WorldWideScience

Sample records for sers ion mobility

  1. The hypertrehalosemic neuropeptides of cicadas are structural isomers-evidence by ion mobility mass spectrometry.

    Science.gov (United States)

    König, Simone; Marco, Heather; Gäde, Gerd

    2017-11-01

    It has been known for more than 20 years that the neurosecretory glands of the cicadas, the corpora cardiaca, synthesize two isobaric peptides with hypertrehalosemic activity. Both decapeptides have exactly the same amino acid sequence (pGlu-Val-Asn-Phe-Ser-Pro-Ser-Trp-Gly-Asn-NH 2 ) and mass but differ in their retention time in reversed-phase liquid chromatography. A synthetic peptide with the same sequence elutes together with the second more hydrophobic peptide peak of the natural cicada extract. It is not clear what modification is causing the described observations. Therefore, in the current study, ion mobility separation in conjunction with high-resolution mass spectrometry was used to investigate this phenomenon as it was sensitive to changes in conformation. It detected different drift times in buffer gas for both the intact peptides and some of their fragment ions. Based on the ion mobility and fragment ion intensity of the corresponding ions, it is concluded that the region Pro 6 -Ser 7 -Trp 8 contains a structural feature differing from the L-amino acids present in the known peptide. Whether the conformer is the result of racemization or other biochemical processes needs to be further investigated.

  2. Ion mobility spectrometry

    CERN Document Server

    Eiceman, GA

    2005-01-01

    Key Developments for Faster, More Precise Detection Capabilities Driven by the demand for the rapid and advanced detection of explosives, chemical and biological warfare agents, and narcotics, ion mobility spectrometry (IMS) undergone significant refinements in technology, computational capabilities, and understanding of the principles of gas phase ion chemistry and mobility. Beginning with a thorough discussion of the fundamental theories and physics of ion mobility, Ion Mobility Spectrometry, Second Edition describes the recent advances in instrumentation and newly

  3. Ion mobilities and ion-atom interaction potentials

    International Nuclear Information System (INIS)

    Gatland, I.R.

    1982-01-01

    The techniques for measuring the mobilities of ions in gases, relating interaction potentials to mobilities, and determining potentials from experimental mobilities are reviewed. Applications are presented for positive alkali ions and negative halogen ions in inert gases. (Auth.)

  4. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  5. Correlation ion mobility spectroscopy

    Science.gov (United States)

    Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  6. Programmable ion mobility spectrometer: Time resolution improvement and ion counter comparison

    International Nuclear Information System (INIS)

    Harrison, R.G.; Wilding, R.J.

    2005-01-01

    Atmospheric ion mobility spectrometers operating on the aspirated electrode principle require switching of a bias voltage to select ions of different mobility. The ion spectrum can be obtained by sweeping across a set of bias voltages. If rapid temporal changes in atmospheric ion spectra are to be measured, however, such as for a balloon-carried instrument, the sweep time across the ion spectrum must be kept short. As bias voltage steps can generate saturation in the mobility spectrometer's electrometer amplifier, the electrometer recovery time limits the ion mobility spectrum sweep rate. Here, active compensation of the charge injected at a bias voltage step is used to reduce the saturation time. Further, the optimal setting of the charge compensation circuitry provides a determination of the system capacitance, a necessary calibration parameter for absolute measurements. Using laboratory air, hourly variations in ion concentrations and air conductivity found using the voltage switching system were similar to those obtained with a traditional ion counter operating at a single mobility: ion growth, however, could only be detected using the ion spectrometer

  7. Ions mobilities in corona discharge

    International Nuclear Information System (INIS)

    Bakhtaev, Sh. A.; Bochkareva, G. V.; Sydykova, G. K.

    2000-01-01

    Ion mobility in unipolar corona at small inter-electron distances (up to 0.01 m) when as coroning element serves micro-wire is consider. Experimental data of ion mobility in corona discharge external zone in atmospheric air are obtained and its comparative analysis with known data is worked out. (author)

  8. SERS analysis of Ag nanostructures produced by ion-beam deposition

    Science.gov (United States)

    Atanasov, P. A.; Nedyalkov, N. N.; Nikov, Ru G.; Grüner, Ch; Rauschenbach, B.; Fukata, N.

    2018-03-01

    This study deals with the development of a novel technique for formation of advanced Ag nanostructures (NSs) to be applied to high-resolution analyses based on surface enhanced Raman scattering (SERS). It has direct bearing on human health and food quality, e.g., monitoring small amount or traces of pollutants or undesirable additives. Three types of nanostructured Ag samples were produced using ion-beam deposition at glancing angle (GLAD) on quartz. All fabricated structures were covered with BI-58 pesticide (dimethoate) or Rhodamine 6G (R6G) for testing their potential for use as substrates for (SERS).

  9. Mobilities of positive ions in gas ionization chambers

    International Nuclear Information System (INIS)

    Kusumegi, Asao

    1990-01-01

    Observed ion mobilities of organic molecules in Ar are compared with a complete polarization model to examine the performance of the model, and its applicability is discussed. In spite of its simplicity, the polarization model (small sphere limit) is found to agree satisfactorily with observed mobilities in the case of alkali ions in Ar. However, the model fails to account for the mobility of Ar + in Ar due to a resonant charge transfer interaction between the ion and the parent gas. On the other hand, the values of k, a parameter which depends on the kinetic and the potential energy of the relevant ion, derived from observed ion mobilities of organic molecules in Ar and in the parent gas are found to be close to each other. Except for few cases, it appears that the complete polarization model gives a reasonable approximation for the positive ion mobilities of organic molecules in Ar, though the importance of the ion mass identification is significant in considering the applicability of the model to the positive ion mobility of those organic molecules in Ar used in a gas ionization chamber. (N.K.)

  10. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation.

    Science.gov (United States)

    Di Giovanni, James P; Barkley, Robert M; Jones, David N M; Hankin, Joseph A; Murphy, Robert C

    2018-04-23

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H] - ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H] - and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H 2 O-CO 2 ] - and [M-H-H 2 O] - displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H 2 O] - ion from LTB 4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H 2 O] - product ions from LTB 4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. Graphical Abstract ᅟ.

  11. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation

    Science.gov (United States)

    Di Giovanni, James P.; Barkley, Robert M.; Jones, David N. M.; Hankin, Joseph A.; Murphy, Robert C.

    2018-04-01

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H]- ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H]- and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H2O-CO2]- and [M-H-H2O]- displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H2O]- ion from LTB4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H2O]- product ions from LTB4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. [Figure not available: see fulltext.

  12. The mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Solomaa, M.

    1982-01-01

    This article reviews recent experimental and theoretical work on the mobility of negative ions in the superfluid A and B phases of liquid 3 He. In the normal Fermi liquid at temperatures below approximately 50 mK and also in the superfluid close to the superfluid transition temperature, Tsub(c), the mobility of a negative ion may simply be considered as limited by the elastic scattering of 3 He quasiparticles. This explains the constancy of the ion mobility in the normal phase. However, underlying the rapid increase of the measured mobility in the superfluid phases there is a subtle quantum-mechanical scattering effect. Detailed solutions of the 3 He quasiparticle-negative ion scattering process in the pair-correlated state provide a simple physical picture of an energy-dependent forward-peaking phenomenon. This yields quantitative theoretical results for the ion mobility in the quasi-isotropic B phase and for the ion mobility tensor in the anisotropic A phase which agree with the experimental data. (author)

  13. Method for enhancing the resolving power of ion mobility separations over a limited mobility range

    Science.gov (United States)

    Shvartsburg, Alexandre A; Tang, Keqi; Smith, Richard D

    2014-09-23

    A method for raising the resolving power, specificity, and peak capacity of conventional ion mobility spectrometry is disclosed. Ions are separated in a dynamic electric field comprising an oscillatory field wave and opposing static field, or at least two counter propagating waves with different parameters (amplitude, profile, frequency, or speed). As the functional dependencies of mean drift velocity on the ion mobility in a wave and static field or in unequal waves differ, only single species is equilibrated while others drift in either direction and are mobility-separated. An ion mobility spectrum over a limited range is then acquired by measuring ion drift times through a fixed distance inside the gas-filled enclosure. The resolving power in the vicinity of equilibrium mobility substantially exceeds that for known traveling-wave or drift-tube IMS separations, with spectra over wider ranges obtainable by stitching multiple segments. The approach also enables low-cutoff, high-cutoff, and bandpass ion mobility filters.

  14. Principle and application of ion mobility spectroscopy

    International Nuclear Information System (INIS)

    Adler, J.; Arnold, G.; Baumbach, J.I.; Doering, H.R.

    1990-01-01

    An outline is given of the principle and application of ion mobility spectroscopy to the selective measurement of single substances in a substance matrix, including advantages and disadvantages of ion mobility detectors for solving analytical problems in the fields of environment, microelectronics, medicine, and military engineering. (orig.) [de

  15. Ion mobility: its role in plasma chromatography

    International Nuclear Information System (INIS)

    Mason, E.A.

    1984-01-01

    This paper is a review of the basic physical theory underlying plasma chromatography. Essentially, plasma chromatography simply measures ion mobility. The new feature of plasma chromatography, as compared to aqueous electrophoresis, is the existence of a highly-developed and accurate body of theory that connects gaseous ion mobility and diffusion to the ion molecule interactions in the drift tube. Attention is restricted to phenomena occurring in the drift tube portion of the apparatus

  16. Application of ion mobility spectrometer for rapid drug detection

    International Nuclear Information System (INIS)

    Zhu Xuemei; Zheng Jian; Lv Yongjie; Chen Yangqin

    2007-01-01

    A 63 Ni source-based high resolution ion mobility spectrometer (IMS) was developed and applied to drug detection. The drugs included opium, morphine, heroin, methamphetamine, MDMA, MDEA, ketamine and cannabis. Their ion mobility spectra were acquired, ion types were derived and reduced mobilities were calculated, which are in good agreement with the data reported in literatures. The results indicate that the IMS can detect effectively a variety of drugs, especially for the amphetamine derivatives. And the reduced mobility standard database of drugs was established. (authors)

  17. Application of ion mobility spectrometer for rapid drug detection

    Energy Technology Data Exchange (ETDEWEB)

    Xuemei, Zhu; Jian, Zheng [The Third Research Inst. of Ministry of Public Security, Shanghai (China); Yongjie, Lv; Yangqin, Chen [Department of Physics, Key Laboratory of Optical and Magnetic Resonance Spectroscopy, East China Normal Univ., Shanghai (China)

    2007-10-15

    A {sup 63}Ni source-based high resolution ion mobility spectrometer (IMS) was developed and applied to drug detection. The drugs included opium, morphine, heroin, methamphetamine, MDMA, MDEA, ketamine and cannabis. Their ion mobility spectra were acquired, ion types were derived and reduced mobilities were calculated, which are in good agreement with the data reported in literatures. The results indicate that the IMS can detect effectively a variety of drugs, especially for the amphetamine derivatives. And the reduced mobility standard database of drugs was established. (authors)

  18. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    Energy Technology Data Exchange (ETDEWEB)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  19. A Hybrid Constant and Oscillatory Field Ion Mobility Analyzer Using Structures for Lossless Ion Manipulations

    Science.gov (United States)

    Prabhakaran, Aneesh; Hamid, Ahmed M.; Garimella, Sandilya V. B.; Valenzuela, Blandina R.; Ewing, Robert G.; Ibrahim, Yehia M.; Smith, Richard D.

    2018-02-01

    Here we explore the combination of constant and oscillatory fields applied in a single device to affect the continuous separation and filtering of ions based on their mobilities. The device explored allows confining and manipulating ions utilizing a combination of radio frequency (rf), direct current (DC) fields, and traveling waves (TW) in a structures for lossless ion manipulations (SLIM) module. We have investigated theoretically and experimentally a concept for continuous filtering of ions based on their mobilities where ions are mobility separated and selected by passage through two regions, both of which incorporated combined TW and constant fields providing opposing forces on the ions. The SLIM module was composed of two surfaces with mirror-image arrays of electrodes and had two regions where the different TW and opposing DC fields could be applied. The filtering capabilities are determined by the applied DC gradient and the TW parameters, such as speed, amplitude, and the TW sequence (i.e., the duty cycle of the traveling wave). The effects of different parameters on the sensitivity and the ion mobility (IM) resolution of the device have been investigated. By appropriately choosing the DC gradient and TW parameters for the two sections, it is possible to transmit ions of a selected mobility while filtering out others of both higher and lower mobility. The novel device described here provides a basis for the targeted analysis of compounds based upon the continuous selection of ions according to their mobility and without the need for high electric fields or pulsed injection.

  20. Aspirated capacitor measurements of air conductivity and ion mobility spectra

    International Nuclear Information System (INIS)

    Aplin, K.L.

    2005-01-01

    Measurements of ions in atmospheric air are used to investigate atmospheric electricity and particulate pollution. Commonly studied ion parameters are (1) air conductivity, related to the total ion number concentration, and (2) the ion mobility spectrum, which varies with atmospheric composition. The physical principles of air ion instrumentation are long established. A recent development is the computerized aspirated capacitor, which measures ions from (a) the current of charged particles at a sensing electrode, and (b) the rate of charge exchange with an electrode at a known initial potential, relaxing to a lower potential. As the voltage decays, only ions of higher and higher mobility are collected by the central electrode and contribute to the further decay of the voltage. This enables extension of the classical theory to calculate ion mobility spectra by inverting voltage decay time series. In indoor air, ion mobility spectra determined from both the voltage decay inversion, and an established voltage switching technique, were compared and shown to be of similar shape. Air conductivities calculated by integration were: 5.3±2.5 and 2.7±1.1 fSm -1 , respectively, with conductivity determined to be 3 fSm -1 by direct measurement at a constant voltage. Applications of the relaxation potential inversion method include air ion mobility spectrum retrieval from historical data, and computation of ion mobility spectra in planetary atmospheres

  1. Maximizing Ion Transmission in Differential Mobility Spectrometry

    Science.gov (United States)

    Schneider, Bradley B.; Londry, Frank; Nazarov, Erkinjon G.; Kang, Yang; Covey, Thomas R.

    2017-10-01

    We provide modeling and experimental data describing the dominant ion-loss mechanisms for differential mobility spectrometry (DMS). Ion motion is considered from the inlet region of the mobility analyzer to the DMS exit, and losses resulting from diffusion to electrode surfaces, insufficient effective gap, ion fragmentation, and fringing field effects are considered for a commercial DMS system with 1-mm gap height. It is shown that losses due to diffusion and radial oscillations can be minimized with careful consideration of residence time, electrode spacing, gas flow rate, and waveform frequency. Fragmentation effects can be minimized by limitation of the separation field. When these parameters were optimized, fringing field effects at the DMS inlet contributed the most to signal reduction. We also describe a new DMS cell configuration that improves the gas dynamics at the mobility cell inlet. The new cell provides a gas jet that decreases the residence time for ions within the fringing field region, resulting in at least twofold increase in ion signal as determined by experimental data and simulations. [Figure not available: see fulltext.

  2. Ion mobilities in Xe/Ne and other rare-gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, D; Pitchford, L C [Centre de Physique des Plasmas et Applications de Toulouse (CPAT), UMR 5002 CNRS, 118 route de Narbonne, 31062 Toulouse (France); Phelps, A V [JILA, University of Colorado and National Institute of Technology, Boulder, Colorado (United States); Urquijo, J de [Centro de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Post Office Box 48-3, 62251, 80309-0440 Cuernavaca, Moreno (Mexico); Basurto, E [Departmento de Ciencias Basicas, Universidad Autonoma Metropolitana, 02200 Mexico Distrito Federal (Mexico)

    2003-10-01

    The ion mobility or drift velocity data important for modeling glow discharges in rare gas mixtures are not generally available, nor are the ion-neutral scattering cross sections needed to calculate these data. In this paper we propose a set of cross sections for Xe{sup +} and Ne{sup +} collisions with Xe and Ne atoms. Ion mobilities at 300 K calculated using this cross section set in a Monte Carlo simulation are reported for reduced field strengths, E/N, up to 1500x10{sup -21} V m{sup 2}, in pure gases and in Xe/Ne mixtures containing 5% and 20% Xe/Ne, which are mixtures of interest for plasma display panels (PDPs). The calculated Xe{sup +} mobilities depend strongly on the mixture composition, but the Ne{sup +} mobility varies only slightly with increasing Xe in the mixture over the range studied here. The mobilities in pure gases compare well with available experimental values, and mobilities in gas mixtures at low E/N compare well with our recent measurements which will be published separately. Results from these calculations of ion mobilities are used to evaluate the predictions of Blanc's law and of the mixture rule proposed by Mason and Hahn [Phys. Rev. A 5, 438 (1972)] for determining the ion mobilities in mixtures from a knowledge of the mobilities in each of the pure gases. The mixture rule of Mason and Hahn is accurate to better than 10% at high field strengths over a wide range of conditions of interest for modeling PDPs. We conclude that a good estimate of ion mobilities at high E/N in Xe/Ne and other binary rare gas mixtures can be obtained using this mixture rule combined with known values of mobilities in parent gases and with the Langevin form for mobility of rare gas ions ion in other gases. This conclusion is supported by results in Ar/Ne mixtures which are also presented here.

  3. An alkali ion source based on graphite intercalation compounds for ion mobility spectrometry

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Hosseini, Zahra S

    2008-01-01

    A variety of alkali cation emitters were developed as the ion source for ion mobility spectrometry. The cation emitters were constructed based on alkali ion graphite intercalation compounds (GICs). The compounds were prepared by fusing alkali salts with ground graphite. In order to produce alkali ions, the compounds were loaded on a filament and heated to red. Reactant ions of the form alk + ions were observed for the alkali salts NaCl, KCl.LiCl, CsCl and SrCl. In addition to Na + ions, K + ions were observed at the beginning of thermionic emission from Na-GIC. This is due to the low ionization potential of potassium that exists in trace amounts in sodium salts. In addition to the potassium ion, Na + was observed in the case of LiCl salt. The Na + and K + peaks originating from impurities totally disappeared after about 40 min. However, the thermionic emission of the main ion of the corresponding salt lasted for several days. No negative ions were observed upon reversing the drift field. Selected organic compounds (methyl isobutyl ketone, dimethyl sulfoxide, acetone and tetrahydrofuran) were also ionized via alkali cation attachment reaction. Distinct ion mobility patterns were observed for different substances using one type of alkali reactant ion. However, the ion mobility pattern for a given substance changed when a different alkali reactant ion was used. Ammonia and amines were not ionized when this source was used

  4. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations using Compression Ratio Ion Mobility Programming

    Energy Technology Data Exchange (ETDEWEB)

    Garimella, Venkata BS; Hamid, Ahmed M.; Deng, Liulin; Ibrahim, Yehia M.; Webb, Ian K.; Baker, Erin M.; Prost, Spencer A.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.

    2016-11-02

    In this work, we report an approach for spatial and temporal gas phase ion population manipulation, and demonstrate its application for the collapse of the ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventionally traveling wave (TW)-driven region to a region where the TW is intermittently halted or ‘stuttered’. This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllable and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using Structures for Lossless Ion Manipulations (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved S/N ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multi-pass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening due to increasing peak widths.

  5. Experimental studies on ion mobility in xenon-trimethylamine mixtures

    Science.gov (United States)

    Trindade, A. M. F.; Encarnação, P. M. C. C.; Escada, J.; Cortez, A. F. V.; Neves, P. N. B.; Conde, C. A. N.; Borges, F. I. G. M.; Santos, F. P.

    2017-07-01

    In this paper we present experimental results for ion reduced mobilities (K0) in gaseous trimethylamine, TMA—(CH3)3N, and xenon-TMA mixtures for reduced electric fields E/N between 7.5 and 60 Td and in the pressure range from 0.5 to 10 Torr, at room temperature. Both in the mixtures and in pure TMA only one peak was observed in the time of arrival spectra, which is believed to be due to two TMA ions with similar mass, (CH3)3N+ (59 u) and (CH3)2CH2N+ (58 u), whose mobility is indistinguishable in our experimental system. The possibility of ion cluster formation is also discussed. In pure TMA, for the E/N range investigated, an average value of 0.56 cm2V-1s-1 was obtained for the reduced mobility of TMA ions. For the studied mixtures, it was observed that even a very small amount of gaseous TMA (~0.2%) in xenon leads to the production of the above referred TMA ions or clusters. The reduced mobility value of this ion or ions in Xe-TMA mixtures is higher than the value in pure TMA: around 0.8 cm2V-1s-1 for TMA concentrations from 0.2% to about 10%, decreasing for higher TMA percentages, eventually converging to the reduced mobility value in pure TMA.

  6. Tandem ion mobility spectrometry coupled to laser excitation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Anne-Laure; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe, E-mail: philippe.dugourd@univ-lyon1.fr [Institut Lumière Matière, Université de Lyon, Université Lyon 1-CNRS, 69622 Villeurbanne cedex (France); Chirot, Fabien [Institut des Sciences Analytiques, Université de Lyon, Université Lyon 1-CNRS, 69622 Villeurbanne cedex (France)

    2015-09-15

    This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.

  7. Comparing the effect of pressure and temperature on ion mobilities

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2005-01-01

    The effect of pressure on ion mobilities has been investigated and compared with that of temperature. In this connection, an ion mobility spectrometry (IMS) cell, which employs a corona discharge as the ionization source, has been designed and constructed to allow varying pressure inside the drift region. IMS spectra were recorded at various pressures ranging from 15 Torr up to atmospheric pressure. The results show that IMS peaks shift perfectly linear with pressure which is in excellent agreement with the ion mobility theory. However, experimental ion mobilities versus temperature show deviation from the theoretical trend. The deviation is attributed to formation of clusters. The different behaviour of pressure and temperature was explained on the basis of the different impact of pressure and temperature on hydration and clustering of ions. Pressure affects the clustering reactions linearly but temperature affects it exponentially

  8. Experimental ion mobility measurements in Xe-CH4

    Science.gov (United States)

    Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-09-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors. In the present work, the method, experimental setup and results for the ion mobility measurements in Xe-CH4 mixtures are presented. The results for this mixture show the presence of two distinct groups of ions. The nature of the ions depend on the mixture ratio since they are originated by both Xe and CH4. The results here presented were obtained for low reduced electric fields, E/N, 10-25 Td (2.4-6.1 kV ṡ cm-1 ṡ bar-1), at low pressure (8 Torr) (10.6 mbar), and at room temperature.

  9. Ion mobility spectrometer for online monitoring of trace compounds

    International Nuclear Information System (INIS)

    Li, F.; Xie, Z.; Schmidt, H.; Sielemann, S.; Baumbach, J.I.

    2002-01-01

    The principle, character and developments of the instrumentation of ion mobility spectrometry are reviewed. The application of ion mobility spectrometers in monitoring chemical warfare agents, explosives, drugs, environmental hazardous compounds and industrial process control are discussed. Process applications with respect to miniaturization of the instrument are presented

  10. Examination of Organic Vapor Adsorption onto Alkali Metal and Halide Atomic Ions by using Ion Mobility Mass Spectrometry.

    Science.gov (United States)

    Maiβer, Anne; Hogan, Christopher J

    2017-11-03

    We utilize ion mobility mass spectrometry with an atmospheric pressure differential mobility analyzer coupled to a time-of-flight mass spectrometer (DMA-MS) to examine the formation of ion-vapor molecule complexes with seed ions of K + , Rb + , Cs + , Br - , and I - exposed to n-butanol and n-nonane vapor under subsaturated conditions. Ion-vapor molecule complex formation is indicated by a shift in the apparent mobility of each ion. Measurement results are compared to predicted mobility shifts based upon the Kelvin-Thomson equation, which is commonly used in predicting rates of ion-induced nucleation. We find that n-butanol at saturation ratios as low as 0.03 readily binds to all seed ions, leading to mobility shifts in excess of 35 %. Conversely, the binding of n-nonane is not detectable for any ion for saturation ratios in the 0-0.27 range. An inverse correlation between the ionic radius of the initial seed and the extent of n-butanol uptake is observed, such that at elevated n-butanol concentrations, the smallest ion (K + ) has the smallest apparent mobility and the largest (I - ) has the largest apparent mobility. Though the differences in behavior of the two vapor molecules types examined and the observed effect of ionic seed radius are not accounted for by the Kelvin-Thomson equation, its predictions are in good agreement with measured mobility shifts for Rb + , Cs + , and Br - in the presence of n-butanol (typically within 10 % of measurements). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  11. Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio

    2007-01-01

    This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate

  12. Proton-bound cluster ions in ion mobility spectrometry

    Science.gov (United States)

    Ewing, R. G.; Eiceman, G. A.; Stone, J. A.

    1999-01-01

    Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than approximately 5 ms. When the temperature was lowered to -20 degrees C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.

  13. Complex fluids with mobile charge-regulating macro-ions

    Science.gov (United States)

    Markovich, Tomer; Andelman, David; Podgornik, Rudi

    2017-10-01

    We generalize the concept of charge regulation of ionic solutions, and apply it to complex fluids with mobile macro-ions having internal non-electrostatic degrees of freedom. The suggested framework provides a convenient tool for investigating systems where mobile macro-ions can self-regulate their charge (e.g., proteins). We show that even within a simplified charge-regulation model, the charge dissociation equilibrium results in different and notable properties. Consequences of the charge regulation include a positional dependence of the effective charge of the macro-ions, a non-monotonic dependence of the effective Debye screening length on the concentration of the monovalent salt, a modification of the electric double-layer structure, and buffering by the macro-ions of the background electrolyte.

  14. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1977-01-01

    The mobility of negative ions is shown to increase rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature independent mobility between 40 mK and T/sub c/ for all pressures between 0 and 28 bar. The increase of μ/sub N/ with increasing pressure is in agreement with the bubble model for the negative ion

  15. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    Science.gov (United States)

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase

  16. Measurement of acetates in air using differential ion mobility spectrometer

    Science.gov (United States)

    Szczurek, Andrzej; Maciejewska, Monika; Zajiczek, Żaneta; Maziejuk, Mirosław

    2017-11-01

    Volatile organic compounds are one of the most important group of air pollutants. Potential health and environmental problems resulting from their emission prompted the requirement for monitoring these species. It motivates development of new measurement techniques which are fast, cost effective, reliable and field deployable. One of novel approaches is ion mobility spectrometry. It dwells on ion separation in electric field, based on differences in ion mobility. Many variants of this method are developed. In this wok, differential ion mobility spectrometry (DMS) was considered in respect of acetate measurements in air. It was demonstrated that DMS offers linear response to methyl, ethyl, propyl and butyl acetate in concentration range from 0.3 ppm to 7 ppm. Positive ions spectrum has to be utilised for this purpose. We showed that fragments of DMS spectrum which secure linearity are compound-specific. The obtained results are promising from the application point of view.

  17. Combined corona discharge and UV photoionization source for ion mobility spectrometry.

    Science.gov (United States)

    Bahrami, Hamed; Tabrizchi, Mahmoud

    2012-08-15

    An ion mobility spectrometer is described which is equipped with two non-radioactive ion sources, namely an atmospheric pressure photoionization and a corona discharge ionization source. The two sources cannot only run individually but are additionally capable of operating simultaneously. For photoionization, a UV lamp was mounted parallel to the axis of the ion mobility cell. The corona discharge electrode was mounted perpendicular to the UV radiation. The total ion current from the photoionization source was verified as a function of lamp current, sample flow rate, and drift field. Simultaneous operation of the two ionization sources was investigated by recording ion mobility spectra of selected samples. The design allows one to observe peaks from either the corona discharge or photoionization individually or simultaneously. This makes it possible to accurately compare peaks in the ion mobility spectra from each individual source. Finally, the instrument's capability for discriminating two peaks appearing in approximately identical drift times using each individual ionization source is demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Mixed mobile ion effect in fluorozincate glasses

    International Nuclear Information System (INIS)

    Ghosh, S; Ghosh, A

    2005-01-01

    The mixed mobile ion effect has been investigated for the first time in zinc fluoride glasses where in addition to alkali cations fluorine anions also participate in the diffusion process, unlike mixed alkali oxide glasses. The minimum in the conductivity, conductivity relaxation frequency, crossover frequency and decoupling index indicates the existence of the mixed mobile ion effect in these fluoride glasses. It has been observed that the non-exponential parameter and the frequency exponent are independent of temperature. It has been established that alkali ions and fluorine anions exhibit lower dimensionality of the conduction pathways in mixed alkali zinc fluoride glasses than that in the single alkali lithium based zinc fluoride glasses while they are migrating. From the scaling of the conductivity spectra, it has been established that the relaxation dynamics in mixed alkali zinc fluoride glasses is independent of temperature and composition

  19. Measurement of negative ion mobility in O2 at high pressures using a point plate gap as an ion detector

    International Nuclear Information System (INIS)

    Okuyama, Y; Kimura, T; Suzuki, S; Itoh, H

    2012-01-01

    This paper describes the experimental results for negative ion mobility in O 2 at 0.5-2.0 atm. The ion mobility is observed using a high-pressure ion drift tube with a positive corona gap (Geiger counter), which is constructed from a point plate gap and acts as a negative ion detector. The variation of waveforms in the burst pulse is observed by varying the voltage applied to the ion detector to find the optimum voltage that must be applied across the ion detector in O 2 . This is investigated carefully to ensure the precise determination of mobility. The distortion of the electric field near the mesh electrode, which operates as the cathode of the ion detector and as the anode of the ion drift gap, is then examined to determine the optimum applied voltage to suppress its effect on the measurement of mobility. The mobility is subsequently measured at a reduced electric field intensity of 2.83 × 10 -3 to 2.83. The observed mobility of 2.31 ± 0.03 cm 2 V -1 s -1 in O 2 is concluded to be that of O 2 - . This value is also obtained in experiments over a wide range of gas pressures (0.5-2.0 atm) and drift lengths (1.00-9.00 cm). The mobilities of O 3 - and O - are also obtained experimentally. (paper)

  20. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS)

    Energy Technology Data Exchange (ETDEWEB)

    Hunka, Deborah E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Austin, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).

  1. Viscosity, ion mobility, and the lambda transition

    International Nuclear Information System (INIS)

    Goodstein, D.L.

    1977-01-01

    A model is presented of the lambda transition in superfluid helium in which fluctuations near the transition are approximated by distinct regions of normal fluid and superfluid. The macroscopic viscosity of such a medium is computed. The ion mobility is also computed, taking into account a region of normal fluid around the ion induced by electrostriction. The results are, for the viscosity, eta/sub lambda/ - eta approx. t/sup 0.67/ and for the mobility μ - μ/sub lambda/ approx. t/sup 0.92/, both in excellent agreement with recent experiments. The model suggests that the lambda transition itself is the point at which superfluid regions become macroscopically connected

  2. Ion mobility spectrometer with virtual aperture grid

    Science.gov (United States)

    Pfeifer, Kent B.; Rumpf, Arthur N.

    2010-11-23

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  3. Evaluation of hand-held ion-mobility explosives vapor detectors

    International Nuclear Information System (INIS)

    Burrows, T.A.; Thoma, P.J.

    1979-12-01

    Two types of ion-mobility detectors were evaluated in both laboratory and field tests. Laboratory test results show that these detectors are highly sensitive to dynamite and pistol powder and have good false-alarm agent rejection. Field tests of these two detectors revealed that they would detect dynamite and Ball-C-Propellent in free air. However, neither of the ion-mobility detectors would detect these explosives if the explosives were concealed

  4. Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Garimella, Venkata BS; Hamid, Ahmed M.; Webb, Ian K.; Attah, Isaac K.; Norheim, Randolph V.; Prost, Spencer A.; Zheng, Xueyun; Sandoval, Jeremy A.; Baker, Erin M.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-05-25

    We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within Structures for Lossless Ion Manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also their subsequent efficient compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a long serpentine path TW SLIM region after which CRIMP allows the large ion populations to be ‘squeezed’. The compression process occurs at an interface between two SLIM regions, one operating conventionally and the second having an intermittently pausing or ‘stuttering’ TW, allowing the contents of multiple bins of ions from the first region to be merged into a single bin in the second region. In this initial work stationary voltages in the second region were used to block ions from exiting the first (trapping) region, and the resumption of TWs in the second region allows ions to exit, and the population to also be compressed if CRIMP is applied. In our initial evaluation we show that the number of charges trapped for a 40 s accumulation period was ~5×109, more than two orders of magnitude greater than the previously reported charge capacity using an ion funnel trap. We also show that over 1×109 ions can be accumulated with high efficiency in the present device, and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Lower compression ratios allow increased IM peak heights without significant loss of signal, while excessively large compression ratios can lead to ion losses and other artifacts. Importantly, we show that extended ion accumulation in conjunction with CRIMP and multiple passes provides the basis for a highly desirable combination of ultra-high sensitivity and ultra-high resolution IM separations using SLIM.

  5. Experimental ion mobility measurements in Xe-CO2

    Science.gov (United States)

    Cortez, A. F. V.; Santos, M. A. G.; Veenhof, R.; Patra, R. N.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-06-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors. In the present work the method, experimental setup and results for the ion mobility measurements in Xe-CO2 mixtures are presented. The results for this mixture show the presence of only one peak for all gas ratios of Xe-CO2, low reduced electric fields, E/N, 10-25 Td (2.4-6.1 kV·cm-1·bar-1), low pressures 6-8 Torr (8-10.6 mbar), at room temperature.

  6. Corona discharge ion mobility spectrometry at reduced pressures

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Rouholahnejad, Fereshteh

    2004-01-01

    Ion mobility spectrometers (IMSs) normally operate at ambient pressure. In this work an IMS cell has been designed and constructed to allow the pressure to be reduced inside the IMS cell. In this cell, corona discharge was employed as the ionization source. Reducing pressure affected both the discharge and the performance of the IMS. The discharge current was observed to increase with reducing pressure while the ignition potential decreased. The ion current received at the collector plate was also increased about 50 times when the pressure was reduced from ambient pressure to 15 Torr. The higher ion current can lead to an extended dynamic range. IMS spectra were recorded at various pressures and the results show that the drift times shift perfectly linear with pressure. This suggests that unlike temperature, pressure correction for ion mobility spectra is as simple as multiplying the drift times by a factor of 760/P

  7. A Simple Analytical Model for Predicting the Detectable Ion Current in Ion Mobility Spectrometry Using Corona Discharge Ionization Sources

    Science.gov (United States)

    Kirk, Ansgar Thomas; Kobelt, Tim; Spehlbrink, Hauke; Zimmermann, Stefan

    2018-05-01

    Corona discharge ionization sources are often used in ion mobility spectrometers (IMS) when a non-radioactive ion source with high ion currents is required. Typically, the corona discharge is followed by a reaction region where analyte ions are formed from the reactant ions. In this work, we present a simple yet sufficiently accurate model for predicting the ion current available at the end of this reaction region when operating at reduced pressure as in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) or most IMS-MS instruments. It yields excellent qualitative agreement with measurement results and is even able to calculate the ion current within an error of 15%. Additional interesting findings of this model are the ion current at the end of the reaction region being independent from the ion current generated by the corona discharge and the ion current in High Kinetic Energy Ion Mobility Spectrometers (HiKE-IMS) growing quadratically when scaling down the length of the reaction region. [Figure not available: see fulltext.

  8. Positive ion mobilities in normal liquid 3He at ultralow temperatures

    International Nuclear Information System (INIS)

    Alexander, P.W.

    1978-11-01

    The mobility has been measured of positive ions in liquid 3 he in the range 2.5 mK 3 sub(m)/sup(V) 5 sub(m)/sup(V). The effects of 500 p.p.m. 4 He in the 3 He were investigated. It was found that, at low temperatures, several stable ion species could be produced for 3 He pressures of 23 bar and above and, between 25 mK and 60 mK, time dependent conversion from one species of ion to another was observed at all pressures. The creation mechanism, mobility and stability of multiple positive ions were studied. Possible explanations of the phenomena are discussed. The measured drift field dependence of mobility is used to test the quasiparticle scattering model assumed for the liquid. (U.K.)

  9. Mobility of negative ions in superfluid 3He-B

    International Nuclear Information System (INIS)

    Baym, G.; Pethick, C.J.; Salomaa, M.

    1979-01-01

    We calculate the mobility of negative ions in superfluid 3 He-B. We first derive the general formula for the mobility, and show that to a good approximation the scattering of quasiparticles from an ion may be treated as elastic, both in the superfluid for temperatures not too far below the transition temperature and also in the normal state. The scattering cross section in the superfluid is then calculated in terms of normal state properties; as we show, it is vital to include the effects of superfluid correlations on intermediate states in the scattering process. We find that for quasiparticles near the gap edge, the quasiparticle: ion scattering amplitude has a resonant behavior, and that as a result of interference among many partial waves, the differential scattering cross section is strongly peaked in the forward direction and reduced at larger angles, in much the same way as in diffraction. The transport cross section for such a quasiparticle is strongly reduced compared to that for a normal state quasiparticle, and the mobility is consequently strongly enhanced. Detailed calculations of the mobility which contain essentially no free parameters, agree well with the experimental data

  10. Using a portable ion mobility spectrometer to screen dietary supplements for sibutramine.

    Science.gov (United States)

    Dunn, Jamie D; Gryniewicz-Ruzicka, Connie M; Kauffman, John F; Westenberger, Benjamin J; Buhse, Lucinda F

    2011-02-20

    In response to recent incidents of undeclared sibutramine, an appetite suppressant found in dietary supplements, we developed a method to detect sibutramine using hand-held ion mobility spectrometers with an analysis time of 15 s. Ion mobility spectrometry is a high-throughput and sensitive technique that has been used for illicit drug, explosive, volatile organic compound and chemical warfare detection. We evaluated a hand-held ion mobility spectrometer as a tool for the analysis of supplement extracts containing sibutramine. The overall instrumental limit of detection of five portable ion mobility spectrometers was 2 ng of sibutramine HCl. When sample extractions containing 30 ng/μl or greater of sibutramine were analyzed, saturation of the ionization chamber of the spectrometer occurred and the instrument required more than three cleaning cycles to remove the drug. Hence, supplement samples suspected of containing sibutramine should be prepared at concentrations of 2-20 ng/μl. To obtain this target concentration range for products containing unknown amounts of sibutramine, we provided a simple sample preparation procedure, allowing the U.S. Food and Drug Administration or other agencies to screen products using the portable ion mobility spectrometer. Published by Elsevier B.V.

  11. Experimental ion mobility measurements in Ne-N2

    International Nuclear Information System (INIS)

    Cortez, A.F.V.; Encarnação, P.M.C.C.; Santos, F.P.; Borges, F.I.G.M.; Conde, C.A.N.; Veenhof, R.; Neves, P.N.B.

    2016-01-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors, such as the ALICE TPC or in the NEXT experiment. In the present work the method, experimental setup and results for the ion mobility measurements in Ne-N 2 mixtures are presented. The results for this mixture show the presence of two peaks for different gas ratios of Ne-N 2 , low reduced electric fields, E / N , 10–20 Td (2.4–4.8 kV·cm −1 ·bar −1 ), low pressures 6–8 Torr (8–10.6 mbar) and at room temperature.

  12. Ion mobility analyzer - quadrupole mass spectrometer system design

    International Nuclear Information System (INIS)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina; Bocos-Bintintan, V

    2009-01-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  13. Ion mobility analyzer - quadrupole mass spectrometer system design

    Energy Technology Data Exchange (ETDEWEB)

    Cuna, C; Leuca, M; Lupsa, N; Mirel, V; Cuna, Stela; Cosma, V; Tusa, Florina [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Bocos-Bintintan, V, E-mail: cornel.cuna@itim-cj.r [Babes-Bolyai University, Faculty of Environmental Sciences, 3 Fantanele, 400294 Cluj Napoca (Romania)

    2009-08-01

    Because of their extremely high sensitivity for chemicals with elevated electronegativity or high proton affinity the ion mobility analysers are ideal for the ultra-trace detection of toxic or explosive chemicals, most of these situated often at concentration levels of sub-ppb (parts-per-billion). Ion mobility spectrometers (IMS) can be used to identify illicit drugs or environmental pollutants. Since resolution of an IMS is relatively low, to achieve an accurate identification of target analyte it is recommended to couple the IMS with a quadrupole mass spectrometer (QMS) or a time of flight mass spectrometer, acquiring in this way confirmatory information. This coupling is made through a specific interface. In this paper, an experimental model of such a tandem instrument, IMS-QMS is described. Accomplishment of this general purpose will be done, overcoming a series of specific issues. This implies the solving, using innovative solutions, of a series of complex issues: ensuring the stability of the ions beam generated by ion source; transfer with a good efficiency of the ionic current from IMS analyser to QMS; and realization of a special electronic circuitry which will be able to detect both positive and negative ions.

  14. Diffusion and mobility of positive ions in sulphur hexafluoride

    International Nuclear Information System (INIS)

    Urquijo, J. de; Alvarez, I.; Cisneros, C.; Martinez, H.

    1988-01-01

    It is presented some recent results on the measurements of longitudinal difusion and mobility of positive ions in SF 6 . The experimental technique employed could determine the most abundant positive ion under electric discharge conditions. (A.C.A.S.) [pt

  15. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone

    Science.gov (United States)

    Nowak, D. M.

    1983-06-01

    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  16. Differential Fragmentation of Mobility-Selected Glycans via Ultraviolet Photodissociation and Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Morrison, Kelsey A.; Clowers, Brian H.

    2017-06-01

    The alternative dissociation pathways initiated by ultraviolet photodissociation (UVPD) compared with collision-induced dissociation (CID) may provide useful diagnostic fragments for biomolecule identification, including glycans. However, underivatized glycans do not commonly demonstrate strong UV absorbance, resulting in low fragmentation yields for UVPD spectra. In contrast to UVPD experiments that leverage covalent modification of glycans, we detail the capacity of metal adduction to yield comparatively rich UVPD fragmentation patterns and enhance separation factors for an isomeric glycan set in a drift tube ion mobility system. Ion mobility and UVPD-MS spectra for two N-acetyl glycan isomers were examined, each adducted with sodium or cobalt cations, with the latter providing fragment yield gains of an order of magnitude versus sodium adducts. Furthermore, our glycan analysis incorporated front-end ion mobility separation such that the structural glycan isomers could still be identified even as a mixture and not simply composite spectra of isomeric standards. Cobalt adduction proved influential in the glycan separation by yielding an isomer resolution of 0.78 when analyzed simultaneously versus no discernable separation obtained with the sodium adducts. It is the combined enhancement of both isomeric drift time separation and isomer distinction with improved UVPD fragment ion yields that further bolster multivalent metal adduction for advancing glycan IM-MS experiments. [Figure not available: see fulltext.

  17. DNA-based Nanoconstructs for the Detection of Ions and Biomolecules with Related Raman/SERS Signature Studies

    Science.gov (United States)

    Brenneman, Kimber L.

    The utilization of DNA aptamers and semiconductor quantum dots (QDs) for the detection of ions and biomolecules was investigated. In recent years, there have been many studies based on the use of DNA and RNA aptamers, which are single stranded oligonucleotides capable of binding to biomolecules, other molecules, and ions. In many of these cases, the conformational changes of these DNA and RNA aptamers are suitable to use fluorescence resonant energy transfer (FRET) or nanometal surface energy transfer (NSET) techniques to detect such analytes. Coupled with this growth in such uses of aptamers, there has been an expanded use of semiconductor quantum dots as brighter, longer-lasting alternatives to fluorescent dyes in labeling and detection techniques of interest in biomedicine and environmental monitoring. Thrombin binding aptamer (TBA) and a zinc aptamer were used to detect mercury, lead, zinc, and cadmium. These probes were tested in a liquid assay as well as on a filter paper coupon. Biomolecules were also studied and detected using surface-enhanced Raman spectroscopy (SERS), including DNA aptamers and C-reactive protein (CRP). Raman spectroscopy is a useful tool for sensor development, label-free detection, and has the potential for remote sensing. Raman spectra provide information on the vibrational modes or phonons, between and within molecules. Therefore, unique spectral fingerprints for single molecules can be obtained. SERS is accomplished through the use of substrates with nanometer scale geometries made of metals with many free electrons, such as silver, gold, or copper. In this research silver SERS substrates were used to study the SERS signature of biomolecules that typically produce very weak Raman signals.

  18. Mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Ahonen, A.I.; Kokko, J.; Lounasmaa, O.V.; Paalanen, M.A.; Richardson, R.C.; Schoepe, W.; Takano, Y.

    1976-01-01

    We have found that the mobility of negative ions increases rapidly below T/sub c/ in both superfluid 3 He phases. The ratio μ/μ/sub N/ of superfluid to normal mobility is larger in the B phase than in the A phase. A critical velocity consistent in magnitude with the Landau limit for pair breaking has also been observed. In the normal fluid we find a temperature-independent mobility between 30 mK and T/sub c/ for all pressures between 0 and 28 bars

  19. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization ...

  20. Unexpected mobility of OH+ and OD+ molecular ions in cooled helium gas

    International Nuclear Information System (INIS)

    Isawa, R; Yamazoe, J; Tanuma, H; Ohtsuki, K

    2012-01-01

    Mobilities of OH + and OD + ions in cooled helium gas have been measured at gas temperature of 4.3 K. Measured mobilities of both ions as a function of an effective temperature T eff show a minimum around 80 K, and they are approaching to the polarization limits at very low T eff . These findings will be related to the extremely strong anisotropy of the interaction potential between the molecular ion and helium atom.

  1. Simple area determination of strongly overlapping ion mobility peaks

    Czech Academy of Sciences Publication Activity Database

    Borovcová, L.; Hermannová, M.; Pauk, V.; Šimek, M.; Havlíček, Vladimír; Lemr, Karel

    2017-01-01

    Roč. 981, AUG 15 (2017), s. 71-79 ISSN 0003-2670 Grant - others:GA MŠk(CZ) LO1305 Institutional support: RVO:61388971 Keywords : Ion mobility-mass spectrometry * Fitting of mobility peaks * Analysis of isomers Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  2. Measurement of negative ion mobilities in O2 and O3 mixtures at atmospheric pressure

    International Nuclear Information System (INIS)

    Itoh, H.; Norimoto, K.; Hayashi, T.

    1998-01-01

    Mobility measurements of negative molecular oxygen ions in pure oxygen and in an oxygen-ozone mixture are reported. A cascaded gap consisting of an ion drift gap and an ion detection gap was used in the experiment. The ion detection gap was formed by a positive point and a grounded plane electrode was operated at atmospheric pressure. The zero field mobility of negative molecular oxygen ions was determined to be 2.07+-0.02 cm 2 /V.s. A somewhat higher value of oxygen mobility was found at higher electric field/pressure ratios; this is presumed to be due to negative ozone ions. When changing the electric field/pressure ratio the mobility of negative oxygen ions in oxygen-ozone mixtures becomes smaller than that in pure oxygen; this is probably due to the cumulative effect of other particles produced by silent discharges. (J.U.)

  3. Application of ion mobility-mass spectrometry to microRNA analysis.

    Science.gov (United States)

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  4. Calibration method for ion mobility spectrometer

    International Nuclear Information System (INIS)

    Vasiliev, Valery

    2011-01-01

    The new method for the calibration of the ion mobility spectrometer has been developed. This article describes the working principle, advantages and disadvantages of the calibration method operating in the mode of explosives detection. This method is most suitable for use in portable detectors, due to the small weight, small size parameters and low power consumption.

  5. The ion–aerosol interactions from the ion mobility and aerosol ...

    Indian Academy of Sciences (India)

    2011-05-21

    May 21, 2011 ... On these days mobility spectra showed two modes, ... together with the formation of multiple charged ions are proposed to result in the light and heavy large ion modes. Growth of ..... day and minimum during the night hours.

  6. Measurements of ion mobility in argon and neon based gas mixtures

    CERN Document Server

    INSPIRE-00507268

    2017-01-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run$\\,3$ with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility $K$ is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different $\\textrm{CO}_2$ fractions. A decrease of $K$ was measured for increasing water content.

  7. Using different drift gases to change separation factors (alpha) in ion mobility spectrometry

    Science.gov (United States)

    Asbury; Hill

    2000-02-01

    The use of different drift gases to alter separation factors (alpha) in ion mobility spectrometry has been demonstrated. The mobility of a series of low molecular weight compounds and three small peptides was determined in four different drift gases. The drift gases chosen were helium, argon, nitrogen, and carbon dioxide. These drift gases provide a range of polarizabilities and molecular weights. In all instances, the compounds showed the greatest mobility in helium and the lowest mobility in carbon dioxide; however the percentage change of mobility for each compound was different, effectively changing the alpha value. The alpha value changes were primarily due to differences in drift gas polarizability but were also influenced by the mass of the drift gas. In addition, gas-phase ion radii were calculated in each of the different drift gases. These radii were then plotted against drift gas polarizability producing linear plots with r2 values greater than 0.99. The intercept of these plots provides the gas-phase radius of an ion in a nonpolarizing environment, whereas the slope is indicative of the magnitude of the ion's mobility change related to polarizability. It therefore, should be possible to separate any two compounds that have different slopes with the appropriate drift gas.

  8. Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates

    DEFF Research Database (Denmark)

    Krintel, Christian; Osmark, Peter; Larsen, Martin Røssel

    2008-01-01

    Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. Its activity is regulated by reversible protein phosphorylation. In rat HSL Ser563, Ser659 and Ser660 have been shown to be phosphorylated by protein kinase A (PKA) in vitro as well...

  9. Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.

    Science.gov (United States)

    Larriba, Carlos; Hogan, Christopher J

    2013-05-16

    Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from

  10. A Novel Microwave-Induced Plasma Ionization Source for Ion Mobility Spectrometry

    Science.gov (United States)

    Dai, Jianxiong; Zhao, Zhongjun; Liang, Gaoling; Duan, Yixiang

    2017-03-01

    This work demonstrates the application of a novel microwave induced plasma ionization (MIPI) source to ion mobility spectrometry (IMS). The MIPI source, called Surfatron, is composed of a copper cavity and a hollow quartz discharge tube. The ion mobility spectrum of synthetics air has a main peak with reduced mobility of 2.14 cm2V-1s-1 for positive ion mode and 2.29 cm2V-1s-1 for negative ion mode. The relative standard deviations (RSD) are 0.7% and 1.2% for positive and negative ion mode, respectively. The total ion current measured was more than 3.5 nA, which is much higher than that of the conventional 63Ni source. This indicates that a better signal-to-noise ratio (SNR) can be acquired from the MIPI source. The SNR was 110 in the analysis of 500 pptv methyl tert-butyl ether (MTBE), resulting in the limit of detection (SNR = 3) of 14 pptv. The linear range covers close to 2.5 orders of magnitude in the detection of triethylamine with a concentration range from 500 pptv to 80 ppbv. Finally, this new MIPI-IMS was used to detect some volatile organic compounds, which demonstrated that the MIPI-IMS has great potential in monitoring pollutants in air.

  11. Mobilities of ions trapped on vortex lines in dilute 3He--4He solutions

    International Nuclear Information System (INIS)

    Huang, W.; Dahm, A.J.

    1976-01-01

    A model calculation of the mobility of a positive ion in the presence of 3 He atoms condensed on a vortex core is presented. Reasonable qualitative and quantitative agreement between theory and experiment is obtained, and reasons for differences are discussed. A reason for the larger mobility of the negative ion in comparison to the smaller positive ion is suggested. The contribution of vortex waves to the scattering of ions is addressed

  12. Raman scattering studies of mobile ions in superionic conductor hollandites

    International Nuclear Information System (INIS)

    Shibata, Y.; Suemoto, T.; Ishigame, M.

    1986-01-01

    The Raman spectra of the superionic conductors K/sub 1.6/Mg/sub 0.8/Ti/sub 7.2/O 16 , Cs/sub 1.2/Mg/sub 0.6/Ti/sub 7.4/O 16 , and (KTl)/sub 1.6/Mg/sub 0.8/Ti/sub 7.2/O 16 are measured in the frequency range from 5 to 1000 cm -1 . In the range from 100 to 1000 cm -1 Raman spectra hardly show alkali ion dependence. On the contrary, in the frequency range from 5 to 100 cm -1 , an additional Raman band is observed. This Raman band shows alkali ion dependence. By using the Frenkel-Kontorova model for the hollandite crystal with the given configuration of the mobile ions, it is found that the dependence of vibrational frequency of mobile ions with kinds of alkali ion is well explained and that the concept of 'super unit cell' that is introduced by Beyeler is very useful to explain the Raman bands which are observed below 100 cm -1 in hollandite crystals. (author)

  13. The role of ion optics modeling in the design and development of ion mobility spectrometers

    Science.gov (United States)

    Griffin, Matthew T.

    2005-05-01

    Detection of trace gases by ion mobility spectroscopy (IMS) has become common in recent years. In fact, IMS devices are the most commonly deployed military devices for the detection of classical chemical warfare agents (CWA). IMS devices are protecting the homeland by aiding first responders in the identification of toxic industrial chemicals (TICs) and providing explosive and narcotic screening systems. Spurred by the asymmetric threat posed by new threat agents and the ever expanding list of toxic chemicals, research in the development, improvement, and optimization of IMS systems has increased. Much of the research is focused on increasing the sensitivity and selectivity of IMS systems. Ion optics is a large area of study in the field of mass spectrometry, but has been mostly overlooked in the design and development of IMS systems. Ion optics provides insight into particle trajectories, duty cycle, and efficiency of these systems. This paper will outline the role that ion optics can have in the development of IMS systems and introduce the trade space for traditional IMS as well as differential mobility spectroscopy.

  14. Temperature dependent mobility measurements of alkali earth ions in superfluid helium

    Science.gov (United States)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.

  15. Mobility and diffusion of atomic helium and neon ions in their parent gases

    International Nuclear Information System (INIS)

    Skullerud, H.R.; Larsen, P.-H.

    1990-01-01

    The mobility and the diffusion tensor have been calculated for He + ions in He and Ne + ions in Ne, at temperatures of 77-78 and 294 K, and at field-to-density values E/n 0 up to 2000 Td. For He + ions in He, ab initio potentials were used, with a careful extrapolation to large distances. A slight adjustment of the mean potential resulted in agreement between calculated mobilities and the best experimental values to better than 0.5%. For Ne + ions in Ne, a potential model with three adjustable parameters was constructed, and an overall agreement between measured and calculated mobilities to better than 1% was obtained. The model potentials probably give a good estimate of the gerade-ungerade splitting at internuclear distances from 7.5 to 10 au, but are not expected to be accurate at shorter distances. (author)

  16. Relaxation effects in ionic mobility and cluster formation: negative ions in SF6 at high pressures

    International Nuclear Information System (INIS)

    Juarez, A M; De Urquijo, J; Hinojosa, G; Hernandez-Avila, J L; Basurto, E

    2010-01-01

    The relaxation effects of the ionic mobility and the formation of negative-ion clusters in SF 6 are studied in this work. For this purpose, we have measured the mobility of negative ions in SF 6 over the pressure range 100-800 Torr at a fixed value of density-normalized electric field, E/N, of 20 Td (1 Townsend = 10 -17 V cm 2 ). The data obtained show a clear dependence of the negative-ion drift velocity on drift distance. It is observed that the drift velocity (mobility) reaches a steady-state value only for drift distances above 2 cm, over the studied pressure range. In addition to this, we have observed that the ionic mobility depends strongly on the gas pressure. An explanation of this dependence of the ionic mobility on gas pressure is given in terms of a negative-ion clustering formation process. It was found that the assumption of a linear dependence of the cluster ion mass on pressure provides a satisfactory explanation for the observed mobilities.

  17. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    International Nuclear Information System (INIS)

    Liu, Jun; Zhou, Ji; Tang, Bin; Zeng, Tian; Li, Yaling; Li, Jingliang; Ye, Yong; Wang, Xungai

    2016-01-01

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  18. Surface enhanced Raman scattering (SERS) fabrics for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Zhou, Ji [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Tang, Bin, E-mail: bin.tang@deakin.edu.au [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Zeng, Tian; Li, Yaling [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Li, Jingliang [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Ye, Yong, E-mail: yeyong@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Xungai [National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan 430073 (China); Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia)

    2016-11-15

    Highlights: • Gold nanoparticles are in-situ synthesized on silk fabrics by heating. • Flexible silk fabrics with gold nanoparticles are used for surface-enhanced Raman scattering (SERS). • SERS activities of silk fabrics with different gold contents are investigated. - Abstract: Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

  19. Toward an Intelligent Ion Mobility Spectrometer (IMS)

    International Nuclear Information System (INIS)

    McJunkin, Timothy R.; Scott, Jill R.; Miller, Carla J.

