

    2018-01-01

    The ProteomeTools project builds molecular and digital tools from the human proteome to facilitate biomedical and life science research. Here, we report the generation and multimodal LC-MS/MS analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products and exemplify the utility of this data. The resource will be extended to >1 million peptides and all data will be shared with the community via ProteomicsDB and proteomeXchange. PMID:28135259

  20. Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27

    DEFF Research Database (Denmark)

    Soler, Laura; Miller, Ingrid; Hummel, Karin

    2016-01-01

    to explore the systemic molecular effect of feed supplementation with sub therapeutic levels of oxytetracycline (OTC) by analysis of serum proteome changes. Results showed that OTC promoted growth, coinciding with a significant down regulation of different serum proteins related to inflammation, oxidation...

  1. MitoMiner: a data warehouse for mitochondrial proteomics data.

    Science.gov (United States)

    Smith, Anthony C; Blackshaw, James A; Robinson, Alan J

    2012-01-01

    MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process.

  2. Proteome analysis of the hypercholestrolemic rat, RICO

    International Nuclear Information System (INIS)

    Cho, S.Y.; Park, K.-S.; Paik, Y.-K.; Seong, J.-K.

    2001-01-01

    In an attempt to develop novel markers for hypercholesterolemia, hepatic tissues and serum prepared from hypeicholesterolemic rat (i e RICO) were analyzed by two-dimensional electrophoresis (2DE) and matrix-assisted laser desorption ionization mass spectrometry (MALDI-ToF). Results were compared to those of paired inbreed rat (WKY). Comparative analysis of the respective spot patterns in 2DE revealed that the numbers of differential expression proteins were identified in serum and liver tissues of RICO. Some of the representative proteins annotated in 2DE were apolipoprotein family and numerous lipid metabolism related proteins. Especially, we found that protein disulfide isomerase subunits (ER-60) in 2DE have differential post-translational modification pattern by MALDI-ToF analysis. Our results suggest that the proteomic analysis of these proteins might be a novel approach to identify the molecular events in detail during lipid disorder such atherosclerosis

  3. Overlap of proteomics biomarkers between women with pre-eclampsia and PCOS: a systematic review and biomarker database integration.

    Science.gov (United States)

    Khan, Gulafshana Hafeez; Galazis, Nicolas; Docheva, Nikolina; Layfield, Robert; Atiomo, William

    2015-01-01

    Do any proteomic biomarkers previously identified for pre-eclampsia (PE) overlap with those identified in women with polycystic ovary syndrome (PCOS). Five previously identified proteomic biomarkers were found to be common in women with PE and PCOS when compared with controls. Various studies have indicated an association between PCOS and PE; however, the pathophysiological mechanisms supporting this association are not known. A systematic review and update of our PCOS proteomic biomarker database was performed, along with a parallel review of PE biomarkers. The study included papers from 1980 to December 2013. In all the studies analysed, there were a total of 1423 patients and controls. The number of proteomic biomarkers that were catalogued for PE was 192. Five proteomic biomarkers were shown to be differentially expressed in women with PE and PCOS when compared with controls: transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. In PE, the biomarkers were identified in serum, plasma and placenta and in PCOS, the biomarkers were identified in serum, follicular fluid, and ovarian and omental biopsies. The techniques employed to detect proteomics have limited ability in identifying proteins that are of low abundance, some of which may have a diagnostic potential. The sample sizes and number of biomarkers identified from these studies do not exclude the risk of false positives, a limitation of all biomarker studies. The biomarkers common to PE and PCOS were identified from proteomic analyses of different tissues. This data amalgamation of the proteomic studies in PE and in PCOS, for the first time, discovered a panel of five biomarkers for PE which are common to women with PCOS, including transferrin, fibrinogen α, β and γ chain variants, kininogen-1, annexin 2 and peroxiredoxin 2. If validated, these biomarkers could provide a useful framework for the knowledge infrastructure in this area. To accomplish this goal, a

  4. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes

    DEFF Research Database (Denmark)

    Zhang, Yanling; Zhang, Yong; Adachi, Jun

    2007-01-01

    and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http......://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic...... annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools....

  5. Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome.

    Science.gov (United States)

    Ghodasara, P; Sadowski, P; Satake, N; Kopp, S; Mills, P C

    2017-12-01

    Over the last two decades, technological advancements in the field of proteomics have advanced our understanding of the complex biological systems of living organisms. Techniques based on mass spectrometry (MS) have emerged as powerful tools to contextualise existing genomic information and to create quantitative protein profiles from plasma, tissues or cell lines of various species. Proteomic approaches have been used increasingly in veterinary science to investigate biological processes responsible for growth, reproduction and pathological events. However, the adoption of proteomic approaches by veterinary investigators lags behind that of researchers in the human medical field. Furthermore, in contrast to human proteomics studies, interpretation of veterinary proteomic data is difficult due to the limited protein databases available for many animal species. This review article examines the current use of advanced proteomics techniques for evaluation of animal health and welfare and covers the current status of clinical veterinary proteomics research, including successful protein identification and data interpretation studies. It includes a description of an emerging tool, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS), available on selected mass spectrometry instruments. This newly developed data acquisition technique combines advantages of discovery and targeted proteomics approaches, and thus has the potential to advance the veterinary proteomics field by enhancing identification and reproducibility of proteomics data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of chronic high stocking density on liver proteome of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Naderi, Mahdi; Keyvanshokooh, Saeed; Salati, Amir Parviz; Ghaedi, Alireza

    2017-10-01

    The main aim of the present study was to assess the effects of chronic high stocking density on liver proteome of rainbow trout. Rainbow trout juveniles (42.6 ± 2.3 g average body weight) were randomly distributed into six tanks at two stocking densities (low stocking density (LD) = 20 kg m -3 and high stocking density (HD) = 80 kg m -3 ). Both treatments were performed in triplicate tanks for a period of 60 days. High stocking density caused a reduction in the growth performance compared with LD fish. Lysozyme activity increased with stocking density, while serum complement activity presented the opposite pattern. Serum cortisol and total protein levels did not show significant differences (P > 0.05) between experimental groups. The fish reared at high stocking density showed significantly lower osmolality and globulin values but higher albumin level. The HD group had significantly higher activities of catalase, glutathione peroxidase and superoxide dismutase, and malondialdehyde content in the liver when compared to the LD group. Comparative proteomics was used to determine the proteomic responses in livers of rainbow trout reared at high stocking density for 60 days. Out of nine protein spots showing altered abundance (>1.5-folds, P < 0.05), eight spots were successfully identified. Two proteins including apolipoprotein A-I-2 precursor and mitochondrial stress-70 protein were found to increase in HD group. The spots found to decrease in the HD group were identified as follows: 2-peptidylprolyl isomerase A, two isoforms of glyceraldehydes-3-phosphate dehydrogenase, an unnamed protein product similar to fructose-bisphosphate aldolase, 78 kDa glucose-regulated protein, and serum albumin 1 protein.

  7. Morbility, clinical data and proteomic analysis of IUGR and AGA newborns at different gestational ages

    Directory of Open Access Journals (Sweden)

    M.D. Ruiz-González

    2016-12-01

    Full Text Available The data are related to the proteomic analysis of 43 newborns with intrauterine growth retardation (IUGR and 45 newborns with appropriate weight for gestational age (AGA carried out by separation via 2DE and analyzed by MS–TOF/TOF. All newborns were separated into three gestational age groups, "Very Preterm" 29–32 weeks, "Moderate Preterm" 33–36 weeks, and, "Term" ≥37weeks. From each newborn, blood was drawn three times from birth to 1 month life. High-abundant serum proteins were depleted, and the minority ones were separated by 2DE and analyzed for significant expression differences. The data reflect analytic and clinic variables analyzed globally and categorized by gestational age in relation to IUGR and the optimization of conditions for 2-DE separation. The data from this study are related to the research article entitled "Alterations of Protein Expression in Serum of Infants with Intrauterine Growth Restriction and Different Gestational Ages" (M.D. Ruis-González, M.D. Cañete, J.L. Gómez-Chaparro, N. Abril, R. Cañete, J. López-Barea, 2015 [1]. The present dataset of serum IUGR newborn proteome can be used as a reference for any study involving intrauterine growth restriction during the first month of life.

  8. Proteomics dataset

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2017-01-01

    The datasets presented in this article are related to the research articles entitled “Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies” (Bennike et al., 2015 [1]), and “Proteome Analysis of Rheumatoid Arthritis Gut Mucosa” (Bennike et al., 2017 [2])...... been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001608 for ulcerative colitis and control samples, and PXD003082 for rheumatoid arthritis samples....

  9. Proteomics research in India: an update.

    Science.gov (United States)

    Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva

    2015-09-08

    After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A novel multidimensional protein identification technology approach combining protein size exclusion prefractionation, peptide zwitterion-ion hydrophilic interaction chromatography, and nano-ultraperformance RP chromatography/nESI-MS2 for the in-depth analysis of the serum proteome and phosphoproteome: application to clinical sera derived from humans with benign prostate hyperplasia.

    Science.gov (United States)

    Garbis, Spiros D; Roumeliotis, Theodoros I; Tyritzis, Stavros I; Zorpas, Kostas M; Pavlakis, Kitty; Constantinides, Constantinos A

    2011-02-01

    The current proof-of-principle study was aimed toward development of a novel multidimensional protein identification technology (MudPIT) approach for the in-depth proteome analysis of human serum derived from patients with benign prostate hyperplasia (BPH) using rational chromatographic design principles. This study constituted an extension of our published work relating to the identification and relative quantification of potential clinical biomarkers in BPH and prostate cancer (PCa) tissue specimens. The proposed MudPIT approach encompassed the use of three distinct yet complementary liquid chromatographic chemistries. High-pressure size-exclusion chromatography (SEC) was used for the prefractionation of serum proteins followed by their dialysis exchange and solution phase trypsin proteolysis. The tryptic peptides were then subjected to offline zwitterion-ion hydrophilic interaction chromatography (ZIC-HILIC) fractionation followed by their online analysis with reversed-phase nano-ultraperformance chromatography (RP-nUPLC) hyphenated to nanoelectrospray ionization-tandem mass spectrometry using an ion trap mass analyzer. For the spectral processing, the sequential use of the SpectrumMill, Scaffold, and InsPecT software tools was applied for the tryptic peptide product ion MS(2) spectral processing, false discovery rate (FDR) assessment, validation, and protein identification. This milestone serum analysis study allowed the confident identification of over 1955 proteins (p ≤ 0.05; FDR ≤ 5%) with a broad spectrum of biological and physicochemical properties including secreted, tissue-specific proteins spanning approximately 12 orders of magnitude as they occur in their native abundance levels in the serum matrix. Also encompassed in this proteome was the confident identification of 375 phosphoproteins (p ≤ 0.05; FDR ≤ 5%) with potential importance to cancer biology. To demonstrate the performance characteristics of this novel MudPIT approach, a comparison

  11. Proteome analysis of body fluids for amyotrophic lateral sclerosis biomarker discovery.

    Science.gov (United States)

    Krüger, Thomas; Lautenschläger, Janin; Grosskreutz, Julian; Rhode, Heidrun

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder of motor neurons leading to death of the patients, mostly within 2-5 years after disease onset. The pathomechanism of motor neuron degeneration is only partially understood and therapeutic strategies based on mechanistic insights are largely ineffective. The discovery of reliable biomarkers of disease diagnosis and progression is the sine qua non of both the revelation of insights into the ALS pathomechanism and the assessment of treatment efficacies. Proteomic approaches are an important pillar in ALS biomarker discovery. Cerebrospinal fluid is the most promising body fluid for differential proteome analyses, followed by blood (serum, plasma), and even urine and saliva. The present study provides an overview about reported peptide/protein biomarker candidates that showed significantly altered levels in certain body fluids of ALS patients. These findings have to be discussed according to proposed pathomechanisms to identify modifiers of disease progression and to pave the way for the development of potential therapeutic strategies. Furthermore, limitations and advantages of proteomic approaches for ALS biomarker discovery in different body fluids and reliable validation of biomarker candidates have been addressed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The core proteome and pan proteome of Salmonella Paratyphi A epidemic strains.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Comparative proteomics of the multiple strains within the same species can reveal the genetic variation and relationships among strains without the need to assess the genomic data. Similar to comparative genomics, core proteome and pan proteome can also be obtained within multiple strains under the same culture conditions. In this study we present the core proteome and pan proteome of four epidemic Salmonella Paratyphi A strains cultured under laboratory culture conditions. The proteomic information was obtained using a Two-dimensional gel electrophoresis (2-DE technique. The expression profiles of these strains were conservative, similar to the monomorphic genome of S. Paratyphi A. Few strain-specific proteins were found in these strains. Interestingly, non-core proteins were found in similar categories as core proteins. However, significant fluctuations in the abundance of some core proteins were also observed, suggesting that there is elaborate regulation of core proteins in the different strains even when they are cultured in the same environment. Therefore, core proteome and pan proteome analysis of the multiple strains can demonstrate the core pathways of metabolism of the species under specific culture conditions, and further the specific responses and adaptations of the strains to the growth environment.

  13. Power of Proteomics in Linking Oxidative Stress and Female Infertility

    Science.gov (United States)

    Gupta, Sajal; Sharma, Rakesh; Agarwal, Ashok

    2014-01-01

    Endometriosis, PCOS, and unexplained infertility are currently the most common diseases rendering large numbers of women infertile worldwide. Oxidative stress, due to its deleterious effects on proteins and nucleic acids, is postulated to be the one of the important mechanistic pathways in differential expression of proteins and in these diseases. The emerging field of proteomics has allowed identification of proteins involved in cell cycle, as antioxidants, extracellular matrix (ECM), cytoskeleton, and their linkage to oxidative stress in female infertility related diseases. The aim of this paper is to assess the association of oxidative stress and protein expression in the reproductive microenvironments such as endometrial fluid, peritoneal fluid, and follicular fluid, as well as reproductive tissues and serum. The review also highlights the literature that proposes the use of the fertility related proteins as potential biomarkers for noninvasive and early diagnosis of the aforementioned diseases rather than utilizing the more invasive methods used currently. The review will highlight the power of proteomic profiles identified in infertility related disease conditions and their linkage with underlying oxidative stress. The power of proteomics will be reviewed with regard to eliciting molecular mechanisms for early detection and management of these infertility related conditions. PMID:24900998

  14. Power of Proteomics in Linking Oxidative Stress and Female Infertility

    Directory of Open Access Journals (Sweden)

    Sajal Gupta

    2014-01-01

    Full Text Available Endometriosis, PCOS, and unexplained infertility are currently the most common diseases rendering large numbers of women infertile worldwide. Oxidative stress, due to its deleterious effects on proteins and nucleic acids, is postulated to be the one of the important mechanistic pathways in differential expression of proteins and in these diseases. The emerging field of proteomics has allowed identification of proteins involved in cell cycle, as antioxidants, extracellular matrix (ECM, cytoskeleton, and their linkage to oxidative stress in female infertility related diseases. The aim of this paper is to assess the association of oxidative stress and protein expression in the reproductive microenvironments such as endometrial fluid, peritoneal fluid, and follicular fluid, as well as reproductive tissues and serum. The review also highlights the literature that proposes the use of the fertility related proteins as potential biomarkers for noninvasive and early diagnosis of the aforementioned diseases rather than utilizing the more invasive methods used currently. The review will highlight the power of proteomic profiles identified in infertility related disease conditions and their linkage with underlying oxidative stress. The power of proteomics will be reviewed with regard to eliciting molecular mechanisms for early detection and management of these infertility related conditions.

  15. [Proteomics and transfusion medicine].

    Science.gov (United States)

    Lion, N; Prudent, M; Crettaz, D; Tissot, J-D

    2011-04-01

    The term "proteomics" covers tools and techniques that are used to analyze and characterize complex mixtures of proteins from various biological samples. In this short review, a typical proteomic approach, related to the study of particular and illustrative situation related to transfusion medicine is reported. This "case report" will allow the reader to be familiar with a practical proteomic approach of a real situation, and will permit to describe the tools that are usually used in proteomic labs, and, in a second part, to present various proteomic applications in transfusion medicine. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. Social network architecture of human immune cells unveiled by quantitative proteomics.

    Science.gov (United States)

    Rieckmann, Jan C; Geiger, Roger; Hornburg, Daniel; Wolf, Tobias; Kveler, Ksenya; Jarrossay, David; Sallusto, Federica; Shen-Orr, Shai S; Lanzavecchia, Antonio; Mann, Matthias; Meissner, Felix

    2017-05-01

    The immune system is unique in its dynamic interplay between numerous cell types. However, a system-wide view of how immune cells communicate to protect against disease has not yet been established. We applied high-resolution mass-spectrometry-based proteomics to characterize 28 primary human hematopoietic cell populations in steady and activated states at a depth of >10,000 proteins in total. Protein copy numbers revealed a specialization of immune cells for ligand and receptor expression, thereby connecting distinct immune functions. By integrating total and secreted proteomes, we discovered fundamental intercellular communication structures and previously unknown connections between cell types. Our publicly accessible (http://www.immprot.org/) proteomic resource provides a framework for the orchestration of cellular interplay and a reference for altered communication associated with pathology.

  17. CKD273, a new proteomics classifier assessing CKD and its prognosis.

    Directory of Open Access Journals (Sweden)

    Ángel Argilés

    Full Text Available National Kidney Foundation CKD staging has allowed uniformity in studies on CKD. However, early diagnosis and predicting progression to end stage renal disease are yet to be improved. Seventy six patients with different levels of CKD, including outpatients and dialysed patients were studied for transcriptome, metabolome and proteome description. High resolution urinary proteome analysis was blindly performed in the 53 non-anuric out of the 76 CKD patients. In addition to routine clinical parameters, CKD273, a urinary proteomics-based classifier and its peptides were quantified. The baseline values were analyzed with regard to the clinical parameters and the occurrence of death or renal death during follow-up (3.6 years as the main outcome measurements. None of the patients with CKD2730.55. Unsupervised clustering analysis of the CKD273 peptides separated the patients into two main groups differing in CKD associated parameters. Among the 273 biomarkers, peptides derived from serum proteins were relatively increased in patients with lower glomerular filtration rate, while collagen-derived peptides were relatively decreased (p<0.05; Spearman. CKD273 was different in the groups with different renal function (p<0.003. The CKD273 classifier separated CKD patients according to their renal function and informed on the likelihood of experiencing adverse outcome. Recently defined in a large population, CKD273 is the first proteomic-based classifier successfully tested for prognosis of CKD progression in an independent cohort.

  18. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    DEFF Research Database (Denmark)

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.

    2016-01-01

    to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the "generalist" (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions......Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked...... of these sectors for the general stress response sigma factor sigma(S). Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally...

  19. Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application.

    Science.gov (United States)

    Lehmann, Sylvain; Hoofnagle, Andrew; Hochstrasser, Denis; Brede, Cato; Glueckmann, Matthias; Cocho, José A; Ceglarek, Uta; Lenz, Christof; Vialaret, Jérôme; Scherl, Alexander; Hirtz, Christophe

    2013-05-01

    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in 'functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP).

  20. Highly efficient human serum filtration with water-soluble nanoporous nanoparticles

    Directory of Open Access Journals (Sweden)

    Antonella Pujia

    2010-11-01

    Full Text Available Antonella Pujia1, Francesco De Angelis1,2, Domenica Scumaci3, Marco Gaspari3, Carlo Liberale1,2, Patrizio Candeloro1, Giovanni Cuda3, Enzo Di Fabrizio1,21BIONEM Laboratory, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Germaneto (CZ, Italy; 2IIT, Italian Institute of Technology, Genova, Italy; 3Proteomics and Mass Spectrometry Laboratory, Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Germaneto (CZ, ItalyBackground: Human serum has the potential to become the most informative source of novel biomarkers, but its study is very difficult due to the incredible complexity of its molecular composition. We describe a novel tool based on biodegradable nanoporous nanoparticles (NPNPs that allows the harvesting of low-molecular-weight fractions of crude human serum or other biofluids. NPNPs with a diameter of 200 nm and pore size of a few nm were obtained by ultrasonication of nanoporous silicon. When incubated with a solution, the NPNPs harvest only the molecules small enough to be absorbed into the nanopores. Then they can be recovered by centrifugation and dissolved in water, making the harvested molecules available for further analyses.Results: Fluorescence microscopy, gel electrophoresis, and mass spectrometry were used to show the enrichment of low-molecular-weight fraction of serum under physiological conditions, with a cut-off of 13 kDa and an enrichment factor >50.Conclusion: From these findings, we conclude that ability to tune pore size, combined with the availability of hundreds of biomolecule cross-linkers, opens up new perspectives on complex biofluid analysis, discovery of biomarkers, and in situ drug delivery.Keywords: nanoporous silicon, nanoparticle, biomarker discovery, human serum proteomics, harvesting

  1. In silico proteome analysis to facilitate proteomics experiments using mass spectrometry

    Directory of Open Access Journals (Sweden)

    Lindo Micheal

    2003-08-01

    Full Text Available Abstract Proteomics experiments typically involve protein or peptide separation steps coupled to the identification of many hundreds to thousands of peptides by mass spectrometry. Development of methodology and instrumentation in this field is proceeding rapidly, and effective software is needed to link the different stages of proteomic analysis. We have developed an application, proteogest, written in Perl that generates descriptive and statistical analyses of the biophysical properties of multiple (e.g. thousands protein sequences submitted by the user, for instance protein sequences inferred from the complete genome sequence of a model organism. The application also carries out in silico proteolytic digestion of the submitted proteomes, or subsets thereof, and the distribution of biophysical properties of the resulting peptides is presented. proteogest is customizable, the user being able to select many options, for instance the cleavage pattern of the digestion treatment or the presence of modifications to specific amino acid residues. We show how proteogest can be used to compare the proteomes and digested proteome products of model organisms, to examine the added complexity generated by modification of residues, and to facilitate the design of proteomics experiments for optimal representation of component proteins.

  2. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Directory of Open Access Journals (Sweden)

    Debasish Paul

    2013-01-01

    Full Text Available Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches.

  3. Mass Spectrometry-Based Proteomics in Molecular Diagnostics: Discovery of Cancer Biomarkers Using Tissue Culture

    Science.gov (United States)

    Paul, Debasish; Kumar, Avinash; Gajbhiye, Akshada; Santra, Manas K.; Srikanth, Rapole

    2013-01-01

    Accurate diagnosis and proper monitoring of cancer patients remain a key obstacle for successful cancer treatment and prevention. Therein comes the need for biomarker discovery, which is crucial to the current oncological and other clinical practices having the potential to impact the diagnosis and prognosis. In fact, most of the biomarkers have been discovered utilizing the proteomics-based approaches. Although high-throughput mass spectrometry-based proteomic approaches like SILAC, 2D-DIGE, and iTRAQ are filling up the pitfalls of the conventional techniques, still serum proteomics importunately poses hurdle in overcoming a wide range of protein concentrations, and also the availability of patient tissue samples is a limitation for the biomarker discovery. Thus, researchers have looked for alternatives, and profiling of candidate biomarkers through tissue culture of tumor cell lines comes up as a promising option. It is a rich source of tumor cell-derived proteins, thereby, representing a wide array of potential biomarkers. Interestingly, most of the clinical biomarkers in use today (CA 125, CA 15.3, CA 19.9, and PSA) were discovered through tissue culture-based system and tissue extracts. This paper tries to emphasize the tissue culture-based discovery of candidate biomarkers through various mass spectrometry-based proteomic approaches. PMID:23586059

  4. Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology.

    Science.gov (United States)

    Wesseling, Hendrik; Guest, Paul C; Lago, Santiago G; Bahn, Sabine

    2014-08-01

    Proteomic studies have increased our understanding of the molecular pathways affected in psychiatric disorders. Mass spectrometry and two-dimensional gel electrophoresis analyses of post-mortem brain samples from psychiatric patients have revealed effects on synaptic, cytoskeletal, antioxidant and mitochondrial protein networks. Multiplex immunoassay profiling studies have found alterations in hormones, growth factors, transport and inflammation-related proteins in serum and plasma from living first-onset patients. Despite these advances, there are still difficulties in translating these findings into platforms for improved treatment of patients and for discovery of new drugs with better efficacy and side effect profiles. This review describes how the next phase of proteomic investigations in psychiatry should include stringent replication studies for validation of biomarker candidates and functional follow-up studies which can be used to test the impact on physiological function. All biomarker candidates should now be tested in series with traditional and emerging cell biological approaches. This should include investigations of the effects of post-translational modifications, protein dynamics and network analyses using targeted proteomic approaches. Most importantly, there is still an urgent need for development of disease-relevant cellular models for improved translation of proteomic findings into a means of developing novel drug treatments for patients with these life-altering disorders.

  5. Personalized medicine beyond genomics: alternative futures in big data-proteomics, environtome and the social proteome.

    Science.gov (United States)

    Özdemir, Vural; Dove, Edward S; Gürsoy, Ulvi K; Şardaş, Semra; Yıldırım, Arif; Yılmaz, Şenay Görücü; Ömer Barlas, I; Güngör, Kıvanç; Mete, Alper; Srivastava, Sanjeeva

    2017-01-01

    No field in science and medicine today remains untouched by Big Data, and psychiatry is no exception. Proteomics is a Big Data technology and a next generation biomarker, supporting novel system diagnostics and therapeutics in psychiatry. Proteomics technology is, in fact, much older than genomics and dates to the 1970s, well before the launch of the international Human Genome Project. While the genome has long been framed as the master or "elite" executive molecule in cell biology, the proteome by contrast is humble. Yet the proteome is critical for life-it ensures the daily functioning of cells and whole organisms. In short, proteins are the blue-collar workers of biology, the down-to-earth molecules that we cannot live without. Since 2010, proteomics has found renewed meaning and international attention with the launch of the Human Proteome Project and the growing interest in Big Data technologies such as proteomics. This article presents an interdisciplinary technology foresight analysis and conceptualizes the terms "environtome" and "social proteome". We define "environtome" as the entire complement of elements external to the human host, from microbiome, ambient temperature and weather conditions to government innovation policies, stock market dynamics, human values, political power and social norms that collectively shape the human host spatially and temporally. The "social proteome" is the subset of the environtome that influences the transition of proteomics technology to innovative applications in society. The social proteome encompasses, for example, new reimbursement schemes and business innovation models for proteomics diagnostics that depart from the "once-a-life-time" genotypic tests and the anticipated hype attendant to context and time sensitive proteomics tests. Building on the "nesting principle" for governance of complex systems as discussed by Elinor Ostrom, we propose here a 3-tiered organizational architecture for Big Data science such as

  6. Proteomics in medical microbiology.

    Science.gov (United States)

    Cash, P

    2000-04-01

    The techniques of proteomics (high resolution two-dimensional electrophoresis and protein characterisation) are widely used for microbiological research to analyse global protein synthesis as an indicator of gene expression. The rapid progress in microbial proteomics has been achieved through the wide availability of whole genome sequences for a number of bacterial groups. Beyond providing a basic understanding of microbial gene expression, proteomics has also played a role in medical areas of microbiology. Progress has been made in the use of the techniques for investigating the epidemiology and taxonomy of human microbial pathogens, the identification of novel pathogenic mechanisms and the analysis of drug resistance. In each of these areas, proteomics has provided new insights that complement genomic-based investigations. This review describes the current progress in these research fields and highlights some of the technical challenges existing for the application of proteomics in medical microbiology. The latter concern the analysis of genetically heterogeneous bacterial populations and the integration of the proteomic and genomic data for these bacteria. The characterisation of the proteomes of bacterial pathogens growing in their natural hosts remains a future challenge.

  7. Protein profiling in serum after traumatic brain injury in rats reveals potential injury markers.

    Science.gov (United States)

    Thelin, Eric Peter; Just, David; Frostell, Arvid; Häggmark-Månberg, Anna; Risling, Mårten; Svensson, Mikael; Nilsson, Peter; Bellander, Bo-Michael

    2018-03-15

    The serum proteome following traumatic brain injury (TBI) could provide information for outcome prediction and injury monitoring. The aim with this affinity proteomic study was to identify serum proteins over time and between normoxic and hypoxic conditions in focal TBI. Sprague Dawley rats (n=73) received a 3mm deep controlled cortical impact ("severe injury"). Following injury, the rats inhaled either a normoxic (22% O 2 ) or hypoxic (11% O 2 ) air mixture for 30min before resuscitation. The rats were sacrificed at day 1, 3, 7, 14 and 28 after trauma. A total of 204 antibodies targeting 143 unique proteins of interest in TBI research, were selected. The sample proteome was analyzed in a suspension bead array set-up. Comparative statistics and factor analysis were used to detect differences as well as variance in the data. We found that complement factor 9 (C9), complement factor B (CFB) and aldolase c (ALDOC) were detected at higher levels the first days after trauma. In contrast, hypoxia inducing factor (HIF)1α, amyloid precursor protein (APP) and WBSCR17 increased over the subsequent weeks. S100A9 levels were higher in hypoxic-compared to normoxic rats, together with a majority of the analyzed proteins, albeit few reached statistical significance. The principal component analysis revealed a variance in the data, highlighting clusters of proteins. Protein profiling of serum following TBI using an antibody based microarray revealed temporal changes of several proteins over an extended period of up to four weeks. Further studies are warranted to confirm our findings. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Identifying Predictors of Taxane-Induced Peripheral Neuropathy Using Mass Spectrometry-Based Proteomics Technology.

    Directory of Open Access Journals (Sweden)

    Emily I Chen

    Full Text Available Major advances in early detection and therapy have significantly increased the survival of breast cancer patients. Unfortunately, most cancer therapies are known to carry a substantial risk of adverse long-term treatment-related effects. Little is known about patient susceptibility to severe side effects after chemotherapy. Chemotherapy-induced peripheral neuropathy (CIPN is a common side effect of taxanes. Recent advances in genome-wide genotyping and sequencing technologies have supported the discoveries of a number of pharmacogenetic markers that predict response to chemotherapy. However, effectively implementing these pharmacogenetic markers in the clinic remains a major challenge. On the other hand, recent advances in proteomic technologies incorporating mass spectrometry (MS for biomarker discovery show great promise to provide clinically relevant protein biomarkers. In this study, we evaluated the association between protein content in serum exosomes and severity of CIPN. Women with early stage breast cancer receiving adjuvant taxane chemotherapy were assessed with the FACT-Ntx score and serum was collected before and after the taxane treatment. Based on the change in FACT-Ntx score from baseline to 12 month follow-up, we separated patients into two groups: those who had no change (Group 1, N = 9 and those who had a ≥20% worsening (Group 1, N = 8. MS-based proteomics technology was used to identify proteins present in serum exosomes to determine potential biomarkers. Mann-Whitney-Wilcoxon analysis was applied and maximum FDR was controlled at 20%. From the serum exosomes derived from this cohort, we identified over 700 proteins known to be in different subcellular locations and have different functions. Statistical analysis revealed a 12-protein signature that resulted in a distinct separation between baseline serum samples of both groups (q<0.2 suggesting that the baseline samples can predict subsequent neurotoxicity. These toxicity

  9. Deep-Dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Song [Biological Sciences Division; Shi, Tujin [Biological Sciences Division; Fillmore, Thomas L. [Biological Sciences Division; Schepmoes, Athena A. [Biological Sciences Division; Brewer, Heather [Biological Sciences Division; Gao, Yuqian [Biological Sciences Division; Song, Ehwang [Biological Sciences Division; Wang, Hui [Biological Sciences Division; Rodland, Karin D. [Biological Sciences Division; Qian, Wei-Jun [Biological Sciences Division; Smith, Richard D. [Biological Sciences Division; Liu, Tao [Biological Sciences Division

    2017-08-11

    Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low ng/mL to sub-ng/mL level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundant but biologically important proteins (e.g., ≤100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging. To address this need, we have developed an antibody-independent Deep-Dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide enrichment combined with precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ~5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue has been demonstrated to enable precise quantification of endogenous proteins at ~10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibody is not available.

  10. Proteomic analysis of liver in rats chronically exposed to fluoride.

    Directory of Open Access Journals (Sweden)

    Heloísa Aparecida Barbosa da Silva Pereira

    Full Text Available Fluoride (F is a potent anti-cariogenic element, but when ingestion is excessive, systemic toxicity may be observed. This can occur as acute or chronic responses, depending on both the amount of F and the time of exposure. The present study identified the profile of protein expression possibly associated with F-induced chronic hepatotoxicity. Weanling male Wistar rats (three-weeks old were divided into three groups and treated with drinking water containing 0, 5 or 50 mg/L F for 60 days (n=6/group. At this time point, serum and livers were collected for F analysis, which was done using the ion-sensitive electrode, after hexamethyldisiloxane-facilitated diffusion. Livers were also submitted to histological and proteomic analyses (2D-PAGE followed by LC-MS/MS. Western blotting was done for confirmation of the proteomic data A dose-response was observed in serum F levels. In the livers, F levels were significantly increased in the 50 mg/L F group compared to groups treated with 0 and 5 mg/L F. Liver morphometric analysis did not reveal alterations in the cellular structures and lipid droplets were present in all groups. Proteomic quantitative intensity analysis detected 33, 44, and 29 spots differentially expressed in the comparisons between control vs. 5 mg/L F, control vs. 50 mg/L F, and 5 mg/L vs. 50 mg/L F, respectively. From these, 92 proteins were successfully identified. In addition, 18, 1, and 5 protein spots were shown to be exclusive in control, 5, and 50 mg/L F, respectively. Most of proteins were related to metabolic process and pronounced alterations were seen for the high-F level group. In F-treated rats, changes in the apolipoprotein E (ApoE and GRP-78 expression may account for the F-induced toxicity in the liver. This can contribute to understanding the molecular mechanisms underlying hepatoxicity induced by F, by indicating key-proteins that should be better addressed in future studies.

  11. Data from proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis

    Directory of Open Access Journals (Sweden)

    Yongxin Yang

    2015-06-01

    Full Text Available Milk fat globules memebrane (MFGM-enriched proteomes from Holstein, Jersey, yak, buffalo, goat, camel, horse, and human were extracted and identified by an iTRAQ quantification proteomic approach. Proteomes data were analyzed by bioinformatic and multivariate statistical analysis and used to present the characteristic traits of the MFGM proteins among the studied mammals. The data of this study are also related to the research article “Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis” in the Journal of Proteomics [1].

  12. Serum proteomic analysis reveals potential serum biomarkers for occupational medicamentosa-like dermatitis caused by trichloroethylene.

    Science.gov (United States)

    Huang, Peiwu; Ren, Xiaohu; Huang, Zhijun; Yang, Xifei; Hong, Wenxu; Zhang, Yanfang; Zhang, Hang; Liu, Wei; Huang, Haiyan; Huang, Xinfeng; Wu, Desheng; Yang, Linqing; Tang, Haiyan; Zhou, Li; Li, Xuan; Liu, Jianjun

    2014-08-17

    Trichloroethylene (TCE) is an industrial solvent with widespread occupational exposure and also a major environmental contaminant. Occupational medicamentosa-like dermatitis induced by trichloroethylene (OMLDT) is an autoimmune disease and it has become one major hazard in China. In this study, sera from 3 healthy controls and 3 OMLDT patients at different disease stages were used for a screening study by 2D-DIGE and MALDI-TOF-MS/MS. Eight proteins including transthyretin (TTR), retinol binding protein 4 (RBP4), haptoglobin, clusterin, serum amyloid A protein (SAA), apolipoprotein A-I, apolipoprotein C-III and apolipoprotein C-II were found to be significantly altered among the healthy, acute-stage, healing-stage and healed-stage groups. Specifically, the altered expression of TTR, RBP4 and haptoglobin were further validated by Western blot analysis and ELISA. Our data not only suggested that TTR, RBP4 and haptoglobin could serve as potential serum biomarkers of OMLDT, but also indicated that measurement of TTR, RBP4 and haptoglobin or their combination could help aid in the diagnosis, monitoring the progression and therapy of the disease. Copyright © 2014. Published by Elsevier Ireland Ltd.

  13. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  14. Proteomics reveals the effects of sustained weight loss on the human plasma proteome

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Wewer Albrechtsen, Nicolai J; Tyanova, Stefka

    2016-01-01

    Sustained weight loss is a preferred intervention in a wide range of metabolic conditions, but the effects on an individual's health state remain ill-defined. Here, we investigate the plasma proteomes of a cohort of 43 obese individuals that had undergone 8 weeks of 12% body weight loss followed...... by a year of weight maintenance. Using mass spectrometry-based plasma proteome profiling, we measured 1,294 plasma proteomes. Longitudinal monitoring of the cohort revealed individual-specific protein levels with wide-ranging effects of losing weight on the plasma proteome reflected in 93 significantly...

  15. Translational plant proteomics: a perspective.

    Science.gov (United States)

    Agrawal, Ganesh Kumar; Pedreschi, Romina; Barkla, Bronwyn J; Bindschedler, Laurence Veronique; Cramer, Rainer; Sarkar, Abhijit; Renaut, Jenny; Job, Dominique; Rakwal, Randeep

    2012-08-03

    Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic values of plants, food security and safety, and energy sustainability. In this review, we highlight the substantial progress reached in plant proteomics during the past decade which has paved the way for translational plant proteomics. Increasing proteomics knowledge in plants is not limited to model and non-model plants, proteogenomics, crop improvement, and food analysis, safety, and nutrition but to many more potential applications. Given the wealth of information generated and to some extent applied, there is the need for more efficient and broader channels to freely disseminate the information to the scientific community. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Effect of Processing Intensity on Immunologically Active Bovine Milk Serum Proteins.

    Science.gov (United States)

    Brick, Tabea; Ege, Markus; Boeren, Sjef; Böck, Andreas; von Mutius, Erika; Vervoort, Jacques; Hettinga, Kasper

    2017-08-31

    Consumption of raw cow's milk instead of industrially processed milk has been reported to protect children from developing asthma, allergies, and respiratory infections. Several heat-sensitive milk serum proteins have been implied in this effect though unbiased assessment of milk proteins in general is missing. The aim of this study was to compare the native milk serum proteome between raw cow's milk and various industrially applied processing methods, i.e., homogenization, fat separation, pasteurization, ultra-heat treatment (UHT), treatment for extended shelf-life (ESL), and conventional boiling. Each processing method was applied to the same three pools of raw milk. Levels of detectable proteins were quantified by liquid chromatography/tandem mass spectrometry following filter aided sample preparation. In total, 364 milk serum proteins were identified. The 140 proteins detectable in 66% of all samples were entered in a hierarchical cluster analysis. The resulting proteomics pattern separated mainly as high (boiling, UHT, ESL) versus no/low heat treatment (raw, skimmed, pasteurized). Comparing these two groups revealed 23 individual proteins significantly reduced by heating, e.g., lactoferrin (log2-fold change = -0.37, p = 0.004), lactoperoxidase (log2-fold change = -0.33, p = 0.001), and lactadherin (log2-fold change = -0.22, p = 0.020). The abundance of these heat sensitive proteins found in higher quantity in native cow's milk compared to heat treated milk, renders them potential candidates for protection from asthma, allergies, and respiratory infections.

  17. Application of Proteomics to Cancer Molecular Diagnostics

    Institute of Scientific and Technical Information of China (English)

    Sam HANASH

    2009-01-01

    @@ Strategies to achieve personalized medicine and improve public health encompass assessment of an individual's risk for disease, early detection and molecular classification of disease resulting in an informed choice of the most appropriate treatment instituted at an early stage of disease develop- ment. A major contribution of proteomics in this field is the development of blood based tests to achieve the goals of personalized medicine.

  18. MASPECTRAS: a platform for management and analysis of proteomics LC-MS/MS data

    Directory of Open Access Journals (Sweden)

    Rader Robert

    2007-06-01

    Full Text Available Abstract Background The advancements of proteomics technologies have led to a rapid increase in the number, size and rate at which datasets are generated. Managing and extracting valuable information from such datasets requires the use of data management platforms and computational approaches. Results We have developed the MAss SPECTRometry Analysis System (MASPECTRAS, a platform for management and analysis of proteomics LC-MS/MS data. MASPECTRAS is based on the Proteome Experimental Data Repository (PEDRo relational database schema and follows the guidelines of the Proteomics Standards Initiative (PSI. Analysis modules include: 1 import and parsing of the results from the search engines SEQUEST, Mascot, Spectrum Mill, X! Tandem, and OMSSA; 2 peptide validation, 3 clustering of proteins based on Markov Clustering and multiple alignments; and 4 quantification using the Automated Statistical Analysis of Protein Abundance Ratios algorithm (ASAPRatio. The system provides customizable data retrieval and visualization tools, as well as export to PRoteomics IDEntifications public repository (PRIDE. MASPECTRAS is freely available at http://genome.tugraz.at/maspectras Conclusion Given the unique features and the flexibility due to the use of standard software technology, our platform represents significant advance and could be of great interest to the proteomics community.

  19. Development of an open source laboratory information management system for 2-D gel electrophoresis-based proteomics workflow

    Directory of Open Access Journals (Sweden)

    Toda Tosifusa

    2006-10-01

    Full Text Available Abstract Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved.

  20. Progress and challenges for abiotic stress proteomics of crop plants.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer.

    Directory of Open Access Journals (Sweden)

    Rachel M Ostroff

    Full Text Available BACKGROUND: Lung cancer is the leading cause of cancer deaths worldwide. New diagnostics are needed to detect early stage lung cancer because it may be cured with surgery. However, most cases are diagnosed too late for curative surgery. Here we present a comprehensive clinical biomarker study of lung cancer and the first large-scale clinical application of a new aptamer-based proteomic technology to discover blood protein biomarkers in disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a multi-center case-control study in archived serum samples from 1,326 subjects from four independent studies of non-small cell lung cancer (NSCLC in long-term tobacco-exposed populations. Sera were collected and processed under uniform protocols. Case sera were collected from 291 patients within 8 weeks of the first biopsy-proven lung cancer and prior to tumor removal by surgery. Control sera were collected from 1,035 asymptomatic study participants with ≥ 10 pack-years of cigarette smoking. We measured 813 proteins in each sample with a new aptamer-based proteomic technology, identified 44 candidate biomarkers, and developed a 12-protein panel (cadherin-1, CD30 ligand, endostatin, HSP90α, LRIG3, MIP-4, pleiotrophin, PRKCI, RGM-C, SCF-sR, sL-selectin, and YES that discriminates NSCLC from controls with 91% sensitivity and 84% specificity in cross-validated training and 89% sensitivity and 83% specificity in a separate verification set, with similar performance for early and late stage NSCLC. CONCLUSIONS/SIGNIFICANCE: This study is a significant advance in clinical proteomics in an area of high unmet clinical need. Our analysis exceeds the breadth and dynamic range of proteome interrogated of previously published clinical studies of broad serum proteome profiling platforms including mass spectrometry, antibody arrays, and autoantibody arrays. The sensitivity and specificity of our 12-biomarker panel improves upon published protein and gene expression panels

  2. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.

