WorldWideScience

Sample records for sers correlation spectroscopy

  1. Effects of surface topography on SERS response: Correlating nanoscopy with spectroscopy

    Science.gov (United States)

    Das, Sumit Kumar; Ghosh, Manash; Chowdhury, Joydeep

    2018-05-01

    This paper reports for the first time the hidden correlation between the topographical features of the bilayer Langmuir-Blodgett (LB) film substrates of stearic acid (SA) incubated in Au@Ag nanocolloids over various dipping times (DTs) with their corresponding SERS responses. The topographies of the as prepared substrates are investigated from the statistical considerations in terms of lateral correlation length, interface width, Hurst and Lyapnov exponents. The real space of the substrates are mapped directly from the FESEM and AFM images of the bilayer LB film of SA immersed in Au@Ag nanocolloids over various DTs ranging between 6 and 72 h. The SERS spectra of the Rhodamine 6G molecules adsorbed on the as prepared substrates have been reported. The statistical parameters of the substrates that exhibit maximum SERS efficacy have been suggested. The far field distributions in presence and in absence of Raman dipole together with spatial distribution of the near field from the hottest spot of the as prepared substrate have also been reported. To our knowledge, this is the first report that links nanoscopy with SERS spectroscopy from statistical considerations and is expected to open a new window towards the fabrication of more efficient and reproducible SERS active substrates in future endeavours.

  2. SERS-Active Nanoinjector for Intracellular Spectroscopy

    Science.gov (United States)

    Vitol, Elina; Orynbayeva, Zulfiya; Bouchard, Michael; Azizkhan-Clifford, Jane; Friedman, Gary; Gogotsi, Yury

    2009-03-01

    We developed a multifunctional nanopipette which allows simultaneous cell injection and intacellular surface-enhanced Raman spectroscopy (SERS) analysis. SERS spectra contain the characteristic frequencies of molecular bond vibrations. This is a unique method for studying cell biochemistry and physiology on a single organelle level. Unlike the fluorescence spectroscopy, it does not require any specific staining. The principle of SERS is based on very large electromagnetic field enhancement localized around a nano-rough metallic surface. Gold colloids are widely used SERS substrates. Previously, the colloidal nanoparticles were introduced into a cell by the mechanism of endocytosis. The disadvantage of this method is the uncontrollable aggregation and distribution of gold nanoparticles inside a cell which causes a significant uncertainty in the origin of the acquired data. At the same time, the nanoparticle uptake is irreversible. We present a SERS-active nanoinjector, coated with gold nanoparticles, which enables selective signal acquisition from any point-of-interest inside a cell. The nanoinjector provides a highly localized SERS signal with sub-nanometer resolution in real time.

  3. Correlative SEM SERS for quantitative analysis of dimer nanoparticles.

    Science.gov (United States)

    Timmermans, F J; Lenferink, A T M; van Wolferen, H A G M; Otto, C

    2016-11-14

    A Raman microscope integrated with a scanning electron microscope was used to investigate plasmonic structures by correlative SEM-SERS analysis. The integrated Raman-SEM microscope combines high-resolution electron microscopy information with SERS signal enhancement from selected nanostructures with adsorbed Raman reporter molecules. Correlative analysis is performed for dimers of two gold nanospheres. Dimers were selected on the basis of SEM images from multi aggregate samples. The effect of the orientation of the dimer with respect to the polarization state of the laser light and the effect of the particle gap size on the Raman signal intensity is observed. Additionally, calculations are performed to simulate the electric near field enhancement. These simulations are based on the morphologies observed by electron microscopy. In this way the experiments are compared with the enhancement factor calculated with near field simulations and are subsequently used to quantify the SERS enhancement factor. Large differences between experimentally observed and calculated enhancement factors are regularly detected, a phenomenon caused by nanoscale differences between the real and 'simplified' simulated structures. Quantitative SERS experiments reveal the structure induced enhancement factor, ranging from ∼200 to ∼20 000, averaged over the full nanostructure surface. The results demonstrate correlative Raman-SEM microscopy for the quantitative analysis of plasmonic particles and structures, thus enabling a new analytical method in the field of SERS and plasmonics.

  4. Variable angle correlation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Y.K.; Lawrence Berkeley Lab., CA

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13 C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system

  5. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  6. Normal Raman and SERS spectroscopy of the vitamin E

    International Nuclear Information System (INIS)

    Cai Tiantian; Gu Huaimin; Yuan Xiaojuan; Liu Fangfang

    2011-01-01

    In this study, surface-enhanced Raman scattering(SERS)spectra of vitamin E were obtained on colloidal silver(Ag). Alpha-(-) tocopherol which is the only form that is recognized to meet human requirements was selected to study. The analytes (±)- -tocopherol were dissolved in chloroform (CHCl 3 ) and the silver colloid was poured into the compound. Silver colloid was reduced by hydroxylamine hydrochloride. The analytes were the supernatant after standing the mixture for the reason that chloroform have no signals in surface-enhanced Raman scattering in the Ag colloid, and it would not affect the determination of the (±)- -tocopherol. The Normal Raman and SERS spectrum of Vitamin E were contrastively studied to realize how the vitamin E stuck to the silver nanoparticles. The results show the fat-soluble substances can be analysed by SERS. The spectra indicate that the molecules are adsorbed on the surface through the COO- groups by the simultaneous involvement of a and -type coordination. These results suggest some important criteria for consideration in SERS measurements and also provide important insights into the problem of predicting SERS activities for different fat-soluble substances.

  7. Normal Raman and SERS spectroscopy of the vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Cai Tiantian; Gu Huaimin; Yuan Xiaojuan; Liu Fangfang, E-mail: guhm@scnu.edu.cn [MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, 510631, Guangzhou (China)

    2011-01-01

    In this study, surface-enhanced Raman scattering(SERS)spectra of vitamin E were obtained on colloidal silver(Ag). Alpha-(-) tocopherol which is the only form that is recognized to meet human requirements was selected to study. The analytes ({+-})- -tocopherol were dissolved in chloroform (CHCl{sub 3}) and the silver colloid was poured into the compound. Silver colloid was reduced by hydroxylamine hydrochloride. The analytes were the supernatant after standing the mixture for the reason that chloroform have no signals in surface-enhanced Raman scattering in the Ag colloid, and it would not affect the determination of the ({+-})- -tocopherol. The Normal Raman and SERS spectrum of Vitamin E were contrastively studied to realize how the vitamin E stuck to the silver nanoparticles. The results show the fat-soluble substances can be analysed by SERS. The spectra indicate that the molecules are adsorbed on the surface through the COO- groups by the simultaneous involvement of a and -type coordination. These results suggest some important criteria for consideration in SERS measurements and also provide important insights into the problem of predicting SERS activities for different fat-soluble substances.

  8. Correlation ion mobility spectroscopy

    Science.gov (United States)

    Pfeifer, Kent B [Los Lunas, NM; Rohde, Steven B [Corrales, NM

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  9. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    Science.gov (United States)

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  10. Development of surface enhanced Raman scattering (SERS) spectroscopy monitoring of fuel markers to prevent fraud

    Science.gov (United States)

    Wilkinson, Timothy; Clarkson, John; White, Peter C.; Meakin, Nicholas; McDonald, Ken

    2013-05-01

    Governments often tax fuel products to generate revenues to support and stimulate their economies. They also subsidize the cost of essential fuel products. Fuel taxation and subsidization practices are both subject to fraud. Oil marketing companies also suffer from fuel fraud with loss of legitimate sales and additional quality and liability issues. The use of an advanced marking system to identify and control fraud has been shown to be effective in controlling illegal activity. DeCipher has developed surface enhanced Raman scattering (SERS) spectroscopy as its lead technology for measuring markers in fuel to identify and control malpractice. SERS has many advantages that make it highly suitable for this purpose. The SERS instruments are portable and can be used to monitor fuel at any point in the supply chain. SERS shows high specificity for the marker, with no false positives. Multiple markers can also be detected in a single SERS analysis allowing, for example, specific regional monitoring of fuel. The SERS analysis from fuel is also quick, clear and decisive, with a measurement time of less than 5 minutes. We will present results highlighting our development of the use of a highly stable silver colloid as a SERS substrate to measure the markers at ppb levels. Preliminary results from the use of a solid state SERS substrate to measure fuel markers will also be presented.

  11. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care

    Science.gov (United States)

    Marks, Haley; Schechinger, Monika; Garza, Javier; Locke, Andrea; Coté, Gerard

    2017-06-01

    Point-of-care (POC) device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere - from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS) is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable) criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  12. Surface enhanced Raman spectroscopy (SERS for in vitro diagnostic testing at the point of care

    Directory of Open Access Journals (Sweden)

    Marks Haley

    2017-06-01

    Full Text Available Point-of-care (POC device development is a growing field that aims to develop low-cost, rapid, sensitive in-vitro diagnostic testing platforms that are portable, self-contained, and can be used anywhere – from modern clinics to remote and low resource areas. In this review, surface enhanced Raman spectroscopy (SERS is discussed as a solution to facilitating the translation of bioanalytical sensing to the POC. The potential for SERS to meet the widely accepted “ASSURED” (Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and Deliverable criterion provided by the World Health Organization is discussed based on recent advances in SERS in vitro assay development. As SERS provides attractive characteristics for multiplexed sensing at low concentration limits with a high degree of specificity, it holds great promise for enhancing current efforts in rapid diagnostic testing. In outlining the progression of SERS techniques over the past years combined with recent developments in smart nanomaterials, high-throughput microfluidics, and low-cost paper diagnostics, an extensive number of new possibilities show potential for translating SERS biosensors to the POC.

  13. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili

    2015-04-07

    Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.

  14. Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Wijaya, Wisiani; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-04-01

    Acetamiprid is a neonicotinoid pesticide that is commonly used in modern farming. Acetamiprid residue in food commodities can be a potential harm to human and has been implicated in the honey bee hive die off crisis. In this study, we developed rapid, simple, and sensitive methods to detect acetamiprid in apple juice and on apple surfaces using surface-enhanced Raman spectroscopy (SERS). No pretreatment of apple juice sample was performed. A simple surface swab method was used to recover acetamiprid from the apple surface. Samples were incubated with silver dendrites for several minutes and SERS spectra were taken directly from the silver surface. Detection of a set of 5 apple juice samples can be done within 10 min. The swab-SERS method took 15 min for a set of 5 samples. Resulting spectral data were analyzed using principal component analysis. The highest acetamiprid peak at 634 cm(-1) was used to detect and quantify the amount of acetamiprid spiked in 1:1 water-methanol solvent, apple juice, and on apple surface. The SERS method was able to successfully detect acetamiprid at 0.5 μg/mL (0.5 ppm) in solvent, 3 μg/mL (3 ppm) in apple juice, and 0.125 μg/cm(2) on apple surfaces. The SERS methods provide simple, rapid, and sensitive ways to detect acetamiprid in beverages and on the surfaces of thick skinned fruits and vegetables. © 2014 Institute of Food Technologists®

  15. A study on the correlation between the dewetting temperature of Ag film and SERS intensity.

    Science.gov (United States)

    Quan, Jiamin; Zhang, Jie; Qi, Xueqiang; Li, Junying; Wang, Ning; Zhu, Yong

    2017-11-07

    The thermally dewetted metal nano-islands have been actively investigated as cost-effective SERS-active substrates with a large area, good reproducibility and repeatability via simple fabrication process. However, the correlation between the dewetting temperature of metal film and SERS intensity hasn't been systematically studied. In this work, taking Ag nano-islands (AgNIs) as an example, we reported a strategy to investigate the correlation between the dewetting temperature of metal film and SERS intensity. We described the morphology evolution of AgNIs on the SiO 2 planar substrate in different temperatures and got the quantitative information in surface-limited diffusion process (SLDP) as a function of annealing temperature via classical mean-field nucleation theory. Those functions were further used in the simulation of electromagnetic field to obtain the correlation between the dewetting temperature of Ag film and theoretical analysis. In addition, Raman mapping was done on samples annealed at different temperatures, with R6G as an analyte, to accomplish the analysis of the correlation between the dewetting temperature of Ag film and SERS intensity, which is consistent with the theoretical analysis. For SLDP, we used the morphological characterization of five samples prepared by different annealing temperatures to successfully illustrate the change in SERS intensity with the temperature fluctuation, obtaining a small deviation between the experimental results and theoretic prediction.