    2003-01-01

    The ultimate goal is to design and build a very smart ion mobility spectrometer (IMS) that can operate autonomously. To accomplish this, software capable of interpreting spectra so that it can be used in control loops for data interpretation as well as adjusting instrument parameters is being developed. Fuzzy logic and fuzzy numbers are used in this IMS spectra classification scheme. Fuzzy logic provides a straight forward method for developing a classification/detection system, whenever rules for classifying the spectra can be described linguistically. Instead of using 'max' and 'min' values, the product of the truth values is used to determine class membership. Using the product allows rule-bases that utilize the AND function to allow each condition to discount truth value in determining membership, while rule-bases with an OR function are allowed to accumulate membership. Fuzzy numbers allow encapsulation of the uncertainties due to ion mobility peak widths as well as measured instrumental parameters, such as pressure and temperature. Associating a peak with a value of uncertainty, in addition to making adjustments to the mobility calculation based on variations in measured parameters, enables unexpected shifts to be more reliably detected and accounted for; thereby, reducing the opportunity for 'false negative' results. The measure of uncertainty is anticipated to serve the additional purpose of diagnosing the operational conditions of the IMS instrument.

  20. Determination of ion mobilities of radionuclides in a free electrolyte

    International Nuclear Information System (INIS)

    Milanov, M.; Doberenz, W.; Marinov, A.; Khalkin, V.A.

    1984-01-01

    A new variant of a technique for determining ion mobilities by means of horizontal zone electrophoresis in free solutions is developed. Setup circuit is presented. Some details of experiment and results of measuring limiting mobilities of 131 I - and 160 Tb 3+ are given. On these examples the reproducibility was checked. (author)

  1. Experimental ion mobility measurements in Xe-CF4 mixtures

    Science.gov (United States)

    Cortez, A. F. V.; Kaja, M. A.; Escada, J.; Santos, M. A. G.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2018-04-01

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon with carbon tetrafluoride (Xe-CF4) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 to 25 Td range (2.4-6.1 kVṡcm‑1ṡbar‑1), at room temperature. The time-of-arrival spectra revealed one or two peaks depending on the gas relative abundances, which were attributed to CF3+ and to Xe2+ ions. However, for Xe concentrations above 60%, only one peak remains (Xe2+). The reduced mobilities obtained from the peak centroid of the time-of-arrival spectra are presented for Xe concentrations in the 5%-95% range.

  2. Ion mobility spectrometry after supercritical fluid chromatography

    International Nuclear Information System (INIS)

    Morrissey, M.A.

    1988-01-01

    In this work, a Fourier transform ion mobility spectrometer (FT-IMS) was constructed and evaluated as a detector for supercritical fluid chromatography (SFC). The FT-IMS provides both quantitative and qualitative data of a wide range of compounds, selective and nonselective modes of chromatographic detection, and it is compatible with a wide range of SFC mobile phases. Drift spectra are presented for a number of samples, including polymers, lipids, herbicides, antibiotics, and pharmaceuticals. The unique properties of supercritical fluids made it possible to introduce these compounds into the spectrometer. While the drift spectra presented are generally simple, showing only a quasi-molecular ion, a few are surprising complex. Examples of selective and non-selective detection demonstrate the usefulness of the detector. Examples are presented for fish oil concentrate, bacon grease extract, soil extract, and polymer mixtures. In the case of Triton X-100, a non-ionic surfactant, the FT-IMS was able to selectively detect individual oligomers in the polymer mixture. In the case of a polydimethylsilicone mixture the detector isolated a contaminant in the mixture

  3. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

    Science.gov (United States)

    Swearingen, Kristian E; Moritz, Robert L

    2012-10-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve the detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, the authors review recent developments in LC-FAIMS-MS and its application to MS-based proteomics.

  4. Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 3. Relating Solution-Phase to Gas-Phase Structures.

    Science.gov (United States)

    Kondalaji, Samaneh Ghassabi; Khakinejad, Mahdiar; Valentine, Stephen J

    2018-06-01

    Molecular dynamics (MD) simulations have been utilized to study peptide ion conformer establishment during the electrospray process. An explicit water model is used for nanodroplets containing a model peptide and hydronium ions. Simulations are conducted at 300 K for two different peptide ion charge configurations and for droplets containing varying numbers of hydronium ions. For all conditions, modeling has been performed until production of the gas-phase ions and the resultant conformers have been compared to proposed gas-phase structures. The latter species were obtained from previous studies in which in silico candidate structures were filtered according to ion mobility and hydrogen-deuterium exchange (HDX) reactivity matches. Results from the present study present three key findings namely (1) the evidence from ion production modeling supports previous structure refinement studies based on mobility and HDX reactivity matching, (2) the modeling of the electrospray process is significantly improved by utilizing initial droplets existing below but close to the calculated Rayleigh limit, and (3) peptide ions in the nanodroplets sample significantly different conformers than those in the bulk solution due to altered physicochemical properties of the solvent. Graphical Abstract ᅟ.

  5. Ion-neutral potential models in atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS.

    Science.gov (United States)

    Steiner, Wes E; English, William A; Hill, Herbert H

    2006-02-09

    The ion mobilities and their respective masses of several classes of amines (primary, secondary, and tertiary) were measured by electrospray ionization atmospheric pressure ion mobility time-of-flight mass spectrometry IM(tof)MS. The experimental data obtained were comparatively analyzed by the one-temperature kinetic theory of Chapman-Enskog. Several theoretical models were used to estimate the collision cross-sections; they include the rigid-sphere, polarization-limit, 12-6-4, and 12-4 potential models. These models were investigated to represent the interaction potentials contained within the collision integral that occurs between the polyatomic ions and the neutral drift gas molecules. The effectiveness of these collision cross-section models on predicting the mobility of these amine ions was explored. Moreover, the effects of drift gas selectivity on the reduced-mass term and in the collision cross-section term was examined. Use of a series of drift gases, namely, helium, neon, argon, nitrogen, and carbon dioxide, made it possible to distinguish between mass effects and polarizability effects. It was found that the modified 12-4 potential that compensates for the center of charge not being at the same location as the centers of mass showed improved agreement over the other collision cross-section models with respect to experimental data.

  6. Ion mobility spectrometry for food quality and safety.

    Science.gov (United States)

    Vautz, W; Zimmermann, D; Hartmann, M; Baumbach, J I; Nolte, J; Jung, J

    2006-11-01

    Ion mobility spectrometry is known to be a fast and sensitive technique for the detection of trace substances, and it is increasingly in demand not only for protection against explosives and chemical warfare agents, but also for new applications in medical diagnosis or process control. Generally, a gas phase sample is ionized by help of ultraviolet light, ss-radiation or partial discharges. The ions move in a weak electrical field towards a detector. During their drift they collide with a drift gas flowing in the opposite direction and, therefore, are slowed down depending on their size, shape and charge. As a result, different ions reach the detector at different drift times, which are characteristic for the ions considered. The number of ions reaching the detector are a measure of the concentration of the analyte. The method enables the identification and quantification of analytes with high sensitivity (ng l(-1) range). The selectivity can even be increased - as necessary for the analyses of complex mixtures - using pre-separation techniques such as gas chromatography or multi-capillary columns. No pre-concentration of the sample is necessary. Those characteristics of the method are preserved even in air with up to a 100% relative humidity rate. The suitability of the method for application in the field of food quality and safety - including storage, process and quality control as well as the characterization of food stuffs - was investigated in recent years for a number of representative examples, which are summarized in the following, including new studies as well: (1) the detection of metabolites from bacteria for the identification and control of their growth; (2) process control in food production - beer fermentation being an example; (3) the detection of the metabolites of mould for process control during cheese production, for quality control of raw materials or for the control of storage conditions; (4) the quality control of packaging materials during

  7. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    Science.gov (United States)

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  8. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  9. Behaviour of tetraalkylammonium ions in high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Aksenov, Alexander A; Kapron, James T

    2010-05-30

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an ion-filtering technique recently adapted for use with liquid chromatography/mass spectrometry (LC/MS) to remove interferences during analysis of complex matrices. This is the first systematic study of a series of singly charged tetraalkylammonium ions by FAIMS-MS. The compensation voltage (CV) is the DC offset of the waveform which permits the ion to emerge from FAIMS and it was determined for each member of the series under various conditions. The electrospray ionization conditions explored included spray voltage, vaporizer temperature, and sheath and auxiliary gas pressure. The FAIMS conditions explored included carrier gas flow rate, electrode temperature and composition of the carrier gas. Optimum desolvation was achieved using sufficient carrier gas (flow rate > or = 2 L/min) to ensure stable response. Low-mass ions (m/z 100-200) are more susceptible to changes in electrode temperature and gas composition than high mass ions (m/z 200-700). As a result of this study, ions are reliably analyzed using standard FAIMS conditions (dispersion voltage -5000 V, carrier gas flow rate 3 L/min, 50% helium/50%nitrogen, inner electrode temperature 70 degrees C and outer electrode temperature 90 degrees C). Variation of FAIMS conditions may be of great use for the separation of very low mass tetraalkylammonium (TAA) ions from other TAA ions. The FAIMS conditions do not appear to have a major effect on higher mass ions. Copyright 2010 John Wiley & Sons, Ltd.

  10. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization

    Czech Academy of Sciences Publication Activity Database

    Pepin, R.; Laszlo, K. J.; Marek, Aleš; Peng, B.; Bush, M. F.; Lavanant, H.; Afonso, C.; Tureček, F.

    2016-01-01

    Roč. 27, č. 10 (2016), s. 1647-1660 ISSN 1044-0305 Institutional support: RVO:61388963 Keywords : peptide ions * ion mobility * collisional cross sections * density functional theory calculations * ion structures * polar effects Subject RIV: CC - Organic Chemistry Impact factor: 2.786, year: 2016

  11. Dependence of ion beam current on position of mobile plate tuner in multi-frequencies microwaves electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Kurisu, Yosuke; Kiriyama, Ryutaro; Takenaka, Tomoya; Nozaki, Dai; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2012-01-01

    We are constructing a tandem-type electron cyclotron resonance ion source (ECRIS). The first stage of this can supply 2.45 GHz and 11-13 GHz microwaves to plasma chamber individually and simultaneously. We optimize the beam current I FC by the mobile plate tuner. The I FC is affected by the position of the mobile plate tuner in the chamber as like a circular cavity resonator. We aim to clarify the relation between the I FC and the ion saturation current in the ECRIS against the position of the mobile plate tuner. We obtained the result that the variation of the plasma density contributes largely to the variation of the I FC when we change the position of the mobile plate tuner.

  12. Direct classification of olive oils by using two types of ion mobility spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Garrido-Delgado, Rocio [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain); Mercader-Trejo, Flora [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain); Metrologia de Materiales, Centro Nacional de Metrologia, km. 4.5 Carretera a Los Cues, El Marques, Queretaro (Mexico); Sielemann, Stefanie; Bruyn, Wolfgang de [G.A.S. Gesellschaft fuer analytische Sensorsysteme mbH, BioMedizinZentrumDortmund, Otto-Hahn-Str. 15, 44227 Dortmund (Germany); Arce, Lourdes [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain); Valcarcel, Miguel, E-mail: qa1meobj@uco.es [Department of Analytical Chemistry, University of Cordoba, Annex C3 Building, Campus of Rabanales, E-14071 Cordoba (Spain)

    2011-06-24

    Graphical abstract: Highlights: > We explore the use of Ion Mobility Spectrometers for classification of olive oils. > Three types of olive oils were analyzed with both devices coupled to headspace system. > The ion mobility data were processed using chemometric to obtain global information. > The classification rate was better using tritium source and separation step prior IMS. - Abstract: In this work, we explored the use of an Ion Mobility Spectrometry (IMS) device with an ultraviolet (UV) source, and of a Gas Chromatographic (GC) column coupled to an IM Spectrometer with a tritium source, for the discrimination of three grades of olive oil, namely: extra virgin olive oil (EVOO), olive oil (OO) and pomace olive oil (POO). The three types of oil were analyzed with both equipment combinations as coupled to a headspace system and the obtained ion mobility data were consecutively processed with various chemometric tools. The classification rate for an independent validation set was 86.1% (confidence interval at 95% [83.4%, 88.5%]) with an UV-IMS and 100% (confidence interval at 95% [87%, 100%]) using a GC-IMS system. The classification rate was improved by using a more suitable ionization source and a pre-separation step prior to the IM analysis.

  13. Direct classification of olive oils by using two types of ion mobility spectrometers

    International Nuclear Information System (INIS)

    Garrido-Delgado, Rocio; Mercader-Trejo, Flora; Sielemann, Stefanie; Bruyn, Wolfgang de; Arce, Lourdes; Valcarcel, Miguel

    2011-01-01

    Graphical abstract: Highlights: → We explore the use of Ion Mobility Spectrometers for classification of olive oils. → Three types of olive oils were analyzed with both devices coupled to headspace system. → The ion mobility data were processed using chemometric to obtain global information. → The classification rate was better using tritium source and separation step prior IMS. - Abstract: In this work, we explored the use of an Ion Mobility Spectrometry (IMS) device with an ultraviolet (UV) source, and of a Gas Chromatographic (GC) column coupled to an IM Spectrometer with a tritium source, for the discrimination of three grades of olive oil, namely: extra virgin olive oil (EVOO), olive oil (OO) and pomace olive oil (POO). The three types of oil were analyzed with both equipment combinations as coupled to a headspace system and the obtained ion mobility data were consecutively processed with various chemometric tools. The classification rate for an independent validation set was 86.1% (confidence interval at 95% [83.4%, 88.5%]) with an UV-IMS and 100% (confidence interval at 95% [87%, 100%]) using a GC-IMS system. The classification rate was improved by using a more suitable ionization source and a pre-separation step prior to the IM analysis.

  14. High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) for Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Swearingen, Kristian E.; Moritz, Robert L.

    2013-01-01

    SUMMARY High field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas-phase ions by their behavior in strong and weak electric fields. FAIMS is easily interfaced with electrospray ionization and has been implemented as an additional separation mode between liquid chromatography (LC) and mass spectrometry (MS) in proteomic studies. FAIMS separation is orthogonal to both LC and MS and is used as a means of on-line fractionation to improve detection of peptides in complex samples. FAIMS improves dynamic range and concomitantly the detection limits of ions by filtering out chemical noise. FAIMS can also be used to remove interfering ion species and to select peptide charge states optimal for identification by tandem MS. Here, we review recent developments in LC-FAIMS-MS and its application to MS-based proteomics. PMID:23194268

  15. Transition from the constant ion mobility regime to the ion-atom charge-exchange regime for bounded collisional plasmas

    International Nuclear Information System (INIS)

    Poggie, Jonathan; Sternberg, Natalia

    2005-01-01

    A numerical and analytical study of a planar, collisional, direct-current, plasma-wall problem is presented. The fluid model for the problem is first validated by comparing numerical solutions with experimental data for low-pressure (∼0.1 Pa) electrode sheaths with wall potentials on the order of -100 V. For electric potential, ion number density, and ion velocity, good agreement was found between theory and experiment from within the sheath out to the bulk plasma. The frictional drag resulting from ion-neutral collisions is described by a model incorporating both linear and quadratic velocity terms. In order to study the transition from the constant ion mobility regime (linear friction) to the ion-atom charge-exchange collision regime (quadratic friction), the theoretical model was examined numerically for a range of ion temperatures and ion-neutral collision rates. It was found that the solution profiles in the quasineutral plasma depend on the ion temperature. For low ion temperatures they are governed mainly by the ion-atom charge-exchange regime, whereas for high temperatures they are governed by the constant ion mobility regime. Quasineutral plasma models corresponding to these two limiting cases were solved analytically. In particular, an analytical plasma solution is given for the ion-atom charge exchange regime that includes the effects of ion inertia. In contrast to the quasineutral plasma, the sheath is always governed for low to moderate collision rates by the ion-atom charge-exchange regime, independent of the ion temperature. Varying the collision rate, it was shown that when the wall potential is sufficiently high, the sheath cannot be considered collisionless, even if the collision rate is quite small

  16. Hypothesis of linear relaxation and ion mobility in neutral gases

    International Nuclear Information System (INIS)

    Naudy, Michel

    1980-01-01

    The objective of this research thesis is to propose a theory of ion mobility in neutral gases, based on the hypothesis of linear relaxation, in order to obtain simple formula and a good agreement with experiment. The author first presents some generalities on ion mobility such as history and values of interest, and some notions about the way experimental results are obtained, and then theories proposed from 1903 to 1976. He reports two tests. The first one, based on the Boltzmann equation, is based on a method of moments, and requires the use of a computer, but does not give results in good agreement with the experiment. Thus, for the second test, the author used a kinetic equation similar to one used for the study of neutral gas viscosity. This kinetic equation is used for the study of ion mobility in neutral gases, and the author shows that, with a Sutherland potential, a simple formula can be obtained, the results of which can be obtained with a pocket calculator. Moreover, these results are in agreement with experimental values over a portion of the experimental range. In order to reach an agreement over the whole experimental range, a possibility has been to use, in some cases, a more realistic interaction potential. However, a computer was then necessary [fr

  17. Experimental ion mobility measurements in Xe-C2H6

    Science.gov (United States)

    Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-10-01

    In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon (Xe) with ethane (C2H6) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 Td to 25 Td range (2.4-6.1 kVṡcm-1ṡ bar-1), at room temperature. The time of arrival spectra revealed two peaks throughout the entire range studied which were attributed to ion species with 3-carbons (C3H5+, C3H6+ C3H8+ and C3H9+) and with 4-carbons (C4H7+, C4H9+ and C4H10+). Besides these, and for Xe concentrations above 70%, a bump starts to appear at the right side of the main peak for reduced electric fields higher than 20 Td, which was attributed to the resonant charge transfer of C2H6+ to C2H6 that affects the mobility of its ion products (C3H8+ and C3H9+). The time of arrival spectra for Xe concentrations of 20%, 50%, 70% and 90% are presented, together with the reduced mobilities as a function of the Xe concentration calculated from the peaks observed for the low reduced electric fields and pressures studied.

  18. Ion Mobility Separations of Isomers based upon Long Path Length Structures for Lossless Ion Manipulations Combined with Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Ibrahim, Yehia M. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Baker, Erin S. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Aly, Noor A. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Hamid, Ahmed M. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Zhang, Xing [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Zheng, Xueyun [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Garimella, Sandilya V. B. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Webb, Ian K. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Prost, Spencer A. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Sandoval, Jeremy A. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Norheim, Randolph V. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Anderson, Gordon A. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Tolmachev, Aleksey V. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA; Smith, Richard D. [Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland, WA 99352 USA

    2016-07-01

    Mass spectrometry (MS)-based multi-omic measurements, including proteomics, metabolomics, lipidomics, and glycomics, are increasingly transforming our ability to characterize and understand biological systems, but, presently have limitations due to the chemical diversity and range of abundances of biomolecules in complex samples. Advances addressing these challenges increasingly are based upon the ability to quickly separate, react and otherwise manipulate sample components for analysis by MS. Here we report on a new approach using Structures for Lossless Ion Manipulations (SLIM) to enable long serpentine path ion mobility spectrometry (IMS) separations followed by MS analyses. This approach provides previously unachieved mobility biomolecule isomer separations for biomolecular species, in conjunction with more effective ion utilization, and producing a basis for the improved characterization of very small samples.

  19. Interaction between crystal lattice and mobile ions in copper selenides studied by EXAFS spectroscopy

    International Nuclear Information System (INIS)

    Asylgushina, G.N.; Bikkulova, N.N.; Titova, S.G.; Kochubey, D.I.

    2005-01-01

    Interaction between crystal lattice and mobile Cu ions has been studied in Cu 2- x Se in superionic and in normal state using EXAFS-spectroscopy. It has been found that the transition from normal to superionic state and change of mobile Cu ion concentration practically do not have an influence on local state of Cu atoms, but change of both these parameters is accompanied by a change of Se-sublattice state

  20. Ion Mobility Spectrometer Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; McLain, Derek [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Steeb, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-12-20

    The Morpho Saffran Itemizer 4DX Ion Mobility Spectrometer previously used to detect uranium signatures in FY16 was used at the former New Brunswick Facility, a past uranium facility located on site at Argonne National Laboratory. This facility was chosen in an attempt to detect safeguards relevant signatures and has a history of processing uranium at various enrichments, chemical forms, and purities; various chemicals such as nitric acid, uranium fluorides, phosphates and metals are present at various levels. Several laboratories were sampled for signatures of nuclear activities around the laboratory. All of the surfaces that were surveyed were below background levels of the radioanalytical instrumentation and determined to be radiologically clean.

  1. On mobility of ions in thin films in liquid substrates

    International Nuclear Information System (INIS)

    Matveev, Yu.A.

    1984-01-01

    The problem of energy dissipation by emission of ripplons is solved for an ion moving in the media with two interfaces (films on solid and liquid substrates), taking into account the Van der Waals interaction. It is shown that in contrast to the earlier considered case of solid substrate where the action of the Van der Waals forces causes only renormalization of the free fall acceleration, in the vase of liquid substrate the influence of these forces is much more complicated. In addition to renormalization of the amplitude of the emitted surface wave and change of the velocity threshold after which the wave mechanism is effective, in sufficiently thin film, where modes are ''intersected'' the analytical expressions for mobility are also significantly modified. In real experimental environments consideration of all the factors mentioned leads as a rule to higher ion mobility

  2. The ion–aerosol interactions from the ion mobility and aerosol ...

    Indian Academy of Sciences (India)

    2005-02-18

    aerosol interactions from the ion mobility and aerosol particle size distribution measurements on January 17 and February 18, 2005 at Maitri, Antarctica – A case study. Devendraa Siingh Vimlesh Pant A K Kamra. Volume 120 Issue 4 August ...

  3. Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas.

    Science.gov (United States)

    Kanu, Abu B; Hill, Herbert H

    2007-10-15

    This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.

  4. The ion mobility spectrometer for high explosive vapor detection

    International Nuclear Information System (INIS)

    Cohen, M.J.; Stimac, R.M.; Wernlund, R.F.

    1984-01-01

    The Phemto-Chem /SUP R/ Model 100 Ion Mobility Spectrometer (IMS) operates in air and measures a number of explosive vapors at levels as low as partsper-trillion in seconds. The theory and operation of this instrument is discussed. The IMS inhales the vapor sample in a current of air and generates characteristic ions which are separated by time-of -ion drift in the atmospheric pressure gas. Quantitative results, using a dilution tunnel and standard signal generator with TNT, nitroglycerine, ethylene glycol dinitrate, cyclohexanone, methylamine, octafluoronaphthalene and hexafluorobenzene, are given. Rapid sample treatment with sample concentrations, microprocessor signal readout and chemical identification, offer a realistic opportunity of rapid explosive vapor detection at levels down to 10 -14 parts by volume in air

  5. Micro faraday-element array detector for ion mobility spectroscopy

    Science.gov (United States)

    Gresham, Christopher A [Albuquerque, NM; Rodacy, Phillip J [Albuquerque, NM; Denton, M Bonner [Tucson, AZ; Sperline, Roger [Tucson, AZ

    2004-10-26

    An ion mobility spectrometer includes a drift tube having a collecting surface covering a collecting area at one end of the tube. The surface comprises a plurality of closely spaced conductive elements on a non-conductive substrate, each conductive element being electrically insulated from each other element. A plurality of capacitive transimpedance amplifiers (CTIA) adjacent the collecting surface are electrically connected to the plurality of elements, so charge from an ion striking an element is transferred to the capacitor of the connected CTIA. A controller counts the charge on the capacitors over a period of time.

  6. Drift tube measurements of mobilities and longitudinal diffusion coefficients of ions in gases

    International Nuclear Information System (INIS)

    Chelf, R.D.

    1982-01-01

    The zero-field mobilities of Br - and NH 4+ in O 2 were determined as a function of gas temperature in a high pressure drift tube mass spectrometer. The mobilities and longitudinal diffusion coefficients of the ion-gas combinations Br - in Ne and Kr, Li + in Xe, and Tl/ + in Kr and Xe were determined as a function of E/N, where E is the electric field strength and N is the gas number density in a low pressure drift tube mass spectrometer. The measured longitudinal diffusion coefficients were used for a test and comparison of the generalized Einstein relations of Viehland-Mason and Waldman-Mason theories. The measured mobilities of Br - in Kr and Tl/ + in Kr were used in an iterative-inversion scheme from which the ion-neutral interaction potentials were determined

  7. Electron-capture process and ion mobility spectra in plasma chromatography

    International Nuclear Information System (INIS)

    Karasek, F.W.; Spangler, G.E.

    1981-01-01

    The basic principles of plasma chromatography are introduced and ion mobility relationships presented. The relationships of plasma chromatography to electron-capture detector mechanisms are discussed, including electron energy considerations and electron-capture reactions. A number of experimental studies by plasma chromatography are described. (C.F.)

  8. Performance evaluation of oxygen adsorbents using negative corona discharge–ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Azadkish, Kamal; Jafari, Mohammad T., E-mail: jafari@cc.iut.ac.ir; Ghaziaskar, Hassan S.

    2017-02-08

    Trace amounts of oxygen was determined using negative corona discharge as an ionization source for ion mobility spectrometry. A point-in-cylinder geometry with novel design was used to establish the corona discharge without interferences of negative ions such as NO{sub X}{sup −}. The desirable background spectrum shows only electrons peak, providing the instrument capable of trace analysis of oxygen in gaseous samples. The limit of detection and linear dynamic range with high coefficient of determination (r{sup 2} = 0.9997), were obtained for oxygen as 8.5 and 28–14204 ppm, respectively. The relative standard deviations of the method for intraday and interday were obtained 4 and 11%, respectively. The satisfactory results revealed the ability of the negative corona discharge ion mobility spectrometry for investigating the performance of synthesized oxygen adsorbents in nitrogen streams. Two oxygen scavengers of MnO and Cu powder were prepared and the optimum temperature of the reactor containing MnO and Cu powder were obtained as 180 and 230 °C, respectively. Due to higher lifetime of copper powder, it was selected as the oxygen scavenger and some parameters such as: the type of adsorbent support, the size of adsorbent particles, and the amount of copper were studied for preparation of more efficient oxygen adsorbent. - Highlights: • Analysis of oxygen using negative corona discharge-ion mobility spectrometry was investigated for the first time. • Novel designed point-in-cylinder geometry was used to establish the corona discharge without interferences of negative ions. • The method was utilized to evaluate the performance of some synthesized oxygen scavengers.

  9. Deprotonation effect of tetrahydrofuran-2-carbonitrile buffer gas dopant in ion mobility spectrometry.

    Science.gov (United States)

    Fernandez-Maestre, Roberto; Meza-Morelos, Dairo; Wu, Ching

    2016-06-15

    When dopants are introduced into the buffer gas of an ion mobility spectrometer, spectra are simplified due to charge competition. We used electrospray ionization to inject tetrahydrofuran-2-carbonitrile (F, 2-furonitrile or 2-furancarbonitrile) as a buffer gas dopant into an ion mobility spectrometer coupled to a quadrupole mass spectrometer. Density functional theory was used for theoretical calculations of dopant-ion interaction energies and proton affinities, using the hybrid functional X3LYP/6-311++(d,p) with the Gaussian 09 program that accounts for the basis set superposition error; analytes structures and theoretical calculations with Gaussian were used to explain the behavior of the analytes upon interaction with F. When F was used as a dopant at concentrations below 1.5 mmol m(-3) in the buffer gas, ions were not observed for α-amino acids due to charge competition with the dopant; this deprotonation capability arises from the production of a dimer with a high formation energy that stabilized the positive charge and created steric hindrance that deterred the equilibrium with analyte ions. F could not completely strip other compounds of their charge because they either showed steric hindrance at the charge site that deterred the approach of the dopant (2,4-lutidine, and DTBP), formed intramolecular bonds that stabilized the positive charge (atenolol), had high proton affinity (2,4-lutidine, DTBP, valinol and atenolol), or were inherently ionic (tetraalkylammonium ions). This selective deprotonation suggests the use of F to simplify spectra of complex mixtures in ion mobility and mass spectrometry in metabolomics, proteomics and other studies that generate complex spectra with thousands of peaks. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Blair, Sandra L.; Ng, Nga L.; Zambrzycki, Stephen C.; Li, Anyin; Fernández, Facundo M.

    2018-02-01

    In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. [Figure not available: see fulltext.

  11. Model Titan atmospheric hydrocarbon analysis by Ion Mobility Spectrometry in dry helium

    International Nuclear Information System (INIS)

    Kojiro, D.R.; Stimac, R.M.; Wernlund, R.F.; Cohen, M.J.

    1990-01-01

    Ion Mobility Spectrometry (IMS) is one analytical technique being investigated for the in situ analysis of the atmosphere of Titan. Any hydrocarbon ions that may form react immediately, in microseconds, with the high concentration of water vapor normally present in conventional IMS. By reducing the water concentration to the parts-per-billion range, the lifetime of the hydrocarbon ions may be increased to the milliseconds required for measurement. At low water level concentrations, other species may become the reactant ion. This study focuses on IMS analysis of expected Titan atmospheric hydrocarbons under very dry, low water concentration conditions

  12. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate

    Directory of Open Access Journals (Sweden)

    Dandan Men

    2018-02-01

    Full Text Available Two-dimensional (2D periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO2 nanopillar arrays decorated with Ag nanoparticles (NPs with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE, depositing Ag layer and annealing. For the prepared SiO2 nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO2 nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP and rhodamine 6G (R6G due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO2 nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density “hotspots” derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  13. Wafer-Scale Hierarchical Nanopillar Arrays Based on Au Masks and Reactive Ion Etching for Effective 3D SERS Substrate.

    Science.gov (United States)

    Men, Dandan; Wu, Yingyi; Wang, Chu; Xiang, Junhuai; Yang, Ganlan; Wan, Changjun; Zhang, Honghua

    2018-02-04

    Two-dimensional (2D) periodic micro/nanostructured arrays as SERS substrates have attracted intense attention due to their excellent uniformity and good stability. In this work, periodic hierarchical SiO₂ nanopillar arrays decorated with Ag nanoparticles (NPs) with clean surface were prepared on a wafer-scale using monolayer Au NP arrays as masks, followed by reactive ion etching (RIE), depositing Ag layer and annealing. For the prepared SiO₂ nanopillar arrays decorated with Ag NPs, the size of Ag NPs was tuned from ca. 24 to 126 nanometers by controlling the deposition thickness of Ag film. Importantly, the SiO₂ nanopillar arrays decorated with Ag NPs could be used as highly sensitive SERS substrate for the detection of 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) due to the high loading of Ag NPs and a very uniform morphology. With a deposition thickness of Ag layer of 30 nm, the SiO₂ nanopillar arrays decorated with Ag NPs exhibited the best sensitive SERS activity. The excellent SERS performance of this substrate is mainly attributed to high-density "hotspots" derived from nanogaps between Ag NPs. Furthermore, this strategy might be extended to synthesize other nanostructured arrays with a large area, which are difficult to be prepared only via conventional wet-chemical or physical methods.

  14. Explosives vapour identification in ion mobility spectrometry using a tunable laser ionization source: a comparison with conventional 63Ni ionization

    International Nuclear Information System (INIS)

    Clark, A.; Deas, R.M.; Kosmidis, C.; Ledingham, K.W.D.; Marshall, A.; Singhal, R.P.

    1995-01-01

    Laser multiphoton ionization (MPI) is used to produce ions from explosive vapours at atmospheric pressure in air for analysis by ion mobility spectrometry (IMS). In the positive ion mode of detection, NO + ions, generated directly by multiphoton dissociation/ionization of the explosive compounds, show strong variation with laser wavelength. This provides a means of identifying the presence of nitro-containing compounds. Moreover, electrons formed in the MPI of gaseous components in the air carrier stream, primarily O 2 , are transferred via neutral molecular oxygen (O 2 ) to trace explosive vapour, forming negative ions which give rise to characteristic and identifiable ion mobility spectra. Further, negative ion mobility spectra of several explosive vapours are presented using conventional 63 Ni ionization and are compared qualitatively with the laser ionization approach. (author)

  15. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  16. Chemometrics for ion mobility spectrometry data: recent advances and future prospects

    NARCIS (Netherlands)

    Szymanska, E.; Davies, Antony N.; Buydens, L.M.C.

    2016-01-01

    Historically, advances in the field of ion mobility spectrometry have been hindered by the variation in measured signals between instruments developed by different research laboratories or manufacturers. This has triggered the development and application of chemometric techniques able to reveal and

  17. Ion mobility spectrometry–mass spectrometry studies of ion processes in air at atmospheric pressure and their application to thermal desorption of 2,4,6-trinitrotoluene

    International Nuclear Information System (INIS)

    Sabo, Martin; Malásková, Michaela; Matejčík, Štefan

    2014-01-01

    In this study we have investigated the negative reactant ion formation in a negative corona discharge (CD) using the corona discharge ion mobility spectrometry orthogonal acceleration time-of-flight (CD-IMS-oaTOF) technique. The reactant ions were formed in the CD operating in the reverse gas flow mode at an elevated temperature of 363.5 K in synthetic and ambient air. Under these conditions mainly O 2 − and their clusters were formed. We have also studied the influence of CCl 4 admixture to air (dopant gas) on the composition of the reactant ions, which resulted in the formation of Cl − and its clusters with a reduced ion mobility of 3.05 cm 2  V −1  s −1 as a major reactant ion peak. Additional IMS peaks with reduced ion mobilities of 2.49, 2.25 and 2.03 cm 2  V −1  s −1 were detected, and Cl −  · (NO 2 ) and Cl −  · (NO) n (n = 2, 3) anions were identified. The negative reactant ions were used to detect 2,4,6 trinitrotoluene (TNT) using the thermal desorption (TD) technique using a CD-IMS instrument. Using TD sampling and a negative CD ion source doped by CCl 4 we have achieved a limit of detection of 350 pg for direct surface analysis of TNT. (paper)

  18. Determination of Benzene, Toluene, and Xylene by means of an ion mobility spectrometer device using photoionization

    Science.gov (United States)

    Leonhardt, J. W.; Bensch, H.; Berger, D.; Nolting, M.; Baumbach, J. I.

    1995-01-01

    The continuous monitoring of changes on the quality of ambient air is a field of advantage of ion mobility spectrometry. Benzene, Toluene, and Xylene are substances of special interest because of their toxicity. We present an optimized drift tube for ion mobility spectrometers, which uses photo-ionization tubes to produce the ions to be analyzed. The actual version of this drift tube has a length of 45 mm, an electric field strength established within the drift tube of about 180 V/cm and a shutter-opening-time of 400 mus. With the hydrogen tube used for ionisation a mean flux of 10(exp 12) photons/sq cm s was established for the experiments described. We discuss the results of investigations on Benzene, Toluene, and Xylene in normal used gasoline SUPER. The detection limits obtained with the ion mobility spectrometer developed in co-operation are in the range of 10 ppbv in this case. Normally, charge transfer from Benzene ions to Toluene takes place. Nevertheless the simultaneous determination in mixtures is possible by a data evaluation procedure developed for this case. The interferences found between Xylene and others are rather weak. The ion mobility spectra of different concentrations of gasoline SUPER are attached as an example for the resolution and the detection limit of the instrument developed. Resolution and sensitivity of the system are well demonstrated. A hand-held portable device produced just now is to be tested for special environmental analytical problems in some industrial and scientific laboratories in Germany.

  19. Separation of different ion structures in atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS).

    Science.gov (United States)

    Laakia, Jaakko; Adamov, Alexey; Jussila, Matti; Pedersen, Christian S; Sysoev, Alexey A; Kotiaho, Tapio

    2010-09-01

    This study demonstrates how positive ion atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) can be used to produce different ionic forms of an analyte and how these can be separated. When hexane:toluene (9:1) is used as a solvent, 2,6-di-tert-butylpyridine (2,6-DtBPyr) and 2,6-di-tert-4-methylpyridine (2,6-DtB-4-MPyr) efficiently produce radical cations [M](+*) and protonated [M + H](+) molecules, whereas, when the sample solvent is hexane, protonated molecules are mainly formed. Interestingly, radical cations drift slower in the drift tube than the protonated molecules. It was observed that an oxygen adduct ion, [M + O(2)](+*), which was clearly seen in the mass spectra for hexane:toluene (9:1) solutions, shares the same mobility with radical cations, [M](+*). Therefore, the observed mobility order is most likely explained by oxygen adduct formation, i.e., the radical cation forming a heavier adduct. For pyridine and 2-tert-butylpyridine, only protonated molecules could be efficiently formed in the conditions used. For 1- and 2-naphthol it was observed that in hexane the protonated molecule typically had a higher intensity than the radical cation, whereas in hexane:toluene (9:1) the radical cation [M](+*) typically had a higher intensity than the protonated molecule [M + H](+). Interestingly, the latter drifts slower than the radical cation [M](+*), which is the opposite of the drift pattern seen for 2,6-DtBPyr and 2,6-DtB-4-MPyr. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  20. Ion mobility and transport barriers in the tokamak plasmas

    International Nuclear Information System (INIS)

    Xiao, H.; Hazeltine, R.D.; Valanju, P.M.

    1993-06-01

    The character of charged particle motion in an axisymmetric toroidal system with a constant radial electric field is investigated both analytically and numerically. Ion radial mobility caused by the combined effects of the radial electric field and charge exchange is found. A simple moment argument in the banana regime matches the simulation results well. Relation of present work and high confinement (H-mode) experiment is also discussed

  1. A flexible statistical model for alignment of label-free proteomics data--incorporating ion mobility and product ion information.

    Science.gov (United States)

    Benjamin, Ashlee M; Thompson, J Will; Soderblom, Erik J; Geromanos, Scott J; Henao, Ricardo; Kraus, Virginia B; Moseley, M Arthur; Lucas, Joseph E

    2013-12-16

    The goal of many proteomics experiments is to determine the abundance of proteins in biological samples, and the variation thereof in various physiological conditions. High-throughput quantitative proteomics, specifically label-free LC-MS/MS, allows rapid measurement of thousands of proteins, enabling large-scale studies of various biological systems. Prior to analyzing these information-rich datasets, raw data must undergo several computational processing steps. We present a method to address one of the essential steps in proteomics data processing--the matching of peptide measurements across samples. We describe a novel method for label-free proteomics data alignment with the ability to incorporate previously unused aspects of the data, particularly ion mobility drift times and product ion information. We compare the results of our alignment method to PEPPeR and OpenMS, and compare alignment accuracy achieved by different versions of our method utilizing various data characteristics. Our method results in increased match recall rates and similar or improved mismatch rates compared to PEPPeR and OpenMS feature-based alignment. We also show that the inclusion of drift time and product ion information results in higher recall rates and more confident matches, without increases in error rates. Based on the results presented here, we argue that the incorporation of ion mobility drift time and product ion information are worthy pursuits. Alignment methods should be flexible enough to utilize all available data, particularly with recent advancements in experimental separation methods.

  2. Characterization of applied fields for ion mobility in traveling wave based structures for lossless ion manipulations (SLIM)

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Ahmed M.; Prabhakaran Nair Syamala Amma, Aneesh; Garimella, Venkata BS; Ibrahim, Yehia M.; Smith, Richard D.

    2018-03-21

    Ion mobility (IM) is rapidly gaining attention for the analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM has limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. These can be readily obtainable in structures for lossless ion manipulations (SLIM), which are fabricated from electric fields that are generated by appropriate potentials applied to arrays of electrodes patterned on two parallel surfaces. In this work we have investigated the relationship between the various SLIM variables, such as electrode dimensions, inter-surface gap, and the TW applied voltages, that directly impact the fields experienced by ions. Ion simulation and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric field. The variables explored impact both ion confinement and the observed IM resolution in Structures for Lossless Ion Manipulations (SLIM) modules.

  3. Determination of ion mobilities of radionuclides in a free electrolyte. Methods and experimental organization

    International Nuclear Information System (INIS)

    Milanov, M.; Doberenz, W.; Marinov, A.; Khalkin, V.A.

    1983-01-01

    A new variant of technique for determining ion mobilities by means of horizontal zone electrophoresis in free solutions is developed. Setup circuit is presented. Some details of experiment and results of measuring limiting mobilities of 131 I - and 160 Tb 3+ are given. On these examples the method reproducibility was checked

  4. Mobility and lifetime of sup 2 sup 0 sup 8 Tl ions in liquid xenon

    CERN Document Server

    Walters, A J

    2003-01-01

    Positively charged sup 2 sup 0 sup 8 Tl ions are transported through liquid xenon using electric fields in the range of 4-10 kV cm sup - sup 1 and for drift distances up to 50 mm. From these measurements we deduce upper limits on the attenuation length for Tl ions in liquid xenon, resulting in a lifetime >5.5 s. In addition to these results, the field independent mobility of Tl bearing species in liquid xenon was measured to be 1.33+-0.04x10 sup - sup 4 cm sup 2 V sup - sup 1 s sup - sup 1. This result, when coupled with those for other species by previous workers, suggests that positive ion mobility in liquid xenon is proportional to the hard-core radius. Applications to Ba ion collection in a double beta decay experiment are also discussed.

  5. Application of an ion mobility spectrometer based on virtual instrument technology

    International Nuclear Information System (INIS)

    Fu Shihong; Wei Yongbo; Jiang Dazhen

    2008-01-01

    This paper presents the application of virtual instrument technology on an ion mobility spectrometer (IMS). By designing the data acquisition and processing system of IMS on LabVIEW platform, the ability of signal processing and real time measurement in practice has been improved. (authors)

  6. [Photoionization ion mobility spectrometry (UV-IMS) for the isomeric volatile organic compounds].

    Science.gov (United States)

    Li, Hu; Niu, Wen-qi; Wang, Hong-mei; Huang, Chao-qun; Jiang, Hai-he; Chu, Yan-nan

    2012-01-01

    The construction and performance study is reported for a newly developed ultraviolet photoionization ion mobility spectrometry (UV-IMS). In the present paper, an UV-IMS technique was firstly developed to detect eleven isomeric volatile organic compounds including the differences in the structure of carbon chain, the style of function group and the position of function group. Their reduced mobility values were determined and increased in this order: linears alcohols homemade UV-IMS was around ppb-ppm.

  7. The Influence of Drift Gas Composition on the Separation Mechanism in Traveling Wave Ion Mobility Spectrometry: Insight from Electrodynamic Simulations.

    Science.gov (United States)

    May, Jody C; McLean, John A

    2003-06-01

    The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.

  8. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses

    Science.gov (United States)

    Maleki, Hossein; Karanji, Ahmad K.; Majuta, Sandra; Maurer, Megan M.; Valentine, Stephen J.

    2018-02-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate ( in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.

  9. Measurement of mobility profile in ion-implanted silicon layers using electroreflection spectroscopy

    International Nuclear Information System (INIS)

    Galiev, G.B.; Kapaev, V.V.; Mokerov, V.G.

    1986-01-01

    The possibility is shown of the application of the low field linearized electroreflection spectroscopy for the measurement of profiles of carriers mobilities μ(x) simultaneously with the concentration profiles N(x) in thin ion-implanted silicon layers. The μ(χ) value is determined from the calibration curve of the dependence of the phenomenological broadening parameter γ on the mobility for uniformly doped samples. The results are presented for the measurements of the profiles μ(x) for boron- and arsenic-implanted silicon

  10. Applicability of ion mobility spectrometry for detection of quarantine pests in wood

    Science.gov (United States)

    Ewing, K. J.; Sanghera, J.; Myers, S. W.; Ervin, A. M.; Carey, C.; Gleason, G.; Mosser, L.; Levy, L.; Hennessey, M. K.; Bulluck, R.

    2016-05-01

    Visual inspection is the most commonly used method for detecting quarantine pests in agricultural cargo items at ports. For example, solid wood packing material (SWPM) at ports may be a pathway for wood pests and is a frequent item of inspection at ports. The inspection process includes examination of the external surface of the item and often destructive sampling to detect internal pest targets. There are few tools available to inspectors to increase the efficiency of inspection and reduce the labor involved. Ion mobility spectrometry (IMS) has promise as an aid for inspection. Because pests emit volatile organic compounds (VOCs) such as hormone like substances, Ion Mobility Spectrometry (IMS) was investigated for possible utility for detecting pests during inspection. SWPM is a major pest pathway in trade, and fumigation of many kinds of wood, including SWPM, with methyl bromide (MeBr) following a published schedule1 is regularly conducted for phytosanitary reasons prior to shipment to the United States. However, the question remains as to how long the methyl bromide remains in the wood samples after fumigation such that it could act as an interferent to the detection of pest related VOC emissions. This work investigates the capability of ion mobility spectrometry to detect the presence of residual methyl bromide in fumigated maple and poplar wood samples at different times post fumigation up to 118 days after fumigation. Data show that MeBr can be detected in the less dense poplar wood up to 118 days after fumigation while MeBr can be detected in the denser maple wood 55 days after fumigation.

  11. Classification of ion mobility spectra by functional groups using neural networks

    Science.gov (United States)

    Bell, S.; Nazarov, E.; Wang, Y. F.; Eiceman, G. A.

    1999-01-01

    Neural networks were trained using whole ion mobility spectra from a standardized database of 3137 spectra for 204 chemicals at various concentrations. Performance of the network was measured by the success of classification into ten chemical classes. Eleven stages for evaluation of spectra and of spectral pre-processing were employed and minimums established for response thresholds and spectral purity. After optimization of the database, network, and pre-processing routines, the fraction of successful classifications by functional group was 0.91 throughout a range of concentrations. Network classification relied on a combination of features, including drift times, number of peaks, relative intensities, and other factors apparently including peak shape. The network was opportunistic, exploiting different features within different chemical classes. Application of neural networks in a two-tier design where chemicals were first identified by class and then individually eliminated all but one false positive out of 161 test spectra. These findings establish that ion mobility spectra, even with low resolution instrumentation, contain sufficient detail to permit the development of automated identification systems.

  12. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    International Nuclear Information System (INIS)

    Manard, Manuel J.; Weeks, Stephan; Kyle, Kevin

    2010-01-01

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  13. Isomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments.

    Science.gov (United States)

    Harvey, David J; Seabright, Gemma E; Vasiljevic, Snezana; Crispin, Max; Struwe, Weston B

    2018-05-01

    Extracted arrival time distributions of negative ion CID-derived fragments produced prior to traveling-wave ion mobility separation were evaluated for their ability to provide structural information on N-linked glycans. Fragmentation of high-mannose glycans released from several glycoproteins, including those from viral sources, provided over 50 fragments, many of which gave unique collisional cross-sections and provided additional information used to assign structural isomers. For example, cross-ring fragments arising from cleavage of the reducing terminal GlcNAc residue on Man 8 GlcNAc 2 isomers have unique collision cross-sections enabling isomers to be differentiated in mixtures. Specific fragment collision cross-sections enabled identification of glycans, the antennae of which terminated in the antigenic α-galactose residue, and ions defining the composition of the 6-antenna of several of the glycans were also found to have different cross-sections from isomeric ions produced in the same spectra. Potential mechanisms for the formation of the various ions are discussed and the estimated collisional cross-sections are tabulated. Graphical Abstract ᅟ.

  14. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    Science.gov (United States)

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman

  15. Effect of Mobile Phone Usage on Nickel Ions Release and pH of Saliva in Patients Undergoing Fixed Orthodontic Treatment.

    Science.gov (United States)

    Nanjannawar, Lalita Girish; Girme, Tejashree Suresh; Agrawal, Jiwanasha Manish; Agrawal, Manish Suresh; Fulari, Sangamesh Gurunath; Shetti, Shraddha Subhash; Kagi, Vishwal Ajith

    2017-09-01

    Hand held mobile phones are presently the most popular means of communication worldwide and have transformed our lives in many aspects. The widespread use of such devices have resulted in growing concerns regarding harmful effects of radiations emitted by them. This study was designed to evaluate the effects of mobile phone usage on nickel ion release as well as pH of saliva in patients with fixed orthodontic appliances. To assess the level of nickel ions in saliva and pH of saliva in mobile phone users undergoing fixed orthodontic treatment using inductively coupled plasma atomic emission spectrometry. A total of 42 healthy patients with fixed orthodontic appliance in mouth for a duration of six to nine months were selected for the study. They were divided into experimental group (n=21) consisting of mobile phone users and control group (n=21) of non mobile phone users. Saliva samples were collected from both the groups and nickel ion levels were measured using inductively coupled plasma-mass spectroscopy. The pH values were also assessed for both groups using pH meter. Unpaired t-test was used for the data analysis. Statistical analysis revealed that though the pH levels were reduced and the nickel ion levels were higher in the experimental group compared to the control group, the results were non significant. Mobile phone usage may affect the pH of saliva and result in increased release of nickel ions in saliva of patients with fixed orthodontic appliances in the oral cavity.

  16. Gas-phase reaction rate constants for atmospheric pressure ionization in ion-mobility spectrometry

    International Nuclear Information System (INIS)

    Vandiver, V.J.

    1987-01-01

    Ion-mobility spectrometry (IMS) is an instrumental technique in which gaseous ions are formed from neutral molecules by proton and charge transfer from reactant ions through collisional ionization. An abbreviated rate theory has been proposed for atmospheric pressure ionization (API) in IMS, but supporting experimental measurements have not been reported. The objectives of this thesis were (1) assessment of existing API rate theory using positive and negative product ions in IMS, (2) measurement of API equilibria and kinetics for binary mixtures, and (3) investigating of cross-ionizations with multiple-product ions in API reactions. Although IMS measurements and predictions from rate theory were comparable, shapes and slopes of response curves for both proton transfer and electron capture were not described exactly by existing theory. In particular, terms that are needed for calculation of absolute rate constants were unsuitable in the existing theory. These included recombination coefficients,initial number of reactant ions, and opposing ion densities

  17. LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets.

    Science.gov (United States)

    Crowell, Kevin L; Slysz, Gordon W; Baker, Erin S; LaMarche, Brian L; Monroe, Matthew E; Ibrahim, Yehia M; Payne, Samuel H; Anderson, Gordon A; Smith, Richard D

    2013-11-01

    The addition of ion mobility spectrometry to liquid chromatography-mass spectrometry experiments requires new, or updated, software tools to facilitate data processing. We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension. LC-IMS-MS Feature Finder is available as a command-line tool for download at http://omics.pnl.gov/software/LC-IMS-MS_Feature_Finder.php. The Microsoft.NET Framework 4.0 is required to run the software. All other dependencies are included with the software package. Usage of this software is limited to non-profit research to use (see README). rds@pnnl.gov. Supplementary data are available at Bioinformatics online.

  18. Studies on mobility in electric and magnetic fields of tritium ions occluded in titanium and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Pietrzak, R [Wyzsza Szkola Pedagogiczna, Opole (Poland); Rozenfeld, B [Wroclaw Univ. (Poland)

    1976-01-01

    Migration of tritium ions in zirconium and titanium in electric field has been investigated. The effect of simultaneous action of crossed electric and magnetic fields on ions migration has also been studied. The averaged values taken from the large number of measurements allow us to suggest the relation between the rate of electromobility and electric field intensity oriented in the direction of migration. In case of migration caused by simultaneously applied both field, the mobility varied monotonously with the increase of magnetic induction; a linear dependence, however, was observed between the mobility of tritium and the current density in a sample.

  19. Detection of methamphetamine in the presence of nicotine using in situ chemical derivatization and ion mobility spectrometry.

    Science.gov (United States)

    Ochoa, Mariela L; Harrington, Peter B

    2004-02-15

    The detection of methamphetamine in the presence of nicotine has been successfully accomplished using in situ chemical derivatization with propyl chloroformate as the derivatization reagent and ion mobility spectrometry (IMS). The rapid detection of methamphetamine is important for forensic scientists in order to establish a chain of evidence and link criminals to the crime scene. Nicotine is pervasive in clandestine drug laboratories from cigarette smoke residue. It has been demonstrated that nicotine obscures the methamphetamine peaks in ion mobility spectrometers due to their similar charge affinities and ion mobilities, which makes their detection a challenging task. As a consequence, false positive or negative responses may arise. In situ chemical derivatization poses as a sensitive, accurate, and reproducible alternative to remove the nicotine background when detecting nanogram amounts of methamphetamine. The derivatization agent was coated onto the sample disk, and the derivatization product corresponding to propyl methamphetamine carbamate was detected. In the present study, in situ chemical derivatization was demonstrated to be a feasible method to detect methamphetamine hydrochloride as the carbamate derivative, which was baseline-resolved from the nicotine peak. Alternating least squares (ALS) was used to model the datasets. A mixture containing both compounds revealed reduced mobilities of 1.61 cm(2)/V.s and 1.54 cm(2)/V.s for methamphetamine and nicotine, respectively. The reduced mobility of propyl methamphetamine carbamate was found at 1.35 cm(2)/V.s.

  20. Mixed mobile ion effect on a.c. conductivity of boroarsenate glasses

    Indian Academy of Sciences (India)

    In this article we report the study of mixed mobile ion effect (MMIE) in boroarsenate glasses. DSC and a.c. electrical conductivity studies have been carried out for MgO–(25−)Li2O–50B2O3–25As2O3 glasses. It is observed that strength of MMIE in a.c. conductivity is less pronounced with increase in temperature and ...

  1. Lithium-Ion Mobility in Quaternary Boro-Germano-Phosphate Glasses.

    Science.gov (United States)

    Moguš-Milanković, Andrea; Sklepić, Kristina; Mošner, Petr; Koudelka, Ladislav; Kalenda, Petr

    2016-04-28

    Effect of the structural changes, electrical conductivity, and dielectric properties on the addition of a third glass-former, GeO2, to the borophosphate glasses, 40Li2O-10B2O3-(50 - x)P2O5-xGeO2, x = 0-25 mol %, has been studied. Introduction of GeO2 causes the structural modifications in the glass network, which results in a continuous increase in electrical conductivity. Glasses with low GeO2 content, up to 10 mol %, show a rapid increase in dc conductivity as a result of the interlinkage of slightly depolymerized phosphate chains and negatively charged [GeO4](-) units, which enhances the migration of Li(+) ions. The Li(+) ions compensate these delocalized charges connecting both phosphate and germanium units, which results in reduction of both bond effectiveness and binding energy of Li(+) ions and therefore enables their hop to the next charge-compensating site. For higher GeO2 content, the dc conductivity increases slightly, tending to approach a maximum in Li(+) ion mobility caused by the incorporation of GeO2 units into phosphate network combined with conversion of GeO4 to GeO6 units. The strong cross-linkage of germanium and phosphate units creates heteroatomic P-O-Ge bonds responsible for more effectively trapped Li(+) ions. A close correspondence between dielectric and conductivity parameters at high frequencies indicates that the increase in conductivity indeed is controlled by the modification of structure as a function of GeO2 addition.

  2. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    KAUST Repository

    Wang, Bing; Zhang, Jun; Chen, Peng; Ji, Zhiwei; Deng, Shuping; Li, Chi

    2013-01-01

    Background: Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics.Results: In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model.Conclusions: Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques. 2013 Wang et al.; licensee BioMed Central Ltd.

  3. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    KAUST Repository

    Wang, Bing

    2013-05-09

    Background: Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics.Results: In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model.Conclusions: Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques. 2013 Wang et al.; licensee BioMed Central Ltd.