    Science.gov (United States)

    Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin

    2014-06-13

    Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. [Methods of quantitative proteomics].

    Science.gov (United States)

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  4. Longitudinal Multiplexed Measurement of Quantitative Proteomic Signatures in Mouse Lymphoma Models Using Magneto-Nanosensors.

    Science.gov (United States)

    Lee, Jung-Rok; Appelmann, Iris; Miething, Cornelius; Shultz, Tyler O; Ruderman, Daniel; Kim, Dokyoon; Mallick, Parag; Lowe, Scott W; Wang, Shan X

    2018-01-01

    Cancer proteomics is the manifestation of relevant biological processes in cancer development. Thus, it reflects the activities of tumor cells, host-tumor interactions, and systemic responses to cancer therapy. To understand the causal effects of tumorigenesis or therapeutic intervention, longitudinal studies are greatly needed. However, most of the conventional mouse experiments are unlikely to accommodate frequent collection of serum samples with a large enough volume for multiple protein assays towards single-object analysis. Here, we present a technique based on magneto-nanosensors to longitudinally monitor the protein profiles in individual mice of lymphoma models using a small volume of a sample for multiplex assays. Methods: Drug-sensitive and -resistant cancer cell lines were used to develop the mouse models that render different outcomes upon the drug treatment. Two groups of mice were inoculated with each cell line, and treated with either cyclophosphamide or vehicle solution. Serum samples taken longitudinally from each mouse in the groups were measured with 6-plex magneto-nanosensor cytokine assays. To find the origin of IL-6, experiments were performed using IL-6 knock-out mice. Results: The differences in serum IL-6 and GCSF levels between the drug-treated and untreated groups were revealed by the magneto-nanosensor measurement on individual mice. Using the multiplex assays and mouse models, we found that IL-6 is secreted by the host in the presence of tumor cells upon the drug treatment. Conclusion: The multiplex magneto-nanosensor assays enable longitudinal proteomic studies on mouse tumor models to understand tumor development and therapy mechanisms more precisely within a single biological object.

  5. Proteomic analysis of post translational modifications in cyanobacteria.

    Science.gov (United States)

    Xiong, Qian; Chen, Zhuo; Ge, Feng

    2016-02-16

    Cyanobacteria are a diverse group of Gram-negative bacteria and the only prokaryotes capable of oxygenic photosynthesis. Recently, cyanobacteria have attracted great interest due to their crucial roles in global carbon and nitrogen cycles and their ability to produce clean and renewable biofuels. To survive in various environmental conditions, cyanobacteria have developed a complex signal transduction network to sense environmental signals and implement adaptive changes. The post-translational modifications (PTMs) systems play important regulatory roles in the signaling networks of cyanobacteria. The systematic investigation of PTMs could contribute to the comprehensive description of protein species and to elucidate potential biological roles of each protein species in cyanobacteria. Although the proteomic studies of PTMs carried out in cyanobacteria were limited, these data have provided clues to elucidate their sophisticated sensing mechanisms that contribute to their evolutionary and ecological success. This review aims to summarize the current status of PTM studies and recent publications regarding PTM proteomics in cyanobacteria, and discuss the novel developments and applications for the analysis of PTMs in cyanobacteria. Challenges, opportunities and future perspectives in the proteomics studies of PTMs in cyanobacteria are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Translational plant proteomics: A perspective

    NARCIS (Netherlands)

    Agrawal, G.K.; Pedreschi, R.; Barkla, B.J.; Bindschedler, L.V.; Cramer, R.; Sarkar, A.; Renaut, J.; Job, D.; Rakwal, R.

    2012-01-01

    Translational proteomics is an emerging sub-discipline of the proteomics field in the biological sciences. Translational plant proteomics aims to integrate knowledge from basic sciences to translate it into field applications to solve issues related but not limited to the recreational and economic

  7. Evolution of Clinical Proteomics and its Role in Medicine | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    NCI's Office of Cancer Clinical Proteomics Research authored a review of the current state of clinical proteomics in the peer-reviewed Journal of Proteome Research. The review highlights outcomes from the CPTC program and also provides a thorough overview of the different technologies that have pushed the field forward. Additionally, the review provides a vision for moving the field forward through linking advances in genomic and proteomic analysis to develop new, molecularly targeted interventions.

  8. Microbial proteomics: a mass spectrometry primer for biologists

    Directory of Open Access Journals (Sweden)

    Graham Ciaren

    2007-08-01

    Full Text Available Abstract It is now more than 10 years since the publication of the first microbial genome sequence and science is now moving towards a post genomic era with transcriptomics and proteomics offering insights into cellular processes and function. The ability to assess the entire protein network of a cell at a given spatial or temporal point will have a profound effect upon microbial science as the function of proteins is inextricably linked to phenotype. Whilst such a situation is still beyond current technologies rapid advances in mass spectrometry, bioinformatics and protein separation technologies have produced a step change in our current proteomic capabilities. Subsequently a small, but steadily growing, number of groups are taking advantage of this cutting edge technology to discover more about the physiology and metabolism of microorganisms. From this research it will be possible to move towards a systems biology understanding of a microorganism. Where upon researchers can build a comprehensive cellular map for each microorganism that links an accurately annotated genome sequence to gene expression data, at a transcriptomic and proteomic level. In order for microbiologists to embrace the potential that proteomics offers, an understanding of a variety of analytical tools is required. The aim of this review is to provide a basic overview of mass spectrometry (MS and its application to protein identification. In addition we will describe how the protein complexity of microbial samples can be reduced by gel-based and gel-free methodologies prior to analysis by MS. Finally in order to illustrate the power of microbial proteomics a case study of its current application within the Bacilliaceae is given together with a description of the emerging discipline of metaproteomics.

  9. Analysis of human serum by liquid chromatography-mass spectrometry: improved sample preparation and data analysis.

    Science.gov (United States)

    Govorukhina, N I; Reijmers, T H; Nyangoma, S O; van der Zee, A G J; Jansen, R C; Bischoff, R

    2006-07-07

    Discovery of biomarkers is a fast developing field in proteomics research. Liquid chromatography coupled on line to mass spectrometry (LC-MS) has become a powerful method for the sensitive detection, quantification and identification of proteins and peptides in biological fluids like serum. However, the presence of highly abundant proteins often masks those of lower abundance and thus generally prevents their detection and identification in proteomics studies. To perform future comparative analyses of samples from a serum bank of cervical cancer patients in a longitudinal and cross-sectional manner, methodology based on the depletion of high-abundance proteins followed by tryptic digestion and LC-MS has been developed. Two sample preparation methods were tested in terms of their efficiency to deplete high-abundance serum proteins and how they affect the repeatability of the LC-MS data sets. The first method comprised depletion of human serum albumin (HSA) on a dye ligand chromatographic and immunoglobulin G (IgG) on an immobilized Protein A support followed by tryptic digestion, fractionation by cation-exchange chromatography, trapping on a C18 column and reversed-phase LC-MS. The second method included depletion of the six most abundant serum proteins based on multiple immunoaffinity chromatography followed by tryptic digestion, trapping on a C18 column and reversed-phase LC-MS. Repeatability of the overall procedures was evaluated in terms of retention time and peak area for a selected number of endogenous peptides showing that the second method, besides being less time consuming, gave more repeatable results (retention time: <0.1% RSD; peak area: <30% RSD). Application of an LC-MS component detection algorithm followed by principal component analysis (PCA) enabled discrimination of serum samples that were spiked with horse heart cytochrome C from non-spiked serum and the detection of a concentration trend, which correlated to the amount of spiked horse heart

  10. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  11. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  12. Characterization of the fetal blood transcriptome and proteome in maternal anti-fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response.

    Science.gov (United States)

    Lee, Joonho; Romero, Roberto; Chaiworapongsa, Tinnakorn; Dong, Zhong; Tarca, Adi L; Xu, Yi; Chiang, Po Jen; Kusanovic, Juan Pedro; Hassan, Sonia S; Yeo, Lami; Yoon, Bo Hyun; Than, Nandor Gabor; Kim, Chong Jai

    2013-10-01

    from white blood cells with a whole-genome DASL assay. Proteomic analysis of fetal serum was conducted by two-dimensional difference gel electrophoresis. Differential gene expression was considered significant when there was a P 1.5. (i) The frequency of placental lesions consistent with maternal anti-fetal rejection was higher in patients with preterm deliveries than in those with term deliveries (56% versus 32%; P rejection than those without such lesions (P blood RNA demonstrated differential expression of 128 genes between fetuses with and without lesions associated with maternal anti-fetal rejection; and (vi) comparison of the fetal serum proteome demonstrated 20 proteins whose abundance differed between fetuses with and without lesions associated with maternal anti-fetal rejection. We describe a systemic inflammatory response in human fetuses born to mothers with evidence of maternal anti-fetal rejection. The transcriptome and proteome of this novel type of fetal inflammatory response were different from that of FIRS type I (which is associated with acute infection/inflammation). Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  13. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  14. Analysis of high accuracy, quantitative proteomics data in the MaxQB database.

    Science.gov (United States)

    Schaab, Christoph; Geiger, Tamar; Stoehr, Gabriele; Cox, Juergen; Mann, Matthias

    2012-03-01

    MS-based proteomics generates rapidly increasing amounts of precise and quantitative information. Analysis of individual proteomic experiments has made great strides, but the crucial ability to compare and store information across different proteome measurements still presents many challenges. For example, it has been difficult to avoid contamination of databases with low quality peptide identifications, to control for the inflation in false positive identifications when combining data sets, and to integrate quantitative data. Although, for example, the contamination with low quality identifications has been addressed by joint analysis of deposited raw data in some public repositories, we reasoned that there should be a role for a database specifically designed for high resolution and quantitative data. Here we describe a novel database termed MaxQB that stores and displays collections of large proteomics projects and allows joint analysis and comparison. We demonstrate the analysis tools of MaxQB using proteome data of 11 different human cell lines and 28 mouse tissues. The database-wide false discovery rate is controlled by adjusting the project specific cutoff scores for the combined data sets. The 11 cell line proteomes together identify proteins expressed from more than half of all human genes. For each protein of interest, expression levels estimated by label-free quantification can be visualized across the cell lines. Similarly, the expression rank order and estimated amount of each protein within each proteome are plotted. We used MaxQB to calculate the signal reproducibility of the detected peptides for the same proteins across different proteomes. Spearman rank correlation between peptide intensity and detection probability of identified proteins was greater than 0.8 for 64% of the proteome, whereas a minority of proteins have negative correlation. This information can be used to pinpoint false protein identifications, independently of peptide database

  15. Proteomics data repositories: Providing a safe haven for your data and acting as a springboard for further research

    Science.gov (United States)

    Vizcaíno, Juan Antonio; Foster, Joseph M.; Martens, Lennart

    2010-01-01

    Despite the fact that data deposition is not a generalised fact yet in the field of proteomics, several mass spectrometry (MS) based proteomics repositories are publicly available for the scientific community. The main existing resources are: the Global Proteome Machine Database (GPMDB), PeptideAtlas, the PRoteomics IDEntifications database (PRIDE), Tranche, and NCBI Peptidome. In this review the capabilities of each of these will be described, paying special attention to four key properties: data types stored, applicable data submission strategies, supported formats, and available data mining and visualization tools. Additionally, the data contents from model organisms will be enumerated for each resource. There are other valuable smaller and/or more specialized repositories but they will not be covered in this review. Finally, the concept behind the ProteomeXchange consortium, a collaborative effort among the main resources in the field, will be introduced. PMID:20615486

  16. Proteomic analysis of the Theileria annulata schizont

    Science.gov (United States)

    Witschi, M.; Xia, D.; Sanderson, S.; Baumgartner, M.; Wastling, J.M.; Dobbelaere, D.A.E.

    2013-01-01

    The apicomplexan parasite, Theileria annulata, is the causative agent of tropical theileriosis, a devastating lymphoproliferative disease of cattle. The schizont stage transforms bovine leukocytes and provides an intriguing model to study host/pathogen interactions. The genome of T. annulata has been sequenced and transcriptomic data are rapidly accumulating. In contrast, little is known about the proteome of the schizont, the pathogenic, transforming life cycle stage of the parasite. Using one-dimensional (1-D) gel LC-MS/MS, a proteomic analysis of purified T. annulata schizonts was carried out. In whole parasite lysates, 645 proteins were identified. Proteins with transmembrane domains (TMDs) were under-represented and no proteins with more than four TMDs could be detected. To tackle this problem, Triton X-114 treatment was applied, which facilitates the extraction of membrane proteins, followed by 1-D gel LC-MS/MS. This resulted in the identification of an additional 153 proteins. Half of those had one or more TMD and 30 proteins with more than four TMDs were identified. This demonstrates that Triton X-114 treatment can provide a valuable additional tool for the identification of new membrane proteins in proteomic studies. With two exceptions, all proteins involved in glycolysis and the citric acid cycle were identified. For at least 29% of identified proteins, the corresponding transcripts were not present in the existing expressed sequence tag databases. The proteomics data were integrated into the publicly accessible database resource at EuPathDB (www.eupathdb.org) so that mass spectrometry-based protein expression evidence for T. annulata can be queried alongside transcriptional and other genomics data available for these parasites. PMID:23178997

  17. Proteomic explorations of autism spectrum disorder.

    Science.gov (United States)

    Szoko, Nicholas; McShane, Adam J; Natowicz, Marvin R

    2017-09-01

    Proteomics, the large-scale study of protein expression in cells and tissues, is a powerful tool to study the biology of clinical conditions and has provided significant insights in many experimental systems. Herein, we review the basics of proteomic methodology and discuss challenges in using proteomic approaches to study autism. Unlike other experimental approaches, such as genomic approaches, there have been few large-scale studies of proteins in tissues from persons with autism. Most of the proteomic studies on autism used blood or other peripheral tissues; few studies used brain tissue. Some studies found dysregulation of aspects of the immune system or of aspects of lipid metabolism, but no consistent findings were noted. Based on the challenges in using proteomics to study autism, we discuss considerations for future studies. Apart from the complex technical considerations implicit in any proteomic analysis, key nontechnical matters include attention to subject and specimen inclusion/exclusion criteria, having adequate sample size to ensure appropriate powering of the study, attention to the state of specimens prior to proteomic analysis, and the use of a replicate set of specimens, when possible. We conclude by discussing some potentially productive uses of proteomics, potentially coupled with other approaches, for future autism research including: (1) proteomic analysis of banked human brain specimens; (2) proteomic analysis of tissues from animal models of autism; and (3) proteomic analysis of induced pluripotent stem cells that are differentiated into various types of brain cells and neural organoids. Autism Res 2017, 10: 1460-1469. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  18. Proteomics dataset

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2017-01-01

    patients (Morgan et al., 2012; Abraham and Medzhitov, 2011; Bennike, 2014) [8–10. Therefore, we characterized the proteome of colon mucosa biopsies from 10 inflammatory bowel disease ulcerative colitis (UC) patients, 11 gastrointestinal healthy rheumatoid arthritis (RA) patients, and 10 controls. We...... been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers PXD001608 for ulcerative colitis and control samples, and PXD003082 for rheumatoid arthritis samples....

  19. A Hybrid Feature Subset Selection Algorithm for Analysis of High Correlation Proteomic Data

    Science.gov (United States)

    Kordy, Hussain Montazery; Baygi, Mohammad Hossein Miran; Moradi, Mohammad Hassan

    2012-01-01

    Pathological changes within an organ can be reflected as proteomic patterns in biological fluids such as plasma, serum, and urine. The surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) has been used to generate proteomic profiles from biological fluids. Mass spectrometry yields redundant noisy data that the most data points are irrelevant features for differentiating between cancer and normal cases. In this paper, we have proposed a hybrid feature subset selection algorithm based on maximum-discrimination and minimum-correlation coupled with peak scoring criteria. Our algorithm has been applied to two independent SELDI-TOF MS datasets of ovarian cancer obtained from the NCI-FDA clinical proteomics databank. The proposed algorithm has used to extract a set of proteins as potential biomarkers in each dataset. We applied the linear discriminate analysis to identify the important biomarkers. The selected biomarkers have been able to successfully diagnose the ovarian cancer patients from the noncancer control group with an accuracy of 100%, a sensitivity of 100%, and a specificity of 100% in the two datasets. The hybrid algorithm has the advantage that increases reproducibility of selected biomarkers and able to find a small set of proteins with high discrimination power. PMID:23717808

  20. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens.

    Directory of Open Access Journals (Sweden)

    Bao-cun Zhang

    Full Text Available Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS, 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.

  1. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens

    Science.gov (United States)

    Zhang, Bao-cun; Zhang, Jian; Sun, Li

    2014-01-01

    Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control. PMID:24621602

  2. IgV peptide mapping of native Ro60 autoantibody proteomes in primary Sjögren's syndrome reveals molecular markers of Ro/La diversification.

    Science.gov (United States)

    Wang, Jing J; Al Kindi, Mahmood A; Colella, Alex D; Dykes, Lukah; Jackson, Michael W; Chataway, Tim K; Reed, Joanne H; Gordon, Tom P

    2016-12-01

    We have used high-resolution mass spectrometry to sequence precipitating anti-Ro60 proteomes from sera of patients with primary Sjögren's syndrome and compare immunoglobulin variable-region (IgV) peptide signatures in Ro/La autoantibody subsets. Anti-Ro60 were purified by elution from native Ro60-coated ELISA plates and subjected to combined de novo amino acid sequencing and database matching. Monospecific anti-Ro60 Igs comprised dominant public and minor private sets of IgG1 kappa and lambda restricted heavy and light chains. Specific IgV amino acid substitutions stratified anti-Ro60 from anti-Ro60/La responses, providing a molecular fingerprint of Ro60/La determinant spreading and suggesting that different forms of Ro60 antigen drive these responses. Sequencing of linked anti-Ro52 proteomes from individual patients and comparison with their anti-Ro60 partners revealed sharing of a dominant IGHV3-23/IGKV3-20 paired clonotype but with divergent IgV mutational signatures. In summary, anti-Ro60 IgV peptide mapping provides insights into Ro/La autoantibody diversification and reveals serum-based molecular markers of humoral Ro60 autoimmunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. 1001 Proteomes: a functional proteomics portal for the analysis of Arabidopsis thaliana accessions.

    Science.gov (United States)

    Joshi, Hiren J; Christiansen, Katy M; Fitz, Joffrey; Cao, Jun; Lipzen, Anna; Martin, Joel; Smith-Moritz, A Michelle; Pennacchio, Len A; Schackwitz, Wendy S; Weigel, Detlef; Heazlewood, Joshua L

    2012-05-15

    The sequencing of over a thousand natural strains of the model plant Arabidopsis thaliana is producing unparalleled information at the genetic level for plant researchers. To enable the rapid exploitation of these data for functional proteomics studies, we have created a resource for the visualization of protein information and proteomic datasets for sequenced natural strains of A. thaliana. The 1001 Proteomes portal can be used to visualize amino acid substitutions or non-synonymous single-nucleotide polymorphisms in individual proteins of A. thaliana based on the reference genome Col-0. We have used the available processed sequence information to analyze the conservation of known residues subject to protein phosphorylation among these natural strains. The substitution of amino acids in A. thaliana natural strains is heavily constrained and is likely a result of the conservation of functional attributes within proteins. At a practical level, we demonstrate that this information can be used to clarify ambiguously defined phosphorylation sites from phosphoproteomic studies. Protein sets of available natural variants are available for download to enable proteomic studies on these accessions. Together this information can be used to uncover the possible roles of specific amino acids in determining the structure and function of proteins in the model plant A. thaliana. An online portal to enable the community to exploit these data can be accessed at http://1001proteomes.masc-proteomics.org/

  4. The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention

    DEFF Research Database (Denmark)

    Oller Moreno, Sergio; Cominetti, Ornella; Núñez Galindo, Antonio

    2018-01-01

    PURPOSE: The nutritional intervention program "DiOGenes" focuses on how obesity can be prevented and treated from a dietary perspective. We generated differential plasma proteome profiles in the DiOGenes cohort to identify proteins associated with weight loss and maintenance and explore their rel......PURPOSE: The nutritional intervention program "DiOGenes" focuses on how obesity can be prevented and treated from a dietary perspective. We generated differential plasma proteome profiles in the DiOGenes cohort to identify proteins associated with weight loss and maintenance and explore...... with largest changes were sex hormone-binding globulin, adiponectin, C-reactive protein, calprotectin, serum amyloid A, and proteoglycan 4 (PRG4), whose association with obesity and weight loss is known. We identified new putative biomarkers for weight loss/maintenance. Correlation between PRG4 and proline......-rich acidic protein 1 (PRAP1) variation and Matsuda insulin sensitivity increment was showed. CONCLUSIONS AND CLINICAL RELEVANCE: MS-based proteomic analysis of a large cohort of non-diabetic overweight and obese individuals concomitantly identified known and novel proteins associated with weight loss...

  5. Xylem sap proteomics.

    Science.gov (United States)

    de Bernonville, Thomas Dugé; Albenne, Cécile; Arlat, Matthieu; Hoffmann, Laurent; Lauber, Emmanuelle; Jamet, Elisabeth

    2014-01-01

    Proteomic analysis of xylem sap has recently become a major field of interest to understand several biological questions related to plant development and responses to environmental clues. The xylem sap appears as a dynamic fluid undergoing changes in its proteome upon abiotic and biotic stresses. Unlike cell compartments which are amenable to purification in sufficient amount prior to proteomic analysis, the xylem sap has to be collected in particular conditions to avoid contamination by intracellular proteins and to obtain enough material. A model plant like Arabidopsis thaliana is not suitable for such an analysis because efficient harvesting of xylem sap is difficult. The analysis of the xylem sap proteome also requires specific procedures to concentrate proteins and to focus on proteins predicted to be secreted. Indeed, xylem sap proteins appear to be synthesized and secreted in the root stele or to originate from dying differentiated xylem cells. This chapter describes protocols to collect xylem sap from Brassica species and to prepare total and N-glycoprotein extracts for identification of proteins by mass spectrometry analyses and bioinformatics.

  6. Farm animal proteomics - A review

    DEFF Research Database (Denmark)

    Bendixen, Emøke; Danielsen, Marianne; Hollung, Kristin

    2011-01-01

    In agricultural sciences as in all other areas of life science, the implementation of proteomics and other post-genomic tools is an important step towards more detailed understanding of the complex biological systems that control physiology and pathology of living beings. Farm animals are raised...... and cattle are relevant not only for farm animal sciences, but also for adding to our understanding of complex biological mechanisms of health and disease in humans. The aim of this review is to present an overview of the specific topics of interest within farm animal proteomics, and to highlight some...... of the areas where synergy between classic model organism proteomics and farm animal proteomics is rapidly emerging. Focus will be on introducing the special biological traits that play an important role in food production, and on how proteomics may help optimize farm animal production...

  7. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    Science.gov (United States)

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  8. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment.

    Science.gov (United States)

    Welker, F

    2018-02-20

    The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identifications at increased evolutionary distances due to a larger number of protein sequence differences between the database sequence and the analyzed organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan (16-17 Ma) reference proteomes, respectively. Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations between the target and database sequences are the main factors influencing mutable PSM identification. The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards the identification of conserved sequences and proteins. Effects are minimized

  9. Proteomic analysis of human tooth pulp: proteomics of human tooth.

    Science.gov (United States)

    Eckhardt, Adam; Jágr, Michal; Pataridis, Statis; Mikšík, Ivan

    2014-12-01

    The unique pulp-dentin complex demonstrates strong regenerative potential, which enables it to respond to disease and traumatic injury. Identifying the proteins of the pulp-dentin complex is crucial to understanding the mechanisms of regeneration, tissue calcification, defense processes, and the reparation of dentin by dental pulp. The lack of knowledge of these proteins limits the development of more efficient therapies. The proteomic profile of human tooth pulp was investigated and compared with the proteome of human dentin and blood. The samples of tooth pulp were obtained from 5 sound permanent human third molars of 5 adults (n = 5). The extracted proteins were separated by 2-dimensional gel electrophoresis, analyzed by nano-liquid chromatography tandem mass spectrometry, and identified by correlating mass spectra to the proteomic databases. A total of 342 proteins were identified with high confidence, and 2 proteins were detected for the first time in an actual human sample. The identified tooth pulp proteins have a variety of functions: structural, catalytic, transporter, protease activity, immune response, and many others. In a comparison with dentin and blood plasma, 140 (pulp/dentin) shared proteins were identified, 37 of which were not observed in plasma. It can be suggested that they might participate in the unique pulp-dentin complex. This proteomic investigation of human tooth pulp, together with the previously published study of human dentin, is one of the most comprehensive proteome lists of human teeth to date. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Peptidome profiling of human serum of uveal melanoma patients based on magnetic bead fractionation and mass spectrometry

    Directory of Open Access Journals (Sweden)

    Xiang-Yu Shi

    2017-06-01

    Full Text Available AIM: To find new biomarkers for uveal melanoma (UM by analyzing the serum peptidome profile. METHODS: Proteomic spectra in patients with UM before and after operation were analyzed and compared with those of healthy controls. Magnetic affinity beads were used to capture serum peptides and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometer were used to compile serum peptide profiles. RESULTS: A panel of 49 peptides were differentially expressed between UM patients and controls, of which 33 peptides were of higher intensities in patient group and 16 peptides were of higher intensities in control group. Based on combined use of these potential markers, peptides with mean molecular masses of 1467 and 9289.0 Da provide high sensitivity (83.3%, specificity (100% and accuracy rate (93.0% together to differentiate melanoma patients from healthy controls. At the time point of 6mo postoperatively, the levels of many peptides differentially expressed before surgery showed no more statistical difference between the patients and the control group. Fibrinogen α-chain precursors were identified as potential UM markers. CONCLUSION: We have shown that a convenient and fast proteomic technique, affinity bead separation and MALDI-TOF analysis combined with bioinformatic software, facilitates the identification of novel biomarkers for UM.

  11. Mining the granule proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Goetze, Jens P; Johnsen, Anders H

    2015-01-01

    Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of g...

  12. Advances of Proteomic Sciences in Dentistry.

    Science.gov (United States)

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-05-13

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.

  13. Proteomics - new analytical approaches

    International Nuclear Information System (INIS)

    Hancock, W.S.

    2001-01-01

    Full text: Recent developments in the sequencing of the human genome have indicated that the number of coding gene sequences may be as few as 30,000. It is clear, however, that the complexity of the human species is dependent on the much greater diversity of the corresponding protein complement. Estimates of the diversity (discrete protein species) of the human proteome range from 200,000 to 300,000 at the lower end to 2,000,000 to 3,000,000 at the high end. In addition, proteomics (the study of the protein complement to the genome) has been subdivided into two main approaches. Global proteomics refers to a high throughput examination of the full protein set present in a cell under a given environmental condition. Focused proteomics refers to a more detailed study of a restricted set of proteins that are related to a specified biochemical pathway or subcellular structure. While many of the advances in proteomics will be based on the sequencing of the human genome, de novo characterization of protein microheterogeneity (glycosylation, phosphorylation and sulfation as well as the incorporation of lipid components) will be required in disease studies. To characterize these modifications it is necessary to digest the protein mixture with an enzyme to produce the corresponding mixture of peptides. In a process analogous to sequencing of the genome, shot-gun sequencing of the proteome is based on the characterization of the key fragments produced by such a digest. Thus, a glycopeptide and hence a specific glycosylation motif will be identified by a unique mass and then a diagnostic MS/MS spectrum. Mass spectrometry will be the preferred detector in these applications because of the unparalleled information content provided by one or more dimensions of mass measurement. In addition, highly efficient separation processes are an absolute requirement for advanced proteomic studies. For example, a combination of the orthogonal approaches, HPLC and HPCE, can be very powerful

  14. Boosting the globalization of plant proteomics through INPPO: current developments and future prospects.

    Science.gov (United States)

    Agrawal, Ganesh Kumar; Sarkar, Abhijit; Agrawal, Raj; Ndimba, Bongani Kaiser; Tanou, Georgia; Dunn, Michael J; Kieselbach, Thomas; Cramer, Rainer; Wienkoop, Stefanie; Chen, Sixue; Rafudeen, Mohammed Suhail; Deswal, Renu; Barkla, Bronwyn J; Weckwerth, Wolfram; Heazlewood, Joshua L; Renaut, Jenny; Job, Dominique; Chakraborty, Niranjan; Rakwal, Randeep

    2012-02-01

    The International Plant Proteomics Organization (INPPO) is a non-profit-organization consisting of people who are involved or interested in plant proteomics. INPPO is constantly growing in volume and activity, which is mostly due to the realization among plant proteomics researchers worldwide for the need of such a global platform. Their active participation resulted in the rapid growth within the first year of INPPO's official launch in 2011 via its website (www.inppo.com) and publication of the 'Viewpoint paper' in a special issue of PROTEOMICS (May 2011). Here, we will be highlighting the progress achieved in the year 2011 and the future targets for the year 2012 and onwards. INPPO has achieved a successful administrative structure, the Core Committee (CC; composed of President, Vice-President, and General Secretaries), Executive Council (EC), and General Body (GB) to achieve INPPO objectives. Various committees and subcommittees are in the process of being functionalized via discussion amongst scientists around the globe. INPPO's primary aim to popularize the plant proteomics research in biological sciences has also been recognized by PROTEOMICS where a section dedicated to plant proteomics has been introduced starting January 2012, following the very first issue of this journal devoted to plant proteomics in May 2011. To disseminate organizational activities to the scientific community, INPPO has launched a biannual (in January and July) newsletter entitled 'INPPO Express: News & Views' with the first issue published in January 2012. INPPO is also planning to have several activities in 2012, including programs within the Education Outreach committee in different countries, and the development of research ideas and proposals with priority on crop and horticultural plants, while keeping tight interactions with proteomics programs on model plants such as Arabidopsis thaliana, rice, and Medicago truncatula. Altogether, the INPPO progress and upcoming activities

  15. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko

    2017-05-10

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  16. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    Science.gov (United States)

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  17. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database

    KAUST Repository

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-01-01

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max ‘Enrei’). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. Biological significanceThe Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all

  18. Attached and planktonic Listeria monocytogenes global proteomic responses and associated influence of strain genetics and temperature.

    Science.gov (United States)

    Mata, Marcia M; da Silva, Wladimir P; Wilson, Richard; Lowe, Edwin; Bowman, John P

    2015-02-06

    Contamination of industrial and domestic food usage environments by the attachement of bacterial food-borne pathogen Listeria monocytogenes has public health and economic implications. Comprehensive proteomics experiments using label-free liquid chromatography/tandem mass spectrometry were used to compare the proteomes of two different L. monocytogenes strains (Siliken_1/2c and F2365_4b), which show very different capacities to attach to surfaces. Growth temperature and strain type were highly influential on the proteomes in both attached and planktonic cells. On the basis of the proteomic data, it is highly unlikely that specific surface proteins play a direct role in adherence to inanimate surfaces. Instead, strain-dependent responses related to cell envelope polymer biosynthesis and stress response regulation likely contribute to a different ability to attach and also to survive external stressors. Collectively, the divergent proteome-level responses observed define strain- and growth-temperature-dependent differences relevant to attachment efficacy, highlight relevant proteins involved in stress protection in attached cells, and suggest that strain differences and growth conditions are important in relation to environmental persistence.

  19. The proteome of human saliva

    Science.gov (United States)

    Griffin, Timothy J.

    2013-05-01

    Human saliva holds tremendous potential for transforming disease and health diagnostics given its richness of molecular information and non-invasive collection. Enumerating its molecular constituents is an important first step towards reaching this potential. Among the molecules in saliva, proteins and peptides arguably have the most value: they can directly indicate biochemical functions linked to a health condition/disease state, and they are attractive targets for biomarker assay development. However, cataloging and defining the human salivary proteome is challenging given the dynamic, chemically heterogeneous and complex nature of the system. In addition, the overall human saliva proteome is composed of several "sub-proteomes" which include: intact full length proteins, proteins carrying post-translational modifications (PTMs), low molecular weight peptides, and the metaproteome, derived from protein products from nonhuman organisms (e.g. microbes) present in the oral cavity. Presented here will be a summary of communal efforts to meet the challenge of characterizing the multifaceted saliva proteome, focusing on the use of mass spectrometry as the proteomic technology of choice. Implications of these efforts to characterize the salivary proteome in the context of disease diagnostics will also be discussed.

  20. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment

    DEFF Research Database (Denmark)

    Welker, F.

    2018-01-01

    Background: The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identificati......Background: The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein...... not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against......), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations...

  1. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    KAUST Repository

    Marondedze, Claudius; Wong, Aloysius Tze; Groen, Arnoud; Serano, Natalia Lorena Gorron; Jankovic, Boris R.; Lilley, Kathryn; Gehring, Christoph A; Thomas, Ludivine

    2014-01-01

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  2. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    Directory of Open Access Journals (Sweden)

    Claudius Marondedze

    2014-12-01

    Full Text Available The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  3. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    KAUST Repository

    Marondedze, Claudius

    2014-12-31

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  4. Proteomic profiling of antibody-inducing immunogens in tumor tissue identifies PSMA1, LAP3, ANXA3, and maspin as colon cancer markers

    Science.gov (United States)

    Yang, Qian; Roehrl, Michael H.; Wang, Julia Y.

    2018-01-01

    We hypothesized that cancer tissue immunogens – antigens capable of inducing specific antibody production in patients – are promising targets for development of precision diagnostics and humoral immunotherapies. We developed an innovative immuno-proteomic strategy and identified new immunogenic markers of colon cancer. Proteins from cancers and matched normal tissues were separated by 2D gel electrophoresis and blotted with serum antibodies from the same patients. Antibody-reactive proteins were sequenced by mass spectrometry and validated by Western blotting and immunohistochemistry. 170 serum antibody-reactive proteins were identified only in cancerous but not matched normal. Among these, proteasome subunit alpha type 1 (PSA1), leucine aminopeptidase 3 (LAP3), annexin A3 (ANXA3), and maspin (serpin B5) were reproducibly found in tissues from three patients. Differential expression patterns were confirmed in samples from eight patients with various stages of colon adenocarcinoma and liver metastases. These tumor-resident proteins and/or their associated serum antibodies may be promising markers for colon cancer screening and early diagnosis. Furthermore, tumor tissue-specific antibodies could potentially be exploited as immunotherapeutic targets against cancer. More generally, proteomic profiling of antibody-inducing cancer-associated immunogens represents a powerful generic method for uncovering the tumor antigen-ome, i.e., the totality of immunogenic tumor-associated proteins. PMID:29423100

  5. Rapid dopaminergic modulation of the fish hypothalamic transcriptome and proteome.

    Directory of Open Access Journals (Sweden)

    Jason T Popesku

    2010-08-01

    Full Text Available Dopamine (DA is a major neurotransmitter playing an important role in the regulation of vertebrate reproduction. We developed a novel method for the comparison of transcriptomic and proteomic data obtained from in vivo experiments designed to study the neuroendocrine actions of DA.Female goldfish were injected (i.p. with DA agonists (D1-specific; SKF 38393, or D2-specific; LY 171555 and sacrificed after 5 h. Serum LH levels were reduced by 57% and 75% by SKF 38393 and LY 171555, respectively, indicating that the treatments produced physiologically relevant responses in vivo. Bioinformatic strategies and a ray-finned fish database were established for microarray and iTRAQ proteomic analysis of the hypothalamus, revealing a total of 3088 mRNAs and 42 proteins as being differentially regulated by the treatments. Twenty one proteins and mRNAs corresponding to these proteins appeared on both lists. Many of the mRNAs and proteins affected by the treatments were grouped into the Gene Ontology categorizations of protein complex, signal transduction, response to stimulus, and regulation of cellular processes. There was a 57% and 14% directional agreement between the differentially-regulated mRNAs and proteins for SKF 38393 and LY 171555, respectively.The results demonstrate the applicability of advanced high-throughput genomic and proteomic analyses in an amendable well-studied teleost model species whose genome has yet to be sequenced. We demonstrate that DA rapidly regulates multiple hypothalamic pathways and processes that are also known to be involved in pathologies of the central nervous system.

  6. Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage.

    Science.gov (United States)

    Van, Phu T; Schmid, Amy K; King, Nichole L; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T; Goo, Young Ah; Deutsch, Eric W; Reiss, David J; Mallick, Parag; Baliga, Nitin S

    2008-09-01

    The relatively small numbers of proteins and fewer possible post-translational modifications in microbes provide a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a PeptideAtlas (PA) covering 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636 000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has highlighted plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore, we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics.

  7. Quantitative profiling of serum samples using TMT protein labelling, fractionation and LC-MS/MS.

    Science.gov (United States)

    Sinclair, John; Timms, John F

    2011-08-01

    Blood-borne biomarkers are urgently required for the early detection, accurate diagnosis and prognosis of disease. Additionally, improved methods of profiling serum and plasma proteins for biomarker discovery efforts are needed. Herein, we report a quantitative method based on amino-group labelling of serum proteins (rather than peptides) with isobaric tandem mass tags (TMT) and incorporating immune-based depletion, gel-based and strong anion exchange separation of proteins prior to differential endoproteinase treatment and liquid chromatography tandem mass spectrometry. We report a generally higher level of quantitative coverage of the serum proteome compared to other peptide-based isobaric tagging approaches and show the potential of the method by applying it to a set of unique samples that pre-date the diagnosis of pancreatic cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Network-based analysis of proteomic profiles

    KAUST Repository

    Wong, Limsoon

    2016-01-26

    Mass spectrometry (MS)-based proteomics is a widely used and powerful tool for profiling systems-wide protein expression changes. It can be applied for various purposes, e.g. biomarker discovery in diseases and study of drug responses. Although RNA-based high-throughput methods have been useful in providing glimpses into the underlying molecular processes, the evidences they provide are indirect. Furthermore, RNA and corresponding protein levels have been known to have poor correlation. On the other hand, MS-based proteomics tend to have consistency issues (poor reproducibility and inter-sample agreement) and coverage issues (inability to detect the entire proteome) that need to be urgently addressed. In this talk, I will discuss how these issues can be addressed by proteomic profile analysis techniques that use biological networks (especially protein complexes) as the biological context. In particular, I will describe several techniques that we have been developing for network-based analysis of proteomics profile. And I will present evidence that these techniques are useful in identifying proteomics-profile analysis results that are more consistent, more reproducible, and more biologically coherent, and that these techniques allow expansion of the detected proteome to uncover and/or discover novel proteins.

  9. Arabidopsis peroxisome proteomics

    Directory of Open Access Journals (Sweden)

    John D. Bussell

    2013-04-01

    Full Text Available The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, there remains a considerable gap between peroxisomes and chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches.

  10. Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Robert Claude

    2011-09-01

    Full Text Available Abstract Background Staphylococcus aureus is one of the most prevalent pathogens to cause mastitis in dairy cattle. Intramammary infection of dairy cows with S. aureus is often subclinical, due to the pathogen's ability to evade the innate defense mechanisms, but this can lead to chronic infection. A sub-population of S. aureus, known as small colony variant (SCV, displays atypical phenotypic characteristics, causes persistent infections, and is more resistant to antibiotics than parent strains. Therefore, it was hypothesized that the host immune response will be different for SCV than its parental or typical strains of S. aureus. In this study, the local and systemic immune protein responses to intramammary infection with three strains of S. aureus, including a naturally occurring bovine SCV strain (SCV Heba3231, were characterized. Serum and casein-depleted milk cytokine levels (interleukin-8, interferon-γ, and transforming growth factor-β1, as well as serum haptoglobin concentrations were monitored over time after intramammary infection with each of the three S. aureus strains. Furthermore, comparative proteomics was used to evaluate milk proteome profiles during acute and chronic phases of S. aureus intramammary infection. Results Serum IL-8, IFN-γ, and TGF-β1 responses differed in dairy cows challenged with different strains of S. aureus. Changes in overall serum haptoglobin concentrations were observed for each S. aureus challenge group, but there were no significant differences observed between groups. In casein-depleted milk, strain-specific differences in the host IFN-γ response were observed, but inducible IL-8 and TGF-β1 concentrations were not different between groups. Proteomic analysis of the milk following intramammary infection revealed unique host protein expression profiles that were dependent on the infecting strain as well as phase of infection. Notably, the protein, component-3 of the proteose peptone (CPP3, was

  11. Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles

    International Nuclear Information System (INIS)

    Schäffler, Martin; Semmler-Behnke, Manuela; Takenaka, Shinji; Wenk, Alexander; Schleh, Carsten; Johnston, Blair D; Kreyling, Wolfgang G; Sarioglu, Hakan; Hauck, Stefanie M

    2013-01-01

    When nanoparticles (NP) enter the body they come into contact with body fluids containing proteins which can adsorb to their surface. These proteins may influence the NP interactions with the biological vicinity, eventually determining their biological fate inside the body. Adsorption of the most abundantly binding proteins was studied after an in vitro 24 hr incubation of monodisperse, negatively charged 5, 15 and 80 nm gold spheres (AuNP) in mouse serum by a two-step analysis: proteomic protein identification and quantitative protein biochemistry. The adsorbed proteins were separated from non-adsorbed proteins by centrifugation and gel electrophoresis and identified using a MALDI-TOF-MS-Proteomics-Analyzer. Quantitative analysis of proteins in gel bands by protein densitometry, required the focus on predominantly binding serum proteins. Numerous proteins adsorbed to the AuNP depending on their size, e.g. apolipoproteins or complement C3. The qualitative and quantitative amount of adsorbed proteins differed between 5, 15 and 80 nm AuNP. Band intensities of adsorbed proteins decreased with increasing AuNP sizes based not only on their mass but also on their surface area. Summarizing, the AuNP surface is covered with serum proteins containing transport and immune related proteins among others. Hence, protein binding depends on the size, surface area and curvature of the AuNP. (paper)

  12. Proteomics Insights into Autophagy.

    Science.gov (United States)

    Cudjoe, Emmanuel K; Saleh, Tareq; Hawkridge, Adam M; Gewirtz, David A

    2017-10-01

    Autophagy, a conserved cellular process by which cells recycle their contents either to maintain basal homeostasis or in response to external stimuli, has for the past two decades become one of the most studied physiological processes in cell biology. The 2016 Nobel Prize in Medicine and Biology awarded to Dr. Ohsumi Yoshinori, one of the first scientists to characterize this cellular mechanism, attests to its importance. The induction and consequent completion of the process of autophagy results in wide ranging changes to the cellular proteome as well as the secretome. MS-based proteomics affords the ability to measure, in an unbiased manner, the ubiquitous changes that occur when autophagy is initiated and progresses in the cell. The continuous improvements and advances in mass spectrometers, especially relating to ionization sources and detectors, coupled with advances in proteomics experimental design, has made it possible to study autophagy, among other process, in great detail. Innovative labeling strategies and protein separation techniques as well as complementary methods including immuno-capture/blotting/staining have been used in proteomics studies to provide more specific protein identification. In this review, we will discuss recent advances in proteomics studies focused on autophagy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Progress in stable isotope labeled quantitative proteomics methods].