  16. Complete urinary tract infection (UTI) diagnosis and antibiogram using surface enhanced Raman spectroscopy (SERS)

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Kyriakides, Alexandros; Pitris, Costas

    2012-03-01

    There are three stages to a complete UTI diagnosis: (1) identification of a urine sample as positive/negative for an infection, (2) identification of the responsible bacterium, (3) antibiogram to determine the antibiotic to which the bacteria are most sensitive to. Using conventional methods, all three stages require bacterial cultures in order to provide results. This long delay in diagnosis causes a rise in ineffective treatments, chronic infections, health care costs and antibiotic resistance. In this work, SERS is used to identify a sample as positive/negative for a UTI as well as to obtain an antibiogram against different antibiotics. SERS spectra of serial dilutions of E. coli bacteria mixed with silver nanoparticles, showed a linear correlation between spectral intensity and concentration. For antibiotic sensitivity testing, SERS spectra of three species of gram negative bacteria were collected four hours after exposure to the antibiotics ciprofloxacin and amoxicillin. Spectral analysis revealed clear separation between bacterial samples exposed to antibiotics to which they were sensitive and samples exposed to antibiotics to which they were resistant. With the enhancement provided by SERS, the technique can be applied directly to urine samples leading to the development of a new, rapid method for UTI diagnosis and antibiogram.

  17. Comparison of time-gated surface-enhanced Raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples.

    Science.gov (United States)

    Kögler, Martin; Paul, Andrea; Anane, Emmanuel; Birkholz, Mario; Bunker, Alex; Viitala, Tapani; Maiwald, Michael; Junne, Stefan; Neubauer, Peter

    2018-06-08

    The application of Raman spectroscopy as a monitoring technique for bioprocesses is severely limited by a large background signal originating from fluorescing compounds in the culture media. Here we compare time-gated Raman (TG-Raman)-, continuous wave NIR-process Raman (NIR-Raman) and continuous wave micro-Raman (micro-Raman) approaches in combination with surface enhanced Raman spectroscopy (SERS) for their potential to overcome this limit. For that purpose, we monitored metabolite concentrations of Escherichia coli bioreactor cultivations in cell-free supernatant samples. We investigated concentration transients of glucose, acetate, AMP and cAMP at alternating substrate availability, from deficiency to excess. Raman and SERS signals were compared to off-line metabolite analysis of carbohydrates, carboxylic acids and nucleotides. Results demonstrate that SERS, in almost all cases, led to a higher number of identifiable signals and better resolved spectra. Spectra derived from the TG-Raman were comparable to those of micro-Raman resulting in well-discernable Raman peaks, which allowed for the identification of a higher number of compounds. In contrast, NIR-Raman provided a superior performance for the quantitative evaluation of analytes, both with and without SERS nanoparticles when using multivariate data analysis. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  18. SERS spectroscopy for detection of hydrogen cyanide in breath from children colonised with P. aeruginosa

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Skou, Peter Bæk; Rindzevicius, Tomas

    2017-01-01

    ) nanochip optimised for detection of trace amounts of the P. aeruginosa biomarker hydrogen cyanide (HCN) was mounted inside a Tedlar bag, which the patient breathed into. The SERS chip was then analysed in a Raman spectrometer, investigating the C≡N peak at 2131 cm-1 and correlated with sputum cultures. One...... new P. aeruginosa colonisation occurred during the trial period. The C≡N peak intensity was enhanced in this sample in contrast to the subject's 3 other samples. Three additional patients had intense C≡N SERS signals from their breath, but no P. aeruginosa was cultured from their sputum...

  19. Monitoring cell culture media degradation using surface enhanced Raman scattering (SERS) spectroscopy.

    Science.gov (United States)

    Calvet, Amandine; Ryder, Alan G

    2014-08-20

    The quality of the cell culture media used in biopharmaceutical manufacturing is a crucial factor affecting bioprocess performance and the quality of the final product. Due to their complex composition these media are inherently unstable, and significant compositional variations can occur particularly when in the prepared liquid state. For example photo-degradation of cell culture media can have adverse effects on cell viability and thus process performance. There is therefore, from quality control, quality assurance and process management view points, an urgent demand for the development of rapid and inexpensive tools for the stability monitoring of these complex mixtures. Spectroscopic methods, based on fluorescence or Raman measurements, have now become viable alternatives to more time-consuming and expensive (on a unit analysis cost) chromatographic and/or mass spectrometry based methods for routine analysis of media. Here we demonstrate the application of surface enhanced Raman scattering (SERS) spectroscopy for the simple, fast, analysis of cell culture media degradation. Once stringent reproducibility controls are implemented, chemometric data analysis methods can then be used to rapidly monitor the compositional changes in chemically defined media. SERS shows clearly that even when media are stored at low temperature (2-8°C) and in the dark, significant chemical changes occur, particularly with regard to cysteine/cystine concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. SERS and in situ SERS spectroscopy of riboflavin adsorbed on silver, gold and copper substrates. Elucidation of variability of surface orientation based on both experimental and theoretical approach

    Science.gov (United States)

    Dendisová-Vyškovská, Marcela; Kokaislová, Alžběta; Ončák, Milan; Matějka, Pavel

    2013-04-01

    Surface-enhanced Raman scattering and in situ surface-enhanced Raman scattering spectra have been collected to study influences of (i) used metal and (ii) applied electrode potential on orientation of adsorbed riboflavin molecules. Special in situ SERS spectroelectrochemical cell was used to obtain in situ SERS spectra of riboflavin adsorbed on silver, gold and copper nanostructured surfaces. Varying electrode potential was applied in discrete steps forming a cycle from positive values to negative and backward. Observed spectral features in in situ SERS spectra, measured at alternate potentials, have been changing very significantly and the spectra have been compared with SERS spectra of riboflavin measured ex situ. Raman spectra of single riboflavin molecule in the vicinity to metal (Ag, Au and Cu) clusters have been calculated for different mutual positions. The results demonstrate significant changes of bands intensities which can be correlated with experimental spectra measured at different potentials. Thus, the orientation of riboflavin molecules adsorbed on metal surfaces can be elucidated. It is influenced definitely by the value of applied potential. Furthermore, the riboflavin adsorption orientation on the surface depends on the used metal. Adsorption geometries on the copper substrates are more diverse in comparison with the orientations on silver and gold substrates.

  1. Surface-enhanced vibrational spectroscopy of B vitamins: what is the effect of SERS-active metals used?

    Science.gov (United States)

    Kokaislová, A; Matějka, P

    2012-05-01

    Surface-enhanced Raman scattering (SERS) spectroscopy and surface-enhanced infrared absorption (SEIRA) spectroscopy are analytical tools suitable for the detection of small amounts of various analytes adsorbed on metal surfaces. During recent years, these two spectroscopic methods have become increasingly important in the investigation of adsorption of biomolecules and pharmaceuticals on nanostructured metal surfaces. In this work, the adsorption of B-group vitamins pyridoxine, nicotinic acid, folic acid and riboflavin at electrochemically prepared gold and silver substrates was investigated using Fourier transform SERS spectroscopy at an excitation wavelength of 1,064 nm. Gold and silver substrates were prepared by cathodic reduction on massive platinum targets. In the case of gold substrates, oxidation-reduction cycles were applied to increase the enhancement factor of the gold surface. The SERS spectra of riboflavin, nicotinic acid, folic acid and pyridoxine adsorbed on silver substrates differ significantly from SERS spectra of these B-group vitamins adsorbed on gold substrates. The analysis of near-infrared-excited SERS spectra reveals that each of B-group vitamin investigated interacts with the gold surface via a different mechanism of adsorption to that with the silver surface. In the case of riboflavin adsorbed on silver substrate, the interpretation of surface-enhanced infrared absorption (SEIRA) spectra was also helpful in investigation of the adsorption mechanism.

  2. Label-Free Detection of Glycan-Protein Interactions for Array Development by Surface-Enhanced Raman Spectroscopy (SERS)

    NARCIS (Netherlands)

    Li, Xiuru; Martin, Sharon J H; Chinoy, Zoeisha S; Liu, Lin; Rittgers, Brandon; Dluhy, Richard A; Boons, Geert-Jan

    2016-01-01

    A glyco-array platform has been developed, in which glycans are attached to plasmonic nanoparticles through strain-promoted azide-alkyne cycloaddition. Glycan-protein binding events can then be detected in a label-free manner employing surface-enhanced Raman spectroscopy (SERS). As proof of concept,

  3. SERS spectroscopy of kaempferol and galangin under the interaction of human serum albumin with adsorbed silver nanoparticles

    Science.gov (United States)

    Zhang, Wei; Bai, Xueyuan; Wang, Yingping; Zhao, Bing; Zhao, Daqing; Zhao, Yu

    Raman and surface-enhanced Raman scattering (SERS) spectroscopy were employed to probe the interaction of the flavonol drugs, kaempferol and galangin, with human serum albumin (HSA). SERS spectra of both flavonol derivatives were obtained from a colloidal silver surface in physiological condition, based on the high performance of the enhanced substrate, the most enhanced modes of kaempferol and galangin were those with certain motions perpendicular to the metal surface. The SERS spectra were allowed to predict similar orientation geometry for both of the drugs on the colloidal surface with minor difference. In addition, both flavonols-HSA complexes were prepared in different concentration ratios and the orientated differences between kaempferol and galangin were investigated by SERS.

  4. Surface Enhanced Raman Spectroscopy (SERS) methods for endpoint and real-time quantification of miRNA assays

    Science.gov (United States)

    Restaino, Stephen M.; White, Ian M.

    2017-03-01

    Surface Enhanced Raman spectroscopy (SERS) provides significant improvements over conventional methods for single and multianalyte quantification. Specifically, the spectroscopic fingerprint provided by Raman scattering allows for a direct multiplexing potential far beyond that of fluorescence and colorimetry. Additionally, SERS generates a comparatively low financial and spatial footprint compared with common fluorescence based systems. Despite the advantages of SERS, it has remained largely an academic pursuit. In the field of biosensing, techniques to apply SERS to molecular diagnostics are constantly under development but, most often, assay protocols are redesigned around the use of SERS as a quantification method and ultimately complicate existing protocols. Our group has sought to rethink common SERS methodologies in order to produce translational technologies capable of allowing SERS to compete in the evolving, yet often inflexible biosensing field. This work will discuss the development of two techniques for quantification of microRNA, a promising biomarker for homeostatic and disease conditions ranging from cancer to HIV. First, an inkjet-printed paper SERS sensor has been developed to allow on-demand production of a customizable and multiplexable single-step lateral flow assay for miRNA quantification. Second, as miRNA concentrations commonly exist in relatively low concentrations, amplification methods (e.g. PCR) are therefore required to facilitate quantification. This work presents a novel miRNA assay alongside a novel technique for quantification of nuclease driven nucleic acid amplification strategies that will allow SERS to be used directly with common amplification strategies for quantification of miRNA and other nucleic acid biomarkers.

  5. Safranin-O dye in the ground state. A study by density functional theory, Raman, SERS and infrared spectroscopy

    Science.gov (United States)

    Lofrumento, C.; Arci, F.; Carlesi, S.; Ricci, M.; Castellucci, E.; Becucci, M.

    2015-02-01

    The analysis of ground state structural and vibrational properties of Safranin-O is presented. The experimental results, obtained by FTIR, Raman and SERS spectroscopy, are discussed in comparison to the results of DFT calculations carried out at the B3LYP/6-311 + G(d,p) level of theory. The calculated spectra reproduce quite satisfactorily the experimental data. The calculated Safranin-O equilibrium structure and the assignment of the vibrational spectra are reported as well. From the changes between Raman and SERS spectra a model is presented for the interaction of Safranin-O with silver nanoparticles.

  6. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    Science.gov (United States)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  7. Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macháň, Radek; Kapusta, Peter; Hof, Martin

    Roč. 406 , č. 20 (2014), s. 4797-4813 ISSN 1618-2642 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : Filtered fluorescence correlation spectroscopy * Fluorescence lifetime correlation spectroscopy * Fluorescence spectral correlation spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.436, year: 2014

  8. Detection of cancerous biological tissue areas by means of infrared absorption and SERS spectroscopy of intercellular fluid

    Science.gov (United States)

    Velicka, M.; Urboniene, V.; Ceponkus, J.; Pucetaite, M.; Jankevicius, F.; Sablinskas, V.