  4. Adsorption of fluids in slitlike pores containing a small amount of mobile ions.

    Science.gov (United States)

    Borówko, M; Bucior, K; Sokołowski, S; Staszewski, T

    2005-11-01

    We apply density functional theory to investigate changes in the phase behavior of a fluid caused by the presence of mobile ions inside the pore. The approach has been based on the fundamental measure density functional theory and on the theory of nonuniform electrolytes developed recently by O. Pizio, A. Patrykiejew, S. Sokołowski [J. Chem. Phys. 121 (2005) 11,957]. We have evaluated capillary condensation phase diagrams for pores of different widths and for different concentrations of confined ions. The calculations have demonstrated that the presence of ions leads to lowering the critical temperature and to an increase of the value of the chemical potential at the capillary condensation point.

  5. Analysis of antibiotics from liquid sample using electrospray ionization-ion mobility spectrometry

    International Nuclear Information System (INIS)

    Li Shu; Jia Jian; Gao Xiaoguang; He Xiuli; Li Jianping

    2012-01-01

    Highlights: ► The reduced mobilities of 18 antibiotics are determined. ► Establishing antibiotic mass-mobility correlation using (12,4) potential model. ► Multi-component characteristics of antibiotics can be revealed using ESI-IMS. ► Most mixtures of antibiotics can be analyzed using ESI-IMS. ► The detection limit of amoxicillin is 70 pg. - Abstract: The recent findings of antibiotic residues in aquatic environment at trace level have gained much concern for the detrimental effect on ecological and human health due to bacterial resistance. Here, the feasibility of using electrospray ionization ion mobility spectrometry (ESI-IMS) for analysis antibiotics in liquid sample is demonstrated. Reduced mobilities and collision cross sections of 18 antibiotics are experimentally measured and compared with theoretical values according to mass-mobility correlation. Gentamicin is used as an example to investigate the capability of ESI-IMS for multi-component analysis of antibiotics. Mixtures of antibiotics at different concentrations are analyzed. The estimated detection limit for amoxicillin is 0.7 mg L −1 (70 pg) and the linear range of response maintains over two orders. This method will be a potential technique for the analysis of antibiotics in aquatic environment.

  6. Application Of Electronic Nose And Ion Mobility Spectrometer To Quality Control Of Spice Mixtures

    International Nuclear Information System (INIS)

    Banach, U.; Tiebe, C.; Huebert, Th.

    2009-01-01

    The aim of the paper is to demonstrate the application of electronic nose (e-nose) and ion mobility spectrometry (IMS) to quality control and to find out product adulteration of spice mixtures. Therefore the gaseous head space phase of four different spice mixtures (spices for sausages and saveloy) was differed from original composition and product adulteration. In this set of experiments metal-oxide type e-nose (KAMINA-type) has been used, and characteristic patterns of data corresponding to various complex odors of the four different spice mixtures were generated. Simultaneously an ion mobility spectrometer was coupled also to an emission chamber for the detection of gaseous components of spice mixtures. The two main methods that have been used show a clear discrimination between the original spice mixtures and product adulteration could be distinguished from original spice mixtures.

  7. Graphene/Pentacene Barristor with Ion-Gel Gate Dielectric: Flexible Ambipolar Transistor with High Mobility and On/Off Ratio.

    Science.gov (United States)

    Oh, Gwangtaek; Kim, Jin-Soo; Jeon, Ji Hoon; Won, EunA; Son, Jong Wan; Lee, Duk Hyun; Kim, Cheol Kyeom; Jang, Jingon; Lee, Takhee; Park, Bae Ho

    2015-07-28

    High-quality channel layer is required for next-generation flexible electronic devices. Graphene is a good candidate due to its high carrier mobility and unique ambipolar transport characteristics but typically shows a low on/off ratio caused by gapless band structure. Popularly investigated organic semiconductors, such as pentacene, suffer from poor carrier mobility. Here, we propose a graphene/pentacene channel layer with high-k ion-gel gate dielectric. The graphene/pentacene device shows both high on/off ratio and carrier mobility as well as excellent mechanical flexibility. Most importantly, it reveals ambipolar behaviors and related negative differential resistance, which are controlled by external bias. Therefore, our graphene/pentacene barristor with ion-gel gate dielectric can offer various flexible device applications with high performances.

  8. Multi-capillary column-ion mobility spectrometry: a potential screening system to differentiate virgin olive oils.

    Science.gov (United States)

    Garrido-Delgado, Rocío; Arce, Lourdes; Valcárcel, Miguel

    2012-01-01

    The potential of a headspace device coupled to multi-capillary column-ion mobility spectrometry has been studied as a screening system to differentiate virgin olive oils ("lampante," "virgin," and "extra virgin" olive oil). The last two types are virgin olive oil samples of very similar characteristics, which were very difficult to distinguish with the existing analytical method. The procedure involves the direct introduction of the virgin olive oil sample into a vial, headspace generation, and automatic injection of the volatiles into a gas chromatograph-ion mobility spectrometer. The data obtained after the analysis by duplicate of 98 samples of three different categories of virgin olive oils, were preprocessed and submitted to a detailed chemometric treatment to classify the virgin olive oil samples according to their sensory quality. The same virgin olive oil samples were also analyzed by an expert's panel to establish their category and use these data as reference values to check the potential of this new screening system. This comparison confirms the potential of the results presented here. The model was able to classify 97% of virgin olive oil samples in their corresponding group. Finally, the chemometric method was validated obtaining a percentage of prediction of 87%. These results provide promising perspectives for the use of ion mobility spectrometry to differentiate virgin olive oil samples according to their quality instead of using the classical analytical procedure.

  9. Development of a short pulsed corona discharge ionization source for ion mobility spectrometry

    International Nuclear Information System (INIS)

    An Yuan; Aliaga-Rossel, R.; Choi, Peter; Gilles, Jean-Paul

    2005-01-01

    The development of a pulsed corona discharge ionization source and its use in ion mobility spectrometry (IMS) is presented. In a point-plane electrode geometry, an electrical pulse up to 12 kV, 150 ns rise time and 500 ns pulse width was used to generate a corona discharge in air. A single positive high voltage pulse was able to generate about 1.6x10 10 ions at energy consumption of 22 μJ. Since the temporal distribution of ions is in a pulsed form, the possibility of removal the ion gate has been investigated. By purposely arranging the interface between discharge field and drift field, nearly 10 7 positive ions were drawn into the drift region with absence of the ion gate after every single discharge. The positive spectrum of acetone dimer (working at room temperature) was obtained with a resolving power of 20 by using this configuration. The advantages of this new scheme are the low power consumption compared with the dc method as well as the simplicity of the IMS cell structure

  10. Design and implementation of embedded ion mobility spectrometry instrument based on SOPC

    Science.gov (United States)

    Zhang, Genwei; Zhao, Jiang; Yang, Liu; Liu, Bo; Jiang, Yanwei; Yang, Jie

    2015-02-01

    On the hardware platform with single CYCLONE IV FPGA Chip based on SOPC technology, the control functions of IP cores of a Ion Mobility Spectrometry instrument was tested, including 32 bit Nios II soft-core processor, high-voltage module, ion gate switch, gas flow, temperature and pressure sensors, signal acquisition and communication protocol. Embedded operating system μCLinux was successfully transplanted to the hardware platform, used to schedule all the tasks, such as system initialization, parameter setting, signal processing, recognition algorithm and results display. The system was validated using the IMS diagram of Acetone reagent, and the instrument was proved to have a strong signal resolution.

  11. Preparation and SERS performance of Au NP/paper strips based on inkjet printing and seed mediated growth: The effect of silver ions

    Science.gov (United States)

    Weng, Guojun; Yang, Yue; Zhao, Jing; Zhu, Jian; Li, Jianjun; Zhao, Junwu

    2018-04-01

    Surface-enhanced Raman scattering (SERS) has been widely used in biomedical sensing with the advantages of high sensitivity and label-free. However, the fabrication of SERS substrates with good Raman activity, reproducibility, and low cost is still under development in practical applications. This paper presents a practicable method for fabricating Au NP/paper strips by using inkjet printing and seed mediated growth. Small gold seed synthesized by borohydride reduction was used as ink and printed on the filter paper. The printed gold seed grew in situ in the growth solution and formed the gold nanoparticle (Au NP)/paper strips. The fabricated paper strip was characterized by diffuse reflectance spectroscopy and scanning electron microscopy (SEM). The diffuse reflectance spectra indicated that the Au NP/paper strips had two local surface plasmon resonance (LSPR) peaks: the short one at around 540 nm and the long one located in the range of 640-840 nm. And the long LSPR peak firstly shifted to red then to blue with the increased concentrations of silver ions in growth solution. From the SEM images, the shape of grown Au NPs was diverse, including sphere, rod, ellipsoid, dimer, trimer, and big aggregates. We thought the short peak came from the LSPR of nanospheres and the transvers LSPR of rod and ellipsoid like particles, while the long peak mainly came from the plasmonic coupling of dimer along the inter-particle axis. The obtained Au NP/paper strip with the long peak located around 650 nm had the highest SERS activity, which could be attributed to the plasmon resonance induced local field enhancement and nanogap effect. Also, the SERS performance results indicated the printed SERS strips exhibited satisfied uniformity and stability, demonstrating the potential of Au NP/paper strip in real-world applications.

  12. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    Science.gov (United States)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  13. Atmospheric Pressure Chemical Ionization Sources Used in The Detection of Explosives by Ion Mobility Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Waltman, Melanie J. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2010-05-01

    Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionized through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.

  14. Depleted ion exchange resins encapsulation with mobile unit: equipment and experience

    International Nuclear Information System (INIS)

    Cohen, S.; Faisantieu, D.

    1986-01-01

    Since 1981, STMI has been operating mobile units in EDF's PWR nuclear power plants, for spent resins encapsulation with polymer thermosetting matrices. Three mobile units are now in operation: COMET 1 and COMET 2, supplied by STMI, using polymerized styrene with proper additives as encapsulating material, and PRECED 1, on PEC-Engineering design, based on a DOW Chemical solidification process. On march 1986, more than 30 operations have been performed on EDF's PWR plants. More than 5000 liners containing encapsulated depleted ion exchange resins have been produced, while processing about 500 m 3 (i.e. 17.000 ft 3 ) of resins. During this period, those mobile units have shown their reliability and their efficiency. The produced processed waste, which have been accepted by ANDRA at the La Manche Storage Site (SSM) must meet the Fundamental Safety Rules (RFS) edicted by the Central Bureau for Nuclear Facilities Safety (SCSIN) of the French Department of Industry. The operations are carried out with excellent safety and radioprotection safety conditions, and following a very detailed Q.A. program [fr

  15. Practical application of in silico fragmentation based residue screening with ion mobility high-resolution mass spectrometry.

    Science.gov (United States)

    Kaufmann, Anton; Butcher, Patrick; Maden, Kathry; Walker, Stephan; Widmer, Mirjam

    2017-07-15

    A screening concept for residues in complex matrices based on liquid chromatography coupled to ion mobility high-resolution mass spectrometry LC/IMS-HRMS is presented. The comprehensive four-dimensional data (chromatographic retention time, drift time, mass-to-charge and ion abundance) obtained in data-independent acquisition (DIA) mode was used for data mining. An in silico fragmenter utilizing a molecular structure database was used for suspect screening, instead of targeted screening with reference substances. The utilized data-independent acquisition mode relies on the MS E concept; where two constantly alternating HRMS scans (low and high fragmentation energy) are acquired. Peak deconvolution and drift time alignment of ions from the low (precursor ion) and high (product ion) energy scan result in relatively clean product ion spectra. A bond dissociation in silico fragmenter (MassFragment) supplied with mol files of compounds of interest was used to explain the observed product ions of each extracted candidate component (chromatographic peak). Two complex matrices (fish and bovine liver extract) were fortified with 98 veterinary drugs. Out of 98 screened compounds 94 could be detected with the in silico based screening approach. The high correlation among drift time and m/z value of equally charged ions was utilized for an orthogonal filtration (ranking). Such an orthogonal ion mobility based filter removes multiply charged ions (e.g. peptides and proteins from the matrix) as well as noise and artefacts. Most significantly, this filtration dramatically reduces false positive findings but hardly increases false negative findings. The proposed screening approach may offer new possibilities for applications where reference compounds are hardly or not at all commercially available. Such areas may be the analysis of metabolites of drugs, pyrrolizidine alkaloids, marine toxins, derivatives of sildenafil or novel designer drugs (new psychoactive substances

  16. Analysis of antibiotics from liquid sample using electrospray ionization-ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Li; Jian, Jia; Xiaoguang, Gao; Xiuli, He [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Li Jianping, E-mail: jpli@mail.ie.ac.cn [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The reduced mobilities of 18 antibiotics are determined. Black-Right-Pointing-Pointer Establishing antibiotic mass-mobility correlation using (12,4) potential model. Black-Right-Pointing-Pointer Multi-component characteristics of antibiotics can be revealed using ESI-IMS. Black-Right-Pointing-Pointer Most mixtures of antibiotics can be analyzed using ESI-IMS. Black-Right-Pointing-Pointer The detection limit of amoxicillin is 70 pg. - Abstract: The recent findings of antibiotic residues in aquatic environment at trace level have gained much concern for the detrimental effect on ecological and human health due to bacterial resistance. Here, the feasibility of using electrospray ionization ion mobility spectrometry (ESI-IMS) for analysis antibiotics in liquid sample is demonstrated. Reduced mobilities and collision cross sections of 18 antibiotics are experimentally measured and compared with theoretical values according to mass-mobility correlation. Gentamicin is used as an example to investigate the capability of ESI-IMS for multi-component analysis of antibiotics. Mixtures of antibiotics at different concentrations are analyzed. The estimated detection limit for amoxicillin is 0.7 mg L{sup -1} (70 pg) and the linear range of response maintains over two orders. This method will be a potential technique for the analysis of antibiotics in aquatic environment.

  17. Evaluation of false positive responses by mass spectrometry and ion mobility spectrometry for the detection of trace explosives in complex samples

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L., E-mail: clcrawf@sandia.gov; Hill, H.H.

    2013-09-17

    Graphical abstract: -- Highlights: •First study to use (−)SESI-IM-TOFMS to analyze complex mixtures of personal care products. •The study demonstrated, by identifying mobility and mass interferents with explosive signatures, which, if used separately, neither IMS nor MS alone would prevent every false positive for explosives when detected in the presence of a complex sample matrix. •Ingredients in common household cleaning products were shown to either enhance or suppress the ionization of explosives in a SESI-IM-TOFMS analysis. •Mobility separation provided real-time separation of ion species that indicated overlapping isotope peak patterns -- Abstract: Secondary electrospray ionization-ion mobility-time of flight mass spectrometry (SESI-IM-TOFMS) was used to evaluate common household products and food ingredients for any mass or mobility responses that produced false positives for explosives. These products contained ingredients which shared the same mass and mobility drift time ranges as the analyte ions for common explosives. The results of this study showed that the vast array of compounds in these products can cause either mass or mobility false positive responses. This work also found that two ingredients caused either enhanced or reduced ionization of the target analytes. Another result showed that an IMS can provide real-time separation of ion species that impede accurate mass identifications due to overlapping isotope peak patterns. The final result of this study showed that, when mass and mobility values were used to identify an ion, no false responses were found for the target explosives. The wider implication of these results is that the possibility exists for even greater occurrences of false responses from complex mixtures found in common products. Neither IMS nor MS alone can provide 100% assurance from false responses. IMS, due to its low cost, ease of operation, rugged reliability, high sensitivity and tunable selectivity, will remain

  18. Arrival time distributions of product ions reveal isomeric ratio of deprotonated molecules in ion mobility-mass spectrometry of hyaluronan-derived oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Hermanová, M.; Iordache, A.-M.; Slováková, K.; Havlíček, Vladimír; Pelantová, Helena; Lemr, Karel

    2015-01-01

    Roč. 50, č. 6 (2015), s. 854-863 ISSN 1076-5174 R&D Projects: GA ČR(CZ) GAP206/12/1150 Institutional support: RVO:61388971 Keywords : tyramine-based hyaluronan derivatives * isomer discrimination * ion mobility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.541, year: 2015

  19. A compact high resolution ion mobility spectrometer for fast trace gas analysis.

    Science.gov (United States)

    Kirk, Ansgar T; Allers, Maria; Cochems, Philipp; Langejuergen, Jens; Zimmermann, Stefan

    2013-09-21

    Drift tube ion mobility spectrometers (IMS) are widely used for fast trace gas detection in air, but portable compact systems are typically very limited in their resolving power. Decreasing the initial ion packet width improves the resolution, but is generally associated with a reduced signal-to-noise-ratio (SNR) due to the lower number of ions injected into the drift region. In this paper, we present a refined theory of IMS operation which employs a combined approach for the analysis of the ion drift and the subsequent amplification to predict both the resolution and the SNR of the measured ion current peak. This theoretical analysis shows that the SNR is not a function of the initial ion packet width, meaning that compact drift tube IMS with both very high resolution and extremely low limits of detection can be designed. Based on these implications, an optimized combination of a compact drift tube with a length of just 10 cm and a transimpedance amplifier has been constructed with a resolution of 183 measured for the positive reactant ion peak (RIP(+)), which is sufficient to e.g. separate the RIP(+) from the protonated acetone monomer, even though their drift times only differ by a factor of 1.007. Furthermore, the limits of detection (LODs) for acetone are 180 pptv within 1 s of averaging time and 580 pptv within only 100 ms.

  20. The effect of ion irradiation on inert gas bubble mobility

    International Nuclear Information System (INIS)

    Alexander, D.E.; Birtcher, R.C.

    1991-09-01

    The effect of Al ion irradiation on the mobility of Xe gas bubbles in Al thin films was investigated. Transmission electron microscopy was used to determine bubble diffusivities in films irradiated and/or annealed at 673K, 723K and 773K. Irradiation increased bubble diffusivity by a factor of 2--9 over that due to thermal annealing alone. The Arrhenius behavior and dose rate dependence of bubble diffusivity are consistent with a radiation enhanced diffusion phenomenon affecting a volume diffusion mechanism of bubble transport. 9 refs., 3 figs., 2 tabs

  1. Following the Dynamics of pH in Endosomes of Live Cells with SERS Nanosensors

    DEFF Research Database (Denmark)

    Kneipp, J.; Kneipp, Harald; Wittig, B.

    2010-01-01

    The surface enhanced Raman scattering (SERS) spectrum of a reporter molecule attached to gold or silver nanostructures, which is pH-sensitive, can deliver information on the local pH in the environment of the nanostructure. Here, we demonstrate the use of a mobile SERS nanosensor made from gold...... nanaoaggregates and 4-mercaptobenzoic acid (pMBA) attached as a reporter for monitoring changes in local pH of the cellular compartments of living NIH/3T3 cells. We show that SERS nanosensors enable the dynamics of local pH in individual live cells to be followed at subendosomal resolution in a timeline...

  2. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    Science.gov (United States)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  3. Investigation of drift gas selectivity in high resolution ion mobility spectrometry with mass spectrometry detection.

    Science.gov (United States)

    Matz, Laura M; Hill, Herbert H; Beegle, Luther W; Kanik, Isik

    2002-04-01

    Recent studies in electrospray ionization (ESI)/ion mobility spectrometry (IMS) have focussed on employing different drift gases to alter separation efficiency for some molecules. This study investigates four structurally similar classes of molecules (cocaine and metabolites, amphetamines, benzodiazepines, and small peptides) to determine the effect of structure on relative mobility changes in four drift gases (helium, nitrogen, argon, carbon dioxide). Collision cross sections were plotted against drift gas polarizability and a linear relationship was found for the nineteen compounds evaluated in the study. Based on the reduced mobility database, all nineteen compounds could be separated in one of the four drift gases, however, the drift gas that provided optimal separation was specific for the two compounds.

  4. Electron mobility and saturation of ion yield in 2,2,4,4-tetramethylpentane

    International Nuclear Information System (INIS)

    Poffenberger, P.R.; Astbury, A.; Fincke-Keeler, M.; Keeler, R.K.; Li, Y.; Robertson, L.P.; Rosvick, M.; Schenk, P.; Oram, C.; Sobie, R.

    1993-01-01

    The electron drift mobility μ and zero field free ion yield G fi 0 have been measured for liquid 2,2,4,4-tetramethylpentane using a waveform analysis. The saturation of the ion yield for highly ionizing radiation has also been investigated and parameterized using the Birks' equation. The results obtained are μ=26.3±0.8 cm 2 /V s, G fi 0 =0.743±0.029 electrons/100 eV, and a Birks' factor ranging from kB=0.222±0.014 cm/MeV at 604 V/cm to kB=0.141±0.021 cm/MeV at 3625 V/cm. (orig.)

  5. Note: Buffer gas temperature inhomogeneities and design of drift-tube ion mobility spectrometers: Warnings for real-world applications by non-specialists

    Science.gov (United States)

    Fernandez-Maestre, R.

    2017-09-01

    Ion mobility spectrometry (IMS) separates gas phase ions moving under an electric field according to their size-to-charge ratio. IMS is the method of choice to detect illegal drugs and explosives in customs and airports making accurate determination of reduced ion mobilities (K0) important for national security. An ion mobility spectrometer with electrospray ionization coupled to a quadrupole mass spectrometer was used to study uncertainties in buffer gas temperatures during mobility experiments. Differences up to 16°C were found in the buffer gas temperatures in different regions of the drift tube and up to 42°C between the buffer gas and the drift tube temperatures. The drift tube temperature is used as an approximation to the buffer gas temperature for the calculation of K0 because the buffer gas temperature is hard to measure. This is leading to uncertainties in the determination of K0 values. Inaccurate determination of K0 values yields false positives that delay the cargo and passengers in customs and airports. Therefore, recommendations are issued for building mobility tubes to assure a homogeneous temperature of the buffer gas. Because the temperature and other instrumental parameters are difficult to measure in IMS, chemical standards should always be used when calculating K0. The difference of 42°C between the drift tube and buffer gas temperatures found in these experiments produces a 10.5% error in the calculation of K0. This large inaccuracy in K0 shows the importance of a correct temperature measurement in IMS.

  6. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    Science.gov (United States)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  7. Gas-Phase Enrichment of Multiply Charged Peptide Ions by Differential Ion Mobility Extend the Comprehensiveness of SUMO Proteome Analyses

    Science.gov (United States)

    Pfammatter, Sibylle; Bonneil, Eric; McManus, Francis P.; Thibault, Pierre

    2018-04-01

    The small ubiquitin-like modifier (SUMO) is a member of the family of ubiquitin-like modifiers (UBLs) and is involved in important cellular processes, including DNA damage response, meiosis and cellular trafficking. The large-scale identification of SUMO peptides in a site-specific manner is challenging not only because of the low abundance and dynamic nature of this modification, but also due to the branched structure of the corresponding peptides that further complicate their identification using conventional search engines. Here, we exploited the unusual structure of SUMO peptides to facilitate their separation by high-field asymmetric waveform ion mobility spectrometry (FAIMS) and increase the coverage of SUMO proteome analysis. Upon trypsin digestion, branched peptides contain a SUMO remnant side chain and predominantly form triply protonated ions that facilitate their gas-phase separation using FAIMS. We evaluated the mobility characteristics of synthetic SUMO peptides and further demonstrated the application of FAIMS to profile the changes in protein SUMOylation of HEK293 cells following heat shock, a condition known to affect this modification. FAIMS typically provided a 10-fold improvement of detection limit of SUMO peptides, and enabled a 36% increase in SUMO proteome coverage compared to the same LC-MS/MS analyses performed without FAIMS. [Figure not available: see fulltext.

  8. Influence of the coupling between an atmospheric pressure ion mobility spectrometer and the low pressure ion inlet of a mass spectrometer on the mobility measurement

    Directory of Open Access Journals (Sweden)

    Gunzer Frank

    2016-01-01

    Full Text Available Ion mobility spectrometers (IMS are versatile gas analyzers. Due to their small size and robustness, combined with a very high sensitivity, they are often used in gas sensing applications such as environmental monitoring. In order to improve the selectivity, they are typically combined with a mass spectrometer (MS. Since IMS works at atmospheric pressure, and MS works at vacuum, a special interface reducing the pressure over normally two stages has to be used. In this paper the influence of this coupling of different pressure areas on the IMS signal will be analyzed with help of finite elements method simulations.

  9. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger

    Science.gov (United States)

    Horeh, N. Bahaloo; Mousavi, S. M.; Shojaosadati, S. A.

    2016-07-01

    In this paper, a bio-hydrometallurgical route based on fungal activity of Aspergillus niger was evaluated for the detoxification and recovery of Cu, Li, Mn, Al, Co and Ni metals from spent lithium-ion phone mobile batteries under various conditions (one-step, two-step and spent medium bioleaching). The maximum recovery efficiency of 100% for Cu, 95% for Li, 70% for Mn, 65% for Al, 45% for Co, and 38% for Ni was obtained at a pulp density of 1% in spent medium bioleaching. The HPLC results indicated that citric acid in comparison with other detected organic acids (gluconic, oxalic and malic acid) had an important role in the effectiveness of bioleaching using A. niger. The results of FTIR, XRD and FE-SEM analysis of battery powder before and after bioleaching process confirmed that the fungal activities were quite effective. In addition, bioleaching achieved higher removal efficiency for heavy metals than the chemical leaching. This research demonstrated the great potential of bio-hydrometallurgical route to recover heavy metals from spent lithium-ion mobile phone batteries.

  10. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  11. A four dimensional separation method based on continuous heart-cutting gas chromatography with ion mobility and high resolution mass spectrometry.

    Science.gov (United States)

    Lipok, Christian; Hippler, Jörg; Schmitz, Oliver J

    2018-02-09

    A two-dimensional GC (2D-GC) method was developed and coupled to an ion mobility-high resolution mass spectrometer, which enables the separation of complex samples in four dimensions (2D-GC, ion mobilility spectrometry and mass spectrometry). This approach works as a continuous multiheart-cutting GC-system (GC+GC), using a long modulation time of 20s, which allows the complete transfer of most of the first dimension peaks to the second dimension column without fractionation, in comparison to comprehensive two-dimensional gas chromatography (GCxGC). Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Calendula officinales shows the separation power of this four dimensional separation method. The introduction of ion mobility spectrometry provides an additional separation dimension and allows to determine collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 800 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates

    Directory of Open Access Journals (Sweden)

    Jinshan Yu

    2013-01-01

    Full Text Available The silver nanoparticles are synthesized by electrodeposition in ultradilute Ag+ concentration electrolyte under high overpotential. The as prepared Ag nanoparticles, with the sizes ranging from 20 to 30 nm, are arrayed orderly and formed dendritic morphology. The formation of this special dendritic nanoparticle structure can be contributed to the relatively high growth rate and the preferential growth directions along 111 due to the high overpotential, as well as the relative small number of Ag+ ions arriving at the Ag crystal surface per unit time due to the ultradilute Ag+ concentration. Surface enhanced Raman scattering (SERS experiments reveal that the as-prepared dendritic Ag nanoparticles possess high SERS properties and can be used as a candidate substrate for practical SERS applications to detect the Rhodamine 6G molecules.

  13. Fast vaporization solid phase microextraction and ion mobility spectrometry: A new approach for determination of creatinine in biological fluids.

    Science.gov (United States)

    Jafari, Mostafa; Ebrahimzadeh, Homeira; Banitaba, Mohamma Hossein

    2015-11-01

    In this work a rapid and simple method for creatinine determination in urine and plasma samples based on aqueous derivatization of creatinine and complete vaporization of sample (as low as 10 µL), followed by ion mobility spectrometry analysis has been proposed. The effect of four important parameters (extraction temperature, total volume of solution, desorption temperature and extraction time) on ion mobility signal has been studied. Under the optimized conditions, the quantitative response of ion mobility spectrometry for creatinine was linear in the range of 0-500 mg L(-1) with a detection limit of 0.6 mg L(-1) in urine and 0-250 mg L(-1) with a detection limit of 2.6 mg L(-1) in plasma sample. The limit of quantitation of creatinine was 2.1 mg L(-1) and 8.7 mg L(-1) in urine and plasma samples, respectively. The relative standard deviation of the method was found to be 13%. The method was successfully applied to the analysis of creatinine in biological samples, showing recoveries from 92% to 104% in urine and 101-110% in plasma samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The simulation of pulsed heater for a sampling system for the ion mobility spectrometer

    International Nuclear Information System (INIS)

    Malkin, Evgeniy

    2011-01-01

    The development of the sampling device with pulsed heating of the intermediate carrier for ion mobility spectrometer is described in this article. Numerical simulation of a pulse heater structure of is presented. The design of the sampling device using a pulsed heating of the intermediate carrier is developed. Experimental results of approval of the sampling device are presented.

  15. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.; Garimella, Sandilya V. B.; Webb, Ian K.; Zheng, Xueyun; Prost, Spencer A.; Sandoval, Jeremy A.; Norheim, Randolph V.; Anderson, Gordon A.; Tolmachev, Aleksey V.; Baker, Erin S.; Smith, Richard D.

    2016-09-20

    We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RF parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.

  16. Comparison of the performance of three ion mobility spectrometers for measurement of biogenic amines

    International Nuclear Information System (INIS)

    Karpas, Zeev; Guamán, Ana V.; Pardo, Antonio; Marco, Santiago

    2013-01-01

    Graphical abstract: The response to different amounts of TMA (in μg) that were placed in a headspace vial as a function of time for the VG-Test (top) and the GDA (bottom). Note that the ratio [TMA/(TMA + TEP)] (top) and [TMA/(TMA + RIP)] (bottom) and the clearance time increase with the amount of TMA deposited in the vial. Highlights: ► First comparison of performance of IMS devices. ► Gas-phase ion chemistry affected by operational parameters. ► Limits of detection quite similar despite differences in devices. ► LODs determined in controlled continuous flow and in headspace vapor. ► Exponential dilution of headspace studies. - Abstract: The performance of three different types of ion mobility spectrometer (IMS) devices: GDA2 with a radioactive ion source (Airsense, Germany), UV-IMS with a photo-ionization source (G.A.S. Germany) and VG-Test with a corona discharge source (3QBD, Israel) was studied. The gas-phase ion chemistry in the IMS devices affected the species formed and their measured reduced mobility values. The sensitivity and limit of detection for trimethylamine (TMA), putrescine and cadaverine were compared by continuous monitoring of a stream of air with a given concentration of the analyte and by measurement of headspace vapors of TMA in a sealed vial. Preprocessing of the mobility spectra and the effectiveness of multivariate curve resolution techniques (MCR-LASSO) improved the accuracy of the measurements by correcting baseline effects and adjusting for variations in drift time as well as enhancing the signal to noise ratio and deconvolution of the complex data matrix to their pure components. The limit of detection for measurement of the biogenic amines by the three IMS devices was between 0.1 and 1.2 ppm (for TMA with the VG-Test and GDA, respectively) and between 0.2 and 0.7 ppm for putrescine and cadaverine with all three devices. Considering the uncertainty in the LOD determination there is almost no statistically significant

  17. Mobility of Rb{sup +} and Cs{sup +} ions in gases at high pressures; Mobilite des ions Rb{sup +} et Cs{sup +} dans les gaz a haute pression

    Energy Technology Data Exchange (ETDEWEB)

    Bacconnet, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    A theoretical study and mobility measurements have been made of Rb{sup +} and Cs{sup +} ions moving in gases at high pressures (10{sup -2} to 25 kg/cm{sup 2}). The theoretical study has been effected using the results of P. Langevin who considers the ions and molecules as elastic spheres and takes into account the electrical polarization forces. The practical work has been carried out using the Rb{sup +} and Cs{sup +} ions emitted by a thermal source; for the measurement of their velocity the method using an ionic beam cut by four grids was employed. Since the source does not work in atmospheres containing oxygen (even in the combined state) the tests only involved pure gases: nitrogen, argon, helium at pressures of from 10{sup -2} to 12 kg/cm{sup 2}. The overall results show that the Rb{sup +} and Cs{sup +} ionic mobilities are very similar and that for fairly-short times spent by the ions in the gas, the measurement results are in agreement with theory. An increase in these times favours a degradation of the ions, which always leads to a decrease in the mobility. This effect is most marked in helium. The gases argon and nitrogen behave identically towards Rb{sup +} and Cs{sup +} ions. (author) [French] Une etude theorique et des mesures de mobilite ont ete effectuees pour des ions Rb{sup +} et Cs{sup +} se deplacant dans des gaz a haute pression (10{sup -2} a 25 kg/cm{sup 2}). L'etude theorique a ete effectuee en utilisant les resultats de P. Langevin qui assimile les ions et les molecules a des spheres elastiques et tient compte des forces de polarisation electrique. L'etude pratique a ete realisee en utilisant des ions Rb{sup +} et Cs{sup +} emis par une source thermique et pour la mesure de leur vitesse, la methode de coupure du faisceau ionique au moyen de quatre grilles a ete adoptee. La source ne fonctionnant pas dans des atmospheres contenant de l'oxygene (meme a l'etat combine) les essais ont seulement porte sur des gaz purs: azote, argon, helium et pour

  18. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on- and offline analysis of atmospheric gas and aerosol species

    Science.gov (United States)

    Krechmer, Jordan E.; Groessl, Michael; Zhang, Xuan; Junninen, Heikki; Massoli, Paola; Lambe, Andrew T.; Kimmel, Joel R.; Cubison, Michael J.; Graf, Stephan; Lin, Ying-Hsuan; Budisulistiorini, Sri H.; Zhang, Haofei; Surratt, Jason D.; Knochenmuss, Richard; Jayne, John T.; Worsnop, Douglas R.; Jimenez, Jose-Luis; Canagaratna, Manjula R.

    2016-07-01

    Measurement techniques that provide molecular-level information are needed to elucidate the multiphase processes that produce secondary organic aerosol (SOA) species in the atmosphere. Here we demonstrate the application of ion mobility spectrometry-mass spectrometry (IMS-MS) to the simultaneous characterization of the elemental composition and molecular structures of organic species in the gas and particulate phases. Molecular ions of gas-phase organic species are measured online with IMS-MS after ionization with a custom-built nitrate chemical ionization (CI) source. This CI-IMS-MS technique is used to obtain time-resolved measurements (5 min) of highly oxidized organic molecules during the 2013 Southern Oxidant and Aerosol Study (SOAS) ambient field campaign in the forested SE US. The ambient IMS-MS signals are consistent with laboratory IMS-MS spectra obtained from single-component carboxylic acids and multicomponent mixtures of isoprene and monoterpene oxidation products. Mass-mobility correlations in the 2-D IMS-MS space provide a means of identifying ions with similar molecular structures within complex mass spectra and are used to separate and identify monoterpene oxidation products in the ambient data that are produced from different chemical pathways. Water-soluble organic carbon (WSOC) constituents of fine aerosol particles that are not resolvable with standard analytical separation methods, such as liquid chromatography (LC), are shown to be separable with IMS-MS coupled to an electrospray ionization (ESI) source. The capability to use ion mobility to differentiate between isomers is demonstrated for organosulfates derived from the reactive uptake of isomers of isoprene epoxydiols (IEPOX) onto wet acidic sulfate aerosol. Controlled fragmentation of precursor ions by collisionally induced dissociation (CID) in the transfer region between the IMS and the MS is used to validate MS peak assignments, elucidate structures of oligomers, and confirm the

  19. Ignition method of corona discharge with modulation of the field in ion source of ion mobility spectrometer

    International Nuclear Information System (INIS)

    Gromov, Evgeniy

    2011-01-01

    The new method for the ignition of the corona discharge has been developed, which improves the stability of the ion mobility spectrometer and the resolution of the instrument. The system of forming a corona discharge without additional electrodes, which are used in a number of known structures for the pre-ionization, has been developed. This simplifies the design of the proposed source and an electronic control circuit. IMS technology is widely used in different civil and military fields for vapor-phase detection of explosive, narcotics, chemical warfare agents, biology molecules and so on. There are set of methods whose are used for the ionization of molecules under analysis. They are the following: radioactive ionization, ultraviolet photoionization, laser ionization, electric field ionization, corona spray ionization, electro spray ionization, roentgen ionization, and surface ionization. All these methods has their own advantages and disadvantages. A comparing of ion mobility spectra of non-polar hydrocarbons for photoionization, corona discharge ionization and 63 Ni ionization, had carried in. In our work we have investigated four types of IMS spectrometers whose use different sources for molecules under analysis ionization. They use radioactive ionization, ultraviolet photoionization, laser ionization, and roentgen ionization. The traditional explosives had investigated in experiments. In electricity, a corona discharge is an electrical discharge brought on by the ionization of a fluid surrounding a conductor, which occurs when the potential gradient (the strength of the electric field) exceeds a certain value, but conditions are insufficient to cause complete electrical breakdown or arcing.

  20. Relationship of Ambient Atmosphere and Biological Aerosol Responses from a Fielded Pyrolysis-Gas Chromatography-Ion Mobility Spectrometry Bioanalytical Detector

    National Research Council Canada - National Science Library

    Snyder, A

    2003-01-01

    .... A pyrolysis-gas chromatography-ion mobility spectrometry stand-alone bioaerosol system was interfaced to an aerosol concentrator to collect ambient background aerosols and produce bioanalytical...

  1. High photocarrier mobility in ultrafast ion-irradiated In.sub.0.53./sub.Ga.sub.0.47./sub.As

    Czech Academy of Sciences Publication Activity Database

    Delagnes, J.C.; Mounaix, P.; Němec, Hynek; Fekete, Ladislav; Kadlec, Filip; Kužel, Petr; Martin, M.; Mangeney, J.

    2009-01-01

    Roč. 42, č. 19 (2009), 195103/1-195103/6 ISSN 0022-3727 R&D Projects: GA ČR(CZ) GP202/09/P099; GA AV ČR(CZ) IAA100100902 Institutional research plan: CEZ:AV0Z10100520 Keywords : InGaAs * photocarrier mobility * ultrafast photoconductivity terahertz * ion irradiation * terahertz * ion irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.083, year: 2009

  2. A compact high resolution electrospray ionization ion mobility spectrometer.

    Science.gov (United States)

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75 mm drift tube length and a drift voltage of 5 kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100 °C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ion Mobility Mass Spectrometry for Extracting Spectra of N-Glycans Directly from Incubation Mixtures Following Glycan Release: Application to Glycans from Engineered Glycoforms of Intact, Folded HIV gp120

    Science.gov (United States)

    Harvey, David J.; Sobott, Frank; Crispin, Max; Wrobel, Antoni; Bonomelli, Camille; Vasiljevic, Snezana; Scanlan, Christopher N.; Scarff, Charlotte A.; Thalassinos, Konstantinos; Scrivens, James H.

    2011-03-01

    The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/ m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.

  4. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    Science.gov (United States)

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  5. Air ions and aerosol science

    International Nuclear Information System (INIS)

    Tammet, H.

    1996-01-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4 endash 1.8 nm. copyright 1996 American Institute of Physics

  6. The potential of ion mobility spectrometry (IMS) for detection of 2,4,6-trichloroanisole (2,4,6-TCA) in wine.

    Science.gov (United States)

    Karpas, Zeev; Guamán, Ana V; Calvo, Daniel; Pardo, Antonio; Marco, Santiago

    2012-05-15

    The off-flavor of "tainted wine" is attributed mainly to the presence of 2,4,6-trichloroanisole (2,4,6-TCA) in the wine. In the present study the atmospheric pressure gas-phase ion chemistry, pertaining to ion mobility spectrometry, of 2,4,6-trichloroanisole was investigated. In positive ion mode the dominant species is a monomer ion with a lower intensity dimer species with reduced mobility values (K(0)) of 1.58 and 1.20 cm(2)V(-1) s(-1), respectively. In negative mode the ion with K(0) =1.64 cm(2)V(-1)s(-1) is ascribed to a trichlorophenoxide species while the ions with K(0) =1.48 and 1.13 cm(2)V(-1)s(-1) are attributed to chloride attachment adducts of a TCA monomer and dimer, respectively. The limit of detection of the system for 2,4,6-TCA dissolved in dichloromethane deposited on a filter paper was 2.1 μg and 1.7 ppm in the gas phase. In ethanol and in wine the limit of detection is higher implying that pre-concentration and pre-separation are required before IMS can be used to monitor the level of TCA in wine. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Characterization of a Distributed Plasma Ionization Source (DPIS) for Ion Mobility Spectrometry and Mass Spectrometry

    International Nuclear Information System (INIS)

    Waltman, Melanie J.; Dwivedi, Prabha; Hill, Herbert; Blanchard, William C.; Ewing, Robert G.

    2008-01-01

    A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry and ion mobility spectrometry. The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions depending on the polarity of the applied potential. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3-, NO3-, NO2-, O3- and O2- of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and environmental pollutants were selected to evaluate the new ionization source. The source was operated continuously for several months and although deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions. The results indicated that the DPIS may have a longer operating life than a conventional corona discharge.

  8. Diffusion pathway of mobile ions and crystal structure of ionic and mixed conductors. A brief review

    International Nuclear Information System (INIS)

    Yashima, Masatomo

    2009-01-01

    A brief review on the field of Solid State Ionics, including the diffusion pathway of mobile ions, crystal structure and materials, is presented. In the fluorite-structured ionic conductors such as ceria solid solution Ce 0.93 Y 0.07 O 1.96 , bismuth oxide solid solution δ-Bi 1.4 Yb 0.6 O 3 and copper iodide CuI, a similar curved diffusion pathway along the directions is observed. In the ionic and mixed conductors with the cubic ABO 3 perovskite-type structure such as lanthanum gallate and lanthanum cobaltite solid solutions, the mobile ions diffuse along a curved line keeping the interatomic distance between the B cation and O 2- anion to some degree. The structure and diffusion path of double-perovskite-type La 0.64 Ti 0.92 Nb 0.08 O 2.99 , K 2 NiF 4 -type (Pr 0.9 La 0.1 ) 2 (Ni 0.74 Cu 0.21 Ga 0.05 )O 4+δ , and apatite-type La 9.69 (Si 5.70 Mg 0.30 )O 26.24 are described. The diffusion paths of Li + ions in La 0.62 Li 0.16 TiO 3 and Li 0.6 FePO 4 are two- and one-dimensional, respectively. (author)

  9. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Baker, Erin M.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  10. High-Throughput Fabrication of Nanocone Substrates through Polymer Injection Moulding For SERS Analysis in Microfluidic Systems

    DEFF Research Database (Denmark)

    Viehrig, Marlitt; Matteucci, Marco; Thilsted, Anil H.

    analysis. Metal-capped silicon nanopillars, fabricated through a maskless ion etch, are state-of-the-art for on-chip SERS substrates. A dense cluster of high aspect ratio polymer nanocones was achieved by using high-throughput polymer injection moulding over a large area replicating a silicon nanopillar...... structure. Gold-capped polymer nanocones display similar SERS sensitivity as silicon nanopillars, while being easily integrable into a microfluidic chips....

  11. Mobility of Rb{sup +} and Cs{sup +} ions in gases at high pressures; Mobilite des ions Rb{sup +} et Cs{sup +} dans les gaz a haute pression

    Energy Technology Data Exchange (ETDEWEB)

    Bacconnet, E. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    A theoretical study and mobility measurements have been made of Rb{sup +} and Cs{sup +} ions moving in gases at high pressures (10{sup -2} to 25 kg/cm{sup 2}). The theoretical study has been effected using the results of P. Langevin who considers the ions and molecules as elastic spheres and takes into account the electrical polarization forces. The practical work has been carried out using the Rb{sup +} and Cs{sup +} ions emitted by a thermal source; for the measurement of their velocity the method using an ionic beam cut by four grids was employed. Since the source does not work in atmospheres containing oxygen (even in the combined state) the tests only involved pure gases: nitrogen, argon, helium at pressures of from 10{sup -2} to 12 kg/cm{sup 2}. The overall results show that the Rb{sup +} and Cs{sup +} ionic mobilities are very similar and that for fairly-short times spent by the ions in the gas, the measurement results are in agreement with theory. An increase in these times favours a degradation of the ions, which always leads to a decrease in the mobility. This effect is most marked in helium. The gases argon and nitrogen behave identically towards Rb{sup +} and Cs{sup +} ions. (author) [French] Une etude theorique et des mesures de mobilite ont ete effectuees pour des ions Rb{sup +} et Cs{sup +} se deplacant dans des gaz a haute pression (10{sup -2} a 25 kg/cm{sup 2}). L'etude theorique a ete effectuee en utilisant les resultats de P. Langevin qui assimile les ions et les molecules a des spheres elastiques et tient compte des forces de polarisation electrique. L'etude pratique a ete realisee en utilisant des ions Rb{sup +} et Cs{sup +} emis par une source thermique et pour la mesure de leur vitesse, la methode de coupure du faisceau ionique au moyen de quatre grilles a ete adoptee. La source ne fonctionnant pas dans des atmospheres contenant de l'oxygene (meme a l'etat combine) les essais ont seulement porte sur des gaz purs: azote

  12. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    Science.gov (United States)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.

    2017-01-01

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728

  13. The mobility of Li+ and K+ ions in helium and argon at 294 and 80 K and derived interaction potentials

    International Nuclear Information System (INIS)

    Cassidy, R.A.; Elford, M.T.

    1983-01-01

    The analysis of mobility data is a valuable technique for deriving ion-atom interaction potentials or testing at initio potentials particularly at relatively large internuclear separations. In order to obtain the most complete information on the long range part of the potential it is necessary to have mobility data at sufficiently low gas temperatures and small values of E/N that the mobility is determined only by the dipole polarization force. Although this condition can be reasonably well met at room temperature for gases of high polarizability, this is not the case for ions in helium and in particular for the most well studied case, that of Li + in helium. The prime purpose of the present measurements was to obtain low temperature data for Li + in helium in order to determine more accurately the attractive long range tail of the potential. The measurements were also extended to argon to demonstrate the effect of the polarizability on the derivation of potentials. The mobility measurements were made using a drift tube-mass spectrometer system employing the Bradbury-Nielsen time of flight technique. Measurements were performed at 294 K and 80 K. The 'three temperature' theory of Lin, Viehland and Mason was used to fit interaction potentials to the present data. Detailed comparisons are made here only for the case of Li + ions in helium. The new data for 80 K provide additional information on the potential at internuclear separations which cover the range to 5 A. (Authors)

  14. Test of Blanc's law for negative ion mobility in mixtures of SF6 with N2, O2 and air

    International Nuclear Information System (INIS)

    Hinojosa, G; Urquijo, J de

    2003-01-01

    We have measured the mobility of negative ion species drifting in mixtures of SF 6 with N 2 , O 2 and air. The pulsed Townsend experiment was used for this purpose. The conditions of the experiment, high pressures and low values of the reduced electric field, E/N, ensured that the majority species drifting in the gap was SF 6 - , to which the present mobilities are ascribed. The extrapolated, zero field mobilities for several mixture compositions were used to test them successfully with Blanc's law. Moreover, the measured zero field SF 6 - mobilities in air could also be explained in terms of the measured mobilities for this ionic species in N 2 and O 2

  15. Measuring the effects of Coulomb repulsion via signal decay in an atmospheric pressure laser ionization ion mobility spectrometer.

    Science.gov (United States)

    Ihlenborg, Marvin; Schuster, Ann-Kathrin; Grotemeyer, Juergen; Gunzer, Frank

    2018-01-01

    Using lasers in ion mobility spectrometry offers a lot of advantages compared to standard ionization sources. Especially, the ion yield can be drastically increased. It can, however, reach levels where the Coulomb repulsion leads to unwanted side effects. Here, we investigate how the Coulomb repulsion can be detected apart from the typical signal broadening by measuring effects created already in the reaction region and comparing them with corresponding finite element method simulations.

  16. Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel

    International Nuclear Information System (INIS)

    Briceno, M.; Fenske, J.; Dadfarnia, M.; Sofronis, P.; Robertson, I.M.

    2011-01-01

    The impact of heavy-ion produced defects on the mobility of dislocations, dislocation sources and newly generated dislocations in 304 stainless steel are discovered by performing irradiation and deformation experiments in real time in the transmission electron microscope. Dislocations mobile prior to the irradiation are effectively locked in position by the irradiation, but the irradiation has no discernible impact on the ability of a source to generate dislocations. The motion and mobility of a dislocation is altered by the irradiation. It becomes irregular and jerky and the mobility increases slowly with time as the radiation-produced defects are annihilated locally. Channels created by dislocations ejected from grain boundary dislocation sources were found to have a natural width, as the emission sites within the boundary were spaced close together. Finally, the distribution of dislocations, basically, an inverse dislocation pile-up, within a cleared channel suggests a new mechanism for generating high local levels of stress at grain boundaries. The impact of these observations on the mechanical properties of irradiated materials is discussed briefly.

  17. Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, M.; Fenske, J. [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Dadfarnia, M.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801 (United States); Robertson, I.M., E-mail: ian.robertson@tcd.ie [Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2011-02-01

    The impact of heavy-ion produced defects on the mobility of dislocations, dislocation sources and newly generated dislocations in 304 stainless steel are discovered by performing irradiation and deformation experiments in real time in the transmission electron microscope. Dislocations mobile prior to the irradiation are effectively locked in position by the irradiation, but the irradiation has no discernible impact on the ability of a source to generate dislocations. The motion and mobility of a dislocation is altered by the irradiation. It becomes irregular and jerky and the mobility increases slowly with time as the radiation-produced defects are annihilated locally. Channels created by dislocations ejected from grain boundary dislocation sources were found to have a natural width, as the emission sites within the boundary were spaced close together. Finally, the distribution of dislocations, basically, an inverse dislocation pile-up, within a cleared channel suggests a new mechanism for generating high local levels of stress at grain boundaries. The impact of these observations on the mechanical properties of irradiated materials is discussed briefly.

  18. Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4)

    Science.gov (United States)

    Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Ulihin, A. S.; Kovaleva, E. V.; Zemnukhova, L. A.

    2018-02-01

    Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4) (I) have been investigated by the methods of 1H, 19F, 31P NMR (including 1H, 19F, 31P MAS NMR), DSC, X-ray diffraction, and impedance spectroscopy. It was found that the fundamental changes in 1H, 19F, 31P NMR spectra (above 390 K) were associated with the formation of a crystalline disorder phase I with high ionic mobility in the proton and fluoride sublattices, as a result of a phase transition in the 400-420 K range. In the same temperature range, the transition of PO2(OH)2- anions from the "rigid lattice" to fast reorientations takes place. Above 430 K, there occurs a transition from the crystalline disordered phase to the amorphous one. The types of ion mobility in CsSbF3(H2PO4) and its amorphous phase have been established and temperature ranges of their realization have been determined (150-450 K). According to the NMR data, the diffusion in the proton sublattice of the disordered crystalline and amorphous phases is preserved even at room temperature. The ionic conductivity in CsSbF3(H2PO4) reaches the values of 2.6 × 10-4 S/cm in the temperature range 410-425 K and decreases down to 2.0 × 10-5 S/cm upon transition to the amorphous phase (435-445 K).

  19. Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper

    Science.gov (United States)

    Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping

    2018-05-01

    In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.

  20. Integrated Chemical and Microorganism Monitoring of Air Using Gas Chromatography/Ion Mobility Spectometry: Toward an Expanded-Use Volatile Organic Analyzer (VOA)

    Science.gov (United States)

    Eiceman, G. A.

    1999-01-01

    The work described in this research program originated with the choice by NASA of an ion mobility spectrometer for air quality monitoring on-board the international spacestation. Though the gas chromatograph-ion mobility spectrometer analyzer known as VOA met or exceeded expectations, limitations in the basic understanding of response and the utilization of foundational principles into usable technology was considered unacceptable. In this research program, a comprehensive model for the origins of mobility spectra was proposed, tested and verified. The principles considered responsible for the appearance of mobility spectra have now been elucidated through this project. This understanding has been applied in automated identification of mobility spectra using neural networks and routine procedures for this now exist. Finally, the limitation on linear range has been shown to be a technical limitation and not a fundamental limitation so that a hardware component was crafted to extend the linear range of a mobility spectrometer by 10X. This project has led to one Ph.D. dissertation and one MS thesis. In addition, over ten public presentations at professional meetings and six journal publications have resulted from this program of research. The findings are so plentiful that total analysis of the findings may require four to six years or more. The findings confirm that the decision to use VOA was sound and that the chemical and physical principles of mobility spectrometry are both understandable and predictable.

  1. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin M.

    2017-06-12

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC), supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.

  2. Mobility of ions trapped on vortex lines in pure 4He and 3He--4He solutions

    International Nuclear Information System (INIS)

    Ostermeier, R.M.; Glaberson, W.I.

    1976-01-01

    Measurements have been made of the mobility of positive and negative ions trapped on vortex lines in pure 4 He and dilute 3 He-- 4 He solutions over the temperature range 1.6 greater than T greater than 0.3 K. In pure 4 He below about 0.7 K, several new effects not seen at higher temperatures are observed and are not easily explained with existing theories. Most notable are an enhanced broadening of the ion pulse and a rapid increase in the mobility with decreasing temperature. Measurements of the electric field dependence of the drift velocity in pure 4 He at low temperatures show a limiting velocity for sufficiently large fields. This behavior can be explained using a simple resonance theory. The inverse mobility data for solutions show sharp increases at certain critical temperatures, which are interpreted as being associated with the condensation of 3 He atoms onto the vortex cores. The dependence of the critical temperature on the bulk 3 He concentration is found to be in good agreement with a simple condensation theory. An extension of arguments used in this theory to lower temperatures leads to the picture of a 3 He-rich core growing with decreasing temperature, consistent with our lower temperature experimental data

  3. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins.

    Science.gov (United States)

    Donohoe, Gregory C; Khakinejad, Mahdiar; Valentine, Stephen J

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  4. Systems Maturity Assessment of the Lithium Ion Battery for Extravehicular Mobility Unit Project

    Science.gov (United States)

    Russell, Samuel P.

    2011-01-01

    The Long Life (Lithium Ion) Battery (LLB/LIB) is designed to replace the current Extravehicular Mobility Unit (EMU) Silver/Zinc (Ag/Zn) Increased Capacity Battery (ICB), which is used to provide power to the Primary Life Support Subsystem (PLSS) during Extravehicular Activities (EVAs). The LLB (a battery based on commercial lithium ion cell technology) is designed to have the same electrical and mechanical interfaces as the current ICB. The EMU LIB Charger is designed to charge, discharge, and condition the LLB either in a charger-strapped configuration or in an EMU-mounted configuration. This paper will retroactively apply the principles of Systems Maturity Assessment to the LLB project through use of the Integration Readiness Level and Earned Readiness Management. The viability of this methodology will be considered for application to new and existing technology development projects.

  5. Noncontact measurement of electrostatic fields: Verification of modeled potentials within ion mobility spectrometer drift tube designs

    International Nuclear Information System (INIS)

    Scott, Jill R.; Tremblay, Paul L.

    2007-01-01

    The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity

  6. Practical aspects of trapped ion mass spectrometry, 5 applications of ion trapping devices

    CERN Document Server

    March, Raymond E

    2009-01-01

    Examines ion/neutral and ion/ion reactions, ion spectroscopy, and the structural characterization of proteins and peptides using quadropole ion trap mass spectrometry, Fourier transform - ion cyclotron resonance (FT-ICR) mass spectrometry, and traveling wave ion mobility mass spectrometry.

  7. Rapid analysis of pesticide residues in drinking water samples by dispersive solid-phase extraction based on multiwalled carbon nanotubes and pulse glow discharge ion source ion mobility spectrometry.

    Science.gov (United States)

    Zou, Nan; Gu, Kejia; Liu, Shaowen; Hou, Yanbing; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping

    2016-03-01

    An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 μg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As ... Solid electrolytes; bond valence analysis; ion transport in glasses. 1. .... clusters are considered to contribute only to a.c. conduc-.

  9. A Sensitive Gold Nanoplasmonic SERS Quantitative Analysis Method for Sulfate in Serum Using Fullerene as Catalyst

    Directory of Open Access Journals (Sweden)

    Chongning Li

    2018-04-01

    Full Text Available Fullerene exhibited strong catalysis of the redox reaction between HAuCl4 and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enhanced linearly due to formation of more AuNPs as substrate. Upon addition of Ba2+, Ba2+ ions adsorb on the fullerene surface to inhibit the catalysis of fullerene that caused the SERS peak decreasing. Analyte SO42− combined with Ba2+ to form stable BaSO4 precipitate to release free fullerene that the catalysis recovered, and the SERS intensity increased linearly. Thus, a new SERS quantitative analysis method was established for the detection of sulfate in serum samples, with a linear range of 0.03–3.4 μM.