    Science.gov (United States)

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  14. NIH Common Fund - Disruptive Proteomics Technologies - Challenges and Opportunities | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    This Request for Information (RFI) is directed toward determining how best to accelerate research in disruptive proteomics technologies. The Disruptive Proteomics Technologies (DPT) Working Group of the NIH Common Fund wishes to identify gaps and opportunities in current technologies and methodologies related to proteome-wide measurements.  For the purposes of this RFI, “disruptive” is defined as very rapid, very significant gains, similar to the "disruptive" technology development that occurred in DNA sequencing technology.

  15. A decade of proteomics accomplished! Central and Eastern European Proteomic Conference (CEEPC) celebrates its 10th Anniversary in Budapest, Hungary.

    Science.gov (United States)

    Gadher, Suresh Jivan; Drahos, László; Vékey, Károly; Kovarova, Hana

    2017-07-01

    The Central and Eastern European Proteomic Conference (CEEPC) proudly celebrated its 10th Anniversary with an exciting scientific program inclusive of proteome, proteomics and systems biology in Budapest, Hungary. Since 2007, CEEPC has represented 'state-of the-art' proteomics in and around Central and Eastern Europe and these series of conferences have become a well-recognized event in the proteomic calendar. Fresher challenges and global healthcare issues such as ageing and chronic diseases are driving clinical and scientific research towards regenerative, reparative and personalized medicine. To this end, proteomics may enable diverse intertwining research fields to reach their end goals. CEEPC will endeavor to facilitate these goals.

  16. Proteome reference map of Drosophila melanogaster head.

    Science.gov (United States)

    Lee, Tian-Ren; Huang, Shun-Hong; Lee, Chi-Ching; Lee, Hsiao-Yun; Chan, Hsin-Tzu; Lin, Kuo-Sen; Chan, Hong-Lin; Lyu, Ping-Chiang

    2012-06-01

    Drosophila melanogaster has been used as a genetic model organism to understand the fundamental molecular mechanisms in human biology including memory formation that has been reported involving protein synthesis and/or post-translational modification. In this study, we employed a proteomic platform based on fluorescent 2DE and MALDI-TOF MS to build a standard D. melanogaster head proteome map for proteome-proteome comparison. In order to facilitate the comparison, an interactive database has been constructed for systematically integrating and analyzing the proteomes from different conditions and further implicated to study human diseases related to D. melanogaster model. In summary, the fundamental head proteomic database and bioinformatic analysis will be useful for further elucidating the biological mechanisms such as memory formation and neurodegenerative diseases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Clinical diagnosis and typing of systemic amyloidosis in subcutaneous fat aspirates by mass spectrometry-based proteomics.

    Science.gov (United States)

    Vrana, Julie A; Theis, Jason D; Dasari, Surendra; Mereuta, Oana M; Dispenzieri, Angela; Zeldenrust, Steven R; Gertz, Morie A; Kurtin, Paul J; Grogg, Karen L; Dogan, Ahmet

    2014-07-01

    Examination of abdominal subcutaneous fat aspirates is a practical, sensitive and specific method for the diagnosis of systemic amyloidosis. Here we describe the development and implementation of a clinical assay using mass spectrometry-based proteomics to type amyloidosis in subcutaneous fat aspirates. First, we validated the assay comparing amyloid-positive (n=43) and -negative (n=26) subcutaneous fat aspirates. The assay classified amyloidosis with 88% sensitivity and 96% specificity. We then implemented the assay as a clinical test, and analyzed 366 amyloid-positive subcutaneous fat aspirates in a 4-year period as part of routine clinical care. The assay had a sensitivity of 90%, and diverse amyloid types, including immunoglobulin light chain (74%), transthyretin (13%), serum amyloid A (%1), gelsolin (1%), and lysozyme (1%), were identified. Using bioinformatics, we identified a universal amyloid proteome signature, which has high sensitivity and specificity for amyloidosis similar to that of Congo red staining. We curated proteome databases which included variant proteins associated with systemic amyloidosis, and identified clonotypic immunoglobulin variable gene usage in immunoglobulin light chain amyloidosis, and the variant peptides in hereditary transthyretin amyloidosis. In conclusion, mass spectrometry-based proteomic analysis of subcutaneous fat aspirates offers a powerful tool for the diagnosis and typing of systemic amyloidosis. The assay reveals the underlying pathogenesis by identifying variable gene usage in immunoglobulin light chains and the variant peptides in hereditary amyloidosis. Copyright© Ferrata Storti Foundation.

  18. Site specific modification of the human plasma proteome by methylglyoxal

    International Nuclear Information System (INIS)

    Kimzey, Michael J.; Kinsky, Owen R.; Yassine, Hussein N.; Tsaprailis, George; Stump, Craig S.; Monks, Terrence J.; Lau, Serrine S.

    2015-01-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC–MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R + 72) and hydroimidazolone (R + 54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan–HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. - Highlights: • Methylglyoxal (MG) selectively modifies arginine sites in human plasma proteome. • Dihydroxyimidazolidine and hydroimidazolone adducts on serum albumin identified • MG modification on albumin R257 associated with loss of drug site I binding capacity • MRM-tandem mass spectrometry enables sensitive detection of albumin MG-R257. • Site-specific MG modification may

  19. Site specific modification of the human plasma proteome by methylglyoxal

    Energy Technology Data Exchange (ETDEWEB)

    Kimzey, Michael J.; Kinsky, Owen R. [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Yassine, Hussein N. [Department of Medicine, The University of Arizona, Tucson, AZ 85721 (United States); Tsaprailis, George [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Stump, Craig S. [Department of Medicine, The University of Arizona, Tucson, AZ 85721 (United States); Southern Arizona VA Health Care System, Tucson, AZ 85723 (United States); Monks, Terrence J. [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States); Lau, Serrine S., E-mail: lau@pharmacy.arizona.edu [Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721 (United States)

    2015-12-01

    Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC–MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R + 72) and hydroimidazolone (R + 54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan–HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients. - Highlights: • Methylglyoxal (MG) selectively modifies arginine sites in human plasma proteome. • Dihydroxyimidazolidine and hydroimidazolone adducts on serum albumin identified • MG modification on albumin R257 associated with loss of drug site I binding capacity • MRM-tandem mass spectrometry enables sensitive detection of albumin MG-R257. • Site-specific MG modification may

  20. Proteomics in pulmonary research: selected methodical aspects

    Directory of Open Access Journals (Sweden)

    Martin Petrek

    2007-10-01

    Full Text Available Recent years witness rapid expansion of applications of proteomics to clinical research including non-malignant lung disorders. These developments bring along the need for standardisation of proteomic experiments. This paper briefly reviews basic methodical aspects of appliedproteomic studies using SELDI-TOF mass spectrometry platform as example but also emphasizes general aspects of quality assurance in proteomics. Key-words: lung proteome, quality assurance, SELDI-TOF MS

  1. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Salvato, Fernanda; Havelund, Jesper Foged; Chen, Mingjie

    2014-01-01

    Mitochondria are called the powerhouses of the cell. To better understand the role of mitochondria in maintaining and regulating metabolism in storage tissues, highly purified mitochondria were isolated from dormant potato tubers (Solanum tuberosum 'Folva') and their proteome investigated. Proteins...... manner using normalized spectral counts including as many as 5-fold more "extreme" proteins (low mass, high isoelectric point, hydrophobic) than previous mitochondrial proteome studies. We estimate that this compendium of proteins represents a high coverage of the potato tuber mitochondrial proteome...

  2. Effects on pig immunophysiology, PBMC proteome and brain neurotransmitters caused by group mixing stress and human-animal relationship

    Science.gov (United States)

    Valent, Daniel; Arroyo, Laura; Peña, Raquel; Yu, Kuai; Carreras, Ricard; Mainau, Eva; Velarde, Antonio

    2017-01-01

    Peripheral blood mononuclear cells (PBMC) are an interesting sample for searching for biomarkers with proteomic techniques because they are easy to obtain and do not contain highly abundant, potentially masking proteins. Two groups of pigs (n = 56) were subjected to mixing under farm conditions and afterwards subjected to different management treatments: negative handling (NH) and positive handling (PH). Serum and PBMC samples were collected at the beginning of the experiment one week after mixing (t0) and after two months of different handling (t2). Brain areas were collected after slaughter and neurotransmitters quantified by HPLC. Hair cortisol and serum acute phase proteins decreased and serum glutathione peroxidase increased at t2, indicating a lower degree of stress at t2 after adaptation to the farm. Differential gel electrophoresis (DIGE) was applied to study the effects of time and treatment on the PBMC proteome. A total of 54 differentially expressed proteins were identified, which were involved in immune system modulation, cell adhesion and motility, gene expression, splicing and translation, protein degradation and folding, oxidative stress and metabolism. Thirty-seven protein spots were up-regulated at t2 versus t0 whereas 27 were down-regulated. Many of the identified proteins share the characteristic of being potentially up or down-regulated by cortisol, indicating that changes in protein abundance between t0 and t2 are, at least in part, consequence of lower stress upon adaptation to the farm conditions after group mixing. Only slight changes in brain neurotransmitters and PBMC oxidative stress markers were observed. In conclusion, the variation in hair cortisol and serum APPs as well as the careful analysis of the identified proteins indicate that changes in protein composition in PBMC throughout time is mainly due to a decrease in the stress status of the individuals, following accommodation to the farm and the new group. PMID:28475627

  3. Effects on pig immunophysiology, PBMC proteome and brain neurotransmitters caused by group mixing stress and human-animal relationship.

    Science.gov (United States)

    Valent, Daniel; Arroyo, Laura; Peña, Raquel; Yu, Kuai; Carreras, Ricard; Mainau, Eva; Velarde, Antonio; Bassols, Anna

    2017-01-01

    Peripheral blood mononuclear cells (PBMC) are an interesting sample for searching for biomarkers with proteomic techniques because they are easy to obtain and do not contain highly abundant, potentially masking proteins. Two groups of pigs (n = 56) were subjected to mixing under farm conditions and afterwards subjected to different management treatments: negative handling (NH) and positive handling (PH). Serum and PBMC samples were collected at the beginning of the experiment one week after mixing (t0) and after two months of different handling (t2). Brain areas were collected after slaughter and neurotransmitters quantified by HPLC. Hair cortisol and serum acute phase proteins decreased and serum glutathione peroxidase increased at t2, indicating a lower degree of stress at t2 after adaptation to the farm. Differential gel electrophoresis (DIGE) was applied to study the effects of time and treatment on the PBMC proteome. A total of 54 differentially expressed proteins were identified, which were involved in immune system modulation, cell adhesion and motility, gene expression, splicing and translation, protein degradation and folding, oxidative stress and metabolism. Thirty-seven protein spots were up-regulated at t2 versus t0 whereas 27 were down-regulated. Many of the identified proteins share the characteristic of being potentially up or down-regulated by cortisol, indicating that changes in protein abundance between t0 and t2 are, at least in part, consequence of lower stress upon adaptation to the farm conditions after group mixing. Only slight changes in brain neurotransmitters and PBMC oxidative stress markers were observed. In conclusion, the variation in hair cortisol and serum APPs as well as the careful analysis of the identified proteins indicate that changes in protein composition in PBMC throughout time is mainly due to a decrease in the stress status of the individuals, following accommodation to the farm and the new group.

  4. Label-free LC-MSe in tissue and serum reveals protein networks underlying differences between benign and malignant serous ovarian tumors.

    Directory of Open Access Journals (Sweden)

    Wouter Wegdam

    Full Text Available PURPOSE: To identify proteins and (molecular/biological pathways associated with differences between benign and malignant epithelial ovarian tumors. EXPERIMENTAL PROCEDURES: Serum of six patients with a serous adenocarcinoma of the ovary was collected before treatment, with a control group consisting of six matched patients with a serous cystadenoma. In addition to the serum, homogeneous regions of cells exhibiting uniform histology were isolated from benign and cancerous tissue by laser microdissection. We subsequently employed label-free liquid chromatography tandem mass spectrometry (LC-MSe to identify proteins in these serum and tissues samples. Analyses of differential expression between samples were performed using Bioconductor packages and in-house scripts in the statistical software package R. Hierarchical clustering and pathway enrichment analyses were performed, as well as network enrichment and interactome analysis using MetaCore. RESULTS: In total, we identified 20 and 71 proteins that were significantly differentially expressed between benign and malignant serum and tissue samples, respectively. The differentially expressed protein sets in serum and tissue largely differed with only 2 proteins in common. MetaCore network analysis, however inferred GCR-alpha and Sp1 as common transcriptional regulators. Interactome analysis highlighted 14-3-3 zeta/delta, 14-3-3 beta/alpha, Alpha-actinin 4, HSP60, and PCBP1 as critical proteins in the tumor proteome signature based on their relative overconnectivity. The data have been deposited to the ProteomeXchange with identifier PXD001084. DISCUSSION: Our analysis identified proteins with both novel and previously known associations to ovarian cancer biology. Despite the small overlap between differentially expressed protein sets in serum and tissue, APOA1 and Serotransferrin were significantly lower expressed in both serum and cancer tissue samples, suggesting a tissue-derived effect in serum

  5. Red blood cell (RBC) membrane proteomics--Part I: Proteomics and RBC physiology.

    Science.gov (United States)

    Pasini, Erica M; Lutz, Hans U; Mann, Matthias; Thomas, Alan W

    2010-01-03

    Membrane proteomics is concerned with accurately and sensitively identifying molecules involved in cell compartmentalisation, including those controlling the interface between the cell and the outside world. The high lipid content of the environment in which these proteins are found often causes a particular set of problems that must be overcome when isolating the required material before effective HPLC-MS approaches can be performed. The membrane is an unusually dynamic cellular structure since it interacts with an ever changing environment. A full understanding of this critical cell component will ultimately require, in addition to proteomics, lipidomics, glycomics, interactomics and study of post-translational modifications. Devoid of nucleus and organelles in mammalian species other than camelids, and constantly in motion in the blood stream, red blood cells (RBCs) are the sole mammalian oxygen transporter. The fact that mature mammalian RBCs have no internal membrane-bound organelles, somewhat simplifies proteomics analysis of the plasma membrane and the fact that it has no nucleus disqualifies microarray based methods. Proteomics has the potential to provide a better understanding of this critical interface, and thereby assist in identifying new approaches to diseases. (c) 2009 Elsevier B.V. All rights reserved.

  6. EDRN Longitudinal Serum Biorepository — EDRN Public Portal

    Science.gov (United States)

    Four percent of EDRN Registry mutation carriers developed cancer within a year after beginning follow-up in this registry; within 2 years, 10% had developed cancer. Within 2 years, 17% had developed either a cancer or a pre-malignant lesion (e.g. adenoma). Our goal is to recruit 265 mutation carriers from the EDRN High Risk Registry and Hereditary Cancer Center for the Longitudinal Serum Biorepository (LSB). Based on the cancer rates observed to date in the EDRN Registry, four years of follow-up in a group of this size would be expected to yield 53 invasive and in situ cancers and 37 benign premalignant lesions. All subjects in the serum biorepository (1)have signed consent (2) are counseled carriers (APC, BRCA1, BRCA2, CDH1, CDKN2A, MLH1, MSH2, MSH6) and (3) are enrolled in family studies through CU's Department of Preventive Medicine and/or are enrolled in the EDRN High Risk Registry. Post specimen medical history is collected annually. Serum and plasma are aliquoted for respository storage and stored in labeled cryovials in an ultra low temperature (-86C) freezer. Specimens in the LSB are available for use in EDRN biomarker development and validation studies.

  7. Computational Omics Pre-Awardees | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) is pleased to announce the pre-awardees of the Computational Omics solicitation. Working with NVIDIA Foundation's Compute the Cure initiative and Leidos Biomedical Research Inc., the NCI, through this solicitation, seeks to leverage computational efforts to provide tools for the mining and interpretation of large-scale publicly available ‘omics’ datasets.

  8. Proteomic Analysis of Chinese Hamster Ovary Cells

    DEFF Research Database (Denmark)

    Baycin-Hizal, Deniz; Tabb, David L.; Chaerkady, Raghothama

    2012-01-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimens......To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis...

  9. Semen proteomics and male infertility.

    Science.gov (United States)

    Jodar, Meritxell; Soler-Ventura, Ada; Oliva, Rafael

    2017-06-06

    Semen is a complex body fluid containing an admixture of spermatozoa suspended in secretions from the testes and epididymis which are mixed at the time of ejaculation with secretions from other accessory sex glands such as the prostate and seminal vesicles. High-throughput technologies have revealed that, contrary to the idea that sperm cells are simply a silent delivery vehicle of the male genome to the oocyte, the sperm cells in fact provide both a specific epigenetically marked DNA together with a complex population of proteins and RNAs crucial for embryogenesis. Similarly, -omic technologies have also enlightened that seminal fluid seems to play a much greater role than simply being a medium to carry the spermatozoa through the female reproductive tract. In the present review, we briefly overview the sperm cell biology, consider the key issues in sperm and seminal fluid sample preparation for high-throughput proteomic studies, describe the current state of the sperm and seminal fluid proteomes generated by high-throughput proteomic technologies and provide new insights into the potential communication between sperm and seminal fluid. In addition, comparative proteomic studies open a window to explore the potential pathogenic mechanisms of infertility and the discovery of potential biomarkers with clinical significance. The review updates the numerous proteomics studies performed on semen, including spermatozoa and seminal fluid. In addition, an integrative analysis of the testes, sperm and seminal fluid proteomes is also included providing insights into the molecular mechanisms that regulate the generation, maturation and transit of spermatozoa. Furthermore, the compilation of several differential proteomic studies focused on male infertility reveals potential pathways disturbed in specific subtypes of male infertility and points out towards future research directions in the field. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project.

    Science.gov (United States)

    Omenn, Gilbert S; Lane, Lydie; Lundberg, Emma K; Overall, Christopher M; Deutsch, Eric W

    2017-12-01

    The Human Proteome Organization (HUPO) Human Proteome Project (HPP) continues to make progress on its two overall goals: (1) completing the protein parts list, with an annual update of the HUPO draft human proteome, and (2) making proteomics an integrated complement to genomics and transcriptomics throughout biomedical and life sciences research. neXtProt version 2017-01-23 has 17 008 confident protein identifications (Protein Existence [PE] level 1) that are compliant with the HPP Guidelines v2.1 ( https://hupo.org/Guidelines ), up from 13 664 in 2012-12 and 16 518 in 2016-04. Remaining to be found by mass spectrometry and other methods are 2579 "missing proteins" (PE2+3+4), down from 2949 in 2016. PeptideAtlas 2017-01 has 15 173 canonical proteins, accounting for nearly all of the 15 290 PE1 proteins based on MS data. These resources have extensive data on PTMs, single amino acid variants, and splice isoforms. The Human Protein Atlas v16 has 10 492 highly curated protein entries with tissue and subcellular spatial localization of proteins and transcript expression. Organ-specific popular protein lists have been generated for broad use in quantitative targeted proteomics using SRM-MS or DIA-SWATH-MS studies of biology and disease.

  11. Serum immune-related proteins are differentially expressed during hibernation in the American black bear.

    Directory of Open Access Journals (Sweden)

    Brian A Chow

    Full Text Available Hibernation is an adaptation to conserve energy in the face of extreme environmental conditions and low food availability that has risen in several animal phyla. This phenomenon is characterized by reduced metabolic rate (∼25% of the active basal metabolic rate in hibernating bears and energy demand, while other physiological adjustments are far from clear. The profiling of the serum proteome of the American black bear (Ursus americanus may reveal specific proteins that are differentially modulated by hibernation, and provide insight into the remarkable physiological adaptations that characterize ursid hibernation. In this study, we used differential gel electrophoresis (DIGE analysis, liquid chromatography coupled to tandem mass spectrometry, and subsequent MASCOT analysis of the mass spectra to identify candidate proteins that are differentially expressed during hibernation in captive black bears. Seventy serum proteins were identified as changing by ±1.5 fold or more, out of which 34 proteins increased expression during hibernation. The majority of identified proteins are involved in immune system processes. These included α2-macroglobulin, complement components C1s and C4, immunoglobulin μ and J chains, clusterin, haptoglobin, C4b binding protein, kininogen 1, α2-HS-glycoprotein, and apoplipoproteins A-I and A-IV. Differential expression of a subset of these proteins identified by proteomic analysis was also confirmed by immunodetection. We propose that the observed serum protein changes contribute to the maintenance of the hibernation phenotype and health, including increased capacities for bone maintenance and wound healing during hibernation in bears.

  12. Proteomic approaches in brain research and neuropharmacology.

    Science.gov (United States)

    Vercauteren, Freya G G; Bergeron, John J M; Vandesande, Frans; Arckens, Lut; Quirion, Rémi

    2004-10-01

    Numerous applications of genomic technologies have enabled the assembly of unprecedented inventories of genes, expressed in cells under specific physiological and pathophysiological conditions. Complementing the valuable information generated through functional genomics with the integrative knowledge of protein expression and function should enable the development of more efficient diagnostic tools and therapeutic agents. Proteomic analyses are particularly suitable to elucidate posttranslational modifications, expression levels and protein-protein interactions of thousands of proteins at a time. In this review, two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) investigations of brain tissues in neurodegenerative diseases such as Alzheimer's disease, Down syndrome and schizophrenia, and the construction of 2D-PAGE proteome maps of the brain are discussed. The role of the Human Proteome Organization (HUPO) as an international coordinating organization for proteomic efforts, as well as challenges for proteomic technologies and data analysis are also addressed. It is expected that the use of proteomic strategies will have significant impact in neuropharmacology over the coming decade.

  13. La importancia de la proteómica en la salud pública: The significance of proteomics in public health

    Directory of Open Access Journals (Sweden)

    Rosa Victoria Pando-Robles

    2009-01-01

    Full Text Available La salud pública en el nuevo milenio tiene como reto integrar los avances de la genómica al derecho fundamental de la salud de todos los seres humanos. La proteómica, entendida como la disciplina científica que estudia los proteomas, es de vital importancia en la investigación en salud, ya que el conocimiento de las proteínas y moléculas efectoras de la función celular permitirá un mejor entendimiento de la fisiología humana. En este trabajo se describen los antecedentes y los conocimientos básicos del análisis proteómico basado en la espectrometría de masas y se comentan los usos de la proteómica en la búsqueda de biomarcadores para el diagnóstico y pronóstico de diferentes enfermedades, los avances en la comprensión de los trastornos crónicos y algunas enfermedades infecciosas. De manera adicional, se delinean las ventajas de la espectrometría de masas en la genotipificación de patógenos y el estudio de los polimorfismos de una sola base (SNP, por sus siglas en inglés.The proteome is defined as the entirety of proteins expressed by a genome in a given time under specific physiological conditions. In an organism, the cells contain the same genome; however, they express different proteins in response to a specific micro-environment. Proteomics is responsible for the study of proteomes, using a wide range of methodological techniques. Actually, proteomics is a key tool in health research because it has made possible systematic analysis of hundreds of proteins in clinical samples with the promise of discovering new protein biomarkers for different disease conditions. Finally, proteomic strategy is a technology well-suited to provide a better understanding of systems biology and human health.

  14. Proteomic landscape in Central and Eastern Europe: the 9th Central and Eastern European Proteomic Conference, Poznan, Poland

    Czech Academy of Sciences Publication Activity Database

    Gadher, S. J.; Marczak, L.; Luczak, M.; Stobiecki, M.; Widlak, P.; Kovářová, Hana

    2016-01-01

    Roč. 13, č. 1 (2016), s. 5-7 ISSN 1478-9450. [Central and Eastern European Proteomic Conference (CEEPC) /9./. Poznaň, 15.06.2015-18.06.2015] Institutional support: RVO:67985904 Keywords : Central and Eastern Proteomic Conference * proteomics * mass spectrometry imaging Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.849, year: 2016

  15. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant

    NARCIS (Netherlands)

    Zhang, Lina; de Waard, Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A.; van Hooijdonk, Toon; Vervoort, Jacques; van Goudoever, Johannes B.; Hettinga, Kasper

    2016-01-01

    Here we provide data from shot-gun proteomics, using filtered-aided sample preparation (FASP), dimethyl labeling and LC-MS/MS, to quantify the changes in the repertoire of human milk proteins over lactation. Milk serum proteins were analyzed at week 1, 2, 3 4, 8, 16, and 24 in milk from four

  16. Dynamic adaptation of myocardial proteome during heart failure development

    Science.gov (United States)

    Poesch, Axel; Dörr, Marcus; Völker, Uwe; Grube, Karina; Hammer, Elke; Felix, Stephan B.

    2017-01-01

    Heart failure (HF) development is characterized by huge structural changes that are crucial for disease progression. Analysis of time dependent global proteomic adaptations during HF progression offers the potential to gain deeper insights in the disease development and identify new biomarker candidates. Therefore, hearts of TAC (transverse aortic constriction) and sham mice were examined by cardiac MRI on either day 4, 14, 21, 28, 42, and 56 after surgery (n = 6 per group/time point). At each time point, proteomes of the left (LV) and right ventricles (RV) of TAC and sham mice were analyzed by mass spectrometry (MS). In TAC mice, systolic LV heart function worsened from day 4 to day 14, remained on a stable level from day 14 to day 42, and showed a further pronounced decline at day 56. MS analysis identified in the LV 330 and in RV 246 proteins with altered abundance over time (TAC vs. sham, fc≥±2). Functional categorization of proteins disclosed the time-dependent alteration of different pathways. Heat shock protein beta-7 (HSPB7) displayed differences in abundance in tissue and serum at an early stage of HF. This study not only provides an overview of the time dependent molecular alterations during transition to HF, but also identified HSPB7 as a novel blood biomarker candidate for the onset of cardiac remodeling. PMID:28973020

  17. Establishing Substantial Equivalence: Proteomics

    Science.gov (United States)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  18. Identification of Biomarkers for Endometriosis Using Clinical Proteomics

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2015-01-01

    Full Text Available Background: We investigated possible biomarkers for endometriosis (EM using the ClinProt technique and proteomics methods. Methods: We enrolled 50 patients with EM, 34 with benign ovarian neoplasms and 40 healthy volunteers in this study. Serum proteomic spectra were generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS combined with weak cationic exchange (WCX magnetic beads. Possible biomarkers were analyzed by a random and repeat pattern model-validation method that we designed, and ClinProtools software, results were refined using online liquid chromatography-tandem MS. Results: We found a cluster of 5 peptides (4210, 5264, 2660, 5635, and 5904 Da, using 3 peptides (4210, 5904, 2660 Da to discriminate EM patients from healthy volunteers, with 96.67% sensitivity and 100% specificity. We selected 4210 and 5904 m/z, which differed most between patients with EM and controls, and identified them as fragments of ATP1B4, and the fibrinogen alpha (FGA isoform 1/2 of the FGA chain precursor, respectively. Conclusions: ClinProt can identify EM biomarkers, which - most notably - distinguish even early-stage or minimal disease. We found 5 stable peaks at 4210, 5264, 2660, 5635, and 5904 Da as potential EM biomarkers, the strongest of which were associated with ATP1B4 (4210 Da and FGA (5904 Da; this indicates that ATP1B4 and FGA are associated with EM pathogenesis.

  19. Proteome identification of the silkworm middle silk gland

    Directory of Open Access Journals (Sweden)

    Jian-ying Li

    2016-03-01

    Full Text Available To investigate the functional differentiation among the anterior (A, middle (M, and posterior (P regions of silkworm middle silk gland (MSG, their proteomes were characterized by shotgun LC–MS/MS analysis with a LTQ-Orbitrap mass spectrometer. To get better proteome identification and quantification, triplicate replicates of mass spectrometry analysis were performed for each sample. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2014 [1] via the PRIDE partner repository (Vizcaino, 2013 [2] with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003371. The peptide identifications that were further processed by PeptideProphet program in Trans-Proteomic Pipeline (TPP after database search with Mascot software were also available in .XML format files. Data presented here are related to a research article published in Journal of Proteomics by Li et al. (2015 [3]. Keywords: Bombyx mori, Middle silk gland, Silk protein synthesis, Shotgun proteomics, Label-free

  20. A comprehensive proteomics study on platelet concentrates: Platelet proteome, storage time and Mirasol pathogen reduction technology.

    Science.gov (United States)

    Salunkhe, Vishal; De Cuyper, Iris M; Papadopoulos, Petros; van der Meer, Pieter F; Daal, Brunette B; Villa-Fajardo, María; de Korte, Dirk; van den Berg, Timo K; Gutiérrez, Laura

    2018-03-19

    Platelet concentrates (PCs) represent a blood transfusion product with a major concern for safety as their storage temperature (20-24°C) allows bacterial growth, and their maximum storage time period (less than a week) precludes complete microbiological testing. Pathogen inactivation technologies (PITs) provide an additional layer of safety to the blood transfusion products from known and unknown pathogens such as bacteria, viruses, and parasites. In this context, PITs, such as Mirasol Pathogen Reduction Technology (PRT), have been developed and are implemented in many countries. However, several studies have shown in vitro that Mirasol PRT induces a certain level of platelet shape change, hyperactivation, basal degranulation, and increased oxidative damage during storage. It has been suggested that Mirasol PRT might accelerate what has been described as the platelet storage lesion (PSL), but supportive molecular signatures have not been obtained. We aimed at dissecting the influence of both variables, that is, Mirasol PRT and storage time, at the proteome level. We present comprehensive proteomics data analysis of Control PCs and PCs treated with Mirasol PRT at storage days 1, 2, 6, and 8. Our workflow was set to perform proteomics analysis using a gel-free and label-free quantification (LFQ) approach. Semi-quantification was based on LFQ signal intensities of identified proteins using MaxQuant/Perseus software platform. Data are available via ProteomeXchange with identifier PXD008119. We identified marginal differences between Mirasol PRT and Control PCs during storage. However, those significant changes at the proteome level were specifically related to the functional aspects previously described to affect platelets upon Mirasol PRT. In addition, the effect of Mirasol PRT on the platelet proteome appeared not to be exclusively due to an accelerated or enhanced PSL. In summary, semi-quantitative proteomics allows to discern between proteome changes due to

  1. Identification of azurocidin as a potential periodontitis biomarker by a proteomic analysis of gingival crevicular fluid

    Directory of Open Access Journals (Sweden)

    Lee Jae-Mok

    2011-07-01

    Full Text Available Abstract Background The inflammatory disease periodontitis results in tooth loss and can even lead to diseases of the whole body if not treated. Gingival crevicular fluid (GCF reflects the condition of the gingiva and contains proteins transuded from serum or cells at inflamed sites. In this study, we aimed to discover potential protein biomarkers for periodontitis in GCF proteome using LC-MS/MS. Results We identified 305 proteins from GCF of healthy individuals and periodontitis patients collected using a sterile gel loading tip by ESI-MS/MS coupled to nano-LC. Among these proteins, about 45 proteins were differentially expressed in the GCF proteome of moderate periodontitis patients when compared to the healthy individuals. We first identified azurocidin in the GCF, but not the saliva, as an upregulated protein in the periodontitis patients and verified its increased expression during periodontitis by ELISA using the GCF of the classified periodontitis patients compared to the healthy individuals. In addition, we found that azurocidin inhibited the differentiation of bone marrow-derived macrophages to osteoclasts. Conclusions Our results show that GCF collection using a gel loading tip and subsequent LC-MS/MS analysis following 1D-PAGE proteomic separation are effective for the analysis of the GCF proteome. Our current results also suggest that azurocidin could be a potential biomarker candidate for the early detection of inflammatory periodontal destruction by gingivitis and some chronic periodontitis. Our data also suggest that azurocidin may have an inhibitory role in osteoclast differentiation and, thus, a protective role in alveolar bone loss during the early stages of periodontitis.

  2. Proteome-wide analysis and diel proteomic profiling of the cyanobacterium Arthrospira platensis PCC 8005.

    Directory of Open Access Journals (Sweden)

    Sabine Matallana-Surget

    Full Text Available The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.

  3. Comparison of protein extraction methods suitable for proteomics ...

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... An efficient protein extraction method is a prerequisite for successful implementation of proteomics. ... research, it is noteworthy to discover a proteome ..... Proteomic analysis of rice (Oryza sativa) seeds during germination.

  4. Plasma proteomic study in patients with high altitude pulmonary edema (HAPE

    Directory of Open Access Journals (Sweden)

    Yong-jun LUO

    2012-01-01

    Full Text Available Objective  To investigate the differential expressions of protein in the plasma proteome in patients suffering from high altitude pulmonary edema (HAPE and their implications. Methods  The plasmas of six HAPE patients and six healthy controls were studied. The high-abundant proteins in the plasma were removed. The low-abundant proteins in the plasma/serum were segregated by 2-DE. MALDI-TOF/MS was adopted to measure the peptide fingerprints after the differential protein spots were digested by enzymes. Comparison and analysis were made in the GenBank. Results  The immunoglobulin K1 light chain, serum transferrin protein precursor, and α-trypsin inhibitor heavy chain-related protein expressions were upregulated in HAPE patients compared with the control group. However the human fibrin glue coagulation protein 3 was down-regulated. Conclusion  The differential expression of the above four proteins in the plasma of HAPE patients may be related to the occurrence of HAPE and can be used as the target point for the prediction of HAPE.

  5. Urine Proteomics in the Era of Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Ashley Beasley-Green

    2016-11-01

    Full Text Available With the technological advances of mass spectrometry (MS-based platforms, clinical proteomics is one of the most rapidly growing areas in biomedical research. Urine proteomics has become a popular subdiscipline of clinical proteomics because it is an ideal source for the discovery of noninvasive disease biomarkers. The urine proteome offers a comprehensive view of the local and systemic physiology since the proteome is primarily composed of proteins/peptides from the kidneys and plasma. The emergence of MS-based proteomic platforms as prominent bioanalytical tools in clinical applications has enhanced the identification of protein-based urinary biomarkers. This review highlights the characteristics of urine that make it an attractive biofluid for biomarker discovery and the impact of MS-based technologies on the clinical assessment of urinary protein biomarkers.

  6. Proteomics of Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Raquel González-Fernández

    2010-01-01

    Full Text Available Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  7. Proteomic Analysis of Plasma-Purified VLDL, LDL, and HDL Fractions from Atherosclerotic Patients Undergoing Carotid Endarterectomy: Identification of Serum Amyloid A as a Potential Marker

    Directory of Open Access Journals (Sweden)

    Antonio J. Lepedda

    2013-01-01

    Full Text Available Apolipoproteins are very heterogeneous protein family, implicated in plasma lipoprotein structural stabilization, lipid metabolism, inflammation, or immunity. Obtaining detailed information on apolipoprotein composition and structure may contribute to elucidating lipoprotein roles in atherogenesis and to developing new therapeutic strategies for the treatment of lipoprotein-associated disorders. This study aimed at developing a comprehensive method for characterizing the apolipoprotein component of plasma VLDL, LDL, and HDL fractions from patients undergoing carotid endarterectomy, by means of two-dimensional electrophoresis (2-DE coupled with Mass Spectrometry analysis, useful for identifying potential markers of plaque presence and vulnerability. The adopted method allowed obtaining reproducible 2-DE maps of exchangeable apolipoproteins from VLDL, LDL, and HDL. Twenty-three protein isoforms were identified by peptide mass fingerprinting analysis. Differential proteomic analysis allowed for identifying increased levels of acute-phase serum amyloid A protein (AP SAA in all lipoprotein fractions, especially in LDL from atherosclerotic patients. Results have been confirmed by western blotting analysis on each lipoprotein fraction using apo AI levels for data normalization. The higher levels of AP SAA found in patients suggest a role of LDL as AP SAA carrier into the subendothelial space of artery wall, where AP SAA accumulates and may exert noxious effects.

  8. The Redox Proteome*

    Science.gov (United States)

    Go, Young-Mi; Jones, Dean P.

    2013-01-01

    The redox proteome consists of reversible and irreversible covalent modifications that link redox metabolism to biologic structure and function. These modifications, especially of Cys, function at the molecular level in protein folding and maturation, catalytic activity, signaling, and macromolecular interactions and at the macroscopic level in control of secretion and cell shape. Interaction of the redox proteome with redox-active chemicals is central to macromolecular structure, regulation, and signaling during the life cycle and has a central role in the tolerance and adaptability to diet and environmental challenges. PMID:23861437

  9. Proteomic landscape in Central and Eastern Europe: the 9th Central and Eastern European Proteomic Conference, Poznań, Poland.

    Science.gov (United States)

    Gadher, Suresh Jivan; Marczak, Łukasz; Łuczak, Magdalena; Stobiecki, Maciej; Widlak, Piotr; Kovarova, Hana

    2016-01-01

    Every year since 2007, the Central and Eastern European Proteomic Conference (CEEPC) has excelled in representing state-of-the-art proteomics in and around Central and Eastern Europe, and linking it to international institutions worldwide. Its mission remains to contribute to all approaches of proteomics including traditional and often-revisited methodologies as well as the latest technological achievements in clinical, quantitative and structural proteomics with a view to systems biology of a variety of processes. The 9th CEEPC was held from June 15th to 18th, 2015, at the Institute of Bioorganic Chemistry, Polish Academy of Sciences in Poznań, Poland. The scientific program stimulated exchange of proteomic knowledge whilst the spectacular venue of the conference allowed participants to enjoy the cobblestoned historical city of Poznań.

  10. Quantitative Proteomics Reveals Temporal Proteomic Changes in Signaling Pathways during BV2 Mouse Microglial Cell Activation.

    Science.gov (United States)

    Woo, Jongmin; Han, Dohyun; Wang, Joseph Injae; Park, Joonho; Kim, Hyunsoo; Kim, Youngsoo

    2017-09-01

    The development of systematic proteomic quantification techniques in systems biology research has enabled one to perform an in-depth analysis of cellular systems. We have developed a systematic proteomic approach that encompasses the spectrum from global to targeted analysis on a single platform. We have applied this technique to an activated microglia cell system to examine changes in the intracellular and extracellular proteomes. Microglia become activated when their homeostatic microenvironment is disrupted. There are varying degrees of microglial activation, and we chose to focus on the proinflammatory reactive state that is induced by exposure to such stimuli as lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Using an improved shotgun proteomics approach, we identified 5497 proteins in the whole-cell proteome and 4938 proteins in the secretome that were associated with the activation of BV2 mouse microglia by LPS or IFN-γ. Of the differentially expressed proteins in stimulated microglia, we classified pathways that were related to immune-inflammatory responses and metabolism. Our label-free parallel reaction monitoring (PRM) approach made it possible to comprehensively measure the hyper-multiplex quantitative value of each protein by high-resolution mass spectrometry. Over 450 peptides that corresponded to pathway proteins and direct or indirect interactors via the STRING database were quantified by label-free PRM in a single run. Moreover, we performed a longitudinal quantification of secreted proteins during microglial activation, in which neurotoxic molecules that mediate neuronal cell loss in the brain are released. These data suggest that latent pathways that are associated with neurodegenerative diseases can be discovered by constructing and analyzing a pathway network model of proteins. Furthermore, this systematic quantification platform has tremendous potential for applications in large-scale targeted analyses. The proteomics data for

  11. Application of proteomics to ecology and population biology.

    Science.gov (United States)

    Karr, T L

    2008-02-01

    Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.

  12. Virtual Labs in proteomics: new E-learning tools.

    Science.gov (United States)

    Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva

    2012-05-17

    Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Analysis of mass spectrometry data in proteomics

    DEFF Research Database (Denmark)

    Matthiesen, Rune; Jensen, Ole N

    2008-01-01

    The systematic study of proteins and protein networks, that is, proteomics, calls for qualitative and quantitative analysis of proteins and peptides. Mass spectrometry (MS) is a key analytical technology in current proteomics and modern mass spectrometers generate large amounts of high-quality data...... that in turn allow protein identification, annotation of secondary modifications, and determination of the absolute or relative abundance of individual proteins. Advances in mass spectrometry-driven proteomics rely on robust bioinformatics tools that enable large-scale data analysis. This chapter describes...... some of the basic concepts and current approaches to the analysis of MS and MS/MS data in proteomics....

  14. Clinical proteomics in kidney disease as an exponential technology: heading towards the disruptive phase.

    Science.gov (United States)

    Sanchez-Niño, Maria Dolores; Sanz, Ana B; Ramos, Adrian M; Fernandez-Fernandez, Beatriz; Ortiz, Alberto

    2017-04-01

    Exponential technologies double in power or processing speed every year, whereas their cost halves. Deception and disruption are two key stages in the development of exponential technologies. Deception occurs when, after initial introduction, technologies are dismissed as irrelevant, while they continue to progress, perhaps not as fast or with so many immediate practical applications as initially thought. Twenty years after the first publications, clinical proteomics is still not available in most hospitals and some clinicians have felt deception at unfulfilled promises. However, there are indications that clinical proteomics may be entering the disruptive phase, where, once refined, technologies disrupt established industries or procedures. In this regard, recent manuscripts in CKJ illustrate how proteomics is entering the clinical realm, with applications ranging from the identification of amyloid proteins in the pathology lab, to a new generation of urinary biomarkers for chronic kidney disease (CKD) assessment and outcome prediction. Indeed, one such panel of urinary peptidomics biomarkers, CKD273, recently received a Food and Drug Administration letter of support, the first ever in the CKD field. In addition, a must-read resource providing information on kidney disease-related proteomics and systems biology databases and how to access and use them in clinical decision-making was also recently published in CKJ .

  15. P19-S Managing Proteomics Data from Data Generation and Data Warehousing to Central Data Repository and Journal Reviewing Processes

    Science.gov (United States)

    Thiele, H.; Glandorf, J.; Koerting, G.; Reidegeld, K.; Blüggel, M.; Meyer, H.; Stephan, C.