    2015-08-01

    We present a novel approach to the detection of cancerous kidney tissue areas by measuring vibrational spectra (IR absorption or SERS) of intercellular fluid taken from the tissue. The method is based on spectral analysis of cancerous and normal tissue areas in order to find specific spectral markers. The samples were prepared by sliding the kidney tissue over a substrate - surface of diamond ATR crystal in case of IR absorption or calcium fluoride optical window in case of SERS. For producing the SERS signal the dried fluid film was covered by silver nanoparticle colloidal solution. In order to suppress fluorescence background the measurements were performed in the NIR spectral region with the excitation wavelength of 1064 nm. The most significant spectral differences - spectral markers - were found in the region between 400 and 1800 cm-1, where spectral bands related to various vibrations of fatty acids, glycolipids and carbohydrates are located. Spectral markers in the IR and SERS spectra are different and the methods can complement each other. Both of them have potential to be used directly during surgery. Additionally, IR absorption spectroscopy in ATR mode can be combined with waveguide probe what makes this method usable in vivo.

  9. Study of tryptophan assisted synthesis of gold nanoparticles by combining UV-Vis, fluorescence, and SERS spectroscopy

    International Nuclear Information System (INIS)

    Iosin, Monica; Baldeck, Patrice; Astilean, Simion

    2010-01-01

    We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV-Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.

  10. Utility of surface enhanced Raman spectroscopy (SERS) for elucidation and simultaneous determination of some penicillins and penicilloic acid using hydroxylamine silver nanoparticles.

    Science.gov (United States)

    El-Zahry, Marwa R; Refaat, Ibrahim H; Mohamed, Horria A; Rosenberg, Erwin; Lendl, Bernhard

    2015-11-01

    Elucidation and quantitative determination of some of commonly used penicillins (ampicillin, penicillin G and carbenicillin) in the presence of their main degradation product (penicilloic acid) were developed. Forced acidic and basic degradation processes were applied at different time intervals. The formed degradation products were elucidated and quantified using surface enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by reduction of silver nitrate using hydroxylamine-HCl in alkaline medium were used as SERS substrate. The results obtained in SERS were confirmed by the application of LC/MS method. The concentration range was 100-600 ng/ml in case of the studied penicillins and 100-700 ng/ml in case of penicilloic acid. An excellent correlation coefficient was found in case of ampicillin (r=0.9993) and in the case of penicilloic acid (r=0.9997). Validation procedures were carried out including precision, robustness and accuracy by comparing F- and t-values of both the proposed and reported methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices

    Science.gov (United States)

    Di Anibal, Carolina V.; Marsal, Lluís F.; Callao, M. Pilar; Ruisánchez, Itziar

    2012-02-01

    Raman spectroscopy combined with multivariate analysis was evaluated as a tool for detecting Sudan I dye in culinary spices. Three Raman modalities were studied: normal Raman, FT-Raman and SERS. The results show that SERS is the most appropriate modality capable of providing a proper Raman signal when a complex matrix is analyzed. To get rid of the spectral noise and background, Savitzky-Golay smoothing with polynomial baseline correction and wavelet transform were applied. Finally, to check whether unadulterated samples can be differentiated from samples adulterated with Sudan I dye, an exploratory analysis such as principal component analysis (PCA) was applied to raw data and data processed with the two mentioned strategies. The results obtained by PCA show that Raman spectra need to be properly treated if useful information is to be obtained and both spectra treatments are appropriate for processing the Raman signal. The proposed methodology shows that SERS combined with appropriate spectra treatment can be used as a practical screening tool to distinguish samples suspicious to be adulterated with Sudan I dye.

  12. Urinary tract infection (UTI) multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS)

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-02-01

    Antibiotic resistance is a major health care problem mostly caused by the inappropriate use of antibiotics. At the root of the problem lies the current method for determination of bacterial susceptibility to antibiotics which requires overnight cultures. Physicians suspecting an infection usually prescribe an antibiotic without waiting for the results. This practice aggravates the problem of bacterial resistance. In this work, a rapid method of diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Even though the concentration of bacteria was low (2x105 cfu/ml), species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. With the enhancement provided by SERS, the technique can be applied directly to urine or blood samples, bypassing the need for overnight cultures. This technology can lead to the development of rapid methods of diagnosis and antibiogram for a variety of bacterial infections.

  13. Multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-06-01

    The inappropriate use of antibiotics leads to antibiotic resistance, which is a major health care problem. The current method for determination of bacterial susceptibility to antibiotics requires overnight cultures. However most of the infections cannot wait for the results to receive treatment, so physicians administer general spectrum antibiotics. This results in ineffective treatments and aggravates the rising problem of antibiotic resistance. In this work, a rapid method for diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. The advantages of this novel method include its rapidness and efficiency which will potentially allow doctors to prescribe the most appropriate antibiotic for an infection. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Bacterial strains were diluted in order to reach the concentration of (2x105 cfu/ml), cells/ml which is equivalent to the minimum concentration found in urine samples from UTIs. Even though the concentration of bacteria was low, species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. This technique can be applied directly to urine samples, and with the enhancement provided by SERS, this method has the potential to be developed into a rapid method for same day UTI diagnosis and antibiogram.

  14. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  15. Noise Spectroscopy in Strongly Correlated Oxides

    Science.gov (United States)

    Alsaqqa, Ali M.

    Strongly correlated materials are an interesting class of materials, thanks to the novel electronic and magnetic phenomena they exhibit as a result of the interplay of various degrees of freedom. This gives rise to an array of potential applications, from Mott-FET to magnetic storage. Many experimental probes have been used to study phase transitions in strongly correlated oxides. Among these, resistance noise spectroscopy, together with conventional transport measurements, provides a unique viewpoint to understand the microscopic dynamics near the phase transitions in these oxides. In this thesis, utilizing noise spectroscopy and transport measurements, four different strongly correlated materials were studied: (1) neodymium nickel oxide (NdNiO 3) ultrathin films, (2) vanadium dioxide (VO2) microribbons, (3) copper vanadium bronze (CuxV2O 5) microribbons and (4) niobium triselenide (NbSe3) microribbons. Ultra thin films of rare-earth nickelates exhibit several temperature-driven phase transitions. In this thesis, we studied the metal-insulator and Neel transitions in a series of NdNiO3 films with different lattice mismatches. Upon colling down, the metal-insulator phase transition is accompanied by a structural (orthorohombic to monoclinic) and magnetic (paramagnetic to antiferromagnetic) transitions as well, making the problem more interesting and complex at the same time. The noise is of the 1/f type and is Gaussian in the high temperature phase, however deviations are seen in the low temperature phases. Below the metal-insulator transition, noise magnitude increases by orders of magnitude: a sign of inhomogeneous electrical conduction as result of phase separation. This is further assured by the non-Gaussian noise signature. At very low temperatures (T switches between Gaussian and non-Gaussian over several hours, possibly arising from dynamically competing ground states. VO2 is one of the most widely studied strongly correlated oxides and is important from the

  16. Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases

    Science.gov (United States)

    2016-06-14

    Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and

  17. Two-focus fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Dertinger, T.

    2007-05-01

    Fluorescence Correlation Spectroscopy (FCS) has been invented more than 30 years ago and experienced a renaissance after stable and affordable laser sources and low-noise single-photon detectors have become available. Its ability to measure diffusion coefficients at nanomolar concentrations of analyte made it a widely used tool in biophysics. However, in recent years it has been shown by many authors that aberrational (e.g. astigmatism) and photophysical effects (e.g. optical saturation) may influence the result of an FCS experiment dramatically, so that a precise and reliable estimation of the diffusion coefficient is no longer possible. In this thesis, we report on the development, implementation, and application of a new and robust modification of FCS that we termed two-focus FCS (2fFCS) and which fulfils two requirements: (i) It introduces an external ruler into the measurement by generating two overlapping laser foci of precisely known and fixed distance. (ii) These two foci and corresponding detection regions are generated in such a way that the corresponding molecule detection functions (MDFs) are sufficiently well described by a simple two-parameter model yielding accurate diffusion coefficients when applied to 2fFCS data analysis. Both these properties enable us to measure absolute values of the diffusion coefficient with an accuracy of a few percent. Moreover, it will turn out that the new technique is robust against refractive index mismatch, coverslide thickness deviations, and optical saturation effects, which so often trouble conventional FCS measurements. This thesis deals mainly with the introduction of the new measurement scheme, 2fFCS, but also presents several applications with far-reaching importance. (orig.)

  18. Two-focus fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dertinger, T.

    2007-05-15

    Fluorescence Correlation Spectroscopy (FCS) has been invented more than 30 years ago and experienced a renaissance after stable and affordable laser sources and low-noise single-photon detectors have become available. Its ability to measure diffusion coefficients at nanomolar concentrations of analyte made it a widely used tool in biophysics. However, in recent years it has been shown by many authors that aberrational (e.g. astigmatism) and photophysical effects (e.g. optical saturation) may influence the result of an FCS experiment dramatically, so that a precise and reliable estimation of the diffusion coefficient is no longer possible. In this thesis, we report on the development, implementation, and application of a new and robust modification of FCS that we termed two-focus FCS (2fFCS) and which fulfils two requirements: (i) It introduces an external ruler into the measurement by generating two overlapping laser foci of precisely known and fixed distance. (ii) These two foci and corresponding detection regions are generated in such a way that the corresponding molecule detection functions (MDFs) are sufficiently well described by a simple two-parameter model yielding accurate diffusion coefficients when applied to 2fFCS data analysis. Both these properties enable us to measure absolute values of the diffusion coefficient with an accuracy of a few percent. Moreover, it will turn out that the new technique is robust against refractive index mismatch, coverslide thickness deviations, and optical saturation effects, which so often trouble conventional FCS measurements. This thesis deals mainly with the introduction of the new measurement scheme, 2fFCS, but also presents several applications with far-reaching importance. (orig.)

  19. Fluorescence Lifetime Correlation Spectroscopy (FLCS): Concepts, Applications and Outlook

    Czech Academy of Sciences Publication Activity Database

    Kapusta, Peter; Macháň, Radek; Benda, A.; Hof, Martin

    2012-01-01

    Roč. 13, č. 10 (2012), s. 12890-12910 E-ISSN 1422-0067 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : fluorescence correlation spectroscopy (FCS) * time correlated single photon counting (TCSPC) * fluorescence cross-correlation spectroscopy (FCCS) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.464, year: 2012

  20. Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Li, Hao; Zhu, Qing xia; Chwee, Tsz sian; Wu, Lin; Chai, Yi feng; Lu, Feng; Yuan, Yong fang

    2015-07-09

    Thin-layer chromatography (TLC) coupled with surface enhanced Raman spectroscopy (SERS) has been widely used for the study of various complex systems, especially for the detection of adulterants in botanical dietary supplements (BDS). However, this method is not sufficient to distinguish structurally similar adulterants in BDS since the analogs have highly similar chromatographic and/or spectroscopic behaviors. Taking into account the fact that higher cost and more time will be required for comprehensive chromatographic separation, more efforts with respect to spectroscopy are now focused on analyzing the overlapped SERS peaks. In this paper, the combination of a TLC-SERS method with two-dimensional correlation spectroscopy (2DCOS), with duration of exposure to laser as the perturbation, is applied to solve this problem. Besides the usual advantages of the TLC-SERS method, such as its simplicity, rapidness, and sensitivity, more advantages are presented here, such as enhanced selectivity and good reproducibility, which are obtained by 2DCOS. Two chemicals with similar structures are successfully differentiated from the complex BDS matrices. The study provides a more accurate qualitative screening method for detection of BDS with adulterants, and offers a new universal approach for the analysis of highly overlapped SERS peaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 25 ns software correlator for photon and fluorescence correlation spectroscopy

    Science.gov (United States)

    Magatti, Davide; Ferri, Fabio

    2003-02-01

    A 25 ns time resolution, multi-tau software correlator developed in LABVIEW based on the use of a standard photon counting unit, a fast timer/counter board (6602-PCI National Instrument) and a personal computer (PC) (1.5 GHz Pentium 4) is presented and quantitatively discussed. The correlator works by processing the stream of incoming data in parallel according to two different algorithms: For large lag times (τ⩾100 μs), a classical time-mode (TM) scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ⩽100 μs a photon-mode (PM) scheme is adopted and the time sequence of the arrival times of the photon pulses is measured. By combining the two methods, we developed a system capable of working out correlation functions on line, in full real time for the TM correlator and partially in batch processing for the PM correlator. For the latter one, the duty cycle depends on the count rate of the incoming pulses, being ˜100% for count rates ⩽3×104 Hz, ˜15% at 105 Hz, and ˜1% at 106 Hz. For limitations imposed by the fairly small first-in, first-out (FIFO) buffer available on the counter board, the maximum count rate permissible for a proper functioning of the PM correlator is limited to ˜105 Hz. However, this limit can be removed by using a board with a deeper FIFO. Similarly, the 25 ns time resolution is only limited by maximum clock frequency available on the 6602-PCI and can be easily improved by using a faster clock. When tested on dilute solutions of calibrated latex spheres, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  2. Image correlation spectroscopy: mapping correlations in space, time, and reciprocal space.