  10. Selective Growth and SERS Property of Gold Nanoparticles on Amorphized Silicon Surface

    International Nuclear Information System (INIS)

    Matsuoka, T; Nishi, M; Sakakura, M; Shimotsuma, Y; Miura, K; Hirao, K

    2011-01-01

    We have fabricated gold patterns on a silicon substrate by a simple three-step method using a focused ion beam (FIB). The obtained gold patterns consisted of a large number of gold nanoparticles which grew selectively on the preprocessed silicon surface from an Au ion-containing solution dropped on the substrate. The solution was prepared by reacting HAuCl 4 aqueous solution with (3-mercaptopropyl)trimethoxysilane (MPTMS). It was found that the size and shape of the precipitating gold nanoparticles is controllable by changing the mixing ratio between HAuCl 4 aqueous solution and MPTMS. Additionally, we confirmed that the fabricated gold structures were surface enhanced Raman scattering (SERS)-active; the enhanced Raman peaks of rhodamin 6G (R6G) were detected on the fabricated gold structures, whereas no peak was detected on the alternative silicon surface. We also demonstrated the gold patterning using a femtosecond laser instead of an FIB. We believe that our method is a favorable candidate for fabricating SERS-active substrates, since the substrates can be prepared very simply and flexibly.

  11. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains.

    Science.gov (United States)

    Xu, Liguang; Yin, Honghong; Ma, Wei; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2015-05-15

    Mercuric ions (Hg(2+)) mediate the transformation of single-stranded DNA to form double helical DNA by T-Hg(2+)-T interaction between base pairs. With this strategy, DNA modified gold nanoparticles (Au NPs) were assembled into chains which were displayed remarkable surface-enhanced Raman scattering (SERS) signal. Under optimized conditions, the length of gold nanochains was directly proportional to the mercuric ions concentrations over 0.001-0.5 ng mL(-1) and the limit of detection (LOD) in drinking water was as low as 0.45 pg mL(-1). With ultrasensitivity and excellent selectivity, this feasible and simple method is potentially as a promising tool for monitoring of mercury ions in food safety and environmental applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Recent Applications of Ion Mobility Spectrometry in Diagnosis of Vaginal Infections

    Directory of Open Access Journals (Sweden)

    Zeev Karpas

    2012-01-01

    Full Text Available Vaginal infections (vaginosis globally affect more than 15% of the female population of reproductive age. However, diagnosis of vaginosis and differentiating between the three common types: bacterial vaginosis (BV, vulvovaginal candidiasis (VVC, and trichomoniasis are challenging. Elevated levels of the biogenic amines, trimethylamine (TMA, putrescine, and cadaverine have been found in vaginal discharge fluid of women with vaginosis. Ion mobility spectrometry (IMS is particularly suitable for measurement of amines even in complex biological matrices due to their high proton affinity and has been shown to be suitable for the diagnosis of vaginal infections. Recent developments that have increased the accuracy of the technique for diagnosis of BV and simplified sample introduction are described here.

  13. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili

    2015-04-07

    Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.

  14. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    Science.gov (United States)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  15. Application of ion mobility spectrometry for the determination of tramadol in biological samples

    OpenAIRE

    Ali Sheibani; Najmeh Haghpazir

    2014-01-01

    In this study, a simple and rapid ion mobility spectrometry (IMS) method has been described for the determination of tramadol. The operating instrumental parameters that could influence IMS were investigated and optimized (temperature; injection: 220 and IMS cell: 190°C, flow rate; carrier: 300 and drift: 600 mL/minute, voltage; corona: 2300 and drift: 7000 V, pulse width: 100 μs). Under optimum conditions, the calibration curves were linear within two orders of magnitude with R2 ≥ 0.998 for ...

  16. Detection of nitro-based and peroxide-based explosives by fast polarity-switchable ion mobility spectrometer with ion focusing in vicinity of Faraday detector.

    Science.gov (United States)

    Zhou, Qinghua; Peng, Liying; Jiang, Dandan; Wang, Xin; Wang, Haiyan; Li, Haiyang

    2015-05-29

    Ion mobility spectrometer (IMS) has been widely deployed for on-site detection of explosives. The common nitro-based explosives are usually detected by negative IMS while the emerging peroxide-based explosives are better detected by positive IMS. In this study, a fast polarity-switchable IMS was constructed to detect these two explosive species in a single measurement. As the large traditional Faraday detector would cause a trailing reactant ion peak (RIP), a Faraday detector with ion focusing in vicinity was developed by reducing the detector radius to 3.3 mm and increasing the voltage difference between aperture grid and its front guard ring to 591 V, which could remove trailing peaks from RIP without loss of signal intensity. This fast polarity-switchable IMS with ion focusing in vicinity of Faraday detector was employed to detect a mixture of 10 ng 2,4,6-trinitrotoluene (TNT) and 50 ng hexamethylene triperoxide diamine (HMTD) by polarity-switching, and the result suggested that [TNT-H](-) and [HMTD+H](+) could be detected in a single measurement. Furthermore, the removal of trailing peaks from RIP by the Faraday detector with ion focusing in vicinity also promised the accurate identification of KClO4, KNO3 and S in common inorganic explosives, whose product ion peaks were fairly adjacent to RIP.

  17. Improved detection of drugs of abuse using high-performance ion mobility spectrometry with electrospray ionization (ESI-HPIMS) for urine matrices.

    Science.gov (United States)

    Midey, Anthony J; Patel, Aesha; Moraff, Carol; Krueger, Clinton A; Wu, Ching

    2013-11-15

    High-performance ion mobility spectrometry (HPIMS) with electrospray ionization (ESI) has been used to separate drugs of abuse compounds as a function of drift time (ion mobility), which is based on their size, structural shape, and mass-to-charge. HPIMS has also been used to directly detect and identify a variety of the most commonly encountered illegal drugs, as well as a mixture of opiates in a urine matrix without extra sample pretreatment. HPIMS has shown resolving power greater than 65 comparable to that of high-performance liquid chromatography (HPLC) with only 1 mL of solvent and sample required using air as the IMS separation medium. The HPIMS method can achieve two-order of magnitude linear response, precise drift times, and high peak area precision with percent relative standard deviations (%RSD) less than 3% for sample quantitation. The reduced mobilities measured agree very well with other IMS measurements, allowing a simple "dilute-and-shoot" method to be used to detect a mixture of codeine and morphine in urine matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Using Ag-embedded TiO{sub 2} nanotubes array as recyclable SERS substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yunhan, E-mail: yhling@mail.tsinghua.edu.cn [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Zhuo, Yuqing; Huang, Liang [Lab of Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084 (China); Mao, Duolu [School of Physical and Electronic Information Engineering, Qinghai Nationalities University, Xining, Qinghai 810007 (China)

    2016-12-01

    Highlights: • Ag embedded nanoparticles inside nanotube have better SERS enhancement than surface cap. • Ag NPs reconstruction via self-migration with UV and humidity control. • Self-cleaning effects both on organic molecule photo-oxidation as well as Ag ions photo-reduction. - Abstract: A simple strategy for synthesizing Ag-loaded TiO{sub 2} nanotube film for use as multifunctional photocatalyst and recyclable surface-enhanced Raman scattering (SERS) substrate is introduced. Highly aligned TiO{sub 2} nanotube arrays (TNTA) prepared via electrochemical anodization were used as a 3D rough host for silver nanoparticles. Ag deposits were sputtered in a vacuum, and it was found that their morphologies were mainly influenced by the diameters of nanotubes and the UV irradiation induced aging process, especially the self-migration of silver along the tubular wall. SERS and the self-cleaning effect were observed using Rhodamine 6G (R6G) as the probe molecule. The results showed that narrow nanotube and silver nanoparticles embedment contributed significantly to both the phenomenal SERS and recyclability.

  19. Apps y gestión de marca ¿es indispensable ser mobile?

    Directory of Open Access Journals (Sweden)

    Zahaira González Romo

    2011-05-01

    Full Text Available La gestión estratégica de la marca a través de los medios de comunicación digital ha cobrado especial relevancia en los últimos años, y prácticamente todas las empresas que se aprecien de llevar una comunicación acorde a sus públicos han desarrollado herramientas y adaptado su comunicación de marca a los diferentes soportes, medios y entornos que han ido emergiendo, hasta el punto de que este proceso ha sufrido una metamorfosis que no todas las empresas consiguen asumir y entender. No sólo hablamos de un replanteamiento y adaptación a las nuevas tecnologías, sino una “nueva forma” de pensar las marcas y su repercusión e imagen en la mente de los consumidores. Tal es el caso de las aplicaciones para los smartphones, que se han desarrollado con una virulencia impresionante, aproximadamente 200.000 actualmente, y el número continúa creciendo. Este estudio pretende ser una primera aproximación a la aparición de las marcas en las aplicaciones para móviles, específicamente en las aplicaciones destinadas a iPhone.Gracias esta investigación sabemos que es indispensable tener en cuenta tres criterios básicos en el desarrollo de aplicaciones; el primero y más importante es que los anunciantes deben centrarse en el análisis de las necesidades de los usuarios, determinar sus objetivos, elaborar planes de integración y sobre todo preparar los medios de comunicación multicanal y de apoyo a la comercialización. Si la aplicación es correcta pero no funciona adecuadamente, deteriora la imagen de la marca de cara al cliente. En segundo lugar, la experiencia del usuario en las aplicaciones móviles debe ser complementaria y coherente con su experiencia a través de otros canales, es decir, debe mantenerse fiel a la marca y a la identidad de la empresa. Y el tercer criterio, es importante para la marca ir adaptándose a las nuevas tecnologías, pues una incorporación precaria y mal desarrollada puede ser más perjudicial que no el

  20. Selectivity improvement of positive photoionization ion mobility spectrometry for rapid detection of organophosphorus pesticides by switching dopant concentration.

    Science.gov (United States)

    Zhou, Qinghua; Li, Jia; Wang, Bin; Wang, Shuang; Li, Haiyang; Chen, Jinyuan

    2018-01-01

    Ion mobility spectrometry (IMS) opened a potential avenue for the rapid detection of organophosphorus pesticides (OPPs), though an improved selectivity of stand-alone IMS was still in high demand. In this study, a stand-alone positive photoionization ion mobility spectrometry (PP-IMS) apparatus was constructed for the rapid detection of OPPs with acetone as dopant. The photoionization of acetone molecules was induced by the ultraviolet irradiation to produce the reactant ions (Ac) 2 H + , which were employed to ionize the OPPs including fenthion, imidan, phosphamidon, dursban, dimethoate and isocarbophos via the proton transfer reaction. Due to the difference in proton affinity, the tested OPPs exhibited the different dopant-dependent manners. Based on this observation, the switching of dopant concentration was implemented to improve the selectivity of PP-IMS for OPPs detection. For instance, a mixture of fenthion, dursban and dimethoate was tested. By switching the concentration of doped acetone from 0.07 to 2.33 to 19.94mgL -1 , the ion peaks of fenthion and dursban were inhibited in succession, achieving the selective detection of dimethoate at last. In addition, another mixture of imidan and phosphamidon was initially detected by PP-IMS with a dose of 0.07mgL -1 acetone, indicating that their ion peaks were severely overlapped; when the concentration of doped acetone was switched to 19.94mgL -1 , the inhibition of imidan signals promised the accurate identification of phosphamidon in mixture. Finally, the PP-IMS in combination of switching dopant concentration was applied to detect the mixed fenthion, dursban and dimethoate in Chinese cabbage, demonstrating the applicability of proposed method to real samples. Copyright © 2017. Published by Elsevier B.V.

  1. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  2. Miniature GC: Minicell ion mobility spectrometer (IMS) for astrobiology planetary missions

    Science.gov (United States)

    Kojiro, Daniel R.; Holland, Paul M.; Stimac, Robert M.; Kaye, William J.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or longer mission life for stationary landers/laboratories. We describe here the development of a miniature GC - Minicell Ion Mobility Spectrometer (IMS) under development through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA's Small Business Innovative Research (SBIR) Program.

  3. Sodium Chloride Crystal-Induced SERS Platform for Controlled Highly Sensitive Detection of Illicit Drugs.

    Science.gov (United States)

    Yu, Borong; Li, Pan; Zhou, Binbin; Tang, Xianghu; Li, Shaofei; Yang, Liangbao

    2018-04-03

    A sodium chloride crystal-driven spontaneous 'hot spot' structure was demonstrated as a SERS-active platform, to get reproducible SERS signals, and eliminate the need for mapping large areas, in comparison with solution phase testing. During the process of solvent evaporation, the crystals produced induced silver aggregates to assemble around themselves. The micro-scale crystals can also act as a template to obtain an optical position, such that the assembled hot area is conveniently located during SERS measurements. More importantly, the chloride ions added in colloids can also replace the citrate and on the surface of the silver sol, and further decrease the background interference. High quality SERS spectra from heroin, methamphetamine (MAMP), and cocaine have been obtained on the crystal-driven hot spot structure with high sensitivity and credible reproducibility. This approach can not only bring the nanoparticles to form plasmonic hot spots in a controlled way, and thus provide high sensitivity, but also potentially be explored as an active substrate for label-free detection of other illicit drugs or additives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS

    Science.gov (United States)

    Liu, Xiao-Li; Liang, Shan; Nan, Fan; Yang, Zhong-Jian; Yu, Xue-Feng; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2013-05-01

    We report the synthesis of 43-nm diameter Au nanocube dimers by using Ag+ ions as competitive ligands to freeze l-cysteine-induced assembly process of the nanocubes to a desirable stage. Ascribed to the resonant interparticle coupling with an newly arising plasmon band at 710 nm and local field enhancement, the two-photon luminescence intensity of the Au nanocube dimers in solution was over 20 times stronger than that of the monomers in the wavelength range 555-620 nm. Furthermore, by coupling Raman tags onto the nanocube surface, a solution-based surface-enhanced Raman scattering (SERS) of the nanocube dimers had an enhancement factor of over 10 times compared to the isolated nanocubes. To sum up, with high stability in solution and attractive optical properties, the Au nanocube dimers have potential applications in in vivo bio-imaging and solution-based SERS.We report the synthesis of 43-nm diameter Au nanocube dimers by using Ag+ ions as competitive ligands to freeze l-cysteine-induced assembly process of the nanocubes to a desirable stage. Ascribed to the resonant interparticle coupling with an newly arising plasmon band at 710 nm and local field enhancement, the two-photon luminescence intensity of the Au nanocube dimers in solution was over 20 times stronger than that of the monomers in the wavelength range 555-620 nm. Furthermore, by coupling Raman tags onto the nanocube surface, a solution-based surface-enhanced Raman scattering (SERS) of the nanocube dimers had an enhancement factor of over 10 times compared to the isolated nanocubes. To sum up, with high stability in solution and attractive optical properties, the Au nanocube dimers have potential applications in in vivo bio-imaging and solution-based SERS. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01170d

  5. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    Science.gov (United States)

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    Science.gov (United States)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  7. Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers.

    Science.gov (United States)

    Kaufmann, Anton; Walker, Stephan

    2017-11-30

    The linear intrascan and interscan dynamic ranges of mass spectrometers are important in metabolome and residue analysis. A large linear dynamic range is mandatory if both low- and high-abundance ions have to be detected and quantitated in heavy matrix samples. These performance criteria, as provided by modern high-resolution mass spectrometry (HRMS), were systematically investigated. The comparison included two generations of Orbitraps, and an ion mobility quadrupole time-of-flight (QTOF) system In addition, different scan modes, as provided by the utilized instruments, were investigated. Calibration curves of different compounds covering a concentration range of five orders of magnitude were measured to evaluate the linear interscan dynamic range. The linear intrascan dynamic range and the resulting mass accuracy were evaluated by repeating these measurements in the presence of a very intense background. Modern HRMS instruments can show linear dynamic ranges of five orders of magnitude. Often, however, the linear dynamic range is limited by the detection capability (sensitivity and selectivity) and by the electrospray ionization. Orbitraps, as opposed to TOF instruments, show a reduced intrascan dynamic range. This is due to the limited C-trap and Orbitrap capacity. The tested TOF instrument shows poorer mass accuracies than the Orbitraps. In contrast, hyphenation with an ion-mobility device seems not to affect the linear dynamic range. The linear dynamic range of modern HRMS instrumentation has been significantly improved. This also refers to the virtual absence of systematic mass shifts at high ion abundances. The intrascan dynamic range of the current Orbitrap technology may still be a limitation when analyzing complex matrix extracts. On the other hand, the linear dynamic range is not only limited by the detector technology, but can also be shortened by peripheral devices, where the ionization and transfer of ions take place. Copyright © 2017 John Wiley

  8. Hierarchical Nanogaps within Bioscaffold Arrays as a High-Performance SERS Substrate for Animal Virus Biosensing

    NARCIS (Netherlands)

    Shao, Feng; Lu, Zhicheng; Liu, Chen; Han, Heyou; Chen, Kun; Li, Wentao; He, Qigai; Peng, Hui; Chen, Juanni

    2014-01-01

    A three-dimensional (3D) biomimetic SERS substrate with hierarchical nanogaps was formed on the bioscaffold arrays of cicada wings by one-step and reagents-free ion-sputtering techniques. This approach requires a minimal fabrication effort and cost and offers Ag nanoislands and Ag nanoflowers with

  9. Mobile Agent based Market Basket Analysis on Cloud

    OpenAIRE

    Waghmare, Vijayata; Mukhopadhyay, Debajyoti

    2014-01-01

    This paper describes the design and development of a location-based mobile shopping application for bakery product shops. Whole application is deployed on cloud. The three-tier architecture consists of, front-end, middle-ware and back-end. The front-end level is a location-based mobile shopping application for android mobile devices, for purchasing bakery products of nearby places. Front-end level also displays association among the purchased products. The middle-ware level provides a web ser...

  10. Determining Double Bond Position in Lipids Using Online Ozonolysis Coupled to Liquid Chromatography and Ion Mobility-Mass Spectrometry.

    Science.gov (United States)

    Harris, Rachel A; May, Jody C; Stinson, Craig A; Xia, Yu; McLean, John A

    2018-02-06

    The increasing focus on lipid metabolism has revealed a need for analytical techniques capable of structurally characterizing lipids with a high degree of specificity. Lipids can exist as any one of a large number of double bond positional isomers, which are indistinguishable by single-stage mass spectrometry alone. Ozonolysis reactions coupled to mass spectrometry have previously been demonstrated as a means for localizing double bonds in unsaturated lipids. Here we describe an online, solution-phase reactor using ozone produced via a low-pressure mercury lamp, which generates aldehyde products diagnostic of cleavage at a particular double bond position. This flow-cell device is utilized in conjunction with structurally selective ion mobility-mass spectrometry. The lamp-mediated reaction was found to be effective for multiple lipid species in both positive and negative ionization modes, and the conversion efficiency from precursor to product ions was tunable across a wide range (20-95%) by varying the flow rate through the ozonolysis device. Ion mobility separation of the ozonolysis products generated additional structural information and revealed the presence of saturated species in a complex mixture. The method presented here is simple, robust, and readily coupled to existing instrument platforms with minimal modifications necessary. For these reasons, application to standard lipidomic workflows is possible and aids in more comprehensive structural characterization of a myriad of lipid species.

  11. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration

    Directory of Open Access Journals (Sweden)

    Hussam E Salhi

    2016-12-01

    Full Text Available Troponin I (TnI is a major regulator of cardiac muscle contraction and relaxation. During physiological and pathological stress, TnI is differentially phosphorylated at multiple residues through different signaling pathways to match cardiac function to demand. The combination of these TnI phosphorylations can exhibit an expected or unexpected functional integration, whereby the function of two phosphorylations are different than that predicted from the combined function of each individual phosphorylation alone. We have shown that TnI Ser-23/24 and Ser-150 phosphorylation exhibit functional integration and are simultaneously increased in response to cardiac stress. In the current study, we investigated the functional integration of TnI Ser-23/24 and Ser-150 to alter cardiac contraction. We hypothesized that Ser-23/24 and Ser-150 phosphorylation each utilize distinct molecular mechanisms to alter the TnI binding affinity within the thin filament. Mathematical modeling predicts that Ser-23/24 and Ser-150 phosphorylation affect different TnI affinities within the thin filament to distinctly alter the Ca2+-binding properties of troponin. Protein binding experiments validate this assertion by demonstrating pseudo-phosphorylated Ser-150 decreases the affinity of isolated TnI for actin, whereas Ser-23/24 pseudo-phosphorylation is not different from unphosphorylated. Thus, our data supports that TnI Ser-23/24 affects TnI-TnC binding, while Ser-150 phosphorylation alters TnI-actin binding. By measuring force development in troponin-exchanged skinned myocytes, we demonstrate that the Ca2+ sensitivity of force is directly related to the amount of phosphate present on TnI. Furthermore, we demonstrate that Ser-150 pseudo-phosphorylation blunts Ser-23/24-mediated decreased Ca2+-sensitive force development whether on the same or different TnI molecule. Therefore, TnI phosphorylations can integrate across troponins along the myofilament. These data demonstrate

  12. Ion mobility spectrometry focusing on speciation analysis of metals/metalloids bound to carbonic anhydrase.

    Science.gov (United States)

    Pessôa, Gustavo de Souza; Pilau, Eduardo Jorge; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi

    2013-09-01

    In the present work, traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) was applied to speciation analysis of metalloproteins. The influence of pH on complexation conditions between some metals and bovine carbonic anhydrase was evaluated from pH 6 to 9, as well as the time involved in their complexation (0-24 h). Employing TWIMS-MS, two conformational states of bovine carbonic anhydrase were observed with charge states of +12 and +11; these configurations being evaluated in terms of the folded state of the apo form and this protein (at charge state +11) being linked to barium, lead, copper, and zinc in their divalent forms. Metalloprotein speciation analysis was carried out for copper (Cu(+) and Cu(2+)), lead (Pb(2+) and Pb(4+)), and selenium (Se(4+) and Se(6+)) species complexed with bovine carbonic anhydrase. Mobilities of all complexed species were compared, also considering the apo form of this protein.

  13. PIXiE: an algorithm for automated ion mobility arrival time extraction and collision cross section calculation using global data association

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jian; Casey, Cameron P.; Zheng, Xueyun; Ibrahim, Yehia M.; Wilkins, Christopher S.; Renslow, Ryan S.; Thomas, Dennis G.; Payne, Samuel H.; Monroe, Matthew E.; Smith, Richard D.; Teeguarden, Justin G.; Baker, Erin S.; Metz, Thomas O.

    2017-05-15

    Motivation: Drift tube ion mobility spectrometry (DTIMS) is increasingly implemented in high throughput omics workflows, and new informatics approaches are necessary for processing the associated data. To automatically extract arrival times for molecules measured by DTIMS coupled with mass spectrometry and compute their associated collisional cross sections (CCS) we created the PNNL Ion Mobility Cross Section Extractor (PIXiE). The primary application presented for this algorithm is the extraction of information necessary to create a reference library containing accu-rate masses, DTIMS arrival times and CCSs for use in high throughput omics analyses. Results: We demonstrate the utility of this approach by automatically extracting arrival times and calculating the associated CCSs for a set of endogenous metabolites and xenobiotics. The PIXiE-generated CCS values were identical to those calculated by hand and within error of those calcu-lated using commercially available instrument vendor software.

  14. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Williams, J.S.; Svensson, B.G.; Conway, M. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  15. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M; Williams, J S; Svensson, B G; Conway, M [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1994-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  16. Improved size-tunable synthesis and SERS properties of Au nanostars

    Science.gov (United States)

    Khlebtsov, Boris; Panfilova, Elizaveta; Khanadeev, Vitaly; Khlebtsov, Nikolai

    2014-10-01

    Multibranched Au nanoparticles with sharp tips (commonly called nanostars, NSTs) have attracted significant attention as bright scattering labels, photothermal transducers, nanocarriers, and surface-enhanced Raman scattering (SERS) tags. However, for surfactant-free synthesized NSTs, the existing data on the size tuning and the relation between the size of NSTs and their SERS efficiency still remain limited. Here, we address these questions by synthesizing and comparing SERS for surfactant-free NSTs of different sizes and plasmon resonance (PR) wavelengths. The NSTs were fabricated by seeded growth through a two-step surfactant-free approach in which quasispherical seeds were overgrown via reduction of added Au by ascorbic acid in the presence of Ag ions. By varying the seed size from 3 to 35 nm, we tuned the final NST size from 45 to 150 nm while retaining the star-like morphology with sharp tips and ensuring PR tunability from 630 to 900 nm. The NST size and PR limits can be expanded from 40 to 200 nm and from 600 to 930 nm, respectively, by simultaneous variation in the seed size and concentration. The SERS efficiency of the fabricated NSTs was examined by Raman measurements of 1,4-aminothiophenol (ATP) adsorbed on the surface of colloidal NST particles. Although the homogenous analytical enhancement factor (AEF) did not depend essentially on the NST size and varied from 4 × 106 to 107, the enhancing properties of single-particle NST tags were strongly size-dependent. Specifically, the AEF for 150-nm NST35-ATP complexes was 30 and 100 times greater than that for 70-nm NST15-ATP and 45-nm NST3-ATP complexes, respectively. These properties make the NST-ATP complex a prospective platform for SERS imaging.

  17. SERS and fluorescence-based ultrasensitive detection of mercury in water.

    Science.gov (United States)

    Makam, Pandeeswar; Shilpa, Rohilla; Kandjani, Ahmad Esmaielzadeh; Periasamy, Selvakannan R; Sabri, Ylias Mohammad; Madhu, Chilakapati; Bhargava, Suresh Kumar; Govindaraju, Thimmaiah

    2018-02-15

    The development of reliable and ultrasensitive detection marker for mercury ions (Hg 2+ ) in drinking water is of great interest for toxicology assessment, environmental protection and human health. Although many Hg 2+ detection methods have been developed, only few offer sensitivities below 1pM. Herein, we describe a simple histidine (H) conjugated perylene diimide (PDI) bolaamphiphile (HPH) as a dual-responsive optical marker to develop highly selective and sensitive probe as visible (sol-to-gel transformation), fluorescence and SERS-based Hg 2+ sensor platform in the water. Remarkably, HPH as a SERS marker supported on Au deposited monodispersed nanospheres monolayers (Au-MNM) of polystyrene offers an unprecedented selectivity and the best ever reported detection limit (LOD) of 60 attomolar (aM, 0.01 parts-per-quadrillion (ppq)) for Hg 2+ in water. This is ten orders of magnitude lower than the United States Environmental Protection Agency (USEPA) tolerance limit of Hg 2+ in drinking water (10nM, 2 ppb). This simple and effective design principle of host-guest interactions driven fluorescence and SERS-based detection may inspire the future molecular engineering strategies for the development of ultrasensitive toxic analyte sensor platforms. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Exchange scattering of quasiparticles by positive ion in He3

    International Nuclear Information System (INIS)

    Ehdel'shtejn, V.M.

    1983-01-01

    The difference in the mobility of negative and positive ions in normal 3 He at low temperatures is discussed. The mobility mechanisms for the ions of different sign are qualitatively different since the positive ion can exchange quasiparticles with the helium atoms from the ice-like shell surrounding the ion. A study of the mobility in a magnetic field may yield quantitative information on the magnitude of the exchange interaction. A calculation for the exchange scattering model is carried out and it is shown that a logarithmic contribution to the positive ion mobility μsub(+)(T) appears which is analogous to the Kondo effect

  19. Ion mobility based on column leaching of South African gold tailings dam with chemometric evaluation.

    Science.gov (United States)

    Cukrowska, Ewa M; Govender, Koovila; Viljoen, Morris

    2004-07-01

    New column leaching experiments were designed and used as an alternative rapid screening approach to element mobility assessment. In these experiments, field-moist material was treated with an extracting solution to assess the effects of acidification on element mobility in mine tailings. The main advantage of this version of column leaching experiments with partitioned segments is that they give quick information on current element mobility in conditions closely simulating field conditions to compare with common unrepresentative air-dried, sieved samples used for column leaching experiments. Layers from the tailings dump material were sampled and packed into columns. The design of columns allows extracting leachates from each layer. The extracting solutions used were natural (pH 6.8) and acidified (pH 4.2) rainwater. Metals and anions were determined in the leachates. The concentrations of metals (Ca, Mg, Fe, Mn, Al, Cr, Ni, Co, Zn, and Cu) in sample leachates were determined using ICP OES. The most important anions (NO3-, Cl-, and SO4(2)-) were determined using the closed system izotacophoresis ITP analyser. The chemical analytical data from tailings leaching and physico-chemical data from field measurements (including pH, conductivity, redox potential, temperature) were used for chemometric evaluation of element mobility. Principal factor analysis (PFA) was used to evaluate ions mobility from different layers of tailings dump arising from varied pH and redox conditions. It was found that the results from the partitioned column leaching illustrate much better complex processes of metals mobility from tailings dump than the total column. The chemometric data analysis (PFA) proofed the differences in the various layers leachability that are arising from physico-chemical processes due to chemical composition of tailings dump deposit. Copyright 2004 Elsevier Ltd.

  20. Optimization of a Differential Ion Mobility Spectrometry-Tandem Mass Spectrometry Method for High-Throughput Analysis of Nicotine and Related Compounds: Application to Electronic Cigarette Refill Liquids.

    Science.gov (United States)

    Regueiro, Jorge; Giri, Anupam; Wenzl, Thomas

    2016-06-21

    Fast market penetration of electronic cigarettes is leading to an exponentially growing number of electronic refill liquids with different nicotine contents and an endless list of flavors. Therefore, rapid and simple methods allowing a fast screening of these products are necessary to detect harmful substances which can negatively impact the health of consumers. In this regard, the present work explores the capabilities of differential ion mobility spectrometry coupled to tandem mass spectrometry for high-throughput analysis of nicotine and 11 related compounds in commercial refill liquids for electronic cigarettes. The influence of main factors affecting the ion mobility separation, such as modifier types and concentration, separation voltage, and temperature, was systematically investigated. Despite small molecular weight differences among the studied compounds, a good separation was achieved in the ion mobility cell under the optimized conditions, which involved the use of ethanol as a polar gas-phase chemical modifier. Indeed, differential ion mobility was able to resolve (resolution >4) nicotine from its structural isomer anabasine without the use of any chromatographic separation. The quantitative performance of the proposed method was then evaluated, showing satisfactory precision (RSD ≤ 16%) and recoveries ranging from 85 to 100% for nicotine, and from 84 to 126% for the rest of the target analytes. Several commercial electronic cigarette refill liquids were analyzed to demonstrate the applicability of the method. In some cases, significant differences were found between labeled and measured levels of nicotine. Anatabine, cotinine, myosmine, and nornicotine were also found in some of the analyzed samples.

  1. Toward practical SERS sensing

    Science.gov (United States)

    Zhao, Yiping

    2012-06-01

    Since its discovery more than 30 years ago, surface-enhanced Raman scattering (SERS) has been recognized as a highly sensitive detection technique for chemical and biological sensing and medical diagnostics. However, the practical application of this remarkably sensitive technique has not been widely accepted as a viable diagnostic method due to the difficulty in preparing robust and reproducible substrates that provide maximum SERS enhancement. Here, we demonstrate that the aligned silver nanorod (AgNR) array substrates engineered by the oblique angle deposition method are capable of providing extremely high SERS enhancement factors (>108). The substrates are large area, uniform, reproducible, and compatible with general microfabrication process. The enhancement factor depends strongly on the length and shape of the Ag nanorods and the underlying substrate coating. By optimizing AgNR SERS substrates, we show that SERS is able to detect trace amount of toxins, virus, bacteria, or other chemical and biological molecules, and distinguish different viruses/bacteria and virus/bacteria strains. The substrate can be tailored into a multi-well chip for high throughput screening, integrated into fiber tip for portable sensing, incorporated into fluid/microfluidic devices for in situ real-time monitoring, fabricated onto a flexible substrate for tracking and identification, or used as on-chip separation device for ultra-thin layer chromatography and diagnostics. By combining the unique SERS substrates with a handheld Raman system, it can become a practical and portable sensor system for field applications. All these developments have demonstrated that AgNR SERS substrates could play an important role in the future for practical clinical, industrial, defense, and security sensing applications.

  2. An intelligent detection method for high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Li, Yue; Yu, Jianwen; Ruan, Zhiming; Chen, Chilai; Chen, Ran; Wang, Han; Liu, Youjiang; Wang, Xiaozhi; Li, Shan

    2018-04-01

    In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.

  3. Mobile trap algorithm for zinc detection using protein sensors

    International Nuclear Information System (INIS)

    Inamdar, Munish V.; Lastoskie, Christian M.; Fierke, Carol A.; Sastry, Ann Marie

    2007-01-01

    We present a mobile trap algorithm to sense zinc ions using protein-based sensors such as carbonic anhydrase (CA). Zinc is an essential biometal required for mammalian cellular functions although its intracellular concentration is reported to be very low. Protein-based sensors like CA molecules are employed to sense rare species like zinc ions. In this study, the zinc ions are mobile targets, which are sought by the mobile traps in the form of sensors. Particle motions are modeled using random walk along with the first passage technique for efficient simulations. The association reaction between sensors and ions is incorporated using a probability (p 1 ) upon an ion-sensor collision. The dissociation reaction of an ion-bound CA molecule is modeled using a second, independent probability (p 2 ). The results of the algorithm are verified against the traditional simulation techniques (e.g., Gillespie's algorithm). This study demonstrates that individual sensor molecules can be characterized using the probability pair (p 1 ,p 2 ), which, in turn, is linked to the system level chemical kinetic constants, k on and k off . Further investigations of CA-Zn reaction using the mobile trap algorithm show that when the diffusivity of zinc ions approaches that of sensor molecules, the reaction data obtained using the static trap assumption differ from the reaction data obtained using the mobile trap formulation. This study also reveals similar behavior when the sensor molecule has higher dissociation constant. In both the cases, the reaction data obtained using the static trap formulation reach equilibrium at a higher number of complex molecules (ion-bound sensor molecules) compared to the reaction data from the mobile trap formulation. With practical limitations on the number sensors that can be inserted/expressed in a cell and stochastic nature of the intracellular ionic concentrations, fluorescence from the number of complex sensor molecules at equilibrium will be the measure

  4. External Second Gate, Fourier Transform Ion Mobility Spectrometry: Parametric Optimization for Detection of Weapons of Mass Destruction

    Directory of Open Access Journals (Sweden)

    Edward E. Tarver

    2004-03-01

    Full Text Available Abstract: Ion mobility spectrometry (IMS is recognized as one of the most sensitive and robust techniques for the detection of narcotics, explosives and chemical warfare agents. IMS is widely used in forensic, military and security applications. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention (CWC treaty verification as well as humanitarian de-mining efforts have mandated that equal importance be placed on the time required to obtain results as well as the quality of the analytical data. [1] In this regard IMS is virtually unrivaled when both speed of response and sensitivity have to be considered. [2] The problem with conventional (signal averaging IMS systems is the fixed duty cycle of the entrance gate that restricts to less than 1%, the number of available ions contributing to the measured signal. Furthermore, the signal averaging process incorporates scan-to-scan variations that degrade the spectral resolution contributing to misidentifications and false positives. With external second gate, Fourier Transform ion mobility spectrometry (FT-IMS the entrance gate frequency is variable and can be altered in conjunction with other data acquisition parameters (scan time and sampling rate to increase the spectral resolution to reduce false alarms and improve the sensitivity for early warning and contamination avoidance. In addition, with FT-IMS the entrance gate operates with a 50% duty cycle and so affords a seven-fold increase in sensitivity. Recent data on high explosives are presented to demonstrate the parametric optimization in sensitivity and resolution of our system.

  5. Criatividade em ação: ser criativo é ser criança

    Directory of Open Access Journals (Sweden)

    Antonio Mendes Silva Filho

    2012-11-01

    Full Text Available Todo ser humano é criativo e isso decorre da capacidade de imaginação. Essa capacidade é acentuada quando você tem a possibilidade de explorar e a curiosidade aguçada. Não exemplo melhor do que uma criança. Ser criativo é ser criança. Esta capacidade alcança o ápice quando se busca criar como criança fazendo uso de sagacidade, persistência, desorganização e com a possibilidade de errar. Isso é explorar e experimentar, deixando o cérebro livre e sem pressão, agindo despreocupadamente em determinado período de tempo. Nesse sentido, este artigo explora a importancia dar oportunidade do ser humano explorar sua capacidade de criar via imaginação

  6. Field-assisted synthesis of SERS-active silver nanoparticles using conducting polymers

    Science.gov (United States)

    Xu, Ping; Jeon, Sea-Ho; Mack, Nathan H.; Doorn, Stephen K.; Williams, Darrick J.; Han, Xijiang; Wang, Hsing-Lin

    2010-08-01

    A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range of unique structures with enhanced optical properties that were previously inaccessible by other synthetic routes.A gradient of novel silver nanostructures with widely varying sizes and morphologies is fabricated on a single conducting polyaniline-graphite (P-G) membrane with the assistance of an external electric field. It is believed that the formation of such a silver gradient is a synergetic consequence of the generation of a silver ion concentration gradient along with an electrokinetic flow of silver ions in the field-assisted model, which greatly influences the nucleation and growth mechanism of Ag particles on the P-G membrane. The produced silver dendrites, flowers and microspheres, with sharp edges, intersections and bifurcations, all present strong surface enhanced Raman spectroscopy (SERS) responses toward an organic target molecule, mercaptobenzoic acid (MBA). This facile field-assisted synthesis of Ag nanoparticles via chemical reduction presents an alternative approach to nanomaterial fabrication, which can yield a wide range

  7. Analysis of ecstasy in oral fluid by ion mobility spectrometry and infrared spectroscopy after liquid-liquid extraction.

    Science.gov (United States)

    Armenta, Sergio; Garrigues, Salvador; de la Guardia, Miguel; Brassier, Judit; Alcalà, Manel; Blanco, Marcelo

    2015-03-06

    We developed and evaluated two different strategies for determining abuse drugs based on (i) the analysis of saliva by ion mobility spectrometry (IMS) after thermal desorption and (ii) the joint use of IMS and infrared (IR) spectroscopy after liquid-liquid microextraction (LLME) to enable the sensitivity-enhanced detection and double confirmation of ecstasy (MDMA) abuse. Both strategies proved effective for the intended purpose. Analysing saliva by IMS after thermal desorption, which provides a limit of detection (LOD) of 160μgL(-1), requires adding 0.2M acetic acid to the sample and using the truncated negative second derivative of the ion mobility spectrum. The joint use of IMS and IR spectroscopy after LLME provides an LOD of 11μgL(-1) with the former technique and 800μgL(-1) with the latter, in addition to a limit of confirmation (LOC) of 1.5mgL(-1). Using IMS after thermal desorption simplifies the operational procedure, and using it jointly with IR spectroscopy after LLME allows double confirmation of MDMA abuse with two techniques based on different principles (viz., IMS drift times and IR spectra). Also, it affords on-site analyses, albeit at a lower throughput. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Magnetic resonance methods used to study the mobility of lithium ions and the formation of gamma radiolysis products in lithium silicates

    International Nuclear Information System (INIS)

    Pronin, I.S.; Nikiforov, A.S.; Vashman, A.A.

    1986-01-01

    The authors present the results of research on the mobility of lithium ions and the formation of radiation induced paramagnetic centers in the gamma radiolysis of lithium ortho- and metasilicates; nuclear magnetic resonance of Li-7 and electroparamagnetic resonance were used in the studies

  9. ser en ortodoncia

    OpenAIRE

    Ruíz-Esculpi, María; Ricse-Chaupis, Estela; Villanueva-Vega, Judith; Torres-Maita, Liz

    2014-01-01

    La primera aplicación del láser en un diente fue realizada en 1965. Desde entonces ha presentado una constante evolución y desarrollo. La tecnología láser permite realizar procedimientos en tejidos duros y blandos, pudiendo ser utilizado con las siguientes finalidades: como prevención de la desmineralización, en la adhesión y remoción de brackets, en la reducción del dolor producto del movimiento dental, en la reparación ósea después de la expansión, en diversas cirugías y otras aplicaciones ...

  10. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor

    Energy Technology Data Exchange (ETDEWEB)

    David, Catalina; Guillot, Nicolas; Chapelle, Marc Lamy de la [Laboratoire CSPBAT (FRE 3043), UFR SMBH, Universite Paris XIII, 74 rue Marcel Cachin, F-93017 Bobigny (France); Shen, Hong; Toury, Timothee, E-mail: marc.lamydelachapelle@univ-paris13.fr [ICD-LNIO-UMR, CNRS 6279, Universite de technologie de Troyes, 12 rue Marie Curie, F-10010 Troyes (France)

    2010-11-26

    In this paper we highlight the accurate spectral detection of bovine serum albumin and ribonuclease-A using a surface-enhanced Raman scattering (SERS) substrate based on gold nanocylinders obtained by electron-beam lithography (EBL). The nanocylinders have diameters from 100 to 180 nm with a gap of 200 nm. We demonstrate that optimizing the size and the shape of the lithographed gold nanocylinders, we can obtain SERS spectra of proteins at low concentration. This SERS study enabled us to estimate high enhancement factors (10{sup 5} for BSA and 10{sup 7} for RNase-A) of important bands in the protein Raman spectrum measured for 1 mM concentration. We demonstrate that, to reach the highest enhancement, it is necessary to optimize the SERS signal and that the main parameter of optimization is the LSPR position. The LSPR have to be suitably located between the laser excitation wavelength, which is 632.8 nm, and the position of the considered Raman band. Our study underlines the efficiency of gold nanocylinder arrays in the spectral detection of proteins.

  11. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    Science.gov (United States)

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB.

    Directory of Open Access Journals (Sweden)

    Andaleeb Sajid

    2011-03-01

    Full Text Available The integrated functions of 11 Ser/Thr protein kinases (STPKs and one phosphatase manipulate the phosphorylation levels of critical proteins in Mycobacterium tuberculosis. In this study, we show that the lone Ser/Thr phosphatase (PstP is regulated through phosphorylation by STPKs.PstP is phosphorylated by PknA and PknB and phosphorylation is influenced by the presence of Zn(2+-ions and inorganic phosphate (Pi. PstP is differentially phosphorylated on the cytosolic domain with Thr(137, Thr(141, Thr(174 and Thr(290 being the target residues of PknB while Thr(137 and Thr(174 are phosphorylated by PknA. The Mn(2+-ion binding residues Asp(38 and Asp(229 are critical for the optimal activity of PstP and substitution of these residues affects its phosphorylation status. Native PstP and its phosphatase deficient mutant PstP(c (D38G are phosphorylated by PknA and PknB in E. coli and addition of Zn(2+/Pi in the culture conditions affect the phosphorylation level of PstP. Interestingly, the phosphorylated phosphatase is more active than its unphosphorylated equivalent.This study establishes the novel mechanisms for regulation of mycobacterial Ser/Thr phosphatase. The results indicate that STPKs and PstP may regulate the signaling through mutually dependent mechanisms. Consequently, PstP phosphorylation may play a critical role in regulating its own activity. Since, the equilibrium between phosphorylated and non-phosphorylated states of mycobacterial proteins is still unexplained, understanding the regulation of PstP may help in deciphering the signal transduction pathways mediated by STPKs and the reversibility of the phenomena.

  13. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate

    Directory of Open Access Journals (Sweden)

    Oana-M. Buja

    2017-01-01

    Full Text Available A microfluidic setup which enables on-line monitoring of residues of malachite green (MG using surface-enhanced Raman scattering (SERS is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10−7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.

  14. Profiling the indole alkaloids in yohimbe bark with ultra-performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Sun, Jianghao; Baker, Andrew; Chen, Pei

    2011-09-30

    An ultra-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) method was developed for profiling the indole alkaloids in yohimbe bark. Many indole alkaloids with the yohimbine or ajmalicine core structure, plus methylated, oxidized and reduced species, were characterized. Common fragments and mass differences are described. It was shown that the use of IMS could provide another molecular descriptor, i.e. molecular shape by rotationally averaged collision cross-section; this is of great value for identification of constituents when reference materials are usually not available. Using the combination of high resolution (~40000) accurate mass measurement with time-aligned parallel (TAP) fragmentation, MS(E) (where E represents collision energy), ion mobility mass spectrometry (IMS) and UPLC chromatography, a total 55 indole alkaloids were characterized and a few new indole alkaloids are reported for the first time. Published in 2011 by John Wiley & Sons, Ltd.

  15. Ion mobility and conductivity in the M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (M=K, Rb) solid solutions with fluorite structure

    Energy Technology Data Exchange (ETDEWEB)

    Kavun, V. Ya., E-mail: kavun@ich.dvo.ru [Institute of Chemistry FEBRAS, 159, Pr. 100-letya Vladivostoka, Vladivostok 690022 (Russian Federation); Uvarov, N.F. [Institute of Solid State Chemistry and Mechanochemistry, SB RAS, 18, Kutateladze Str., Novosibirsk 630128 (Russian Federation); Slobodyuk, A.B.; Polyantsev, M.M.; Merkulov, E.B. [Institute of Chemistry FEBRAS, 159, Pr. 100-letya Vladivostoka, Vladivostok 690022 (Russian Federation); Ulihin, A.S. [Institute of Solid State Chemistry and Mechanochemistry, SB RAS, 18, Kutateladze Str., Novosibirsk 630128 (Russian Federation); Goncharuk, V.K. [Institute of Chemistry FEBRAS, 159, Pr. 100-letya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2017-05-15

    Ionic mobility and conductivity in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} and Rb{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} (x=0.05, 0.09) solid solutions with the fluorite structure have been investigated using the methods of {sup 19}F NMR, X-ray diffraction and impedance spectroscopy. Types of ionic motions in the fluoride sublattice of solid solutions have been established and temperature ranges of their realization have been determined (150–450 K). Diffusion of fluoride ions is a dominating type of ionic motions in the fluoride sublattice of solid solutions under study above 350 K. Due to high ionic conductivity, above 10{sup –3} S/cm at 450 K, these solid solutions can be used as solid electrolytes in various electrochemical devices and systems. - Graphical abstract: Temperature dependence of the concentration of mobile (2, 4) and immobile (1, 3) F ions in the K{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions. - Highlights: • Studied the ion mobility, conductivity in M{sub 0.5–x}Pb{sub x}Bi{sub 0.5}F{sub 2+x} solid solutions (M=K, Rb). • An analysis of {sup 19}F NMR spectra made it possible to identify types of ion mobility. • The main type of ion motion above 300 K in solid solutions is a diffusion of ions F{sup –}. • The ionic conductivity of the solid solutions studied more than 10{sup –3} S/cm at 450 K.

  16. The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments

    Science.gov (United States)

    Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.

  17. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    Science.gov (United States)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  18. Separation and characterization of metallosupramolecular libraries by ion mobility mass spectrometry.

    Science.gov (United States)

    Li, Xiaopeng; Chan, Yi-Tsu; Casiano-Maldonado, Madalis; Yu, Jing; Carri, Gustavo A; Newkome, George R; Wesdemiotis, Chrys

    2011-09-01

    The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the connectivity. These combinatorial libraries were separated and characterized by ion mobility mass spectrometry (IM MS) and tandem mass spectrometry (MS(2)). The 180°-angle building blocks generate exclusively linear complexes, which were used as standards to determine the architectures of the assemblies resulting from the 120°-angle ligands. The latter ligand geometry promotes the formation of macrocyclic hexamers, but other n-mers with smaller (n = 5) or larger ring sizes (n = 7-9) were identified as minor products, indicating that the angles in the bis(terpyridine) ligand and within the coordinative tpy-Zn(II)-tpy bonds are not as rigid, as previously believed. Macrocyclic and linear isomers were detected in penta- and heptameric assemblies; in the larger octa- and nonameric assemblies, ring-opened conformers with compact and folded geometries were observed in addition to linear extended and cyclic architectures. IM MS(2) experiments provided strong evidence that the macrocycles present in the libraries were already formed in solution, during the self-assembly process, not by dissociation of larger complexes in the gas phase. The IM MS/MS(2) methods provide a means to analyze, based on size and shape (architecture), supramolecular libraries that are not amenable to liquid chromatography, LC-MS, NMR, and/or X-ray techniques.

  19. Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability.

    Science.gov (United States)

    Yang, Yin; Zhang, Qiang; Fu, Zheng-Wen; Qin, Dong

    2014-03-12

    We report a strategy to complement the galvanic replacement reaction between Ag nanocubes and HAuCl4 with co-reduction by ascorbic acid (AA) for the formation of Ag-Au hollow nanostructures with greatly enhanced SERS activity. Specifically, in the early stage of synthesis, the Ag nanocubes are sharpened at corners and edges because of the selective deposition of Au and Ag atoms at these sites. In the following steps, the pure Ag in the nanocubes is constantly converted into Ag(+) ions to generate voids owing to the galvanic reaction with HAuCl4, but these released Ag(+) ions are immediately reduced back to Ag atoms and are co-deposited with Au atoms onto the nanocube templates. We observe distinctive SERS properties for the Ag-Au hollow nanostructures at visible and near-infrared excitation wavelengths. When plasmon damping is eliminated by using an excitation wavelength of 785 nm, the SERS activity of the Ag-Au hollow nanostructures is 15- and 33-fold stronger than those of the original Ag nanocubes and the Ag-Au nanocages prepared by galvanic replacement without co-reduction, respectively. Additionally, Ag-Au hollow nanostructures embrace considerably improved stability in an oxidizing environment such as aqueous H2O2 solution. Collectively, our work suggests that the Ag-Au hollow nanostructures will find applications in SERS detection and imaging.

  20. Development of a portable preconcentrator/ion mobility spectrometer system for the trace detection of narcotics

    Energy Technology Data Exchange (ETDEWEB)

    Parmeter, J.E.; Custer, C.A.

    1997-08-01

    This project was supported by LDRD funding for the development and preliminary testing of a portable narcotics detection system. The system developed combines a commercial trace detector known as an ion mobility spectrometer (IMS) with a preconcentrator originally designed by Department 5848 for the collection of explosives molecules. The detector and preconcentrator were combined along with all necessary accessories onto a push cart, thus yielding a fully portable detection unit. Preliminary testing with both explosives and narcotics molecules shown that the system is operational, and that it can successfully detect drugs as marijuana, methamphetamine (speed), and cocaine based on their characteristics IMS signatures.

  1. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    Science.gov (United States)

    Yang, Liu; Han, Qiang; Cao, Shuya; Yang, Jie; Yang, Junchao; Ding, Mingyu

    2014-01-01

    On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples. PMID:25384006

  2. Overtone Mobility Spectrometry: Part 4. OMS-OMS Analyses of Complex Mixtures

    Science.gov (United States)

    Kurulugama, Ruwan T.; Nachtigall, Fabiane M.; Valentine, Stephen J.; Clemmer, David E.

    2011-11-01

    A new, two-dimensional overtone mobility spectrometry (OMS-OMS) instrument is described for the analysis of complex peptide mixtures. OMS separations are based on the differences in mobilities of ions in the gas phase. The method utilizes multiple drift regions with modulated drift fields such that only ions with appropriate mobilities are transmitted to the detector. Here we describe a hybrid OMS-OMS combination that utilizes two independently operated OMS regions that are separated by an ion activation region. Mobility-selected ions from the first OMS region are exposed to energizing collisions and may undergo structural transitions before entering the second OMS region. This method generates additional peak capacity and allows for higher selectivity compared with the one-dimensional OMS method. We demonstrate the approach using a three-protein tryptic digest spiked with the peptide Substance P. The [M + 3H]3+ ion from Substance P can be completely isolated from other components in this complex mixture prior to introduction into the mass spectrometer.

  3. Feasibility of corona discharge ion mobility spectrometry for direct analysis of samples extracted by dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Jafari, Mohammad T; Riahi, Farhad

    2014-05-23

    The capability of corona discharge ionization ion mobility spectrometry (CD-IMS) for direct analysis of the samples extracted by dispersive liquid-liquid microextraction (DLLME) was investigated and evaluated, for the first time. To that end, an appropriate new injection port was designed and constructed, resulting in possibility of direct injection of the known sample volume, without tedious sample preparation steps (e.g. derivatization, solvent evaporation, and re-solving in another solvent…). Malathion as a test compound was extracted from different matrices by a rapid and convenient DLLME method. The positive ion mobility spectra of the extracted malathion were obtained after direct injection of carbon tetrachloride or methanol solutions. The analyte responses were compared and the statistical results revealed the feasibility of direct analysis of the extracted samples in carbon tetrachloride, resulting in a convenient methodology. The coupled method of DLLME-CD-IMS was exhaustively validated in terms of sensitivity, dynamic range, recovery, and enrichment factor. Finally, various real samples of apple, river and underground water were analyzed, all verifying the feasibility and success of the proposed method for the easy extraction of the analyte using DLLME separation before the direct analysis by CD-IMS. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Results of the first air ion spectrometer calibration and intercomparison workshop

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2009-01-01

    Full Text Available The Air Ion Spectrometer (AIS measures mobility and size distributions of atmospheric ions. The Neutral cluster and Air Ion Spectrometer (NAIS can additionally measure neutral particles. The number of the (NAIS instruments in the world is only 11. Nevertheless, they are already widely used in atmospheric ion studies, particularly related to the initial steps of new particle formation. There is no standard method applicable for calibrating the ion spectrometers in the sub-3 nm ion range. However, recent development of high resolution DMAs has enabled the size separation of small ions with good mobility resolution. For the first time, the ion spectrometers were intercompared and calibrated in a workshop, held in January–February 2008 in Helsinki, Finland. The overall goal was to experimentally determine the (NAIS transfer functions. Monomobile mobility standards, 241-Am charger ions and silver particles were generated and used as calibration aerosols. High resolution DMAs were used to size-separate the smaller (1–10 nm ions, while at bigger diameters (4–40 nm the size was selected with a HAUKE-type DMA. Negative ion mobilities were detected by (NAISs with slightly better accuracy than positive, nonetheless, both were somewhat overestimated. A linear fit of slope of one to the whole dataset of mobilities suggested that (NAISs measured the negative mobilities 1.36±0.16 times larger compared with the reference instruments. Similarly, positive mobilities were measured 1.39±0.15 times larger compared with the reference instruments. The completely monomobile mobility standards were measured with the best accuracy. The (NAIS concentrations were compared with an aerosol electrometer (AE and a condensation particle counter (CPC. At sizes below 1.5 nm (positive and 3 nm (negative the ion spectrometers detected higher concentrations while at bigger sizes they showed similar concentrations as the reference instruments. The total particle

  5. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive.