    2007-01-01

    In today’s proteomics research, various techniques and instrumentation bioinformatics tools are necessary to manage the large amount of heterogeneous data with an automatic quality control to produce reliable and comparable results. Therefore a data-processing pipeline is mandatory for data validation and comparison in a data-warehousing system. The proteome bioinformatics platform ProteinScape has been proven to cover these needs. The reprocessing of HUPO BPP participants’ MS data was done within ProteinScape. The reprocessed information was transferred into the global data repository PRIDE. ProteinScape as a data-warehousing system covers two main aspects: archiving relevant data of the proteomics workflow and information extraction functionality (protein identification, quantification and generation of biological knowledge). As a strategy for automatic data validation, different protein search engines are integrated. Result analysis is performed using a decoy database search strategy, which allows the measurement of the false-positive identification rate. Peptide identifications across different workflows, different MS techniques, and different search engines are merged to obtain a quality-controlled protein list. The proteomics identifications database (PRIDE), as a public data repository, is an archiving system where data are finally stored and no longer changed by further processing steps. Data submission to PRIDE is open to proteomics laboratories generating protein and peptide identifications. An export tool has been developed for transferring all relevant HUPO BPP data from ProteinScape into PRIDE using the PRIDE.xml format. The EU-funded ProDac project will coordinate the development of software tools covering international standards for the representation of proteomics data. The implementation of data submission pipelines and systematic data collection in public standards–compliant repositories will cover all aspects, from the generation of MS data

  16. Maillard Proteomics: Opening New Pages

    Directory of Open Access Journals (Sweden)

    Alena Soboleva

    2017-12-01

    Full Text Available Protein glycation is a ubiquitous non-enzymatic post-translational modification, formed by reaction of protein amino and guanidino groups with carbonyl compounds, presumably reducing sugars and α-dicarbonyls. Resulting advanced glycation end products (AGEs represent a highly heterogeneous group of compounds, deleterious in mammals due to their pro-inflammatory effect, and impact in pathogenesis of diabetes mellitus, Alzheimer’s disease and ageing. The body of information on the mechanisms and pathways of AGE formation, acquired during the last decades, clearly indicates a certain site-specificity of glycation. It makes characterization of individual glycation sites a critical pre-requisite for understanding in vivo mechanisms of AGE formation and developing adequate nutritional and therapeutic approaches to reduce it in humans. In this context, proteomics is the methodology of choice to address site-specific molecular changes related to protein glycation. Therefore, here we summarize the methods of Maillard proteomics, specifically focusing on the techniques providing comprehensive structural and quantitative characterization of glycated proteome. Further, we address the novel break-through areas, recently established in the field of Maillard research, i.e., in vitro models based on synthetic peptides, site-based diagnostics of metabolism-related diseases (e.g., diabetes mellitus, proteomics of anti-glycative defense, and dynamics of plant glycated proteome during ageing and response to environmental stress.

  17. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    Directory of Open Access Journals (Sweden)

    Rita E. Serda

    2011-01-01

    Full Text Available Mass transport of drug delivery vehicles is guided by particle properties, such as size, shape, composition, and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two-dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light variable chain, fibrinogen, and complement component 1 compared to their anionic counterparts. Anionic microparticles were found to accumulate in equal abundance in murine liver and spleen, whereas cationic microparticles showed preferential accumulation in the spleen. Immunohistochemistry supported macrophage uptake of both anionic and cationic microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution.

  18. Proteomic Analysis of Serum Opsonins Impacting Biodistribution and Cellular Association of Porous Silicon Microparticles

    Science.gov (United States)

    Serda, Rita E.; Blanco, Elvin; Mack, Aaron; Stafford, Susan J.; Amra, Sarah; Li, Qingpo; van de Ven, Anne L.; Tanaka, Takemi; Torchilin, Vladimir P.; Wiktorowicz, John E.; Ferrari, Mauro

    2014-01-01

    Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution. PMID:21303614

  19. First systematic plant proteomics workshop in Botany Department, University of Delhi: transferring proteomics knowledge to next-generation researchers and students.

    Science.gov (United States)

    Deswal, Renu; Abat, Jasmeet Kaur; Sehrawat, Ankita; Gupta, Ravi; Kashyap, Prakriti; Sharma, Shruti; Sharma, Bhavana; Chaurasia, Satya Prakash; Chanu, Sougrakpam Yaiphabi; Masi, Antonio; Agrawal, Ganesh Kumar; Sarkar, Abhijit; Agrawal, Raj; Dunn, Michael J; Renaut, Jenny; Rakwal, Randeep

    2014-07-01

    International Plant Proteomics Organization (INPPO) outlined ten initiatives to promote plant proteomics in each and every country. With greater emphasis in developing countries, one of those was to "organize workshops at national and international levels to train manpower and exchange information". This third INPPO highlights covers the workshop organized for the very first time in a developing country, India, at the Department of Botany in University of Delhi on December 26-30, 2013 titled - "1(st) Plant Proteomics Workshop / Training Program" under the umbrella of INPPO India-Nepal chapter. Selected 20 participants received on-hand training mainly on gel-based proteomics approach along with manual booklet and parallel lectures on this and associated topics. In house, as well as invited experts drawn from other Universities and Institutes (national and international), delivered talks on different aspects of gel-based and gel-free proteomics. Importance of gel-free proteomics approach, translational proteomics, and INPPO roles were presented and interactively discussed by a group of three invited speakers Drs. Ganesh Kumar Agrawal (Nepal), Randeep Rakwal (Japan), and Antonio Masi (Italy). Given the output of this systematic workshop, it was proposed and thereafter decided to be organized every alternate year; the next workshop will be held in 2015. Furthermore, possibilities on providing advanced training to those students / researchers / teachers with basic knowledge in proteomics theory and experiments at national and international levels were discussed. INPPO is committed to generating next-generation trained manpower in proteomics, and it would only happen by the firm determination of scientists to come forward and do it. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Comparison of proteomic biomarker panels in urine and serum for ovarian cancer diagnosis

    DEFF Research Database (Denmark)

    Petri, Anette Lykke; Simonsen, Anja Hviid; Høgdall, Estrid

    2010-01-01

    The purposes of this study were to confirm previously found candidate epithelial ovarian cancer biomarkers in urine and to compare a paired serum biomarker panel and a urine biomarker panel from the same study cohort with regard to the receiver operating characteristic curve (ROC) area under the ...

  1. MS-based monitoring of proteolytic decay of synthetic reporter peptides for quality control of plasma and serum specimens.

    Science.gov (United States)

    Findeisen, Peter; Thumfart, Jörg Oliver; Costina, Victor; Hofheinz, Ralf; Neumaier, Michael

    2013-09-01

    To determine the preanalytical quality of serum and plasma by monitoring the time-dependent ex vivo decay of a synthetic reporter peptide (RP) with liquid chromatography/mass spectrometry (LC/MS). Serum and plasma specimens were spiked with the RP and proteolytic fragments were monitored with LC/MS at different preanalytical time points ranging from 2 to 24 hours after blood withdrawal. The concentration of fragments changed in a time-dependent manner, and respective peptide profiles were used to classify specimens according to their preanalytical time span. Classification accuracy was high, with values always above 0.89 for areas under receiver operating characteristic curves. This "proteomics degradation clock" can be used to estimate the preanalytical quality of serum and plasma and might have impact on quality control procedures of biobanking repositories.

  2. The Seed Proteome Web Portal

    Directory of Open Access Journals (Sweden)

    Marc eGalland

    2012-06-01

    Full Text Available The Seed Proteome Web Portal (SPWP; http://www.seedproteome.com/ gives access to information both on quantitative seed proteomic data and on seed-related protocols. Firstly, the SPWP provides access to the 475 different Arabidopsis seed proteins annotated from 2 dimensional electrophoresis (2DE maps. Quantitative data are available for each protein according to their accumulation profile during the germination process. These proteins can be retrieved either in list format or directly on scanned 2DE maps. These proteomic data reveal that 40% of seed proteins maintain a stable abundance over germination, up to radicle protrusion. During sensu stricto germination (24 h upon imbibition about 50% of the proteins display quantitative variations, exhibiting an increased abundance (35% or a decreasing abundance (15%. Moreover, during radicle protrusion (24 h to 48 h upon imbibition, 41% proteins display quantitative variations with an increased (23% or a decreasing abundance (18%. In addition, an analysis of the seed proteome revealed the importance of protein post-translational modifications as demonstrated by the poor correlation (r2 = 0.29 between the theoretical (predicted from Arabidopsis genome and the observed protein isoelectric points. Secondly, the SPWP is a relevant technical resource for protocols specifically dedicated to Arabidopsis seed proteome studies. Concerning 2D electrophoresis, the user can find efficient procedures for sample preparation, electrophoresis coupled with gel analysis and protein identification by mass spectrometry, which we have routinely used during the last 12 years. Particular applications such as the detection of oxidized proteins or de novo synthetized proteins radiolabeled by [35S]-methionine are also given in great details. Future developments of this portal will include proteomic data from studies such as dormancy release and protein turnover through de novo protein synthesis analyses during germination.

  3. Molecular stratification and precision medicine in systemic sclerosis from genomic and proteomic data.

    Science.gov (United States)

    Martyanov, Viktor; Whitfield, Michael L

    2016-01-01

    The goal of this review is to summarize recent advances into the pathogenesis and treatment of systemic sclerosis (SSc) from genomic and proteomic studies. Intrinsic gene expression-driven molecular subtypes of SSc are reproducible across three independent datasets. These subsets are a consistent feature of SSc and are found in multiple end-target tissues, such as skin and esophagus. Intrinsic subsets as well as baseline levels of molecular target pathways are potentially predictive of clinical response to specific therapeutics, based on three recent clinical trials. A gene expression-based biomarker of modified Rodnan skin score, a measure of SSc skin severity, can be used as a surrogate outcome metric and has been validated in a recent trial. Proteome analyses have identified novel biomarkers of SSc that correlate with SSc clinical phenotypes. Integrating intrinsic gene expression subset data, baseline molecular pathway information, and serum biomarkers along with surrogate measures of modified Rodnan skin score provides molecular context in SSc clinical trials. With validation, these approaches could be used to match patients with the therapies from which they are most likely to benefit and thus increase the likelihood of clinical improvement.

  4. Liver proteomics in progressive alcoholic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Harshica [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Wiktorowicz, John E.; Soman, Kizhake V. [Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Kaphalia, Bhupendra S.; Khan, M. Firoze [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States); Shakeel Ansari, G.A., E-mail: sansari@utmb.edu [Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2013-02-01

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  5. Dentistry proteomics: from laboratory development to clinical practice.

    Science.gov (United States)

    Rezende, Taia M B; Lima, Stella M F; Petriz, Bernardo A; Silva, Osmar N; Freire, Mirna S; Franco, Octávio L

    2013-12-01

    Despite all the dental information acquired over centuries and the importance of proteome research, the cross-link between these two areas only emerged around mid-nineties. Proteomic tools can help dentistry in the identification of risk factors, early diagnosis, prevention, and systematic control that will promote the evolution of treatment in all dentistry specialties. This review mainly focuses on the evolution of dentistry in different specialties based on proteomic research and how these tools can improve knowledge in dentistry. The subjects covered are an overview of proteomics in dentistry, specific information on different fields in dentistry (dental structure, restorative dentistry, endodontics, periodontics, oral pathology, oral surgery, and orthodontics) and future directions. There are many new proteomic technologies that have never been used in dentistry studies and some dentistry areas that have never been explored by proteomic tools. It is expected that a greater integration of these areas will help to understand what is still unknown in oral health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  6. Marine proteomics: a critical assessment of an emerging technology.

    Science.gov (United States)

    Slattery, Marc; Ankisetty, Sridevi; Corrales, Jone; Marsh-Hunkin, K Erica; Gochfeld, Deborah J; Willett, Kristine L; Rimoldi, John M

    2012-10-26

    The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.

  7. Analysis of Serum Proteom after Intravenous Injection of cultivated wild ginseng pharmacopuncture

    Directory of Open Access Journals (Sweden)

    Dong-Hee,Lee

    2006-06-01

    Full Text Available Objectives : To observe the changes in the serum proteins after intravenous injection of cultivated wild ginseng pharmacopuncture. Methods : Blood was collected before and after the administration of cultivated wild ginseng pharmacopuncture and only the serum was taken. Then differences in the spots on the scanned image after carrying out 2-Dimensional electrophoresis were located and conducted mass analysis and protein identification. Results : Following results were obtained from the comparative analysis of serum proteins before and after the administration of cultivated wild ginseng pharmacopuncture. 1. 28 spots were identified before and after the administration. 2. In confirming manifestation degree, spots with more than two-times increase were 204, 1302, 2205, 3105, 7104, 8006, spots with more than one-time increase were 1101, 1505, 2013, 2403, 3009, 3010, 4002, 4009, 6704, 8101, and spots with decrease were 205, 801, 803, 3205, 5202, 6105, 6106, 7103, 9001, 9003. 3. After conducting protein identification, proteins 205, 804, 1302, 4009, 6105, 6106 are unidentified yet, and 1l01 is unnamed protein. Protein 204 is identified as complement receptor CR2-C3d, 801 as YAPl protein, 803 as antitrypsin polymer, 1505 as PRO0684, 2013 and 3010 as proapolipoprotein, 2205 as USP48, 2403 as vitamin D binding protein, 3009 as complement component 4A preprotein, 3105 as immunoglobulin lambda chain, 3205 as transthyretin, 4002 as Ras-related protein Ral-A, 4204 as beta actin, 5202 and 7104 as apolipoprotein Ll, 6704 as alpha 2 macroglobulin precursor, 7103 as complement component 3 precursor, 8006 as testis-specific protein Y, 8101 as transferrin, 9001 as (Alpha-Oxy, Beta-(Cl12gdeoxy T-State Human Hemoglobin, and 9003 as human hemoglobin. 4. Immune protein CR2-C3d(204, which acts against microbes and pathogenic organisms, was increased by more than two-times after the administration of pharmacopuncture. 5. Antitrypsin(803, which is secreted with

  8. Ultra-sensitive high performance liquid chromatography-laser-induced fluorescence based proteomics for clinical applications.

    Science.gov (United States)

    Patil, Ajeetkumar; Bhat, Sujatha; Pai, Keerthilatha M; Rai, Lavanya; Kartha, V B; Chidangil, Santhosh

    2015-09-08

    An ultra-sensitive high performance liquid chromatography-laser induced fluorescence (HPLC-LIF) based technique has been developed by our group at Manipal, for screening, early detection, and staging for various cancers, using protein profiling of clinical samples like, body fluids, cellular specimens, and biopsy-tissue. More than 300 protein profiles of different clinical samples (serum, saliva, cellular samples and tissue homogenates) from volunteers (normal, and different pre-malignant/malignant conditions) were recorded using this set-up. The protein profiles were analyzed using principal component analysis (PCA) to achieve objective detection and classification of malignant, premalignant and healthy conditions with high sensitivity and specificity. The HPLC-LIF protein profiling combined with PCA, as a routine method for screening, diagnosis, and staging of cervical cancer and oral cancer, is discussed in this paper. In recent years, proteomics techniques have advanced tremendously in life sciences and medical sciences for the detection and identification of proteins in body fluids, tissue homogenates and cellular samples to understand biochemical mechanisms leading to different diseases. Some of the methods include techniques like high performance liquid chromatography, 2D-gel electrophoresis, MALDI-TOF-MS, SELDI-TOF-MS, CE-MS and LC-MS techniques. We have developed an ultra-sensitive high performance liquid chromatography-laser induced fluorescence (HPLC-LIF) based technique, for screening, early detection, and staging for various cancers, using protein profiling of clinical samples like, body fluids, cellular specimens, and biopsy-tissue. More than 300 protein profiles of different clinical samples (serum, saliva, cellular samples and tissue homogenates) from healthy and volunteers with different malignant conditions were recorded by using this set-up. The protein profile data were analyzed using principal component analysis (PCA) for objective

  9. A proteomic and ultrastructural characterization of Aspergillus fumigatus' conidia adaptation at different culture ages.

    Science.gov (United States)

    Anjo, Sandra I; Figueiredo, Francisco; Fernandes, Rui; Manadas, Bruno; Oliveira, Manuela

    2017-05-24

    The airborne fungus Aspergillus fumigatus is one of the most common agents of human fungal infections with a remarkable impact on public health. However, A. fumigatus conidia atmospheric resistance and longevity mechanisms are still unknown. Therefore, in this work, the processes underlying conidial adaptation were studied by a time course evaluation of the proteomics and ultrastructural changes of A. fumigatus' conidia at three time-points selected according to relevant changes previously established in conidial survival rates. The proteomics characterization revealed that conidia change from a highly active metabolic to a dormant state, culminating in cell autolysis as revealed by the increased levels of hydrolytic enzymes. Structural characterization corroborates the proteomics data, with noticeable changes observed in mitochondria, nucleus and plasma membrane ultrastructure, accompanied by the formation of autophagic vacuoles. These changes are consistent with both apoptotic and autophagic processes, and indicate that the changes in protein levels may anticipate those in cell morphology. The findings presented in this work not only clarify the processes underlying conidial adaptation to nutrient limiting conditions but can also be exploited for improving infection control strategies and in the development of new therapeutical drugs. Additionally, the present study was deposited in a public database and thus, it may also be a valuable dataset to be used by the scientific community as a tool to understand and identified other potential targets associated with conidia resistance. Copyright © 2017. Published by Elsevier B.V.

  10. Proteogenomics Dashboard for the Human Proteome Project.

    Science.gov (United States)

    Tabas-Madrid, Daniel; Alves-Cruzeiro, Joao; Segura, Victor; Guruceaga, Elizabeth; Vialas, Vital; Prieto, Gorka; García, Carlos; Corrales, Fernando J; Albar, Juan Pablo; Pascual-Montano, Alberto

    2015-09-04

    dasHPPboard is a novel proteomics-based dashboard that collects and reports the experiments produced by the Spanish Human Proteome Project consortium (SpHPP) and aims to help HPP to map the entire human proteome. We have followed the strategy of analog genomics projects like the Encyclopedia of DNA Elements (ENCODE), which provides a vast amount of data on human cell lines experiments. The dashboard includes results of shotgun and selected reaction monitoring proteomics experiments, post-translational modifications information, as well as proteogenomics studies. We have also processed the transcriptomics data from the ENCODE and Human Body Map (HBM) projects for the identification of specific gene expression patterns in different cell lines and tissues, taking special interest in those genes having little proteomic evidence available (missing proteins). Peptide databases have been built using single nucleotide variants and novel junctions derived from RNA-Seq data that can be used in search engines for sample-specific protein identifications on the same cell lines or tissues. The dasHPPboard has been designed as a tool that can be used to share and visualize a combination of proteomic and transcriptomic data, providing at the same time easy access to resources for proteogenomics analyses. The dasHPPboard can be freely accessed at: http://sphppdashboard.cnb.csic.es.

  11. Proteomic Biomarkers for Spontaneous Preterm Birth

    DEFF Research Database (Denmark)

    Kacerovsky, Marian; Lenco, Juraj; Musilova, Ivana

    2014-01-01

    This review aimed to identify, synthesize, and analyze the findings of studies on proteomic biomarkers for spontaneous preterm birth (PTB). Three electronic databases (Medline, Embase, and Scopus) were searched for studies in any language reporting the use of proteomic biomarkers for PTB published...

  12. Using Proteomics to Understand How Leishmania Parasites Survive inside the Host and Establish Infection.

    Science.gov (United States)

    Veras, Patrícia Sampaio Tavares; Bezerra de Menezes, Juliana Perrone

    2016-08-19

    Leishmania is a protozoan parasite that causes a wide range of different clinical manifestations in mammalian hosts. It is a major public health risk on different continents and represents one of the most important neglected diseases. Due to the high toxicity of the drugs currently used, and in the light of increasing drug resistance, there is a critical need to develop new drugs and vaccines to control Leishmania infection. Over the past few years, proteomics has become an important tool to understand the underlying biology of Leishmania parasites and host interaction. The large-scale study of proteins, both in parasites and within the host in response to infection, can accelerate the discovery of new therapeutic targets. By studying the proteomes of host cells and tissues infected with Leishmania, as well as changes in protein profiles among promastigotes and amastigotes, scientists hope to better understand the biology involved in the parasite survival and the host-parasite interaction. This review demonstrates the feasibility of proteomics as an approach to identify new proteins involved in Leishmania differentiation and intracellular survival.

  13. A Selected Reaction Monitoring Mass Spectrometry Protocol for Validation of Proteomic Biomarker Candidates in Studies of Psychiatric Disorders.

    Science.gov (United States)

    Reis-de-Oliveira, Guilherme; Garcia, Sheila; Guest, Paul C; Cassoli, Juliana S; Martins-de-Souza, Daniel

    2017-01-01

    Most biomarker candidates arising from proteomic studies of psychiatric disorders have not progressed for use in clinical studies due to insufficient validation steps. Here we describe a selective reaction monitoring mass spectrometry (SRM-MS) approach that could be used as a follow-up validation tool of proteins identified in blood serum or plasma. This protocol specifically covers the stages of peptide selection and optimization. The increasing application of SRM-MS should enable fast, sensitive, and robust methods with the potential for use in clinical studies involving sampling of serum or plasma. Understanding the molecular mechanisms and identifying potential biomarkers for risk assessment, diagnosis, prognosis, and prediction of drug response goes toward the implementation of translational medicine strategies for improved treatment of patients with psychiatric disorders and other debilitating diseases.

  14. Improving HIV proteome annotation: new features of BioAfrica HIV Proteomics Resource.

    Science.gov (United States)

    Druce, Megan; Hulo, Chantal; Masson, Patrick; Sommer, Paula; Xenarios, Ioannis; Le Mercier, Philippe; De Oliveira, Tulio

    2016-01-01

    The Human Immunodeficiency Virus (HIV) is one of the pathogens that cause the greatest global concern, with approximately 35 million people currently infected with HIV. Extensive HIV research has been performed, generating a large amount of HIV and host genomic data. However, no effective vaccine that protects the host from HIV infection is available and HIV is still spreading at an alarming rate, despite effective antiretroviral (ARV) treatment. In order to develop effective therapies, we need to expand our knowledge of the interaction between HIV and host proteins. In contrast to virus proteins, which often rapidly evolve drug resistance mutations, the host proteins are essentially invariant within all humans. Thus, if we can identify the host proteins needed for virus replication, such as those involved in transporting viral proteins to the cell surface, we have a chance of interrupting viral replication. There is no proteome resource that summarizes this interaction, making research on this subject a difficult enterprise. In order to fill this gap in knowledge, we curated a resource presents detailed annotation on the interaction between the HIV proteome and host proteins. Our resource was produced in collaboration with ViralZone and used manual curation techniques developed by UniProtKB/Swiss-Prot. Our new website also used previous annotations of the BioAfrica HIV-1 Proteome Resource, which has been accessed by approximately 10 000 unique users a year since its inception in 2005. The novel features include a dedicated new page for each HIV protein, a graphic display of its function and a section on its interaction with host proteins. Our new webpages also add information on the genomic location of each HIV protein and the position of ARV drug resistance mutations. Our improved BioAfrica HIV-1 Proteome Resource fills a gap in the current knowledge of biocuration.Database URL:http://www.bioafrica.net/proteomics/HIVproteome.html. © The Author(s) 2016. Published

  15. Proteomics and the dynamic plasma membrane

    DEFF Research Database (Denmark)

    Sprenger, Richard R; Jensen, Ole Nørregaard

    2010-01-01

    plasma membrane is of particular interest, by not only serving as a barrier between the "cell interior" and the external environment, but moreover by organizing and clustering essential components to enable dynamic responses to internal and external stimuli. Defining and characterizing the dynamic plasma...... the challenges in functional proteomic studies of the plasma membrane. We review the recent progress in MS-based plasma membrane proteomics by presenting key examples from eukaryotic systems, including mammals, yeast and plants. We highlight the importance of enrichment and quantification technologies required...... for detailed functional and comparative analysis of the dynamic plasma membrane proteome....

  16. The proteomic dataset for bone marrow derived human mesenchymal stromal cells: Effect of in vitro passaging

    Directory of Open Access Journals (Sweden)

    Samuel T. Mindaye

    2015-12-01

    Full Text Available Bone-marrow derived mesenchymal stromal cells (BMSCs have been in clinical trials for therapy. One major bottleneck in the advancement of BMSC-based products is the challenge associated with cell isolation, characterization, and ensuring cell fitness over the course of in vitro cell propagation steps. The data in this report is part of publications that explored the proteomic changes following in vitro passaging of BMSCs [4] and the molecular heterogeneity in cultures obtained from different human donors [5,6].The methodological details involving cell manufacturing, proteome harvesting, protein identification and quantification as well as the bioinformatic analyses were described to ensure reproducibility of the results.

  17. PROTEOMICS in aquaculture: applications and trends.

    Science.gov (United States)

    Rodrigues, Pedro M; Silva, Tomé S; Dias, Jorge; Jessen, Flemming

    2012-07-19

    Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Proteomics in uveal melanoma.

    LENUS (Irish Health Repository)

    Ramasamy, Pathma

    2014-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with an incidence of 5-7 per million per year. It is associated with the development of metastasis in about 50% of cases, and 40% of patients with uveal melanoma die of metastatic disease despite successful treatment of the primary tumour. The survival rates at 5, 10 and 15 years are 65%, 50% and 45% respectively. Unlike progress made in many other areas of cancer, uveal melanoma is still poorly understood and survival rates have remained similar over the past 25 years. Recently, advances made in molecular genetics have improved our understanding of this disease and stratification of patients into low risk and high risk for developing metastasis. However, only a limited number of studies have been performed using proteomic methods. This review will give an overview of various proteomic technologies currently employed in life sciences research, and discuss proteomic studies of uveal melanoma.

  19. CPTAC Collaborates with Molecular & Cellular Proteomics to Address Reproducibility in Targeted Assay Development | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The journal Molecular & Cellular Proteomics (MCP), in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), part of the National Institutes of Health, announce new guidelines and requirements for papers describing the development and application of targeted mass spectrometry measurements of peptides, modified peptides and proteins (Mol Cell Proteomics 2017; PMID: 28183812).  NCI’s participation is part of NIH’s overall effort to address the r

  20. Challenges for proteomics core facilities.

    Science.gov (United States)

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An individual urinary proteome analysis in normal human beings to define the minimal sample number to represent the normal urinary proteome

    Directory of Open Access Journals (Sweden)

    Liu Xuejiao

    2012-11-01

    Full Text Available Abstract Background The urinary proteome has been widely used for biomarker discovery. A urinary proteome database from normal humans can provide a background for discovery proteomics and candidate proteins/peptides for targeted proteomics. Therefore, it is necessary to define the minimum number of individuals required for sampling to represent the normal urinary proteome. Methods In this study, inter-individual and inter-gender variations of urinary proteome were taken into consideration to achieve a representative database. An individual analysis was performed on overnight urine samples from 20 normal volunteers (10 males and 10 females by 1DLC/MS/MS. To obtain a representative result of each sample, a replicate 1DLCMS/MS analysis was performed. The minimal sample number was estimated by statistical analysis. Results For qualitative analysis, less than 5% of new proteins/peptides were identified in a male/female normal group by adding a new sample when the sample number exceeded nine. In addition, in a normal group, the percentage of newly identified proteins/peptides was less than 5% upon adding a new sample when the sample number reached 10. Furthermore, a statistical analysis indicated that urinary proteomes from normal males and females showed different patterns. For quantitative analysis, the variation of protein abundance was defined by spectrum count and western blotting methods. And then the minimal sample number for quantitative proteomic analysis was identified. Conclusions For qualitative analysis, when considering the inter-individual and inter-gender variations, the minimum sample number is 10 and requires a balanced number of males and females in order to obtain a representative normal human urinary proteome. For quantitative analysis, the minimal sample number is much greater than that for qualitative analysis and depends on the experimental methods used for quantification.

  2. Proteomic approaches in research of cyanobacterial photosynthesis.

    Science.gov (United States)

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  3. Proteomics wants cRacker: automated standardized data analysis of LC-MS derived proteomic data.

    Science.gov (United States)

    Zauber, Henrik; Schulze, Waltraud X

    2012-11-02

    The large-scale analysis of thousands of proteins under various experimental conditions or in mutant lines has gained more and more importance in hypothesis-driven scientific research and systems biology in the past years. Quantitative analysis by large scale proteomics using modern mass spectrometry usually results in long lists of peptide ion intensities. The main interest for most researchers, however, is to draw conclusions on the protein level. Postprocessing and combining peptide intensities of a proteomic data set requires expert knowledge, and the often repetitive and standardized manual calculations can be time-consuming. The analysis of complex samples can result in very large data sets (lists with several 1000s to 100,000 entries of different peptides) that cannot easily be analyzed using standard spreadsheet programs. To improve speed and consistency of the data analysis of LC-MS derived proteomic data, we developed cRacker. cRacker is an R-based program for automated downstream proteomic data analysis including data normalization strategies for metabolic labeling and label free quantitation. In addition, cRacker includes basic statistical analysis, such as clustering of data, or ANOVA and t tests for comparison between treatments. Results are presented in editable graphic formats and in list files.

  4. Automation, parallelism, and robotics for proteomics.

    Science.gov (United States)

    Alterovitz, Gil; Liu, Jonathan; Chow, Jijun; Ramoni, Marco F

    2006-07-01

    The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas.

  5. Expanding the bovine milk proteome through extensive fractionation

    DEFF Research Database (Denmark)

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne

    2013-01-01

    Bovine milk is an agricultural product of tremendous value worldwide. It contains proteins, fat, lactose, vitamins, and minerals. It provides nutrition and immunological protection (e.g., in the gastrointestinal tract) to the newborn and young calf. It also forms an important part of human...... of low abundant proteins. Further, the general health and udder health of the dairy cows delivering the milk may influence the composition of the milk proteome. To gain a more exhaustive and true picture of the milk proteome, we performed an extensive preanalysis fractionation of raw composite milk...... nutrition. The repertoire of proteins in milk (i.e., its proteome) is vast and complex. The milk proteome can be described in detail by mass spectrometry-based proteomics. However, the high concentration of dominating proteins in milk reduces mass spectrometry detection sensitivity and limits detection...

  6. Spermatogenesis in mammals: proteomic insights.

    Science.gov (United States)

    Chocu, Sophie; Calvel, Pierre; Rolland, Antoine D; Pineau, Charles

    2012-08-01

    Spermatogenesis is a highly sophisticated process involved in the transmission of genetic heritage. It includes halving ploidy, repackaging of the chromatin for transport, and the equipment of developing spermatids and eventually spermatozoa with the advanced apparatus (e.g., tightly packed mitochondrial sheat in the mid piece, elongating of the tail, reduction of cytoplasmic volume) to elicit motility once they reach the epididymis. Mammalian spermatogenesis is divided into three phases. In the first the primitive germ cells or spermatogonia undergo a series of mitotic divisions. In the second the spermatocytes undergo two consecutive divisions in meiosis to produce haploid spermatids. In the third the spermatids differentiate into spermatozoa in a process called spermiogenesis. Paracrine, autocrine, juxtacrine, and endocrine pathways all contribute to the regulation of the process. The array of structural elements and chemical factors modulating somatic and germ cell activity is such that the network linking the various cellular activities during spermatogenesis is unimaginably complex. Over the past two decades, advances in genomics have greatly improved our knowledge of spermatogenesis, by identifying numerous genes essential for the development of functional male gametes. Large-scale analyses of testicular function have deepened our insight into normal and pathological spermatogenesis. Progress in genome sequencing and microarray technology have been exploited for genome-wide expression studies, leading to the identification of hundreds of genes differentially expressed within the testis. However, although proteomics has now come of age, the proteomics-based investigation of spermatogenesis remains in its infancy. Here, we review the state-of-the-art of large-scale proteomic analyses of spermatogenesis, from germ cell development during sex determination to spermatogenesis in the adult. Indeed, a few laboratories have undertaken differential protein profiling

  7. Polyphemus, Odysseus and the ovine milk proteome.

    Science.gov (United States)

    Cunsolo, Vincenzo; Fasoli, Elisa; Di Francesco, Antonella; Saletti, Rosaria; Muccilli, Vera; Gallina, Serafina; Righetti, Pier Giorgio; Foti, Salvatore

    2017-01-30

    In the last years the amount of ovine milk production, mainly used to formulate a wide range of different and exclusive dairy products often categorized as gourmet food, has been progressively increasing. Taking also into account that sheep milk (SM) also appears to be potentially less allergenic than cow's one, an in-depth information about its protein composition is essential to improve the comprehension of its potential benefits for human consumption. The present work reports the results of an in-depth characterization of SM whey proteome, carried out by coupling the CPLL technology with SDS-PAGE and high resolution UPLC-nESI MS/MS analysis. This approach allowed the identification of 718 different protein components, 644 of which are from unique genes. Particularly, this identification has expanded literature data about sheep whey proteome by 193 novel proteins previously undetected, many of which are involved in the defence/immunity mechanisms or in the nutrient delivery system. A comparative analysis of SM proteome known to date with cow's milk proteome, evidenced that while about 29% of SM proteins are also present in CM, 71% of the identified components appear to be unique of SM proteome and include a heterogeneous group of components which seem to have health-promoting benefits. The data have been deposited to the ProteomeXchange with identifier . Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Lung Cancer Serum Biomarker Discovery Using Label Free LC-MS/MS

    Science.gov (United States)

    Zeng, Xuemei; Hood, Brian L.; Zhao, Ting; Conrads, Thomas P.; Sun, Mai; Gopalakrishnan, Vanathi; Grover, Himanshu; Day, Roger S.; Weissfeld, Joel L.; Wilson, David O.; Siegfried, Jill M.; Bigbee, William L.

    2011-01-01

    Introduction Lung cancer remains the leading cause of cancer-related death with poor survival due to the late stage at which lung cancer is typically diagnosed. Given the clinical burden from lung cancer, and the relatively favorable survival associated with early stage lung cancer, biomarkers for early detection of lung cancer are of important potential clinical benefit. Methods We performed a global lung cancer serum biomarker discovery study using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a set of pooled non-small cell lung cancer (NSCLC) case sera and matched controls. Immunoaffinity subtraction was used to deplete the top most abundant serum proteins; the remaining serum proteins were subjected to trypsin digestion and analyzed in triplicate by LC-MS/MS. The tandem mass spectrum data were searched against the human proteome database and the resultant spectral counting data were used to estimate the relative abundance of proteins across the case/control serum pools. The spectral counting derived abundances of some candidate biomarker proteins were confirmed with multiple reaction monitoring MS assays. Results A list of 49 differentially abundant candidate proteins was compiled by applying a negative binomial regression model to the spectral counting data (pbiomarkers with statistically significant differential abundance across the lung cancer case/control pools which, when validated, could improve lung cancer early detection. PMID:21304412

  9. The Coming Age of Complete, Accurate, and Ubiquitous Proteomes

    DEFF Research Database (Denmark)

    Mann, M.; Kulak, N.A.; Nagaraj, N.

    2013-01-01

    High-resolution mass spectrometry (MS)-based proteomics has progressed tremendously over the years. For model organisms like yeast, we can now quantify complete proteomes in just a few hours. Developments discussed in this Perspective will soon enable complete proteome analysis of mammalian cells...

  10. The Scottish Structural Proteomics Facility: targets, methods and outputs

    DEFF Research Database (Denmark)

    Oke, Muse; Carter, Lester G; Johnson, Kenneth A

    2010-01-01

    The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report...... reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers...

  11. Glycoproteins and Glycosylation Site Assignments in Cereal seed Proteomes

    DEFF Research Database (Denmark)

    Dedvisitsakul, Plaipol

    The study of plant proteomes is important to further the understanding of biological processes and enhance the agronomical and nutritional value of crops and food products. To gain deeper understanding on the proteome level, it is important to characterize posttranslational modifications. Glycosy......The study of plant proteomes is important to further the understanding of biological processes and enhance the agronomical and nutritional value of crops and food products. To gain deeper understanding on the proteome level, it is important to characterize posttranslational modifications...

  12. Mathematical biodescriptors of proteomics maps: background and applications.

    Science.gov (United States)

    Basak, Subhash C; Gute, Brian D

    2008-05-01

    This article reviews recent developments in the formulation and application of biodescriptors to characterize proteomics maps. Such biodescriptors can be derived by applying techniques from discrete mathematics (graph theory, linear algebra and information theory). This review focuses on the development of biodescriptors for proteomics maps derived from 2D gel electrophoresis. Preliminary results demonstrated that such descriptors have a reasonable ability to differentiate between proteomics patterns that result from exposure to closely related individual chemicals and complex mixtures, such as the jet fuel JP-8. Further research is required to evaluate the utility of these proteomics-based biodescriptors for drug discovery and predictive toxicology.

  13. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    DEFF Research Database (Denmark)

    Bennike, Tue Bjerg; Barnaby, Omar; Steen, Hanno

    2015-01-01

    Synovial fluid is present in all joint cavities, and protects the articular cartilage surfaces in large by lubricating the joint, thus reducing friction. Several studies have described changes in the protein composition of synovial fluid in patients with joint disease. However, the protein concen...... data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935....

  14. Proteomic Profiling of Ex Vivo Expanded CD34-Positive Haematopoetic Cells Derived from Umbilical Cord Blood

    Directory of Open Access Journals (Sweden)

    Heiner Falkenberg

    2013-01-01

    Full Text Available Ex vivo expansion of haematopoetic cells by application of specific cytokines is one approach to overcome boundaries in cord blood transplantation due to limited numbers of haematopoetic stem cells. While many protocols describe an effective increase of total cell numbers and the amount of CD34-positive cells, it still remains unclear if and how the procedure actually affects the cells’ properties. In the presented publications, CD34-positive cells were isolated from cord blood and expanded for up to 7 days in media supplemented with stem cell factor (SCF, thrombopoietin (THPO, interleukin 6 (IL-6, and fms-related tyrosine kinase 3 ligand (FLT3lg. At days 3 and 7, expanded cells were harvested and analyzed by flow cytometry and quantitative proteomics. 2970 proteins were identified, whereof proteomic analysis showed 440 proteins significantly changed in abundance during ex vivo expansion. Despite the fact that haematopoetic cells still expressed CD34 on the surface after 3 days, major changes in regard to the protein profile were observed, while further expansion showed less effect on the proteome level. Enrichment analysis of biological processes clearly showed a proteomic change toward a protein biosynthesis phenotype already within the first three days of expression.

  15. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    Science.gov (United States)

    2007-12-01

    that fascinating fungus known as Coccidioides. I also want to thank the UA Mass Spectrometry Facility and the UA Proteomics Consortium, especially...W. & N. N. Kav. 2006. The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6: 5995-6007. 127. de Godoy, L. M., J. V...IDENTIFICATION OF PROTEIN VACCINE CANDIDATES USING COMPREHENSIVE PROTEOMIC ANALYSIS STRATEGIES by James G. Rohrbough

  16. Proteomics: Protein Identification Using Online Databases

    Science.gov (United States)

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  17. Modification-specific proteomics in plant biology

    DEFF Research Database (Denmark)

    Ytterberg, A Jimmy; Jensen, Ole N

    2010-01-01

    and proteomics. In general, methods for PTM characterization are developed to study yeast and mammalian biology and later adopted to investigate plants. Our point of view is that it is advantageous to enrich for PTMs on the peptide level as part of a quantitative proteomics strategy to not only identify the PTM...

  18. Modifying effect of COMT gene polymorphism and a predictive role for proteomics analysis in children's intelligence in endemic fluorosis area in Tianjin, China.

    Science.gov (United States)

    Zhang, Shun; Zhang, Xiaofei; Liu, Hongliang; Qu, Weidong; Guan, Zhizhong; Zeng, Qiang; Jiang, Chunyang; Gao, Hui; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2015-04-01

    Cumulative fluoride exposure has adverse influences on children's intelligence quotient (IQ). In addition, catechol-O-methyltransferase (COMT) gene Val158Met polymorphism (rs4680) is associated with cognitive performance. This study aimed to evaluate the associations of COMT polymorphism and alterations of protein profiles with children's intelligence in endemic fluorosis area. We recruited 180 schoolchildren (10-12 years old) from high fluoride exposure (1.40 mg/l) and control areas (0.63 mg/l) in Tianjin City, China. The children's IQ, fluoride contents in drinking water (W-F), serum (S-F), and urine (U-F); serum thyroid hormone levels, COMT Val158Met polymorphism, and plasma proteomic profiling were determined. Significant high levels of W-F, S-F, U-F, along with poor IQ scores were observed in the high fluoride exposure group compared with those in control (all P intelligence, whereas the COMT polymorphism may increase the susceptibility to the deficits in IQ due to fluoride exposure. Moreover, the proteomic analysis can provide certain basis for identifying the early biological markers of fluorosis among children. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Biomarker discovery in mass spectrometry-based urinary proteomics.

    Science.gov (United States)

    Thomas, Samuel; Hao, Ling; Ricke, William A; Li, Lingjun

    2016-04-01

    Urinary proteomics has become one of the most attractive topics in disease biomarker discovery. MS-based proteomic analysis has advanced continuously and emerged as a prominent tool in the field of clinical bioanalysis. However, only few protein biomarkers have made their way to validation and clinical practice. Biomarker discovery is challenged by many clinical and analytical factors including, but not limited to, the complexity of urine and the wide dynamic range of endogenous proteins in the sample. This article highlights promising technologies and strategies in the MS-based biomarker discovery process, including study design, sample preparation, protein quantification, instrumental platforms, and bioinformatics. Different proteomics approaches are discussed, and progresses in maximizing urinary proteome coverage and standardization are emphasized in this review. MS-based urinary proteomics has great potential in the development of noninvasive diagnostic assays in the future, which will require collaborative efforts between analytical scientists, systems biologists, and clinicians. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Machine learning applications in proteomics research: how the past can boost the future.

    Science.gov (United States)

    Kelchtermans, Pieter; Bittremieux, Wout; De Grave, Kurt; Degroeve, Sven; Ramon, Jan; Laukens, Kris; Valkenborg, Dirk; Barsnes, Harald; Martens, Lennart

    2014-03-01

    Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan O.; Prášil, Ilja T.; Renaut, Jenny

    2018-01-01

    HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic

  2. Proteomic approach to nanotoxicity.

    Science.gov (United States)

    Matysiak, Magdalena; Kapka-Skrzypczak, Lucyna; Brzóska, Kamil; Gutleb, Arno C; Kruszewski, Marcin

    2016-03-30

    In recent years a large number of engineered nanomaterials (NMs) have been developed with promising technical benefits for consumers and medical appliances. In addition to already known potentially advantageous biological properties (antibiotic, antifungal and antiviral activity) of NMs, many new medical applications of NMs are foreseen, such as drug carriers, contrast agents, radiopharmaceuticals and many others. However, there is increasing concern about potential environmental and health effects due to NMs exposure. An increasing body of evidence suggests that NMs may trigger undesirable hazardous interactions with biological systems with potential to generate harmful effects. In this review we summarized a current state of knowledge on the proteomics approaches to nanotoxicity, including protein corona formation, in vitro and in vivo effects of exposure to NMs on proteome of different classes of organisms, from bacteria and plants to mammals. The effects of NMs on the proteome of environmentally relevant organisms are also described. Despite the benefit that development of nanotechnology may bring to the society, there are still major gaps of knowledge on the influence of nanomaterials on human health and the environment. Thus, it seems necessary to conduct further interdisciplinary research to fill the knowledge gaps in NM toxicity, using more holistic approaches than offered by conventional biological techniques. “OMICS” techniques will certainly help researchers in this field. In this paper we summarized the current stage of knowledge of the effects of nanoparticles on the proteome of different organisms, including those commonly used as an environmentally relevant indicator organisms.