    Science.gov (United States)

    Wiseman, Paul W

    2013-01-01

    This chapter presents an overview of two recent implementations of image correlation spectroscopy (ICS). The background theory is presented for spatiotemporal image correlation spectroscopy and image cross-correlation spectroscopy (STICS and STICCS, respectively) as well as k-(reciprocal) space image correlation spectroscopy (kICS). An introduction to the background theory is followed by sections outlining procedural aspects for properly implementing STICS, STICCS, and kICS. These include microscopy image collection, sampling in space and time, sample and fluorescent probe requirements, signal to noise, and background considerations that are all required to properly implement the ICS methods. Finally, procedural steps for immobile population removal and actual implementation of the ICS analysis programs to fluorescence microscopy image time stacks are described. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Distribution of diffusion times determined by fluorescence (lifetime) correlation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Pánek, Jiří; Loukotová, Lenka; Hrubý, Martin; Štěpánek, Petr

    2018-01-01

    Roč. 51, č. 8 (2018), s. 2796-2804 ISSN 0024-9297 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polymer solution * fluorescence correlation spectroscopy * diffusion time distribution Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 5.835, year: 2016

  4. Advancements of two dimensional correlation spectroscopy in protein researches

    Science.gov (United States)

    Tao, Yanchun; Wu, Yuqing; Zhang, Liping

    2018-05-01

    The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.

  5. Surface-enhanced Raman spectroscopy (SERS) in food analytics: Detection of vitamins B2 and B12 in cereals.

    Science.gov (United States)

    Radu, Andreea Ioana; Kuellmer, Maria; Giese, Bernd; Huebner, Uwe; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2016-11-01

    Food analysis has been gaining interest throughout recent decades for different reasons: the detection of hazardous substances in food and routine investigations of food composition and vitamin/nutrient contents. Regardless of the targeted component, food analysis raises a few challenges regarding the complexity of the matrix and detecting trace amounts of substances. We report herein the results obtained regarding the simultaneous detection of two B vitamins (riboflavin, vitamin B2 and cyanocobalamin, vitamin B12) by means of SERS. SERS provides molecular fingerprint identification and high analytical sensitivity together with a low processing time and cost. All these make SERS a promising tool for the development of food analytical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Kinoform optics applied to X-ray photon correlation spectroscopy.

    Science.gov (United States)

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  7. Two-dimensional correlation spectroscopy in polymer study

    Science.gov (United States)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  8. Combination of laser correlation and dielectric spectroscopy in albumin investigations

    International Nuclear Information System (INIS)

    Nepomnyashchaya, E; Cheremiskina, A; Velichko, E; Aksenov, E; Bogomaz, T

    2015-01-01

    Joint use of laser correlation and dielectric spectroscopies for studies of biomolecular properties of albumin in water solution is considered. The conditions and parameters of the experiments are discussed. Similar behaviours of albumin molecular sizes and maximum frequency of peak of dielectric dissipation factor with increasing acidity were revealed. Using the suggested approach, biomolecular aggregation dynamics and changes in electrophysical properties on transition from one molecular structure to another may be investigated. (paper)

  9. Recent mathematical developments in 2D correlation spectroscopy

    Science.gov (United States)

    Noda, I.

    2000-03-01

    Recent mathematical developments in the field of 2D correlation spectroscopy, especially those related to the statistical theory, are reported. The notion of correlation phase angle is introduced. The significance of correlation phase angle between dynamic fluctuations of signals measured at two different spectral variables may be linked to more commonly known statistical concepts, such as coherence and correlation coefficient. This treatment provides the direct mathematical connection between the synchronous 2D correlation spectrum with a continuous form of the variance-covariance matrix. Moreover, it gives the background for the formal definition of the disrelation spectrum, which may be used as a heuristic substitution for the asynchronous 2D spectrum. The 2D correlation intensity may be separated into two independent factors representing the normalized extent of signal fluctuation coherence (i.e., correlation coefficient) and the magnitude of spectral intensity changes (i.e., variance). Such separation offers a convenient way to artificially enhance the discriminating power of 2D correlation spectra.

  10. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: dany@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Jia, Shaojie [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Fodjo, Essy Kouadio [Laboratory of Physical Chemistry, University Felix Houphouet Boigny, 22 BP 582, Abidjan 22, Cote d’Ivoire (Cote d' Ivoire); Xu, Hu [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Wang, Yuhong, E-mail: yuhong_wang502@sit.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China); Deng, Wei [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418 (China)

    2016-03-30

    Graphical abstract: The orientation of anthraquinone-2-carboxylic acid (AQ-2-COOH) has been investigated by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) on silver surface. - Highlights: • The adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on Ag electrode is influenced by the pH. • The pH-dependant adsorption of AQ-2-COOH has been confirmed by in situ surface-enhanced Raman scattering (in situ SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). • The results can provide insights into electron transfer reactions of AQ-2-COOH in biological systems. - Abstract: In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from −0.3 to −0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from −0.3 to −0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  11. Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Chen, Bin; Zhang, Zhiguo

    2009-02-10

    Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700 ppm m was achieved with good accuracy (2%) and linearity (R(2)=0.999). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.

  12. A combined Surface Enhanced Raman Spectroscopy (SERS)/UV-vis approach for the investigation of dye content in commercial felt tip pens inks.

    Science.gov (United States)

    Saviello, Daniela; Trabace, Maddalena; Alyami, Abeer; Mirabile, Antonio; Giorgi, Rodorico; Baglioni, Piero; Iacopino, Daniela

    2018-05-01

    The development of protocols for the protection of the large patrimony of works of art created by felt tip pen media since the 1950's requires detailed knowledge of the main dyes constituting commercial ink mixtures. In this work Surface Enhanced Raman Scattering (SERS) and UV-vis spectroscopy were used for the first time for the systematic identification of dye composition in commercial felt tip pens. A large selection of pens comprising six colors of five different brands was analyzed. Intense SERS spectra were obtained for all colors, allowing identification of main dye constituents. Poinceau 4R and Eosin dyes were found to be the main constituents of red and pink colors; Rhodamine and Tartrazine were found in orange and yellow colors; Erioglaucine was found in green and blue colors. UV-vis analysis of the same inks was used to support SERS findings but also to unequivocally assign some uncertain dye identifications, especially for yellow and orange colors. The spectral data of all felt tip pens collected through this work were assembled in a database format. The data obtained through this systematic investigation constitute the basis for the assembly of larger reference databases that ultimately will support the development of conservation protocols for the long term preservation of modern art collections. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Detection of elemental mercury by multimode diode laser correlation spectroscopy.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Svanberg, Sune; Zhang, Zhiguo; Wu, Shaohua

    2012-02-27

    We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.

  14. Electron correlation effects in XUV photoabsorption spectroscopy of atoms

    International Nuclear Information System (INIS)

    Codling, K.

    1976-01-01

    Reference is made to sophisticated experiments involving the measurement of the angular distribution of photo-ejected electrons, coincidence electrons and ion spectroscopy, which can only be interpreted in terms of electron correlation effects. After an introductory review of previous work, the lectures fall under the following headings: experimental procedures (light sources, monochromators, absorption cells, limitations on the simple photoasbsorption experiment, and complementary techniques); experimental results (discrete states in the continuum, gross features in the photoionisation continuum (rare gases, alkalis, alkaline earths, rare earths, transition elements)). (U.K.)

  15. Surface-Enhanced Raman Spectroscopy (SERS Tracking of Chelerythrine, a Na+/K+ Pump Inhibitor, into Cytosol and Plasma Membrane Fractions of Human Lens Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Kevin M. Dorney

    2013-12-01

    Full Text Available Background/Aims: The quaternary benzo-phenanthridine alkaloid (QBA chelerythrine (CET is a pro-apoptotic drug and Na+/K+ pump (NKP inhibitor in human lens epithelial cells (HLECs. In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS. Methods: Silver nanoparticles (AgNPs prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm-1 marker band as a function of CET concentration. Results: SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Conclusion: Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET+ accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect.

  16. Surface-enhanced Raman spectroscopy (SERS) tracking of chelerythrine, a Na(+)/K(+) pump inhibitor, into cytosol and plasma membrane fractions of human lens epithelial cell cultures.

    Science.gov (United States)

    Dorney, Kevin M; Sizemore, Ioana E P; Alqahtani, Tariq; Adragna, Norma C; Lauf, Peter K

    2013-01-01

    The quaternary benzo-phenanthridine alkaloid (QBA) chelerythrine (CET) is a pro-apoptotic drug and Na(+)/K(+) pump (NKP) inhibitor in human lens epithelial cells (HLECs). In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm(-1) marker band as a function of CET concentration. SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET(+)) accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect. © 2014 S. Karger AG, Basel.

  17. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  18. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system.

    Science.gov (United States)

    Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-02-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.

  19. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    Science.gov (United States)

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-03

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution.

  20. Transfer of spectral weight in spectroscopies of correlated electron systems

    International Nuclear Information System (INIS)

    Rozenberg, M.J.; Kotliar, G.; Kajueter, H.

    1996-01-01

    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V 2 O 3 . We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and present a detailed discussion on the role of magnetic frustration by studying the k-resolved single-particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce 3 Bi 4 Pt 3 and FeSi. The model can successfully explain the thermal filling of the optical gap and the corresponding changes in the photoemission density of states. The temperature dependence of the optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model. copyright 1996 The American Physical Society

  1. LASER CORRELATION SPECTROSCOPY (LCS AND ITS CLINICAL PERSPECTIVES IN OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    Karganov Mikhail

    2015-12-01

    Full Text Available The method of laser correlation spectroscopy (LCS is based on the analysis of the spectrum of quasielastic light scatter during coherent monochromatic laser irradiation of micro-particles in biological fluids (blood serum, urine, oropharyngeal washout fluid, tear fluid etc.. Spectrum provides information on dynamic processes in the analyzed system: translation motion of scattering particles and their orientation and conformation dynamics. Special procedures of cluster analysis make it possible to find out to which linkage group a particular spectrum belongs. LCS allows evaluation of sub-fractional composition of biological fluids in a wide range of molecular sizes (from 1 to 10,000 nm, which determines principal novelty of this approach in ophthalmology.

  2. Split and delay photon correlation spectroscopy with a visible light

    International Nuclear Information System (INIS)

    Rasch, Marten

    2016-04-01

    The development and performance of a setup constructed with the aim for the split pulse photon correlation spectroscopy is presented in this thesis. The double pulse time structure is accomplished with help of an Acusto-Optic Modulator (AOM) crystal, which mimics the splitting and delaying of photon pulses. The setup provides double pulses and allows to control the pulse width and delay and to synchronize them into one camera exposure window. The performance of the setup was successfully verified in a proof of principle experiment with a model system of polystyrene particles following Brownian motion. The measured radius of particles obtained with from the split pulse experiment (R h =(2.567±0.097) μm) is in agreement with the particle size provided by the manufacturer (R=(2.26±0.08) μm). The achieved results show higher statistics compared to a standard Dynamic Light Scattering (DLS) measurement.

  3. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    Science.gov (United States)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  4. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.