    Science.gov (United States)

    Li, Qiaoyun; Wan, Xiaocao; Liu, Chao; Fang, Liang

    2018-07-01

    The aim of this study was to prepare a drug-in-adhesive patch of nicotine (NIC) and use ion-pair strategy to regulate drug delivery rate. Moreover, the mechanism of how ion-pair strategy regulated drug release was elucidated at molecular level. Formulation factors including pressure sensitive adhesives (PSAs), drug loading and counter ions (C 4 , C 6 , C 8 , C 10 , and C 12 ) were screened. In vitro release experiment and in vitro transdermal experiment were conducted to determine the rate-limiting step in drug delivery process. FT-IR and molecular modeling were used to characterize the interaction between drug and PSA. Thermal analysis and rheology study were conducted to investigate the mobility variation of PSA. The optimized patch prepared with NIC-C 8 had the transdermal profile fairly close to that of the commercial product (p > 0.05). The release rate constants (k) of NIC, NIC-C 4 and NIC-C 10 were 21.1, 14.4 and 32.4, respectively. Different release rates of NIC ion-pair complexes were attributed to the dual effect of ion-pair strategy on drug release. On one hand, ion-pair strategy enhanced the interaction between drug and PSA, which inhibited drug release. On the other hand, using ion-pair strategy improved the mobility of PSA, which facilitated drug release. Drug release behavior was determined by combined effect of two aspects above. These conclusions provided a new idea for us to regulate drug release behavior from patch. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Silver nanoparticles on GaSb nanodots: a LSPR-boosted binary platform for broadband light harvesting and SERS

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, Mukul, E-mail: mkbh10@gmail.com; Ranjan, Mukesh; Mukherjee, Subroto [FCIPT, Institute for Plasma Research (India)

    2015-02-15

    We report the LSPR-augmented optical response of silver nanoparticle-topped GaSb nanodots produced by low-energy ion beam irradiation. Nanostructure ordering and interdot gap play crucial roles for inducing the LSPR effect, enhancing the absorbing capacity of the structure as validated by reflection measurements. The measured size of silver-capped GaSb nanodot varies from 28 to 48 nm. Enhanced plasmon coupling for the 600 eV configuration initiates the presence of giant electromagnetic fields as confirmed by LSPR and SERS measurements. Anisotropic Bruggeman effective medium approximation was performed to match the experimentally observed optical response of the nanostructure. Calculated screening factor values of 0.29 and 0.23 for 600 and 800 eV ion energy produced nanodot configurations were obtained, respectively, which are in tune with the measured reflected and SERS signal. The calculated dielectric constants confirm the directional anisotropy along the length of the silver-capped GaSb nanodots. The proposed model successfully matches the void fraction and nanostructure height in accordance with SEM and reported TEM measurements. Thus, the model developed can be used to optimize the maximum plasmonic coupling efficiency among the dots. We propose two key applications for this nanostructure, first as an absorptive substrate for deep space photovoltaics and second to act as an effective SERS substrate.

  7. Investigation of ion mobilities in different buffer gases

    International Nuclear Information System (INIS)

    Peska, N.

    1981-01-01

    An existing drift apparatus has been adapted to mobility measurements. Mobilities of C + /He, CH + /He, CH 2 + /He and CH 3 + /Ar, hitherto unknown or known with low accuracy only, have been determined over the E/N range of about 20 - 200 Td. (G.Q.)

  8. Online Ozonolysis Combined with Ion Mobility-Mass Spectrometry Provides a New Platform for Lipid Isomer Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Poad, Berwyck L.; Zheng, Xueyun; Mitchell, Todd A.; Smith, Richard D.; Baker, Erin M.; Blanksby, Stephen J.

    2017-12-21

    One of the most significant challenges in contemporary lipidomics lies in the separation and identification of lipid isomers that differ only in site(s) of unsaturation or geometric configuration of the carbon-carbon double bonds. While analytical separation techniques including ion mobility spectrometry (IMS) and liquid chromatography (LC) can separate isomeric lipids under appropriate conditions, conventional tandem mass spectrometry cannot provide unequivocal identification. To address this challenge, we have implemented ozone-induced dissociation (OzID) in-line with LC, IMS and high resolution mass spectrometry. Modification of an IMS- capable quadrupole time-of-flight mass spectrometer was undertaken to allow the introduction of ozone into the high-pressure trapping ion funnel region preceding the IMS cell. This enabled the novel LC-OzID-IMS-MS configuration where ozonolysis of ionized lipids occurred rapidly (10 ms) without prior mass-selection. LC-elution time alignment combined with accurate mass and arrival time extraction of ozonolysis products facilitated correlation of precursor and product ions without mass-selection (and associated reductions in duty cycle). Unsaturated lipids across 11 classes were examined using this workflow in both positive and negative ion modalities and in all cases the positions of carbon-carbon double bonds were unequivocally assigned based on predictable OzID transitions. Under these conditions geometric isomers exhibited different IMS arrival time distributions and distinct OzID product ion ratios providing a means for discrimination of cis/trans double bonds in complex lipids. The combination of OzID with multidimensional separations shows significant promise for facile profiling of unsaturation patterns within complex lipidomes.

  9. Perception Analysis of Desktop and Mobile Service Website

    OpenAIRE

    Khoiriyah, Rizqiyatul

    2016-01-01

    The research was conducted as a qualitative study of the website to deeper explore and examine the analysis of user perception of desktop and mobile website services. This research reviewed about user perception of desktop and mobile service website used by using qualitative methods adapted to WebQual and User Experience approach. This qualitative research refered to the theoretical reference written by Creswell (2014). The expected outcome is to know the user perceptions of the available ser...

  10. Stabilization of alanine substituted p53 protein at Ser15, Thr18, and Ser20 in response to ionizing radiation

    International Nuclear Information System (INIS)

    Yamauchi, Motohiro; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2004-01-01

    Phosphorylation of p53 at Ser15, Thr18, and Ser20 has been thought to be important for p53 stabilization in response to ionizing radiation. In the present study, we examined the X-ray-induced stabilization of Ala-substituted p53 protein at Ser15, Thr18, and Ser20, whose gene expression was controlled under an ecdyson-inducible promoter. We found that all single-, double-, or triple-Ala-substituted p53 at Ser15, Yhr18, and Ser20 were accumulated in the nucleus similarly to wild-type p53 after X-irradiation. These results indicate that the phosphorylation of p53 at Ser15, Thr18, and Ser20 is not necessarily needed for p53 stabilization in response to ionizing radiation

  11. Portable Solid Phase Micro-Extraction Coupled with Ion Mobility Spectrometry System for On-Site Analysis of Chemical Warfare Agents and Simulants in Water Samples

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-11-01

    Full Text Available On-site analysis is an efficient approach to facilitate analysis at the location of the system under investigation as it can result in more accurate, more precise and quickly available analytical data. In our work, a novel self-made thermal desorption based interface was fabricated to couple solid-phase microextraction with ion mobility spectrometry for on-site water analysis. The portable interface can be connected with the front-end of an ion mobility spectrometer directly without other modifications. The analytical performance was evaluated via the extraction of chemical warfare agents and simulants in water samples. Several parameters including ionic strength and extraction time have been investigated in detail. The application of the developed method afforded satisfactory recoveries ranging from 72.9% to 114.4% when applied to the analysis of real water samples.

  12. SERS-Active Nanoinjector for Intracellular Spectroscopy

    Science.gov (United States)

    Vitol, Elina; Orynbayeva, Zulfiya; Bouchard, Michael; Azizkhan-Clifford, Jane; Friedman, Gary; Gogotsi, Yury

    2009-03-01

    We developed a multifunctional nanopipette which allows simultaneous cell injection and intacellular surface-enhanced Raman spectroscopy (SERS) analysis. SERS spectra contain the characteristic frequencies of molecular bond vibrations. This is a unique method for studying cell biochemistry and physiology on a single organelle level. Unlike the fluorescence spectroscopy, it does not require any specific staining. The principle of SERS is based on very large electromagnetic field enhancement localized around a nano-rough metallic surface. Gold colloids are widely used SERS substrates. Previously, the colloidal nanoparticles were introduced into a cell by the mechanism of endocytosis. The disadvantage of this method is the uncontrollable aggregation and distribution of gold nanoparticles inside a cell which causes a significant uncertainty in the origin of the acquired data. At the same time, the nanoparticle uptake is irreversible. We present a SERS-active nanoinjector, coated with gold nanoparticles, which enables selective signal acquisition from any point-of-interest inside a cell. The nanoinjector provides a highly localized SERS signal with sub-nanometer resolution in real time.

  13. Leucipo, Demócrito e Kant: uma Reflexão sobre a Equivalência entre Ser e Não-Ser

    Directory of Open Access Journals (Sweden)

    Eberth Eleuterio dos Santos

    2015-08-01

    Full Text Available De início, apresentaremos a tese de Demócrito e Leucipo, segundo a qual o ser não é mais que o não-ser, tendo como contraponto o pensamento eleata acerca da inexistência necessária do não-ser. Esta discussão nos remete à oposição entre o pleno (cheio e o vazio que será posteriormente traduzida na oposição entre o ser e o nada (ou o não-ser. Desse modo, a oposição entre o pleno e o vazio é uma oposição que se desloca para o ser e o não-ser. Em seguida, faremos a apreciação do escrito pré-crítico kantiano Ensaio para introduzir em filosofia o conceito de grandeza negativa, no qual distinguimos certo tipo de oposição tomada entre grandezas em geral que, acreditamos, poderia ser interpretado como estando de acordo com o posicionamento de Demócrito e Leucipo sobre o estatuto ontológico do não-ser como princípio equivalente ao ser, e não como sua contradição em sentido puramente lógico.

  14. Facile fabrication of homogeneous 3D silver nanostructures on gold-supported polyaniline membranes as promising SERS substrates.

    Science.gov (United States)

    Xu, Ping; Mack, Nathan H; Jeon, Sea-Ho; Doorn, Stephen K; Han, Xijiang; Wang, Hsing-Lin

    2010-06-01

    We report a facile synthesis of large-area homogeneous three-dimensional (3D) Ag nanostructures on Au-supported polyaniline (PANI) membranes through a direct chemical reduction of metal ions by PANI. The citric acid absorbed on the Au nuclei that are prefabricated on PANI membranes directs Ag nanoaprticles (AgNPs) to self-assemble into 3D Ag nanosheet structures. The fabricated hybrid metal nanostructures display uniform surface-enhanced Raman scattering (SERS) responses throughout the whole surface area, with an average enhancement factor of 10(6)-10(7). The nanocavities formed by the stereotypical stacking of these Ag nanosheets and the junctions and gaps between two neighboring AgNPs are believed to be responsible for the strong SERS response upon plasmon absorption. These homogeneous metal nanostructure decorated PANI membranes can be used as highly efficient SERS substrates for sensitive detection of chemical and biological analytes.

  15. Hardware/Software Codesign in a Compact Ion Mobility Spectrometer Sensor System for Subsurface Contaminant Detection

    Directory of Open Access Journals (Sweden)

    Gribb MollyM

    2008-01-01

    Full Text Available Abstract A field-programmable-gate-array-(FPGA- based data acquisition and control system was designed in a hardware/software codesign environment using an embedded Xilinx Microblaze soft-core processor for use with a subsurface ion mobility spectrometer (IMS system, designed for detection of gaseous volatile organic compounds (VOCs. An FPGA is used to accelerate the digital signal processing algorithms and provide accurate timing and control. An embedded soft-core processor is used to ease development by implementing nontime critical portions of the design in software. The design was successfully implemented using a low-cost, off-the-shelf Xilinx Spartan-III FPGA and supporting digital and analog electronics.

  16. The dressed mobile atoms and ions

    CERN Document Server

    Amour, B; Guillot, L

    2005-01-01

    We consider free atoms and ions in $\\R^3$ interacting with the quantized electromagnetic field. Because of the translation invariance we consider the reduced hamiltonian associated with the total momentum. After introducing an ultraviolet cutoff we prove that the reduced hamiltonian for atoms has a ground state if the coupling constant and the total momentum are sufficiently small. In the case of ions an extra infrared regularization is needed. We also consider the case of the hydrogen atom in a constant magnetic field. Finally we determine the absolutely continuous spectrum of the reduced hamiltonian. \\end{abstract}

  17. Use of an ion mobility spectrometer for detecting uranium compounds.

    Science.gov (United States)

    McLain, Derek R; Steeb, Jennifer L; Smith, Nicholas A

    2018-07-01

    The safeguards community currently lacks a method to rapidly determine the chemical form of radioactive and non-radioactive compounds in real time during inspection activities. Chemical speciation identification can provide important information on both the types of materials that are collected during environmental sampling and can inform inspectors as to where to focus efforts during inspections or complementary access visits. Ion Mobility Spectrometry (IMS) is an established field technique for the detection of explosives, narcotics, and other organic compounds. More recently, electrospray ionization (ESI) has been used to introduce inorganic compounds to IMS instruments for analysis. These techniques have shown the ability to supply chemical information on the compounds analyzed. Although these laboratory based instruments use a liquid-based injection system, there is evidence in the literature of unaltered and intact pharmaceutical tablets being volatilized and ionized in open atmosphere using heat and a Ni-63 source. This work determined that a commercial-off-the-shelf (COTS) IMS could be used for the identification of solid uranium compounds directly after sampling using a COTS sample swipe. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. QUE É O "SER DA FAMÍLIA"?

    Directory of Open Access Journals (Sweden)

    Josefa Aida Delgado

    2005-01-01

    Full Text Available Es un estudio basado en la filosofía fenomenológica heideggeriana, su propósito es desvelar los elementos estructurales de la existencia del "ser de la familia". El camino metodológico fue construido con base en el pensamiento de Heidegger. Los datos de la familia fueron recolectados por medio de las entrevistas y las observaciones. Cada uno de nosotros contribuye para su existencia, y ella posibilita el desarrollo de nuestro "ser-en el-mundo" al vivenciar y compartir experiencias cotidianas de la familia. Allí surge la posibilidad de compartir un modo de ser en el mundo, un modo de cuidado para "ser familia en el mundo". Un mundo que genera esa unidad de relacionamiento que emerge de sentimientos interligados entre los integrantes, respondiendo a las exigencias de cada miembro, por el sentimiento de pertenencia primaria generado en ellos. Esa unidad da la posibilidad de nacer a cada uno de nosotros, asi también, nos da la posibilidad de poder ser ser humano, llegando a ser un referencial de sí misma en cada ser humano.

  19. Ion-selective solid-phase electrode sensitive to ammonium ions

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Milonova, M.S.; Antonov, P.P.; Bychkov, E.A.; Ehfa, A.Ya.

    1983-01-01

    Ammonium phosphomolybdate is investigated for the purpose of using it as membrane material of ammonium-selective solid-phase electrodes. Estimation of proton mobility and ion conductivity of ammonium phosphomolybdate is performed

  20. Effect of electrolyte sorbed by nonion-exchange mechanism on the state and diffusive mobility of water and alkali metal ions in perfluorinated sulfocationic membranes from NMR data

    International Nuclear Information System (INIS)

    Volkov, V.I.; Sidorenkova, E.A.; Korochkova, S.A.; Novikov, N.A.; Sokol'skaya, I.B.; Timashev, S.F.

    1994-01-01

    On the basis of data of high-resolution NMR on 1 H nuclei of water, 23 Na and 133 Cs, of counterions Na + and Ca + the influence of nonionexchange sorved alkalis and metal chlorides on the state and diffusive mobility of the counterions was studied. It is shown that the type of co-ion can affect considerably the translational diffusion of metal ions

  1. Application of Ion Mobility Spectrometry (IMS) in forensic chemistry and toxicology with focus on biological matrices

    Science.gov (United States)

    Bernhard, Werner; Keller, Thomas; Regenscheit, Priska

    1995-01-01

    The IMS (Ion Mobility Spectroscopy) instrument 'Ionscan' takes advantage of the fact that trace quantities of illicit drugs are adsorbed on dust particles on clothes, in cars and on other items of evidence. The dust particles are collected on a membrane filter by a special attachment on a vacuum cleaner. The sample is then directly inserted into the spectrometer and can be analyzed immediately. We show casework applications of a forensic chemistry and toxicology laboratory. One new application of IMS in forensic chemistry is the detection of psilocybin in dried mushrooms without any further sample preparation.

  2. Stamping SERS for creatinine sensing

    Science.gov (United States)

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2015-03-01

    Urine can be obtained easily, readily and non-invasively. The analysis of urine can provide metabolic information of the body and the condition of renal function. Creatinine is one of the major components of human urine associated with muscle metabolism. Since the content of creatinine excreted into urine is relatively constant, it is used as an internal standard to normalize water variations. Moreover, the detection of creatinine concentration in urine is important for the renal clearance test, which can monitor the filtration function of kidney and health status. In more details, kidney failure can be imminent when the creatinine concentration in urine is high. A simple device and protocol for creatinine sensing in urine samples can be valuable for point-of-care applications. We reported quantitative analysis of creatinine in urine samples by using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) based SERS substrate. S-SERS technique enables label-free and multiplexed molecular sensing under dry condition, while NPGD provides a robust, controllable, and high-sensitivity SERS substrate. The performance of S-SERS with NGPDs is evaluated by the detection and quantification of pure creatinine and creatinine in artificial urine within physiologically relevant concentration ranges.

  3. Fragmentation of molecular ions in differential mobility spectrometry as a method for identification of chemical warfare agents.

    Science.gov (United States)

    Maziejuk, M; Puton, J; Szyposzyńska, M; Witkiewicz, Z

    2015-11-01

    The subject of the work is the use of differential mobility spectrometry (DMS) for the detection of chemical warfare agents (CWA). Studies were performed for mustard gas, i.e., bis(2-chloroethyl)sulfide (HD), sarin, i.e., O-isopropyl methylphosphonofluoridate (GB) and methyl salicylate (MS) used as test compounds. Measurements were conducted with two ceramic DMS analyzers of different constructions allowing the generation of an electric field with an intensity of more than 120 Td. Detector signals were measured for positive and negative modes of operation in a temperature range from 0 to 80 °C. Fragmentations of ions containing analyte molecules were observed for all tested compounds. The effective temperatures of fragmentation estimated on the basis of dispersion plots were equal from about 148 °C for GB to 178 °C for MS. It was found that values of separation voltage (SV) and compensation voltage (CV) at which the fragmentation of sample ions is observed may be the parameters improving the certainty of detection for different analytes. The DMS analyzers enabling the observation of ion fragmentation can be successfully used for effective CWA detection. Copyright © 2015. Published by Elsevier B.V.

  4. High electron mobility InN

    International Nuclear Information System (INIS)

    Jones, R. E.; Li, S. X.; Haller, E. E.; van Genuchten, H. C. M.; Yu, K. M.; Ager, J. W. III; Liliental-Weber, Z.; Walukiewicz, W.; Lu, H.; Schaff, W. J.

    2007-01-01

    Irradiation of InN films with 2 MeV He + ions followed by thermal annealing below 500 deg. C creates films with high electron concentrations and mobilities, as well as strong photoluminescence. Calculations show that electron mobility in irradiated samples is limited by triply charged donor defects. Subsequent thermal annealing removes a fraction of the defects, decreasing the electron concentration. There is a large increase in electron mobility upon annealing; the mobilities approach those of the as-grown films, which have 10 to 100 times smaller electron concentrations. Spatial ordering of the triply charged defects is suggested to cause the unusual increase in electron mobility

  5. An introduction to the technique of combined ion mobility spectrometry-mass spectrometry for the analysis of complex biological samples

    International Nuclear Information System (INIS)

    McDowall, Mark A.; Bateman, Robert H.; Bajic, Steve; Giles, Kevin; Langridge, Jim; McKenna, Therese; Pringle, Steven D.; Wildgoose, Jason L.

    2008-01-01

    Full Text: Ultra Performance Liquid Chromatography (UPLC) offers several advantages compared with conventional High Performance Liquid Chromatography (HPLC) as an 'inlet system' for mass spectrometry. UPLC provides improved chromatographic resolution, increased sensitivity and reduced analysis time. This is achieved through the use of sub 2μm particles (stationary phase) combined with high-pressure solvent delivery (up to 15,000 psi). When coupled with orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS), UPLC presents a means to achieve high sample throughput with reduced spectral overlap, increased sensitivity, and exact mass measurement capabilities with high mass spectral resolution (Ca 20,000 FWHM). Dispersive ion mobility spectrometry (IMS) implemented within a traveling-wave ion guide provides an orthogonal separation strategy for ions in the gas phase that can resolve isobaric ions formed by either Electrospray of MALDI ionization typically in Ca 20 mille seconds. All three techniques have the potential to be combined on-line (e.g. UPLC-IMS-MS/MS) in real time to maximize peak capacity and resolving power for the analysis of complex biological mixtures including; intact proteins, modified peptides and endogenous/exogenous metabolites

  6. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    International Nuclear Information System (INIS)

    Dodi, Alain; Bouscarel, Maelle

    2008-01-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  7. Simultaneous Determination of Chelating Agents by Ion-Suppression and Ion-Pair Chromatography in Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Dodi, Alain; Bouscarel, Maelle [Commissariat a l' energie atomique - C.E.A, Centre d' Etude de Cadarache, Laboratoire d' Analyses Radiochimiques et Chimiques, St Paul lez Durance (France)

    2008-07-01

    This article describes two methods for analysing chelating agents found in nuclear waste. First, ion-suppression chromatography using an anion exchange stationary phase and mobile phase consisting of a nitric acid solution and pure water gradient. UV detection was performed at 330 nm after the reaction with a post-column reagent composed of iron nitrate in perchloric acid. Secondly, ion-pair chromatography with a mobile phase consisting of a mixture of nitric acid, tetra-butyl-ammonium hydrogeno-sulphate, tetra-butyl-ammonium hydroxide and iron chloride. A reversed-phase material was used as a stationary phase and detection was performed by direct measurement of the UV absorption at 260 nm. The quantification limits were lower for ion-pair chromatography than for ion-suppression chromatography. Both methods were easy to implement and allow a multi-element separation in less than 30 min with low detection limits. (authors)

  8. Differential mobility in plasm

    International Nuclear Information System (INIS)

    Jewur, S.S.

    1983-01-01

    Theoretical considerations about the technique based on differential plasma mobility are made for the analysis of trace amounts of chemical products. The mechanisms for the formation of reagent-ion, reaction between ion and molecule, separation of ions and molecules and production of plasmogram, are explained. Despite being a very modern technique and the equipment has not yet been put in the market, it is already confirmed that the structural sensitivity of the fluctuation time in DPM is greater than the retention time in chromatographic techniques. (CLB) [pt

  9. Engineering Metal Nanostructure for SERS Application

    Directory of Open Access Journals (Sweden)

    Yanqin Cao

    2013-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS has attracted great attention due to its remarkable enhancement and excellent selectivity in the detection of various molecules. Noble metal nanomaterials have usually been employed for producing substrates that can be used in SERS because of their unique local plasma resonance. As the SERS enhancement of signals depends on parameters such as size, shape, morphology, arrangement, and dielectric environment of the nanostructure, there have been a number of studies on tunable nanofabrication and synthesis of noble metals. In this work, we will illustrate progress in engineering metallic nanostructures with various morphologies using versatile methods. We also discuss their SERS applications in different fields and the challenges.

  10. Fasting mediated increase in p-BAD(ser155) and p-AKT(ser473) in the prefrontal cortex of mice.

    Science.gov (United States)

    Pitchaimani, Vigneshwaran; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Karuppagounder, Vengadeshprabhu; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Miyashita, Shizuka; Nomoto, Mayumi; Sone, Hirohito; Suzuki, Kenji; Watanabe, Kenichi

    2014-09-05

    BAD-deficient mice and fasting have several common functional roles in seizures, beta-hydroxybutyrate (BHB) uptake in brain and alteration in counterregulatory hormonal regulation during hypoglycemia. Neuronal specific insulin receptor knockout (NIRKO) mice display impaired counterregulatory hormonal responses during hypoglycemia. In this study we investigated the fasting mediated expression of p-BAD(ser155) and p-AKT(ser473) in different regions of brain (prefrontal cortex, hippocampus, midbrain and hypothalamus). Fasting specifically increases p-BAD(ser155) and p-AKT(ser473) in prefrontal cortex and decreases in other regions of brain. Our results suggest that fasting may increase the uptake BHB by decreasing p-BAD(ser155) in the brain during hypoglycemia except prefrontal cortex and it uncovers specific functional area of p-BAD(ser155) and p-AKT(ser473) that may regulates counter regulatory hormonal response. Overall in support with previous findings, fasting mediated hypoglycemia activates prefrontal cortex insulin signaling which influences the hypothalamic paraventricular nucleus mediated activation of sympathoadrenal hormonal responses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Method and device for ion mobility separations

    Science.gov (United States)

    Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Smith, Richard D.

    2017-07-11

    Methods and devices for ion separations or manipulations in gas phase are disclosed. The device includes a single non-planar surface. Arrays of electrodes are coupled to the surface. A combination of RF and DC voltages are applied to the arrays of electrodes to create confining and driving fields that move ions through the device. The DC voltages are static DC voltages or time-dependent DC potentials or waveforms.

  12. HPTLC-FLD-SERS as a facile and reliable screening tool: Exemplarily shown with tyramine in cheese.

    Science.gov (United States)

    Wang, Liao; Xu, Xue-Ming; Chen, Yi-Sheng; Ren, Jie; Liu, Yun-Tao

    2018-04-01

    The serious cytotoxicity of tyramine attracted marked attention as it induced necrosis of human intestinal cells. This paper presented a novel and facile high performance thin-layer chromatography (HPTLC) method tailored for screening tyramine in cheese. Separation was performed on glass backed silica gel plates, using methanol/ethyl acetate/ammonia (6/4/1 v/v/v) as the mobile phase. Special efforts were focused on optimizing conditions (substrate preparation, laser wavelength, salt types and concentrations) of surface enhanced Raman spectroscopy (SERS) measurements directly on plates after derivatization, which enabled molecule-specific identification of targeted bands. In parallel, fluorescent densitometry (FLD) scanning at 380SERS provided a new horizon in fast and reliable screening of sophisticated samples like food and herb drugs, striking an excellent balance between specificity, sensitivity and simplicity. Copyright © 2017. Published by Elsevier B.V.

  13. Quantitative analysis of volatile organic compounds using ion mobility spectra and cascade correlation neural networks

    Science.gov (United States)

    Harrington, Peter DEB.; Zheng, Peng

    1995-01-01

    Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.

  14. Ion mobility-mass spectrometry reveals conformational flexibility in the deubiquitinating enzyme USP5.

    Science.gov (United States)

    Scott, Daniel; Layfield, Robert; Oldham, Neil J

    2015-08-01

    Many proteins exhibit conformation flexibility as part of their biological function, whether through the presence of a series of well-defined states or by the existence of intrinsic disorder. Ion mobility spectrometry, in combination with MS (IM-MS), offers a rapid and sensitive means of probing ensembles of protein structures through measurement of gas-phase collisional cross sections. We have applied IM-MS analysis to the multidomain deubiquitinating enzyme ubiquitin specific protease 5 (USP5), which is believed to exhibit significant conformational flexibility. Native ESI-MS measurement of the 94-kDa USP5 revealed two distinct charge-state distributions: [M + 17H](+) to [M + 21H](+) and [M + 24H](+) to [M + 29H](+). The collisional cross sections of these ions revealed clear groupings of 52 ± 4 nm(2) for the lower charges and 66 ± 6 nm(2) for the higher charges. Molecular dynamics simulation of a compact form of USP5, based on a crystal structure, produced structures of 53-54 nm(2) following 2 ns in the gas phase, while simulation of an extended form (based on small-angle X-ray scattering data) led to structures of 64 nm(2). These data demonstrate that IM-MS is a valuable tool in studying proteins with different discrete conformational states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    Science.gov (United States)

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  16. Batch fabrication of disposable screen printed SERS arrays.

    Science.gov (United States)

    Qu, Lu-Lu; Li, Da-Wei; Xue, Jin-Qun; Zhai, Wen-Lei; Fossey, John S; Long, Yi-Tao

    2012-03-07

    A novel facile method of fabricating disposable and highly reproducible surface-enhanced Raman spectroscopy (SERS) arrays using screen printing was explored. The screen printing ink containing silver nanoparticles was prepared and printed on supporting materials by a screen printing process to fabricate SERS arrays (6 × 10 printed spots) in large batches. The fabrication conditions, SERS performance and application of these arrays were systematically investigated, and a detection limit of 1.6 × 10(-13) M for rhodamine 6G could be achieved. Moreover, the screen printed SERS arrays exhibited high reproducibility and stability, the spot-to-spot SERS signals showed that the intensity variation was less than 10% and SERS performance could be maintained over 12 weeks. Portable high-throughput analysis of biological samples was accomplished using these disposable screen printed SERS arrays.

  17. Achieving optimal SERS through enhanced experimental design.

    Science.gov (United States)

    Fisk, Heidi; Westley, Chloe; Turner, Nicholas J; Goodacre, Royston

    2016-01-01

    One of the current limitations surrounding surface-enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal-based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.

  18. Comparison of Cocaine Detections in Corona Discharge Ionization-Ion Mobility Spectrometry and in Atmospheric Pressure Chemical Ionization-Mass Spectrometry

    International Nuclear Information System (INIS)

    Choi, Sung Seen; Kim, Yun Ki; Kim, Ok Bae; An, Seung Geon; Shin, Myung Won; Maeng, Seug Jin; Choi, Gyu Seop

    2010-01-01

    In this study, we determined the detection limit and reproducibility of the new IMS equipped with corona discharge ionization source using cocaine. The sample was injected with liquid solution to compare the results of APCI-MS. Ion mobility spectrometry (IMS) was a technique originally applied for the detection of trace compounds. IMS has been widely used to detect chemical warfare agents, explosives, and illegal drugs since it combines both high sensitivity (detection limits down to the ng/L range to pg/L range, ppb range and ppt range) and relatively low technical expenditure with high-speed data acquisition. The time required to acquire a single spectrum is in the range of several tens ms. The working principle is based on the drift of ions at ambient pressure under the influence of an external electric field

  19. Comparison of Cocaine Detections in Corona Discharge Ionization-Ion Mobility Spectrometry and in Atmospheric Pressure Chemical Ionization-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Seen; Kim, Yun Ki; Kim, Ok Bae [Sejong University, Seoul (Korea, Republic of); An, Seung Geon; Shin, Myung Won; Maeng, Seug Jin; Choi, Gyu Seop [Wooju Communication and Technology Co., Seoul (Korea, Republic of)

    2010-08-15

    In this study, we determined the detection limit and reproducibility of the new IMS equipped with corona discharge ionization source using cocaine. The sample was injected with liquid solution to compare the results of APCI-MS. Ion mobility spectrometry (IMS) was a technique originally applied for the detection of trace compounds. IMS has been widely used to detect chemical warfare agents, explosives, and illegal drugs since it combines both high sensitivity (detection limits down to the ng/L range to pg/L range, ppb range and ppt range) and relatively low technical expenditure with high-speed data acquisition. The time required to acquire a single spectrum is in the range of several tens ms. The working principle is based on the drift of ions at ambient pressure under the influence of an external electric field.

  20. HPTLC-FLD-SERS as a facile and reliable screening tool: Exemplarily shown with tyramine in cheese

    Directory of Open Access Journals (Sweden)

    Liao Wang

    2018-04-01

    Full Text Available The serious cytotoxicity of tyramine attracted marked attention as it induced necrosis of human intestinal cells. This paper presented a novel and facile high performance thin-layer chromatography (HPTLC method tailored for screening tyramine in cheese. Separation was performed on glass backed silica gel plates, using methanol/ethyl acetate/ammonia (6/4/1 v/v/v as the mobile phase. Special efforts were focused on optimizing conditions (substrate preparation, laser wavelength, salt types and concentrations of surface enhanced Raman spectroscopy (SERS measurements directly on plates after derivatization, which enabled molecule-specific identification of targeted bands. In parallel, fluorescent densitometry (FLD scanning at 380SERS provided a new horizon in fast and reliable screening of sophisticated samples like food and herb drugs, striking an excellent balance between specificity, sensitivity and simplicity. Keywords: FLD, HPTLC, SERS, Screening, Tyramine

  1. Ion chromatography of transition metals: specific alteration of retention by complexation reactions in the mobile and on the stationary phase

    International Nuclear Information System (INIS)

    Baumgartner, S.

    1992-05-01

    Ion chromatography of mono- and bivalent cations was performed on a conventional cation exchanger. The pH influence of an ethylene-diamine/citrate eluent was significant for the retention of alkaline earth and transition metals, but negligible for alkali ions. This was dealt with from a mechanistic point of view. Mobile phase optimization allowed fast isocratic analysis of mono- and bivalent cations and the separation of the radionuclides Cs-137 and Sr-90. A newly synthesized stationary phase containing iminodiacetate (IDA) function was investigated for cation chromatography using ethylenediamine/citrate eluents, polyhydroxy acid and dipicolinic acid. The column's high selectivity for transition metal ions in comparison to alkali and alkaline earth metals may be governed by the choice of complexing ability and pH of the eluent. Applications verified by atomic absorption spectroscopy include alkaline earth metals in beverages and the determination of Co, Cd and Zn in solutions containing more than 10 14 -fold excess of Na and Mg, such as sea water

  2. Transport coefficients of gaseous ions in an electric field

    Science.gov (United States)

    Whealton, J. H.; Mason, E. A.

    1974-01-01

    A general theory of ion mobility formulated by Kihara (1953) is extended to ion diffusion and to mixtures of neutral gases. The theory assumes that only binary collisions between ions and neutral particles need to be taken into account and that the velocity distribution function of the neutral particles is Maxwellian. These assumptions make it possible to use a linearized Boltzmann equation. Questions of mobility are considered along with aspects of diffusion and deviations from Fick's law of diffusion.

  3. The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA

    International Nuclear Information System (INIS)

    Hanif, Sarmad; Shamim, Uzma; Ullah, M.F.; Azmi, Asfar S.; Bhat, Showket H.; Hadi, S.M.

    2008-01-01

    Epidemiological and experimental evidence exists to suggest that pomegranate and its juice possess chemopreventive and anticancer properties. The anthocyanidin delphinidin is a major polyphenol present in pomegranates and has been shown to be responsible for these effects. Plant polyphenols are recognized as naturally occurring antioxidants but also catalyze oxidative DNA degradation of cellular DNA either alone or in the presence of transition metal ions such as copper. In this paper we show that similar to various other classes of polyphenols, delphinidin is also capable of causing oxidative degradation of cellular DNA. Lymphocytes were exposed to various concentrations of delphinidin (10, 20, 50 μM) for 1 h and the DNA breakage was assessed using single cell alkaline gel electrophoresis (Comet assay). Inhibition of DNA breakage by several scavengers of reactive oxygen species (ROS) indicated that it is caused by the formation of ROS. Incubation of lymphocytes with neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation in intact lymphocytes in a dose dependent manner. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. We have further shown that delphinidin is able to degrade DNA in cell nuclei and that such DNA degradation is also inhibited by neocuproine suggesting that nuclear copper is mobilized in this reaction. These results indicate that the generation of ROS possibly occurs through mobilization of endogenous copper ions. The results are in support of our hypothesis that the prooxidant activity of plant polyphenols may be an important mechanism for their anticancer properties

  4. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  5. Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA

    Science.gov (United States)

    Tammet, H.

    2006-12-01

    Measuring of charged nanometer particles in atmospheric air is a routine task in research on atmospheric electricity, where these particles are called the atmospheric ions. An aspiration condenser is the most popular instrument for measuring atmospheric ions. Continuous scanning of a mobility distribution is possible when the aspiration condenser is connected as an arm of a balanced bridge. Transfer function of an aspiration condenser is calculated according to the measurements of geometric dimensions, air flow rate, driving voltage, and electric current. The most complicated phase of the calibration is the estimation of the inlet loss of ions due to the Brownian deposition. The available models of ion deposition on the protective inlet screen and the inlet control electrofilter have the uncertainty of about 20%. To keep the uncertainty of measurements low the adsorption should not exceed a few tens of percent. The online conversion of the mobility distribution to the size distribution and a correct reduction of inlet losses are possible when air temperature and pressure are measured simultaneously with the mobility distribution. Two instruments called the Balanced Scanning Mobility Analyzers (BSMA) were manufactured and tested in routine atmospheric measurements. The concentration of atmospheric ions of the size of about a few nanometers is very low and a high air flow rate is required to collect enough of ion current. The air flow of 52 l/s exceeds the air flow in usual aerosol instruments by 2-3 orders of magnitude. The high flow rate reduces the time of ion passage to 60 ms and the heating of air in an analyzer to 0.2 K, which suppresses a possible transformation of ions inside the instrument. The mobility range of the BSMA of 0.032-3.2 cm 2 V - 1 s - 1 is logarithmically uniformly divided into 16 fractions. The size distribution is presented by 12 fractions in the diameter range of 0.4-7.5 nm. The measurement noise of a fraction concentration is typically

  6. Label-free in situ SERS imaging of biofilms.

    Science.gov (United States)

    Ivleva, Natalia P; Wagner, Michael; Szkola, Agathe; Horn, Harald; Niessner, Reinhard; Haisch, Christoph

    2010-08-12

    Surface-enhanced Raman scattering (SERS) is a promising technique for the chemical characterization of biological systems. It yields highly informative spectra, can be applied directly in aqueous environment, and has high sensitivity in comparison with normal Raman spectroscopy. Moreover, SERS imaging can provide chemical information with spatial resolution in the micrometer range (chemical imaging). In this paper, we report for the first time on the application of SERS for in situ, label-free imaging of biofilms and demonstrate the suitability of this technique for the characterization of the complex biomatrix. Biofilms, being communities of microorganisms embedded in a matrix of extracellular polymeric substances (EPS), represent the predominant mode of microbial life. Knowledge of the chemical composition and the structure of the biofilm matrix is important in different fields, e.g., medicine, biology, and industrial processes. We used colloidal silver nanoparticles for the in situ SERS analysis. Good SERS measurement reproducibility, along with a significant enhancement of Raman signals by SERS (>10(4)) and highly informative SERS signature, enables rapid SERS imaging (1 s for a single spectrum) of the biofilm matrix. Altogether, this work illustrates the potential of SERS for biofilm analysis, including the detection of different constituents and the determination of their distribution in a biofilm even at low biomass concentration.

  7. Performance enhancement of high-field asymmetric waveform ion mobility spectrometry by applying differential-RF-driven operation mode.

    Science.gov (United States)

    Zeng, Yue; Tang, Fei; Zhai, Yadong; Wang, Xiaohao

    2017-09-01

    The traditional operation mode of high-field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) uses a one-way radio frequency (RF) voltage input as the dispersion voltage. This requires a high voltage input and limits power consumption reduction and miniaturization of instruments. With higher dispersion voltages or larger compensation voltages, there also exist problems such as low signal intensity or the fact that the dispersion voltage is no longer much larger than the compensation voltage. In this paper, a differential-RF-driven operation mode of FAIMS is proposed. The two-way RF is used to generate the dispersion field, and a phase difference is added between the two RFs to generate a single step waveform field. Theoretical analysis, and experimental results from an ethanol sample, showed that the peak positions of the ion spectra changed linearly (R 2 = 0.9992) with the phase difference of the two RFs in the differential-RF-driven mode and that the peak intensity of the ion spectrum could be enhanced by more than eight times for ethanol ions. In this way, it is possible to convert the ion spectrum peaks outside the separation or compensation voltage range into a detectable range, by changing the phase difference. To produce the same separation electric field, the high-voltage direct current input voltage can be maximally reduced to half of that in the traditional operation mode. Without changing the drift region size or drift condition, the differential-RF-driven operation mode can reduce power consumption, increase signal-to-noise ratio, extend the application range of the dispersion voltage and compensation voltage, and improve FAIMS detection performance.

  8. Mechanism of leakage of ion-implantation isolated AlGaN/GaN MIS-high electron mobility transistors on Si substrate

    Science.gov (United States)

    Zhang, Zhili; Song, Liang; Li, Weiyi; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Fan, Yaming; Deng, Xuguang; Li, Shuiming; Sun, Shichuang; Li, Xiajun; Yuan, Jie; Sun, Qian; Dong, Zhihua; Cai, Yong; Zhang, Baoshun

    2017-08-01

    In this paper, we systematically investigated the leakage mechanism of the ion-implantation isolated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si substrate. By means of combined DC tests at different temperatures and electric field dependence, we demonstrated the following original results: (1) It is proved that gate leakage is the main contribution to OFF-state leakage of ion-implantation isolated AlGaN/GaN MIS-HEMTs, and the gate leakage path is a series connection of the gate dielectric Si3N4 and Si3N4-GaN interface. (2) The dominant mechanisms of the leakage current through LPCVD-Si3N4 gate dielectric and Si3N4-GaN interface are identified to be Frenkel-Poole emission and two-dimensional variable range hopping (2D-VRH), respectively. (3) A certain temperature annealing could reduce the density of the interface state that produced by ion implantation, and consequently suppress the interface leakage transport, which results in a decrease in OFF-state leakage current of ion-implantation isolated AlGaN/GaN MIS-HEMTs.

  9. Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation-recombination effects

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, J Ross, E-mail: macd@email.unc.ed [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States)

    2010-12-15

    Consequences of the well-known Poisson-Nernst-Planck (PNP) continuum equations of charge motion in liquids or solids for ordinary or anomalous diffusion are investigated for an electrochemical cell with completely blocking electrodes. Previous work is summarized and much of it is shown to be independent of earlier published results and incomplete, with little comparison made between ordinary and anomalous diffusion. Such comparison is provided here and also includes variation of the mobility ratio of the mobilities of positive and negative charges from equality to charge of only one sign mobile. New generation-recombination effects are demonstrated for a range of mobility ratios, with particular attention given to those present for the case of charge of only one sign mobile. No previous analyses of experimental data with PNP models using complex-least-squares fitting have been published. Here such a model is found to fit frequency response data well for a hydrogel and to lead to estimates of physically meaningful parameters such as the diffusion constant and ionic concentration. PNP analysis of a synthetic data set derived from experimental results for liquid electrolytes refutes claims made in the original publication dealing with it, but verifies and extends an interesting analysis equation proposed there. PNP fitting of data for solids, including ones showing colossal low-frequency-limiting dielectric constants, suggests that they may often be well described as arising from simple diffuse-charge double-layer effects, and that continuum microscopic models such as the PNP, in series with a conducting Debye response model, may be sufficient for fitting well an appreciable amount of data involving ion hopping and trapping behavior.

  10. Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation-recombination effects

    International Nuclear Information System (INIS)

    Macdonald, J Ross

    2010-01-01

    Consequences of the well-known Poisson-Nernst-Planck (PNP) continuum equations of charge motion in liquids or solids for ordinary or anomalous diffusion are investigated for an electrochemical cell with completely blocking electrodes. Previous work is summarized and much of it is shown to be independent of earlier published results and incomplete, with little comparison made between ordinary and anomalous diffusion. Such comparison is provided here and also includes variation of the mobility ratio of the mobilities of positive and negative charges from equality to charge of only one sign mobile. New generation-recombination effects are demonstrated for a range of mobility ratios, with particular attention given to those present for the case of charge of only one sign mobile. No previous analyses of experimental data with PNP models using complex-least-squares fitting have been published. Here such a model is found to fit frequency response data well for a hydrogel and to lead to estimates of physically meaningful parameters such as the diffusion constant and ionic concentration. PNP analysis of a synthetic data set derived from experimental results for liquid electrolytes refutes claims made in the original publication dealing with it, but verifies and extends an interesting analysis equation proposed there. PNP fitting of data for solids, including ones showing colossal low-frequency-limiting dielectric constants, suggests that they may often be well described as arising from simple diffuse-charge double-layer effects, and that continuum microscopic models such as the PNP, in series with a conducting Debye response model, may be sufficient for fitting well an appreciable amount of data involving ion hopping and trapping behavior.

  11. Qualitative and quantitative characterization of plasma proteins when incorporating traveling wave ion mobility into a liquid chromatography-mass spectrometry workflow for biomarker discovery: use of product ion quantitation as an alternative data analysis tool for label free quantitation.

    Science.gov (United States)

    Daly, Charlotte E; Ng, Leong L; Hakimi, Amirmansoor; Willingale, Richard; Jones, Donald J L

    2014-02-18

    Discovery of protein biomarkers in clinical samples necessitates significant prefractionation prior to liquid chromatography-mass spectrometry (LC-MS) analysis. Integrating traveling wave ion mobility spectrometry (TWIMS) enables in-line gas phase separation which when coupled with nanoflow liquid chromatography and data independent acquisition tandem mass spectrometry, confers significant advantages to the discovery of protein biomarkers by improving separation and inherent sensitivity. Incorporation of TWIMS leads to a packet of concentrated ions which ultimately provides a significant improvement in sensitivity. As a consequence of ion packeting, when present at high concentrations, accurate quantitation of proteins can be affected due to detector saturation effects. Human plasma was analyzed in triplicate using liquid-chromatography data independent acquisition mass spectrometry (LC-DIA-MS) and using liquid-chromatography ion-mobility data independent acquisition mass spectrometry (LC-IM-DIA-MS). The inclusion of TWIMS was assessed for the effect on sample throughput, data integrity, confidence of protein and peptide identification, and dynamic range. The number of identified proteins is significantly increased by an average of 84% while both the precursor and product mass accuracies are maintained between the modalities. Sample dynamic range is also maintained while quantitation is achieved for all but the most abundant proteins by incorporating a novel data interpretation method that allows accurate quantitation to occur. This additional separation is all achieved within a workflow with no discernible deleterious effect on throughput. Consequently, TWIMS greatly enhances proteome coverage and can be reliably used for quantification when using an alternative product ion quantification strategy. Using TWIMS in biomarker discovery in human plasma is thus recommended.

  12. Distinguishing d - and l -aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xueyun; Deng, Liulin; Baker, Erin M.; Ibrahim, Yehia M.; Petyuk, Vladislav A.; Smith, Richard D.

    2017-01-01

    Ion mobility spectrometry (IMS) was utilized to separate Aβ peptide variants containing isomeric asparic and isoaspartic acid residues with either al- ord-form. The abundance of each variant is of great interest in Alzheimer's disease studies and also to evaluate how often these modifications are occurring in other environmental and biological samples.

  13. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS

    KAUST Repository

    Zhang, Yang; Yang, Peng; Madathumpady Abubaker, Habeeb Muhammed; Alsaiari, Shahad K.; Moosa, Basem; AlMalik, Abdulaziz; Kumar, Anjli; Ringe, Emilie; Khashab, Niveen M.

    2017-01-01

    Controlling the size, number, and shape of nanogaps in plasmonic nanostructures is of significant importance for the development of novel quantum plasmonic devices and quantitative sensing techniques such as surface-enhanced Raman scattering (SERS). Here, we introduce a new synthetic method based on coordination interactions and galvanic replacement to prepare core-shell plasmonic nanorods with tunable enclosed nanogaps. Decorating Au nanorods with Raman reporters that strongly coordinate Ag+ ions (e.g., 4-mercaptopyridine) afforded uniform nucleation sites to form a sacrificial Ag shell. Galvanic replacement of the Ag shell by HAuCl4 resulted in Au-AgAu core-shell structure with a uniform intra-nanoparticle gap. The size (length and width) and morphology of the core-shell plasmonic nanorods as well as the nanogap size depends on the concentration of the coordination complexes formed between Ag+ ions and 4-mercaptopyridine. Moreover, encapsulating Raman reporters within the nanogaps afforded an internal standard for sensitive and quantitative SERS analysis. To test the applicability, core-shell plasmonic nanorods were functionalized with aptamers specific to circulating tumor cells such as MCF-7 (Michigan Cancer Foundation-7, breast cancer cell line). This system could selectively detect as low as 20 MCF-7 cells in a blood mimicking fluid employing SERS. The linking DNA duplex on core-shell plasmonic nanorods can also intercalate hydrophobic drug molecules such as Doxorubicin, thereby increasing the versatility of this sensing platform to include drug delivery. Our synthetic method offers the possibility of developing multifunctional SERS-active materials with a wide range of applications including bio sensing, imaging and therapy.

  14. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS

    KAUST Repository

    Zhang, Yang

    2017-10-09

    Controlling the size, number, and shape of nanogaps in plasmonic nanostructures is of significant importance for the development of novel quantum plasmonic devices and quantitative sensing techniques such as surface-enhanced Raman scattering (SERS). Here, we introduce a new synthetic method based on coordination interactions and galvanic replacement to prepare core-shell plasmonic nanorods with tunable enclosed nanogaps. Decorating Au nanorods with Raman reporters that strongly coordinate Ag+ ions (e.g., 4-mercaptopyridine) afforded uniform nucleation sites to form a sacrificial Ag shell. Galvanic replacement of the Ag shell by HAuCl4 resulted in Au-AgAu core-shell structure with a uniform intra-nanoparticle gap. The size (length and width) and morphology of the core-shell plasmonic nanorods as well as the nanogap size depends on the concentration of the coordination complexes formed between Ag+ ions and 4-mercaptopyridine. Moreover, encapsulating Raman reporters within the nanogaps afforded an internal standard for sensitive and quantitative SERS analysis. To test the applicability, core-shell plasmonic nanorods were functionalized with aptamers specific to circulating tumor cells such as MCF-7 (Michigan Cancer Foundation-7, breast cancer cell line). This system could selectively detect as low as 20 MCF-7 cells in a blood mimicking fluid employing SERS. The linking DNA duplex on core-shell plasmonic nanorods can also intercalate hydrophobic drug molecules such as Doxorubicin, thereby increasing the versatility of this sensing platform to include drug delivery. Our synthetic method offers the possibility of developing multifunctional SERS-active materials with a wide range of applications including bio sensing, imaging and therapy.

  15. Single-ion conducting diblock terpolymers for lithium-ion batteries

    Science.gov (United States)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  16. Atmospheric ions and pollution

    International Nuclear Information System (INIS)

    Renoux, A.

    1977-01-01

    The various types of atmospheric ions are defined, the main sources of natural atmospheric radioactivity inducing the formation of radioactive ions in the air are then recalled. The basic equations governing the formation of these ions are indicated and the most current experimental methods used for detecting them are described (Zeleny tubes, Erikson tubes). The special properties of these ions are examined, they are particularly emphasized for the smaller ones. The existence of a discret spectrum of mobilities is shown and the presence of big negative radioactive ions is investigated. Indicative information are given on the granulometric distribution of the atmospheric radioactivity in the air, from small positive Ra A ion fixation on aerosols [fr

  17. Highly Sensitive and Selective In-Situ SERS Detection of Pb(2+), Hg(2+), and Cd(2+) Using Nanoporous Membrane Functionalized with CNTs.

    Science.gov (United States)

    Shaban, Mohamed; Galaly, A R

    2016-05-04

    Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg(2+), Cd(2+), and Pb(2+). The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb(2+) over other metal ions, where the enhancement factor is decreased from ~17 for Pb(2+) to ~12 for Hg(2+) and to ~4 for Cd(2+). Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions.

  18. Highly Sensitive and Selective In-Situ SERS Detection of Pb2+, Hg2+, and Cd2+ Using Nanoporous Membrane Functionalized with CNTs

    Science.gov (United States)

    Shaban, Mohamed; Galaly, A. R.

    2016-01-01

    Porous Anodic Alumina (PAA) membrane was functionalized with CoFe2O4 nanoparticles and used as a substrate for the growing of very long helical-structured Carbon Nanotubes (CNTs) with a diameter less than 20 nm. The structures and morphologies of the fabricated nanostructures were characterized by field emission- scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and Raman spectroscopy. By uploading the CNTs on PAA, the characteristic Raman peaks of CNTs and PAA showed 4 and 3 times enhancement, respectively, which leads to more sensitive Surface-Enhanced Raman Spectroscopy (SERS) substrates. For comparison, PAA and CNTs/PAA arrays were used as SERS substrates for the detection of Hg2+, Cd2+, and Pb2+. The proposed sensor demonstrated high sensitivity and selectivity between these heavy metal ions. CNTs/PAA sensor showed excellent selectivity toward Pb2+ over other metal ions, where the enhancement factor is decreased from ~17 for Pb2+ to ~12 for Hg2+ and to ~4 for Cd2+. Therefore, the proposed CNTs/PAA sensor can be used as a powerful tool for the determination of heavy metal ions in aqueous solutions. PMID:27143512

  19. Hooked differential mobility spectrometry apparatus and method therefore

    Science.gov (United States)

    Shvartsburg, Alexandre A [Richland, WA; Tang, Keqi [Richland, WA; Ibrahim, Yehia M [Richland, WA; Smith, Richard D [Richland, WA

    2009-02-17

    Disclosed are a device and method for improved interfacing of differential mobility spectrometry (DMS) or field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of substantially planar geometry to subsequent or preceding instrument stages. Interfacing is achieved using curved DMS elements, where a thick ion beam emitted by planar DMS analyzers or injected into them for ion filtering is compressed to the gap median by DMS ion focusing effect in a spatially inhomogeneous electric field. Resulting thinner beams are more effectively transmitted through necessarily constrained conductance limit apertures to subsequent instrument stages operated at a pressure lower than DMS, and/or more effectively injected into planar DMS analyzers. The technology is synergetic with slit apertures, slit aperture/ion funnels, and high-pressure ion funnel interfaces known in the art which allow for increasing cross-sectional area of MS inlets. The invention may be used in integrated analytical platforms, including, e.g., DMS/MS, LC/DMS/MS, and DMS/IMS/MS that could replace and/or enhance current LC/MS methods, e.g., for proteomics research.

  20. Rapid on-site TLC-SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements.

    Science.gov (United States)

    Zhu, Qingxia; Cao, Yongbing; Cao, Yingying; Chai, Yifeng; Lu, Feng

    2014-03-01

    A novel facile method has been established for rapid on-site detection of antidiabetes chemicals used to adulterate botanical dietary supplements (BDS) for diabetes. Analytes and components of pharmaceutical matrices were separated by thin-layer chromatography (TLC) then surface-enhanced Raman spectroscopy (SERS) was used for qualitative identification of trace substances on the HPTLC plate. Optimization and standardization of the experimental conditions, for example the method used for preparation of silver colloids, the mobile phase, and the concentration of colloidal silver, resulted in a very robust and highly sensitive method which enabled successful detection when the amount of adulteration was as low as 0.001 % (w/w). The method was also highly selective, enabling successful identification of some chemicals in extremely complex herbal matrices. The established TLC-SERS method was used for analysis of real BDS used to treat diabetes, and the results obtained were verified by liquid chromatography-triple quadrupole mass spectrometry (LC-MS-MS). The study showed that TLC-SERS could be used for effective separation and detection of four chemicals used to adulterate BDS, and would have good prospects for on-site qualitative screening of BDS for adulterants.

  1. Irradiation of graphene field effect transistors with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M., E-mail: marika.schleberger@uni-due.de

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm{sup 2}, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  2. Application of ion mobility spectrometry for the determination of tramadol in biological samples

    Directory of Open Access Journals (Sweden)

    Ali Sheibani

    2014-12-01

    Full Text Available In this study, a simple and rapid ion mobility spectrometry (IMS method has been described for the determination of tramadol. The operating instrumental parameters that could influence IMS were investigated and optimized (temperature; injection: 220 and IMS cell: 190°C, flow rate; carrier: 300 and drift: 600 mL/minute, voltage; corona: 2300 and drift: 7000 V, pulse width: 100 μs. Under optimum conditions, the calibration curves were linear within two orders of magnitude with R2 ≥ 0.998 for the determination of tramadol in human plasma, saliva, serum, and urine samples. The limits of detection and the limits of quantitation were between 0.1 and 0.3 and 0.3 and 1 ng/mL, respectively. The relative standard deviations were between 7.5 and 8.8%. The recovery results (90–103.9% indicate that the proposed method can be applied for tramadol analysis in different biological samples.

  3. SERS Technique for Rapid Bacterial Screening

    Science.gov (United States)

    This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating E. coli, Listeria, and Salmonella. FT-Raman and SERS spectra of both silver colloids and colloid-K3PO4 mixtures were collected and analyzed to evaluate the reproducibility and stability of silver colloids...

  4. Resolution and Assignment of Differential Ion Mobility Spectra of Sarcosine and Isomers

    Science.gov (United States)

    Berthias, Francis; Maatoug, Belkis; Glish, Gary L.; Moussa, Fathi; Maitre, Philippe

    2018-02-01

    Due to their central role in biochemical processes, fast separation and identification of amino acids (AA) is of importance in many areas of the biomedical field including the diagnosis and monitoring of inborn errors of metabolism and biomarker discovery. Due to the large number of AA together with their isomers and isobars, common methods of AA analysis are tedious and time-consuming because they include a chromatographic separation step requiring pre- or post-column derivatization. Here, we propose a rapid method of separation and identification of sarcosine, a biomarker candidate of prostate cancer, from isomers using differential ion mobility spectrometry (DIMS) interfaced with a tandem mass spectrometer (MS/MS) instrument. Baseline separation of protonated sarcosine from α- and β-alanine isomers can be easily achieved. Identification of DIMS peak is performed using an isomer-specific activation mode where DIMS- and mass-selected ions are irradiated at selected wavenumbers allowing for the specific fragmentation via an infrared multiple photon dissociation (IRMPD) process. Two orthogonal methods to MS/MS are thus added, where the MS/MS(IRMPD) is nothing but an isomer-specific multiple reaction monitoring (MRM) method. The identification relies on the comparison of DIMS-MS/MS(IRMPD) chromatograms recorded at different wavenumbers. Based on the comparison of IR spectra of the three isomers, it is shown that specific depletion of the two protonated α- and β-alanine can be achieved, thus allowing for clear identification of the sarcosine peak. It is also demonstrated that DIMS-MS/MS(IRMPD) spectra in the carboxylic C=O stretching region allow for the resolution of overlapping DIMS peaks. [Figure not available: see fulltext.