  3. The quest of the human proteome and the missing proteins: digging deeper.

    Science.gov (United States)

    Reddy, Panga Jaipal; Ray, Sandipan; Srivastava, Sanjeeva

    2015-05-01

    Given the diverse range of transcriptional and post-transcriptional mechanisms of gene regulation, the estimates of the human proteome is likely subject to scientific surprises as the field of proteomics has gained momentum worldwide. In this regard, the establishment of the "Human Proteome Draft" using high-resolution mass spectrometry (MS), tissue microarrays, and immunohistochemistry by three independent research groups (laboratories of Pandey, Kuster, and Uhlen) accelerated the pace of proteomics research. The Chromosome Centric Human Proteome Project (C-HPP) has taken initiative towards the completion of the Human Proteome Project (HPP) so as to understand the proteomics correlates of common complex human diseases and biological diversity, not to mention person-to-person and population differences in response to drugs, nutrition, vaccines, and other health interventions and host-environment interactions. Although high-resolution MS-based and antibody microarray approaches have shown enormous promises, we are still unable to map the whole human proteome due to the presence of numerous "missing proteins." In December 2014, at the Indian Institute of Technology Bombay, Mumbai the 6(th) Annual Meeting of the Proteomics Society, India (PSI) and the International Proteomics Conference was held. As part of this interdisciplinary summit, a panel discussion session on "The Quest of the Human Proteome and Missing Proteins" was organized. Eminent scientists in the field of proteomics and systems biology, including Akhilesh Pandey, Gilbert S. Omenn, Mark S. Baker, and Robert L. Mortiz, shed light on different aspects of the human proteome drafts and missing proteins. Importantly, the possible reasons for the "missing proteins" in shotgun MS workflow were identified and debated by experts as low tissue expression, lack of enzymatic digestion site, or protein lost during extraction, among other contributing factors. To capture the missing proteins, the experts' collective

  4. Clinical proteomics: Current status, challenges, and future perspectives

    Directory of Open Access Journals (Sweden)

    Shyh-Horng Chiou

    2011-01-01

    Full Text Available This account will give an overview and evaluation of the current advances in mass spectrometry (MS-based proteomics platforms and technology. A general review of some background information concerning the application of these methods in the characterization of molecular sizes and related protein expression profiles associated with different types of cells under varied experimental conditions will be presented. It is intended to provide a concise and succinct overview to those clinical researchers first exposed to this foremost powerful methodology in modern life sciences of postgenomic era. Proteomic characterization using highly sophisticated and expensive instrumentation of MS has been used to characterize biological samples of complex protein mixtures with vastly different protein structure and composition. These systems are then used to highlight the versatility and potential of the MS-based proteomic strategies for facilitating protein expression analysis of various disease-related organisms or tissues of interest. Major MS-based strategies reviewed herein include (1 matrix-assisted laser desorption ionization-MS and electron-spray ionization proteomics; (2 one-dimensional or two-dimensional gel-based proteomics; (3 gel-free shotgun proteomics in conjunction with liquid chromatography/tandem MS; (4 Multiple reaction monitoring coupled tandem MS quantitative proteomics and; (5 Phosphoproteomics based on immobilized metal affinity chromatography and liquid chromatography-MS/MS.

  5. A community proposal to integrate proteomics activities in ELIXIR.

    Science.gov (United States)

    Vizcaíno, Juan Antonio; Walzer, Mathias; Jiménez, Rafael C; Bittremieux, Wout; Bouyssié, David; Carapito, Christine; Corrales, Fernando; Ferro, Myriam; Heck, Albert J R; Horvatovich, Peter; Hubalek, Martin; Lane, Lydie; Laukens, Kris; Levander, Fredrik; Lisacek, Frederique; Novak, Petr; Palmblad, Magnus; Piovesan, Damiano; Pühler, Alfred; Schwämmle, Veit; Valkenborg, Dirk; van Rijswijk, Merlijn; Vondrasek, Jiri; Eisenacher, Martin; Martens, Lennart; Kohlbacher, Oliver

    2017-01-01

    Computational approaches have been major drivers behind the progress of proteomics in recent years. The aim of this white paper is to provide a framework for integrating computational proteomics into ELIXIR in the near future, and thus to broaden the portfolio of omics technologies supported by this European distributed infrastructure. This white paper is the direct result of a strategy meeting on 'The Future of Proteomics in ELIXIR' that took place in March 2017 in Tübingen (Germany), and involved representatives of eleven ELIXIR nodes. These discussions led to a list of priority areas in computational proteomics that would complement existing activities and close gaps in the portfolio of tools and services offered by ELIXIR so far. We provide some suggestions on how these activities could be integrated into ELIXIR's existing platforms, and how it could lead to a new ELIXIR use case in proteomics. We also highlight connections to the related field of metabolomics, where similar activities are ongoing. This white paper could thus serve as a starting point for the integration of computational proteomics into ELIXIR. Over the next few months we will be working closely with all stakeholders involved, and in particular with other representatives of the proteomics community, to further refine this paper.

  6. Molecular analysis of serum and bronchoalveolar lavage in a mouse model of influenza reveals markers of disease severity that can be clinically useful in humans.

    Directory of Open Access Journals (Sweden)

    Yadunanda Kumar

    Full Text Available BACKGROUND: Management of influenza, a major contributor to the worldwide disease burden, is complicated by lack of reliable methods for early identification of susceptible individuals. Identification of molecular markers that can augment existing diagnostic tools for prediction of severity can be expected to greatly improve disease management capabilities. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed cytokines, proteome flux and protein adducts in bronchoalveolar lavage (BAL and sera from mice infected with influenza A virus (PR8 strain using a previously established non-lethal model of influenza infection. Through detailed cytokine and protein adduct measurements of murine BAL, we first established the temporal profile of innate and adaptive responses as well as macrophage and neutrophil activities in response to influenza infection. A similar analysis was also performed with sera from a longitudinal cohort of influenza patients. We then used an iTRAQ-based, comparative serum proteome analysis to catalog the proteome flux in the murine BAL during the stages correlating with "peak viremia," "inflammatory damage," as well as the "recovery phase." In addition to activation of acute phase responses, a distinct class of lung proteins including surfactant proteins was found to be depleted from the BAL coincident with their "appearance" in the serum, presumably due to leakage of the protein following loss of the integrity of the lung/epithelial barrier. Serum levels of at least two of these proteins were elevated in influenza patients during the febrile phase of infection compared to healthy controls or to the same patients at convalescence. CONCLUSIONS/SIGNIFICANCE: The findings from this study provide a molecular description of disease progression in a mouse model of influenza and demonstrate its potential for translation into a novel class of markers for measurement of acute lung injury and improved case management.

  7. "Does understanding the brain need proteomics and does understanding proteomics need brains?"--Second HUPO HBPP Workshop hosted in Paris.

    Science.gov (United States)

    Hamacher, Michael; Klose, Joachim; Rossier, Jean; Marcus, Katrin; Meyer, Helmut E

    2004-07-01

    The second Human Brain Proteome Project (HBPP) Workshop of the Human Proteome Organisation (HUPO) took place at the Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI) from April 23-24, 2004. During two days, more than 70 attendees from Europe, Asia and the US came together to decide basic strategic approaches, standards and the beginning of a pilot phase prior to further studies of the human brain proteome. The international consortium presented the technological and scientific portfolio and scheduled the time table for the next year.

  8. Pre-fractionation strategies to resolve pea (Pisum sativum sub-proteomes

    Directory of Open Access Journals (Sweden)

    Claudia Nicole Meisrimler

    2015-10-01

    Full Text Available Legumes are important crop plants and pea (Pisum sativum L. has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula G. allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins. Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed.

  9. Characterization of individual mouse cerebrospinal fluid proteomes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles; Orton, Daniel J.; Moore, Ronald J.; Smith, Richard D.

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% false discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.

  10. Inspection, visualisation and analysis of quantitative proteomics data

    OpenAIRE

    Gatto, Laurent

    2016-01-01

    Material Quantitative Proteomics and Data Analysis Course. 4 - 5 April 2016, Queen Hotel, Chester, UK Table D - Inspection, visualisation and analysis of quantitative proteomics data, Laurent Gatto (University of Cambridge)

  11. Proteomic identification of rhythmic proteins in rice seedlings.

    Science.gov (United States)

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  12. Revisiting biomarker discovery by plasma proteomics

    DEFF Research Database (Denmark)

    Geyer, Philipp E; Holdt, Lesca M; Teupser, Daniel

    2017-01-01

    slow rate. As described in this review, mass spectrometry (MS)-based proteomics has become a powerful technology in biological research and it is now poised to allow the characterization of the plasma proteome in great depth. Previous "triangular strategies" aimed at discovering single biomarker...

  13. Expanding the bovine milk proteome through extensive fractionation.

    Science.gov (United States)

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne; Røntved, Christine Maria

    2013-01-01

    Bovine milk is an agricultural product of tremendous value worldwide. It contains proteins, fat, lactose, vitamins, and minerals. It provides nutrition and immunological protection (e.g., in the gastrointestinal tract) to the newborn and young calf. It also forms an important part of human nutrition. The repertoire of proteins in milk (i.e., its proteome) is vast and complex. The milk proteome can be described in detail by mass spectrometry-based proteomics. However, the high concentration of dominating proteins in milk reduces mass spectrometry detection sensitivity and limits detection of low abundant proteins. Further, the general health and udder health of the dairy cows delivering the milk may influence the composition of the milk proteome. To gain a more exhaustive and true picture of the milk proteome, we performed an extensive preanalysis fractionation of raw composite milk collected from documented healthy cows in early lactation. Four simple and industrially applicable techniques exploring the physical and chemical properties of milk, including acidification, filtration, and centrifugation, were used for separation of the proteins. This resulted in 5 different fractions, whose content of proteins were compared with the proteins of nonfractionated milk using 2-dimensional liquid chromatography tandem mass spectrometry analysis. To validate the proteome analysis, spectral counts and ELISA were performed on 7 proteins using the ELISA for estimation of the detection sensitivity limit of the 2-dimensional liquid chromatography tandem mass spectrometry analysis. Each fractionation technique resulted in identification of a unique subset of proteins. However, high-speed centrifugation of milk to whey was by far the best method to achieve high and repeatable proteome coverage. The total number of milk proteins initially detected in nonfractionated milk and the fractions were 635 in 2 replicates. Removal of dominant proteins and filtering for redundancy across the

  14. Comprehensive proteomic analysis of human pancreatic juice

    DEFF Research Database (Denmark)

    Grønborg, Mads; Bunkenborg, Jakob; Kristiansen, Troels Zakarias

    2004-01-01

    Proteomic technologies provide an excellent means for analysis of body fluids for cataloging protein constituents and identifying biomarkers for early detection of cancers. The biomarkers currently available for pancreatic cancer, such as CA19-9, lack adequate sensitivity and specificity...... contributing to late diagnosis of this deadly disease. In this study, we carried out a comprehensive characterization of the "pancreatic juice proteome" in patients with pancreatic adenocarcinoma. Pancreatic juice was first fractionated by 1-dimensional gel electrophoresis and subsequently analyzed by liquid...... in this study could be directly assessed for their potential as biomarkers for pancreatic cancer by quantitative proteomics methods or immunoassays....

  15. Mass Spectrometry for Translational Proteomics: Progress and Clinical Implications

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Erin Shammel; Liu, Tao; Petyuk, Vladislav A.; Burnum-Johnson, Kristin E.; Ibrahim, Yehia M.; Anderson, Gordon A.; Smith, Richard D.

    2012-08-31

    Mass spectrometry (MS)-based proteomics measurements have become increasingly utilized in a wide range of biological and biomedical applications, and have significantly enhanced the understanding of the complex and dynamic nature of the proteome and its connections to biology and diseases. While some MS techniques such as those for targeted analysis are increasingly applied with great success, others such as global quantitative analysis (for e.g. biomarker discovery) are more challenging and continue to be developed and refined to provide the desired throughput, sensitivity and/ or specificity. New MS capabilities and proteomics-based pipelines/strategies also keep enhancing for the advancement of clinical proteomics applications such as protein biomarker discovery and validation. Herein, we provide a brief review to summarize the current state of MS-based proteomics with respect to its advantages and present limitations, while highlighting its potential in future clinical applications.

  16. Acute toxicity of functionalized single wall carbon nanotubes: A biochemical, histopathologic and proteomics approach.

    Science.gov (United States)

    Ahmadi, Homa; Ramezani, Mohammad; Yazdian-Robati, Rezvan; Behnam, Behzad; Razavi Azarkhiavi, Kamal; Hashem Nia, Azadeh; Mokhtarzadeh, Ahad; Matbou Riahi, Maryam; Razavi, Bibi Marjan; Abnous, Khalil

    2017-09-25

    Recently carbon nanotubes (CNTs) showed promising potentials in different biomedical applications but their safe use in humans and probable toxicities are still challenging. The aim of this study was to determine the acute toxicity of functionalized single walled carbon nanotubes (SWCNTs). In this project, PEGylated and Tween functionalized SWCNTs were prepared. BALB/c mice were randomly divided into nine groups, including PEGylated SWCNTs (75,150μg/mouse) and PEG, Tween80 suspended SWCNTs, Tween 80 and a control group (intact mice). One or 7 days after intravenous injection, the mice were killed and serum and livers were collected. The oxidative stress markers, biochemical and histopathological changes were studied. Subsequently, proteomics approach was used to investigate the alterations of protein expression profiles in the liver. Results showed that there were not any significant differences in malondealdehyde (MDA), glutathione (GSH) levels and biochemical enzymes (ALT and AST) between groups, while the histopathological observations of livers showed some injuries. The results of proteomics analysis revealed indolethylamine N-Methyltransferase (INMT), glycine N-Methyltransferase (GNMT), selenium binding protein (Selenbp), thioredoxin peroxidase (TPx), TNF receptor associated protein 1(Trap1), peroxiredoxin-6 (Prdx6), electron transport flavoprotein (Etf-α), regucalcin (Rgn) and ATP5b proteins were differentially expressed in functionalized SWCNTs groups. Western blot analyses confirmed that the changes in Prdx6 were consistent with 2-DE gel analysis. In summary, acute toxicological study on two functionalized SWCNTs did not show any significant toxicity at selected doses. Proteomics analysis also showed that following exposure to functionalized SWCNTs, the expression of some proteins with antioxidant activity and detoxifying properties were increased in liver tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Tissue-based map of the human proteome

    DEFF Research Database (Denmark)

    Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.

    2015-01-01

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transc...

  18. The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience*

    Science.gov (United States)

    Griss, Johannes; Jones, Andrew R.; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G.; Salek, Reza M.; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-01-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. PMID:24980485

  19. Integrated multi-level quality control for proteomic profiling studies using mass spectrometry

    Directory of Open Access Journals (Sweden)

    Barrett Jennifer H

    2008-12-01

    Full Text Available Abstract Background Proteomic profiling using mass spectrometry (MS is one of the most promising methods for the analysis of complex biological samples such as urine, serum and tissue for biomarker discovery. Such experiments are often conducted using MALDI-TOF (matrix-assisted laser desorption/ionisation time-of-flight and SELDI-TOF (surface-enhanced laser desorption/ionisation time-of-flight MS. Using such profiling methods it is possible to identify changes in protein expression that differentiate disease states and individual proteins or patterns that may be useful as potential biomarkers. However, the incorporation of quality control (QC processes that allow the identification of low quality spectra reliably and hence allow the removal of such data before further analysis is often overlooked. In this paper we describe rigorous methods for the assessment of quality of spectral data. These procedures are presented in a user-friendly, web-based program. The data obtained post-QC is then examined using variance components analysis to quantify the amount of variance due to some of the factors in the experimental design. Results Using data from a SELDI profiling study of serum from patients with different levels of renal function, we show how the algorithms described in this paper may be used to detect systematic variability within and between sample replicates, pooled samples and SELDI chips and spots. Manual inspection of those spectral data that were identified as being of poor quality confirmed the efficacy of the algorithms. Variance components analysis demonstrated the relatively small amount of technical variance attributable to day of profile generation and experimental array. Conclusion Using the techniques described in this paper it is possible to reliably detect poor quality data within proteomic profiling experiments undertaken by MS. The removal of these spectra at the initial stages of the analysis substantially improves the

  20. Plant redox proteomics

    DEFF Research Database (Denmark)

    Navrot, Nicolas; Finnie, Christine; Svensson, Birte

    2011-01-01

    PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs......In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox....... To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly...

  1. Comparative proteomic and metabolomic analysis reveal the antiosteoporotic molecular mechanism of icariin from Epimedium brevicornu maxim.

    Science.gov (United States)

    Xue, Liming; Jiang, Yiping; Han, Ting; Zhang, Naidan; Qin, Luping; Xin, Hailiang; Zhang, Qiaoyan

    2016-11-04

    Icariin, a principal flavonoid glycoside of Epimedium brevicornu Maxim, has been widely proved to possess antiosteoporotic activity with promoting bone formation and decreasing bone resorption. However, the involving mechanisms remain unclear. To clear a global insight of signal pathways involved in anti-osteoporotic mechanism of icariin at proteins and metabolites level by integrating the proteomics and NMR metabonomics, in a systems biology approach. Mice were divided into sham, OVX model and icariin-treated OVX group, after 90 days treatment, difference gel electrophoresis combined with MALDI-TOF/TOF proteomics analysis on bone femur and serum metabolomics were carried out for monitor intracellular processes and elucidate anti-osteoporotic mechanism of icariin. Osteoblast and osteoclast were applied to evaluate the potential signal pathways. Twenty three proteins in bone femur, and 8 metabolites in serum, were significantly altered and identified, involving in bone remodeling, energy metabolism, cytoskeleton, lipid metabolism, MAPK signaling, Ca 2+ signaling et, al. Furthermore, animal experiment show icariin could enhance the BMD and BMC, decrease CTX-I level in ovariectomized mice. The mitochondrial membrane potential and the intracellular ATP levels were increased significantly, and the cytoskeleton were improved in icariin-treatment osteoblast and osteoclast. Icariin also increased mRNA expression of Runx2 and osterix of OB, decreased CTR and CAII mRNA expression and protein expression of P38 and JNK. However, icariin did not reveal any inhibition of the collagenolytic activity of cathepsin K, mRNA expression of MMP-9 and protein expression of ERK in osteoclast. we consider icariin as multi-targeting compounds for treating with osteoporosis, involve initiating osteoblastogenesis, inhibiting adipogenesis, and preventing osteoclast differentiation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. HiQuant: Rapid Postquantification Analysis of Large-Scale MS-Generated Proteomics Data.

    Science.gov (United States)

    Bryan, Kenneth; Jarboui, Mohamed-Ali; Raso, Cinzia; Bernal-Llinares, Manuel; McCann, Brendan; Rauch, Jens; Boldt, Karsten; Lynn, David J

    2016-06-03

    Recent advances in mass-spectrometry-based proteomics are now facilitating ambitious large-scale investigations of the spatial and temporal dynamics of the proteome; however, the increasing size and complexity of these data sets is overwhelming current downstream computational methods, specifically those that support the postquantification analysis pipeline. Here we present HiQuant, a novel application that enables the design and execution of a postquantification workflow, including common data-processing steps, such as assay normalization and grouping, and experimental replicate quality control and statistical analysis. HiQuant also enables the interpretation of results generated from large-scale data sets by supporting interactive heatmap analysis and also the direct export to Cytoscape and Gephi, two leading network analysis platforms. HiQuant may be run via a user-friendly graphical interface and also supports complete one-touch automation via a command-line mode. We evaluate HiQuant's performance by analyzing a large-scale, complex interactome mapping data set and demonstrate a 200-fold improvement in the execution time over current methods. We also demonstrate HiQuant's general utility by analyzing proteome-wide quantification data generated from both a large-scale public tyrosine kinase siRNA knock-down study and an in-house investigation into the temporal dynamics of the KSR1 and KSR2 interactomes. Download HiQuant, sample data sets, and supporting documentation at http://hiquant.primesdb.eu .

  3. Differential expression of proteome in aqueous humor in patients with and without glaucoma.

    Science.gov (United States)

    Salamanca, D; Gómez-Chaparro, J L; Hidalgo, A; Labella, F

    2018-04-01

    To determine quantitative and qualitative differences of aqueous humor proteome in patients with and without glaucoma. Observational, descriptive and cross-sectional study of 12 patients (8 men; 4 women) with and without glaucoma. There are 3 groups of minority proteins with serum equimolar contribution of each of the patients. Specimens were obtained during cataract surgery from patients without glaucoma (performed with retrobulbar anaesthesia [cataract retrobulbar patient -CRP-;n=4] or topical [cataract topical patient -CTP-; n=4]), or from patients with glaucoma (performed with retrobulbar anaesthesia [glaucoma retrobulbar patient -GRP-; n=4]). The humor proteome samples were frozen at -80°C until processing by trypsin digestion to obtain tryptic peptides, and then performing liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to obtain the proteome and its differential expression between groups. Statistical analysis was performed using the SPSS v.17 program. The study included 12 patients, aged (mean±standard deviation) 74.50±9.53 years. Concentrations obtained: 0.48±0.25μg/μl for CRP, 0.28±0.04μg/μl for CTP, and 0.35±0.16μg/μl for GRP. A total of 309 proteins were identified, of which 205, 210, and 182 were in CRP, CTP, and GRP, respectively. A total of 114 proteins were common to all three groups, 50 were exclusive to CRP, 58 to CTP, and 27 to GRP. In this pilot study, a quantitative difference was found in the protein expression of humor among patients with glaucoma, there being 27 proteins unique to patients with glaucomatous disease. Copyright © 2018 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. CGPD: Cancer Genetics and Proteomics Database - A Dataset for Computational Analysis and Online Cancer Diagnostic Centre

    Directory of Open Access Journals (Sweden)

    Muhammad Rizwan Riaz

    2014-06-01

    Full Text Available Cancer Genetics and Proteomics Database (CGPD is a repository for genetics and proteomics data of those Homo sapiens genes which are involved in Cancer. These genes are categorized in the database on the basis of cancer type. 72 genes of 13 types of cancers are considered in this database yet. Primers, promoters and peptides of these genes are also made available. Primers provided for each gene, with their features and conditions given to facilitate the researchers, are useful in PCR amplification, especially in cloning experiments. CGPD also contains Online Cancer Diagnostic Center (OCDC. It also contains transcription and translation tools to assist research work in progressive manner. The database is publicly available at http://www.cgpd.comyr.com.

  5. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components*

    Science.gov (United States)

    van Herwijnen, Martijn J.C.; Zonneveld, Marijke I.; Goerdayal, Soenita; Nolte – 't Hoen, Esther N.M.; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A.F.; Redegeld, Frank A.; Wauben, Marca H.M.

    2016-01-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of

  6. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components.

    Science.gov (United States)

    van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A F; Redegeld, Frank A; Wauben, Marca H M

    2016-11-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of

  7. PatternLab for proteomics: a tool for differential shotgun proteomics

    Directory of Open Access Journals (Sweden)

    Yates John R

    2008-07-01

    Full Text Available Abstract Background A goal of proteomics is to distinguish between states of a biological system by identifying protein expression differences. Liu et al. demonstrated a method to perform semi-relative protein quantitation in shotgun proteomics data by correlating the number of tandem mass spectra obtained for each protein, or "spectral count", with its abundance in a mixture; however, two issues have remained open: how to normalize spectral counting data and how to efficiently pinpoint differences between profiles. Moreover, Chen et al. recently showed how to increase the number of identified proteins in shotgun proteomics by analyzing samples with different MS-compatible detergents while performing proteolytic digestion. The latter introduced new challenges as seen from the data analysis perspective, since replicate readings are not acquired. Results To address the open issues above, we present a program termed PatternLab for proteomics. This program implements existing strategies and adds two new methods to pinpoint differences in protein profiles. The first method, ACFold, addresses experiments with less than three replicates from each state or having assays acquired by different protocols as described by Chen et al. ACFold uses a combined criterion based on expression fold changes, the AC test, and the false-discovery rate, and can supply a "bird's-eye view" of differentially expressed proteins. The other method addresses experimental designs having multiple readings from each state and is referred to as nSVM (natural support vector machine because of its roots in evolutionary computing and in statistical learning theory. Our observations suggest that nSVM's niche comprises projects that select a minimum set of proteins for classification purposes; for example, the development of an early detection kit for a given pathology. We demonstrate the effectiveness of each method on experimental data and confront them with existing strategies

  8. A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid.

    Science.gov (United States)

    Holewinski, Ronald J; Jin, Zhicheng; Powell, Matthew J; Maust, Matthew D; Van Eyk, Jennifer E

    2013-03-01

    Analysis of serum and plasma proteomes is a common approach for biomarker discovery, and the removal of high-abundant proteins, such as albumin and immunoglobins, is usually the first step in the analysis. However, albumin binds peptides and proteins, which raises concerns as to how the removal of albumin could impact the outcome of the biomarker study while ignoring the possibility that this could be a biomarker subproteome itself. The first goal of this study was to test a new commercially available affinity capture reagent from Protea Biosciences and to compare the efficiency and reproducibility to four other commercially available albumin depletion methods. The second goal of this study was to determine if there is a highly efficient albumin depletion/isolation system that minimizes sample handling and would be suitable for large numbers of samples. Two of the methods tested (Sigma and ProteaPrep) showed an albumin depletion efficiency of 97% or greater for both serum and cerebrospinal fluid (CSF). Isolated serum and CSF albuminomes from ProteaPrep spin columns were analyzed directly by LC-MS/MS, identifying 128 serum (45 not previously reported) and 94 CSF albuminome proteins (17 unique to the CSF albuminome). Serum albuminome was also isolated using Vivapure anti-HSA columns for comparison, identifying 105 proteins, 81 of which overlapped with the ProteaPrep method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Protein chimerism: novel source of protein diversity in humans adds complexity to bottom-up proteomics.

    Science.gov (United States)

    Casado-Vela, Juan; Lacal, Juan Carlos; Elortza, Felix

    2013-01-01

    Three main molecular mechanisms are considered to contribute expanding the repertoire and diversity of proteins present in living organisms: first, at DNA level (gene polymorphisms and single nucleotide polymorphisms); second, at messenger RNA (pre-mRNA and mRNA) level including alternative splicing (also termed differential splicing or cis-splicing); finally, at the protein level mainly driven through PTM and specific proteolytic cleavages. Chimeric mRNAs constitute an alternative source of protein diversity, which can be generated either by chromosomal translocations or by trans-splicing events. The occurrence of chimeric mRNAs and proteins is a frequent event in cells from the immune system and cancer cells, mainly as a consequence of gene rearrangements. Recent reports support that chimeric proteins may also be expressed at low levels under normal physiological circumstances, thus, representing a novel source of protein diversity. Notably, recent publications demonstrate that chimeric protein products can be successfully identified through bottom-up proteomic analyses. Several questions remain unsolved, such as the physiological role and impact of such chimeric proteins or the potential occurrence of chimeric proteins in higher eukaryotic organisms different from humans. The occurrence of chimeric proteins certainly seems to be another unforeseen source of complexity for the proteome. It may be a process to take in mind not only when performing bottom-up proteomic analyses in cancer studies but also in general bottom-up proteomics experiments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The path to enlightenment: making sense of genomic and proteomic information.

    Science.gov (United States)

    Maurer, Martin H

    2004-05-01

    Whereas genomics describes the study of genome, mainly represented by its gene expression on the DNA or RNA level, the term proteomics denotes the study of the proteome, which is the protein complement encoded by the genome. In recent years, the number of proteomic experiments increased tremendously. While all fields of proteomics have made major technological advances, the biggest step was seen in bioinformatics. Biological information management relies on sequence and structure databases and powerful software tools to translate experimental results into meaningful biological hypotheses and answers. In this resource article, I provide a collection of databases and software available on the Internet that are useful to interpret genomic and proteomic data. The article is a toolbox for researchers who have genomic or proteomic datasets and need to put their findings into a biological context.

  11. Proteomic interrogation of human chromatin.

    Directory of Open Access Journals (Sweden)

    Mariana P Torrente

    Full Text Available Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome" is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.

  12. Cotton proteomics for deciphering the mechanism of environment stress response and fiber development.

    Science.gov (United States)

    Zhou, Meiliang; Sun, Guoqing; Sun, Zhanmin; Tang, Yixiong; Wu, Yanmin

    2014-06-13

    Cotton fiber is considered as the backbone of the textile industry. The productivity of cotton crop is severely hampered by the occurrence of pathogens, pests, and various environmental factors. Nevertheless, cotton plant has developed sophisticated mechanisms to respond to environment stresses to avoid detrimental effects on its growth and development. Therefore, understanding the mechanisms of cotton fiber development and environment stress response is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in cotton fiber development and abiotic/biotic stress tolerance has increased dramatically in the last 5years as evidenced by the large amount of publications in this area. This review summarizes the work which has been reported for cotton proteomics and evaluates the findings in context of the approaches that are widely employed with the aim to generate novel insight useful for cotton improvement. Cotton (Gossypium spp.) is considered as the foremost commercially important fiber crop grown all over the world and is deemed as the backbone of the textile industry. Cotton is also an important source of edible oil seed and a nutrient-rich food crop as cottonseed contains high-quality protein and oil. The growth and productivity of cotton crop are often hampered by various biotic stress factors, such as insect pests and pathogens. In addition, cotton plants are frequently subjected to unavoidable environmental factors that cause abiotic stress, such as salt, heat and drought. Proteomic techniques provide one of the best options for understanding the gene function and phenotypic changes during cotton fiber development and stress response. This review first summarizes the work which has been reported for cotton proteomics about cotton fiber development and abiotic/biotic stress tolerance, and also evaluates the findings in context of the approaches

  13. The state of proteome profiling in the fungal genus Aspergillus.

    Science.gov (United States)

    Kim, Yonghyun; Nandakumar, M P; Marten, Mark R

    2008-03-01

    Aspergilli are an important genus of filamentous fungi that contribute to a multibillion dollar industry. Since many fungal genome sequencing were recently completed, it would be advantageous to profile their proteome to better understand the fungal cell factory. Here, we review proteomic data generated for the Aspergilli in recent years. Thus far, a combined total of 28 cell surface, 102 secreted and 139 intracellular proteins have been identified based on 10 different studies on Aspergillus proteomics. A summary proteome map highlighting identified proteins in major metabolic pathway is presented.

  14. Scientific Workflow Management in Proteomics

    Science.gov (United States)

    de Bruin, Jeroen S.; Deelder, André M.; Palmblad, Magnus

    2012-01-01

    Data processing in proteomics can be a challenging endeavor, requiring extensive knowledge of many different software packages, all with different algorithms, data format requirements, and user interfaces. In this article we describe the integration of a number of existing programs and tools in Taverna Workbench, a scientific workflow manager currently being developed in the bioinformatics community. We demonstrate how a workflow manager provides a single, visually clear and intuitive interface to complex data analysis tasks in proteomics, from raw mass spectrometry data to protein identifications and beyond. PMID:22411703

  15. PROTEOMICS in aquaculture

    DEFF Research Database (Denmark)

    Rodrigues, Pedro M.; Silva, Tomé S.; Dias, Jorge

    2012-01-01

    Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous...... growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance...... questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined...

  16. Implementation of proteomics for cancer research: past, present, and future.

    Science.gov (United States)

    Karimi, Parisa; Shahrokni, Armin; Ranjbar, Mohammad R Nezami

    2014-01-01

    Cancer is the leading cause of the death, accounts for about 13% of all annual deaths worldwide. Many different fields of science are collaborating together studying cancer to improve our knowledge of this lethal disease, and find better solutions for diagnosis and treatment. Proteomics is one of the most recent and rapidly growing areas in molecular biology that helps understanding cancer from an omics data analysis point of view. The human proteome project was officially initiated in 2008. Proteomics enables the scientists to interrogate a variety of biospecimens for their protein contents and measure the concentrations of these proteins. Current necessary equipment and technologies for cancer proteomics are mass spectrometry, protein microarrays, nanotechnology and bioinformatics. In this paper, we provide a brief review on proteomics and its application in cancer research. After a brief introduction including its definition, we summarize the history of major previous work conducted by researchers, followed by an overview on the role of proteomics in cancer studies. We also provide a list of different utilities in cancer proteomics and investigate their advantages and shortcomings from theoretical and practical angles. Finally, we explore some of the main challenges and conclude the paper with future directions in this field.

  17. Proteomics and the search for welfare and stress biomarkers in animal production in the one-health context.

    Science.gov (United States)

    Marco-Ramell, A; de Almeida, A M; Cristobal, S; Rodrigues, P; Roncada, P; Bassols, A

    2016-06-21

    Stress and welfare are important factors in animal production in the context of growing production optimization and scrutiny by the general public. In a context in which animal and human health are intertwined aspects of the one-health concept it is of utmost importance to define the markers of stress and welfare. These are important tools for producers, retailers, regulatory agents and ultimately consumers to effectively monitor and assess the welfare state of production animals. Proteomics is the science that studies the proteins existing in a given tissue or fluid. In this review we address this topic by showing clear examples where proteomics has been used to study stress-induced changes at various levels. We adopt a multi-species (cattle, swine, small ruminants, poultry, fish and shellfish) approach under the effect of various stress inducers (handling, transport, management, nutritional, thermal and exposure to pollutants) clearly demonstrating how proteomics and systems biology are key elements to the study of stress and welfare in farm animals and powerful tools for animal welfare, health and productivity.

  18. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.

    Science.gov (United States)

    Eckhard, Ulrich; Marino, Giada; Butler, Georgina S; Overall, Christopher M

    2016-03-01

    Proteolytic processing is a pervasive and irreversible post-translational modification that expands the protein universe by generating new proteoforms (protein isoforms). Unlike signal peptide or prodomain removal, protease-generated proteoforms can rarely be predicted from gene sequences. Positional proteomic techniques that enrich for N- or C-terminal peptides from proteomes are indispensable for a comprehensive understanding of a protein's function in biological environments since protease cleavage frequently results in altered protein activity and localization. Proteases often process other proteases and protease inhibitors which perturbs proteolytic networks and potentiates the initial cleavage event to affect other molecular networks and cellular processes in physiological and pathological conditions. This review is aimed at researchers with a keen interest in state of the art systems level positional proteomic approaches that: (i) enable the study of complex protease-protease, protease-inhibitor and protease-substrate crosstalk and networks; (ii) allow the identification of proteolytic signatures as candidate disease biomarkers; and (iii) are expected to fill the Human Proteome Project missing proteins gap. We predict that these methodologies will be an integral part of emerging precision medicine initiatives that aim to customize healthcare, converting reactive medicine into a personalized and proactive approach, improving clinical care and maximizing patient health and wellbeing, while decreasing health costs by eliminating ineffective therapies, trial-and-error prescribing, and adverse drug effects. Such initiatives require quantitative and functional proteome profiling and dynamic disease biomarkers in addition to current pharmacogenomics approaches. With proteases at the pathogenic center of many diseases, high-throughput protein termini identification techniques such as TAILS (Terminal Amine Isotopic Labeling of Substrates) and COFRADIC (COmbined

  19. Bovine neonatal pancytopenia--comparative proteomic characterization of two BVD vaccines and the producer cell surface proteome (MDBK).

    Science.gov (United States)

    Euler, Kerstin N; Hauck, Stefanie M; Ueffing, Marius; Deeg, Cornelia A

    2013-01-23

    Bovine neonatal pancytopenia (BNP) is a disease syndrome in newborn calves of up to four weeks of age, first observed in southern Germany in 2006. By now, cases have been reported in several countries around the globe. Many affected calves die within days due to multiple haemorrhages, thrombocytopenia, leukocytopenia and bone marrow depletion. A certain vaccine directed against Bovine Virus Diarrhoea Virus (BVDV) was recently shown to be associated with BNP pathogenesis. Immunized cows develop alloantibodies that are transferred to newborn calves via colostrum intake. In order to further elucidate BNP pathogenesis, the purpose of this study was to characterize and compare the protein composition of the associated vaccine to another vaccine directed against BVDV not related to BNP and the cell surface proteome of MDBK (Madin-Darby Bovine Kidney) cells, the cell line used for production of the associated vaccine. By SDS-PAGE and mass spectrometry, we were able to detect several coagulation-related and immune modulatory proteins, as well as cellular and serum derived molecules being shared between the associated vaccine and MDBK cells. Furthermore, the number of proteins identified in the BNP related vaccine was almost as high as the number of surface proteins detected on MDBK cells and exceeded the amount of proteins identified in the non-BNP related vaccine over 3.5 fold. The great amount of shared cellular and serum derived proteins confirm that the BNP associated vaccine contained many molecules originating from MDBK cells and vaccine production. The respective vaccine was not purified enough to prevent the development of alloantibodies. To narrow down possible candidate proteins, those most likely to represent a trigger for BNP pathogenesis are presented in this study, giving a fundament for further analysis in future research.

  20. Bovine neonatal pancytopenia - Comparative proteomic characterization of two BVD vaccines and the producer cell surface proteome (MDBK

    Directory of Open Access Journals (Sweden)

    Euler Kerstin N

    2013-01-01

    Full Text Available Abstract Background Bovine neonatal pancytopenia (BNP is a disease syndrome in newborn calves of up to four weeks of age, first observed in southern Germany in 2006. By now, cases have been reported in several countries around the globe. Many affected calves die within days due to multiple haemorrhages, thrombocytopenia, leukocytopenia and bone marrow depletion. A certain vaccine directed against Bovine Virus Diarrhoea Virus (BVDV was recently shown to be associated with BNP pathogenesis. Immunized cows develop alloantibodies that are transferred to newborn calves via colostrum intake. In order to further elucidate BNP pathogenesis, the purpose of this study was to characterize and compare the protein composition of the associated vaccine to another vaccine directed against BVDV not related to BNP and the cell surface proteome of MDBK (Madin-Darby Bovine Kidney cells, the cell line used for production of the associated vaccine. Results By SDS-PAGE and mass spectrometry, we were able to detect several coagulation-related and immune modulatory proteins, as well as cellular and serum derived molecules being shared between the associated vaccine and MDBK cells. Furthermore, the number of proteins identified in the BNP related vaccine was almost as high as the number of surface proteins detected on MDBK cells and exceeded the amount of proteins identified in the non-BNP related vaccine over 3.5 fold. The great amount of shared cellular and serum derived proteins confirm that the BNP associated vaccine contained many molecules originating from MDBK cells and vaccine production. Conclusions The respective vaccine was not purified enough to prevent the development of alloantibodies. To narrow down possible candidate proteins, those most likely to represent a trigger for BNP pathogenesis are presented in this study, giving a fundament for further analysis in future research.

  1. Single muscle fiber proteomics reveals unexpected mitochondrial specialization

    DEFF Research Database (Denmark)

    Murgia, Marta; Nagaraj, Nagarjuna; Deshmukh, Atul S

    2015-01-01

    and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions...

  2. Shaping Biological Knowledge: Applications in Proteomics

    Directory of Open Access Journals (Sweden)

    R. Appel

    2006-04-01

    Full Text Available The central dogma of molecular biology has provided a meaningful principle for data integration in the field of genomics. In this context, integration reflects the known transitions from a chromosome to a protein sequence: transcription, intron splicing, exon assembly and translation. There is no such clear principle for integrating proteomics data, since the laws governing protein folding and interactivity are not quite understood. In our effort to bring together independent pieces of information relative to proteins in a biologically meaningful way, we assess the bias of bioinformatics resources and consequent approximations in the framework of small-scale studies. We analyse proteomics data while following both a data-driven (focus on proteins smaller than 10 kDa and a hypothesis-driven (focus on whole bacterial proteomes approach. These applications are potentially the source of specialized complements to classical biological ontologies.

  3. Shaping biological knowledge: applications in proteomics.

    Science.gov (United States)

    Lisacek, F; Chichester, C; Gonnet, P; Jaillet, O; Kappus, S; Nikitin, F; Roland, P; Rossier, G; Truong, L; Appel, R

    2004-01-01

    The central dogma of molecular biology has provided a meaningful principle for data integration in the field of genomics. In this context, integration reflects the known transitions from a chromosome to a protein sequence: transcription, intron splicing, exon assembly and translation. There is no such clear principle for integrating proteomics data, since the laws governing protein folding and interactivity are not quite understood. In our effort to bring together independent pieces of information relative to proteins in a biologically meaningful way, we assess the bias of bioinformatics resources and consequent approximations in the framework of small-scale studies. We analyse proteomics data while following both a data-driven (focus on proteins smaller than 10 kDa) and a hypothesis-driven (focus on whole bacterial proteomes) approach. These applications are potentially the source of specialized complements to classical biological ontologies.

  4. Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.

    Science.gov (United States)

    Trudgian, David C; Mirzaei, Hamid

    2012-12-07

    We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.

  5. The Path to Enlightenment: Making Sense of Genomic and Proteomic Information

    OpenAIRE

    Maurer, Martin H.

    2016-01-01

    Whereas genomics describes the study of genome, mainly represented by its gene expression on the DNA or RNA level, the term proteomics denotes the study of the proteome, which is the protein complement encoded by the genome. In recent years, the number of proteomic experiments increased tremendously. While all fields of proteomics have made major technological advances, the biggest step was seen in bioinformatics. Biological information management relies on sequence and structure databases an...

  6. Proteomic characterization of venom of the medically important Southeast Asian Naja sumatrana (Equatorial spitting cobra).

    Science.gov (United States)

    Yap, Michelle Khai Khun; Fung, Shin Yee; Tan, Kae Yi; Tan, Nget Hong

    2014-05-01

    The proteome of Naja sumatrana (Equatorial spitting cobra) venom was investigated by shotgun analysis and a combination of ion-exchange chromatography and reverse phase HPLC. Shotgun analysis revealed the presence of 39 proteins in the venom while the chromatographic approach identified 37 venom proteins. The results indicated that, like other Asiatic cobra venoms, N. sumatrana contains large number of three finger toxins and phospholipases A2, which together constitute 92.1% by weight of venom protein. However, only eight of the toxins can be considered as major venom toxins. These include two phospholipases A2, three neurotoxins (two long neurotoxins and a short neurotoxin) and three cardiotoxins. The eight major toxins have relative abundance of 1.6-27.2% venom proteins and together account for 89.8% (by weight) of total venom protein. Other venom proteins identified include Zn-metalloproteinase-disintegrin, Thaicobrin, CRISP, natriuretic peptide, complement depleting factors, cobra venom factors, venom nerve growth factor and cobra serum albumin. The proteome of N. sumatrana venom is similar to proteome of other Asiatic cobra venoms but differs from that of African spitting cobra venom. Our results confirm that the main toxic action of N. sumatrana venom is neurotoxic but the large amount of cardiotoxins and phospholipases A2 are likely to contribute significantly to the overall pathophysiological action of the venom. The differences in toxin distribution between N. sumatrana venom and African spitting cobra venoms suggest possible differences in the pathophysiological actions of N. sumatrana venom and the African spitting cobra venoms, and explain why antivenom raised against Asiatic cobra venom is not effective against African spitting cobra venoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The mzTab data exchange format: communicating mass-spectrometry-based proteomics and metabolomics experimental results to a wider audience.