    Science.gov (United States)

    Rowland, David J; Tuson, Hannah H; Biteen, Julie S

    2016-05-24

    By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced

  5. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    Science.gov (United States)

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  6. Inference of protein diffusion probed via fluorescence correlation spectroscopy

    Science.gov (United States)

    Tsekouras, Konstantinos

    2015-03-01

    Fluctuations are an inherent part of single molecule or few particle biophysical data sets. Traditionally, ``noise'' fluctuations have been viewed as a nuisance, to be eliminated or minimized. Here we look on how statistical inference methods - that take explicit advantage of fluctuations - have allowed us to draw an unexpected picture of single molecule diffusional dynamics. Our focus is on the diffusion of proteins probed using fluorescence correlation spectroscopy (FCS). First, we discuss how - in collaboration with the Bustamante and Marqusee labs at UC Berkeley - we determined using FCS data that individual enzymes are perturbed by self-generated catalytic heat (Riedel et al, Nature, 2014). Using the tools of inference, we found how distributions of enzyme diffusion coefficients shift in the presence of substrate revealing that enzymes performing highly exothermic reactions dissipate heat by transiently accelerating their center of mass following a catalytic reaction. Next, when molecules diffuse in the cell nucleus they often appear to diffuse anomalously. We analyze FCS data - in collaboration with Rich Day at the IU Med School - to propose a simple model for transcription factor binding-unbinding in the nucleus to show that it may give rise to apparent anomalous diffusion. Here inference methods extract entire binding affinity distributions for the diffusing transcription factors, allowing us to precisely characterize their interactions with different components of the nuclear environment. From this analysis, we draw key mechanistic insight that goes beyond what is possible by simply fitting data to ``anomalous diffusion'' models.

  7. Theory of L -edge spectroscopy of strongly correlated systems

    Science.gov (United States)

    Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.

    2017-12-01

    X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.

  8. Assessment of sacrococcygeal pressure ulcers using diffuse correlation spectroscopy

    Science.gov (United States)

    Diaz, David; Lafontant, Alec; Neidrauer, Michael; Weingarten, Michael S.; DiMaria-Ghalili, Rose Ann; Fried, Guy W.; Rece, Julianne; Lewin, Peter A.; Zubkov, Leonid

    2016-03-01

    Microcirculation is essential for proper supply of oxygen and nutritive substances to the biological tissue and the removal of waste products of metabolism. The determination of microcirculatory blood flow (mBF) is therefore of substantial interest to clinicians for assessing tissue health; particularly in pressure ulceration and suspected deep tissue injury. The goal of this pilot clinical study was to assess deep-tissue pressure ulceration by non-invasively measuring mBF using Diffuse Correlation Spectroscopy (DCS). DCS provides information about the flow of red blood cells in the capillary network by measuring the temporal autocorrelation function of scattering light intensity. A novel optical probe was developed in order to obtain measurements under the load of the subject's body as pressure is applied (ischemia) and then released (reperfusion) on sacrococcygeal tissue in a hospital bed. Prior to loading measurements, baseline readings of the sacral region were obtained by measuring the subjects in a side-lying position. DCS measurements from the sacral region of twenty healthy volunteers have been compared to those of two patients who initially had similar non-blanchable redness. The temporal autocorrelation function of scattering light intensity of the patient whose redness later disappeared was similar to that of the average healthy subject. The second patient, whose redness developed into an advanced pressure ulcer two weeks later, had a substantial decrease in blood flow while under the loading position compared to healthy subjects. Preliminary results suggest the developed system may potentially predict whether non-blanchable redness will manifest itself as advanced ulceration or dissipate over time.

  9. In situ SERS and X-ray photoelectron spectroscopy studies on the pH-dependant adsorption of anthraquinone-2-carboxylic acid on silver electrode

    Science.gov (United States)

    Li, Dan; Jia, Shaojie; Fodjo, Essy Kouadio; Xu, Hu; Wang, Yuhong; Deng, Wei

    2016-03-01

    In this study, in situ surface-enhanced Raman scattering (SERS) spectroelectrochemistry and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) are used to investigate the redox reaction and adsorption behavior of anthraquinone-2-carboxylic acid (AQ-2-COOH) on an Ag electrode at different pH values. The obtained results indicate that AQ-2-COOH is adsorbed tilted on the Ag electrode through O-atom of ring carbonyl in a potential range from -0.3 to -0.5 V vs. SCE, but the orientation turns to more tilted orientation with both O-atom of the ring carbonyl and carboxylate group in positive potential region for pH 6.0 and 7.4. However, at pH 10.0, the orientation adopts tilted conformation constantly on the Ag electrode with both O-atom of the anthraquinone ring and carboxylate group in the potential range from -0.3 to -0.5 V vs. SCE or at positive potentials. Moreover, the adsorption behavior of AQ-2-COOH has been further confirmed by AR-XPS on the Ag surface. Proposed reasons for the observed changes in orientation are presented.

  10. Ser reina

    Directory of Open Access Journals (Sweden)

    José Manuel NIETO SORIA

    2006-07-01

    Full Text Available L’historiographie du règne des Rois Catholiques, héritière directe de celle des autres Trastamare, se caractérise par son étroite relation avec des enjeux politiques concrets. L’activité historiographie s’est ainsi inscrite elle-même dans le cadre des conflits politiques en cours. C’est pourquoi la royauté d’Isabelle Ire de Castille impliqua une bonne part de la production historiographique de cettte époque : soit qu’on dénonçât un déficit de légitimité dû à sa condition féminine, soit qu’on démentît, au contraire, ce déficit en attribuant à la reine des qualités « masculines ». Bien entendu, ces débats furent fonction de l’engagement politique de chacun des historiens.La cronística y la historiografía del reinado de los Reyes Católicos, como directas herederas de la labor historiográfica de la época de los monarcas Trastámara, se caracterizó por su estrecha vinculación con intereses políticos concretos, inscribiéndose la propia actividad historiográfica en el marco de los conflictos políticos en curso. Por ello, la dimensión regia de Isabel I de Castilla supuso una dimensión significativa del quehacer historiográfico de la época, bien para plantear un déficit de legitimidad por razón de su propia condición femenina, bien para negar tal déficit con la atribución de “cualidades masculinas” en su persona. De este modo, la toma en consideración del hecho de “ser reina” representó una dimensión significativa del quehacer historiográfico, de acuerdo siempre con los compromisos políticos de los distintos historiadores de la época.

  11. Gas detection by correlation spectroscopy employing a multimode diode laser.

    Science.gov (United States)

    Lou, Xiutao; Somesfalean, Gabriel; Zhang, Zhiguo

    2008-05-01

    A gas sensor based on the gas-correlation technique has been developed using a multimode diode laser (MDL) in a dual-beam detection scheme. Measurement of CO(2) mixed with CO as an interfering gas is successfully demonstrated using a 1570 nm tunable MDL. Despite overlapping absorption spectra and occasional mode hops, the interfering signals can be effectively excluded by a statistical procedure including correlation analysis and outlier identification. The gas concentration is retrieved from several pair-correlated signals by a linear-regression scheme, yielding a reliable and accurate measurement. This demonstrates the utility of the unsophisticated MDLs as novel light sources for gas detection applications.

  12. Correlation Spectroscopy of Surfaces, Thin Films, and Nanostructures

    CERN Document Server

    Berakdar, Jamal

    2004-01-01

    Here, leading scientists present an overview of the most modern experimental and theoretical methods for studying electronic correlations on surfaces, in thin films and in nanostructures. In particular, they describe in detail coincidence techniques for studying many-particle correlations while. critically examining the informational content of such processes from a theoretical point viewpoint. Furthermore, the book considers the current state of incorporating many-body effects into theoretical approaches. Covered topics:. -Auger-electron photoelectron coincidence experiments and theories. -Co

  13. Principal Component Analysis Based Two-Dimensional (PCA-2D) Correlation Spectroscopy: PCA Denoising for 2D Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Jung, Young Mee

    2003-01-01

    Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra

  14. 1H-15N correlation spectroscopy of nanocrystalline proteins

    International Nuclear Information System (INIS)

    Morcombe, Corey R.; Paulson, Eric K.; Gaponenko, Vadim; Byrd, R. Andrew; Zilm, Kurt W.

    2005-01-01

    The limits of resolution that can be obtained in 1 H- 15 N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee-Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1 H resonances. Heteronuclear decoupling of 15 N from the 1 H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2 H and 15 N enriched protein where the amides have been exchanged in normal water, MAS at ∼20 kHz, and WALTZ-16 decoupling of the 15 N nuclei. The combination of these techniques results in average 1 H lines of only ∼0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15 N decoupling are described for achieving the best possible performance in these experiments

  15. Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy

    Directory of Open Access Journals (Sweden)

    Foronda Jesus

    2004-06-01

    Full Text Available Abstract Background What currently appears to be irreversible axonal loss in normal appearing white matter, measured by proton magnetic resonance spectroscopy is of great interest in the study of Multiple Sclerosis. Our aim is to determine the axonal damage in normal appearing white matter measured by magnetic resonance spectroscopy and to correlate this with the functional disability measured by Multiple Sclerosis Functional Composite scale, Neurological Rating Scale, Ambulation Index scale, and Expanded Disability Scale Score. Methods Thirty one patients (9 male and 22 female with relapsing remitting Multiple Sclerosis and a Kurtzke Expanded Disability Scale Score of 0–5.5 were recruited from four hospitals in Andalusia, Spain and included in the study. Magnetic resonance spectroscopy scans and neurological disability assessments were performed the same day. Results A statistically significant correlation was found (r = -0.38 p Conclusions There is correlation between disability (measured by Expanded Disability Scale Score and the NAA/Cr ratio in normal appearing white matter. The lack of correlation between the NAA/Cr ratio and the Multiple Sclerosis Functional Composite score indicates that the Multiple Sclerosis Functional Composite is not able to measure irreversible disability and would be more useful as a marker in stages where axonal damage is not a predominant factor.

  16. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  17. Peculiarities of plasma homeostasis in the patients with rectal cancer according to laser correlation spectroscopy findings

    International Nuclear Information System (INIS)

    Byilenko, O.A.; Bazhora, Yu.Yi.; Sokolov, V.M.; Andronov, D.Yu.

    1997-01-01

    Laser correlation spectroscopy was used to investigate plasma homeostasis in 82 patients with rectal cancer. The spectra of the blood plasma from 21 donors of the transfusion station were used as the control. The blood plasma homeostasis changes reheated with laser correlation spectrometry in the patients with rectal cancer allow to use them for diagnosis of this pathology

  18. Superheavy-element spectroscopy: Correlations along element 115 decay chains

    Science.gov (United States)

    Rudolph, D.; Forsberg, U.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.

    2016-05-01

    Following a brief summary of the region of the heaviest atomic nuclei yet created in the laboratory, data on more than hundred α-decay chains associated with the production of element 115 are combined to investigate time and energy correlations along the observed decay chains. Several of these are analysed using a new method for statistical assessments of lifetimes in sets of decay chains.

  19. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  20. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-01-01

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds

  1. Reduced density-matrix functional theory: Correlation and spectroscopy.

    Science.gov (United States)

    Di Sabatino, S; Berger, J A; Reining, L; Romaniello, P

    2015-07-14

    In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.

  2. Two-dimensional optical correlation spectroscopy applied to liquid/glass dynamics

    OpenAIRE

    Lazonder, Kees; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.

    2007-01-01

    Correlation spectroscopy was used to study the effects of temperature and phase changes on liquid and glass solvent dynamics. By assessing the eccentricity of the elliptic shape of a 2D optical correlation spectrum the value of the underlying frequency-frequency correlation function can be retrieved through a very simple relationship. This method yielded both intuitive clues and a quantitative measure of the dynamics of the system.

  3. Fluorescence correlation spectroscopy: Ultrasensitive detection in clear and turbid media

    Science.gov (United States)

    Tahari, Abdel Kader

    In this work, I describe the development of a simple, inexpensive, and powerful alternative technique to detect and analyze, without enrichment, extremely low concentrations of cells, bacteria, viruses, and protein aggregates in turbid fluids for clinical and biotechnological applications. The anticipated applications of this technique are many. They range from the determination of the somatic cell count in milk for the dairy industry, to the enumeration and characterization of microorganisms in environmental microbiology and the food industry, and to the fast and ultrasensitive detection of protein aggregates for the diagnosis of Alzheimer's and other neurodegenerative diseases in clinical medicine. A prototype instrument has been built and allowed the detection and quantification of particles down to a few per milliliter in short scanning times. It consists of a small microscope that has a horizontal geometry and a mechanical instrument that holds a cylindrical cuvette (1 cm in diameter) with two motors that provide a rotational and a slower vertical inversion motions. The illumination focus is centered about 200 mum from the wall of the cuvette inside the sample. The total volume that is explored is large (˜1ml/min for bright particles). The data is analyzed with a correlation filter program based on particle passage pattern recognition. I will also describe further work on improving the sensitivity of the technique, expanding it for multiple-species discrimination and enumeration, and testing the prototype device in actual clinical and biotechnological applications. The main clinical application of this project seeks to establish conditions and use this new technique to quantify and size-analyze oligomeric complexes of the Alzheimer's disease beta-peptide in cerebrospinal fluid and other body fluids as a molecular biomarker for persons at risk of Alzheimer's disease dementia. The technology could potentially be extended to the diagnosis and therapeutic

  4. Detection and quantification of alternative splice sites in Arabidopsis genes AtDCL2 and AtPTB2 with highly sensitive surface enhanced Raman spectroscopy (SERS) and gold nanoprobes.