  5. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer.

    Science.gov (United States)

    Jia, Xiuling; Chen, Dunjun; Bin, Liu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-06-09

    A novel ion-imprinted electrochemical sensor based on AlGaN/GaN high electron mobility transistors (HEMTs) was developed to detect trace amounts of phosphate anion. This sensor combined the advantages of the ion sensitivity of AlGaN/GaN HEMTs and specific recognition of ion imprinted polymers. The current response showed that the fabricated sensor is highly sensitive and selective to phosphate anions. The current change exhibited approximate linear dependence for phosphate concentration from 0.02 mg L(-1) to 2 mg L(-1), the sensitivity and detection limit of the sensor is 3.191 μA/mg L(-1) and 1.97 μg L(-1), respectively. The results indicated that this AlGaN/GaN HEMT-based electrochemical sensor has the potential applications on phosphate anion detection.

  6. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    Science.gov (United States)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  7. Ser lo mismo, ser diferente: contra la masificación

    OpenAIRE

    Saldarriaga Roa, Alberto

    2005-01-01

    La sociedad moderna se ha configurado, en los dos últimos siglos, como una sociedad de masas. Esto parece ser una condición sine qua non de su estructura y operatividad. La masificación se manifiesta no sólo en el comportamiento social sino también en el

  8. SERS-Based Prognosis of Kidney Transplant Outcome

    Science.gov (United States)

    Chi, Jingmao

    Kidney transplant is the predominant procedure of all organ transplants around the world. The number of patients on the waiting list for a kidney is growing rapidly, yet the number of donations does not keep up with the fast-growing need. This thesis focuses on the surface-enhanced Raman scattering (SERS) analysis of urine samples for prognosis of kidney transplant outcome, which can potentially let patients have a more timely treatment as well as expand the organ pool for transplant. We have observed unique SERS spectral features from urine samples of kidney transplant recipients that have strong associations with the kidney acute rejection (AR) based on the analysis of urine one day after the transplant. Our ability to provide an early prognosis of transplant outcome is a significant advance over the current gold standard of clinical diagnosis, which occurs weeks or months after the surgical procedure. The SERS analysis has also been applied to urine samples from deceased kidney donors. Excellent classification ability was achieved when the enhanced PCA-LDA analysis was used to classify and identify urine samples from different cases. The sensitivity of the acute tubular necrosis (ATN) class is more than 90%, which can indicate the usable kidneys in the high failure risk category. This analysis can help clinicians identify usable kidneys which would be discarded using conventional clinic methods as high failure risk. To investigate the biomarkers that cause the unique SERS features, an HPLC-SERS-MS approach was established. The high-performance liquid chromatography (HPLC) was used to separate the urinary components to reduce the sample complexity. The mass spectrometry (MS) was used to determine the formulas and the structures of the biomarkers. The presence of 1-methyl-2-pyrrolidone (NMP) and adenine in urine samples were confirmed by both MS and SERS analysis. Succinylmonocholine, a metabolite of suxamethonium, has a potential to be the biomarker that causes

  9. Rapid screening of non-steroidal anti-inflammatory drugs illegally added in anti-rheumatic herbal supplements and herbal remedies by portable ion mobility spectrometry.

    Science.gov (United States)

    Li, Mengjiao; Ma, Haiyan; Gao, Jinglin; Zhang, Lina; Wang, Xinyu; Liu, Di; Bian, Jing; Jiang, Ye

    2017-10-25

    In this work, for the first time, a high-performance ion mobility spectrometry with electrospray ionization (ESI-HPIMS) method has been employed as a rapid screening tool for the detection of acetaminophen, ibuprofen, naproxen, diclofenac sodium and indomethacin illegally added in anti-rheumatic herbal supplements and herbal remedies. Samples were dissolved and filtered through a 0.45μm microporous membrane, then the filtrate was directly injected into the high-performance ion mobility spectrometry for analysis. Using this approach, the screening of illegal additions can be accomplished in as rapid as two to three minutes with no pretreatment required. The proposed method provided a LOD of 0.06-0.33μgmL -1 , as well as a good seperation of the five NSAIDs. The precision of the method was 0.1-0.4% (repeatability, n=6) and 0.9-3.3% (reproducibility, n=3). The proposed method appeared to be simple, rapid and highly specific, thus could be effective for the in-situ screening of NSAIDs in anti-rheumatic herbal supplements and herbal remedies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. Steps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of immobilizing ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with propylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length. All model compounds were fully characterized, pure and thermally stable up to at least 235 C, covering the requested broad range of glass transition temperatures from -78.1 C up to +6.2 C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity {sigma}{sub dc} and thus indicating comparable salt dissociation and rather independent motion of cations and ions. In general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in

  11. Ion Density Analysis of Single-Stranded DNA in Liquid Crystal

    Science.gov (United States)

    Iwabata, Kazuki; Seki, Yasutaka; Toizumi, Ryota; Shimada, Yuki; Furue, Hirokazu; Sakaguchi, Kengo

    2013-09-01

    With the widespread use of liquid crystals (LCs) in liquid crystal displays, we have looked into the application of liquid crystals in biotechnology. The purpose of the study described here is to investigate the physical properties of DNA using LCs. Synthetic oligonucleotide molecules were dispersed in MLC6884, the sample injected into antiparallel cells, and the amount of mobile ions was measured. The LC cell doped with oligonucleotide molecules showed a sequence-dependent, specific correlation between oligonucleotide concentration and the amount of mobile ions in the LC cells. In the framework of the Stokes model and polyacrylamide gel electrophoresis (PAGE) analysis, we speculate that this result arises from the difference in ion mobility, which is caused by the shape of the oligonucleotide molecule in the LC.

  12. Detection of chlorinated and brominated byproducts of drinking water disinfection using electrospray ionization-high-field asymmetric waveform ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Ells, B; Barnett, D A; Froese, K; Purves, R W; Hrudey, S; Guevremont, R

    1999-10-15

    The lower limit of detection for low molecular weight polar and ionic analytes using electrospray ionization-mass spectrometry (ESI-MS) is often severely compromised by an intense background that obscures ions of trace components in solution. Recently, a new technique, referred to as high-field asymmetric waveform ion mobility spectrometry (FAIMS), has been shown to separate gas-phase ions at atmospheric pressure and room temperature. A FAIMS instrument is an ion filter that may be tuned, by control of electrical voltages, to continuously transmit selected ions from a complex mixture. This capability offers significant advantages when FAIMS is coupled with ESI, a source that generates a wide variety of ions, including solvent clusters and salt adducts. In this report, the tandem arrangement of ESI-FAIMS-MS is used for the analysis of haloacetic acids, a class of disinfection byproducts regulated by the US EPA. FAIMS is shown to effectively discriminate against background ions resulting from the electrospray of tap water solutions containing the haloacetic acids. Consequently, mass spectra are simplified, the selectivity of the method is improved, and the limits of detection are lowered compared with conventional ESI-MS. The detection limits of ESI-FAIMS-MS for six haloacetic acids ranged between 0.5 and 4 ng/mL in 9:1 methanol/tap water (5 and 40 ng/mL in the original tap water samples) with no preconcentration, derivatization, or chromatographic separation prior to analysis.

  13. Comparison of single-ion molecular dynamics in common solvents

    Science.gov (United States)

    Muralidharan, A.; Pratt, L. R.; Chaudhari, M. I.; Rempe, S. B.

    2018-06-01

    Laying a basis for molecularly specific theory for the mobilities of ions in solutions of practical interest, we report a broad survey of velocity autocorrelation functions (VACFs) of Li+ and PF6- ions in water, ethylene carbonate, propylene carbonate, and acetonitrile solutions. We extract the memory function, γ(t), which characterizes the random forces governing the mobilities of ions. We provide comparisons controlling for the effects of electrolyte concentration and ion-pairing, van der Waals attractive interactions, and solvent molecular characteristics. For the heavier ion (PF6-), velocity relaxations are all similar: negative tail relaxations for the VACF and a clear second relaxation for γ (t ), observed previously also for other molecular ions and with n-pentanol as the solvent. For the light Li+ ion, short time-scale oscillatory behavior masks simple, longer time-scale relaxation of γ (t ). But the corresponding analysis of the solventberg Li+(H2O)4 does conform to the standard picture set by all the PF6- results.

  14. Conocer y ser en el paradigma constructivista

    Directory of Open Access Journals (Sweden)

    Jose Antonio Camargo Rodriguez

    2014-03-01

    Full Text Available Toda teoría acerca del aprendizaje se fundamenta en una interpretación del conocimiento, la cual se encuentra, a su vez, ligada a una cierta concepción de «ser». No será posible asimilar verdaderamente cualquiera de tales teorías si se ignoran, o no se consideran con el debido detenimiento, las ideas de conocer y «ser» que le sirven de base. Sc pone de presente que el constructivismo, en contraste con la teoría transmisionista de la enseñanza y el aprendizaje, predominante en la pedagogía tradicional, tiene su fundamento en la interpretación según la cual el conocer es una actividad humana en la que, a medida quo conoce, el hombre construye el «ser». Antes de todo conocimiento, las cosas no tienen un «ser»; están ahí, pero no se sabe lo que son. El «ser», quo constituye el objeto de todo conocer, aquello que el sujeto persigue a través de su conocimiento, no toes dada de antemano, ni le viene de fuera, sino quo es una elaboración quo el mismo realiza a través de su actividad cognoscitiva, un contenido de su propia conciencia. Hay, pues, una cierta paradoja entre las ideas de conocer y «ser» que sirven de fundamento al constructivismo, cuya reflexión se propone en aras de ganar una mejor comprensión, de encontrarle a este paradigma un sentido más allá de la pedagogía y la didáctica.

  15. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.

    2018-04-01

    In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.

  16. Effects of drift gas on collision cross sections of a protein standard in linear drift tube and traveling wave ion mobility mass spectrometry.

    Science.gov (United States)

    Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E

    2012-10-16

    There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.

  17. Complexation ion-exchange chromatography of some metal ions on papers impregnated with Ti(IV)-based inorganic ion exchangers.

    Science.gov (United States)

    Sharma, S D; Gupta, R

    2000-02-01

    The chromatographic behavior of 40 metal ions is studied on titanium (IV) arsenate, titanium (IV) phosphate-, titanium (IV) molybdate-, titanium(IV) tungstate-, and titanium(IV) selenite-impregnated papers in 0.1M oxalic, citric, and tartaric acid as mobile phases. Similar studies are carried out on Whatman No. 1 papers for comparison. The ion-exchange capacity of these papers is determined, and their selectivity for different cations is discussed. The mechanism of migration is explained in terms of ion-exchange, precipitation, and adsorption. The prediction of elution sequence from RF values is also checked. The average Ri is found to be almost linearly dependent on the charge of the metal ions. The effect of the pKa of complexing acids on average RF values of 3d series metal ions is explained. A number of binary and ternary separations are achieved.

  18. Enhancement of biological mass spectrometry by using separations based on changes in ion mobility (FAIMS and DMS).

    Science.gov (United States)

    Purves, Randy W

    2013-01-01

    Analysis of complex biological samples for low-level analytes by liquid chromatography-tandem mass spectrometry (LC-MS/MS) often requires additional selectivity. Differential mobility techniques (FAIMS and DMS) have been shown to enhance LC-MS/MS analyses by separating ions in the gas-phase on a millisecond timescale by use of a mechanism that is complementary to both liquid chromatography and mass spectrometry. In this overview, a simplified description of the operation of these devices is given and an example presented that illustrates the utility of FAIMS (DMS) for solving a challenging analytical assay. Important recent advances in the field, including work with gas modifiers, are presented, along with an outlook for the technology.

  19. Determination of ion mobility collision cross sections for unresolved isomeric mixtures using tandem mass spectrometry and chemometric deconvolution

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Brett [Institute of Biomedical Studies, Baylor University, Waco, TX 76798 (United States); Neumann, Elizabeth K. [Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798 (United States); Stow, Sarah M.; May, Jody C.; McLean, John A. [Department of Chemistry, Vanderbilt University, Nashville, TN 37235 (United States); Vanderbilt Institute of Chemical Biology, Nashville, TN 37235 (United States); Vanderbilt Institute for Integrative Biosystems Research and Education, Nashville, TN 37235 (United States); Center for Innovative Technology, Nashville, TN 37235 (United States); Solouki, Touradj, E-mail: Touradj_Solouki@baylor.edu [Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798 (United States)

    2016-10-05

    Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting “pure” IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810–1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) “shift factors” to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288.{sub 8} Å{sup 2}, 295.{sub 1} Å{sup 2}, 296.{sub 8} Å{sup 2}, and 300.{sub 1} Å{sup 2}; all four of these CCS values were within 1.5% of independently measured DTIM-MS values.

  20. Determination of ion mobility collision cross sections for unresolved isomeric mixtures using tandem mass spectrometry and chemometric deconvolution

    International Nuclear Information System (INIS)

    Harper, Brett; Neumann, Elizabeth K.; Stow, Sarah M.; May, Jody C.; McLean, John A.; Solouki, Touradj

    2016-01-01

    Ion mobility (IM) is an important analytical technique for determining ion collision cross section (CCS) values in the gas-phase and gaining insight into molecular structures and conformations. However, limited instrument resolving powers for IM may restrict adequate characterization of conformationally similar ions, such as structural isomers, and reduce the accuracy of IM-based CCS calculations. Recently, we introduced an automated technique for extracting “pure” IM and collision-induced dissociation (CID) mass spectra of IM overlapping species using chemometric deconvolution of post-IM/CID mass spectrometry (MS) data [J. Am. Soc. Mass Spectrom., 2014, 25, 1810–1819]. Here we extend those capabilities to demonstrate how extracted IM profiles can be used to calculate accurate CCS values of peptide isomer ions which are not fully resolved by IM. We show that CCS values obtained from deconvoluted IM spectra match with CCS values measured from the individually analyzed corresponding peptides on uniform field IM instrumentation. We introduce an approach that utilizes experimentally determined IM arrival time (AT) “shift factors” to compensate for ion acceleration variations during post-IM/CID and significantly improve the accuracy of the calculated CCS values. Also, we discuss details of this IM deconvolution approach and compare empirical CCS values from traveling wave (TW)IM-MS and drift tube (DT)IM-MS with theoretically calculated CCS values using the projected superposition approximation (PSA). For example, experimentally measured deconvoluted TWIM-MS mean CCS values for doubly-protonated RYGGFM, RMFGYG, MFRYGG, and FRMYGG peptide isomers were 288._8 Å"2, 295._1 Å"2, 296._8 Å"2, and 300._1 Å"2; all four of these CCS values were within 1.5% of independently measured DTIM-MS values.

  1. Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: insight from surface complexation modeling.

    Science.gov (United States)

    Biswas, Ashis; Gustafsson, Jon Petter; Neidhardt, Harald; Halder, Dipti; Kundu, Amit K; Chatterjee, Debashis; Berner, Zsolt; Bhattacharya, Prosun

    2014-05-15

    This study assesses the role of competing ions in the mobilization of arsenic (As) by surface complexation modeling of the temporal variability of As in groundwater. The potential use of two different surface complexation models (SCMs), developed for ferrihydrite and goethite, has been explored to account for the temporal variation of As(III) and As(V) concentration, monitored in shallow groundwater of Bengal Basin over a period of 20 months. The SCM for ferrihydrite appears as the better predictor of the observed variation in both As(III) and As(V) concentrations in the study sites. It is estimated that among the competing ions, PO4(3-) is the major competitor of As(III) and As(V) adsorption onto Fe oxyhydroxide, and the competition ability decreases in the order PO4(3-) ≫ Fe(II) > H4SiO4 = HCO3(-). It is further revealed that a small change in pH can also have a significant effect on the mobility of As(III) and As(V) in the aquifers. A decrease in pH increases the concentration of As(III), whereas it decreases the As(V) concentration and vice versa. The present study suggests that the reductive dissolution of Fe oxyhydroxide alone cannot explain the observed high As concentration in groundwater of the Bengal Basin. This study supports the view that the reductive dissolution of Fe oxyhydroxide followed by competitive sorption reactions with the aquifer sediment is the processes responsible for As enrichment in groundwater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    Science.gov (United States)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Towards metals analysis using corona discharge ionization ion mobility spectrometry.

    Science.gov (United States)

    Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein

    2016-02-25

    For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dynamic SERS nanosensor for neurotransmitter sensing near neurons.

    Science.gov (United States)

    Lussier, Félix; Brulé, Thibault; Bourque, Marie-Josée; Ducrot, Charles; Trudeau, Louis-Éric; Masson, Jean-François

    2017-12-04

    Current electrophysiology and electrochemistry techniques have provided unprecedented understanding of neuronal activity. However, these techniques are suited to a small, albeit important, panel of neurotransmitters such as glutamate, GABA and dopamine, and these constitute only a subset of the broader range of neurotransmitters involved in brain chemistry. Surface-enhanced Raman scattering (SERS) provides a unique opportunity to detect a broader range of neurotransmitters in close proximity to neurons. Dynamic SERS (D-SERS) nanosensors based on patch-clamp-like nanopipettes decorated with gold nanoraspberries can be located accurately under a microscope using techniques analogous to those used in current electrophysiology or electrochemistry experiments. In this manuscript, we demonstrate that D-SERS can measure in a single experiment ATP, glutamate (glu), acetylcholine (ACh), GABA and dopamine (DA), among other neurotransmitters, with the potential for detecting a greater number of neurotransmitters. The SERS spectra of these neurotransmitters were identified with a barcoding data processing method and time series of the neurotransmitter levels were constructed. The D-SERS nanosensor was then located near cultured mouse dopaminergic neurons. The detection of neurotransmitters was performed in response to a series of K + depolarisations, and allowed the detection of elevated levels of both ATP and dopamine. Control experiments were also performed near glial cells, showing only very low basal detection neurotransmitter events. This paper demonstrates the potential of D-SERS to detect neurotransmitter secretion events near living neurons, but also constitutes a strong proof-of-concept for the broad application of SERS to the detection of secretion events by neurons or other cell types in order to study normal or pathological cell functions.

  5. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Steve; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin Shammel

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  6. Statistical characterization of surface defects created by Ar ion bombardment of crystalline silicon

    International Nuclear Information System (INIS)

    Ghazisaeidi, M.; Freund, J. B.; Johnson, H. T.

    2008-01-01

    Ion bombardment of crystalline silicon targets induces pattern formation by the creation of mobile surface species that participate in forming nanometer-scale structures. The formation of these mobile species on a Si(001) surface, caused by sub-keV argon ion bombardment, is investigated through molecular dynamics simulation of Stillinger-Weber [Phys. Rev. B 31, 5262 (1985)] silicon. Specific criteria for identifying and classifying these mobile atoms based on their energy and coordination number are developed. The mobile species are categorized based on these criteria and their average concentrations are calculated

  7. Applications of air ion measurement in environmental diagnostics

    International Nuclear Information System (INIS)

    Tammet, H.

    1996-01-01

    The present paper is dealing with the methods employing the measuring of naturally created air ions. The amount and mobility distribution of these ions offer hidden information about air pollution. On the other hand, the natural air ions are active in some environmental processes and they should be considered as an immediate environmental factor

  8. Final Technical Report for DE-FG02-06ER15835: Chemical Imaging with 100nm Spatial Resolution: Combining High Resolution Flurosecence Microscopy and Ion Mobility Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Buratto, Steven K. [UC Santa Barbara

    2013-09-03

    We have combined, in a single instrument, high spatial resolution optical microscopy with the chemical specificity and conformational selectivity of ion mobility mass spectrometry. We discuss the design and construction of this apparatus as well as our efforts in applying this technique to thin films of molecular semiconductor materials.

  9. SER Y ESTAR CON ADJETIVOS – SIGNIFICACION DE LAS PROPOSICIONES SER Y ESTAR CON ADJETIVOS – SIGNIFICACION DE LAS PROPOSICIONES

    Directory of Open Access Journals (Sweden)

    Javier García de María

    2008-07-01

    Full Text Available Ser y estar: uno de los temas difíciles de la enseñanza/aprendizaje del español. Este trabajo expone un enfoque que recurre a la significación como hilo conductor. Por una parte, a la significación de ser y de estar como verbos, en sí mismos. Por otra, a la significación de los adjetivos. El planteamiento no es ya qué significa un determinado adjetivo con ser o con estar, sino cuál de estos verbos puede expresar su significado único o cada uno de sus significados. Sobre esta base el análisis considera, primero, los significados de ser/estar y los significados de un adjetivo dado y, segundo, los resultados significativos que arroja la relación entre verbos y adjetivo. Cuando el significado de un adjetivo se pueda expresar con los dos verbos, la elección vendrá determinada por la intencionalidad del hablante en el contexto comunicativo en que se encuentre. A partir de aquí las construcciones en las que aparecen ser y estar son tratadas como proposiciones retórico-argumentativas.Ser and estar: a difficult aspect of Spanish as a foreign language. This essay presents an approach that takes signification as guide line. On the one hand, the signification of ser and estar for their own cause; on the other hand the signification of the adjectives. The question is no longer what the meaning of a given adjective is with ser or with estar, but with which of the two verbs is it possible to express the unique meaning or each of the meanings of that adjective. Starting from this basis the approach considers first, the isolated meanings of the verbs and of the adjectives and, second, the resultant signification out of the relation between the two sides. If the meaning of a given adjective can be expressed by both verbs, the selection of the verb is determined by the intentionality of the speaker in the communicative context in which he negotiates. From this background on the syntactical constructions in which ser and estar appear are treated as

  10. The mobilies of chiral molecular cluster ions in He gas

    International Nuclear Information System (INIS)

    Saito, Kazuyuki; Matoba, Shiro; Koizumi, Tetsuo; Kojima, Takao M; Tanuma, Hajime; Shiromaru, Haruo

    2012-01-01

    We measured the mobilities of Li + -(2-butanol) and Li + -(limonene) ions in He gas at room temperature using a drift tube mass spectrometer. The zero field mobilities of Li + -(2-Butanol) and Li + -(Limonene) were much lower than the polarization limit, indicating that the geometric collision cross-sections between the cluster ions and He atom were larger than the cross-sections predicted by the presence of a polarization force alone.

  11. Ion mobility analysis of lipoproteins

    Science.gov (United States)

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2007-08-21

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  12. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    Science.gov (United States)

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting

  13. Specific Noncovalent Association of Chiral Large-Ring Hexaimines: Ion Mobility Mass Spectrometry and PM7 Study.

    Science.gov (United States)

    Troć, Anna; Gajewy, Jadwiga; Danikiewicz, Witold; Kwit, Marcin

    2016-09-05

    Ion mobility mass spectrometry and PM7 semiempirical calculations are effective complementary methods to study gas phase formation of noncovalent complexes from vaselike macrocycles. The specific association of large-ring chiral hexaimines, derived from enantiomerically pure trans-1,2-diaminocyclohexane and various isophthaldehydes, is driven mostly by CH-π and π-π stacking interactions. The isotrianglimine macrocycles are prone to form two types of aggregates: tail-to-tail and head-to-head (capsule) dimers. The stability of the tail-to-tail dimers is affected by the size and electronic properties of the substituents at the C-5 position of the aromatic ring. Electron-withdrawing groups stabilize the aggregate, whereas bulky or electron-donating groups destabilize the complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The frequency of genotypes for the SNP Ser/Ser in the studied population of Albanian women is higher in the Balkan region

    Directory of Open Access Journals (Sweden)

    Zafer Gashi

    2016-08-01

    Full Text Available In women undergoing natural cycles, just one oocyte is usually selected for ovulation, yet routine clinical techniques to support the development of multiple follicles using additional gonadotrophins result in numerous ovulations. Several parameters have been postulated as predictors of ovarian response (inhibin B, 17-β-estradiol and antiMüllerian hormone. Nevertheless, the FSH level on the day 3 of menstrual cycle remains, the most widely used biomarker due to its low cost, although, the genetic background of individuals seems to determine the response of patients to rFSH stimulation better than the stimulation design. Consequently, the variants of FSHR were explored and they may be involved in the role of FSH receptor in mediated signal transduction and with ovarian response in infertile women submitted to ovarian stimulation. In this study we examined, for the first time, the prevalence of genotype variants Asn680Ser in population Albanian women from Kosovo Dukagjin region who took part in IVF / ICSI program. The frequencies of the Asn680Ser genotype variants were as follows: Asn/Asn 22.1%, Asn/Ser 47.1%, and Ser/Ser 30.8%, respectively (Table 1. bE2 levels between the three genotype variants showed slight but statistically significant difference (p= 0.0308. No difference was also found between the genotype groups either in terms of AFC, amount of the FSH required for ovulation induction, stimulation length days, number of dominant follicles, oocyte retrieval number or endometrial thickness (Table 2. BMI was significantly higher in the Ser/Ser group as compared to those from the Asn/Ser or the Asn/Asn group (p= 0.0010 (Table 2. In the study population of Albanian women Dukagjin region of Kosovo had a higher incidence of Ser / SER genotype compared to Asn / Asn genotype. Our research results in the Albanian population differ from published data for other ethnic groups in the Balkans.

  15. Study of tryptophan assisted synthesis of gold nanoparticles by combining UV-Vis, fluorescence, and SERS spectroscopy

    International Nuclear Information System (INIS)

    Iosin, Monica; Baldeck, Patrice; Astilean, Simion

    2010-01-01

    We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV-Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.

  16. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Hamid, Ahmed M.; Cox, Jonathan T.; Garimella, Venkata BS; Smith, Richard D.

    2017-01-19

    We describe two approaches based upon ion ‘elevator’ and ‘escalator’ components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations we designed elevator and escalator components providing essentially lossless transmission in multi-level designs based upon ion current measurements. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g. in a linear section). Mass spectra for singly-charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing e.g. much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which e.g. different levels may operate at different temperatures or with different gases.

  17. Ion Elevators and Escalators in Multilevel Structures for Lossless Ion Manipulations.

    Science.gov (United States)

    Ibrahim, Yehia M; Hamid, Ahmed M; Cox, Jonathan T; Garimella, Sandilya V B; Smith, Richard D

    2017-02-07

    We describe two approaches based upon ion "elevator" and "escalator" components that allow moving ions to different levels in structures for lossless ion manipulations (SLIM). Guided by ion motion simulations, we designed elevator and escalator components based upon ion current measurements providing essentially lossless transmission in multilevel designs. The ion elevator design allowed ions to efficiently bridge a 4 mm gap between levels. The component was integrated in a SLIM and coupled to a QTOF mass spectrometer using an ion funnel interface to evaluate the m/z range transmitted as compared to transmission within a level (e.g., in a linear section). The analysis of singly charged ions of m/z 600-2700 produced similar mass spectra for both elevator and straight (linear motion) components. In the ion escalator design, traveling waves (TW) were utilized to transport ions efficiently between two SLIM levels. Ion current measurements and ion mobility (IM) spectrometry analysis illustrated that ions can be transported between TW-SLIM levels with no significant loss of either ions or IM resolution. These developments provide a path for the development of multilevel designs providing, e.g., much longer IM path lengths, more compact designs, and the implementation of much more complex SLIM devices in which, e.g., different levels may operate at different temperatures or with different gases.

  18. The IkappaB kinase family phosphorylates the Parkinson's disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling.

    Directory of Open Access Journals (Sweden)

    Nicolas Dzamko

    Full Text Available Mutations in leucine-rich repeat kinase 2 (LRRK2 are strongly associated with late-onset autosomal dominant Parkinson's disease. LRRK2 is highly expressed in immune cells and recent work points towards a link between LRRK2 and innate immunity. Here we demonstrate that stimulation of the Toll-Like Receptor (TLR pathway by MyD88-dependent agonists in bone marrow-derived macrophages (BMDMs or RAW264.7 macrophages induces marked phosphorylation of LRRK2 at Ser910 and Ser935, the phosphorylation sites that regulate the binding of 14-3-3 to LRRK2. Phosphorylation of these residues is prevented by knock-out of MyD88 in BMDMs, but not the alternative TLR adaptor protein TRIF. Utilising both pharmacological inhibitors, including a new TAK1 inhibitor, NG25, and genetic models, we provide evidence that both the canonical (IKKα and IKKβ and IKK-related (IKKε and TBK1 kinases mediate TLR agonist induced phosphorylation of LRRK2 in vivo. Moreover, all four IKK members directly phosphorylate LRRK2 at Ser910 and Ser935 in vitro. Consistent with previous work describing Ser910 and Ser935 as pharmacodynamic biomarkers of LRRK2 activity, we find that the TLR independent basal phosphorylation of LRRK2 at Ser910 and Ser935 is abolished following treatment of macrophages with LRRK2 kinase inhibitors. However, the increased phosphorylation of Ser910 and Ser935 induced by activation of the MyD88 pathway is insensitive to LRRK2 kinase inhibitors. Finally, employing LRRK2-deficient BMDMs, we present data indicating that LRRK2 does not play a major role in regulating the secretion of inflammatory cytokines induced by activation of the MyD88 pathway. Our findings provide the first direct link between LRRK2 and the IKKs that mediate many immune responses. Further work is required to uncover the physiological roles that phosphorylation of LRRK2 by IKKs play in controlling macrophage biology and to determine how phosphorylation of LRRK2 by IKKs impacts upon the use of Ser

  19. Contribution of Li-ion batteries to the environmental impact of electric vehicles.

    Science.gov (United States)

    Notter, Dominic A; Gauch, Marcel; Widmer, Rolf; Wäger, Patrick; Stamp, Anna; Zah, Rainer; Althaus, Hans-Jörg

    2010-09-01

    Battery-powered electric cars (BEVs) play a key role in future mobility scenarios. However, little is known about the environmental impacts of the production, use and disposal of the lithium ion (Li-ion) battery. This makes it difficult to compare the environmental impacts of BEVs with those of internal combustion engine cars (ICEVs). Consequently, a detailed lifecycle inventory of a Li-ion battery and a rough LCA of BEV based mobility were compiled. The study shows that the environmental burdens of mobility are dominated by the operation phase regardless of whether a gasoline-fueled ICEV or a European electricity fueled BEV is used. The share of the total environmental impact of E-mobility caused by the battery (measured in Ecoindicator 99 points) is 15%. The impact caused by the extraction of lithium for the components of the Li-ion battery is less than 2.3% (Ecoindicator 99 points). The major contributor to the environmental burden caused by the battery is the supply of copper and aluminum for the production of the anode and the cathode, plus the required cables or the battery management system. This study provides a sound basis for more detailed environmental assessments of battery based E-mobility.

  20. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.

    Science.gov (United States)

    Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata

    2011-11-21

    The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.

  1. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    International Nuclear Information System (INIS)

    Midey, Anthony J.; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-01-01

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K 0 , have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL −1 levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL −1 levels without extensive sample handling

  2. High-performance ion mobility spectrometry with direct electrospray ionization (ESI-HPIMS) for the detection of additives and contaminants in food

    Energy Technology Data Exchange (ETDEWEB)

    Midey, Anthony J., E-mail: anthony.midey@excellims.com; Camacho, Amanda; Sampathkumaran, Jayanthi; Krueger, Clinton A.; Osgood, Mark A.; Wu, Ching

    2013-12-04

    Graphical abstract: -- Highlights: •A new ESI source was built for direct ionization from syringe. •Phthalates, food dyes, and sweeteners detected with high-performance IMS. •Phthalates directly detected in cola, soy bubble tea matrices with simple treatment. -- Abstract: High-performance ion mobility spectrometry (HPIMS) with an electrospray ionization (ESI) source detected a series of food contaminants and additive compounds identified as critical to monitoring the safety of food samples. These compounds included twelve phthalate plasticizers, legal and illegal food and cosmetic dyes, and artificial sweeteners that were all denoted as detection priorities. HPIMS separated and detected the range of compounds with a resolving power better than 60 in both positive and negative ion modes, comparable to the commonly used high-performance liquid chromatography (HPLC) methods, but with most acquisition times under a minute. The reduced mobilities, K{sub 0}, have been determined, as have the linear response ranges for ESI-HPIMS, which are 1.5–2 orders of magnitude for concentrations down to sub-ng μL{sup −1} levels. At least one unique mobility peak was seen for two subsets of the phthalates grouped by the country where they were banned. Furthermore, ESI-HPIMS successfully detected low nanogram levels of a phthalate at up to 30 times lower concentration than international detection levels in both a cola matrix and a soy-based bubble tea beverage using only a simplified sample treatment. A newly developed direct ESI source (Directspray) was combined with HPIMS to detect food-grade dyes and industrial dye adulterants, as well as the sweeteners sodium saccharin and sodium cyclamate, with the same good performance as with the phthalates. However, the Directspray method eliminated sources of carryover and decreased the time between sample runs. Limits-of-detection (LOD) for the analyte standards were estimated to be sub-ng μL{sup −1} levels without extensive

  3. SERS-based application in food analytics (Conference Presentation)

    Science.gov (United States)

    Cialla-May, Dana; Radu, Andreea; Jahn, Martin; Weber, Karina; Popp, Jürgen

    2017-02-01

    To establish detection schemes in life science applications, specific and sensitive methods allowing for fast detection times are required. Due to the interaction of molecules with strong electromagnetic fields excited at metallic nanostructures, the molecular fingerprint specific Raman spectrum is increased by several orders of magnitude. This effect is described as surface-enhanced Raman spectroscopy (SERS) and became a very powerful analytical tool in many fields of application. Within this presentation, we will introduce innovative bottom-up strategies to prepare SERS-active nanostructures coated with a lipophilic sensor layer. To do so, the food colorant Sudan III, an indirect carcinogen substance found in chili powder, palm oil or spice mixtures, is detected quantitatively in the background of the competitor riboflavin as well as paprika powder extracts. The SERS-based detection of azorubine (E122) in commercial available beverages with different complexity (e.g. sugar content, alcohol concentration) illustrates the strong potential of SERS as a qualitative as well as semiquantitative prescan method in food analytics. Here, a good agreement between the estimated concentration employing SERS as well as the gold standard technique HPLC, a highly laborious method, is found. Finally, SERS is applied to detect vitamin B2 and B12 in cereals as well as the estimate the ratio of lycopene and β-carotene in tomatoes. Acknowledgement: Funding the projects "QuantiSERS" and "Jenaer Biochip Initiative 2.0" within the framework "InnoProfile Transfer - Unternehmen Region" the Federal Ministry of Education and Research, Germany (BMBF) is gratefully acknowledged.

  4. Ion-beam-mixing in metal-metal systems and metal-silicon systems

    International Nuclear Information System (INIS)

    Hung, L.

    1984-01-01

    The influence of energetic ion bombardment on the composition and structure of thin film materials and utilization of ion-beam-mixing techniques to modify interfacial reactions are reported in this thesis. The phase formation in metals by using ion mixing techniques has been studied. Upon ion irradiation of Al/Pt, Al/Pd and Al/Ni thin films, only the simplest intermetallic compounds of PdAl and NiAl were formed in crystalline structure, while the amorphous phase has been observed over a large range of composition. Ion mixing of Au/Cu bilayers resulted in the formation of substitutional solid solutions with no trace of ordered compounds. The formation of the ordered compound CuAu was achieved either by irradiation of bilayers with Ar ions at elevated substrate temperature or by irradiation of the mixed layers with He ions at relatively low temperature. In the Au/Al system several crystal compounds existed in the as-deposited samples. These phases remained crystalline or transformed into other equilibrium compounds upon ion irradiation. The results suggest that the phase formation by ion mixing is dependent on the high quench rate in the collision cascade region and the atomic mobility at the irradiation temperature. The argument can be applied to silicide forming systems. With near-noble metals, the mixed atoms are mobile and form metallurgically distinct phases. With refractory metals, amorphous phases are formed due to lack of atomic mobility

  5. Rapid label-free profiling of oral cancer biomarker proteins using nano-UPLC-Q-TOF ion mobility mass spectrometry.

    Science.gov (United States)

    Nassar, Ala F; Williams, Brad J; Yaworksy, Dustin C; Patel, Vyomesh; Rusling, James F

    2016-03-01

    It has become quite clear that single cancer biomarkers cannot in general provide high sensitivity and specificity for reliable clinical cancer diagnostics. This paper explores the feasibility of rapid detection of multiple biomarker proteins in model oral cancer samples using label-free protein relative quantitation. MS-based label-free quantitative proteomics offer a rapid alternative that bypasses the need for stable isotope containing compounds to chemically bind and label proteins. Total protein content in oral cancer cell culture conditioned media was precipitated, subjected to proteolytic digestion, and then analyzed using a nano-UPLC (where UPLC is ultra-performance liquid chromatography) coupled to a hybrid Q-Tof ion-mobility mass spectrometry (MS). Rapid, simultaneous identification and quantification of multiple possible cancer biomarker proteins was achieved. In a comparative study between cancer and noncancer samples, approximately 952 proteins were identified using a high-throughput 1D ion mobility assisted data independent acquisition (IM-DIA) approach. As we previously demonstrated that interleukin-8 (IL-8) and vascular endothelial growth factor A (VEGF-A) were readily detected in oral cancer cell conditioned media(1), we targeted these biomarker proteins to validate our approach. Target biomarker protein IL-8 was found between 3.5 and 8.8 fmol, while VEGF-A was found at 1.45 fmol in the cancer cell media. Overall, our data suggest that the nano-UPLC-IM-DIA bioassay is a feasible approach to identify and quantify proteins in complex samples without the need for stable isotope labeling. These results have significant implications for rapid tumor diagnostics and prognostics by monitoring proteins such as IL-8 and VEGF-A implicated in cancer development and progression. The analysis in tissue or plasma is not possible at this time, but the subsequent work would be needed for validation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. SERS Assay for Copper(II) Ions Based on Dual Hot-Spot Model Coupling with MarR Protein: New Cu2+-Specific Biorecognition Element.

    Science.gov (United States)

    Wang, Yulong; Su, Zhenhe; Wang, Limin; Dong, Jinbo; Xue, Juanjuan; Yu, Jiao; Wang, Yuan; Hua, Xiude; Wang, Minghua; Zhang, Cunzheng; Liu, Fengquan

    2017-06-20

    We have developed a rapid and ultrasensitive surface-enhanced Raman scattering (SERS) assay for Cu 2+ detection using the multiple antibiotic resistance regulator (MarR) as specific bridging molecules in a SERS hot-spot model. In the assay, Cu 2+ induces formation of MarR tetramers, which provide Au nanoparticle (NP)-AuNP bridges, resulting in the formation of SERS hot spots. 4-Mercaptobenzoic acid (4-MBA) was used as a Raman reporter. The addition of Cu 2+ increased the Raman intensity of 4-MBA. Use of a dual hot-spot signal-amplification strategy based on AuNP-AgNP heterodimers combined through antigen-antibody reactions increased the sensitivity of the sensing platform by 50-fold. The proposed method gave a linear response for Cu 2+ detection in the range of 0.5-1000 nM, with a detection limit of 0.18 nM, which is 5 orders of magnitude lower than the U.S. Environmental Protection Agency limit for Cu 2+ in drinking water (20 μM). In addition, all analyses can be completed in less than 15 min. The high sensitivity, high specificity, and rapid detection capacity of the SERS assay therefore provide a combined advantage over current assays.

  7. Ionization and fragmentation of water clusters by fast highly charged ions

    International Nuclear Information System (INIS)

    Adoui, L; Cassimi, A; Gervais, B; Grandin, J-P; Guillaume, L; Maisonny, R; Legendre, S; Tarisien, M; Lopez-Tarifa, P; Alcami, M; Martin, F; Politis, M-F; Penhoat, M-A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study the dissociative ionization of water clusters by impact of 12 MeV/u Ni 25+ ions. Cold target recoil ion momentum spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized water clusters. An unusual stability of the H 9 O + 4 ion is observed, which could be the signature of the so-called Eigen structure in gas-phase water clusters. From the analysis of coincidences between charged fragments, we conclude that charge mobility is very high and is responsible for the formation of protonated water clusters, (H 2 O) n H + , that dominate the mass spectrum. These results are supported by Car-Parrinello molecular dynamics and time-dependent density functional theory simulations, which also reveal the mechanisms of such mobility.

  8. Electrospray Ionization Mechanisms for Large Polyethylene Glycol Chains Studied Through Tandem Ion Mobility Spectrometry

    Science.gov (United States)

    Larriba, Carlos; de la Mora, Juan Fernandez; Clemmer, David E.

    2014-08-01

    Ion mobility mass spectrometry (IMS-MS) is used to investigate the abundance pattern, n z (m) of Poly-(ethyleneglycol) (PEG) electrosprayed from water/methanol as a function of mass and charge state. We examine n z (m) patterns from a diversity of solution cations, primarily dimethylammonium and triethylammonium. The ability of PEG chains to initially attach to various cations in the spraying chamber, and to retain them (or not) on entering the MS, provide valuable clues on the ionization mechanism. Single chains form in highly charged and extended shapes in most buffers. But the high initial charge they hold under atmospheric pressure is lost on transit to the vacuum system for large cations. In contrast, aggregates of two or more chains carry in all buffers at most the Rayleigh charge of a water drop of the same volume. This shows either that they form via Dole's charge residue mechanism, or that highly charged and extended aggregates are ripped apart by Coulombic repulsion. IMS-IMS experiments in He confirm these findings, and provide new mechanistic insights on the stability of aggregates. When collisionally activated, initially globular dimers are stable. However, slightly nonglobular dimers projecting out a linear appendix are segregated into two monomeric chains. The breakup of a charged dimer is therefore a multi-step process, similar to the Fenn-Consta polymer extrusion mechanism. The highest activation barrier is associated to the first step, where a short chain segment carrying a single charge escapes (ion-evaporates) from a charged drop, leading then to gradual field extrusion of the whole chain out of the drop.

  9. Detection of Radiation-Exposure Biomarkers by Differential Mobility Prefiltered Mass Spectrometry (DMS-MS).

    Science.gov (United States)

    Coy, Stephen L; Krylov, Evgeny V; Schneider, Bradley B; Covey, Thomas R; Brenner, David J; Tyburski, John B; Patterson, Andrew D; Krausz, Kris W; Fornace, Albert J; Nazarov, Erkinjon G

    2010-04-15

    Technology to enable rapid screening for radiation exposure has been identified as an important need, and, as a part of a NIH / NIAD effort in this direction, metabolomic biomarkers for radiation exposure have been identified in a recent series of papers. To reduce the time necessary to detect and measure these biomarkers, differential mobility spectrometry - mass spectrometry (DMS-MS) systems have been developed and tested. Differential mobility ion filters preselect specific ions and also suppress chemical noise created in typical atmospheric-pressure ionization sources (ESI, MALDI, and others). Differential-mobility-based ion selection is based on the field dependence of ion mobility, which, in turn, depends on ion characteristics that include conformation, charge distribution, molecular polarizability, and other properties, and on the transport gas composition which can be modified to enhance resolution. DMS-MS is able to resolve small-molecule biomarkers from nearly-isobaric interferences, and suppresses chemical noise generated in the ion source and in the mass spectrometer, improving selectivity and quantitative accuracy. Our planar DMS design is rapid, operating in a few milliseconds, and analyzes ions before fragmentation. Depending on MS inlet conditions, DMS-selected ions can be dissociated in the MS inlet expansion, before mass analysis, providing a capability similar to MS/MS with simpler instrumentation. This report presents selected DMS-MS experimental results, including resolution of complex test mixtures of isobaric compounds, separation of charge states, separation of isobaric biomarkers (citrate and isocitrate), and separation of nearly-isobaric biomarker anions in direct analysis of a bio-fluid sample from the radiation-treated group of a mouse-model study. These uses of DMS combined with moderate resolution MS instrumentation indicate the feasibility of field-deployable instrumentation for biomarker evaluation.

  10. Graphene-Plasmonic Hybrid Platform for Label-Free SERS Biomedical Detection

    Science.gov (United States)

    Wang, Pu

    Surface Enhanced Raman Scattering (SERS) has attracted explosive interest for the wealth of vibrational information it provides with minimal invasive effects to target analyte. Nanotechnology, especially in the form of noble metal nanoparticles exhibit unique electromagnetic and chemical characteristics that are explored to realize ultra-sensitive SERS detection in chemical and biological analysis. Graphene, atom-thick carbon monolayer, exhibits superior chemical stability and bio-compatibility. A combination of SERS-active metal nanostructures and graphene will create various synergies in SERS. The main objective of this research was to exploit the applications of the graphene-Au tip hybrid platform in SERS. The hybrid platform consists of a periodic Au nano-pyramid substrate to provide reproducible plasmonic enhancement, and the superimposed monolayer graphene sheet, serving as "built-in" Raman marker. Extensive theoretical and experimental studies were conducted to determine the potentials of the hybrid platform as SERS substrate. Results from both Finite-Domain Time-Domain (FDTD) numerical simulation and Raman scattering of graphene suggested that the hybrid platform boosted a high density of hotspots yielding 1000 times SERS enhancement of graphene bands. Ultra-high sensitivity of the hybrid platform was demonstrated by bio-molecules including dye, protein and neurotransmitters. Dopamine and serotonin can be detected and distinguished at 10-9 M concentration in the presence of human body fluid. Single molecule detection was obtained using a bi-analyte technique. Graphene supported a vibration mode dependent SERS chemical enhancement of ˜10 to the analyte. Quantitative evaluation of hotspots was presented using spatially resolved Raman mapping of graphene SERS enhancement. Graphene plays a crucial role in quantifying SERS hotspots and paves the path for defining SERS EF that could be universally applied to various SERS systems. A reproducible and statistically

  11. Diffusion of lithium ions in argon

    International Nuclear Information System (INIS)

    Stefansson, T.

    1983-01-01

    Published measurements of transport coefficients for Li + ions in argon seem to be limited to the mobility and the longitudinal diffusion coefficient in the field-to-density ratio range at and below 200 Td 1-5 . In this paper results are presented from measurements of the transverse diffusion coefficient to mobility ratio (Dsub(T)/μ) for Li + ions in argon in the field-to-density ratio range 10 < E/n < 800 Td. The measurements were made with a drift tube mass spectrometer at a gas temperature of 295 +- 1 K using the modified Townsend method of Skullerud. The experimental curve is compared to a calculation by H.R. Skullerud in the same proceedings. (G.Q.)

  12. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    International Nuclear Information System (INIS)

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2004-01-01

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm 2 was obtained under the same conditions that gave 57 45 mA/cm 2 of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl - was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm 2 , sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source

  13. Ecofriendly Synthesis of Anisotropic Gold Nanoparticles: A Potential Candidate of SERS Studies

    Directory of Open Access Journals (Sweden)

    Ujjwala Gaware

    2012-01-01

    Full Text Available Ecofriendly synthesis of nanoparticles has been inspiring to nanotechnologists especially for biomedical applications. Moreover, anisotropic particle synthesis is an attractive option due to decreased symmetry of such particles often leads to new and unusual chemical and physical behaviour. This paper reports a single-step room-temperature synthesis of gold nanotriangles using a cheap bioresource of reducing and stabilizing agent Piper betle leaf extract. On treating aqueous chloroauric acid solution with Piper betle leaf extract, after 12 hr, complete reduction of the chloroaurate ions was observed leading to the formation of flat and single crystalline gold nanotriangles. These gold nanotriangles can be exploited in photonics, optical coating, optoelectronics, magnetism, catalysis, chemical sensing, and so forth, and are a potential candidate of SERS studies.

  14. Effect of mobilities and electric field on the stability of magnetized positive column

    International Nuclear Information System (INIS)

    Dogra, V.K.; Uberoi, M.S.

    1983-01-01

    The effect of ratio of the mobilities of electrons and ions and non-dimensional electric field, on the stability of magnetized positive column for all unstable modes is studied in a self-consistent formulation for the perturbations of plasma density and electric potential. The minimum non-dimensional electric field at which magnetized positive column becomes unstable for different ratios of the mobilities of electrons and ions is also investigated. (author)

  15. IMS2 – An integrated medical software system for early lung cancer detection using ion mobility spectrometry data of human breath

    Directory of Open Access Journals (Sweden)

    Baumbach Jan

    2007-12-01

    Full Text Available IMS2 is an Integrated Medical Software system for the analysis of Ion Mobility Spectrometry (IMS data. It assists medical staff with the following IMS data processing steps: acquisition, visualization, classification, and annotation. IMS2 provides data analysis and interpretation features on the one hand, and also helps to improve the classification by increasing the number of the pre-classified datasets on the other hand. It is designed to facilitate early detection of lung cancer, one of the most common cancer types with one million deaths each year around the world.

  16. Theory of longitudinal plasma waves with allowance for ion mobility

    International Nuclear Information System (INIS)

    Kichigin, G.N.

    2003-01-01

    One studies propagation of stationary longitudinal plasma wave of high amplitude in collisionless cold plasma with regard to motion of electrons and ions in a wave. One derived dependences of amplitudes of electric field, potential, frequency and length of wave on the speed of wave propagation and on the parameter equal to the ration of ion mass to electron mass. Account of motion of ions in the wave with maximum possible amplitude resulted in nonmonotone dependence of frequency on wave speed [ru

  17. Ser lugar e ser território como experiências do ser-no-mundo: um exercício de existencialismo geográfico

    Directory of Open Access Journals (Sweden)

    Angelo Serpa

    2017-10-01

    Full Text Available Este ensaio busca aprofundar uma abordagem existencialista dos conceitos de lugar e território assumindo o pressuposto de que eles remetem, antes de tudo, a experiências geográficas que ora se distinguem, ora se aproximam e carregam em si a marca do espaço vivido. Para esta análise, parte-se do conceito de geograficidade – a base pré-consciente e pré-conceitual da geografia – assumindo também que, antes de qualquer conceituação ou estratégia de representação conceitual, as pessoas são seres essencialmente espaciais e que viver é produzir/experienciar espaço. O ensaio está dividido em seis seções: a introdução, uma problematização da dialética entre interior e exterior e seu desdobramento numa abordagem de como lugar e território se exprimem como modos geográficos de existência no espaço público; nas duas últimas seções, reflete-se sobre o papel do corpo nos processos de apropriação do espaço e sobre como ser lugar e ser território se exprimem como facetas do ser-no-mundo em seu sentido mais político.

  18. Evaluación in vitro de la rugosidad superficial y la alteración de color de dos tipos de ionómeros de vidrio, luego de ser sometidos a diferentes bebidas

    Directory of Open Access Journals (Sweden)

    Marisol Carrillo Tabakman

    2017-07-01

    Full Text Available El objetivo de este estudio in vitro fue analizar la rugosidad superficial y la alteración de color de dos tipos de ionómeros vítreos luego de ser sometidos a diferentes soluciones. En una matriz de teflón (8x2mm, fueron confeccionados 60 cuerpos de prueba con 2 tipos de ionómeros fotopolimerizables: 30 para el Fuji II LC (M1 y otros 30 para el Ketac N100 (M2. El aparato utilizado fue el Elipar Freelight 2 3M Espe. La fotopolimerización se realizó por 20 segundos cada cuerpo de prueba. Luego de la confección, los sesenta cuerpos de prueba fueron mantenidos en gasa humedecida por 24 hs en estufa a 37ºC y luego se clasificaron y luego se dividieron en tres grupos de 10 cada uno para ser sometidos a 3 tipos diferentes de soluciones: agua destilada (S1, bebida carbonatada (S2 y jugo cítrico (S3 por 90 segundos diariamente durante 14 días. Las lecturas de la alteración de color, obtenidas a través de un colorímetro, y las de rugosidad superficial, realizadas por medio del rugosímetro, fueron realizadas a las 48 hs. (T0 y luego a los 14 días (T1. Los resultados obtenidos fueron sometidos al test ANOVA y Tukey (p≤0.05. Los resultados mostraron que; a La bebida carbonatada (S2 tuvo mayor media de alteración de color (ΔE* en relación a las otras soluciones, b que Ketac N100 (M2 tuvo mayor media con respecto a la rugosidad superficial en la interacción material por solución. Por tanto, se concluyó que trascurrido determinado período de tiempo las propiedades estéticas y físico-mecánicas de los materiales estudiados se ven afectados.

  19. Synthesis of silver nanoparticles in the presence of diethylaminoethyl-dextran hydrochloride polymer and their SERS activity

    Science.gov (United States)

    Mikac, L.; Jurkin, T.; Štefanić, G.; Ivanda, Mile; Gotić, Marijan

    2017-09-01

    The silver nanoparticles (AgNPs) were synthesized upon γ-irradiation of AgNO3 precursor suspensions in the presence of diethylaminoethyl-dextran hydrochloride (DEAE-dextran) cationic polymer as a stabilizer. The dose rate of γ-irradiation was 32 kGy h-1, and absorbed doses were 30 and 60 kGy. The γ-irradiation of the precursor suspension at acidic or neutral pH conditions produced predominantly the silver(I) chloride (AgCl) particles, because of the poor solubility of AgCl already present in the precursor suspension. The origin of AgCl in the precursor suspension was due to the presence of chloride ions in DEAE-dextran hydrochloride polymer. The addition of ammonia to the precursor suspension dissolved the AgCl precipitate, and the γ-irradiation of such colourless suspension at alkali pH produced a stable aqueous suspension with rather uniform spherical AgNPs of approximately 30 nm in size. The size of AgNPs was controlled by varying the AgNO3/DEAE-dextran concentration in the suspensions. The surface-enhanced Raman scattering (SERS) activities of synthesized AgNPs were examined using organic molecules rhodamine 6G, pyridine and 4-mercaptobenzoic acid (4-MBA). The NaBH4 was used as SERS aggregation agent. The SERS results have shown that in the presence of synthesized AgNPs, it was possible to detect low concentration of tested compounds.

  20. Diffusion, electrical mobility and ionic interactions in molten Salts

    International Nuclear Information System (INIS)

    Lantelme, F.

    1965-05-01

    The diffusion and the electrical migration of ions in the molten alkali nitrates LiNO 3 , NaNO 3 and KNO 3 and in their mixtures have been examined using stable or radio-active isotope indicators. This experimental works shows that there are large differences in the diffusion coefficients and the electric mobilities when they are compared using the Nernst-Einstein formula. An interpretive model has been put forward which shows the role played by poly-ionic displacements: in a salt AC the particles moving are not only the free ions A - and C + but also the groups [A n C m ] (m-n)+ ... These results confirm the importance of electrostatic attraction and of the polarizability of the ions. This mechanisms, furthermore, explains the inversions of electrical mobilities often observed in liquid ionic media. (author) [fr

  1. The fabrication of a back-gated high electron mobility transistor - a novel approach using MBE regrowth on an in situ ion beam patterned epilayer

    International Nuclear Information System (INIS)

    Linfield, E.H.; Jones, G.A.C.; Ritchie, D.A.; Thompson, J.H.

    1993-01-01

    A new technique for the fabrication of GaAs/AlGaAs back-gated high electron mobility transistors (HEMTs) is described in this paper. First we demonstrate that a dose of > 2 x 10 13 cm -2 Ga ions at an energy of 10 keV can be used to damage a 67 nm n + GaAs layer, rendering the implanted regions non-conducting. After implantation the epilayer has a 4 K sheet resistivity which is increased by a factor of ∼ 10 7 when compared with the original unimplanted value. This isolation procedure is then used to form a patterned back-gated HEMT by MBE regrowth on top of an in situ ion-implanted n + GaAs layer. The resulting structure is designed so that the back gate is rendered highly resistive under the regions where the ohmic contacts to the two-dimensional electron gas (2DEG) are formed, thus making shallow ohmic contacts unnecessary. The results obtained characteristic of a high-quality 2DEG with mobility limited by remote ionized impurity scattering. This technique can therefore be used as a means of controlling the 2DEG carrier concentration, whilst leaving the surface of the HEMT structure free for conventional lithographic processing. (Author)

  2. Security effectiveness review (SER)

    International Nuclear Information System (INIS)

    Kouprianova, I.; Ek, D.; Showalter, R.; Bergman, M.