    Science.gov (United States)

    Griss, Johannes; Jones, Andrew R; Sachsenberg, Timo; Walzer, Mathias; Gatto, Laurent; Hartler, Jürgen; Thallinger, Gerhard G; Salek, Reza M; Steinbeck, Christoph; Neuhauser, Nadin; Cox, Jürgen; Neumann, Steffen; Fan, Jun; Reisinger, Florian; Xu, Qing-Wei; Del Toro, Noemi; Pérez-Riverol, Yasset; Ghali, Fawaz; Bandeira, Nuno; Xenarios, Ioannis; Kohlbacher, Oliver; Vizcaíno, Juan Antonio; Hermjakob, Henning

    2014-10-01

    The HUPO Proteomics Standards Initiative has developed several standardized data formats to facilitate data sharing in mass spectrometry (MS)-based proteomics. These allow researchers to report their complete results in a unified way. However, at present, there is no format to describe the final qualitative and quantitative results for proteomics and metabolomics experiments in a simple tabular format. Many downstream analysis use cases are only concerned with the final results of an experiment and require an easily accessible format, compatible with tools such as Microsoft Excel or R. We developed the mzTab file format for MS-based proteomics and metabolomics results to meet this need. mzTab is intended as a lightweight supplement to the existing standard XML-based file formats (mzML, mzIdentML, mzQuantML), providing a comprehensive summary, similar in concept to the supplemental material of a scientific publication. mzTab files can contain protein, peptide, and small molecule identifications together with experimental metadata and basic quantitative information. The format is not intended to store the complete experimental evidence but provides mechanisms to report results at different levels of detail. These range from a simple summary of the final results to a representation of the results including the experimental design. This format is ideally suited to make MS-based proteomics and metabolomics results available to a wider biological community outside the field of MS. Several software tools for proteomics and metabolomics have already adapted the format as an output format. The comprehensive mzTab specification document and extensive additional documentation can be found online. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Clinical proteomics in kidney disease as an exponential technology: heading towards the disruptive phase

    OpenAIRE

    Sanchez-Ni?o, Maria Dolores; Sanz, Ana B.; Ramos, Adrian M.; Fernandez-Fernandez, Beatriz; Ortiz, Alberto

    2017-01-01

    Abstract Exponential technologies double in power or processing speed every year, whereas their cost halves. Deception and disruption are two key stages in the development of exponential technologies. Deception occurs when, after initial introduction, technologies are dismissed as irrelevant, while they continue to progress, perhaps not as fast or with so many immediate practical applications as initially thought. Twenty years after the first publications, clinical proteomics is still not ava...

  9. Bayesian methods for proteomic biomarker development

    Directory of Open Access Journals (Sweden)

    Belinda Hernández

    2015-12-01

    In this review we provide an introduction to Bayesian inference and demonstrate some of the advantages of using a Bayesian framework. We summarize how Bayesian methods have been used previously in proteomics and other areas of bioinformatics. Finally, we describe some popular and emerging Bayesian models from the statistical literature and provide a worked tutorial including code snippets to show how these methods may be applied for the evaluation of proteomic biomarkers.

  10. Systematic revelation of the protective effect and mechanism of Cordycep sinensis on diethylnitrosamine-induced rat hepatocellular carcinoma with proteomics.

    Science.gov (United States)

    Wang, Pei-Wen; Hung, Yu-Chiang; Li, Wen-Tai; Yeh, Chau-Ting; Pan, Tai-Long

    2016-09-13

    Cordyceps sinensis (C. sinensis) has been reported to treat liver diseases. Here, we investigated the inhibitory effect of C. sinensis on hepatocarcinoma in a diethylnitrosamine (DEN)-induced rat model with functional proteome tools.In the DEN-exposed group, levels of serum alanine aminotransferase and aspartate aminotransferase were increased while C. sinensis application remarkably inhibited the activities of these enzymes. Histopathological analysis also indicated that C. sinensis could substantially restore hypertrophic hepatocytes caused by DEN, suggesting that C. sinensis is effective in preventing DEN-induced hepatocarcinogenesis.We therefore comprehensively delineated the global protein alterations using a proteome platform. The most meaningful changes were found among proteins involved in oxidative stress and detoxification. Meanwhile, C. sinensis application could attenuate the carbonylation level of several enzymes as well as chaperone proteins. Network analysis implied that C. sinensis could obviously alleviate hepatocarcinoma via modulating redox imbalance, protein ubiquitination and tumor growth-associated transcription factors.Our findings provide new insight into the potential effects of C. sinensis in preventing carcinogenesis and might help in developing novel therapeutic strategies against chemical-induced hepatocarcinoma.

  11. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum.

    Science.gov (United States)

    Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T

    2012-09-28

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.

  12. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum*

    Science.gov (United States)

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2012-01-01

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858

  13. Proteomics and circadian rhythms: It’s all about signaling!

    Science.gov (United States)

    Mauvoisin, Daniel; Dayon, Loïc; Gachon, Frédéric; Kussmann, Martin

    2014-01-01

    1. Abstract Proteomic technologies using mass spectrometry (MS) offer new perspectives in circadian biology, in particular the possibility to study posttranslational modifications (PTMs). To date, only very few studies have been carried out to decipher the rhythmicity of protein expression in mammals with large-scale proteomics. Although signaling has been shown to be of high relevance, comprehensive characterization studies of PTMs are even more rare. This review aims at describing the actual landscape of circadian proteomics and the opportunities and challenges appearing on the horizon. Emphasis was given to signaling processes for their role in metabolic heath as regulated by circadian clocks and environmental factors. Those signaling processes are expected to be better and more deeply characterized in the coming years with proteomics. PMID:25103677

  14. A proteomic analysis identifies candidate early biomarkers to predict ovarian hyperstimulation syndrome in polycystic ovarian syndrome patients.

    Science.gov (United States)

    Wu, Lan; Sun, Yazhou; Wan, Jun; Luan, Ting; Cheng, Qing; Tan, Yong

    2017-07-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life‑threatening, iatrogenic complication that occurs during assisted reproduction. Polycystic ovarian syndrome (PCOS) significantly increases the risk of OHSS during controlled ovarian stimulation. Therefore, a more effective early prediction technique is required in PCOS patients. Quantitative proteomic analysis of serum proteins indicates the potential diagnostic value for disease. In the present study, the authors revealed the differentially expressed proteins in OHSS patients with PCOS as new diagnostic biomarkers. The promising proteins obtained from liquid chromatography‑mass spectrometry were subjected to ELISA and western blotting assay for further confirmation. A total of 57 proteins were identified with significant difference, of which 29 proteins were upregulated and 28 proteins were downregulated in OHSS patients. Haptoglobin, fibrinogen and lipoprotein lipase were selected as candidate biomarkers. Receiver operating characteristic curve analysis demonstrated all three proteins may have potential as biomarkers to discriminate OHSS in PCOS patients. Haptoglobin, fibrinogen and lipoprotein lipase have never been reported as a predictive marker of OHSS in PCOS patients, and their potential roles in OHSS occurrence deserve further studies. The proteomic results reported in the present study may gain deeper insights into the pathophysiology of OHSS.

  15. compomics-utilities: an open-source Java library for computational proteomics.

    Science.gov (United States)

    Barsnes, Harald; Vaudel, Marc; Colaert, Niklaas; Helsens, Kenny; Sickmann, Albert; Berven, Frode S; Martens, Lennart

    2011-03-08

    The growing interest in the field of proteomics has increased the demand for software tools and applications that process and analyze the resulting data. And even though the purpose of these tools can vary significantly, they usually share a basic set of features, including the handling of protein and peptide sequences, the visualization of (and interaction with) spectra and chromatograms, and the parsing of results from various proteomics search engines. Developers typically spend considerable time and effort implementing these support structures, which detracts from working on the novel aspects of their tool. In order to simplify the development of proteomics tools, we have implemented an open-source support library for computational proteomics, called compomics-utilities. The library contains a broad set of features required for reading, parsing, and analyzing proteomics data. compomics-utilities is already used by a long list of existing software, ensuring library stability and continued support and development. As a user-friendly, well-documented and open-source library, compomics-utilities greatly simplifies the implementation of the basic features needed in most proteomics tools. Implemented in 100% Java, compomics-utilities is fully portable across platforms and architectures. Our library thus allows the developers to focus on the novel aspects of their tools, rather than on the basic functions, which can contribute substantially to faster development, and better tools for proteomics.

  16. compomics-utilities: an open-source Java library for computational proteomics

    Directory of Open Access Journals (Sweden)

    Helsens Kenny

    2011-03-01

    Full Text Available Abstract Background The growing interest in the field of proteomics has increased the demand for software tools and applications that process and analyze the resulting data. And even though the purpose of these tools can vary significantly, they usually share a basic set of features, including the handling of protein and peptide sequences, the visualization of (and interaction with spectra and chromatograms, and the parsing of results from various proteomics search engines. Developers typically spend considerable time and effort implementing these support structures, which detracts from working on the novel aspects of their tool. Results In order to simplify the development of proteomics tools, we have implemented an open-source support library for computational proteomics, called compomics-utilities. The library contains a broad set of features required for reading, parsing, and analyzing proteomics data. compomics-utilities is already used by a long list of existing software, ensuring library stability and continued support and development. Conclusions As a user-friendly, well-documented and open-source library, compomics-utilities greatly simplifies the implementation of the basic features needed in most proteomics tools. Implemented in 100% Java, compomics-utilities is fully portable across platforms and architectures. Our library thus allows the developers to focus on the novel aspects of their tools, rather than on the basic functions, which can contribute substantially to faster development, and better tools for proteomics.

  17. Enhancement of Environmental Hazard Degradation in the Presence of Lignin: a Proteomics Study

    OpenAIRE

    Sun, Su; Xie, Shangxian; Cheng, Yanbing; Yu, Hongbo; Zhao, Honglu; Li, Muzi; Li, Xiaotong; Zhang, Xiaoyu; Yuan, Joshua S.; Dai, Susie Y.

    2017-01-01

    Proteomics studies of fungal systems have progressed dramatically based on the availability of more fungal genome sequences in recent years. Different proteomics strategies have been applied toward characterization of fungal proteome and revealed important gene functions and proteome dynamics. Presented here is the application of shot-gun proteomic technology to study the bio-remediation of environmental hazards by white-rot fungus. Lignin, a naturally abundant component of the plant biomass,...

  18. Advances in Proteomics of Mycobacterium leprae.

    Science.gov (United States)

    Parkash, O; Singh, B P

    2012-04-01

    Although Mycobacterium leprae was the first bacterial pathogen identified causing human disease, it remains one of the few that is non-cultivable. Understanding the biology of M. leprae is one of the primary challenges in current leprosy research. Genomics has been extremely valuable, nonetheless, functional proteins are ultimately responsible for controlling most aspects of cellular functions, which in turn could facilitate parasitizing the host. Furthermore, bacterial proteins provide targets for most of the vaccines and immunodiagnostic tools. Better understanding of the proteomics of M. leprae could also help in developing new drugs against M. leprae. During the past nearly 15 years, there have been several developments towards the identification of M. leprae proteins employing contemporary proteomics tools. In this review, we discuss the knowledge gained on the biology and pathogenesis of M. leprae from current proteomic studies. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.

  19. Profiling post-centrifugation delay of serum and plasma with antibody bead arrays.

    Science.gov (United States)

    Qundos, Ulrika; Hong, Mun-Gwan; Tybring, Gunnel; Divers, Mark; Odeberg, Jacob; Uhlen, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2013-12-16

    Several biobanking initiatives have emerged to create extensive collections of specimen for biomedical studies and various analytical platforms. An affinity proteomic analysis with antibody suspension bead arrays was conducted to investigate the influence of the pre-analytical time and temperature conditions on blood derived samples. Serum and EDTA plasma prepared from 16 individuals was centrifuged and aliquots were kept either at 4°C or in ambient temperature for 1h and up to 36h prior to first storage. Multiplexed protein profiles of post-centrifugation delay were generated in 384 biotinylated samples using 373 antibodies that targeted 343 unique proteins. Very few profiles were observed as significantly altered by the studied temperature and time intervals. Single binder and sandwich assays revealed decreasing levels of caldesmon 1 (CALD1) related to EDTA standard tubes and prolonged post-centrifugation delay of 36h. Indications from changes in CALD1 levels require further confirmation in independent material, but the current data suggests that samples should preferentially be frozen during the day of collection when to be profiled with antibody arrays selected for this study. Affinity-based profiling of serum and plasma by microarray assays can provide unique opportunities for the discovery of biomarkers. It is though often not known how differences in sample handling after collection influence the downstream analysis. By profiling three types of blood preparations for alterations in protein profiles with respect to time and temperature post centrifugation, we addressed an important component in the analysis and of such specimen. We believe that this analysis adds valuable information to be considered when biobanking blood derived samples. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Proteomic classification of breast cancer.

    LENUS (Irish Health Repository)

    Kamel, Dalia

    2012-11-01

    Being a significant health problem that affects patients in various age groups, breast cancer has been extensively studied to date. Recently, molecular breast cancer classification has advanced significantly with the availability of genomic profiling technologies. Proteomic technologies have also advanced from traditional protein assays including enzyme-linked immunosorbent assay, immunoblotting and immunohistochemistry to more comprehensive approaches including mass spectrometry and reverse phase protein lysate arrays (RPPA). The purpose of this manuscript is to review the current protein markers that influence breast cancer prediction and prognosis and to focus on novel advances in proteomic classification of breast cancer.

  1. Proteomic analysis of the Arabidopsis thaliana-Botrytis cinerea ...

    African Journals Online (AJOL)

    A two-dimensional liquid chromatography (2D LC) system, ProteomeLab PF 2D, was employed to study the defence proteome of Arabidopsis following infection with the necrotrophic fungal pathogen, Botrytis cinerea. This system demonstrated differential protein expression in control and treated samples in some fractions.

  2. Proteomics Analysis to Identify and Characterize the Molecular Signatures of Hepatic Steatosis in Ovariectomized Rats as a Model of Postmenopausal Status

    Directory of Open Access Journals (Sweden)

    Chen-Chung Liao

    2015-10-01

    Full Text Available Postmenopausal women are particularly at increased risk of developing non-alcoholic fatty liver disease (NAFLD. Here we aimed to determine the impact of postmenopausal-induced NAFLD (PM-NAFLD in an ovariectomized rat model. Sixteen six-week-old Sprague-Dawley female rats were randomly divided into two groups (eight per group, for sham-operation (Sham or bilateral ovariectomy (Ovx. Four months after surgery, indices of liver damage and liver histomorphometry were measured. Both serum aspartate aminotransferase (AST and alanine aminotranferease (ALT levels were significantly higher in the Ovx than Sham group. We performed quantitative LC-MS/MS-based proteomic profiling of livers from rats with PM-NAFLD to provide baseline knowledge of the PM-NAFLD proteome and to investigate proteins involved in PM-NAFLD by ingenuity pathways analysis (IPA to provide corroborative evidence for differential regulation of molecular and cellular functions affecting metabolic processes. Of the 586 identified proteins, the levels of 59 (10.0% and 48 (8.2% were significantly higher and lower, respectively, in the Ovx group compared to the Sham group. In conclusion, the changes in regulation of proteins implicated in PM-NAFLD may affect other vital biological processes in the body apart from causing postmenopause-mediated liver dysfunction. Our quantitative proteomics analysis may also suggest potential biomarkers and further clinical applications for PM-NAFLD.

  3. Halobacterium salinarum NRC-1 PeptideAtlas: strategies for targeted proteomics

    Science.gov (United States)

    Van, Phu T.; Schmid, Amy K.; King, Nichole L.; Kaur, Amardeep; Pan, Min; Whitehead, Kenia; Koide, Tie; Facciotti, Marc T.; Goo, Young-Ah; Deutsch, Eric W.; Reiss, David J.; Mallick, Parag; Baliga, Nitin S.

    2009-01-01

    The relatively small numbers of proteins and fewer possible posttranslational modifications in microbes provides a unique opportunity to comprehensively characterize their dynamic proteomes. We have constructed a Peptide Atlas (PA) for 62.7% of the predicted proteome of the extremely halophilic archaeon Halobacterium salinarum NRC-1 by compiling approximately 636,000 tandem mass spectra from 497 mass spectrometry runs in 88 experiments. Analysis of the PA with respect to biophysical properties of constituent peptides, functional properties of parent proteins of detected peptides, and performance of different mass spectrometry approaches has helped highlight plausible strategies for improving proteome coverage and selecting signature peptides for targeted proteomics. Notably, discovery of a significant correlation between absolute abundances of mRNAs and proteins has helped identify low abundance of proteins as the major limitation in peptide detection. Furthermore we have discovered that iTRAQ labeling for quantitative proteomic analysis introduces a significant bias in peptide detection by mass spectrometry. Therefore, despite identifying at least one proteotypic peptide for almost all proteins in the PA, a context-dependent selection of proteotypic peptides appears to be the most effective approach for targeted proteomics. PMID:18652504

  4. Top Down proteomics: Facts and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Catherman, Adam D.; Skinner, Owen S.; Kelleher, Neil L., E-mail: n-kelleher@northwestern.edu

    2014-03-21

    Highlights: • Top Down versus Bottom Up proteomics analysis. • Separations methods for Top Down proteomics. • Developments in mass spectrometry instrumentation and fragmentation. • Native mass spectrometry. - Abstract: The rise of the “Top Down” method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious “inference” problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years.

  5. Top Down proteomics: Facts and perspectives

    International Nuclear Information System (INIS)

    Catherman, Adam D.; Skinner, Owen S.; Kelleher, Neil L.

    2014-01-01

    Highlights: • Top Down versus Bottom Up proteomics analysis. • Separations methods for Top Down proteomics. • Developments in mass spectrometry instrumentation and fragmentation. • Native mass spectrometry. - Abstract: The rise of the “Top Down” method in the field of mass spectrometry-based proteomics has ushered in a new age of promise and challenge for the characterization and identification of proteins. Injecting intact proteins into the mass spectrometer allows for better characterization of post-translational modifications and avoids several of the serious “inference” problems associated with peptide-based proteomics. However, successful implementation of a Top Down approach to endogenous or other biologically relevant samples often requires the use of one or more forms of separation prior to mass spectrometric analysis, which have only begun to mature for whole protein MS. Recent advances in instrumentation have been used in conjunction with new ion fragmentation using photons and electrons that allow for better (and often complete) protein characterization on cases simply not tractable even just a few years ago. Finally, the use of native electrospray mass spectrometry has shown great promise for the identification and characterization of whole protein complexes in the 100 kDa to 1 MDa regime, with prospects for complete compositional analysis for endogenous protein assemblies a viable goal over the coming few years

  6. Analytical performance of reciprocal isotope labeling of proteome digests for quantitative proteomics and its application for comparative studies of aerobic and anaerobic Escherichia coli proteomes

    International Nuclear Information System (INIS)

    Lo, Andy; Weiner, Joel H.; Li, Liang

    2013-01-01

    Graphical abstract: -- Highlights: •Investigating a strategy of reciprocal isotope labeling of comparative samples. •Filtering out incorrect peptide identification or quantification values. •Analyzing the proteome changes of E. coli cells grown aerobically or anaerobically. •Presenting guidelines for reciprocal labeling experimental design. -- Abstract: Due to limited sample amounts, instrument time considerations, and reagent costs, only a small number of replicate experiments are typically performed for quantitative proteome analyses. Generation of reproducible data that can be readily assessed for consistency within a small number of datasets is critical for accurate quantification. We report our investigation of a strategy using reciprocal isotope labeling of two comparative samples as a tool for determining proteome changes. Reciprocal labeling was evaluated to determine the internal consistency of quantified proteome changes from Escherichia coli grown under aerobic and anaerobic conditions. Qualitatively, the peptide overlap between replicate analyses of the same sample and reverse labeled samples were found to be within 8%. Quantitatively, reciprocal analyses showed only a slight increase in average overall inconsistency when compared with replicate analyses (1.29 vs. 1.24-fold difference). Most importantly, reverse labeling was successfully used to identify spurious values resulting from incorrect peptide identifications and poor peak fitting. After removal of 5% of the peptide data with low reproducibility, a total of 275 differentially expressed proteins (>1.50-fold difference) were consistently identified and were then subjected to bioinformatics analysis. General considerations and guidelines for reciprocal labeling experimental design and biological significance of obtained results are discussed

  7. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    Directory of Open Access Journals (Sweden)

    Qi eZhao

    2013-04-01

    Full Text Available C4 plants exhibit much higher CO2 assimilation rates than C3 plants. The specialized differentiation of mesophyll cell (M and bundle sheath cell (BS type chloroplasts is unique to C4 plants and improves photosynthesis efficiency. Maize (Zea mays is an important crop and model with C4 photosynthetic machinery. Current high-throughput quantitative proteomics approaches (e.g., 2DE, iTRAQ, and shotgun proteomics have been employed to investigate maize chloroplast structure and function. These proteomic studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology.

  8. The 3rd Central and Eastern European Proteomic Conference

    Czech Academy of Sciences Publication Activity Database

    Gadher, S. J.; Martinková, Jiřina; Drahoš, L.; Vékey, K.; Allmaier, G.; Kovářová, Hana

    2010-01-01

    Roč. 7, č. 1 (2010), s. 15-17 ISSN 1478-9450 Institutional research plan: CEZ:AV0Z50450515 Keywords : proteomics * proteome research * biomarkers Subject RIV: CE - Biochemistry Impact factor: 4.406, year: 2010

  9. Cutting edge proteomics

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Espadas, Guadalupe; Molina, Henrik

    2013-01-01

    Tryptic digestion is an important component of most proteomics experiments, and trypsin is available from many sources with a cost that varies by more than 1000-fold. This high-mass-accuracy LC-MS study benchmarks six commercially available trypsins with respect to autolytic species and sequence ...

  10. Proteomic approach toward molecular backgrounds of drug resistance of osteosarcoma cells in spheroid culture system.

    Science.gov (United States)

    Arai, Kazuya; Sakamoto, Ruriko; Kubota, Daisuke; Kondo, Tadashi

    2013-08-01

    Chemoresistance is one of the most critical prognostic factors in osteosarcoma, and elucidation of the molecular backgrounds of chemoresistance may lead to better clinical outcomes. Spheroid cells resemble in vivo cells and are considered an in vitro model for the drug discovery. We found that spheroid cells displayed more chemoresistance than conventional monolayer cells across 11 osteosarcoma cell lines. To investigate the molecular mechanisms underlying the resistance to chemotherapy, we examined the proteomic differences between the monolayer and spheroid cells by 2D-DIGE. Of the 4762 protein species observed, we further investigated 435 species with annotated mass spectra in the public proteome database, Genome Medicine Database of Japan Proteomics. Among the 435 protein species, we found that 17 species exhibited expression level differences when the cells formed spheroids in more than five cell lines and four species out of these 17 were associated with spheroid-formation associated resistance to doxorubicin. We confirmed the upregulation of cathepsin D in spheroid cells by western blotting. Cathepsin D has been implicated in chemoresistance of various malignancies but has not previously been implemented in osteosarcoma. Our study suggested that the spheroid system may be a useful tool to reveal the molecular backgrounds of chemoresistance in osteosarcoma. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Proposal of the Ur-proteome

    Science.gov (United States)

    Palacios-Pérez, Miryam; Andrade-Díaz, Fernando; José, Marco V.

    2017-11-01

    Herein we outline a plausible proteome, encoded by assuming a primeval RNY genetic code. We unveil the primeval phenotype by using only the RNA genotype; it means that we recovered the most ancestral proteome, mostly made of the 8 amino acids encoded by RNY triplets. By looking at those fragments, it is noticeable that they are positioned, not at catalytic sites, but in the cofactor binding sites. It implies that the stabilization of a molecule appeared long before its catalytic activity, and therefore the Ur-proteome comprised a set of proteins modules that corresponded to Cofactor Stabilizing Binding Sites (CSBSs), which we call the primitive bindome. With our method, we reconstructed the structures of the "first protein modules" that Sobolevsky and Trifonov (2006) found by using only RMSD. We also examine the probable cofactors that bound to them. We discuss the notion of CSBSs as the first proteins modules in progenotes in the context of several proposals about the primitive forms of life.

  12. Longitudinal Bank for Serum, Plasma, and DNA for Detection of Biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Vogelzang, Nicolas [Nevada Cancer Inst., Las Vegas, NV (United States); Fink, Louis [Nevada Cancer Inst., Las Vegas, NV (United States)

    2007-11-12

    The discovery of genetic or biochemical markers to discriminate malignant cancers from normal or benign disease states, markers to stage cancer or monitor disease progression and markers that provide an early indication of an individual’s response to chemotherapy have become a major research objectives of the oncology community over the past few years. The goal of the project is to create a patient specimen bank of serum, plasma, urine and tissues from approximately 1500 individuals. The collection of samples from individuals on a longitudinal basis provided proteomic and biochemical data to be correlated with clinical endpoints. This greatly enhanced our ability to identify biomarkers for staging different cancers and to detect patient responsiveness to therapy at an early state in the treatment process.

  13. Detection of cow's milk proteins and minor components in human milk using proteomics techniques.

    Science.gov (United States)

    Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Varalda, A; Peila, C; Fabris, C; Conti, A; Bertino, E

    2012-10-01

    Cow's milk proteins (CMPs) are the best characterized food allergens. The aim of this study was to investigate cow's milk allergens in human colostrum of term and preterm newborns' mothers, and other minor protein components by proteomics techniques, more sensitive than other techniques used in the past. Sixty-two term and 11 preterm colostrum samples were collected, subjected to a treatment able to increase the concentration of the most diluted proteins and simultaneously to reduce the concentration of the proteins present at high concentration (Proteominer Treatment), and subsequently subjected to the steps of proteomic techniques. The most relevant finding in this study was the detection of the intact bovine alpha-S1-casein in human colostrum, then bovine alpha-1-casein could be considered the cow's milk allergen that is readily secreted in human milk and could be a cause of sensitization to cow's milk in exclusively breastfed predisposed infants. Another interesting result was the detection, at very low concentrations, of proteins previously not described in human milk (galectin-7, the different isoforms of the 14-3-3 protein and the serum amyloid P-component), probably involved in the regulation of the normal cell growth, in the pro-apoptotic function and in the regulation of tissue homeostasis. Further investigations are needed to understand if these families of proteins have specific biological activity in human milk.

  14. Proteomics of Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Dongli eHe

    2013-07-01

    Full Text Available Seed is a condensed form of plant. Under suitable environmental conditions, it can resume the metabolic activity from physiological quiescent status, and mobilize the reserves, biosynthesize new proteins, regenerate organelles and cell membrane, eventually protrude the radicle and enter into seedling establishment. So far, how these activities are regulated in a coordinated and sequential manner is largely unknown. With the availability of more and more genome sequence information and the development of mass spectrometry (MS technology, proteomics has been widely applied in analyzing the mechanisms of different biological processes, and proved to be very powerful. Regulation of rice seed germination is critical for rice cultivation. In recent years, a lot of proteomic studies have been conducted in exploring the gene expression regulation, reserves mobilization and metabolisms reactivation, which brings us new insights on the mechanisms of metabolism regulation during this process. Nevertheless, it also invokes a lot of questions. In this mini-review, we summarized the progress in the proteomic studies of rice seed germination. The current challenges and future perspectives were also discussed, which might be helpful for the following studies.

  15. Proteomic identification of gender molecular markers in Bothrops jararaca venom.

    Science.gov (United States)

    Zelanis, André; Menezes, Milene C; Kitano, Eduardo S; Liberato, Tarcísio; Tashima, Alexandre K; Pinto, Antonio F M; Sherman, Nicholas E; Ho, Paulo L; Fox, Jay W; Serrano, Solange M T

    2016-04-29

    Variation in the snake venom proteome is a well-documented phenomenon; however, sex-based variation in the venom proteome/peptidome is poorly understood. Bothrops jararaca shows significant sexual size dimorphism and here we report a comparative proteomic/peptidomic analysis of venoms from male and female specimens and correlate it with the evaluation of important venom features. We demonstrate that adult male and female venoms have distinct profiles of proteolytic activity upon fibrinogen and gelatin. These differences were clearly reflected in their different profiles of SDS-PAGE, two-dimensional electrophoresis and glycosylated proteins. Identification of differential protein bands and spots between male or female venoms revealed gender-specific molecular markers. However, the proteome comparison by in-solution trypsin digestion and label-free quantification analysis showed that the overall profiles of male and female venoms are similar at the polypeptide chain level but show striking variation regarding their attached carbohydrate moieties. The analysis of the peptidomes of male and female venoms revealed different contents of peptides, while the bradykinin potentiating peptides (BPPs) showed rather similar profiles. Furthermore we confirmed the ubiquitous presence of four BPPs that lack the C-terminal Q-I-P-P sequence only in the female venom as gender molecular markers. As a result of these studies we demonstrate that the sexual size dimorphism is associated with differences in the venom proteome/peptidome in B. jararaca species. Moreover, gender-based variations contributed by different glycosylation levels in toxins impact venom complexity. Bothrops jararaca is primarily a nocturnal and generalist snake species, however, it exhibits a notable ontogenetic shift in diet and in venom proteome upon neonate to adult transition. As is common in the Bothrops genus, B. jararaca shows significant sexual dimorphism in snout-vent length and weight, with females being

  16. Application of proteomics to translational research

    International Nuclear Information System (INIS)

    Liotta, L.A.; Petricoin, E.; Garaci, E.; De Maria, R.; Belluco, C.

    2009-01-01

    Deriving public benefit from basic biomedical research requires a dedicated and highly coordinated effort between basic scientists, physicians, bioinformaticians, clinical trial coordinators, MD and PhD trainees and fellows, and a host of other skilled participants. The Istituto Superiore di Sanita/George Mason University US-Italy Oncoproteomics program, established in 2005, is a successful example of a synergistic creative collaboration between basic scientists and clinical investigators conducting translational research. This program focuses on the application of the new field of proteomics to three urgent and fundamental clinical needs in cancer medicine: 1.) Biomarkers for early diagnosis of cancer, when it is still treatable, 2.) Individualizing patient therapy for molecular targeted inhibitors that block signal pathways driving cancer pathogenesis and 3.) Cancer Progenitor Cells (CSCs): When do the lethal progenitors of cancer first emerge, and how can we treat these CSCs with molecular targeted inhibitors

  17. TAILS N-terminomic and proteomic datasets of healthy human dental pulp

    Directory of Open Access Journals (Sweden)

    Ulrich Eckhard

    2015-12-01

    Full Text Available The Data described here provide the in depth proteomic assessment of the human dental pulp proteome and N-terminome (Eckhard et al., 2015 [1]. A total of 9 human dental pulps were processed and analyzed by the positional proteomics technique TAILS (Terminal Amine Isotopic Labeling of Substrates N-terminomics. 38 liquid chromatography tandem mass spectrometry (LC-MS/MS datasets were collected and analyzed using four database search engines in combination with statistical downstream evaluation, to yield the by far largest proteomic and N-terminomic dataset of any dental tissue to date. The raw mass spectrometry data and the corresponding metadata have been deposited in ProteomeXchange with the PXD identifier ; Supplementary Tables described in this article are available via Mendeley Data (10.17632/555j3kk4sw.1.

  18. PROTEINCHALLENGE: Crowd sourcing in proteomics analysis and software development

    DEFF Research Database (Denmark)

    Martin, Sarah F.; Falkenberg, Heiner; Dyrlund, Thomas Franck

    2013-01-01

    , including arguments for community-wide open source software development and “big data” compatible solutions for the future. For the meantime, we have laid out ten top tips for data processing. With these at hand, a first large-scale proteomics analysis hopefully becomes less daunting to navigate.......However there is clearly a real need for robust tools, standard operating procedures and general acceptance of best practises. Thus we submit to the proteomics community a call for a community-wide open set of proteomics analysis challenges—PROTEINCHALLENGE—that directly target and compare data analysis workflows......In large-scale proteomics studies there is a temptation, after months of experimental work, to plug resulting data into a convenient—if poorly implemented—set of tools, which may neither do the data justice nor help answer the scientific question. In this paper we have captured key concerns...

  19. Parasites, proteomes and systems: has Descartes' clock run out of time?

    Science.gov (United States)

    Wastling, J M; Armstrong, S D; Krishna, R; Xia, D

    2012-08-01

    Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.

  20. Proteomics Standards Initiative: Fifteen Years of Progress and Future Work.

    Science.gov (United States)

    Deutsch, Eric W; Orchard, Sandra; Binz, Pierre-Alain; Bittremieux, Wout; Eisenacher, Martin; Hermjakob, Henning; Kawano, Shin; Lam, Henry; Mayer, Gerhard; Menschaert, Gerben; Perez-Riverol, Yasset; Salek, Reza M; Tabb, David L; Tenzer, Stefan; Vizcaíno, Juan Antonio; Walzer, Mathias; Jones, Andrew R

    2017-12-01

    The Proteomics Standards Initiative (PSI) of the Human Proteome Organization (HUPO) has now been developing and promoting open community standards and software tools in the field of proteomics for 15 years. Under the guidance of the chair, cochairs, and other leadership positions, the PSI working groups are tasked with the development and maintenance of community standards via special workshops and ongoing work. Among the existing ratified standards, the PSI working groups continue to update PSI-MI XML, MITAB, mzML, mzIdentML, mzQuantML, mzTab, and the MIAPE (Minimum Information About a Proteomics Experiment) guidelines with the advance of new technologies and techniques. Furthermore, new standards are currently either in the final stages of completion (proBed and proBAM for proteogenomics results as well as PEFF) or in early stages of design (a spectral library standard format, a universal spectrum identifier, the qcML quality control format, and the Protein Expression Interface (PROXI) web services Application Programming Interface). In this work we review the current status of all of these aspects of the PSI, describe synergies with other efforts such as the ProteomeXchange Consortium, the Human Proteome Project, and the metabolomics community, and provide a look at future directions of the PSI.

  1. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    Energy Technology Data Exchange (ETDEWEB)

    Groh, Ksenia J., E-mail: ksenia.groh@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, 8093 Zürich (Switzerland); Suter, Marc J.-F. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf (Switzerland); ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich (Switzerland)

    2015-02-15

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  2. Stressor-induced proteome alterations in zebrafish: A meta-analysis of response patterns

    International Nuclear Information System (INIS)

    Groh, Ksenia J.; Suter, Marc J.-F.

    2015-01-01

    Highlights: • We compared reported proteome changes induced by various stressors in zebrafish. • Several proteins groups frequently responding to diverse stressors were identified. • These included energy metabolism enzymes, heat shock and cytoskeletal proteins. • Insufficient proteome coverage impedes identification of more specific responses. • Further research needs for proteomics in ecotoxicology are discussed. - Abstract: Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action

  3. A high-quality catalog of the Drosophila melanogaster proteome

    DEFF Research Database (Denmark)

    Brunner, Erich; Ahrens, Christian H.; Mohanty, Sonaly

    2007-01-01

    % of the predicted Drosophila melanogaster proteome by detecting 9,124 proteins from 498,000 redundant and 72,281 distinct peptide identifications. This unprecedented high proteome coverage for a complex eukaryote was achieved by combining sample diversity, multidimensional biochemical fractionation and analysis...

  4. Exploring hepsin functional genetic variation association with disease specific protein expression in bipolar disorder: Applications of a proteomic informed genomic approach.

    Science.gov (United States)

    Nassan, Malik; Jia, Yun-Fang; Jenkins, Greg; Colby, Colin; Feeder, Scott; Choi, Doo-Sup; Veldic, Marin; McElroy, Susan L; Bond, David J; Weinshilboum, Richard; Biernacka, Joanna M; Frye, Mark A

    2017-12-01

    In a prior discovery study, increased levels of serum Growth Differentiation Factor 15 (GDF15), Hepsin (HPN), and Matrix Metalloproteinase-7 (MMP7) were observed in bipolar depressed patients vs controls. This exploratory post-hoc analysis applied a proteomic-informed genomic research strategy to study the potential functional role of these proteins in bipolar disorder (BP). Utilizing the Genotype-Tissue Expression (GTEx) database to identify cis-acting blood expression quantitative trait loci (cis-eQTLs), five eQTL variants from the HPN gene were analyzed for association with BP cases using genotype data of cases from the discovery study (n = 58) versus healthy controls (n = 777). After adjusting for relevant covariates, we analyzed the relationship between these 5 cis-eQTLs and HPN serum level in the BP cases. All 5 cis-eQTL minor alleles were significantly more frequent in BP cases vs controls [(rs62122114, OR = 1.6, p = 0.02), (rs67003112, OR = 1.6, p = 0.02), (rs4997929, OR = 1.7, p = 0.01), (rs12610663, OR = 1.7, p = 0.01), (rs62122148, OR = 1.7, P = 0.01)]. The minor allele (A) in rs62122114 was significantly associated with increased serum HPN level in BP cases (Beta = 0.12, P = 0.049). However, this same minor allele was associated with reduced gene expression in GTEx controls. These exploratory analyses suggest that genetic variation in/near the gene encoding for hepsin protein may influence risk of bipolar disorder. This genetic variation, at least for the rs62122114-A allele, may have functional impact (i.e. differential expression) as evidenced by serum HPN protein expression. Although limited by small sample size, this study highlights the merits of proteomic informed functional genomic studies as a tool to investigate with greater precision the genetic risk of bipolar disorder and secondary relationships to protein expression recognizing, and encouraging in subsequent studies, high likelihood of epigenetic modification of

  5. Regional differences of the urinary proteomes in healthy Chinese individuals

    OpenAIRE

    Qin, Weiwei; Wu, Jianqiang; Pan, Li; Zhang, Fanshuang; Wang, Xiaorong; Zhang, Biao; Shan, Guangliang; Gao, Youhe

    2017-01-01

    Urine is a promising biomarker source for clinical proteomics studies. Although regional physiological differences are common in multi-center clinical studies, the presence of significant differences in the urinary proteomes of individuals from different regions remains unknown. In this study, morning urine samples were collected from healthy urban residents in three regions of China and urinary proteins were preserved using a membrane-based method (Urimem). The urine proteomes of 27 normal s...

  6. Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin

    International Nuclear Information System (INIS)

    Wang, Yi-Zhi; Li, Dong-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2015-01-01

    Epitope imprinted polymer nanoparticles (EI-NPs) were prepared by one-pot polymerization of N-isopropylacrylamide in the presence of CdTe quantum dots and an epitope (consisting of amino acids 598 to 609) of human serum albumin (HSA). The resulting EI-NPs exhibit specific recognition ability and enable direct fluorescence quantification of HSA based on a fluorescence turn-on mode. The polymer was characterized by FT-IR, X-ray photoelectron spectroscopy, transmission electron microscopy and dynamic light scattering. The linear calibration graph was obtained in the range of 0.25–5 μmol · mL −1 with the detection limit of 44.3 nmol · mL −1 . The EI-NPs were successfully applied to the direct fluorometric quantification of HSA in samples of human serum. Overall, this approach provides a promising tool to design functional fluorescent materials with protein recognition capability and specific applications in proteomics. (author)

  7. Proteomic analyses of host and pathogen responses during bovine mastitis.

    Science.gov (United States)

    Boehmer, Jamie L

    2011-12-01

    The pursuit of biomarkers for use as clinical screening tools, measures for early detection, disease monitoring, and as a means for assessing therapeutic responses has steadily evolved in human and veterinary medicine over the past two decades. Concurrently, advances in mass spectrometry have markedly expanded proteomic capabilities for biomarker discovery. While initial mass spectrometric biomarker discovery endeavors focused primarily on the detection of modulated proteins in human tissues and fluids, recent efforts have shifted to include proteomic analyses of biological samples from food animal species. Mastitis continues to garner attention in veterinary research due mainly to affiliated financial losses and food safety concerns over antimicrobial use, but also because there are only a limited number of efficacious mastitis treatment options. Accordingly, comparative proteomic analyses of bovine milk have emerged in recent years. Efforts to prevent agricultural-related food-borne illness have likewise fueled an interest in the proteomic evaluation of several prominent strains of bacteria, including common mastitis pathogens. The interest in establishing biomarkers of the host and pathogen responses during bovine mastitis stems largely from the need to better characterize mechanisms of the disease, to identify reliable biomarkers for use as measures of early detection and drug efficacy, and to uncover potentially novel targets for the development of alternative therapeutics. The following review focuses primarily on comparative proteomic analyses conducted on healthy versus mastitic bovine milk. However, a comparison of the host defense proteome of human and bovine milk and the proteomic analysis of common veterinary pathogens are likewise introduced.

  8. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma

    Science.gov (United States)

    Chauhan, Ranjit; Lahiri, Nivedita

    2016-01-01

    Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future. PMID:27398029

  9. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Ranjit Chauhan

    2016-01-01

    Full Text Available Hepatocellular carcinoma (HCC, one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future.

  10. When proteomics reveals unsuspected roles: the plastoglobule example

    Directory of Open Access Journals (Sweden)

    Claire eBréhélin

    2013-04-01

    Full Text Available Plastoglobules are globular compartments found in plastids. Before initial proteomic studies were published, these particles were often viewed as passive lipid droplets whose unique role was to store lipids coming from the thylakoid turn-over, or to accumulate carotenoids in the chromoplasts. Yet, two proteomic studies, published concomitantly, suggested for the first time that plastoglobules are more than "junk cupboards" for lipids. Indeed, both studies demonstrated that plastoglobules do not only include structural proteins belonging to the plastoglobulin / fibrillin family, but also contain active enzymes. The specific plastoglobule localization of these enzymes has been confirmed by different approaches such as immunogold localization and GFP protein fusions, thus providing evidence that plastoglobules actively participate in diverse pathways of plastid metabolism. These proteomic studies have been the basis for numerous recent works investigating plastoglobule function. However, a lot still needs to be discovered about the molecular composition and the role of plastoglobules. In this chapter, we will describe how the proteomic approaches have launched new perspectives on plastoglobule functions.