    Science.gov (United States)

    Kadam, Ulhas S; Schulz, Burkhard; Irudayaraj, Joseph

    2014-05-02

    Alternative splicing (AS) increases the size of the transcriptome and proteome to enhance the physiological capacity of cells. We demonstrate surface enhanced Raman spectroscopy (SERS) in combination with a DNA hybridization analytical platform to identify and quantify AS genes in plants. AS in AtDCL2 and AtPTB2 were investigated using non-fluorescent Raman probes using a 'sandwich assay'. Utilizing Raman probes conjugated to gold nanoparticles we demonstrate the recognition of RNA sequences specific to AtDCL2 and AtPTB2 splice junction variants with detection sensitivity of up to 0.1 fM. Published by Elsevier B.V.

  5. Commercial counterboard for 10 ns software correlator for photon and fluorescence correlation spectroscopy

    Science.gov (United States)

    Molteni, Matteo; Ferri, Fabio

    2016-11-01

    A 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ˜10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times. Single auto- and cross-correlation functions can be processed online in full real time up to count rates of ˜1.8 MHz and ˜1.2 MHz, respectively. Two autocorrelation (A-A, B-B) and a cross correlation (A-B) functions can be simultaneously processed in full real time only up to count rates of ˜750 kHz. At higher count rates, the online processing takes place in a delayed modality, but with no data loss. When tested with simulated correlation data and latex spheres solutions, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  6. Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2014-01-01

    Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that in recent years has found numerous applications for studying biological phenomena. In this article, we scrutinize one of these applications, namely, FCS as a technique for studying leakage of fluorescent molecul...

  7. Second Harmonic Correlation Spectroscopy: Theory and Principles for Determining Surface Binding Kinetics.

    Science.gov (United States)

    Sly, Krystal L; Conboy, John C

    2017-06-01

    A novel application of second harmonic correlation spectroscopy (SHCS) for the direct determination of molecular adsorption and desorption kinetics to a surface is discussed in detail. The surface-specific nature of second harmonic generation (SHG) provides an efficient means to determine the kinetic rates of adsorption and desorption of molecular species to an interface without interference from bulk diffusion, which is a significant limitation of fluorescence correlation spectroscopy (FCS). The underlying principles of SHCS for the determination of surface binding kinetics are presented, including the role of optical coherence and optical heterodyne mixing. These properties of SHCS are extremely advantageous and lead to an increase in the signal-to-noise (S/N) of the correlation data, increasing the sensitivity of the technique. The influence of experimental parameters, including the uniformity of the TEM00 laser beam, the overall photon flux, and collection time are also discussed, and are shown to significantly affect the S/N of the correlation data. Second harmonic correlation spectroscopy is a powerful, surface-specific, and label-free alternative to other correlation spectroscopic methods for examining surface binding kinetics.

  8. Point-point and point-line moving-window correlation spectroscopy and its applications

    Science.gov (United States)

    Zhou, Qun; Sun, Suqin; Zhan, Daqi; Yu, Zhiwu

    2008-07-01

    In this paper, we present a new extension of generalized two-dimensional (2D) correlation spectroscopy. Two new algorithms, namely point-point (P-P) correlation and point-line (P-L) correlation, have been introduced to do the moving-window 2D correlation (MW2D) analysis. The new method has been applied to a spectral model consisting of two different processes. The results indicate that P-P correlation spectroscopy can unveil the details and re-constitute the entire process, whilst the P-L can provide general feature of the concerned processes. Phase transition behavior of dimyristoylphosphotidylethanolamine (DMPE) has been studied using MW2D correlation spectroscopy. The newly proposed method verifies that the phase transition temperature is 56 °C, same as the result got from a differential scanning calorimeter. To illustrate the new method further, a lysine and lactose mixture has been studied under thermo perturbation. Using the P-P MW2D, the Maillard reaction of the mixture was clearly monitored, which has been very difficult using conventional display of FTIR spectra.

  9. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  10. SO2 EMISSION MEASUREMENT BY DOAS (DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY AND COSPEC (CORRELATION SPECTROSCOPY AT MERAPI VOLCANO (INDONESIA

    Directory of Open Access Journals (Sweden)

    Hanik Humaida

    2010-06-01

    Full Text Available The SO2 is one of the volcanic gases that can use as indicator of volcano activity. Commonly, SO2 emission is measured by COSPEC (Correlation Spectroscopy. This equipment has several disadvantages; such as heavy, big in size, difficulty in finding spare part, and expensive. DOAS (Differential Optical Absorption Spectroscopy is a new method for SO2 emission measurement that has advantages compares to the COSPEC. Recently, this method has been developed. The SO2 gas emission measurement of Gunung Merapi by DOAS has been carried out at Kaliadem, and also by COSPEC method as comparation. The differences of the measurement result of both methods are not significant. However, the differences of minimum and maximum result of DOAS method are smaller than that of the COSPEC. It has range between 51 ton/day and 87 ton/day for DOAS and 87 ton/day and 201 ton/day for COSPEC. The measurement of SO2 gas emission evaluated with the seismicity data especially the rockfall showed the presence of the positive correlation. It may cause the gas pressure in the subsurface influencing instability of 2006 eruption lava.   Keywords: SO2 gas, Merapi, DOAS, COSPEC

  11. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute; Garten, Lauren M.; Ginley, David S.; Gorman, Brian P.

    2018-05-01

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.

  12. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  13. Two-dimensional NMR spectroscopy: correlated, homonuclear-correlated, and nuclear Overhauser spectroscopy. January 1975-December 1988 (Citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-December 1988

    International Nuclear Information System (INIS)

    1988-12-01

    This bibliography contains citations concerning the enhanced analytical techniques of two-dimensional nuclear magnetic resonance (2-D NMR). Applications to specific molecules, biomolecules, and compounds as well as comparisons of three 2-D NMR techniques: correlated spectroscopy (COSY), nuclear Overhauser (NOSEY), and homonuclear-correlated spectroscopy (HOMCOR). (Contains 190 citations fully indexed and including a title list.)

  14. [Classification of results of studying blood plasma with laser correlation spectroscopy based on semiotics of preclinical and clinical states].

    Science.gov (United States)

    Ternovoĭ, K S; Kryzhanovskiĭ, G N; Musiĭchuk, Iu I; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    The usage of laser correlation spectroscopy for verification of preclinical and clinical states is substantiated. Developed "semiotic" classifier for solving the problems of preclinical and clinical states is presented. The substantiation of biological algorithms as well as the mathematical support and software for the proposed classifier for the data of laser correlation spectroscopy of blood plasma are presented.

  15. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    International Nuclear Information System (INIS)

    Mohamad, M; Sabbri, A R M; Jafri, M Z Mat; Omar, A F

    2014-01-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab ® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R 2 ) above 70 % for all the subjects. However, the value of R 2 between NIRQuest and Moisture Checker was observed to be lower with the R 2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field

  16. Spatio-Temporal Image Correlation Spectroscopy Measurements of Flow Demonstrated in Microfluidic Channels

    Science.gov (United States)

    Rossow, Molly; Mantulin, William W.; Gratton, Enrico

    2009-01-01

    Accurate blood flow measurements during surgery can improve the operations chance of success. We developed Near-infrared Spatio-Temporal Image Spectroscopy (NIR-STICS), which has the potential to make blood flow measurements that are difficult to accomplish with existing methods. Specifically, we propose the technique and we show feasibility on phantom measurements. NIR-STICS has the potential of measuring the fluid velocity in small blood vessels (less than 1mm in diameter) and of creating a map of blood flow rates over an area of approximately 1cm2. NIR-STICS employs near-infrared spectroscopy to probe inside blood vessel walls and spatio-temporal image correlation spectroscopy to directly—without the use of a model—extract fluid velocity from the fluctuations within an image. Here we present computer simulations and experiments on a phantom system that demonstrate the effectiveness of NIR-STICS. PMID:19405744

  17. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels

    Science.gov (United States)

    Rossow, Molly; Mantulin, William W.; Gratton, Enrico

    2009-03-01

    Accurate blood flow measurements during surgery can improve an operation's chance of success. We developed near-infrared spatio-temporal image spectroscopy (NIR-STICS), which has the potential to make blood flow measurements that are difficult to accomplish with existing methods. Specifically, we propose the technique and we show feasibility on phantom measurements. NIR-STICS has the potential of measuring the fluid velocity in small blood vessels (less than 1 mm in diameter) and of creating a map of blood flow rates over an area of approximately 1 cm2. NIR-STICS employs near-infrared spectroscopy to probe inside blood vessel walls and spatiotemporal image correlation spectroscopy to directly-without the use of a model-extract fluid velocity from the fluctuations within an image. We present computer simulations and experiments on a phantom system that demonstrate the effectiveness of NIR-STICS.

  18. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia

    Science.gov (United States)

    Selb, Juliette; Boas, David A.; Chan, Suk-Tak; Evans, Karleyton C.; Buckley, Erin M.; Carp, Stefan A.

    2014-01-01

    Abstract. Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS. PMID:25453036

  19. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia.

    Science.gov (United States)

    Selb, Juliette; Boas, David A; Chan, Suk-Tak; Evans, Karleyton C; Buckley, Erin M; Carp, Stefan A

    2014-07-01

    Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) are two diffuse optical technologies for brain imaging that are sensitive to changes in hemoglobin concentrations and blood flow, respectively. Measurements for both modalities are acquired on the scalp, and therefore hemodynamic processes in the extracerebral vasculature confound the interpretation of cortical hemodynamic signals. The sensitivity of NIRS to the brain versus the extracerebral tissue and the contrast-to-noise ratio (CNR) of NIRS to cerebral hemodynamic responses have been well characterized, but the same has not been evaluated for DCS. This is important to assess in order to understand their relative capabilities in measuring cerebral physiological changes. We present Monte Carlo simulations on a head model that demonstrate that the relative brain-to-scalp sensitivity is about three times higher for DCS (0.3 at 3 cm) than for NIRS (0.1 at 3 cm). However, because DCS has higher levels of noise due to photon-counting detection, the CNR is similar for both modalities in response to a physiologically realistic simulation of brain activation. Even so, we also observed higher CNR of the hemodynamic response during graded hypercapnia in adult subjects with DCS than with NIRS.

  20. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, S.; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-01-01

    Roč. 22, č. 2 (2016), s. 290-299 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GAP305/11/2476; GA ČR(CZ) GPP501/12/P951 Institutional support: RVO:61389030 ; RVO:61388955 Keywords : raster image correlation spectroscopy * fluorescence recovery after photobleaching * auxin influx Subject RIV: EB - Genetics ; Molecular Biology; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.891, year: 2016

  1. Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

    OpenAIRE

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.

    2013-01-01

    Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separat...

  2. Quantification of transuranic elements by time interval correlation spectroscopy of the detected neutrons

    Science.gov (United States)

    Baeten; Bruggeman; Paepen; Carchon

    2000-03-01

    The non-destructive quantification of transuranic elements in nuclear waste management or in safeguards verifications is commonly performed by passive neutron assay techniques. To minimise the number of unknown sample-dependent parameters, Neutron Multiplicity Counting (NMC) is applied. We developed a new NMC-technique, called Time Interval Correlation Spectroscopy (TICS), which is based on the measurement of Rossi-alpha time interval distributions. Compared to other NMC-techniques, TICS offers several advantages.

  3. The use of photon correlation spectroscopy method for determining diffusion coefficient in brine and herring flesh

    Directory of Open Access Journals (Sweden)

    Shumanova M.V.