    1998-01-01

    As part of the on-going DOE/Russian MPC and A activities at the Institute of Physics and Power Engineering (IPPE) and in order to provide a basis for planning MPC and A enhancements, an expedient method to review the effectiveness of the MPC and A system has been adopted. These reviews involve the identification of appropriate and cost-effective enhancements of facilities at IPPE. This effort requires a process that is thorough but far less intensive than a traditional vulnerability assessment. The SER results in a quick assessment of current and needed enhancements. The process requires preparation and coordination between US and Russian analysts before, during, and after information gathering at the facilities in order that the analysis is accurate, effective, and mutually agreeable. The goal of this paper is to discuss the SER process, including the objectives, time scale, and lessons learned at IPPE

  3. Ion transport in sub-5-nm graphene nanopores

    International Nuclear Information System (INIS)

    Suk, Myung E.; Aluru, N. R.

    2014-01-01

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors

  4. and Au nanoparticles for SERS applications

    Directory of Open Access Journals (Sweden)

    Fazio Enza

    2018-01-01

    Full Text Available The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  5. Mercury-induced fragmentation of n-decane and n-undecane in positive mode ion mobility spectrometry.

    Science.gov (United States)

    Gunzer, F

    2015-09-21

    Ion mobility spectrometry is a well-known technique for trace gas analysis. Using soft ionization techniques, fragmentation of analytes is normally not observed, with the consequence that analyte spectra of single substances are quite simple, i.e. showing in general only one peak. If the concentration is high enough, an extra cluster peak involving two analyte molecules can often be observed. When investigating n-alkanes, different results regarding the number of peaks in the spectra have been obtained in the past using this spectrometric technique. Here we present results obtained when analyzing n-alkanes (n-hexane to n-undecane) with a pulsed electron source, which show no fragmentation or clustering at all. However, when investigating a mixture of mercury and an n-alkane, a situation quite typical in the oil and gas industry, a strong fragmentation and cluster formation involving these fragments has been observed exclusively for n-decane and n-undecane.

  6. Coupling laser desorption with gas chromatography and ion mobility spectrometry for improved olive oil characterisation.

    Science.gov (United States)

    Liedtke, Sascha; Seifert, Luzia; Ahlmann, Norman; Hariharan, Chandrasekhara; Franzke, Joachim; Vautz, Wolfgang

    2018-07-30

    The investigation of volatile compounds in the headspace of liquid samples can often be used for detailed and non-destructive characterisation of the sample. This has great potential for process control or the characterisation of food samples, such as olive oil. We investigated, for the first time, the plume of substances released from olive oil droplets by laser desorption in a feasibility study and applied ion mobility spectrometry coupled to rapid GC pre-separation to enhance selectivity. Our investigation demonstrated that significantly more substances can be detected and quantified via laser desorption than in the usual headspace, enabling a rapid (5-10 min), sensitive (low ng/g range) and comprehensive analysis of the sample, with the potential for quality control and fraud identification. Therefore, laser desorption provides a useful sampling tool for characterising liquids in many applications, requiring only a few µL of sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Native Mass Spectrometry, Ion mobility, and Collision-Induced Unfolding Categorize Malaria Antigen/Antibody Binding

    Science.gov (United States)

    Huang, Yining; Salinas, Nichole D.; Chen, Edwin; Tolia, Niraj H.; Gross, Michael L.

    2017-09-01

    Plasmodium vivax Duffy Binding Protein (PvDBP) is a promising vaccine candidate for P. vivax malaria. Recently, we reported the epitopes on PvDBP region II (PvDBP-II) for three inhibitory monoclonal antibodies (2D10, 2H2, and 2C6). In this communication, we describe the combination of native mass spectrometry and ion mobility (IM) with collision induced unfolding (CIU) to study the conformation and stabilities of three malarial antigen-antibody complexes. These complexes, when collisionally activated, undergo conformational changes that depend on the location of the epitope. CIU patterns for PvDBP-II in complex with antibody 2D10 and 2H2 are highly similar, indicating comparable binding topology and stability. A different CIU fingerprint is observed for PvDBP-II/2C6, indicating that 2C6 binds to PvDBP-II on an epitope different from 2D10 and 2H2. This work supports the use of CIU as a means of classifying antigen-antibody complexes by their epitope maps in a high throughput screening workflow. [Figure not available: see fulltext.

  8. Carbon-ion radiation enhances migration ability and invasiveness of the pancreatic cancer cell, PANC-1, in vitro.

    Science.gov (United States)

    Fujita, Mayumi; Otsuka, Yoshimi; Imadome, Kaori; Endo, Satoshi; Yamada, Shigeru; Imai, Takashi

    2012-04-01

    Pancreatic cancer is an aggressive disease that responds poorly to conventional photon radiotherapy. Carbon-ion (C-ion) radiation has advantages compared with conventional radiotherapy, because it enables more accurate dose distribution and more efficient tumor cell killing. To elucidate the effects of local radiotherapy on the characteristics of metastatic tumors, it is necessary to understand the nature of motility in irradiated tumor cells; this will, in turn, facilitate the development of effective strategies to counter tumor cell motility, which can be used in combination with radiotherapy. The aim of the present study was to examine the invasiveness of pancreatic cancer cells exposed to C-ion irradiation. We found that C-ion irradiation suppressed the migration of MIAPaCa-2, BxPC-3 and AsPC-1; diminished the invasiveness of MIAPaCa-2; and tended to reduce the invasion of BxPC-3 and AsPC-1. However, C-ion irradiation increased the invasiveness of PANC-1 through the activation of plasmin and urokinase-type plasiminogen activator. Administration of serine protease inhibitor (SerPI) alone failed to reduce C-ion-induced PANC-1 invasiveness, whereas the combination of SerPI and Rho-associated coiled-coil forming protein kinase (ROCK) inhibitor suppressed it. Furthermore, PANC-1 showed mesenchymal-amoeboid transition when we treated with SerPI alone. In conclusion, C-ion irradiation is effective in suppressing the invasive potential of several pancreatic tumor cell lines, but not PANC-1; this is the first study showing that C-ion irradiation induces the invasive potential of a tumor cell line. Further in vivo studies are required to examine the therapeutic effectiveness of radiotherapy combined with inhibitors of both mesenchymal and amoeboid modes of tumor cell motility. © 2011 Japanese Cancer Association.

  9. Computational methods for metabolomic data analysis of ion mobility spectrometry data-reviewing the state of the art

    DEFF Research Database (Denmark)

    Hauschild, Anne-Christin; Schneider, Till; Pauling, Josch

    2012-01-01

    that MCC/IMS coupled with sophisticated computational methods has the potential to successfully address a broad range of biomedical questions. While we can solve most of the data pre-processing steps satisfactorily, some computational challenges with statistical learning and model validation remain.......Ion mobility spectrometry combined with multi-capillary columns (MCC/IMS) is a well known technology for detecting volatile organic compounds (VOCs). We may utilize MCC/IMS for scanning human exhaled air, bacterial colonies or cell lines, for example. Thereby we gain information about the human...... of computational approaches for analyzing the huge amount of emerging data sets. Here, we will review the state of the art and highlight existing challenges. First, we address methods for raw data handling, data storage and visualization. Afterwards we will introduce de-noising, peak picking and other pre...

  10. Dynamic phosphorylation of RelA on Ser42 and Ser45 in response to TNFα stimulation regulates DNA binding and transcription.

    Science.gov (United States)

    Lanucara, Francesco; Lam, Connie; Mann, Jelena; Monie, Tom P; Colombo, Stefano A P; Holman, Stephen W; Boyd, James; Dange, Manohar C; Mann, Derek A; White, Michael R H; Eyers, Claire E

    2016-07-01

    The NF-κB signalling module controls transcription through a network of protein kinases such as the IKKs, as well as inhibitory proteins (IκBs) and transcription factors including RelA/p65. Phosphorylation of the NF-κB subunits is critical for dictating system dynamics. Using both non-targeted discovery and quantitative selected reaction monitoring-targeted proteomics, we show that the cytokine TNFα induces dynamic multisite phosphorylation of RelA at a number of previously unidentified residues. Putative roles for many of these phosphorylation sites on RelA were predicted by modelling of various crystal structures. Stoichiometry of phosphorylation determination of Ser45 and Ser42 revealed preferential early phosphorylation of Ser45 in response to TNFα. Quantitative analyses subsequently confirmed differential roles for pSer42 and pSer45 in promoter-specific DNA binding and a role for both of these phosphosites in regulating transcription from the IL-6 promoter. These temporal dynamics suggest that RelA-mediated transcription is likely to be controlled by functionally distinct NF-κB proteoforms carrying different combinations of modifications, rather than a simple 'one modification, one effect' system. © 2016 The Authors.

  11. Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots

    Science.gov (United States)

    Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil

    2018-05-01

    Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).

  12. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    International Nuclear Information System (INIS)

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  13. Single molecule SERS: Perspectives of analytical applications

    Czech Academy of Sciences Publication Activity Database

    Vlčková, B.; Pavel, I.; Sládková, M.; Šišková, K.; Šlouf, Miroslav

    834-836, - (2007), s. 42-47 ISSN 0022-2860. [European Congress on Molecular Spectroscopy /28./. Istanbul, 03.09.2006-08.09.2006] R&D Projects: GA ČR GA203/04/0688 Institutional research plan: CEZ:AV0Z40500505 Keywords : surface-enhanced Raman scattering (SERS) * surface-enhanced resonance Raman (SERRS) * single molecule SERS Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.486, year: 2007

  14. Development of SERS active fibre sensors

    International Nuclear Information System (INIS)

    Polwart, Ewan

    2002-01-01

    Surface-enhanced Raman scattering (SERS) is sensitive and selective and when coupled with fibre-optics could potentially produce an effective chemical sensing system. This thesis concerns the development of a single-fibre-based sensor, with an integral SERS-active substrate. A number of different methods for the manufacture of SERS-active surfaces on glass substrates were investigated and compared. The immobilisation of metal nanoparticles on glass functionalised with (3-aminopropyl)trimethoxysilane emerged as a suitable approach for the production of sensors. Substrates prepared by this approach were characterised using UV-visible spectroscopy, electron microscopy and Raman mapping. It was found that exposure of substrates to laser radiation led to a decrease in the signal recorded from adsorbed analytes. This speed of the decrease was shown to depend on the analyte, and the exciting wavelength and power. SERS-active fibre sensors were produced by immobilisation of silver nanoparticles at the distal end of a (3-aminopropyl)trimethoxysilane-derivatised optical fibre. These sensors were used to obtain spectra with good signal to noise ratios from 4-(benzotriazol-5-ylazo)-3,5-dimethoxyphenylamine and crystal violet. Sensing of dyes in effluent was also investigated. The development of sensors for the measurement of pH, by treating the SERS-active fibre tip with pH sensitive dyes is also described. Spectral changes were observed with these sensors as a response to the pH. Partial least squares regression was used to produce linear calibration models for the pH range 5-11 from which it was possible to predict the pH with an accuracy of ∼0.2 pH units. Some of the limitations of these sensors were explored. The feasibility of using these sensors for measurement of oxygen and thiols, was investigated. The measurement of oxygen using methylene blue as a transducer was demonstrated. Two transduction methodologies--reactions with iron porphyrins and pyrrole-2,5-diones

  15. Advanced Gas Sensors Using SERS-Activated Waveguides

    Science.gov (United States)

    Lascola, Robert; McWhorter, Scott; Murph, Simona Hunyadi

    2010-08-01

    This contribution describes progress towards the development and testing of a functionalized capillary that will provide detection of low-concentration gas-phase analytes through SERS. Measurement inside a waveguide allows interrogation of a large surface area, potentially overcoming the short distance dependence of the SERS effect. The possible use of Raman spectroscopy for gas detection is attractive for IR-inactive molecules or scenarios where infrared technology is inconvenient. However, the weakness of Raman scattering limits the use of the technique to situations where low detection limits are not required or large gas pressures are present. With surface-enhanced Raman spectroscopy (SERS), signal enhancements of 106 are often claimed, and higher values are seen in specific instances. However, most of the examples of SERS analysis are on liquid-phase samples, where the molecular density is high, usually combined with some sort of sample concentration at the surface. Neither of these factors is present in gas-phase samples. Because the laser is focused to a small point in the typical experimental setup, and the spatial extent of the effect above the surface is small (microns), the excitation volume is miniscule. Thus, exceptionally large enhancements are required to generate a signal comparable to that obtained by conventional Raman measurements. A reflective waveguide offers a way to increase the interaction volume of the laser with a SERS-modified surface. The use of a waveguide to enhance classical Raman measurements was recently demonstrated by S.M. Angel and coworkers, who obtained 12- to 30-fold sensitivity improvements for nonabsorbing gases (CO2, CH4) with a silvered capillary (no SERS enhancement). Shi et al.. demonstrated 10-to 100-fold enhancement of aqueous Rhodamine 6G in a capillary coated with silver nanoparticles. They observed enhancements of 10- to 100-fold compared to direct sampling, but this relied on a "double substrate", which required

  16. Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry

    Science.gov (United States)

    Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.

  17. Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement.

    Science.gov (United States)

    Liu, Weiyu; Miao, Peng; Xiong, Lu; Du, Yunchen; Han, Xijiang; Xu, Ping

    2014-11-07

    We demonstrate here a facile fabrication of n-dodecyl mercaptan-modified superhydrophobic Ag nanostructures on polyaniline membranes for molecular detection based on SERS technique, which combines the superhydrophobic condensation effect and the high enhancement factor. It is calculated that the as-fabricated superhydrophobic substrate can exhibit a 21-fold stronger molecular condensation, and thus further amplifies the SERS signal to achieve more sensitive detection. The detection limit of the target molecule, methylene blue (MB), on this superhydrophobic substrate can be 1 order of magnitude higher than that on the hydrophilic substrate. With high reproducibility, the feasibility of using this SERS-active superhydrophobic substrate for quantitative molecular detection is explored. A partial least squares (PLS) model was established for the quantification of MB by SERS, with correlation coefficient R(2) = 95.1% and root-mean-squared error of prediction (RMSEP) = 0.226. We believe this superhydrophobic SERS substrate can be widely used in trace analysis due to its facile fabrication, high signal reproducibility and promising SERS performance.

  18. Hall mobility of free charge carriers in highly compensated p-Germanium

    International Nuclear Information System (INIS)

    Gavrilyuk, V.Yi.; Kirnas, Yi.G.; Balakyin, V.D.

    2000-01-01

    Hall mobility of free charge carriers in initial detectors Ge (Ga) is studied. It is established that an increase in the compensation factor results in the enlargement of Hall mobility in germanium highly compensated by introduction of Li ions during their drift in an electrical field

  19. Cyanuric acid hydrolase from Azorhizobium caulinodans ORS 571: crystal structure and insights into a new class of Ser-Lys dyad proteins.

    Directory of Open Access Journals (Sweden)

    Seunghee Cho

    Full Text Available Cyanuric acid hydrolase (CAH catalyzes the hydrolytic ring-opening of cyanuric acid (2,4,6-trihydroxy-1,3,5-triazine, an intermediate in s-triazine bacterial degradation and a by-product from disinfection with trichloroisocyanuric acid. In the present study, an X-ray crystal structure of the CAH-barbituric acid inhibitor complex from Azorhizobium caulinodans ORS 571 has been determined at 2.7 Å resolution. The CAH protein fold consists of three structurally homologous domains forming a β-barrel-like structure with external α-helices that result in a three-fold symmetry, a dominant feature of the structure and active site that mirrors the three-fold symmetrical shape of the substrate cyanuric acid. The active site structure of CAH is similar to that of the recently determined AtzD with three pairs of active site Ser-Lys dyads. In order to determine the role of each Ser-Lys dyad in catalysis, a mutational study using a highly sensitive, enzyme-coupled assay was conducted. The 10⁹-fold loss of activity by the S226A mutant was at least ten times lower than that of the S79A and S333A mutants. In addition, bioinformatics analysis revealed the Ser226/Lys156 dyad as the only absolutely conserved dyad in the CAH/barbiturase family. These data suggest that Lys156 activates the Ser226 nucleophile which can then attack the substrate carbonyl. Our combination of structural, mutational, and bioinformatics analyses differentiates this study and provides experimental data for mechanistic insights into this unique protein family.

  20. Selective peptide bond hydrolysis of cysteine peptides in the presence of Ni(II) ions.

    Science.gov (United States)

    Protas, Anna Maria; Bonna, Arkadiusz; Kopera, Edyta; Bal, Wojciech

    2011-01-01

    Recently, we described a sequence-specific R1-(Ser/Thr) peptide bond hydrolysis reaction in peptides of a general sequence R1-(Ser/Thr)-Xaa-His-Zaa-R, which occurs in the presence of Ni(II) ions [A. Krężel, E. Kopera, A. M. Protas, A. Wysłouch-Cieszyńska, J. Poznański, W. Bal, J. Am. Chem. Soc. 132 (2010) 3355-3366]. In this study we explored the possibility of substituting the Ser/Thr and the His residues, necessary for the reaction to occur according to the Ni(II)-assisted acyl shift reaction mechanism, with Cys residues. We tested this concept by synthesizing three homologous peptides: R1-Ser-Arg-Cys-Trp-R2, R1-Cys-Arg-His-Trp-R2, and R1-Cys-Arg-Cys-Trp-R2, and the R1-Ser-Arg-His-Trp-R2 peptide as comparator (R1 and R2 were CH3CO-Gly-Ala and Lys-Phe-Leu-NH2, respectively). We studied their hydrolysis in the presence of Ni(II) ions, under anaerobic conditions and in the presence of TCEP as a thiol group antioxidant. We measured hydrolysis rates using HPLC and identified products of reaction using electrospray mass spectrometry. Potentiometry and UV-vis spectroscopy were used to assess Ni(II) complexation. We demonstrated that Ni(II) is not compatible with the Cys substitution of the Ser/Thr acyl acceptor residue, but the substitution of the Ni(II) binding His residue with a Cys yields a peptide susceptible to Ni(II)-related hydrolysis. The relatively high activity of the R1-Ser-Arg-Cys-Trp-R2 peptide at pH 7.0 suggests that this peptide and its Cys-containing analogs might be useful in practical applications of Ni(II)-dependent peptide bond hydrolysis. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. SERS substrates for in-situ biosensing (Conference Presentation)

    Science.gov (United States)

    Venugopalan, Priyamvada; Quilis, Nestor; Jakub, Dostalek; Wolfgang, Knoll

    2017-06-01

    Abstract: Recent years have seen a rapid progress in the field of surface-enhanced Raman spectroscopy (SERS) which is attributed to the thriving field of plasmonics [1]. SERS is a susceptible technique that can address basic scientific questions and technological problems. In both cases, it is highly dependent upon the plasmonic substrate, where excitation of the localized surface plasmon resonance enhances the vibrational scattering signal of the analyte molecules adsorbed on to the surface [2]. In this work, using finite difference time domain (FDTD) method we investigate the optical properties of plasmonic nanostructures with tuned plasmonic resonances as a function of dielectric environment and geometric parameters. An optimized geometry will be discussed based on the plasmonic resonant position and the SERS intensity. These SERS substrates will be employed for the detection of changes in conformation caused by interactions between an aptamer and analyte molecules. This will be done by using a microfluidic channel designed within the configuration of the lab-on-a-chip concept based on the intensity changes of the SERS signal. More efficient and reproducible results are obtained for such a quantitative measurement of analytes at low concentration levels. We will also demonstrate that the plasmonic substrates fabricated by top down approach such as e-beam lithography (EBL) and laser interference lithography (LIL) are highly reproducible, robust and can result in high electric field enhancement. Our results demonstrate the potential to use SERS substrates for highly sensitive detection schemes opening up the window for a wide range of applications including biomedical diagnostics, forensic investigation etc. Acknowledgement: This work was supported by the Austrian Science Fund (FWF), project NANOBIOSENSOR (I 2647). References: [1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. V. Duyne., " Biosensing with plasmonic nanosensors," Nature

  2. SERS substrates fabricated using ceramic filters for the detection of bacteria

    Science.gov (United States)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A.

    2016-01-01

    SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored.

  3. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of optimized nanogap plasmonic substrate for improved SERS enhancement

    Directory of Open Access Journals (Sweden)

    Jayakumar Perumal

    2017-05-01

    Full Text Available SERS enhancement factor (EF of planar substrates depends on the size and shape of the fine nanostructure forming a defect free, well-arranged matrix. Nano-lithographic process is considered to be the most advanced methods employed for the fabrication SERS substrates. Nanostructured plasmonic substrates with nanogap (NG pattern often results in stable, efficient and reproducible SERS enhancement. For such substrates, NG and their diagonal length (DL need to be optimized. Theoretically smaller NGs (∼30-40 nm or smaller results in higher SERS enhancement. However, fabrication of NG substrates below such limit is a challenge even for the most advanced lithography process. In this context, herein, we report the optimization of fabrication process, where higher SERS enhancement can be realized from larger NGs substrates by optimizing their DL of nanostructures between the NGs. Based on simulation we could demonstrate that, by optimizing the DL, SERS enhancement from larger NG substrate such as 60 and 80 nm could be comparable to that of smaller (40nm NG substrates. We envision that this concept will open up new regime in the nanofabrication of practically feasible NG based plasmonic substrates with higher SERS enhancement. Initial results of our experiments are in close agreement with our simulated study.

  5. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS.

    Science.gov (United States)

    Ratiu, Ileana Andreea; Bocos-Bintintan, Victor; Patrut, Adrian; Moll, Victor Hugo; Turner, Matthew; Thomas, C L Paul

    2017-08-22

    The objective of our study was to investigate whether one may quickly and reliably discriminate different microorganism strains by direct monitoring of the headspace atmosphere above their cultures. Headspace samples above a series of in vitro bacterial cultures were directly interrogated using an aspiration type ion mobility spectrometer (a-IMS), which produced distinct profiles ("fingerprints") of ion currents generated simultaneously by the detectors present inside the ion mobility cell. Data processing and analysis using principal component analysis showed net differences in the responses produced by volatiles emitted by various bacterial strains. Fingerprint assignments were conferred on the basis of product ion mobilities; ions of differing size and mass were deflected in a different degree upon their introduction of a transverse electric field, impacting finally on a series of capacitors (denominated as detectors, or channels) placed in a manner analogous to sensor arrays. Three microorganism strains were investigated - Escherichia coli, Bacillus subtilis and Staphylococcus aureus; all strains possess a relatively low pathogenic character. Samples of air with a 5 cm 3 volume from the headspace above the bacterial cultures in agar growth medium were collected using a gas-tight chromatographic syringe and injected inside the closed-loop pneumatic circuit of the breadboard a-IMS instrument model ChemPro-100i (Environics Oy, Finland), at a distance of about 1 cm from the ionization source. The resulting chemical fingerprints were produced within two seconds from the moment of injection. The sampling protocol involved to taking three replicate samples from each of 10 different cultures for a specific strain, during a total period of 72 h after the initial incubation - at 24, 48 and 72 h, respectively. Principal component analysis (PCA) was used to discriminate between the IMS fingerprints. PCA was found to successfully discriminate between bacteria at three

  6. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling

    International Nuclear Information System (INIS)

    Wang, Chao; Yu, Chenxu

    2015-01-01

    With the rapid development of analytical techniques, it has become much easier to detect chemical and biological analytes, even at very low detection limits. In recent years, techniques based on vibrational spectroscopy, such as surface enhanced Raman spectroscopy (SERS), have been developed for non-destructive detection of pathogenic microorganisms. SERS is a highly sensitive analytical tool that can be used to characterize chemical and biological analytes interacting with SERS-active substrates. However, it has always been a challenge to obtain consistent and reproducible SERS spectroscopic results at complicated experimental conditions. Microfluidics, a tool for highly precise manipulation of small volume liquid samples, can be used to overcome the major drawbacks of SERS-based techniques. High reproducibility of SERS measurement could be obtained in continuous flow generated inside microfluidic devices. This article provides a thorough review of the principles, concepts and methods of SERS-microfluidic platforms, and the applications of such platforms in trace analysis of chemical and biological analytes. (topical review)

  7. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  8. Intercomparison of air ion spectrometers: an evaluation of results in varying conditions

    Directory of Open Access Journals (Sweden)

    S. Gagné

    2011-05-01

    Full Text Available We evaluated 11 air ion spectrometers from Airel Ltd. after they had spent one year in field measurements as a part of the EUCAARI project: 5 Air Ion Spectrometers (AIS, 5 Neutral cluster and Air Ion Spectrometers (NAIS and one Airborne NAIS (ANAIS. This is the first time that an ANAIS is evaluated and compared so extensively. The ion spectrometers' mobility and concentration accuracy was evaluated. Their measurements of ambient air were compared between themselves and to reference instruments: a Differential Mobility Particle Sizer (DMPS, a Balanced Scanning Mobility Analyzer (BSMA, and an Ion-DMPS. We report on the simultaneous measurement of a new particle formation (NPF event by all 11 instruments and the 3 reference instruments. To our knowledge, it is the first time that the size distribution of ions and particles is measured by so many ion spectrometers during a NPF event. The new particle formation rates (~0.2 cm−3 s−1 for ions and ~2 cm−3 s−1 for particles and growth rates (~25 nm h−1 in the 3–7 nm size range were calculated for all the instruments. The NAISs and the ANAIS gave higher concentrations and formation rates than the AISs. For example, the AISs agreed with the BSMA within 11 % and 28 % for negative and positive ion concentration respectively, whereas the NAISs agreed within 23 % and 29 %. Finally, based on the results presented here, we give guidelines for data evaluation, when data from different individual ion spectrometers are compared.

  9. TLC-SERS Plates with a Built-In SERS Layer Consisting of Cap-Shaped Noble Metal Nanoparticles Intended for Environmental Monitoring and Food Safety Assurance

    Directory of Open Access Journals (Sweden)

    H. Takei

    2015-01-01

    Full Text Available We report on a thin layer chromatograph (TLC with a built-in surface enhanced Raman scattering (SERS layer for in-situ identification of chemical species separated by TLC. Our goal is to monitor mixture samples or diluted target molecules suspended in a host material, as happens often in environmental monitoring or detection of food additives. We demonstrate that the TLC-SERS can separate mixture samples and provide in-situ SERS spectra. One sample investigated was a mixture consisting of equal portions of Raman-active chemical species, rhodamine 6 G (R6G, crystal violet (CV, and 1,2-di(4-pyridylethylene (BPE. The three components could be separated and their SERS spectra were obtained from different locations. Another sample was skim milk with a trace amount of melamine. Without development, no characteristic peaks were observed, but after development, a peak was observed at 694 cm−1. Unlike previous TLC-SERS whereby noble metal nanoparticles are added after development of a sample, having a built-in SERS layer greatly facilitates analysis as well as maintaining high uniformity of noble metal nanoparticles.

  10. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: • Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. • Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. • The mechanism of the dissolution of lithium and cobalt was studied. • Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. • After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 °C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 − (1 − X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ‘ash diffusion control dense constant sizes spherical particles’ i.e. 1 − 3(1 − X){sup 2/3} + 2(1 − X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  11. Selection and generation of waveforms for differential mobility spectrometry.

    Science.gov (United States)

    Krylov, Evgeny V; Coy, Stephen L; Vandermey, John; Schneider, Bradley B; Covey, Thomas R; Nazarov, Erkinjon G

    2010-02-01

    Devices based on differential mobility spectrometry (DMS) are used in a number of ways, including applications as ion prefilters for API-MS systems, as detectors or selectors in hybrid instruments (GC-DMS, DMS-IMS), and in standalone systems for chemical detection and identification. DMS ion separation is based on the relative difference between high field and low field ion mobility known as the alpha dependence, and requires the application of an intense asymmetric electric field known as the DMS separation field, typically in the megahertz frequency range. DMS performance depends on the waveform and on the magnitude of this separation field. In this paper, we analyze the relationship between separation waveform and DMS resolution and consider feasible separation field generators. We examine ideal and practical DMS separation field waveforms and discuss separation field generator circuit types and their implementations. To facilitate optimization of the generator designs, we present a set of relations that connect ion alpha dependence to DMS separation fields. Using these relationships we evaluate the DMS separation power of common generator types as a function of their waveform parameters. Optimal waveforms for the major types of DMS separation generators are determined for ions with various alpha dependences. These calculations are validated by comparison with experimental data.

  12. Selection and generation of waveforms for differential mobility spectrometry

    International Nuclear Information System (INIS)

    Krylov, Evgeny V.; Coy, Stephen L.; Nazarov, Erkinjon G.; Vandermey, John; Schneider, Bradley B.; Covey, Thomas R.

    2010-01-01

    Devices based on differential mobility spectrometry (DMS) are used in a number of ways, including applications as ion prefilters for API-MS systems, as detectors or selectors in hybrid instruments (GC-DMS, DMS-IMS), and in standalone systems for chemical detection and identification. DMS ion separation is based on the relative difference between high field and low field ion mobility known as the alpha dependence, and requires the application of an intense asymmetric electric field known as the DMS separation field, typically in the megahertz frequency range. DMS performance depends on the waveform and on the magnitude of this separation field. In this paper, we analyze the relationship between separation waveform and DMS resolution and consider feasible separation field generators. We examine ideal and practical DMS separation field waveforms and discuss separation field generator circuit types and their implementations. To facilitate optimization of the generator designs, we present a set of relations that connect ion alpha dependence to DMS separation fields. Using these relationships we evaluate the DMS separation power of common generator types as a function of their waveform parameters. Optimal waveforms for the major types of DMS separation generators are determined for ions with various alpha dependences. These calculations are validated by comparison with experimental data.

  13. AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shichuang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Fu, Kai, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn; Yu, Guohao; Zhang, Zhili; Song, Liang; Deng, Xuguang; Li, Shuiming; Sun, Qian; Cai, Yong; Zhang, Baoshun [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Qi, Zhiqiang; Dai, Jiangnan; Chen, Changqing, E-mail: kfu2009@sinano.ac.cn, E-mail: cqchen@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-01-04

    This letter has studied the performance of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors on silicon substrate with GaN buffer treated by aluminum ion implantation for insulating followed by a channel regrown by metal–organic chemical vapor deposition. For samples with Al ion implantation of multiple energies of 140 keV (dose: 1.4 × 10{sup 14} cm{sup −2}) and 90 keV (dose: 1 × 10{sup 14} cm{sup −2}), the OFF-state leakage current is decreased by more than 3 orders and the breakdown voltage is enhanced by nearly 6 times compared to the samples without Al ion implantation. Besides, little degradation of electrical properties of the 2D electron gas channel is observed where the maximum drain current I{sub DSmax} at a gate voltage of 3 V was 701 mA/mm and the maximum transconductance g{sub mmax} was 83 mS/mm.

  14. SERS Engineering Collaboration

    Science.gov (United States)

    2012-06-01

    laser beam. In the second approach, a pulsed laser was used to texture a silicon wafer to form sharp features. Silver was evaporated onto the wafer...orders of magnitude larger than that measured on a gold nanoparticle array on a glass substrate. The largest SERS enhancement for a silver device was...surface plasmons," Yizhuo Chu and Kenneth B. Crozier, Optics Letters vol. 34, 244 (2009) K3. "Gold nanorings as substrates for surface-enhanced Raman

  15. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.

    Science.gov (United States)

    Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang; Adelhelm, Philipp

    2018-01-02

    Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Large-scale analysis of peptide sequence variants: the case for high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Creese, Andrew J; Smart, Jade; Cooper, Helen J

    2013-05-21

    Large scale analysis of proteins by mass spectrometry is becoming increasingly routine; however, the presence of peptide isomers remains a significant challenge for both identification and quantitation in proteomics. Classes of isomers include sequence inversions, structural isomers, and localization variants. In many cases, liquid chromatography is inadequate for separation of peptide isomers. The resulting tandem mass spectra are composite, containing fragments from multiple precursor ions. The benefits of high-field asymmetric waveform ion mobility spectrometry (FAIMS) for proteomics have been demonstrated by a number of groups, but previously work has focused on extending proteome coverage generally. Here, we present a systematic study of the benefits of FAIMS for a key challenge in proteomics, that of peptide isomers. We have applied FAIMS to the analysis of a phosphopeptide library comprising the sequences GPSGXVpSXAQLX(K/R) and SXPFKXpSPLXFG(K/R), where X = ADEFGLSTVY. The library has defined limits enabling us to make valid conclusions regarding FAIMS performance. The library contains numerous sequence inversions and structural isomers. In addition, there are large numbers of theoretical localization variants, allowing false localization rates to be determined. The FAIMS approach is compared with reversed-phase liquid chromatography and strong cation exchange chromatography. The FAIMS approach identified 35% of the peptide library, whereas LC-MS/MS alone identified 8% and LC-MS/MS with strong cation exchange chromatography prefractionation identified 17.3% of the library.

  17. Online Measurement of Exhaled NO Concentration and Its Production Sites by Fast Non-equilibrium Dilution Ion Mobility Spectrometry

    Science.gov (United States)

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Liu, Jiwei; Li, Haiyang

    2016-03-01

    Exhaled nitric oxide (NO) is one of the most promising breath markers for respiratory diseases. Its profile for exhalation and the respiratory NO production sites can provide useful information for medical disease diagnosis and therapeutic procedures. However, the high-level moisture in exhaled gas always leads to the poor selectivity and sensitivity for ion spectrometric techniques. Herein, a method based on fast non-equilibrium dilution ion mobility spectrometry (NED-IMS) was firstly proposed to directly monitor the exhaled NO profile on line. The moisture interference was eliminated by turbulently diluting the original moisture to 21% of the original with the drift gas and dilution gas. Weak enhancement was observed for humid NO response and its limit of detection at 100% relative humidity was down to 0.58 ppb. The NO concentrations at multiple exhalation flow rates were measured, while its respiratory production sites were determined by using two-compartment model (2CM) and Högman and Meriläinen algorithm (HMA). Last but not the least, the NO production sites were analyzed hourly to tentatively investigate the daily physiological process of NO. The results demonstrated the capacity of NED-IMS in the real-time analysis of exhaled NO and its production sites for clinical diagnosis and assessment.

  18. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Science.gov (United States)

    Sharpe, Richard M; Koepke, Tyson; Harper, Artemus; Grimes, John; Galli, Marco; Satoh-Cruz, Mio; Kalyanaraman, Ananth; Evans, Katherine; Kramer, David; Dhingra, Amit

    2016-01-01

    High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS) molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  19. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics

    Science.gov (United States)

    Zang, Xiaoling; Pérez, José J.; Jones, Christina M.; Monge, María Eugenia; McCarty, Nael A.; Stecenko, Arlene A.; Fernández, Facundo M.

    2017-08-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy.

  20. por láser

    Directory of Open Access Journals (Sweden)

    Mayra Garcimuño

    2013-01-01

    Full Text Available En el presente trabajo, la técnica Espectroscopia de plasmas producidos por láser (Laser-induced breakdown spectroscopy –LIBS– se aplicó a la determinación cuan- titativa de Na en agua natural dulce, de interés en agricultura para el estudio de la alcalinidad de aguas de regadío. Para efectuar el análisis, se prepararon soluciones con concentraciones conocidas del analito, se mezclaron con óxido de calcio y se compactaron en pastillas sólidas. Los plasmas se produjeron en aire a presión atmos- férica utilizando un láser pulsado Nd:YAG. Se construyó una curva de calibración y se calculó el límite de detección. Se analizaron muestras de agua natural y los resultados se compararon con los obtenidos mediante espectroscopia de absorción atómica. Se demostró la factibilidad del método para la determinación de Na en agua natural dulce.

  1. Multi-Capillary Column-Ion Mobility Spectrometry of Volatile Metabolites Emitted by Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Christoph Halbfeld

    2014-09-01

    Full Text Available Volatile organic compounds (VOCs produced during microbial fermentations determine the flavor of fermented food and are of interest for the production of fragrances or food additives. However, the microbial synthesis of these compounds from simple carbon sources has not been well investigated so far. Here, we analyzed the headspace over glucose minimal salt medium cultures of Saccharomyces cerevisiae using multi-capillary column-ion mobility spectrometry (MCC-IMS. The high sensitivity and fast data acquisition of the MCC-IMS enabled online analysis of the fermentation off-gas and 19 specific signals were determined. To four of these volatile compounds, we could assign the metabolites ethanol, 2-pentanone, isobutyric acid, and 2,3-hexanedione by MCC-IMS measurements of pure standards and cross validation with thermal desorption–gas chromatography-mass spectrometry measurements. Despite the huge biochemical knowledge of the biochemistry of the model organism S. cerevisiae, only the biosynthetic pathways for ethanol and isobutyric acid are fully understood, demonstrating the considerable lack of research of volatile metabolites. As monitoring of VOCs produced during microbial fermentations can give valuable insight into the metabolic state of the organism, fast and non-invasive MCC-IMS analyses provide valuable data for process control.

  2. Historia de una coma. Gadamer y el sentido del ser

    OpenAIRE

    Vattimo, Gianni

    2005-01-01

    A partir de la doble posibilidad de traducir en las lenguas románicas la expresión gadameriana «Sein, das verstanden werden kann, ist Sprache» como «El ser, que puede ser comprendido, es lenguaje» o como «El ser que puede ser comprendido es lenguaje», se consideran las importantes repercusiones ontológicas que tendría una interpretación más moderada (y más habitual) de ese enunciado (la primera exhibida), o una lectura más radical y nihilista (la que aquí se defiende) del mismo (la ...

  3. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    Science.gov (United States)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  4. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS).

    Science.gov (United States)

    Mochalski, Paweł; Wiesenhofer, Helmut; Allers, Maria; Zimmermann, Stefan; Güntner, Andreas T; Pineau, Nicolay J; Lederer, Wolfgang; Agapiou, Agapios; Mayhew, Christopher A; Ruzsanyi, Veronika

    2018-02-15

    Human smuggling and associated cross-border crimes have evolved as a major challenge for the European Union in recent years. Of particular concern is the increasing trend of smuggling migrants hidden inside shipping containers or trucks. Therefore, there is a growing demand for portable security devices for the non-intrusive and rapid monitoring of containers to detect people hiding inside. In this context, chemical analysis of volatiles organic compounds (VOCs) emitted from the human body is proposed as a locating tool. In the present study, an in-house made ion mobility spectrometer coupled with gas chromatography (GC-IMS) was used to monitor the volatile moieties released from the human body under conditions that mimic entrapment. A total of 17 omnipresent volatile compounds were identified and quantified from 35 ion mobility peaks corresponding to human presence. These are 7 aldehydes (acrolein, 2-methylpropanal, 3-methylbutanal, 2-ethacrolein, n-hexanal, n-heptanal, benzaldehyde), 3 ketones (acetone, 2-pentanone, 4-methyl-2-pentanone), 5 esters (ethyl formate, ethyl propionate, vinyl butyrate, butyl acetate, ethyl isovalerate), one alcohol (2-methyl-1-propanol) and one organic acid (acetic acid). The limits of detection (0.05-7.2 ppb) and relative standard deviations (0.6-11%) should be sufficient for detecting these markers of human presence in field conditions. This study shows that GC-IMS can be used as a portable field detector of hidden or entrapped people. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Exhaled breath analysis for lung cancer detection using ion mobility spectrometry.

    Directory of Open Access Journals (Sweden)

    Hiroshi Handa

    Full Text Available Conventional methods for lung cancer detection including computed tomography (CT and bronchoscopy are expensive and invasive. Thus, there is still a need for an optimal lung cancer detection technique.The exhaled breath of 50 patients with lung cancer histologically proven by bronchoscopic biopsy samples (32 adenocarcinomas, 10 squamous cell carcinomas, 8 small cell carcinomas, were analyzed using ion mobility spectrometry (IMS and compared with 39 healthy volunteers. As a secondary assessment, we compared adenocarcinoma patients with and without epidermal growth factor receptor (EGFR mutation.A decision tree algorithm could separate patients with lung cancer including adenocarcinoma, squamous cell carcinoma and small cell carcinoma. One hundred-fifteen separated volatile organic compound (VOC peaks were analyzed. Peak-2 noted as n-Dodecane using the IMS database was able to separate values with a sensitivity of 70.0% and a specificity of 89.7%. Incorporating a decision tree algorithm starting with n-Dodecane, a sensitivity of 76% and specificity of 100% was achieved. Comparing VOC peaks between adenocarcinoma and healthy subjects, n-Dodecane was able to separate values with a sensitivity of 81.3% and a specificity of 89.7%. Fourteen patients positive for EGFR mutation displayed a significantly higher n-Dodecane than for the 14 patients negative for EGFR (p<0.01, with a sensitivity of 85.7% and a specificity of 78.6%.In this prospective study, VOC peak patterns using a decision tree algorithm were useful in the detection of lung cancer. Moreover, n-Dodecane analysis from adenocarcinoma patients might be useful to discriminate the EGFR mutation.

  6. Ecmo y ecmo mobile. soporte gardio respiratorio avanzado

    Directory of Open Access Journals (Sweden)

    Dr. G. Rodrigo Díaz

    2011-05-01

    Full Text Available ECMO (Extracorporeal Membrane Oxygenation es un sistema de soporte vital extracorpóreo en falla pulmonar catastrófica, insuficiencia cardiaca aguda y reanimación de uso cada vez más común. En Chile se ha implementado en distintos centros, con resultados comparables al registro internacional. Cuando el candidato a ser sometido está demasiado inestable como para ser transportado a un hospital que cuente con ECMO, la canulación antes del traslado permite la estabilización y posterior transporte al centro de ECMO. Los resultados en los pacientes transportados son similares a los casos generados en el mismo lugar. En el siguiente artículo revisaremos las definiciones en soporte extracorpóreo, indicaciones y contraindicaciones, los resultados esperables y las experiencias internacionales y propia de Clínica Las Condes en ECMO y ECMO Mobile.

  7. Cross Sections and Transport Properties of BR- Ions in AR

    Science.gov (United States)

    Jovanovic, Jasmina; Stojanovic, Vladimir; Raspopovic, Zoran; Petrovic, Zoran

    2014-10-01

    We have used a combination of a simple semi-analytic theory - Momentum Transfer Theory (MTT) and exact Monte Carlo (MC) simulations to develop Br- in Ar momentum transfer cross section based on the available data for reduced mobility at the temperature T = 300 K over the range 10 Td higher energies based on behavior of similar ions in similar gases and by the addition of the total detachment cross section that was used from the threshold around 7.7 eV. Relatively complete set was derived which can be used in modeling of plasmas by both hybrid, particle in cell (PIC) and fluid codes. A good agreement between calculated and measured ion mobilities and longitudinal diffusion coefficients is an independent proof of the validity of the cross sections that were derived for the negative ion mobility data. In addition to transport coefficients we have also calculated the net rate coefficients of elastic scattering and detachment. Author acknowledge Ministry of Education, Science and Technology, Proj. Nos. 171037 and 410011.

  8. Scalable design of an IMS cross-flow micro-generator/ion detector

    International Nuclear Information System (INIS)

    Ortiz, Juan J; Nigri, Christian; Lasorsa, Carlos; Ortiz, Guillermo P

    2013-01-01

    Ion-mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized gas molecules based on their mobility in a carrier buffer gas. Such methods come in a large variety of versions that currently allow ion identification at and above the millimeter scale. Here, we present a design for a cross-flow IMS method able to generate and detect ions at the sub-millimeter scale. We propose a novel ion focusing strategy and test it in a prototype device using nitrogen as a sample gas, and also with simulations using four different sample gases. By introducing an original lobular ion generation localized to a few ten of microns and substantially simplifying the design, our device is able to keep constant laminar flow conditions for high flow rates. In this way, it avoids the turbulences in the gas flow, which would occur in other ion-focusing cross-flow methods limiting their performance at the sub-millimeter scale. Scalability of the proposed design can contribute to improve the resolving power and resolution of currently available cross-flow methods. (paper)

  9. Normal Raman and SERS spectroscopy of the vitamin E

    International Nuclear Information System (INIS)

    Cai Tiantian; Gu Huaimin; Yuan Xiaojuan; Liu Fangfang

    2011-01-01

    In this study, surface-enhanced Raman scattering(SERS)spectra of vitamin E were obtained on colloidal silver(Ag). Alpha-(-) tocopherol which is the only form that is recognized to meet human requirements was selected to study. The analytes (±)- -tocopherol were dissolved in chloroform (CHCl 3 ) and the silver colloid was poured into the compound. Silver colloid was reduced by hydroxylamine hydrochloride. The analytes were the supernatant after standing the mixture for the reason that chloroform have no signals in surface-enhanced Raman scattering in the Ag colloid, and it would not affect the determination of the (±)- -tocopherol. The Normal Raman and SERS spectrum of Vitamin E were contrastively studied to realize how the vitamin E stuck to the silver nanoparticles. The results show the fat-soluble substances can be analysed by SERS. The spectra indicate that the molecules are adsorbed on the surface through the COO- groups by the simultaneous involvement of a and -type coordination. These results suggest some important criteria for consideration in SERS measurements and also provide important insights into the problem of predicting SERS activities for different fat-soluble substances.

  10. Normal Raman and SERS spectroscopy of the vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Cai Tiantian; Gu Huaimin; Yuan Xiaojuan; Liu Fangfang, E-mail: guhm@scnu.edu.cn [MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, 510631, Guangzhou (China)

    2011-01-01

    In this study, surface-enhanced Raman scattering(SERS)spectra of vitamin E were obtained on colloidal silver(Ag). Alpha-(-) tocopherol which is the only form that is recognized to meet human requirements was selected to study. The analytes ({+-})- -tocopherol were dissolved in chloroform (CHCl{sub 3}) and the silver colloid was poured into the compound. Silver colloid was reduced by hydroxylamine hydrochloride. The analytes were the supernatant after standing the mixture for the reason that chloroform have no signals in surface-enhanced Raman scattering in the Ag colloid, and it would not affect the determination of the ({+-})- -tocopherol. The Normal Raman and SERS spectrum of Vitamin E were contrastively studied to realize how the vitamin E stuck to the silver nanoparticles. The results show the fat-soluble substances can be analysed by SERS. The spectra indicate that the molecules are adsorbed on the surface through the COO- groups by the simultaneous involvement of a and -type coordination. These results suggest some important criteria for consideration in SERS measurements and also provide important insights into the problem of predicting SERS activities for different fat-soluble substances.

  11. CisSERS: Customizable In Silico Sequence Evaluation for Restriction Sites.

    Directory of Open Access Journals (Sweden)

    Richard M Sharpe

    Full Text Available High-throughput sequencing continues to produce an immense volume of information that is processed and assembled into mature sequence data. Data analysis tools are urgently needed that leverage the embedded DNA sequence polymorphisms and consequent changes to restriction sites or sequence motifs in a high-throughput manner to enable biological experimentation. CisSERS was developed as a standalone open source tool to analyze sequence datasets and provide biologists with individual or comparative genome organization information in terms of presence and frequency of patterns or motifs such as restriction enzymes. Predicted agarose gel visualization of the custom analyses results was also integrated to enhance the usefulness of the software. CisSERS offers several novel functionalities, such as handling of large and multiple datasets in parallel, multiple restriction enzyme site detection and custom motif detection features, which are seamlessly integrated with real time agarose gel visualization. Using a simple fasta-formatted file as input, CisSERS utilizes the REBASE enzyme database. Results from CisSERS enable the user to make decisions for designing genotyping by sequencing experiments, reduced representation sequencing, 3'UTR sequencing, and cleaved amplified polymorphic sequence (CAPS molecular markers for large sample sets. CisSERS is a java based graphical user interface built around a perl backbone. Several of the applications of CisSERS including CAPS molecular marker development were successfully validated using wet-lab experimentation. Here, we present the tool CisSERS and results from in-silico and corresponding wet-lab analyses demonstrating that CisSERS is a technology platform solution that facilitates efficient data utilization in genomics and genetics studies.

  12. Enhancing SERS by Means of Supramolecular Charge Transfer

    Science.gov (United States)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  13. Unidad did??ctica: concepciones filos??ficas del ser humano

    OpenAIRE

    Mart??nez Moreno, Roc??o

    2012-01-01

    Esta unidad did??ctica se justifica en tanto que ofrece la posibilidad de estudiar al ser humano desde varias perspectivas filos??ficas, consider??ndolo desde sus diferentes dimensiones. Esto nos aleja del dogmatismo o la creencia de que el ser humano es un constructo cerrado y definible. Quiz?? desde las ciencias nos acerquemos a una visi??n de lo que ??ste es en su versi??n mec??nica o biol??gica; pero no debemos olvidar que el ser humano tambi??n est?? sujeto al paso del tiempo, a la socie...

  14. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes

    Directory of Open Access Journals (Sweden)

    Giuseppe Quero

    2018-02-01

    Full Text Available In this paper we report on the engineering of repeatable surface enhanced Raman scattering (SERS optical fiber sensor devices (optrodes, as realized through nanosphere lithography. The Lab-on-Fiber SERS optrode consists of polystyrene nanospheres in a close-packed arrays configuration covered by a thin film of gold on the optical fiber tip. The SERS surfaces were fabricated by using a nanosphere lithography approach that is already demonstrated as able to produce highly repeatable patterns on the fiber tip. In order to engineer and optimize the SERS probes, we first evaluated and compared the SERS performances in terms of Enhancement Factor (EF pertaining to different patterns with different nanosphere diameters and gold thicknesses. To this aim, the EF of SERS surfaces with a pitch of 500, 750 and 1000 nm, and gold films of 20, 30 and 40 nm have been retrieved, adopting the SERS signal of a monolayer of biphenyl-4-thiol (BPT as a reliable benchmark. The analysis allowed us to identify of the most promising SERS platform: for the samples with nanospheres diameter of 500 nm and gold thickness of 30 nm, we measured values of EF of 4 × 105, which is comparable with state-of-the-art SERS EF achievable with highly performing colloidal gold nanoparticles. The reproducibility of the SERS enhancement was thoroughly evaluated. In particular, the SERS intensity revealed intra-sample (i.e., between different spatial regions of a selected substrate and inter-sample (i.e., between regions of different substrates repeatability, with a relative standard deviation lower than 9 and 15%, respectively. Finally, in order to determine the most suitable optical fiber probe, in terms of excitation/collection efficiency and Raman background, we selected several commercially available optical fibers and tested them with a BPT solution used as benchmark. A fiber probe with a pure silica core of 200 µm diameter and high numerical aperture (i.e., 0.5 was found to be the

  15. SERS studies on the interaction between UO22+ and PVP-stabilized silver nanoparticles

    International Nuclear Information System (INIS)

    Roy, M.; Tyagi, A.K.; Kumar, Rakesh; Pandey, A.K.; Goswami, A.

    2010-01-01

    Interaction between uranyl (UO 2 2+ ) ions and silver nanoparticles (Ag-nps) stabilized by suitable polymeric capping agents has been studied in aqueous phase using surface enhanced resonance Raman spectroscopy technique (SERS). Polyvinylpyrrolidone (PVP) stabilized Ag-nps were synthesized by dissolving in water appropriate amount of PVP and AgNO 3 along with a suitable reducing agent in the form of either formamide or sodium borohydride. The solution was vigorously stirred for 5h and finally nanoparticle sols were obtained. A series of analyte samples was prepared by adding an appropriate amount of silver sol to different volumes of uranyl stock solution prepared at pH=3. The solutions were then drop cast on glass slides and dried in air. Preliminary results on drop-cast samples are presented here

  16. Temperature effects in differential mobility spectrometry

    Science.gov (United States)

    Krylov, Evgeny V.; Coy, Stephen L.; Nazarov, Erkinjon G.

    2009-01-01

    Drift gas temperature and pressure influence differential mobility spectrometer (DMS) performance, changing DMS peak positions, heights and widths. This study characterizes the effect of temperature on DMS peak positions. Positive ions of methyl salicylate, DMMP, and toluene, and negative ions of methyl salicylate and the reactant ion peaks were observed in purified nitrogen in the Sionex microDMx planar DMS. Measurements were made at ambient pressure (1 atm) at temperatures from 25 °C to 150 °C in a planar sensor with height 0.5 mm. Peak value of the separation voltage asymmetric waveform was scanned from 500 V to 1500 V. Compensation voltage (DMS peak position) showed a strong variation with temperature for all investigated ions. By generalizing the concept of effective ion temperature to include the effects of inelastic ion-molecular collisions, we have been able to condense peak position dependence on separation field and temperature to dependence on a redefined effective temperature including a smoothly varying inelasticity correction. It allows prediction and correction of the gas temperature effect on DMS peak positions.

  17. IR, Raman and SERS studies of methyl salicylate

    Science.gov (United States)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  18. Synopsis Session III and IV 'Water and ion mobility, up-scaling and implementation in model approaches'

    International Nuclear Information System (INIS)

    2013-01-01

    The contributions of Session III 'Water and ion mobility' and Session IV 'Up-scaling and implementation in model approaches' were merged for the proceedings volume. The range of scales we are interested in starts at molecular scale (1-3 Angstrom) to crystal scale (3 Angstrom-2 nm) over particle scale with 2-200 nm dimension to the particle/macro-aggregate scale with 0.2-1500 μm. Methods available to study the particle scale concerning pore structure and connectivity which determines water mobility are under dry conditions N 2 adsorption and Hg intrusion, whereas under the hydrated state methods like X-Ray tomography and X-ray and neutron scattering are available. Going down in size molecular modeling, x-ray and neutron diffraction modeling and water adsorption gravimetry are inter alia available. There are resolution limits to the methods presented in session II (e.g. BIB-SEM) on pore characterization as e.g. the clay matrix characterization being only possible under a limited clay induration and pore throats being on the limit of resolution. These pore throats however are very important for as macroscopic phenomena observed. One methodological approach to bridge the gap between the molecular/crystal scale and the particle/macro-aggregate scale (FIB-SEM) is to use complementary techniques as cryo-NMR, N 2 and water ad-/desorption and TEM

  19. Au coated PS nanopillars as a highly ordered and reproducible SERS substrate

    Science.gov (United States)

    Kim, Yong-Tae; Schilling, Joerg; Schweizer, Stefan L.; Sauer, Guido; Wehrspohn, Ralf B.

    2017-07-01

    Noble metal nanostructures with nanometer gap size provide strong surface-enhanced Raman scattering (SERS) which can be used to detect trace amounts of chemical and biological molecules. Although several approaches were reported to obtain active SERS substrates, it still remains a challenge to fabricate SERS substrates with high sensitivity and reproducibility using low-cost techniques. In this article, we report on the fabrication of Au sputtered PS nanopillars based on a template synthetic method as highly ordered and reproducible SERS substrates. The SERS substrates are fabricated by anodic aluminum oxide (AAO) template-assisted infiltration of polystyrene (PS) resulting in hemispherical structures, and a following Au sputtering process. The optimum gap size between adjacent PS nanopillars and thickness of the Au layers for high SERS sensitivity are investigated. Using the Au sputtered PS nanopillars as an active SERS substrate, the Raman signal of 4-methylbenzenethiol (4-MBT) with a concentration down to 10-9 M is identified with good signal reproducibility, showing great potential as promising tool for SERS-based detection.

  20. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2017-11-01

    Full Text Available Since the initial discovery of surface-enhanced Raman scattering (SERS in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0–3 dimensions. Finally, we present an overview of ZnO nanostructures for the versatile SERS application.

  1. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Fan, Ruo-Jing; Zhang, Fang; Chen, Xiu-Ping; Qi, Wan-Shu; Guan, Qing; Sun, Tuan-Qi; Guo, Yin-Long

    2017-04-08

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%-12.3% for intra-day and 0.9%-7.8% for inter-day) and good accuracy (91%-109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Theoretical modeling of electron mobility in superfluid {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, Frédéric; Bonifaci, Nelly [G2ELab-GreEn-ER, Equipe MDE, 21 Avenue des Martyrs, CS 90624, 38031 Grenoble Cedex 1 (France); Haeften, Klaus von [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Eloranta, Jussi, E-mail: Jussi.Eloranta@csun.edu [Department of Chemistry and Biochemistry, California State University at Northridge, 18111 Nordhoff St., Northridge, California 91330 (United States)

    2016-07-28

    The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid {sup 4}He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed “exotic ion” data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.