  11. Plant plasma membrane proteomics for improving cold tolerance

    Directory of Open Access Journals (Sweden)

    Daisuke eTakahashi

    2013-04-01

    Full Text Available Plants are always exposed to various stresses. We have focused on freezing stress, which causes serious problems for agricultural management. When plants suffer freeze-induced damage, the plasma membrane is thought to be the primary site of injury because of its central role in regulation of various cellular processes. Cold tolerant species, however, adapt to such freezing conditions by modifying cellular components and functions (cold acclimation. One of the most important adaptation mechanisms to freezing is alteration of plasma membrane compositions and functions. Advanced proteomic technologies have succeeded in identification of many candidates that may play roles in adaptation of the plasma membrane to freezing stress. Proteomics results suggest that adaptations of plasma membrane functions to low temperature are associated with alterations of protein compositions during cold acclimation. Some of proteins identified by proteomic approaches have been verified their functional roles in freezing tolerance mechanisms further. Thus, accumulation of proteomic results in the plasma membrane is of importance for application to molecular breeding efforts to increase cold tolerance in crops.

  12. Proteome regulation during Olea europaea fruit development.

    Directory of Open Access Journals (Sweden)

    Linda Bianco

    Full Text Available Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes.In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies.This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  13. Proteome regulation during Olea europaea fruit development.

    Science.gov (United States)

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano

    2013-01-01

    Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  14. SELDI-TOF MS of quadruplicate urine and serum samples to evaluate changes related to storage conditions.

    Science.gov (United States)

    Traum, Avram Z; Wells, Meghan P; Aivado, Manuel; Libermann, Towia A; Ramoni, Marco F; Schachter, Asher D

    2006-03-01

    Proteomic profiling with SELDI-TOF MS has facilitated the discovery of disease-specific protein profiles. However, multicenter studies are often hindered by the logistics required for prompt deep-freezing of samples in liquid nitrogen or dry ice within the clinic setting prior to shipping. We report high concordance between MS profiles within sets of quadruplicate split urine and serum samples deep-frozen at 0, 2, 6, and 24 h after sample collection. Gage R&R results confirm that deep-freezing times are not a statistically significant source of SELDI-TOF MS variability for either blood or urine.

  15. An update on the mouse liver proteome

    Directory of Open Access Journals (Sweden)

    Borlak Jürgen

    2009-09-01

    Full Text Available Abstract Background Decoding of the liver proteome is subject of intense research, but hampered by methodological constraints. We recently developed an improved protocol for studying rat liver proteins based on 2-DE-MALDI-TOF-MS peptide mass finger printing. This methodology was now applied to develop a mouse liver protein database. Results Liver proteins were extracted by two different lysis buffers in sequence followed by a liquid-phase IEF pre-fractionation and separation of proteins by 2 DE at two different pH ranges, notably 5-8 and 7-10. Based on 9600 in gel digests a total of 643 mouse liver proteins with high sequence coverage (> 20 peptides per protein could be identified by MALDI-TOF-MS peptide mass finger printing. Notably, 255 proteins are novel and have not been reported so far by conventional two-dimensional electrophoresis proteome mapping. Additionally, the results of the present findings for mouse liver were compared to published data of the rat proteome to compile as many proteins as possible in a rodent liver database. Conclusion Based on 2-DE MALDI-TOF-MS a significantly improved proteome map of mouse liver was obtained. We discuss some prominent members of newly identified proteins for a better understanding of liver biology.

  16. Quantitative proteomic assessment of very early cellular signaling events

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Olsen, Jesper V

    2007-01-01

    Technical limitations have prevented proteomic analyses of events occurring less than 30 s after signal initiation. We developed an automated, continuous quench-flow system allowing quantitative proteomic assessment of very early cellular signaling events (qPACE) with a time resolution of 1 s...

  17. Proteomic Technologies for the Study of Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Stephanie D. Byrum

    2012-01-01

    Full Text Available Osteosarcoma is the most common primary bone cancer of children and is established during stages of rapid bone growth. The disease is a consequence of immature osteoblast differentiation, which gives way to a rapidly synthesized incompletely mineralized and disorganized bone matrix. The mechanism of osteosarcoma tumorogenesis is poorly understood, and few proteomic studies have been used to interrogate the disease thus far. Accordingly, these studies have identified proteins that have been known to be associated with other malignancies, rather than being osteosarcoma specific. In this paper, we focus on the growing list of available state-of-the-art proteomic technologies and their specific application to the discovery of novel osteosarcoma diagnostic and therapeutic targets. The current signaling markers/pathways associated with primary and metastatic osteosarcoma that have been identified by early-stage proteomic technologies thus far are also described.

  18. The Use of Proteomics in Assisted Reproduction.

    Science.gov (United States)

    Kosteria, Ioanna; Anagnostopoulos, Athanasios K; Kanaka-Gantenbein, Christina; Chrousos, George P; Tsangaris, George T

    2017-01-01

    Despite the explosive increase in the use of Assisted Reproductive Technologies (ART) over the last 30 years, their success rates remain suboptimal. Proteomics is a rapidly-evolving technology-driven science that has already been widely applied in the exploration of human reproduction and fertility, providing useful insights into its physiology and leading to the identification of numerous proteins that may be potential biomarkers and/or treatment targets of a successful ART pregnancy. Here we present a brief overview of the techniques used in proteomic analyses and attempt a comprehensive presentation of recent data from mass spectrometry-based proteomic studies in humans, regarding all components of ARTs, including the male and female gamete, the derived zygote and embryo, the endometrium and, finally, the ART offspring both pre- and postnatally. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xing [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Xu, Yanli [Fuyang People’s Hospital (China); Meng, Qian [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Zheng, Qingqing [Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People’s Hospital (China); Wu, Jianhong [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China); Wang, Chen; Jia, Weiping [Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital (China); Figeys, Daniel [Department of Biochemistry, Microbiology and Immunology, and Department of Chemistry and Biomolecular Sciences, University of Ottawa (Canada); Chang, Ying, E-mail: emulan@163.com [Digestive Endoscopic Center, Shanghai Jiaotong University Affiliated Sixth People’s Hospital (China); Zhou, Hu, E-mail: zhouhu@simm.ac.cn [Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (China)

    2016-08-05

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.

  20. Proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling

    International Nuclear Information System (INIS)

    Liu, Xing; Xu, Yanli; Meng, Qian; Zheng, Qingqing; Wu, Jianhong; Wang, Chen; Jia, Weiping; Figeys, Daniel; Chang, Ying; Zhou, Hu

    2016-01-01

    Colorectal cancer (CRC) is one of the most common types of malignant tumor worldwide. Currently, although many researchers have been devoting themselves in CRC studies, the process of locating biomarkers for CRC early diagnosis and prognostic is still very slow. Using a centrifugal proteomic reactor-based proteomic analysis of minute amount of colonic biopsies by enteroscopy sampling, 2620 protein groups were quantified between cancer mucosa and adjacent normal colorectal mucosa. Of which, 403 protein groups were differentially expressed with statistic significance between cancer and normal tissues, including 195 up-regulated and 208 down-regulated proteins in cancer tissues. Three proteins (SOD3, PRELP and NGAL) were selected for further Western blot validation. And the resulting Western blot experimental results were consistent with the quantitative proteomic data. SOD3 and PRELP are down-regulated in CRC mucosa comparing to adjacent normal tissue, while NGAL is up-regulated in CRC mucosa. In conclusion, the centrifugal proteomic reactor-based label-free quantitative proteomic approach provides a highly sensitive and powerful tool for analyzing minute protein sample from tiny colorectal biopsies, which may facilitate CRC biomarkers discovery for diagnoses and prognoses. -- Highlights: •Minute amount of colonic biopsies by endoscopy is suitable for proteomic analysis. •Centrifugal proteomic reactor can be used for processing tiny clinic biopsy sample. •SOD3 and PRELP are down-regulated in CRC, while NGAL is up-regulated in CRC.

  1. iTRAQ-based Quantitative Proteomics Study in Patients with Refractory Mycoplasma pneumoniae Pneumonia.

    Science.gov (United States)

    Yu, Jia-Lu; Song, Qi-Fang; Xie, Zhi-Wei; Jiang, Wen-Hui; Chen, Jia-Hui; Fan, Hui-Feng; Xie, Ya-Ping; Lu, Gen

    2017-09-25

    Mycoplasma pneumoniae (MP) is a leading cause of community-acquired pneumonia in children and young adults. Although MP pneumonia is usually benign and self-limited, in some cases it can develop into life-threating refractory MP pneumonia (RMPP). However, the pathogenesis of RMPP is poorly understood. The identification and characterization of proteins related to RMPP could provide a proof of principle to facilitate appropriate diagnostic and therapeutic strategies for treating paients with MP. In this study, we used a quantitative proteomic technique (iTRAQ) to analyze MP-related proteins in serum samples from 5 patients with RMPP, 5 patients with non-refractory MP pneumonia (NRMPP), and 5 healthy children. Functional classification, sub-cellular localization, and protein interaction network analysis were carried out based on protein annotation through evolutionary relationship (PANTHER) and Cytoscape analysis. A total of 260 differentially expressed proteins were identified in the RMPP and NRMPP groups. Compared to the control group, the NRMPP and RMPP groups showed 134 (70 up-regulated and 64 down-regulated) and 126 (63 up-regulated and 63 down-regulated) differentially expressed proteins, respectively. The complex functional classification and protein interaction network of the identified proteins reflected the complex pathogenesis of RMPP. Our study provides the first comprehensive proteome map of RMPP-related proteins from MP pneumonia. These profiles may be useful as part of a diagnostic panel, and the identified proteins provide new insights into the pathological mechanisms underlying RMPP.

  2. Application of proteomics to investigate barley-Fusarium graminearum interaction

    DEFF Research Database (Denmark)

    Yang, Fen

    in plants under low N and iv) proteomes of uninfected plants were similar under two N levels. Correlation of level of proteolysis induced by the fungus with measurement of Fusarium-damaged kernels, fungal biomass and mycotoxin levels indicated that FHB was more severe in barley with low N. In Chapter 3......, the molecular mechanisms of barley defense to Fusarium graminearum at the early infection stage were studied. Antibodies against barley β-amylases were shown to be the markers for infection at proteome level and for selection of the time for proteome analysis before extensive degradation caused by the fungus...... the disease. Due to the advantages of gel-based proteomics that differentially expressed proteins involved in the interaction can be directly detected by comparing protein profiles displayed on 2-D gels, it is used as a tool for studying the barley- Fusarium graminearum interaction form three different...

  3. Analysis of Serum proteom before and after Intravenous Injection of wild ginseng herbal acupuncture

    Directory of Open Access Journals (Sweden)

    Tae-Sik Kang

    2004-12-01

    Full Text Available Objectives : To observe changes in the serum proteins before and after intravenous injection of wild ginseng herbal acupuncture. Methods : Blood was collected before and after the administration of wild ginseng herbal acupuncture and only the serum was centrifuged. Then differences in the spots on the scanned image after running 2-Dimensional electrophoresis were located and conducted mass analysis and protein identification. Results : Following results were obtained from the comparative analysis of serum proteins before and after the administration of wild ginseng herbal acupuncture. 1. 28 spots were identified before and after the administration. 2. In confirming manifestation degree, spots with more than two-times increase were 204, 803, 1505, 2205, 3105, 7104, 9001 spots, with more than one-time increase were 1101, 1302, 2013, 3009, 3010, 4002, 4009, 6706, 7103, 8006, 8101, and spots with decrease were 205, 801, 3205, 5202, 6105. 3. After conducting protein identification, proteins 205, 804, 1302, 4009, 6105, 6106 are unidentified yet, and 1101 is unnamed protein. Protein 204 is identified as complement receptor CR2-C3d, 801 as YAP1 protein, 803 as antitrypsin polymer, 1505 as PRO0684, 2013 and 3010 as proapolipoprotein, 2205 as USP48, 2403 as vitamin D binding protein, 3009 as complement component 4A preprotein, 3105 as immunoglobulin lambda chain, 3205 as transthyretin, 4002 as Ras-related protein Ral-A, 4204 as beta actin, 5202 and 7104 as apolipoprotein L1, 6704 as alpha 2 macroglobulin precursor, 7103 as complement component 3 precursor, 8006 as testis-specific protein Y, 8101 as transferrin, 9001 as (Alpha-Oxy, Beta-(C112gdeoxy T-State Human Hemoglobin, and 9003 as human hemoglobin. 4. Immune protein CR2-C3d, which acts against microbes and pathogenic organisms, and Antitrypsin(803, which is secreted with inflammatory response in the lungs, were increased by more than 200% after the administration of herbal acupuncture. 5

  4. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine.

    Science.gov (United States)

    Zhang, Xi

    2017-02-01

    Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Data from proteome analysis of Lasiodiplodia theobromae (Botryosphaeriaceae

    Directory of Open Access Journals (Sweden)

    Carla C. Uranga

    2017-08-01

    Full Text Available Trunk disease fungi are a global problem affecting many economically important fruiting trees. The Botryosphaeriaceae are a family of trunk disease fungi that require detailed biochemical characterization in order to gain insight into their pathogenicity. The application of a modified Folch extraction to protein extraction from the Botryosphaeriaceae Lasiodiplodia theobromae generated an unprecedented data set of protein identifications from fragmentation analysis and de novo peptide sequencing of its proteome. This article contains data from protein identifications obtained from a database-dependent fragmentation analysis using three different proteomics algorithms (MSGF, Comet and X! Tandem via the SearchGUI proteomics pipeline program and de novo peptide sequencing. Included are data sets of gene ontology annotations using an all-Uniprot ontology database, as well as a Saccharomyces cerevisiae-only and a Candida albicans-only ontology database, in order to discern between those proteins involved in common functions with S. cerevisiae and those in common with the pathogenic yeast C. albicans. Our results reveal the proteome of L. theobromae contains more ontological categories in common to C. albicans, yet possesses a much wider metabolic repertoire than any of the yeasts studied in this work. Many novel proteins of interest were identified for further biochemical characterization and annotation efforts, as further discussed in the article referencing this article (1. Interactive Cytoscape networks of molecular functions of identified peptides using an all-Uniprot ontological database are included. Data, including raw data, are available via ProteomeXchange with identifier PXD005283.

  6. Proteomics in the investigation of HIV-1 interactions with host proteins.

    Science.gov (United States)

    Li, Ming

    2015-02-01

    Productive HIV-1 infection depends on host machinery, including a broad array of cellular proteins. Proteomics has played a significant role in the discovery of HIV-1 host proteins. In this review, after a brief survey of the HIV-1 host proteins that were discovered by proteomic analyses, I focus on analyzing the interactions between the virion and host proteins, as well as the technologies and strategies used in those proteomic studies. With the help of proteomics, the identification and characterization of HIV-1 host proteins can be translated into novel antiretroviral therapeutics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Proteomic Investigations into Hemodialysis Therapy

    Directory of Open Access Journals (Sweden)

    Mario Bonomini

    2015-12-01

    Full Text Available The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane’s performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane’s bio(incompatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research.

  8. Proteomic Investigations into Hemodialysis Therapy

    Science.gov (United States)

    Bonomini, Mario; Sirolli, Vittorio; Pieroni, Luisa; Felaco, Paolo; Amoroso, Luigi; Urbani, Andrea

    2015-01-01

    The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane’s performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane’s bio(in)compatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research. PMID:26690416

  9. Proteomic profile of acute myeloid leukaemia: A review update

    African Journals Online (AJOL)

    attention to the progress and advancements in cancer proteomics technology with the aim of simplifying ... hematopoietic cells leading to distinct differences ... procedures like bone marrow and tissue biopsies. [7,8]. .... patients who were subjected to transplantation ..... Boyd RS, Dyer MJ, Cain K. Proteomic analysis of b-cell.

  10. A community proposal to integrate proteomics activities in ELIXIR

    NARCIS (Netherlands)

    Vizcaíno, Juan Antonio; Walzer, Mathias; Jiménez, Rafael C; Bittremieux, Wout; Bouyssié, David; Carapito, Christine; Corrales, Fernando; Ferro, Myriam; Heck, Albert J R; Horvatovich, Peter; Hubalek, Martin; Lane, Lydie; Laukens, Kris; Levander, Fredrik; Lisacek, Frederique; Novak, Petr; Palmblad, Magnus; Piovesan, Damiano; Pühler, Alfred; Schwämmle, Veit; Valkenborg, Dirk; van Rijswijk, Merlijn; Vondrasek, Jiri; Eisenacher, Martin; Martens, Lennart; Kohlbacher, Oliver

    2017-01-01

    Computational approaches have been major drivers behind the progress of proteomics in recent years. The aim of this white paper is to provide a framework for integrating computational proteomics into ELIXIR in the near future, and thus to broaden the portfolio of omics technologies supported by this

  11. Asymmetric proteome equalization of the skeletal muscle proteome using a combinatorial hexapeptide library.

    Directory of Open Access Journals (Sweden)

    Jenny Rivers

    Full Text Available Immobilized combinatorial peptide libraries have been advocated as a strategy for equalization of the dynamic range of a typical proteome. The technology has been applied predominantly to blood plasma and other biological fluids such as urine, but has not been used extensively to address the issue of dynamic range in tissue samples. Here, we have applied the combinatorial library approach to the equalization of a tissue where there is also a dramatic asymmetry in the range of abundances of proteins; namely, the soluble fraction of skeletal muscle. We have applied QconCAT and label-free methodology to the quantification of the proteins that bind to the beads as the loading is progressively increased. Although some equalization is achieved, and the most abundant proteins no longer dominate the proteome analysis, at high protein loadings a new asymmetry of protein expression is reached, consistent with the formation of complex assembles of heat shock proteins, cytoskeletal elements and other proteins on the beads. Loading at different ionic strength values leads to capture of different subpopulations of proteins, but does not completely eliminate the bias in protein accumulation. These assemblies may impair the broader utility of combinatorial library approaches to the equalization of tissue proteomes. However, the asymmetry in equalization is manifest at either low and high ionic strength values but manipulation of the solvent conditions may extend the capacity of the method.

  12. Towards a functional definition of the mitochondrial human proteome

    Directory of Open Access Journals (Sweden)

    Mauro Fasano

    2016-03-01

    Full Text Available The mitochondrial human proteome project (mt-HPP was initiated by the Italian HPP group as a part of both the chromosome-centric initiative (C-HPP and the “biology and disease driven” initiative (B/D-HPP. In recent years several reports highlighted how mitochondrial biology and disease are regulated by specific interactions with non-mitochondrial proteins. Thus, it is of great relevance to extend our present view of the mitochondrial proteome not only to those proteins that are encoded by or transported to mitochondria, but also to their interactors that take part in mitochondria functionality. Here, we propose a graphical representation of the functional mitochondrial proteome by retrieving mitochondrial proteins from the NeXtProt database and adding to the network their interactors as annotated in the IntAct database. Notably, the network may represent a reference to map all the proteins that are currently being identified in mitochondrial proteomics studies.

  13. Anthelmintic metabolism in parasitic helminths: proteomic insights.

    Science.gov (United States)

    Brophy, Peter M; MacKintosh, Neil; Morphew, Russell M

    2012-08-01

    Anthelmintics are the cornerstone of parasitic helminth control. Surprisingly, understanding of the biochemical pathways used by parasitic helminths to detoxify anthelmintics is fragmented, despite the increasing global threat of anthelmintic resistance within the ruminant and equine industries. Reductionist biochemistry has likely over-estimated the enzymatic role of glutathione transferases in anthelmintic metabolism and neglected the potential role of the cytochrome P-450 superfamily (CYPs). Proteomic technologies offers the opportunity to support genomics, reverse genetics and pharmacokinetics, and provide an integrated insight into both the cellular mechanisms underpinning response to anthelmintics and also the identification of biomarker panels for monitoring the development of anthelmintic resistance. To date, there have been limited attempts to include proteomics in anthelmintic metabolism studies. Optimisations of membrane, post-translational modification and interaction proteomic technologies in helminths are needed to especially study Phase I CYPs and Phase III ABC transporter pumps for anthelmintics and their metabolites.

  14. Characterization of the canine urinary proteome.

    Science.gov (United States)

    Brandt, Laura E; Ehrhart, E J; Scherman, Hataichanok; Olver, Christine S; Bohn, Andrea A; Prenni, Jessica E

    2014-06-01

    Urine is an attractive biofluid for biomarker discovery as it is easy and minimally invasive to obtain. While numerous studies have focused on the characterization of human urine, much less research has focused on canine urine. The objectives of this study were to characterize the universal canine urinary proteome (both soluble and exosomal), to determine the overlap between the canine proteome and a representative human urinary proteome study, to generate a resource for future canine studies, and to determine the suitability of the dog as a large animal model for human diseases. The soluble and exosomal fractions of normal canine urine were characterized using liquid chromatography tandem mass spectrometry (LC-MS/MS). Biological Networks Gene Ontology (BiNGO) software was utilized to assign the canine urinary proteome to respective Gene Ontology categories, such as Cellular Component, Molecular Function, and Biological Process. Over 500 proteins were confidently identified in normal canine urine. Gene Ontology analysis revealed that exosomal proteins were largely derived from an intracellular location, while soluble proteins included both extracellular and membrane proteins. Exosome proteins were assigned to metabolic processes and localization, while soluble proteins were primarily annotated to specific localization processes. Several proteins identified in normal canine urine have previously been identified in human urine where these proteins are related to various extrarenal and renal diseases. The results of this study illustrate the potential of the dog as an animal model for human disease states and provide the framework for future studies of canine renal diseases. © 2014 American Society for Veterinary Clinical Pathology and European Society for Veterinary Clinical Pathology.

  15. Proteomics Development and Application for Bioforensics

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, Karen L.; Wunschel, David S.; Clowers, Brian H.

    2010-09-15

    Proteomics is a relatively new scientific discipline dedicated to the comprehensive study of the protein composition of biological systems. While genomic sequencing is an invaluable tool for bioforensic sample identification, proteomics complements genomics in that the genes present in an organism code for the proteins that can be present in a microorganism. Many proteins are conserved for general identification while other protein expression varies with environment/growth state/growth conditions (i.e. not all proteins are expressed at any given time or condition) providing additional information beyond genomic analysis. This expression specificity and the relative stability of proteins with respect to genetic material make them attractive targets for microorganism identification and forensic applications to complement genomic approaches. Proteomic analysis depends upon the availability of genome sequences of the relevant organisms or their near relatives. The known amino acid sequences for potential proteins within the database can be compared to amino acid sequences of actual proteins present in a sample as determined with high mass accuracy by mass spectrometry for identification of the proteins in the sample. With the development of technology for rapid genome sequencing of organisms, the known protein database is growing, supporting improved identification of the proteins present in a sample. Recent developments in mass spectrometry instrumentation and microbial sequencing are leading to an increased growth in application of proteomics to microbiology, pathogen detection, disease diagnosis and microbial forensics as well as other biological disciplines. Mass spectrometry analysis does not require a priori knowledge of the sample or expected targets to gain meaningful.

  16. Examining hemodialyzer membrane performance using proteomic technologies.

    Science.gov (United States)

    Bonomini, Mario; Pieroni, Luisa; Di Liberato, Lorenzo; Sirolli, Vittorio; Urbani, Andrea

    2018-01-01

    The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium-high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may thus provide an actual functional definition as to the effect of a membrane material on plasma proteins during hemodialysis. Here, we review the results of proteomic studies on the performance of hemodialysis membranes, as evaluated in terms of solute removal efficiency and blood-membrane interactions. The evidence collected indicates that the information provided by proteomic

  17. Cardiovascular proteomics in the era of big data: experimental and computational advances.

    Science.gov (United States)

    Lam, Maggie P Y; Lau, Edward; Ng, Dominic C M; Wang, Ding; Ping, Peipei

    2016-01-01

    Proteomics plays an increasingly important role in our quest to understand cardiovascular biology. Fueled by analytical and computational advances in the past decade, proteomics applications can now go beyond merely inventorying protein species, and address sophisticated questions on cardiac physiology. The advent of massive mass spectrometry datasets has in turn led to increasing intersection between proteomics and big data science. Here we review new frontiers in technological developments and their applications to cardiovascular medicine. The impact of big data science on cardiovascular proteomics investigations and translation to medicine is highlighted.

  18. Systemic sclerosis biomarkers discovered using mass-spectrometry-based proteomics: a systematic review.

    Science.gov (United States)

    Bălănescu, Paul; Lădaru, Anca; Bălănescu, Eugenia; Băicuş, Cristian; Dan, Gheorghe Andrei

    2014-08-01

    Systemic sclerosis (SSc) is an autoimmune disease with incompletely known physiopathology. There is a great challenge to predict its course and therapeutic response using biomarkers. To critically review proteomic biomarkers discovered from biological specimens from systemic sclerosis patients using mass spectrometry technologies. Medline and Embase databases were searched in February 2014. Out of the 199 records retrieved, a total of 20 records were included, identifying 116 candidate proteomic biomarkers. Research in SSc proteomic biomarkers should focus on biomarker validation, as there are valuable mass-spectrometry proteomics studies in the literature.

  19. NCI Blog Post: CPTAC, the Complementary Sibling of TCGA (An Interview with Dr. Henry Rodriguez about NCI’s Proteomics Program) | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    What is proteomics? Proteomics is a highly automated and rapid method for measuring all the proteins in a biological sample. Proteins are the molecules that actually do most of the work inside a cell. When researchers develop cancer drugs, those drugs typically target proteins, so scientists and clinicians really have to understand what the proteins are doing. Proteomics researchers are now able to measure up to 10,000 proteins per tumor sample.

  20. Radiation-induced Changes in the Electrophoretic Profile of Serum Albumin

    Directory of Open Access Journals (Sweden)

    Celso Vieira Lima

    2018-01-01

    Full Text Available ABSTRACT Albumin protein profiles were investigated in electrophoresis system in relation to the whole body exposition to the radiation. Two groups of rats Wistar were set up as the control (CG and the irradiated one (IG. The IG was exposed to Co-60 at a dose of 5 Gy. After a 72-hour exposition, 300 μL of blood was collected in the inferior vena cava, renal, jugular, hepatic, and pulmonary veins and the serum separated. The albumin protein was identified by vertical electrophoresis in acrylamide Commassi blue or silver stained. The calibration procedure was applied to albumin samples with well-known concentrations. The mathematical correlation was developed involving electrophoretic parameters of band intensities and sizes from gel representation, providing values of protein concentrations in comparison with standard bands with known concentrations. There were significant differences in the physiological concentrations in the jugular and pulmonary sites in relation to renal and cava regional sites. Significant differences induced by radiation in serum albumin concentration were also found in hepatic and jugular sites. Alteration of albumin concentration was found as a nearly effect from whole body irradiation. This phenomenon points out to alterations in cell metabolism in the liver justified by a possible indication of proteomics damage from radiation.

  1. Application of proteomics for prenatal diagnosis of Down syndrome ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Proteome Organization (HUPO) in 2001, proteomic developed rapidly ... reports showed the hopes of the development of effective non-invasive ... This systematic review and meta-analysis was conducted according to a protocol ..... long-term culture for a case of trisomy 18 detected in CVS. Prenat. Diagn.

  2. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  3. [Application progress of proteomic in pharmacological study of Chinese medicinal formulae].

    Science.gov (United States)

    Liu, Yu-Qian; Zhan, Shu-Yu; Ruan, Yu-Er; Zuo, Zhi-Yan; Ji, Xiao-Ming; Wang, Shuai-Jie; Ding, Bao-Yue

    2017-10-01

    Chinese medicinal formulae are the important means of clinical treatment in traditional Chinese medicine. It is urgent to use modern advanced scientific and technological means to reveal the complicated mechanism of Chinese medicinal formulae because they have the function characteristics of multiple components, multiple targets and integrated regulation. The systematic and comprehensive research model of proteomic is in line with the function characteristics of Chinese medicinal formulae, and proteomic has been widely used in the study of pharmacological mechanism of Chinese medicinal formulae. The recent applications of proteomic in pharmacological study of Chinese medicinal formulae in anti-cardiovascular and cerebrovascular diseases, anti-liver disease, antidiabetic, anticancer, anti-rheumatoid arthritis and other diseases were reviewed in this paper, and then the future development direction of proteomic in pharmacological study of Chinese medicinal formulae was put forward. This review is to provide the ideas and method for proteomic research on function mechanism of Chinese medicinal formulae. Copyright© by the Chinese Pharmaceutical Association.

  4. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    2016-06-30

    Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of

  5. Informed-Proteomics: open-source software package for top-down proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jungkap; Piehowski, Paul D.; Wilkins, Christopher; Zhou, Mowei; Mendoza, Joshua; Fujimoto, Grant M.; Gibbons, Bryson C.; Shaw, Jared B.; Shen, Yufeng; Shukla, Anil K.; Moore, Ronald J.; Liu, Tao; Petyuk, Vladislav A.; Tolić, Nikola; Paša-Tolić, Ljiljana; Smith, Richard D.; Payne, Samuel H.; Kim, Sangtae

    2017-08-07

    Top-down proteomics involves the analysis of intact proteins. This approach is very attractive as it allows for analyzing proteins in their endogenous form without proteolysis, preserving valuable information about post-translation modifications, isoforms, proteolytic processing or their combinations collectively called proteoforms. Moreover, the quality of the top-down LC-MS/MS datasets is rapidly increasing due to advances in the liquid chromatography and mass spectrometry instrumentation and sample processing protocols. However, the top-down mass spectra are substantially more complex compare to the more conventional bottom-up data. To take full advantage of the increasing quality of the top-down LC-MS/MS datasets there is an urgent need to develop algorithms and software tools for confident proteoform identification and quantification. In this study we present a new open source software suite for top-down proteomics analysis consisting of an LC-MS feature finding algorithm, a database search algorithm, and an interactive results viewer. The presented tool along with several other popular tools were evaluated using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.

  6. Quantitative, high-resolution proteomics for data-driven systems biology

    DEFF Research Database (Denmark)

    Cox, J.; Mann, M.

    2011-01-01

    Systems biology requires comprehensive data at all molecular levels. Mass spectrometry (MS)-based proteomics has emerged as a powerful and universal method for the global measurement of proteins. In the most widespread format, it uses liquid chromatography (LC) coupled to high-resolution tandem...... primary structure of proteins including posttranslational modifications, to localize proteins to organelles, and to determine protein interactions. Here, we describe the principles of analysis and the areas of biology where proteomics can make unique contributions. The large-scale nature of proteomics...... data and its high accuracy pose special opportunities as well as challenges in systems biology that have been largely untapped so far....

  7. Diversification of the muscle proteome through alternative splicing.

    Science.gov (United States)

    Nakka, Kiran; Ghigna, Claudia; Gabellini, Davide; Dilworth, F Jeffrey

    2018-03-06

    Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved "targeted" proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies.

  8. Investigation of heart proteome of different consomic mouse strains. Testing the effect of polymorphisms on the proteome-wide trans-variation of proteins

    Directory of Open Access Journals (Sweden)

    Stefanie Forler

    2015-06-01

    Full Text Available We investigated to which extent polymorphisms of an individual affect the proteomic network. Consomic mouse strains (CS were used to study the trans-effect of the cis-variant (polymorphic proteins of the strain PWD/Ph on the proteins of the host strain C57BL/6J. The cardiac proteome of ten CSs was analyzed by 2-DE and MS. Cis-variant PWD proteins altered a high number of C57BL/6J proteins, but the number of trans-variant proteins differed considerably between different CSs. Cardiac hypertrophy was induced in CSs. We found that high variability of the proteome, as induced by polymorphisms in CS14, acts protective against the complex disease.

  9. Proteomic profile of acute myeloid leukaemia: A review update ...

    African Journals Online (AJOL)

    This review draws attention to the progress and advancements in cancer proteomics technology with the aim of simplifying the understanding of the mechanisms underlying the disease and to contribute to detection of biomarkers in addition to the development of novel treatments. Given that proteome is a dynamic entity of ...

  10. Conserved peptide fragmentation as a benchmarking tool for mass spectrometers and a discriminating feature for targeted proteomics.

    Science.gov (United States)

    Toprak, Umut H; Gillet, Ludovic C; Maiolica, Alessio; Navarro, Pedro; Leitner, Alexander; Aebersold, Ruedi

    2014-08-01

    Quantifying the similarity of spectra is an important task in various areas of spectroscopy, for example, to identify a compound by comparing sample spectra to those of reference standards. In mass spectrometry based discovery proteomics, spectral comparisons are used to infer the amino acid sequence of peptides. In targeted proteomics by selected reaction monitoring (SRM) or SWATH MS, predetermined sets of fragment ion signals integrated over chromatographic time are used to identify target peptides in complex samples. In both cases, confidence in peptide identification is directly related to the quality of spectral matches. In this study, we used sets of simulated spectra of well-controlled dissimilarity to benchmark different spectral comparison measures and to develop a robust scoring scheme that quantifies the similarity of fragment ion spectra. We applied the normalized spectral contrast angle score to quantify the similarity of spectra to objectively assess fragment ion variability of tandem mass spectrometric datasets, to evaluate portability of peptide fragment ion spectra for targeted mass spectrometry across different types of mass spectrometers and to discriminate target assays from decoys in targeted proteomics. Altogether, this study validates the use of the normalized spectral contrast angle as a sensitive spectral similarity measure for targeted proteomics, and more generally provides a methodology to assess the performance of spectral comparisons and to support the rational selection of the most appropriate similarity measure. The algorithms used in this study are made publicly available as an open source toolset with a graphical user interface. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Thermosensitivity of growth is determined by chaperone-mediated proteome reallocation

    Science.gov (United States)

    Chen, Ke; Gao, Ye; Mih, Nathan; O’Brien, Edward J.; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Maintenance of a properly folded proteome is critical for bacterial survival at notably different growth temperatures. Understanding the molecular basis of thermoadaptation has progressed in two main directions, the sequence and structural basis of protein thermostability and the mechanistic principles of protein quality control assisted by chaperones. Yet we do not fully understand how structural integrity of the entire proteome is maintained under stress and how it affects cellular fitness. To address this challenge, we reconstruct a genome-scale protein-folding network for Escherichia coli and formulate a computational model, FoldME, that provides statistical descriptions of multiscale cellular response consistent with many datasets. FoldME simulations show (i) that the chaperones act as a system when they respond to unfolding stress rather than achieving efficient folding of any single component of the proteome, (ii) how the proteome is globally balanced between chaperones for folding and the complex machinery synthesizing the proteins in response to perturbation, (iii) how this balancing determines growth rate dependence on temperature and is achieved through nonspecific regulation, and (iv) how thermal instability of the individual protein affects the overall functional state of the proteome. Overall, these results expand our view of cellular regulation, from targeted specific control mechanisms to global regulation through a web of nonspecific competing interactions that modulate the optimal reallocation of cellular resources. The methodology developed in this study enables genome-scale integration of environment-dependent protein properties and a proteome-wide study of cellular stress responses. PMID:29073085

  12. Effects of Three Commonly-used Diuretics on the Urinary Proteome

    Directory of Open Access Journals (Sweden)

    Xundou Li

    2014-06-01

    Full Text Available Biomarker is the measurable change associated with a physiological or pathophysiological process. Unlike blood which has mechanisms to keep the internal environment homeostatic, urine is more likely to reflect changes of the body. As a result, urine is likely to be a better biomarker source than blood. However, since the urinary proteome is affected by many factors, including diuretics, careful evaluation of those effects is necessary if urinary proteomics is used for biomarker discovery. Here, we evaluated the effects of three commonly-used diuretics (furosemide, F; hydrochlorothiazide, H; and spirolactone, S on the urinary proteome in rats. Urine samples were collected before and after intragastric administration of diuretics at therapeutic doses and the proteomes were analyzed using label-free liquid chromatography–tandem mass spectrometry (LC–MS/MS. Based on the criteria of P ⩽ 0.05, a fold change ⩾2, a spectral count ⩾5, and false positive rate (FDR ⩽1%, 14 proteins (seven for F, five for H, and two for S were identified by Progenesis LC–MS. The human orthologs of most of these 14 proteins are stable in the healthy human urinary proteome, and ten of them are reported as disease biomarkers. Thus, our results suggest that the effects of diuretics deserve more attention in future urinary protein biomarker studies. Moreover, the distinct effects of diuretics on the urinary proteome may provide clues to the mechanisms of diuretics.

  13. Effects of three commonly-used diuretics on the urinary proteome.

    Science.gov (United States)

    Li, Xundou; Zhao, Mindi; Li, Menglin; Jia, Lulu; Gao, Youhe

    2014-06-01

    Biomarker is the measurable change associated with a physiological or pathophysiological process. Unlike blood which has mechanisms to keep the internal environment homeostatic, urine is more likely to reflect changes of the body. As a result, urine is likely to be a better biomarker source than blood. However, since the urinary proteome is affected by many factors, including diuretics, careful evaluation of those effects is necessary if urinary proteomics is used for biomarker discovery. Here, we evaluated the effects of three commonly-used diuretics (furosemide, F; hydrochlorothiazide, H; and spirolactone, S) on the urinary proteome in rats. Urine samples were collected before and after intragastric administration of diuretics at therapeutic doses and the proteomes were analyzed using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). Based on the criteria of P≤0.05, a fold change ≥2, a spectral count ≥5, and false positive rate (FDR) ≤1%, 14 proteins (seven for F, five for H, and two for S) were identified by Progenesis LC-MS. The human orthologs of most of these 14 proteins are stable in the healthy human urinary proteome, and ten of them are reported as disease biomarkers. Thus, our results suggest that the effects of diuretics deserve more attention in future urinary protein biomarker studies. Moreover, the distinct effects of diuretics on the urinary proteome may provide clues to the mechanisms of diuretics. Copyright © 2014. Production and hosting by Elsevier Ltd.

  14. Proteomic changes associated with metabolic syndrome in a fructose-fed rat model.

    Science.gov (United States)

    Hsieh, Cheng-Chu; Liao, Chen-Chung; Liao, Yi-Chun; Hwang, Lucy Sun; Wu, Liang-Yi; Hsieh, Shu-Chen

    2016-10-01

    Metabolic syndrome (MetS), characterized by a constellation of disorders such as hyperglycemia, insulin resistance, and hypertension, is becoming a major global public health problem. Fructose consumption has increased dramatically over the past several decades and with it the incidence of MetS. However, its molecular mechanisms remain to be explored. In this study, we used male Sprague-Dawley (SD) rats to study the pathological mechanism of fructose induced MetS. The SD rats were fed a 60% high-fructose diet for 16 weeks to induce MetS. The induction of MetS was confirmed by blood biochemistry examination. Proteomics were used to investigate the differential hepatic protein expression patterns between the normal group and the MetS group. Proteomic results revealed that fructose-induced MetS induced changes in glucose and fatty acid metabolic pathways. In addition, oxidative stress and endoplasmic reticulum stress-related proteins were modulated by high-fructose feeding. In summary, our results identify many new targets for future investigation. Further characterization of these proteins and their involvement in the link between insulin resistance and metabolic dyslipidemia may bring new insights into MetS. Copyright © 2016. Published by Elsevier B.V.

  15. Proteomic changes associated with metabolic syndrome in a fructose-fed rat model

    Directory of Open Access Journals (Sweden)

    Cheng-Chu Hsieh

    2016-10-01

    Full Text Available Metabolic syndrome (MetS, characterized by a constellation of disorders such as hyperglycemia, insulin resistance, and hypertension, is becoming a major global public health problem. Fructose consumption has increased dramatically over the past several decades and with it the incidence of MetS. However, its molecular mechanisms remain to be explored. In this study, we used male Sprague-Dawley (SD rats to study the pathological mechanism of fructose induced MetS. The SD rats were fed a 60% high-fructose diet for 16 weeks to induce MetS. The induction of MetS was confirmed by blood biochemistry examination. Proteomics were used to investigate the differential hepatic protein expression patterns between the normal group and the MetS group. Proteomic results revealed that fructose-induced MetS induced changes in glucose and fatty acid metabolic pathways. In addition, oxidative stress and endoplasmic reticulum stress-related proteins were modulated by high-fructose feeding. In summary, our results identify many new targets for future investigation. Further characterization of these proteins and their involvement in the link between insulin resistance and metabolic dyslipidemia may bring new insights into MetS.

  16. Subnanogram proteomics: Impact of LC column selection, MS instrumentation and data analysis strategy on proteome coverage for trace samples

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ying; Zhao, Rui; Piehowski, Paul D.; Moore, Ronald J.; Lim, Sujung; Orphan, Victoria J.; Paša-Tolić, Ljiljana; Qian, Wei-Jun; Smith, Richard D.; Kelly, Ryan T.

    2018-04-01

    One of the greatest challenges for mass spectrometry (MS)-based proteomics is the limited ability to analyze small samples. Here we investigate the relative contributions of liquid chromatography (LC), MS instrumentation and data analysis methods with the aim of improving proteome coverage for sample sizes ranging from 0.5 ng to 50 ng. We show that the LC separations utilizing 30-µm-i.d. columns increase signal intensity by >3-fold relative to those using 75-µm-i.d. columns, leading to 32% increase in peptide identifications. The Orbitrap Fusion Lumos mass spectrometer significantly boosted both sensitivity and sequencing speed relative to earlier generation Orbitraps (e.g., LTQ-Orbitrap), leading to a ~3× increase in peptide identifications and 1.7× increase in identified protein groups for 2 ng tryptic digests of bacterial lysate. The Match Between Runs algorithm of open-source MaxQuant software further increased proteome coverage by ~ 95% for 0.5 ng samples and by ~42% for 2 ng samples. The present platform is capable of identifying >3000 protein groups from tryptic digestion of cell lysates equivalent to 50 HeLa cells and 100 THP-1 cells (~10 ng total proteins), respectively, and >950 proteins from subnanogram bacterial and archaeal cell lysates. The present ultrasensitive LC-MS platform is expected to enable deep proteome coverage for subnanogram samples, including single mammalian cells.

  17. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  18. Standard guidelines for the chromosome-centric human proteome project.