    2015-03-01

    Full Text Available The process fish salting has been studied by the method of photon correlation spectroscopy; the distribution of salt concentration in the solution and herring flesh with skin has been found, diffusion coefficients and salt concentrations used for creating a mathematical model of the salting technology have been worked out; the possibility of determination by this method the coefficient of dynamic viscosity of solutions and different media (minced meat etc. has been considered

  4. Data acquisition card for fluctuation correlation spectroscopy allowing full access to the detected photon sequence

    OpenAIRE

    Eid, JS; Muller, JD; Gratton, E

    2000-01-01

    Typically, fluctuation correlation spectroscopy (FCS) data acquisition cards measure the number of photon events per time interval (i.e., bin) - time mode. Commercial FCS cards combine the bins through hardware in order to calculate the autocorrelation function. Such a design therefore does not yield the time resolved photon sequence, but only the autocorrelation of that sequence. A different acquisition method which measures the number of time intervals between photon events has been impleme...

  5. 2D Vis/NIR correlation spectroscopy of cooked chicken meats

    Science.gov (United States)

    Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro

    2000-03-01

    Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.

  6. Achieving optimal SERS through enhanced experimental design.

    Science.gov (United States)

    Fisk, Heidi; Westley, Chloe; Turner, Nicholas J; Goodacre, Royston

    2016-01-01

    One of the current limitations surrounding surface-enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal. This means that experimental optimisation for optimum SERS response is vital. Most researchers optimise one factor at a time, where a single parameter is altered first before going onto optimise the next. This is a very inefficient way of searching the experimental landscape. In this review, we explore the use of more powerful multivariate approaches to SERS experimental optimisation based on design of experiments and evolutionary computational methods. We particularly focus on colloidal-based SERS rather than thin film preparations as a result of their popularity. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.

  7. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR and Surface Enhanced Raman Spectroscopy (SERS Detection of Adsorbed (Biomolecules

    Directory of Open Access Journals (Sweden)

    Rodica Elena Ionescu

    2017-01-01

    Full Text Available Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography or inexpensive (e.g., thermal synthesis approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C. The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR and surface enhanced Raman spectroscopy (SERS optical responses and where used for the detection of low concentrations of two model (biochemical molecules, namely the human cytochrome b5 (Cyt-b5 and trans-1,2-bis(4-pyridylethylene (BPE.

  8. Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics

    International Nuclear Information System (INIS)

    Axt, V M; Kuhn, T

    2004-01-01

    The application of femtosecond spectroscopy to the study of ultrafast dynamics in semiconductor materials and nanostructures is reviewed with particular emphasis on the physics that can be learned from it. Excitation with ultrashort optical pulses in general results in the creation of coherent superpositions and correlated many-particle states. The review comprises a discussion of the dynamics of this correlated many-body system during and after pulsed excitation as well as its analysis by means of refined measurements and advanced theories. After an introduction of basic concepts-such as coherence, correlation and quantum kinetics-a brief overview of the most important experimental techniques and theoretical approaches is given. The remainder of this paper is devoted to specific results selected in order to highlight how femtosecond spectroscopy gives access to the physics of coherences, correlations and quantum kinetics involving charge, spin and lattice degrees of freedom. First examples deal with the dynamics of basic laser-induced coherences that can be observed, e.g. in quantum beat spectroscopy, in coherent control measurements or in experiments using few-cycle pulses. The phenomena discussed here are basic in the sense that they can be understood to a large extent on the mean-field level of the theory. Nevertheless, already on this level it is found that semiconductors behave substantially differently from atomic systems. Subsequent sections report on the occurrence of coherences and correlations beyond the mean-field level that are mediated either by carrier-phonon or carrier-carrier interactions. The corresponding analysis gives deep insight into fundamental issues such as the energy-time uncertainty, pure dephasing in quantum dot structures, the role of two-pair or even higher correlations and the build-up of screening. Finally results are presented concerning the ultrafast dynamics of resonantly coupled excitations, where a combination of different

  9. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells.

    Science.gov (United States)

    Ohrt, Thomas; Mütze, Jörg; Staroske, Wolfgang; Weinmann, Lasse; Höck, Julia; Crell, Karin; Meister, Gunter; Schwille, Petra

    2008-11-01

    Studies of RNA interference (RNAi) provide evidence that in addition to the well-characterized cytoplasmic mechanisms, nuclear mechanisms also exist. The mechanism by which the nuclear RNA-induced silencing complex (RISC) is formed in mammalian cells, as well as the relationship between the RNA silencing pathways in nuclear and cytoplasmic compartments is still unknown. Here we show by applying fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS) in vivo that two distinct RISC exist: a large approximately 3 MDa complex in the cytoplasm and a 20-fold smaller complex of approximately 158 kDa in the nucleus. We further show that nuclear RISC, consisting only of Ago2 and a short RNA, is loaded in the cytoplasm and imported into the nucleus. The loaded RISC accumulates in the nucleus depending on the presence of a target, based on an miRNA-like interaction with impaired cleavage of the cognate RNA. Together, these results suggest a new RISC shuttling mechanism between nucleus and cytoplasm ensuring concomitant gene regulation by small RNAs in both compartments.

  10. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    Science.gov (United States)

    Yoon, Haesung; Yoon, Dahye; Yun, Mijin; Choi, Ji Soo; Park, Vivian Youngjean; Kim, Eun-Kyung; Jeong, Joon; Koo, Ja Seung; Yoon, Jung Hyun; Moon, Hee Jung; Kim, Suhkmann; Kim, Min Jung

    2016-01-01

    Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters. Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years) with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammography or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters. In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites showed

  11. Metabolomics of Breast Cancer Using High-Resolution Magic Angle Spinning Magnetic Resonance Spectroscopy: Correlations with 18F-FDG Positron Emission Tomography-Computed Tomography, Dynamic Contrast-Enhanced and Diffusion-Weighted Imaging MRI.

    Directory of Open Access Journals (Sweden)

    Haesung Yoon

    Full Text Available Our goal in this study was to find correlations between breast cancer metabolites and conventional quantitative imaging parameters using high-resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS and to find breast cancer subgroups that show high correlations between metabolites and imaging parameters.Between August 2010 and December 2013, we included 53 female patients (mean age 49.6 years; age range 32-75 years with a total of 53 breast lesions assessed by the Breast Imaging Reporting and Data System. They were enrolled under the following criteria: breast lesions larger than 1 cm in diameter which 1 were suspicious for malignancy on mammography or ultrasound (US, 2 were pathologically confirmed to be breast cancer with US-guided core-needle biopsy (CNB 3 underwent 3 Tesla MRI with dynamic contrast-enhanced (DCE and diffusion-weighted imaging (DWI and positron emission tomography-computed tomography (PET-CT, and 4 had an attainable immunohistochemistry profile from CNB. We acquired spectral data by HR-MAS MRS with CNB specimens and expressed the data as relative metabolite concentrations. We compared the metabolites with the signal enhancement ratio (SER, maximum standardized FDG uptake value (SUV max, apparent diffusion coefficient (ADC, and histopathologic prognostic factors for correlation. We calculated Spearman correlations and performed a partial least squares-discriminant analysis (PLS-DA to further classify patient groups into subgroups to find correlation differences between HR-MAS spectroscopic values and conventional imaging parameters.In a multivariate analysis, the PLS-DA models built with HR-MAS MRS metabolic profiles showed visible discrimination between high and low SER, SUV, and ADC. In luminal subtype breast cancer, compared to all cases, high SER, ADV, and SUV were more closely clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in all cases. Multiple metabolites

  12. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  13. SERS sensors for DVD platform

    DEFF Research Database (Denmark)

    Brøgger, Anna Line

    This Ph.D. thesis explores the engineering of a portable sensor system for detection of rare and small molecules. The Ph.D. project is part of the research project 'Multi-Sensor DVD platform' (MUSE), aiming to integrate different sensors on a rotating disc. The sensors are chosen to complement each...... other, creating more reliable and stable results for the end user. The rotating disc comprises microfluidic channels, which can be utilized for handling and manipulating liquid samples such as blood or water. The focus of this Ph.D. thesis, is on the integration of one specific sensor on a rotating disc....... The sensor is based upon surface enhanced Raman spectroscopy (SERS), which detects molecular vibrations. The aim of this thesis is to cover the different aspects of the sensor system. SERS substrates, consisting of nanopillars with gold or silver caps on top, have been fabricated by standard micro and nano...

  14. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  15. Slow dynamics in an azopolymer molecular layer studied by x-ray photon correlation spectroscopy

    International Nuclear Information System (INIS)

    Orsi, D.; Fluerasu, A.; Cristofolini, L.; Fontana, M.P.; Pontecorvo, E.; Caronna, C.; Zontone, F.; Madsen, A.

    2010-01-01

    We report the results of x-ray photon correlation spectroscopy (XPCS) experiments on multilayers of a photosensitive azo-polymer which can be softened by photoisomerization. Time correlation functions have been measured at different temperatures and momentum transfers (q) and under different illumination conditions (dark, UV or visible). The correlation functions are well described by the Kohlrausch-Williams-Watts (KWW) form with relaxation times that are proportional to q -1 . The characteristic relaxation times follow the same Vogel-Fulcher-Tammann law describing the bulk viscosity of this polymer. The out-of-equilibrium relaxation dynamics following a UV photoperturbation are accelerated, which is in agreement with a fluidification effect previously measured by rheology. The transient dynamics are characterized by two times correlation function, and dynamical heterogeneity is evidenced by calculating the variance χ of the degree of correlation as a function of ageing time. A clear peak in χ appears at a well defined time τ C which scales with q -1 and with the ageing time, in a similar fashion as previously reported in colloidal suspensions (O. Dauchot et al. Phys. Rev. Lett. 95 265701 (2005)). From an accurate analysis of the correlation functions we could demonstrate a temperature and light dependent cross-over from compressed KWW to simple exponential behavior.

  16. The Utilization of Spin Polarized Photoelectron Spectroscopy as a Probe of Electron Correlation with an Ultimate Goal of Pu

    International Nuclear Information System (INIS)

    Tobin, James; Yu, Sung; Chung, Brandon; Morton, Simon; Komesu, Takashi; Waddill, George

    2008-01-01

    We are developing the technique of spin-polarized photoelectron spectroscopy as a probe of electron correlation with the ultimate goal of resolving the Pu electronic structure controversy. Over the last several years, we have demonstrated the utility of spin polarized photoelectron spectroscopy for determining the fine details of the electronic structure in complex systems such as those shown in the paper.

  17. Correlation of proton MR spectroscopy of primary intracranial tumours and histopathological findings: preliminarily findings

    International Nuclear Information System (INIS)

    Mandel, C.; Birchall, D.; Ellison, D.; Crawford, P.J.

    2002-01-01

    consistently raised in tumours, with elevated Cho:Crnormal and Cho:Chnormal constant findings. Preliminary analysis indicates that the tumoral Cho:Cr and Cho:NAA ratios demonstrate the closest correlation to histological grade. Full statistical analysis will be presented. Proton MR spectroscopy is a useful adjunct to the investigation of primary intracranial tumours. It is in a relatively early phase of clinical validation, but has the potential for use as a form of non-invasive biopsy in selected patients. Copyright (2002) Blackwell Science Pty Ltd

  18. Absolute choline concentration measured by quantitative proton MR spectroscopy correlates with cell density in meningioma

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Qiang [University of Tsukuba, Department of Neurosurgery, Institute of Clinical Medicine, Tsukuba Science City, Ibaraki (Japan)]|[West China Hospital of Sichuan University, Huaxi MR Research Center, Department of Radiology, Chengdu (China); Shibata, Yasushi; Kawamura, Hiraku; Matsumura, Akira [University of Tsukuba, Department of Neurosurgery, Institute of Clinical Medicine, Tsukuba Science City, Ibaraki (Japan); Isobe, Tomonori [Kitasato University, Department of Medical Technology, School of Allied Health Sciences, Minato, Tokyo (Japan); Anno, Izumi [University of Tsukuba, Department of Radiology, Institute of Clinical Medicine, Tsukuba, Ibaraki (Japan); Gong, Qi-Yong [West China Hospital of Sichuan University, Huaxi MR Research Center, Department of Radiology, Chengdu (China)]|[University of Liverpool, Division of Medical Imaging, Faculty of Medicine, Liverpool (United Kingdom)

    2009-01-15

    This study was aimed to investigate the relationship between quantitative proton magnetic resonance spectroscopy (1H-MRS) and pathological changes in meningioma. Twenty-two meningioma cases underwent single voxel 1H-MRS (point-resolved spectroscopy sequence, repetition time/echo time = 2,000 ms/68, 136, 272 ms). Absolute choline (Cho) concentration was calculated using tissue water as the internal reference and corrected according to intra-voxel cystic/necrotic parts. Pathological specimens were stained with MIB-1 antibody to measure cell density and proliferation index. Correlation analysis was performed between absolute Cho concentration and cell density and MIB-1 labeled proliferation index. Average Cho concentration of all meningiomas before correction was 2.95 {+-} 0.86 mmol/kg wet weight. It was increased to 3.23 {+-} 1.15 mmol/kg wet weight after correction. Average cell density of all meningiomas was 333 {+-} 119 cells/HPF, and average proliferation index was 2.93 {+-} 5.72%. A linear, positive correlation between cell density and Cho concentration was observed (r = 0.650, P = 0.001). After correction of Cho concentration, the correlation became more significant (r = 0.737, P < 0.001). However, no significant correlation between Cho concentration and proliferation index was found. There seemed to be a positive correlation trend after correction of Cho concentration but did not reach significant level. Absolute Cho concentration, especially Cho concentration corrected according to intra-voxel cystic/necrotic parts, reflects cell density of meningioma. (orig.)