  3. Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples.

    Science.gov (United States)

    Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter

    2018-06-08

    The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  4. A new technique for ion beam tritium labelling

    International Nuclear Information System (INIS)

    Zhang Nianbao; Sheng Shugang; Yao Fuzeng

    1990-06-01

    An advanced technique, the ion beam tritium labelling method (IBTL), used for labelling proteins, peptides and other nonvolatile organic compounds is introduced. In this method the excited tritium ion beam is accelerated and then bombs a solid sample target in which tritium exchanging for hydrogen is taken place. The IBTL has been used for preparation of tritiated soybean trypsin inhibitor, ribonuclease A, elastin and pachyman etc. After purifing by dialysis, ion exchange chromatography and gel filtration, the tritiated proteins and polysaccharide were obtained with the specific activity over 37 GBq/mmol, the function of tritiated decomposition products was not found. The product was shown to have native biological activity. Amino acid analysis of tritiated protein showed that the relative specific radioactivities were higher for His., Tyr. and Phe. but lower for Val., Ile. and Ser

  5. SERS sensors for DVD platform

    DEFF Research Database (Denmark)

    Brøgger, Anna Line

    This Ph.D. thesis explores the engineering of a portable sensor system for detection of rare and small molecules. The Ph.D. project is part of the research project 'Multi-Sensor DVD platform' (MUSE), aiming to integrate different sensors on a rotating disc. The sensors are chosen to complement each...... other, creating more reliable and stable results for the end user. The rotating disc comprises microfluidic channels, which can be utilized for handling and manipulating liquid samples such as blood or water. The focus of this Ph.D. thesis, is on the integration of one specific sensor on a rotating disc....... The sensor is based upon surface enhanced Raman spectroscopy (SERS), which detects molecular vibrations. The aim of this thesis is to cover the different aspects of the sensor system. SERS substrates, consisting of nanopillars with gold or silver caps on top, have been fabricated by standard micro and nano...

  6. A Ag synchronously deposited and doped TiO2 hybrid as an ultrasensitive SERS substrate: a multifunctional platform for SERS detection and photocatalytic degradation.

    Science.gov (United States)

    Yang, Libin; Sang, Qinqin; Du, Juan; Yang, Ming; Li, Xiuling; Shen, Yu; Han, Xiaoxia; Jiang, Xin; Zhao, Bing

    2018-06-06

    Ag simultaneously deposited and doped TiO2 (Ag-TiO2) hybrid nanoparticles (NPs) were prepared via a sol-hydrothermal method, as both a sensitive surface-enhanced Raman scattering (SERS) substrate and a superior photocatalyst for the first time. Ag-TiO2 hybrid NPs exhibit excellent SERS performance for several probe molecules and the enhancement factor is calculated to be 1.86 × 105. The detection limit of the 4-mercaptobenzoic acid (4-MBA) probe on the Ag-TiO2 substrate is 1 × 10-9 mol L-1, which is four orders of magnitude lower than that on pure TiO2 as a consequence of the synergistic effects of TiO2 and Ag. This is the highest SERS sensitivity among the reported semiconductor substrates and even comparable to noble metal substrates, and a SERS enhancement mechanism from the synergistic contribution of the semiconductor and noble metal was proposed. And importantly, the Ag-TiO2 hybrid shows excellent photocatalytic degradation activity for the detected species under UV light irradiation at lower concentration conditions, even for the hard to degrade 4-MBA molecule. This makes the Ag-TiO2 hybrid promising as a dual-function platform for both highly sensitive SERS detection and photocatalytic degradation of a pollutant system. Moreover, it also proves that the Ag-TiO2 hybrid can serve as a promising recyclable SERS-active substrate by virtue of its photocatalytic self-cleaning properties for some specific applications, for instance comparative studies of different species on the same SERS platform, in addition to the economic benefit.

  7. Distinguishing d- and l-aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry.

    Science.gov (United States)

    Zheng, Xueyun; Deng, Liulin; Baker, Erin S; Ibrahim, Yehia M; Petyuk, Vladislav A; Smith, Richard D

    2017-07-11

    While α-linked amino acids in the l-form are exclusively utilized in mammalian protein building, β-linked and d-form amino acids also have important biological roles. Unfortunately, the structural elucidation and separation of these different amino acid types in peptides has been analytically challenging to date due to the numerous isomers present, limiting our knowledge about their existence and biological roles. Here, we utilized an ultrahigh resolution ion mobility spectrometry platform coupled with mass spectrometry (IMS-MS) to separate amyloid β (Aβ) peptides containing l-aspartic acid, d-aspartic acid, l-isoaspartic acid, and d-isoaspartic acid residues which span α- and β-linked amino acids in both d- and l-forms. The results illustrate how IMS-MS could be used to better understand age-related diseases or protein folding disorders resulting from amino acid modifications.

  8. Empirical electron cross-field mobility in a Hall effect thruster

    International Nuclear Information System (INIS)

    Garrigues, L.; Perez-Luna, J.; Lo, J.; Hagelaar, G. J. M.; Boeuf, J. P.; Mazouffre, S.

    2009-01-01

    Electron transport across the magnetic field in Hall effect thrusters is still an open question. Models have so far assumed 1/B 2 or 1/B scaling laws for the 'anomalous' electron mobility, adjusted to reproduce the integrated performance parameters of the thruster. We show that models based on such mobility laws predict very different ion velocity distribution functions (IVDF) than measured by laser induced fluorescence (LIF). A fixed spatial mobility profile, obtained by analysis of improved LIF measurements, leads to much better model predictions of thruster performance and IVDF than 1/B 2 or 1/B mobility laws for discharge voltages in the 500-700 V range.

  9. La polémica sobre el ser en el Avicena y Averroes latinos

    OpenAIRE

    García-Marqués, A. (Alfonso)

    1987-01-01

    Fiosofía medieval; recepción del aristotelismo árabe en Occidente; metafísica; aristotelismo platonizante; esencia; universal; accidentalidad del ser; ser y esencia; ser veritativo y ser extramental; crítica de Averroes a Avicena.

  10. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  11. Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles

    International Nuclear Information System (INIS)

    Wang, Shanshan; Liu, Zhonghui; Bartic, Carmen; Xu, Hong; Ye, Jian

    2016-01-01

    Surface-enhanced Raman scattering (SERS) tags show ultrasensitivity and multiplexing abilities due to strong and characteristic Raman signals and therefore can be utilized as optical labeling agents similar to fluorescent dyes and quantum dots for biosensing and bioimaging. However, SERS tags have the difficulty to realize quantitative analysis due to the uniformity and reproducibility issue. In this work, we have reported on a new type of SERS tag called Au rod-in-shell (RIS) gap-enhanced Raman tag (GERT). With the high-resolution transmission electron microscopy (TEM) and optical absorbance measurements, we have demonstrated the subnanometer sized gap junctions inside the RIS GERTs. SERS measurements and FDTD calculations show that the core–shell subnanometer gap geometry in the RIS GERTs not only generates strong SERS hot spots but also isolates SERS hot spots by Au shells to avoid the influence when the particle aggregates form, therefore showing better SERS uniformity and stronger SERS intensity than normal Au nanorods. Those RIS NPs exhibit great potential as the labeling agents for SERS-based bioimaging and biosensing applications.

  12. Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Liu, Zhonghui [Shanghai Jiao Tong University, School of Biomedical Engineering & Med-X Research Institute (China); Bartic, Carmen [KU Leuven, Department of Physics (Belgium); Xu, Hong, E-mail: xuhong@sjtu.edu.cn; Ye, Jian, E-mail: yejian78@sjtu.edu.cn [Shanghai Jiao Tong University, School of Biomedical Engineering & Med-X Research Institute (China)

    2016-08-15

    Surface-enhanced Raman scattering (SERS) tags show ultrasensitivity and multiplexing abilities due to strong and characteristic Raman signals and therefore can be utilized as optical labeling agents similar to fluorescent dyes and quantum dots for biosensing and bioimaging. However, SERS tags have the difficulty to realize quantitative analysis due to the uniformity and reproducibility issue. In this work, we have reported on a new type of SERS tag called Au rod-in-shell (RIS) gap-enhanced Raman tag (GERT). With the high-resolution transmission electron microscopy (TEM) and optical absorbance measurements, we have demonstrated the subnanometer sized gap junctions inside the RIS GERTs. SERS measurements and FDTD calculations show that the core–shell subnanometer gap geometry in the RIS GERTs not only generates strong SERS hot spots but also isolates SERS hot spots by Au shells to avoid the influence when the particle aggregates form, therefore showing better SERS uniformity and stronger SERS intensity than normal Au nanorods. Those RIS NPs exhibit great potential as the labeling agents for SERS-based bioimaging and biosensing applications.

  13. Tuning SERS for living erythrocytes

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Parshina, E.Y.; Khabanova, V.V.

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a unique technique to study submembrane hemoglobin (Hbsm) in erythrocytes. We report the detailed design of SERS experiments on living erythrocytes to estimate dependence of the enhancemen t factor for main Raman bands of Hbsm on silver nanoparticle (Ag......NP) properties. We demonstrate that the enhancement factor for 4/A1g, 10/B1g and A2g Raman bands of Hbsm varies from 105 to 107 under proposed experimental conditions with 473 nm laser excitation. For the first time we show that the enhancement of Raman scattering increases with the increase in the relative...... between small AgNPs and Hbsm and, consequently, leads to the higher enhancement of Raman scattering of Hbsm. The enhancement of higher wavenumber bands 10/B1g and A2g is more sensitive to AgNPs' size and the relative amount of small AgNPs than the enhancement of the lower wavenumber band 4/A1g. This can...

  14. Detection and quantification of natural contaminants of wine by gas chromatography-differential ion mobility spectrometry (GC-DMS).

    Science.gov (United States)

    Camara, Malick; Gharbi, Nasser; Lenouvel, Audrey; Behr, Marc; Guignard, Cédric; Orlewski, Pierre; Evers, Danièle

    2013-02-06

    Rapid and direct, in situ headspace screening for odoriferous volatile organic compounds (VOCs) present in fresh grapes and in wines is a very promising method for quality control because the economic value of a wine is closely related to its aroma. Long used for the detection of VOCs in complex mixtures, miniature differential ion mobility spectrometry (DMS) seems therefore adequate for in situ trace detection of many kinds of VOCs of concern appearing in the headspace of selected foodstuffs. This work aims at a rapid detection, identification, and quantification of some natural and volatile contaminants of wine such as geosmin, 2-methylisoborneol (2-MIB), 1-octen-3-ol, 1-octen-3-one, and pyrazines (2-isopropyl-3-methoxypyrazine, IPMP, and 3-isobutyl-2-methoxypyrazine, IBMP). In the present study, these compounds were spiked at a known concentration in wine and analyzed with a hyphenated trap-GC-DMS device. The detection of all target compounds at concentrations below the human olfactory threshold was demonstrated.

  15. Potential application of SERS for arsenic speciation in biological matrices.

    Science.gov (United States)

    Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong

    2017-08-01

    Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.

  16. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    Science.gov (United States)

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  17. La importancia de ser grande

    OpenAIRE

    Baisre, J. A.

    2007-01-01

    Se responde a las preguntas ¿por qué los mamíferos marinos son los animales más grandes del planeta?, ¿Por qué los peces no pueden ser más grandes?. Éstas y otras interrogantes son respondidas de forma sencilla y clara.

  18. Study of pyruvate decarboxylase and thiamine kinase from brewer's yeast by SERS

    Science.gov (United States)

    Maskevich, Sergei A.; Chernikevich, Ivan P.; Gachko, Gennedy A.; Kivach, Leonid N.; Strekal, Nataliya D.

    1993-06-01

    The Surface Enhanced Raman Scattering (SERS) spectra of holopyruvate decarboxylase (PDC) and thiamine kinase (ThK) adsorbed on silver electrode were obtained. In contrast to the Raman, the SERS spectrum of PDC contained no modes of tryptophan residues, it indicates a removal of this moiety from the surface. In the SERS spectrum of ThK the bands belonging to ligands bound to the protein were observed. A correlation between the SERS signal intensity and the enzymatic activity of the ThK separate fraction and found. The influence of amino acids on SERS spectra of thiamine (Th) was studied to determine the possible composition on microsurrounding of coenzyme.

  19. Ionomers for Ion-Conducting Energy Materials

    Science.gov (United States)

    Colby, Ralph

    For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.

  20. Linear and nonlinear dust ion acoustic solitary waves in a quantum dusty electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Emadi, E.; Zahed, H. [Physics Department, Faculty of Science, Sahand University of Technology, 51335–1996 Tabriz (Iran, Islamic Republic of)

    2016-08-15

    The behavior of linear and nonlinear dust ion acoustic (DIA) solitary waves in an unmagnetized quantum dusty plasma, including inertialess electrons and positrons, ions, and mobile negative dust grains, are studied. Reductive perturbation and Sagdeev pseudopotential methods are employed for small and large amplitude DIA solitary waves, respectively. A minimum value of the Mach number obtained for the existence of solitary waves using the analytical expression of the Sagdeev potential. It is observed that the variation on the values of the plasma parameters such as different values of Mach number M, ion to electron Fermi temperature ratio σ, and quantum diffraction parameter H can lead to the creation of compressive solitary waves.

  1. Instrument response measurements of ion mobility spectrometers in situ: maintaining optimal system performance of fielded systems

    Science.gov (United States)

    Wallis, Eric; Griffin, Todd M.; Popkie, Norm, Jr.; Eagan, Michael A.; McAtee, Robert F.; Vrazel, Danet; McKinly, Jim

    2005-05-01

    Ion Mobility Spectroscopy (IMS) is the most widespread detection technique in use by the military for the detection of chemical warfare agents, explosives, and other threat agents. Moreover, its role in homeland security and force protection has expanded due, in part, to its good sensitivity, low power, lightweight, and reasonable cost. With the increased use of IMS systems as continuous monitors, it becomes necessary to develop tools and methodologies to ensure optimal performance over a wide range of conditions and extended periods of time. Namely, instrument calibration is needed to ensure proper sensitivity and to correct for matrix or environmental effects. We have developed methodologies to deal with the semi-quantitative nature of IMS and allow us to generate response curves that allow a gauge of instrument performance and maintenance requirements. This instrumentation communicates to the IMS systems via a software interface that was developed in-house. The software measures system response, logs information to a database, and generates the response curves. This paper will discuss the instrumentation, software, data collected, and initial results from fielded systems.

  2. Hydration numbers of trivalent lanthanide and actinide ions

    International Nuclear Information System (INIS)

    David, F.; Fourest, B.; Duplessis, J.

    1987-01-01

    Investigations on the structure of actinide aquo ions and determination of hydration numbers have to be studied, essentially, through radiochemical methods. They measured the transport numbers, diffusion coefficient D by the open end capillary method and ionic mobility u by electrophoresis. Both methods show a discontinuity in the transport number corresponding to the crystallographic radius of Eu 3+ or Bk 3+ ion. They deduced the volume of the actinide aquo ions, and the coordination number in the primary sphere. From calculations of the electrostriction phenomenon in the vicinity of central ion, they obtained effective volume of the water molecules and the dynamic hydration number corresponding to the second hydration sphere

  3. Structures of Metalloporphyrin-Oligomer Multianions: Cofacial versus Coplanar Motifs as Resolved by Ion Mobility Spectrometry.

    Science.gov (United States)

    Brendle, Katrina; Schwarz, Ulrike; Jäger, Patrick; Weis, Patrick; Kappes, Manfred

    2016-11-03

    We have combined ion mobility mass spectrometry with quantum chemical calculations to investigate the gas-phase structures of multiply negatively charged oligomers of meso-tetra(4-sulfonatophenyl)metalloporphyrins comprising the divalent metal centers Zn II , Cu II , and Pd II . Sets of candidate structures were obtained by geometry optimizations based on calculations at both the semiempirical PM7 and density functional theory (DFT) levels. The corresponding theoretical cross sections were calculated with the projection approximation and also with the trajectory method. By comparing these collision cross sections with the respective experimental values we were able to assign oligomer structures up to the tetramer. In most cases the cross sections of the lowest energy isomers predicted by theory were found to agree with the measurements to within the experimental uncertainty (2%). Specifically, we find that for a given oligomer size the structures are independent of the metal center but depend strongly on the charge state. Oligomers in low charge states with a correspondingly larger number of sodium counterions tend to form stacked, cofacial structures reminiscent of H-aggregate motifs observed in solution. By contrast, in higher charge states, the stack opens to form coplanar structures.

  4. Sonochemically synthesized Ag nanoparticles as a SERS active substrate and effect of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Dar, Nitzan, E-mail: n58987012@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China); Chen, Kuang-Yu [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China); Nien, Yung-Tang, E-mail: ytnien@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 63201, Taiwan (China); Perkas, Nina [Institute of nanotechnology and advanced materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Gedanken, Aharon, E-mail: Aharon.Gedanken@biu.ac.il [Institute of nanotechnology and advanced materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Chen, In-Gann, E-mail: ingann@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China)

    2015-03-15

    Highlights: • Solid state Ag SERS active substrates were sonochemically synthesized. • High intensity SERS spectra of both crystal violet and rhodamine 6G were observed. • We discovered that PVP aided synthesized substrates showed higher SERS intensity. - Abstract: Surface enhanced Raman scattering (SERS) enables the detection of substances at low concentrations using silver or gold nanostructure. The SERS technique has many applications, such as environmental detection and biosensing. Sonochemistry is an excellent and cheap deposition technique for coating substrates in a form of nanostructure at ambient temperature. It can also be utilized to prepare large SERS substrates. Here, we used the advantages of sonochemistry to deposit solid SERS substrates immobilized on GaN nanostructure. Morphology was studied by scanning electron microscopy. The elemental composition and the spatial distribution were examined by energy dispersive X-ray spectroscopy. The crystal structure and atomic presence was confirmed by X-ray diffraction. SERS substrates were examined with the analytes crystal violet (10{sup −5} M) and rhodamine 6G (10{sup −6} M), they showed prominent characteristic peaks. We discovered that the SERS intensity of poly-vinyl-pyrrolidinone aided sonochemical deposition of Ag nanoparticles was increased. The reason for the effect is morphological changes of the Ag nanoparticles. Smaller nanoparticles were fabricated, which increase their SERS intensity.

  5. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms

    Science.gov (United States)

    Uluok, Saadet; Guven, Burcu; Eksi, Haslet; Ustundag, Zafer; Tamer, Ugur; Boyaci, Ismail Hakki

    2015-01-01

    In this study, the multilayered surface-enhanced Raman spectroscopy (SERS) platforms were developed for the analysis of genetically modified organisms (GMOs). For this purpose, two molecules [11-mercaptoundecanoic acid (11-MUA) and 2-mercaptoethylamine (2-MEA)] were attached with Aurod and Auspherical nanoparticles to form multilayered constructions on the gold (Au)slide surface. The best multilayered platform structure was chosen depending on SERS enhancement, and this surface was characterised with atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy. After the optimum multilayered SERS platform and nanoparticle interaction was identified, the oligonucleotides on the Aurod nanoparticles and Auslide were combined to determine target concentrations from the 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) signals using SERS. The correlation between the SERS intensities for DTNB and target concentrations was found to be linear within a range of 10 pM to 1 µM, and with a detection limit of 34 fM. The selectivity and specificity of the developed sandwich assay were tested using negative and positive controls, and nonsense and real sample studies. The obtained results showed that the multilayered SERS sandwich method allows for sensitive, selective, and specific detection of oligonucleotide sequences.

  6. Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry.

    Science.gov (United States)

    Kolakowski, Beata M; D'Agostino, Paul A; Chenier, Claude; Mester, Zoltán

    2007-11-01

    Flow injection high field asymmetric waveform ion mobility spectrometry (FAIMS)-mass spectrometry (MS) methodology was developed for the detection and identification of chemical warfare (CW) agents in spiked food products. The CW agents, soman (GD), sarin (GB), tabun (GA), cyclohexyl sarin (GF), and four hydrolysis products, ethylphosphonic acid (EPA), methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (Pin MPA), and isopropyl methylphosphonic acid (IMPA) were separated and detected by positive ion and negative ion atmospheric pressure ionization-FAIMS-MS. Under optimized conditions, the compensation voltages were 7.2 V for GD, 8.0 V for GA, 7.2 V for GF, 7.6 V for GB, 18.2 V for EPA, 25.9 V for MPA, -1.9 V for PinMPA, and +6.8 V for IMPA. Sample preparation was kept to a minimum, resulting in analysis times of 3 min or less per sample. The developed methodology was evaluated by spiking bottled water, canola oil, cornmeal, and honey samples at low microgram per gram (or microg/mL) levels with the CW agents or CW agent hydrolysis products. The detection limits observed for the CW agents in the spiked food samples ranged from 3 to 15 ng/mL in bottled water, 1-33 ng/mL in canola oil, 1-34 ng/g in cornmeal, and 13-18 ng/g in honey. Detection limits were much higher for the CW agent hydrolysis products, with only MPA being detected in spiked honey samples.

  7. SERS-based pesticide detection by using nanofinger sensors

    Science.gov (United States)

    Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong

    2015-01-01

    Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.

  8. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  9. Evaluation and application of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry for complex sample analysis.

    Science.gov (United States)

    Denawaka, Chamila J; Fowlis, Ian A; Dean, John R

    2014-04-18

    An evaluation of static headspace-multicapillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS) has been undertaken to assess its applicability for the determination of 32 volatile compounds (VCs). The key experimental variables of sample incubation time and temperature have been evaluated alongside the MCC-GC variables of column polarity, syringe temperature, injection temperature, injection volume, column temperature and carrier gas flow rate coupled with the IMS variables of temperature and drift gas flow rate. This evaluation resulted in six sets of experimental variables being required to separate the 32 VCs. The optimum experimental variables for SHS-MCC-GC-IMS, the retention time and drift time operating parameters were determined; to normalise the operating parameters, the relative drift time and normalised reduced ion mobility for each VC were determined. In addition, a full theoretical explanation is provided on the formation of the monomer, dimer and trimer of a VC. The optimum operating condition for each VC calibration data was obtained alongside limit of detection (LOD) and limit of quantitation (LOQ) values. Typical detection limits ranged from 0.1ng bis(methylthio)methane, ethylbutanoate and (E)-2-nonenal to 472ng isovaleric acid with correlation coefficient (R(2)) data ranging from 0.9793 (for the dimer of octanal) through to 0.9990 (for isobutyric acid). Finally, the developed protocols were applied to the analysis of malodour in sock samples. Initial work involved spiking an inert matrix and sock samples with appropriate concentrations of eight VCs. The average recovery from the inert matrix was 101±18% (n=8), while recoveries from the sock samples were lower, that is, 54±30% (n=8) for sock type 1 and 78±24% (n=6) for sock type 2. Finally, SHS-MCC-GC-IMS was applied to sock malodour in a field trial based on 11 volunteers (mixed gender) over a 3-week period. By applying the SHS-MCC-GC-IMS database, four VCs were

  10. Laser in medicine Láser en medicina

    Directory of Open Access Journals (Sweden)

    Juan C. Cárdenas

    1993-03-01

    Full Text Available The fundamentals of laser functioning and a brief historic description on the subject are presented; laser Is classified according to emission potency, materials with which it is built and pulsation. Different mechanisms of action of laser as well as Its indications and contraindications are discussed. Emphasis is given to low-power laser. Local and foreign experiences with Its medlcal use are briefly described

    Se revisan los principios fundamentales del funcionamiento del láser, se hace una breve revisión histórica del mismo y se lo clasifica de acuerdo con la potencia de emisión, los materiales de fabricación y la pulsación. Se enumeran los diferentes mecanismos de acción del láser y sus indicaciones y contraindicaciones haciendo énfasis en lo concerniente al láser de baja potencia, tanto pulsado como no pulsado; se alude a las experiencias nacionales y de otros países.

  11. Effect of the size of silver nanoparticles on SERS signal enhancement

    Science.gov (United States)

    He, Rui Xiu; Liang, Robert; Peng, Peng; Norman Zhou, Y.

    2017-08-01

    The localized surface plasmon resonance arising from plasmonic materials is beneficial in solution-based and thin-film sensing applications, which increase the sensitivity of the analyte being tested. Silver nanoparticles from 35 to 65 nm in diameter were synthesized using a low-temperature method and deposited in a monolayer on a (3-aminopropyl)triethoxysilane (APTES)-functionalized glass slide. The effect of particle size on monolayer structure, optical behavior, and surface-enhanced Raman scattering (SERS) is studied. While increasing particle size decreases particle coverage, it also changes the localized surface plasmon resonance and thus the SERS activity of individual nanoparticles. Using a laser excitation wavelength of 633 nm, the stronger localized surface plasmon resonance coupling to this excitation wavelength at larger particle sizes trumps the loss in surface coverage, and greater SERS signals are observed. The SERS signal enhancement accounts for the higher SERS signal, which was verified using a finite element model of a silver nanoparticle dimer with various nanoparticle sizes and separation distances.

  12. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry

    DEFF Research Database (Denmark)

    Mollerup, Christian Brinch; Mardal, Marie; Dalsgaard, Petur Weihe

    2018-01-01

    artificial neural networks (ANNs). Prediction was based on molecular descriptors, 827 RTs, and 357 CCS values from pharmaceuticals, drugs of abuse, and their metabolites. ANN models for the prediction of RT or CCS separately were examined, and the potential to predict both from a single model......Exact mass, retention time (RT), and collision cross section (CCS) are used as identification parameters in liquid chromatography coupled to ion mobility high resolution accurate mass spectrometry (LC-IM-HRMS). Targeted screening analyses are now more flexible and can be expanded for suspect...

  13. Atherogenic Lipoprotein Subfractions Determined by Ion Mobility and First Cardiovascular Events After Random Allocation to High-Intensity Statin or Placebo: The Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) Trial.

    Science.gov (United States)

    Mora, Samia; Caulfield, Michael P; Wohlgemuth, Jay; Chen, Zhihong; Superko, H Robert; Rowland, Charles M; Glynn, Robert J; Ridker, Paul M; Krauss, Ronald M

    2015-12-08

    Cardiovascular disease (CVD) can occur in individuals with low low-density lipoprotein (LDL) cholesterol (LDL-C). We investigated whether detailed measures of LDL subfractions and other lipoproteins can be used to assess CVD risk in a population with both low LDL-C and high C-reactive protein who were randomized to high-intensity statin or placebo. In 11 186 Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) participants, we tested whether lipids, apolipoproteins, and ion mobility-measured particle concentrations at baseline and after random allocation to rosuvastatin 20 mg/d or placebo were associated with first CVD events (n=307) or CVD/all-cause death (n=522). In placebo-allocated participants, baseline LDL-C was not associated with CVD (adjusted hazard ratio [HR] per SD, 1.03; 95% confidence interval [CI], 0.88-1.21). In contrast, associations with CVD events were observed for baseline non-high-density lipoprotein (HDL) cholesterol (HR, 1.18; 95% CI, 1.01-1.38), apolipoprotein B (HR, 1.28; 95% CI, 1.11-1.48), and ion mobility-measured non-HDL particles (HR, 1.19; 95% CI, 1.05-1.35) and LDL particles (HR, 1.21; 95% CI, 1.07-1.37). Association with CVD events was also observed for several LDL and very-low-density lipoprotein subfractions but not for ion mobility-measured HDL subfractions. In statin-allocated participants, CVD events were associated with on-treatment LDL-C, non-HDL cholesterol, and apolipoprotein B; these were also associated with CVD/all-cause death, as were several LDL and very-low-density lipoprotein subfractions, albeit with a pattern of association that differed from the baseline risk. In JUPITER, baseline LDL-C was not associated with CVD events, in contrast with significant associations for non-HDL cholesterol and atherogenic particles: apolipoprotein B and ion mobility-measured non-HDL particles, LDL particles, and select subfractions of very-low-density lipoprotein particles and

  14. Data for Users of Handheld Ion Mobility Spectrometers

    International Nuclear Information System (INIS)

    Keith A. Daum; Sandra L. Fox

    2008-01-01

    Chemical detection technology end-user surveys conducted by Idaho National Laboratory (INL) in 2005 and 2007 indicated that first responders believed manufacturers claims for instruments sometimes were not supported in field applications, and instruments sometimes did not meet their actual needs. Based on these findings, the Department of Homeland Security (DHS) asked INL to conduct a similar survey for handheld ion mobility spectrometers (IMS), which are used by a broad community of first responders as well as for other applications. To better access this broad community, the INL used the Center for Technology Commercialization, Inc. (CTC), Public Safety Technology Center (PSTC) to set up an online framework to gather information from users of handheld IMS units. This framework (Survey Monkey) was then used to perform an online Internet survey, augmented by e-mail prompts, to get information from first responders and personnel from various agencies about their direct experience with handheld IMS units. Overall, 478 individuals responded to the survey. Of these, 174 respondents actually owned a handheld IMS. Performance and satisfaction data from these 174 respondents are captured in this report. The survey identified the following observations: (1) The most common IMS unit used by respondents was the Advanced Portable Detector (APD 2000), followed by ChemRae, Sabre 4000, Sabre 2000, Draeger Multi IMS, Chemical Agent Monitor-2, Chemical Agent Monitor, Vapor Tracer, and Vapor Tracer 2. (2) The primary owners were HazMat teams (20%), fire services (14%), local police (12%), and sheriffs departments (9%). (3) IMS units are seldom used as part of an integrated system for detecting and identifying chemicals but instead are used independently. (4) Respondents are generally confused about the capabilities of their IMS unit. This is probably a result of lack of training. (5) Respondents who had no training or fewer than 8 hours were not satisfied with the overall operation

  15. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer

    Science.gov (United States)

    Poltash, Michael L.; McCabe, Jacob W.; Patrick, John W.; Laganowsky, Arthur; Russell, David H.

    2018-05-01

    As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.

  16. Positive selection at codon 38 of the human KCNE1 (= minK gene and sporadic absence of 38Ser-coding mRNAs in Gly38Ser heterozygotes

    Directory of Open Access Journals (Sweden)

    Pfeufer Arne

    2009-08-01

    Full Text Available Abstract Background KCNE1 represents the regulatory beta-subunit of the slowly activating delayed rectifier potassium channel (IKs. Variants of KCNE1 have repeatedly been linked to the long-QT syndrome (LQTS, a disorder which predisposes to deafness, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Results We here analyze the evolution of the common Gly38Ser variant (rs1805127, using genomic DNAs, complementary DNAs, and HEK293-expressed variants of altogether 19 mammalian species. The between species comparison reveals that the human-specific Gly38Ser polymorphism evolved under strong positive Darwinian selection, probably in adaptation to specific challenges in the fine-tuning of IKs channels. The involved amino acid exchanges (Asp > Gly, Gly > Ser are moderately radical and do not induce apparent changes in posttranslational modification. According to population genetic analyses (HapMap phase II a heterozygote advantage accounts for the maintenance of the Gly38Ser polymorphism in humans. On the other hand, the expression of the 38Ser allele seems to be disadvantageous under certain conditions, as suggested by the sporadic deficiency of 38Ser-coding mRNAs in heterozygote Central Europeans and the depletion of homozygotes 38Ser in the Yoruban sample. Conclusion We speculate that individual differences in genomic imprinting or genomic recoding might have contributed to conflicting results of recent association studies between Gly38Ser polymorphism and QT phenotype. The findings thus highlight the relevance of mRNA data in future association studies of genotypes and clinical disorders. To the best of our knowledge, they moreover provide first time evidence for a unique pattern; i.e. coincidence of positive Darwinian selection and polymorphism with a sporadically suppressed expression of one allele.

  17. Characterization of chiral amino acids from different milk origins using ultra-performance liquid chromatography coupled to ion-mobility mass spectrometry

    Science.gov (United States)

    Tian, He; Zheng, Nan; Li, Songli; Zhang, Yangdong; Zhao, Shengguo; Wen, Fang; Wang, Jiaqi

    2017-04-01

    Milk contains free amino acids (AAs) that play essential roles in maintaining the growth and health of infants, and D-AA isomers are increasingly being recognized as important signalling molecules. However, there are no studies of the different characteristics of chiral AA (C-AA) from different milk origins. Here, UPLC coupled to ion-mobility high-resolution MS (IM-HRMS) was employed to characterize 18 pairs of C-AAs in human, cow, yak, buffalo, goat, and camel milk. The results proved that milk origins can be differentiated based on the D- to L- AA ratio-based projection scores by principal component analysis. The present study gives a deeper understanding of the D- to L- AA ratio underlying the biological functions of different animal milks, and provide a new strategy for the study of AA metabolic pathways.

  18. Design, manufacturing and commissioning of mobile unit for EDF (Dow Chemical process)

    International Nuclear Information System (INIS)

    Cangini, D.; Cordier, J.P.; PEC Engineering, Osny, France)

    1985-01-01

    To process their spent ion exchange resins and the liquid wastes, EDF has ordered from PEC a mobile unit using the DOW CHEMICAL binder. This paper presents the EDF's design requirements as well as the new French regulation for waste embedding. The mobile unit was started in January 1983 and commissioned successfully in January 1985 in the TRICASTIN EDF's power plant

  19. Quiero ser citado

    Directory of Open Access Journals (Sweden)

    Leonardo Romero

    2011-05-01

    Full Text Available Después de varios años de ser editor, muchos de mis jefes confunden la revista con el editor, y es común oír cosas como “conferencia a cargo de la revista” o en conversaciones se dirijan a mí para decir “y porque no te citan”, refiriéndose al motivo porqué la Rev peru biol. no es citada por otros trabajos. Aprovechando ese desquicio, en los siguientes párrafos encarnare a la revista y al editor, en la fusión mágica en la que algunos de mis jefes me imaginan.

  20. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone.

    Science.gov (United States)

    Jha, Manis Kumar; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-01

    In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2M sulfuric acid with the addition of 5% H(2)O(2) (v/v) at a pulp density of 100 g/L and 75°C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H(2)O(2) in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1-(1-X)(1/3)=k(c)t. Leaching kinetics of cobalt fitted well to the model 'ash diffusion control dense constant sizes spherical particles' i.e. 1-3(1-X)(2/3)+2(1-X)=k(c)t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A compact mobile neutron generator

    International Nuclear Information System (INIS)

    Zhou Changgeng; Li Yan; Hu Yonghong; Lou Benchao; Wu Chunlei

    2007-06-01

    Through fitting the high voltage terminal from introducing overseas and pulse system et al. from oneself developing together, a compact mobile neutron generator is established. The length and weight of this neutron generator are 2 500 mm and less than 1 t, respectively. It can be expediently moved to the location which is required by experimental people. It is consisted of RF ion source, acceleration tube, high voltage generator, focus device, microsecond pulse system, gas leak system, control system, vacuum system and experimental target. It can produce 150 μA continuous deuterium ion beam current, also can produce the pulse deuterium ion beam current. The pulse widths are 10-100 μs and frequencies 10 Hz, 1 000 Hz, 10 000 Hz. The D-T neutron yields of the neutron generator may arrive 1.5 x 10 10 s -1 . The working principle and the structure of the main parts of this neutron generator are described. (authors)

  2. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment

    International Nuclear Information System (INIS)

    Gerbi, Jennifer E.; Abelson, John R.

    2007-01-01

    We demonstrate that the microstructure of polycrystalline silicon thin films depends strongly on the flux of low energy ions that bombard the growth surface during magnetron sputter deposition. The deposition system is equipped with external electromagnetic coils which, through the unbalanced magnetron effect, provide direct control of the ion flux independent of the ion energy. We report the influence of low energy ( + on the low temperature ( + ions to silicon neutrals (J + /J 0 ) during growth by an order of magnitude (from 3 to 30) enables the direct nucleation of polycrystalline Si on glass and SiO 2 coated Si at temperatures below 400 degree sign C. We discuss possible mechanisms for this enhancement of crystalline microstructure, including the roles of enhanced adatom mobility and the formation of shallow, mobile defects

  3. Invention of Lithium Ion Secondary Battery and Its Business Development

    OpenAIRE

    正本, 順三/米田,晴幸; 米田, 晴幸; MASAMOTO, Junzo; YONEDA, Haruyuki

    2010-01-01

    At present, mobile phones and laptop computers are essential items in our daily life. As a battery for such portable devices, the lithium ion secondary battery is used. The lithium ion secondary battery, which is used as a battery for such portable devices, was first invented by Dr. Yoshino at Asahi Kasei. In this paper, the authors describe how the lithium ion secondary battery was developed by the inventor. The authors also describe the battery separator, which is one of the key components ...

  4. Chemically Roughened Solid Silver: A Simple, Robust and Broadband SERS Substrate

    Directory of Open Access Journals (Sweden)

    Shavini Wijesuriya

    2016-10-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS substrates manufactured using complex nano-patterning techniques have become the norm. However, their cost of manufacture makes them unaffordable to incorporate into most biosensors. The technique shown in this paper is low-cost, reliable and highly sensitive. Chemical etching of solid Ag metal was used to produce simple, yet robust SERS substrates with broadband characteristics. Etching with ammonium hydroxide (NH4OH and nitric acid (HNO3 helped obtain roughened Ag SERS substrates. Scanning electron microscopy (SEM and interferometry were used to visualize and quantify surface roughness. Flattened Ag wires had inherent, but non-uniform roughness having peaks and valleys in the microscale. NH4OH treatment removed dirt and smoothened the surface, while HNO3 treatment produced a flake-like morphology with visibly more surface roughness features on Ag metal. SERS efficacy was tested using 4-methylbenzenethiol (MBT. The best SERS enhancement for 1 mM MBT was observed for Ag metal etched for 30 s in NH4OH followed by 10 s in HNO3. Further, MBT could be quantified with detection limits of 1 pM and 100 µM, respectively, using 514 nm and 1064 nm Raman spectrometers. Thus, a rapid and less energy intensive method for producing solid Ag SERS substrate and its efficacy in analyte sensing was demonstrated.

  5. Surface-enhanced Raman scattering (SERS) for detection of phenylketonuria for newborn screening

    Science.gov (United States)

    Javanmard, M.; Davis, R. W.

    2014-02-01

    Diagnosis of Phenylketonuria (PKU) in newborns is important because it can potentially help prevent mental retardation since it is treatable by dietary means. PKU results in phenylketonurics having phenylalanine levels as high as 2 mM whereas the normal upper limit in healthy newborns is 120 uM. To this end, we are developing a microfluidic platform integrated with a SERS substrate for detection of high levels of phenylalanine. We have successfully demonstrated SERS detection of phenylalanine using various SERS substrates fabricated using nanosphere lithography, which exhibit high levels of field enhancement. We show detection of SERS at clinically relevant levels.

  6. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry

    International Nuclear Information System (INIS)

    Fan, Ruo-Jing; Zhang, Fang; Chen, Xiu-Ping; Qi, Wan-Shu; Guan, Qing; Sun, Tuan-Qi; Guo, Yin-Long

    2017-01-01

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%–12.3% for intra-day and 0.9%–7.8% for inter-day) and good accuracy (91%–109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. - Highlights: • The separation power of DTIMS-MS enhanced peak capacity, spectral clarity, and specificity of benzil labeled GCs and UCs. • Short-column LC for on-line desalting increased the throughput with a measurement cycle of 5.0 min. • CCS and accurate mass as a pair of qualifiers were used for the profiling and identification of GCs and UCs. • An integral abundance arising from 3-D ion features (RT, DT, m/z) was used as a novel quantifier for quantitation. • The developed method was applied to screen and quantify the GCs and UCs in human thyroid tissues.

  7. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China); Chen, Xiu-Ping; Qi, Wan-Shu [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China)

    2017-04-08

    The present work focused on the high-throughput screening and quantitation of guanidino compounds (GCs) and ureido compounds (UCs) in human thyroid tissues. The strategy employed benzylic rearrangement stable isotope labeling (BRSIL) for the sample preparation and then detection using liquid chromatography-drift tube ion mobility spectrometry-quadrupole time of flight mass spectrometry (LC-DTIMS-QTOF MS). A short reversed-phase LC realized an on-line desalting and a measurement cycle of 5.0 min. DTIMS separation enhanced the better specificity and selectivity for the benzil labeled GCs and UCs. The elevated mass resolution of QTOF MS enabled measure of the characteristic ions at accurate mass in MS and tandem MS spectra. Collision cross section (CCS) from DTIMS and accurate mass from QTOF MS were used as two qualifiers for the profiling and identification of GCs and UCs. In addition, an integral abundance arising from 3-D ion features (retention time, drift time, m/z) was applied to quantify the GCs and UCs in human thyroid tissues. The quantitative validation indicated good linearity (coefficient values ≥ 0.9981), good precision (1.0%–12.3% for intra-day and 0.9%–7.8% for inter-day) and good accuracy (91%–109%). The results demonstrated that the developed BRSIL coupled with LC-DTIMS-QTOF MS can be a powerful analysis platform to investigate GCs and UCs in human thyroid tissues. - Highlights: • The separation power of DTIMS-MS enhanced peak capacity, spectral clarity, and specificity of benzil labeled GCs and UCs. • Short-column LC for on-line desalting increased the throughput with a measurement cycle of 5.0 min. • CCS and accurate mass as a pair of qualifiers were used for the profiling and identification of GCs and UCs. • An integral abundance arising from 3-D ion features (RT, DT, m/z) was used as a novel quantifier for quantitation. • The developed method was applied to screen and quantify the GCs and UCs in human thyroid tissues.

  8. Plasmonic crystal based solid substrate for biomedical application of SERS

    Science.gov (United States)

    Morasso, Carlo F.; Mehn, Dora; Picciolini, Silvia; Vanna, Renzo; Bedoni, Marzia; Gramatica, Furio; Pellacani, Paola; Frangolho, Ana; Marchesini, Gerardo; Valsesia, Andrea

    2014-02-01

    Surface Enhanced Raman Spectroscopy is a powerful analytical technique that combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by the enhancement of the signal observed when a molecule is located on (or very close to) the surface of suitable nanostructured metallic materials. The availability of cheap, reliable and easy to use SERS substrates would pave the road to the development of bioanalytical tests that can be used in clinical practice. SERS, in fact, is expected to provide not only higher sensitivity and specificity, but also the simultaneous and markedly improved detection of several targets at the same time with higher speed compared to the conventional analytical methods. Here, we present the SERS activity of 2-D plasmonic crystals made by polymeric pillars embedded in a gold matrix obtained through the combination of soft-lithography and plasma deposition techniques on a transparent substrates. The use of a transparent support material allowed us to perform SERS detection from support side opening the possibility to use these substrates in combination with microfluidic devices. In order to demonstrate the potentialities for bioanalytical applications, we used our SERS active gold surface to detect the oxidation product of apomorphine, a well-known drug molecule used in Parkinson's disease which has been demonstrated being difficult to study by traditional HPLC based approaches.

  9. A new technique of ion beam tritium labelling

    International Nuclear Information System (INIS)

    Zhang Nianbao; Sheng Shugang; Yao Fuzeng

    1990-01-01

    In this paper a new technique is reported for tritium labelling of proteins, peptides and other nonvolatile organic compounds. A tritium ion beam is accelerated to bombard solid sample target for producing tritium exchange with hydrogen. The tritium labelling method has been applied to tritiated soybean trypsin inhibitor, ribonuclease A, elastin, pachyman and others totalled 11. After purifying by dialysis, ion exchange chromatography and gel filtration, the tritiated proteins and polysaccharide were obtained with specific activity over 37 GBq/mmol, without decomposition and with biological activity well preserved. By amino acid analysis of tritiated protein it was shown that the relative specific radioactivities for His., Tyr. and Phe. residues were higher while those for Val., Ile. and Ser. residues were lower

  10. Atmospheric pressure ionization of chlorinated ethanes in ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Atkinson, David A.; Benson, Michael T.

    2015-05-16

    This study investigates the APCI mechanisms associated with chlorinated ethanes in an attempt to define conditions under which unique pseudo-molecular adducts, in addition to chloride ion, can be produced for analytical measurements using IMS and MS. The ionization chemistry of chlorinated compounds typically leads to the detection of only the halide ions. Using molecular modeling, which provides insights into the ion formation and relative binding energies, predictions for the formation of pseudo-molecular adducts are postulated. Predicted structures of the chloride ion with multiple hydrogens on the ethane backbone was supported by the observation of specific pseudo-molecular adducts in IMS and MS spectra. With the proper instrumental conditions, such as short reaction times and low temp.

  11. Nonlinear Ion-Acoustic Waves in a Plasma Consisting of Warm Ions and Isothermal Distributed Electrons

    International Nuclear Information System (INIS)

    Abourabia, A.M.; Hassan, K.M.; Shahein, R.A.

    2008-01-01

    The formation of (1+1) dimensional ion-acoustic waves (IAWs) in an unmagnetized collisionless plasma consisting of warm ions and isothermal distributed electrons is investigated. The electrodynamics system of equations are solved analytically in terms of a new variable ξκ χ -φ τ, where k=k(ω) is a complex function, at a fixed position. The analytical calculations gives that the critical value σ = τ/τ ∼ 0.25 distinguishes between the linear and nonlinear characters of IAW within the nanosecond time scale. The flow velocity, pressure, number density, electric potential, electric field, mobility and the total energy in the system are estimated and illustrated

  12. An association between apo-A4 gene polymorphism (Thr347Ser ...

    African Journals Online (AJOL)

    Pramod Kumar

    Objective: We aimed at studying the relationship between apoA4 gene polymorphisms (Thr347Ser and ... showed significant association with lipid risk factors like high levels of ..... in German population showed that Ser347 allele is associated.

  13. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Pedro M. Fierro-Mercado

    2012-01-01

    Full Text Available We report on a novel and extremely low-cost surface-enhanced Raman spectroscopy (SERS substrate fabricated depositing gold nanoparticles on common lab filter paper using thermal inkjet technology. The paper-based substrate combines all advantages of other plasmonic structures fabricated by more elaborate techniques with the dynamic flexibility given by the inherent nature of the paper for an efficient sample collection, robustness, and stability. We describe the fabrication, characterization, and SERS activity of our substrate using 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 1,3,5-trinitrobenzene as analytes. The paper-based SERS substrates presented a high sensitivity and excellent reproducibility for analytes employed, demonstrating a direct application in forensic science and homeland security.

  14. Ion-acoustic cnoidal wave and associated non-linear ion flux in dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S. L. [Poornima Group of Institution, Sitapura, Jaipur 302022 (India); Tiwari, R. S. [Regional College for Education, Research and Technology, Jaipur 302022 (India); Mishra, M. K. [Department of Physics, University of Rajasthan, Jaipur 302004 (India)

    2012-10-15

    Using reductive perturbation method with appropriate boundary conditions, coupled evolution equations for first and second order potentials are derived for ion-acoustic waves in a collisionless, un-magnetized plasma consisting of hot isothermal electrons, cold ions, and massive mobile charged dust grains. The boundary conditions give rise to renormalization term, which enable us to eliminate secular contribution in higher order terms. Determining the non secular solution of these coupled equations, expressions for wave phase velocity and averaged non-linear ion flux associated with ion-acoustic cnoidal wave are obtained. Variation of the wave phase velocity and averaged non-linear ion flux as a function of modulus (k{sup 2}) dependent wave amplitude are numerically examined for different values of dust concentration, charge on dust grains, and mass ratio of dust grains with plasma ions. It is found that for a given amplitude, the presence of positively (negatively) charged dust grains in plasma decreases (increases) the wave phase velocity. This behavior is more pronounced with increase in dust concentrations or increase in charge on dust grains or decrease in mass ratio of dust grains. The averaged non-linear ion flux associated with wave is positive (negative) for negatively (positively) charged dust grains in the plasma and increases (decreases) with modulus (k{sup 2}) dependent wave amplitude. For given amplitude, it increases (decreases) as dust concentration or charge of negatively (positively) charged dust grains increases in the plasma.

  15. BACH1 Ser919Pro variant and breast cancer risk

    Directory of Open Access Journals (Sweden)

    Eerola Hannaleena

    2006-01-01

    Full Text Available Abstract Background BACH1 (BRCA1-associated C-terminal helicase 1; also known as BRCA1-interacting protein 1, BRIP1 is a helicase protein that interacts in vivo with BRCA1, the protein product of one of the major genes for hereditary predisposition to breast cancer. Previously, two BACH1 germ line missense mutations have been identified in early-onset breast cancer patients with and without family history of breast and ovarian cancer. In this study, we aimed to evaluate whether there are BACH1 genetic variants that contribute to breast cancer risk in Finland. Methods The BACH1 gene was screened for germ line alterations among probands from 43 Finnish BRCA1/2 negative breast cancer families. Recently, one of the observed common variants, Ser-allele of the Ser919Pro polymorphism, was suggested to associate with an increased breast cancer risk, and was here evaluated in an independent, large series of 888 unselected breast cancer patients and in 736 healthy controls. Results Six BACH1 germ line alterations were observed in the mutation analysis, but none of these were found to associate with the cancer phenotype. The Val193Ile variant that was seen in only one family was further screened in an independent series of 346 familial breast cancer cases and 183 healthy controls, but no additional carriers were observed. Individuals with the BACH1 Ser919-allele were not found to have an increased breast cancer risk when the Pro/Ser heterozygotes (OR 0.90; 95% CI 0.70–1.16; p = 0.427 or Ser/Ser homozygotes (OR 1.02; 95% CI 0.76–1.35; p = 0.91 were compared to Pro/Pro homozygotes, and there was no association of the variant with any breast tumor characteristics, age at cancer diagnosis, family history of cancer, or survival. Conclusion Our results suggest that the BACH1 Ser919 is not a breast cancer predisposition allele in the Finnish study population. Together with previous studies, our results also indicate that although some rare germ line variants

  16. BACH1 Ser919Pro variant and breast cancer risk

    International Nuclear Information System (INIS)

    Vahteristo, Pia; Yliannala, Kristiina; Tamminen, Anitta; Eerola, Hannaleena; Blomqvist, Carl; Nevanlinna, Heli

    2006-01-01

    BACH1 (BRCA1-associated C-terminal helicase 1; also known as BRCA1-interacting protein 1, BRIP1) is a helicase protein that interacts in vivo with BRCA1, the protein product of one of the major genes for hereditary predisposition to breast cancer. Previously, two BACH1 germ line missense mutations have been identified in early-onset breast cancer patients with and without family history of breast and ovarian cancer. In this study, we aimed to evaluate whether there are BACH1 genetic variants that contribute to breast cancer risk in Finland. The BACH1 gene was screened for germ line alterations among probands from 43 Finnish BRCA1/2 negative breast cancer families. Recently, one of the observed common variants, Ser-allele of the Ser919Pro polymorphism, was suggested to associate with an increased breast cancer risk, and was here evaluated in an independent, large series of 888 unselected breast cancer patients and in 736 healthy controls. Six BACH1 germ line alterations were observed in the mutation analysis, but none of these were found to associate with the cancer phenotype. The Val193Ile variant that was seen in only one family was further screened in an independent series of 346 familial breast cancer cases and 183 healthy controls, but no additional carriers were observed. Individuals with the BACH1 Ser919-allele were not found to have an increased breast cancer risk when the Pro/Ser heterozygotes (OR 0.90; 95% CI 0.70–1.16; p = 0.427) or Ser/Ser homozygotes (OR 1.02; 95% CI 0.76–1.35; p = 0.91) were compared to Pro/Pro homozygotes, and there was no association of the variant with any breast tumor characteristics, age at cancer diagnosis, family history of cancer, or survival. Our results suggest that the BACH1 Ser919 is not a breast cancer predisposition allele in the Finnish study population. Together with previous studies, our results also indicate that although some rare germ line variants in BACH1 may contribute to breast cancer development, the

  17. Relaxation behavior of ion conducting glasses

    International Nuclear Information System (INIS)

    Bunde, A.; Dieterich, W.; Maass, P.; Meyer, M.

    1997-01-01

    We investigate by Monte Carlo simulations the diffusion of ions in an energetically disordered lattice, where the Coulomb interaction between the mobile ions is explicitly taken into account. We show that the combined effect of Coulomb interaction and disorder can account for the ionic ac-conductivity in glasses and the recently discovered non-Arrhenius behavior of the dc-conductivity in glassy fast ionic conductors. Our results suggest that glassy ionic conductors can be optimized by lowering the strength of the energetic disorder but that the ionic interaction effects set an upper bound for the conductivity at high temperatures. (author)

  18. Trace determination of thiram using SERS-active hollow sea-urchin gold nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Guanghui; Zhang, Chuankun; Ma, Yanan; Wang, Zheng; Wang, Shun; Xu, Chan; Wang, Dashuang

    2017-01-01

    Surface-enhanced Raman scattering (SERS) is greatly structure-dependent on the absorbed nanoparticles. Nanostructures with different novel morphologies show different Raman enhancement factor orders of magnitude. Herein, a unique nanostructure with fruitful SERS-active sites, composed of hollow interiors and thorns which named as hollow sea-urchin gold nanoparticles (HSU-GNPs), was synthesized by using a one-pot galvanic replacement method. And the corresponding morphologies and optical properties were characterized by TEM images and absorption spectra. Importantly, the synthetic parameters of HSU-GNPs were optimized to obtain a superior SERS performance by analyzing the formation mechanism and the SERS spectra of R6G-labeled HSU-GNPs which obtained at different concentrations of AgNO_3. Furthermore, the SERS-based application of HSU-GNPs was performed on the dose-response detection of thiram. The experimental result shows this detection strategy is available for thiram with decent sensitivity and reproducibility, which suggests that it is an excellent candidate for the detection of pesticides.

  19. Trace determination of thiram using SERS-active hollow sea-urchin gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanghui; Zhang, Chuankun, E-mail: zhangchk-lx@huat.edu.cn; Ma, Yanan; Wang, Zheng; Wang, Shun; Xu, Chan; Wang, Dashuang [Hubei University of Automotive Technology, School of Science (China)

    2017-04-15

    Surface-enhanced Raman scattering (SERS) is greatly structure-dependent on the absorbed nanoparticles. Nanostructures with different novel morphologies show different Raman enhancement factor orders of magnitude. Herein, a unique nanostructure with fruitful SERS-active sites, composed of hollow interiors and thorns which named as hollow sea-urchin gold nanoparticles (HSU-GNPs), was synthesized by using a one-pot galvanic replacement method. And the corresponding morphologies and optical properties were characterized by TEM images and absorption spectra. Importantly, the synthetic parameters of HSU-GNPs were optimized to obtain a superior SERS performance by analyzing the formation mechanism and the SERS spectra of R6G-labeled HSU-GNPs which obtained at different concentrations of AgNO{sub 3}. Furthermore, the SERS-based application of HSU-GNPs was performed on the dose-response detection of thiram. The experimental result shows this detection strategy is available for thiram with decent sensitivity and reproducibility, which suggests that it is an excellent candidate for the detection of pesticides.

  20. Technology transfer and application of SERS continuous monitor for trace organic compounds

    International Nuclear Information System (INIS)

    Swindle, D.W. Jr.; Vo-Dinh, T.; Yalcintas, M.G.

    1992-01-01

    An in situ-enhanced Raman Scattering (SERS) continuous monitoring system was developed for exciting and collecting SERS signals generated on silver-coated microparticles deposited on a continuously rotating filter-paper support. SERS measurements were successfully conducted for several organic compounds. An in situ SERS fiber-optic system was also developed for exciting and collecting SERS signals generated from a sensing tip having silver-coated microparticles deposited on a glass-plate support. These devices will be very useful in remote identification of unknown chemicals from hazardous waste sites. This patented technology has been licensed from Oak Ridge National Laboratory to an analytical instrumentation firm which is in the process of completing development and marketing these detectors. Advantages to using this technology range from increased safety and sensitivity for detecting hazardous compounds to better statistics and reliable results. During this presentation, efforts of the Environmental Restoration Program to evaluate and support development of this technology will be described