    Science.gov (United States)

    Paik, Young-Ki; Omenn, Gilbert S; Uhlen, Mathias; Hanash, Samir; Marko-Varga, György; Aebersold, Ruedi; Bairoch, Amos; Yamamoto, Tadashi; Legrain, Pierre; Lee, Hyoung-Joo; Na, Keun; Jeong, Seul-Ki; He, Fuchu; Binz, Pierre-Alain; Nishimura, Toshihide; Keown, Paul; Baker, Mark S; Yoo, Jong Shin; Garin, Jerome; Archakov, Alexander; Bergeron, John; Salekdeh, Ghasem Hosseini; Hancock, William S

    2012-04-06

    The objective of the international Chromosome-Centric Human Proteome Project (C-HPP) is to map and annotate all proteins encoded by the genes on each human chromosome. The C-HPP consortium was established to organize a collaborative network among the research teams responsible for protein mapping of individual chromosomes and to identify compelling biological and genetic mechanisms influencing colocated genes and their protein products. The C-HPP aims to foster the development of proteome analysis and integration of the findings from related molecular -omics technology platforms through collaborations among universities, industries, and private research groups. The C-HPP consortium leadership has elicited broad input for standard guidelines to manage these international efforts more efficiently by mobilizing existing resources and collaborative networks. The C-HPP guidelines set out the collaborative consensus of the C-HPP teams, introduce topics associated with experimental approaches, data production, quality control, treatment, and transparency of data, governance of the consortium, and collaborative benefits. A companion approach for the Biology and Disease-Driven HPP (B/D-HPP) component of the Human Proteome Project is currently being organized, building upon the Human Proteome Organization's organ-based and biofluid-based initiatives (www.hupo.org/research). The common application of these guidelines in the participating laboratories is expected to facilitate the goal of a comprehensive analysis of the human proteome.

  19. 1st Central and Eastern European Proteomic Conference and 3rd Czech Proteomic Conference

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Hana; Gadher, S. J.; Archakov, A.

    2008-01-01

    Roč. 5, č. 1 (2008), s. 25-28 ISSN 1478-9450 Institutional research plan: CEZ:AV0Z50450515 Keywords : proteomic conference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.848, year: 2008

  20. Proteomic Analysis of Human Tooth Pulp: Proteomics of Human Tooth

    Czech Academy of Sciences Publication Activity Database

    Eckhardt, Adam; Jágr, Michal; Pataridis, Statis; Mikšík, Ivan

    2014-01-01

    Roč. 40, č. 12 (2014), s. 1961-1966 ISSN 0099-2399 R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR(CZ) GAP206/12/0453; GA MZd(CZ) NT14324 Institutional support: RVO:67985823 Keywords : dentin * human pulp * tandem mass spectrometry * tooth proteome * 2-dimensional gel electrophoresis Subject RIV: FF - HEENT, Dentistry Impact factor: 3.375, year: 2014

  1. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins.

    Science.gov (United States)

    Ferro, Myriam; Brugière, Sabine; Salvi, Daniel; Seigneurin-Berny, Daphné; Court, Magali; Moyet, Lucas; Ramus, Claire; Miras, Stéphane; Mellal, Mourad; Le Gall, Sophie; Kieffer-Jaquinod, Sylvie; Bruley, Christophe; Garin, Jérôme; Joyard, Jacques; Masselon, Christophe; Rolland, Norbert

    2010-06-01

    Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further

  2. Combining genomic and proteomic approaches for epigenetics research

    Science.gov (United States)

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  3. Supramolecular Affinity Chromatography for Methylation-Targeted Proteomics.

    Science.gov (United States)

    Garnett, Graham A E; Starke, Melissa J; Shaurya, Alok; Li, Janessa; Hof, Fraser

    2016-04-05

    Proteome-wide studies of post-translationally methylated species using mass spectrometry are complicated by high sample diversity, competition for ionization among peptides, and mass redundancies. Antibody-based enrichment has powered methylation proteomics until now, but the reliability, pan-specificity, polyclonal nature, and stability of the available pan-specific antibodies are problematic and do not provide a standard, reliable platform for investigators. We have invented an anionic supramolecular host that can form host-guest complexes selectively with methyllysine-containing peptides and used it to create a methylysine-affinity column. The column resolves peptides on the basis of methylation-a feat impossible with a comparable commercial cation-exchange column. A proteolyzed nuclear extract was separated on the methyl-affinity column prior to standard proteomics analysis. This experiment demonstrates that such chemical methyl-affinity columns are capable of enriching and improving the analysis of methyllysine residues from complex protein mixtures. We discuss the importance of this advance in the context of biomolecule-driven enrichment methods.

  4. Mass spectral analysis of urine proteomic profiles of dairy cows suffering from clinical ketosis.

    Science.gov (United States)

    Xu, Chuang; Shu, Shi; Xia, Cheng; Wang, Pengxian; Sun, Yuhang; Xu, Chuchu; Li, Changsheng

    2015-01-01

    Ketosis is an important metabolic disorder in dairy cows during the transition period. The urine proteomics of ketosis has not been investigated using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). The aim is to determine differences between urine proteomic profiles of healthy cows and those with clinical ketosis, and facilitate studies of the underlying physiological and biochemical mechanisms that lead to liver pathology in ketosis. We analyzed the urine samples of 20 cows with clinical ketosis (group 1) and 20 control cows (group 2) using SELDI-TOF-MS. Thirty-nine peptide peaks differed between both groups. Polypeptides corresponding to 26 of these differential peptide peaks were identified using the SWISS-PROT protein database. We found that the peaks of 11 distinct polypeptides from the urine samples of the ketosis group were significantly reduced, compared with those of the control group as based on the Wilcoxon rank sum test. Among these were VGF (non-acronymic) protein, amyloid precursor protein, serum amyloid A (SAA), fibrinogen, C1INH, apolipoprotein C-III, cystatin C, transthyretin, hepcidin, human neutrophil peptides, and osteopontin. These proteins may represent novel biomarkers of the metabolic changes that occur in dairy cows with ketosis. Our results will help to better understand the physiological changes and pathogenesis observed in cows with ketosis. The SELDI-TOF-MS can be used to understand the physiological and biochemical mechanisms of ketosis and identify biomarkers of the disease.

  5. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs.

    Directory of Open Access Journals (Sweden)

    José Navarrete-Perea

    2017-09-01

    Full Text Available In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts can infest several tissues including the central nervous system (CNS and the skeletal muscles (SM. The cyst's proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the 'optimal' tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants.

  6. Quantitative multiplexed proteomics of Taenia solium cysts obtained from the skeletal muscle and central nervous system of pigs.

    Science.gov (United States)

    Navarrete-Perea, José; Isasa, Marta; Paulo, Joao A; Corral-Corral, Ricardo; Flores-Bautista, Jeanette; Hernández-Téllez, Beatriz; Bobes, Raúl J; Fragoso, Gladis; Sciutto, Edda; Soberón, Xavier; Gygi, Steven P; Laclette, Juan P

    2017-09-01

    In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst's proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the 'optimal' tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants.

  7. Impact of phenolic substrate and growth temperature on the arthrobacter chlorophenolicus proteome

    Energy Technology Data Exchange (ETDEWEB)

    Unell, Maria; Abraham, Paul E.; Shah, Manesh; Zhang, Bing; Ruckert, Christian; VerBerkmoes, Nathan C.; Jansson, Janet K.

    2009-02-15

    We compared the Arthrobacter chlorophenolicus proteome during growth on 4-chlorophenol, 4-nitrophenol or phenol at 5 C and 28 C; both for the wild type and a mutant strain with mass spectrometry based proteomics. A label free workflow employing spectral counting identified 3749 proteins across all growth conditions, representing over 70% of the predicted genome and 739 of these proteins form the core proteome. Statistically significant differences were found in the proteomes of cells grown under different conditions including differentiation of hundreds of unknown proteins. The 4-chlorophenol-degradation pathway was confirmed, but not that for phenol.

  8. Chromosomocentric approach to overcoming difficulties in implementation of international project Human Proteome

    Directory of Open Access Journals (Sweden)

    A. I. Archakov

    2013-12-01

    Full Text Available The international project Human Proteome (PHP, being a logical continuation of the project Human Genome, was started on September 23, 2010. In correspondence with the genocentric approach, the PHP aim is to prepare a catalogue of all human proteins and to decipher a network of their interactions. The PHP implementation difficulties arise because the research subject itself – proteome – is much more complicated than genome. The major problem is the insufficient sensitivity of proteome methods that does not allow detecting low- and ultralow-copy proteins. Bad reproducibility of proteome methods and the lack of so-called “gold standard” is the second major complicacy in PHP implementation. The third problem is the dynamic character of proteome, its instabili­ty in time. The paper deals with possible variants of overcoming these complicacies, preventing from successful implementation of PHP.

  9. Selection for higher fertility reflects in the seminal fluid proteome of modern domestic chicken.

    Science.gov (United States)

    Atikuzzaman, Mohammad; Sanz, Libia; Pla, Davinia; Alvarez-Rodriguez, Manuel; Rubér, Marie; Wright, Dominic; Calvete, Juan J; Rodriguez-Martinez, Heriberto

    2017-03-01

    The high egg-laying capacity of the modern domestic chicken (i.e. White Leghorn, WL) has arisen from the low egg-laying ancestor Red Junglefowl (RJF) via continuous trait selection and breeding. To investigate whether this long-term selection impacted the seminal fluid (SF)-proteome, 2DE electrophoresis-based proteomic analyses and immunoassays were conducted to map SF-proteins/cytokines in RJF, WL and a 9th generation Advanced Intercross Line (AIL) of RJF/WL-L13, including individual SF (n=4, from each RJF, WL and AIL groups) and pools of the SF from 15 males of each group, analyzed by 2DE to determine their degree of intra-group (AIL, WL, and RJF) variability using Principal Component Analysis (PCA); respectively an inter-breed comparative analysis of intergroup fold change of specific SF protein spots intensity between breeds. The PCA clearly highlighted a clear intra-group similarity among individual roosters as well as a clear inter-group variability (e.g. between RJF, WL and AIL) validating the use of pools to minimize confounding individual variation. Protein expression varied considerably for processes related to sperm motility, nutrition, transport and survival in the female, including signaling towards immunomodulation. The major conserved SF-proteins were serum albumin and ovotransferrin. Aspartate aminotransferase, annexin A5, arginosuccinate synthase, glutathione S-transferase 2 and l-lactate dehydrogenase-A were RJF-specific. Glyceraldehyde-3-phosphate dehydrogenase appeared specific to the WL-SF while angiotensin-converting enzyme, γ-enolase, coagulation factor IX, fibrinogen α-chain, hemoglobin subunit α-D, lysozyme C, phosphoglycerate kinase, Src-substrate protein p85, tubulins and thioredoxin were AIL-specific. The RJF-SF contained fewer immune system process proteins and lower amounts of the anti-inflammatory/immunomodulatory TGF-β2 compared to WL and AIL, which had low levels- or lacked pro-inflammatory CXCL10 compared to RJF. The seminal

  10. An introduction to statistical process control in research proteomics.

    Science.gov (United States)

    Bramwell, David

    2013-12-16

    Statistical process control is a well-established and respected method which provides a general purpose, and consistent framework for monitoring and improving the quality of a process. It is routinely used in many industries where the quality of final products is critical and is often required in clinical diagnostic laboratories [1,2]. To date, the methodology has been little utilised in research proteomics. It has been shown to be capable of delivering quantitative QC procedures for qualitative clinical assays [3] making it an ideal methodology to apply to this area of biological research. To introduce statistical process control as an objective strategy for quality control and show how it could be used to benefit proteomics researchers and enhance the quality of the results they generate. We demonstrate that rules which provide basic quality control are easy to derive and implement and could have a major impact on data quality for many studies. Statistical process control is a powerful tool for investigating and improving proteomics research work-flows. The process of characterising measurement systems and defining control rules forces the exploration of key questions that can lead to significant improvements in performance. This work asserts that QC is essential to proteomics discovery experiments. Every experimenter must know the current capabilities of their measurement system and have an objective means for tracking and ensuring that performance. Proteomic analysis work-flows are complicated and multi-variate. QC is critical for clinical chemistry measurements and huge strides have been made in ensuring the quality and validity of results in clinical biochemistry labs. This work introduces some of these QC concepts and works to bridge their use from single analyte QC to applications in multi-analyte systems. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. Copyright © 2013 The Author. Published by Elsevier

  11. Mass spectrometry based proteomics, background, status and future needs

    DEFF Research Database (Denmark)

    Roepstorff, Peter

    2012-01-01

    An overview of the background for proteomics and a description of the present state of art are given with a description of the main strategies in proteomics. The advantages and limitations of the two major strategies, 2D-gel based and LC-MS based, are discussed and a combination for the two, CeLC...

  12. Metabonomic study of human serum in gallbladder cancer by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Sonkar, Kanchan; Sinha, Neeraj; Behari, Anu; Kapoor, V.K.

    2012-01-01

    Gallbladder carcinoma (GBC) is one of the most lethal malignancies of upper gastrointestinal tract and it has the highest mortality rate in Chile and India. It has a very high incidence rates in northern India therefore it is also called as an Indian disease. There are several factors which play important role in development of gallbladder cancer including long-standing stones in gallbladder and alterations in composition of bile. Studies on gallstones and gallbladder tissues revealed that benign group can easily be discriminated from malignant group. Many proteomic studies have been performed for different cancers and several responsible serum protein markers have been identified but there is no such metabonomics study that shows the presence of any biomarker associated with gallbladder carcinoma. Identification of such biomarker would help immensely in the diagnostic of GBC. For this study we have collected blood samples (70; including patients from Chronic Cholecystitis (CC), XanthoGranulomatous Cholecystitis (XGC) and Gallbladder Cancer (GBC)) post-operatively (immediately after surgery) from patient undergoing cholecystectomy in Department of Surgical Gastroenterology, SGPGIMS. Control samples were also collected from 20 volunteers after 12 hrs of fasting. 4 ml of blood sample was collected and was allowed to clot in plastic tube for 30 min at room temperature in incubator. The serum was collected by centrifugation and samples were stored at -80 deg C till NMR experiments. 400 μL of serum was used for recording NMR spectra. NMR spectra were recorded at Bruker Avance 800 MHz spectrometer using CPMG pulse sequence with water presaturation. Control serum shows presence of various amino acids and low molecular weight metabolites. Detailed multivariate analysis along with markers found in serum associated with GBC will be presented. (author)

  13. Extensive mass spectrometry proteomics data of Persicaria minor herb upon methyl jasmonate treatment

    Directory of Open Access Journals (Sweden)

    Wan Mohd Aizat

    2018-02-01

    Full Text Available Proteomics is often hindered by the lack of protein sequence database particularly for non-model species such as Persicaria minor herbs. An integrative approach called proteomics informed by transcriptomics is possible [1], in which translated transcriptome sequence database is used as the protein sequence database. In this current study, the proteome profile were profiled using SWATH-MS technology complemented with documented transcriptome profiling [2], the first such report in this tropical herb. The plant was also elicited using a phytohormone, methyl jasmonate (MeJA and protein changes were elucidated using label-free quantification of SWATH-MS to understand the role of such signal molecule in this herbal species. The mass spectrometry proteomics data was deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD005749. This data article refers to the article entitled “Proteomics (SWATH-MS-informed by transcriptomics approach of Persicaria minor leaves upon methyl jasmonate elicitation” [3].

  14. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.

    Science.gov (United States)

    Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2015-07-15

    Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Quantitative proteomics by amino acid labeling in C. elegans

    DEFF Research Database (Denmark)

    Fredens, Julius; Engholm-Keller, Kasper; Giessing, Anders

    2011-01-01

    We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-med......-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.......We demonstrate labeling of Caenorhabditis elegans with heavy isotope-labeled lysine by feeding them with heavy isotope-labeled Escherichia coli. Using heavy isotope-labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi...

  16. Biogeoscience from a Metallomic and Proteomic Perspective

    Science.gov (United States)

    Anbar, A. D.; Shock, E.

    2004-12-01

    In the wake of the genomics revolution, life scientists are expanding their focus from the genome to the "proteome" - the assemblage of all proteins in a cell - and the "metallome" - the distribution of inorganic species in a cell. The proteome and metallome are tightly connected because proteins and protein products are intimately involved in the transport and homeostasis of inorganic elements, and because many enzymes depend on inorganic elements for catalytic activity. Together, they are at the heart of metabolic function. Unlike the relatively static genome, the proteome and metallome are extremely dynamic, changing rapidly in response to environmental cues. They are substantially more complex than the genome; for example, in humans, some 30,000 genes code for approximately 500,000 proteins. Metaphorically, the proteome and metallome constitute the complex, dynamic "language" by which the genome and the environment communicate. Therefore biogeochemists, like life scientists, are moving beyond a strictly genomic perspective. Research guided by proteomic and metallomic perspectives and methodologies should provide new insights into the connections between life and the inorganic Earth in modern environments, and the evolution of these connections through time. For example, biogeochemical research in modern environments, such as Yellowstone hot springs, is hindered by the gap between genomic determinations of metabolic potential in ecosystems and geochemical characterizations of the energetic boundary conditions faced by these ecosystems; genomics tells us "who is there" and geochemistry tells us "what they might be doing", but neither genomics nor geochemistry easily provide quantitative information about which metabolisms are actually active or a framework for understanding why ecosystems do not fully exploit the energy available in their surroundings. Such questions are fundamentally kinetic rather than thermodynamic and therefore demand that we characterize and

  17. Protein interaction networks by proteome peptide scanning.

    Directory of Open Access Journals (Sweden)

    Christiane Landgraf

    2004-01-01

    Full Text Available A substantial proportion of protein interactions relies on small domains binding to short peptides in the partner proteins. Many of these interactions are relatively low affinity and transient, and they impact on signal transduction. However, neither the number of potential interactions mediated by each domain nor the degree of promiscuity at a whole proteome level has been investigated. We have used a combination of phage display and SPOT synthesis to discover all the peptides in the yeast proteome that have the potential to bind to eight SH3 domains. We first identified the peptides that match a relaxed consensus, as deduced from peptides selected by phage display experiments. Next, we synthesized all the matching peptides at high density on a cellulose membrane, and we probed them directly with the SH3 domains. The domains that we have studied were grouped by this approach into five classes with partially overlapping specificity. Within the classes, however, the domains display a high promiscuity and bind to a large number of common targets with comparable affinity. We estimate that the yeast proteome contains as few as six peptides that bind to the Abp1 SH3 domain with a dissociation constant lower than 100 microM, while it contains as many as 50-80 peptides with corresponding affinity for the SH3 domain of Yfr024c. All the targets of the Abp1 SH3 domain, identified by this approach, bind to the native protein in vivo, as shown by coimmunoprecipitation experiments. Finally, we demonstrate that this strategy can be extended to the analysis of the entire human proteome. We have developed an approach, named WISE (whole interactome scanning experiment, that permits rapid and reliable identification of the partners of any peptide recognition module by peptide scanning of a proteome. Since the SPOT synthesis approach is semiquantitative and provides an approximation of the dissociation constants of the several thousands of interactions that are

  18. Examining hemodialyzer membrane performance using proteomic technologies

    Directory of Open Access Journals (Sweden)

    Bonomini M

    2017-12-01

    Full Text Available Mario Bonomini,1 Luisa Pieroni,2 Lorenzo Di Liberato,1 Vittorio Sirolli,1 Andrea Urbani2,3 1Department of Medicine, G. d’Annunzio University, Chieti, 2Proteomic and Metabonomic Units, IRCCS S. Lucia Foundation, Rome, 3Faculty of Medicine, Biochemistry and Clinical Biochemistry Institute, Catholic University of the “Sacred Heart”, Rome, Italy Abstract: The success and the quality of hemodialysis therapy are mainly related to both clearance and biocompatibility properties of the artificial membrane packed in the hemodialyzer. Performance of a membrane is strongly influenced by its interaction with the plasma protein repertoire during the extracorporeal procedure. Recognition that a number of medium–high molecular weight solutes, including proteins and protein-bound molecules, are potentially toxic has prompted the development of more permeable membranes. Such membrane engineering, however, may cause loss of vital proteins, with membrane removal being nonspecific. In addition, plasma proteins can be adsorbed onto the membrane surface upon blood contact during dialysis. Adsorption can contribute to the removal of toxic compounds and governs the biocompatibility of a membrane, since surface-adsorbed proteins may trigger a variety of biologic blood pathways with pathophysiologic consequences. Over the last years, use of proteomic approaches has allowed polypeptide spectrum involved in the process of hemodialysis, a key issue previously hampered by lack of suitable technology, to be assessed in an unbiased manner and in its full complexity. Proteomics has been successfully applied to identify and quantify proteins in complex mixtures such as dialysis outflow fluid and fluid desorbed from dialysis membrane containing adsorbed proteins. The identified proteins can also be characterized by their involvement in metabolic and signaling pathways, molecular networks, and biologic processes through application of bioinformatics tools. Proteomics may

  19. Utility of proteomics in obstetric disorders: a review

    Directory of Open Access Journals (Sweden)

    Hernández-Núñez J

    2015-04-01

    Full Text Available Jónathan Hernández-Núñez,1 Magel Valdés-Yong21Department of Obstetrics and Gynecology, Hospital Alberto Fernández-Valdés, Santa Cruz del Norte, Mayabeque, 2Department of Obstetrics and Gynecology, Hospital Luis Díaz Soto, Habana del Este, La Habana, CubaAbstract: The study of proteomics could explain many aspects of obstetric disorders. We undertook this review with the aim of assessing the utility of proteomics in the specialty of obstetrics. We searched the electronic databases of MEDLINE, EBSCOhost, BVS Bireme, and SciELO, using various search terms with the assistance of a librarian. We considered cohort studies, case-control studies, case series, and systematic review articles published until October 2014 in the English or Spanish language, and evaluated their quality and the internal validity of the evidence provided. Two reviewers extracted the data independently, then both researchers simultaneously revised the data later, to arrive at a consensus. The search retrieved 1,158 papers, of which 965 were excluded for being duplicates, not relevant, or unrelated studies. A further 86 papers were excluded for being guidelines, protocols, or case reports, along with another 64 that did not contain relevant information, leaving 43 studies for inclusion. Many of these studies showed the utility of proteomic techniques for prediction, pathophysiology, diagnosis, management, monitoring, and prognosis of pre-eclampsia, perinatal infection, premature rupture of membranes, preterm birth, intrauterine growth restriction, and ectopic pregnancy. Proteomic techniques have enormous clinical significance and constitute an invaluable weapon in the management of obstetric disorders that increase maternal and perinatal morbidity and mortality.Keywords: proteomic techniques, obstetrics, diagnosis, prediction

  20. Proteomics in quality control: Whey protein-based supplements.

    Science.gov (United States)

    Garrido, Bruno Carius; Souza, Gustavo H M F; Lourenço, Daniela C; Fasciotti, Maíra

    2016-09-16

    The growing consumption of nutritional supplements might represent a problem, given the concern about the quality of these supplements. One of the most used supplements is whey protein (WP); because of its popularity, it has been a target of adulteration with substitute products, such as cheaper proteins with lower biological value. To investigate this type of adulteration, this study used shotgun proteomics analyses by MS(E) (multiplexed, low- and high-collision energy, data-independent acquisition) of WP-based supplements. Seventeen WP-based supplement samples were evaluated. Chicken, maize, rice, potato, soybean, and wheat proteins were considered as probable sources of bovine whey adulteration. Collectively, 523 proteins were identified across all 16 samples and replicates, with 94% of peptides inside a normal distribution within 10ppm of maximum error. In 10 of the 16 samples analyzed, only proteins from bovine whey could be detected, while in the other samples several other protein sources were detected in high concentrations, especially soybean, wheat, and rice. These results point out a probable adulteration and/or sample contamination during manufacturing that could only be detected using this proteomic approach. The present work shows how shotgun proteomics can be used to provide reliable answers in quality control matters, especially focusing on Whey Protein nutritional supplements which are a very popular subject in food and nutrition. In order to achieve an appropriate methodology, careful evaluation was performed applying extremely rigorous quality criteria, established for the proteomic analysis. These criteria and the methodological approach used in this work might serve as a guide for other authors seeking to use proteomics in quality control. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Proteomic profiling of the human T-cell nucleolus.

    Science.gov (United States)

    Jarboui, Mohamed Ali; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2011-12-01

    The nucleolus, site of ribosome biogenesis, is a dynamic subnuclear organelle involved in diverse cellular functions. The size, number and organisation of nucleoli are cell-specific and while it remains to be established, the nucleolar protein composition would be expected to reflect lineage-specific transcriptional regulation of rDNA genes and have cell-type functional components. Here, we describe the first characterisation of the human T-cell nucleolar proteome. Using the Jurkat T-cell line and a reproducible organellar proteomic approach, we identified 872 nucleolar proteins. In addition to ribosome biogenesis and RNA processing networks, network modeling and topological analysis of nucleolar proteome revealed distinct macromolecular complexes known to orchestrate chromatin structure and to contribute to the regulation of gene expression, replication, recombination and repair, and chromosome segregation. Furthermore, among our dataset, we identified proteins known to functionally participate in T-cell biology, including RUNX1, ILF3, ILF2, STAT3, LSH, TCF-1, SATB1, CTCF, HMGB3, BCLAF1, FX4L1, ZAP70, TIAM1, RAC2, THEMIS, LCP1, RPL22, TOPK, RETN, IFI-16, MCT-1, ISG15, and 14-3-3τ, which support cell-specific composition of the Jurkat nucleolus. Subsequently, the nucleolar localisation of RUNX1, ILF3, STAT3, ZAP70 and RAC2 was further validated by Western Blot analysis and immunofluorescence microscopy. Overall, our T-cell nucleolar proteome dataset not only further expands the existing repertoire of the human nucleolar proteome but support a cell type-specific composition of the nucleolus in T cell and highlights the potential roles of the nucleoli in lymphocyte biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.

    Directory of Open Access Journals (Sweden)

    Thomas Kieselbach

    Full Text Available Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT and leukotoxin (LtxA into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs. To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e using liquid chromatography-tandem mass spectrometry (LC-MS/MS. This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.

  3. Mining the active proteome of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Renier A. L. Van Der Hoorn

    2011-11-01

    Full Text Available Assigning functions to the >30.000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied Activity-based Protein Profiling (ABPP. ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed of activities of 76 Arabidopsis proteins. These proteins represent over ten different protein classes that contain over 250 Arabidopsis proteins, including cysteine- serine- and metallo-proteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click-chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed novel protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities e.g. of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry and proteomics.

  4. Simple and rapid LC-MS/MS method for the absolute determination of cetuximab in human serum using an immobilized trypsin.

    Science.gov (United States)

    Shibata, Kaito; Naito, Takafumi; Okamura, Jun; Hosokawa, Seiji; Mineta, Hiroyuki; Kawakami, Junichi

    2017-11-30

    Proteomic approaches using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) without an immunopurification technique have not been applied to the determination of serum cetuximab. This study developed a simple and rapid LC-MS/MS method for the absolute determination of cetuximab in human serum and applied it to clinical settings. Surrogate peptides derived from cetuximab digests were selected using a Fourier transform mass spectrometer. Reduced-alkylated serum cetuximab without immunopurification was digested for 20minutes using immobilized trypsin, and the digestion products were purified by solid-phase extraction. The LC-MS/MS was run in positive ion multiple reaction monitoring mode. This method was applied to the determination of serum samples in head and neck cancer patients treated with cetuximab. The chromatographic run time was 10minutes and no peaks interfering with surrogate peptides in serum digestion products were observed. The calibration curve of absolute cetuximab in serum was linear over the concentration range of 4-200μg/mL. The lower limit of quantification of cetuximab in human serum was 4μg/mL. The intra-assay and inter-assay precision and accuracy were less than 13.2% and 88.0-100.7%, respectively. The serum concentration range of cetuximab was 19-140μg/mL in patients. The serum cetuximab concentrations in LC-MS/MS were correlated with those in ELISA (r=0.899, P <0.01) and the mean bias was 1.5% in cancer patients. In conclusion, the present simple and rapid method with acceptable analytical performance can be helpful for evaluating the absolute concentration of serum cetuximab in clinical settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Proteomics technique opens new frontiers in mobilome research.

    Science.gov (United States)

    Davidson, Andrew D; Matthews, David A; Maringer, Kevin

    2017-01-01

    A large proportion of the genome of most eukaryotic organisms consists of highly repetitive mobile genetic elements. The sum of these elements is called the "mobilome," which in eukaryotes is made up mostly of transposons. Transposable elements contribute to disease, evolution, and normal physiology by mediating genetic rearrangement, and through the "domestication" of transposon proteins for cellular functions. Although 'omics studies of mobilome genomes and transcriptomes are common, technical challenges have hampered high-throughput global proteomics analyses of transposons. In a recent paper, we overcame these technical hurdles using a technique called "proteomics informed by transcriptomics" (PIT), and thus published the first unbiased global mobilome-derived proteome for any organism (using cell lines derived from the mosquito Aedes aegypti ). In this commentary, we describe our methods in more detail, and summarise our major findings. We also use new genome sequencing data to show that, in many cases, the specific genomic element expressing a given protein can be identified using PIT. This proteomic technique therefore represents an important technological advance that will open new avenues of research into the role that proteins derived from transposons and other repetitive and sequence diverse genetic elements, such as endogenous retroviruses, play in health and disease.

  6. Autoantibody profiling on human proteome microarray for biomarker discovery in cerebrospinal fluid and sera of neuropsychiatric lupus.

    Directory of Open Access Journals (Sweden)

    Chaojun Hu

    Full Text Available Autoantibodies in cerebrospinal fluid (CSF from patients with neuropsychiatric systemic lupus erythematosus (NPSLE may be potential biomarkers for prediction, diagnosis, or prognosis of NPSLE. We used a human proteome microarray with~17,000 unique full-length human proteins to investigate autoantibodies associated with NPSLE. Twenty-nine CSF specimens from 12 NPSLE, 7 non-NPSLE, and 10 control (non-systemic lupus erythematosuspatients were screened for NPSLE-associated autoantibodies with proteome microarrays. A focused autoantigen microarray of candidate NPSLE autoantigens was applied to profile a larger cohort of CSF with patient-matched sera. We identified 137 autoantigens associated with NPSLE. Ingenuity Pathway Analysis revealed that these autoantigens were enriched for functions involved in neurological diseases (score = 43.Anti-proliferating cell nuclear antigen (PCNA was found in the CSF of NPSLE and non-NPSLE patients. The positive rates of 4 autoantibodies in CSF specimens were significantly different between the SLE (i.e., NPSLE and non-NPSLE and control groups: anti-ribosomal protein RPLP0, anti-RPLP1, anti-RPLP2, and anti-TROVE2 (also known as anti-Ro/SS-A. The positive rate for anti-SS-A associated with NPSLE was higher than that for non-NPSLE (31.11% cf. 10.71%; P = 0.045.Further analysis showed that anti-SS-A in CSF specimens was related to neuropsychiatric syndromes of the central nervous system in SLE (P = 0.009. Analysis with Spearman's rank correlation coefficient indicated that the titers of anti-RPLP2 and anti-SS-A in paired CSF and serum specimens significantly correlated. Human proteome microarrays offer a powerful platform to discover novel autoantibodies in CSF samples. Anti-SS-A autoantibodies may be potential CSF markers for NPSLE.

  7. Proteomic studies of drought stress response in Fabaceae

    Directory of Open Access Journals (Sweden)

    Tanja ZADRAŽNIK

    2015-11-01

    Full Text Available Drought stress is a serious threat to crop production that influences plant growth and development and subsequently causes reduced quantity and quality of the yield. Plant stress induces changes in cell metabolism, which includes differential expression of proteins. Proteomics offer a powerful approach to analyse proteins involved in drought stress response of plants. Analyses of changes in protein abundance of legumes under drought stress are very important, as legumes play an important role in human and animal diet and are often exposed to drought. The presented results of proteomic studies of selected legumes enable better understanding of molecular mechanisms of drought stress response. The study of drought stress response of plants with proteomic approach may contribute to the development of potential drought-response markers and to the development of drought-tolerant cultivars of different legume crop species.

  8. Changes to the Aqueous Humor Proteome during Glaucoma.

    Science.gov (United States)

    Kaeslin, Martha Andrea; Killer, Hanspeter Ezriel; Fuhrer, Cyril Adrian; Zeleny, Nauke; Huber, Andreas Robert; Neutzner, Albert

    2016-01-01

    To investigate the aqueous humor proteome in patients with glaucoma and a control group. Aqueous humor was obtained from five human donors diagnosed with primary open angle glaucoma (POAG) and five age- and sex-matched controls undergoing cataract surgery. Quantitative proteome analysis of the aqueous humor by hyper reaction monitoring mass spectrometry (HRM-MS) based on SWATH technology was performed. Expression levels of 87 proteins were found to be different between glaucomatous and control aqueous humor. Of the 87 proteins, 34 were significantly upregulated, whereas 53 proteins were downregulated in the aqueous humor from glaucoma patients compared to controls. Differentially expressed proteins were found to be involved in cholesterol-related, inflammatory, metabolic, antioxidant as well as proteolysis-related processes. Glaucoma leads to profound changes to the aqueous humor proteome consistent with an altered metabolic state, an inflammatory response and impaired antioxidant defense.

  9. Data Visualization and Feature Selection Methods in Gel-based Proteomics

    DEFF Research Database (Denmark)

    Silva, Tomé Santos; Richard, Nadege; Dias, Jorge P.

    2014-01-01

    -based proteomics, summarizing the current state of research within this field. Particular focus is given on discussing the usefulness of available multivariate analysis tools both for data visualization and feature selection purposes. Visual examples are given using a real gel-based proteomic dataset as basis....

  10. Analysis of Peanut Leaf Proteome

    DEFF Research Database (Denmark)

    Ramesh, R.; Suravajhala, Prashanth; Pechan, T.

    2010-01-01

    Peanut (Arachis hypogaea) is one of the most important sources of plant protein. Current selection of genotypes requires molecular characterization of available populations. Peanut genome database has several EST cDNAs which can be used to analyze gene expression. Analysis of proteins is a direct...... approach to define function of their associated genes. Proteome analysis linked to genome sequence information is critical for functional genomics. However, the available protein expression data is extremely inadequate. Proteome analysis of peanut leaf was conducted using two-dimensional gel...... electrophoresis in combination with sequence identification using MALDI/TOF to determine their identity and function related to growth, development and responses to stresses. Peanut leaf proteins were resolved into 300 polypeptides with pI values between 3.5 and 8.0 and relative molecular masses from 12 to 100 k...

  11. Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer

    International Nuclear Information System (INIS)

    Wang, Qi; Gu, Jin; Shen, Jing; Li, Zhen-fu; Jie, Jian-zheng; Wang, Wen-yue; Wang, Jin; Zhang, Zhong-tao; Li, Zhi-xia; Yan, Li

    2009-01-01

    Surface enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF-MS) analysis on serum samples was reported to be able to detect colorectal cancer (CRC) from normal or control patients. We carried out a validation study of a SELDI-TOF MS approach with IMAC surface sample processing to identify CRC. A retrospective cohort of 338 serum samples including 154 CRCs, 67 control cancers and 117 non-cancerous conditions was profiled using SELDI-TOF-MS. No CRC 'specific' classifier was found. However, a classifier consisting of two protein peaks separates cancer from non-cancerous conditions with high accuracy. In this study, the SELDI-TOF-MS-based protein expression profiling approach did not perform to identify CRC. However, this technique is promising in distinguishing patients with cancer from a non-cancerous population; it may be useful for monitoring recurrence of CRC after treatment

  12. Salivary proteomics: A new adjuvant approach to the early diagnosis of familial juvenile systemic lupus erythematosus.

    Science.gov (United States)

    Abrão, Aline Lauria P; Falcao, Denise Pinheiro; de Amorim, Rivadávio Fernandes Batista; Bezerra, Ana Cristina B; Pombeiro, Gilson Augusto N M; Guimarães, Luciano Junqueira; Fregni, Felipe; Silva, Luciano Paulino; da Mota, Licia Maria Henrique

    2016-04-01

    Systemic lupus erythematosus (SLE) is a chronic multisystemic disease characterized by autoimmune inflammatory disturbance. Pleomorphic manifestations are present and a potentially progressive and debilitating course can be detected. SLE rarely manifests before age 5, and its onset peaks is around puberty. Although clinical manifestations, immunological alterations and treatment do not differ between juvenile and adult SLE, children tend to present with a more aggressive disease course than adults. Hence, autoimmune rheumatic diseases are the most common cause of morbidity and mortality in pediatric populations. Blood serum analysis plays an especially important role in the detection and monitoring of autoantibodies in SLE. However, since blood sampling is an uncomfortable procedure, especially in children, novel less invasive techniques and approaches are of utmost importance to evaluate pediatric subjects. In this regard, saliva samples have several advantages, such as: easy access, fast collection, painless and riskless procedure. Saliva has antimicrobial, immunomodulatory and anti-inflammatory properties, as well as several other relevant features. The whole saliva is a complex mixture of major and minor salivary gland secretion, gingival crevicular fluid, transudates plasma protein, keratinocyte products and oral microbiota. This biological fluid reflects the physiological state of the body, including the emotional condition, and endocrine, nutritional and metabolic changes. Therefore, salivary proteomics is becoming increasingly used for the early diagnosis of several diseases such as breast cancer, oral cancer, Sjögren's syndrome, diffuse systemic sclerosis, rheumatoid arthritis, among others. Considering the detection of some potential markers related to SLE in serum and urine, this study aims to conduct an initial evaluation of the possible presence of such biomarkers in saliva. Furthermore, it is expected to track down new salivary proteins that could be

  13. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis

    NARCIS (Netherlands)

    Low, T.Y.; van Heesch, S.; van den Toorn, H.; Giansanti, P.; Cristobal, A.; Toonen, P.; Schafer, S.; Hubner, N.; van Breukelen, B.; Mohammed, S.; Cuppen, E.; Heck, A.J.R.; Guryev, V.

    2013-01-01

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We

  14. Detection of ROS Induced Proteomic Signatures by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2017-07-01

    Full Text Available Reversible and irreversible post-translational modifications (PTMs induced by endogenously generated reactive oxygen species (ROS in regulatory enzymes and proteins plays an essential role in cellular signaling. Almost all cellular processes including metabolism, transcription, translation and degradation have been identified as containing redox regulated proteins. Specific redox modifications of key amino acids generated by ROS offers a dynamic and versatile means to rapidly alter the activity or functional structure of proteins in response to biochemical, environmental, genetic and pathological perturbations. How the proteome responds to these stimuli is of critical importance in oxidant physiology, as it can regulate the cell stress response by reversible and irreversible PTMs, affecting protein activity and protein-protein interactions. Due to the highly labile nature of many ROS species, applying redox proteomics can provide a signature footprint of the ROS species generated. Ideally redox proteomic approaches would allow; (1 the identification of the specific PTM, (2 identification of the amino acid residue that is modified and (3 the percentage of the protein containing the PTM. New developments in MS offer the opportunity of a more sensitive targeted proteomic approach and retrospective data analysis. Subsequent bioinformatics analysis can provide an insight into the biochemical and physiological pathways or cell signaling cascades that are affected by ROS generation. This mini-review will detail current redox proteomic approaches to identify and quantify ROS induced PTMs and the subsequent effects on cellular signaling.

  15. TrSDB: a proteome database of transcription factors

    Science.gov (United States)

    Hermoso, Antoni; Aguilar, Daniel; Aviles, Francesc X.; Querol, Enrique

    2004-01-01

    TrSDB—TranScout Database—(http://ibb.uab.es/trsdb) is a proteome database of eukaryotic transcription factors based upon predicted motifs by TranScout and data sources such as InterPro and Gene Ontology Annotation. Nine eukaryotic proteomes are included in the current version. Extensive and diverse information for each database entry, different analyses considering TranScout classification and similarity relationships are offered for research on transcription factors or gene expression. PMID:14681387

  16. A Review: Proteomics in Retinal Artery Occlusion, Retinal Vein Occlusion, Diabetic Retinopathy and Acquired Macular Disorders.

    Science.gov (United States)

    Cehofski, Lasse Jørgensen; Honoré, Bent; Vorum, Henrik

    2017-04-28

    Retinal artery occlusion (RAO), retinal vein occlusion (RVO), diabetic retinopathy (DR) and age-related macular degeneration (AMD) are frequent ocular diseases with potentially sight-threatening outcomes. In the present review we discuss major findings of proteomic studies of RAO, RVO, DR and AMD, including an overview of ocular proteome changes associated with anti-vascular endothelial growth factor (VEGF) treatments. Despite the severe outcomes of RAO, the proteome of the disease remains largely unstudied. There is also limited knowledge about the proteome of RVO, but proteomic studies suggest that RVO is associated with remodeling of the extracellular matrix and adhesion processes. Proteomic studies of DR have resulted in the identification of potential therapeutic targets such as carbonic anhydrase-I. Proliferative diabetic retinopathy is the most intensively studied stage of DR. Proteomic studies have established VEGF, pigment epithelium-derived factor (PEDF) and complement components as key factors associated with AMD. The aim of this review is to highlight the major milestones in proteomics in RAO, RVO, DR and AMD. Through large-scale protein analyses, proteomics is bringing new important insights into these complex pathological conditions.

  17. Proteomics of Trypanosoma evansi infection in rodents.

    Science.gov (United States)

    Roy, Nainita; Nageshan, Rishi Kumar; Pallavi, Rani; Chakravarthy, Harshini; Chandran, Syama; Kumar, Rajender; Gupta, Ashok Kumar; Singh, Raj Kumar; Yadav, Suresh Chandra; Tatu, Utpal

    2010-03-22

    Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS). Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF) mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more. Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a glimpse into the

  18. Proteomics of Trypanosoma evansi infection in rodents.

    Directory of Open Access Journals (Sweden)

    Nainita Roy

    2010-03-01

    Full Text Available Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS.Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a

  19. Quantitative and Qualitative Proteome Characteristics Extracted from In-Depth Integrated Genomics and Proteomics Analysis

    NARCIS (Netherlands)

    Low, Teck Yew; van Heesch, Sebastiaan; van den Toorn, Henk; Giansanti, Piero; Cristobal, Alba; Toonen, Pim; Schafer, Sebastian; Huebner, Norbert; van Breukelen, Bas; Mohammed, Shabaz; Cuppen, Edwin; Heck, Albert J. R.; Guryev, Victor

    2013-01-01

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and post-transcriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We

  20. Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy

    DEFF Research Database (Denmark)

    Alkhalaf, Alaa; Zürbig, Petra; Bakker, Stephan J L

    2010-01-01

    /d and diabetic retinopathy (n = 66). Controls were matched for gender and diabetes duration (n = 82). METHODOLOGY/PRINCIPAL FINDINGS: Proteome analysis was performed blinded using high-resolution capillary electrophoresis coupled with mass spectrometry (CE-MS). Data were evaluated employing the previously......BACKGROUND: Urine proteome analysis is rapidly emerging as a tool for diagnosis and prognosis in disease states. For diagnosis of diabetic nephropathy (DN), urinary proteome analysis was successfully applied in a pilot study. The validity of the previously established proteomic biomarkers...... with respect to the diagnostic and prognostic potential was assessed on a separate set of patients recruited at three different European centers. In this case-control study of 148 Caucasian patients with diabetes mellitus type 2 and duration ≥5 years, cases of DN were defined as albuminuria >300 mg...