  19. PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy.

    Science.gov (United States)

    Müller, Paul; Schwille, Petra; Weidemann, Thomas

    2014-09-01

    We present a graphical user interface (PyCorrFit) for the fitting of theoretical model functions to experimental data obtained by fluorescence correlation spectroscopy (FCS). The program supports many data file formats and features a set of tools specialized in FCS data evaluation. The Python source code is freely available for download from the PyCorrFit web page at http://pycorrfit.craban.de. We offer binaries for Ubuntu Linux, Mac OS X and Microsoft Windows. © The Author 2014. Published by Oxford University Press.

  20. Application of perturbed angular correlation spectroscopy in IgG immunoglobulins

    International Nuclear Information System (INIS)

    Silva, A.S.; Amaral, A.A.; Lapolli, A.L.; Carbonari, A.W.

    2009-01-01

    In the present work, the technique of perturbed angular correlation (PAC) spectroscopy was used to measure the electric hyperfine field at IgG immunoglobulins using 111 In → 111 Cd and 181 Hf → 181 Ta probe nuclei. The biological materials studied in this work were originating from the immunological response of different mice lineages infected by the Y strain of T. cruzi. The samples were measured at room temperature (295K) and at liquid nitrogen temperature (77K). The PAC results showed that, samples measured with 111 In obtained better results when they were compared with samples measured with 181 Hf. (author)

  1. Correlations between the orientation of magnetic recording media determined by Moessbauer spectroscopy and magnetic methods

    International Nuclear Information System (INIS)

    Pott, R.A.; Koch, W.; Leitner, L.

    1986-01-01

    The orientation of the easy magnetization axis of magnetic particles is a key parameter of the recording performance of magnetic recording media. Usually the orientation is measured by magnetic methods, but the applicability of the Moessbauer Spectroscopy has also been shown in the past. The authors show and discuss the correlations between the results obtained by magnetic and Moessbauer measurements for the example of several magnetic tapes. They demonstrate that by a combination of both methods one is even able to estimate the mean canting angles distribution width of the easy axis of magnetization. (Auth.)

  2. Application of perturbed angular correlation spectroscopy in IgG immunoglobulins

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.S.; Amaral, A.A.; Lapolli, A.L.; Carbonari, A.W. [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)], e-mail: asilva@usp.br

    2009-07-01

    In the present work, the technique of perturbed angular correlation (PAC) spectroscopy was used to measure the electric hyperfine field at IgG immunoglobulins using {sup 111}In {yields}{sup 111}Cd and {sup 181}Hf {yields} {sup 181}Ta probe nuclei. The biological materials studied in this work were originating from the immunological response of different mice lineages infected by the Y strain of T. cruzi. The samples were measured at room temperature (295K) and at liquid nitrogen temperature (77K). The PAC results showed that, samples measured with {sup 111}In obtained better results when they were compared with samples measured with {sup 181}Hf. (author)

  3. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics.

    Science.gov (United States)

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.

  4. In vivo time-gated diffuse correlation spectroscopy at quasi-null source-detector separation.

    Science.gov (United States)

    Pagliazzi, M; Sekar, S Konugolu Venkata; Di Sieno, L; Colombo, L; Durduran, T; Contini, D; Torricelli, A; Pifferi, A; Mora, A Dalla

    2018-06-01

    We demonstrate time domain diffuse correlation spectroscopy at quasi-null source-detector separation by using a fast time-gated single-photon avalanche diode without the need of time-tagging electronics. This approach allows for increased photon collection, simplified real-time instrumentation, and reduced probe dimensions. Depth discriminating, quasi-null distance measurement of blood flow in a human subject is presented. We envision the miniaturization and integration of matrices of optical sensors of increased spatial resolution and the enhancement of the contrast of local blood flow changes.

  5. Quantitative Studies of Antimicrobial Peptide Pore Formation in Large Unilamellar Vesicles by Fluorescence Correlation Spectroscopy (FCS)

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2013-01-01

    In spite of intensive research efforts over the past decades, the mechanisms by which membrane-active antimicrobial peptides interact with phospholipid membranes are not yet fully elucidated. New tools that can be used to characterize antimicrobial peptide-lipid membrane interactions are therefore...... to quantify leakage from large unilamellar vesicles is associated with a number of experimental pitfalls. Based on theoretical and experimental considerations, we discuss how to properly design experiments to avoid these pitfalls. Subsequently, we apply fluorescence correlation spectroscopy to quantify...

  6. Single molecule SERS: Perspectives of analytical applications

    Czech Academy of Sciences Publication Activity Database

    Vlčková, B.; Pavel, I.; Sládková, M.; Šišková, K.; Šlouf, Miroslav

    834-836, - (2007), s. 42-47 ISSN 0022-2860. [European Congress on Molecular Spectroscopy /28./. Istanbul, 03.09.2006-08.09.2006] R&D Projects: GA ČR GA203/04/0688 Institutional research plan: CEZ:AV0Z40500505 Keywords : surface-enhanced Raman scattering (SERS) * surface-enhanced resonance Raman (SERRS) * single molecule SERS Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.486, year: 2007

  7. Combined IR-Raman vs vibrational sum-frequency heterospectral correlation spectroscopy

    Science.gov (United States)

    Roy, Sandra; Beutier, Clémentine; Hore, Dennis K.

    2018-06-01

    Vibrational sum-frequency generation spectroscopy is a valuable probe of surface structure, particularly when the same molecules are present in one of the adjacent bulk solid or solution phases. As a result of the non-centrosymmetric requirement of SFG, the signal generated is a marker of the extent to which the molecules are ordered in an arrangement that breaks the up-down symmetry at the surface. In cases where the accompanying changes in the bulk are of interest in understanding and interpreting the surface structure, simultaneous analysis of the bulk IR absorption or bulk Raman scattering is helpful, and may be used in heterospectral surface-bulk two-dimensional correlation. We demonstrate that, in such cases, generating a new type of bulk spectrum that combines the IR and Raman amplitudes is a better candidate than the individual IR and Raman spectra for the purpose of correlation with the SFG signal.

  8. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    International Nuclear Information System (INIS)

    Yuan, C. T.; Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-01-01

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution

  9. Temperature-Corrected Oxygen Detection Based on Multi-Mode Diode Laser Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xiutao Lou

    2013-01-01

    Full Text Available Temperature-corrected oxygen measurements were performed by using multi-mode diode laser correlation spectroscopy at temperatures ranging between 300 and 473 K. The experiments simulate in situ monitoring of oxygen in coal-combustion exhaust gases at the tail of the flue. A linear relationship with a correlation coefficient of −0.999 was found between the evaluated concentration and the gas temperature. Temperature effects were either auto-corrected by keeping the reference gas at the same conditions as the sample gas, or rectified by using a predetermined effective temperature-correction coefficient calibrated for a range of absorption wavelengths. Relative standard deviations of the temperature-corrected oxygen concentrations obtained by different schemes and at various temperatures were estimated, yielding a measurement precision of 0.6%.

  10. Correlation between laser-induced breakdown spectroscopy signal and moisture content

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Gigant, Lionel [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Universite Bordeaux 1, 351 cours de la Liberation 33405 Talence Cedex (France); Baudelet, Matthieu, E-mail: baudelet@creol.ucf.edu [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Richardson, Martin [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States)

    2012-07-15

    The possibility of using Laser-Induced Breakdown Spectroscopy (LIBS) for measuring the moisture content of fresh food samples is studied. The normalized line emission of oxygen is highly correlated with the moisture content of the sample, cheese in our case, and can be used as a moisture marker in situations where oxygen interference from the matrix is not a critical issue. The linear correlation between the oxygen signal and the moisture content in the sample shows great potential for using LIBS as an alternative spectroscopic method for moisture monitoring. - Highlights: Black-Right-Pointing-Pointer Quantitative moisture measurement by LIBS. Black-Right-Pointing-Pointer Use of matrix effects and normalization for physical information on the sample. Black-Right-Pointing-Pointer Use of signal from oxygen and CN radical in air background for moisture measurement.

  11. A method of Moessbauer Fourier spectroscopy for determination of the biopolimer coordinate correlation functions

    International Nuclear Information System (INIS)

    Basovets, S.K.; Krupyanskij, Yu.F.; Kurinov, I.V.; Suzdalev, I.P.; Goldanskij, V.I.; Uporov, I.V.; Shaitan, K.V.; Rubin, A.B.

    1988-01-01

    A method of Moessbauer Fourier spectroscopy is developed to determine the correlation function of coordinates of a macromolecular system. The method does not require the use of an a priori dynamic model. The application of the method to the analysis of RSMR data for human serum albumin has demonstrated considerable changes in the dynamic behavior of the protein globule when the temperature is changed from 270 to 310 K. The main conclusions of the present work is the simultaneous observation of low-frequency (τ≥10 -9 sec) and high-frequency (τ -9 sec) large-scaled motions, that is the two-humped distribution of correlation times of protein motions. (orig.)

  12. Correlation between laser-induced breakdown spectroscopy signal and moisture content

    International Nuclear Information System (INIS)

    Liu, Yuan; Gigant, Lionel; Baudelet, Matthieu; Richardson, Martin

    2012-01-01

    The possibility of using Laser-Induced Breakdown Spectroscopy (LIBS) for measuring the moisture content of fresh food samples is studied. The normalized line emission of oxygen is highly correlated with the moisture content of the sample, cheese in our case, and can be used as a moisture marker in situations where oxygen interference from the matrix is not a critical issue. The linear correlation between the oxygen signal and the moisture content in the sample shows great potential for using LIBS as an alternative spectroscopic method for moisture monitoring. - Highlights: ► Quantitative moisture measurement by LIBS. ► Use of matrix effects and normalization for physical information on the sample. ► Use of signal from oxygen and CN radical in air background for moisture measurement.

  13. Two-dimensional MR spectroscopy of minimal hepatic encephalopathy and neuropsychological correlates in vivo.

    Science.gov (United States)

    Singhal, Aparna; Nagarajan, Rajakumar; Hinkin, Charles H; Kumar, Rajesh; Sayre, James; Elderkin-Thompson, Virginia; Huda, Amir; Gupta, Rakesh K; Han, Steven-Huy; Thomas, M Albert

    2010-07-01

    To evaluate regional cerebral metabolic and structural changes in patients with minimal hepatic encephalopathy (MHE) using two-dimensional (2D) MR spectroscopy (MRS) and T( (1) )-weighted MRI, to correlate the observed MR changes with neuropsychological (NP) test scores, and to compare the diagnostic accuracy of MRI, 2D MRS, and NP tests in discriminating between patients and healthy subjects. Thirty-three MHE patients and 30 healthy controls were investigated. The 2D localized correlated spectroscopy (L-COSY) was performed in the frontal and occipital brain on a 1.5 Tesla (T) MR scanner. The NP test battery included 15 tests, grouped into 6 cognitive domains. Globus pallidus signal intensities were calculated from T(1)-weighted images. The 2D MRS showed significant differences in ratios of the following metabolite(s) peaks with respect to creatine (Cr): decreased myo-inositol (mI), choline (Ch), mICh, and increased (glutamate plus glutamine) (Glx) in patients compared with healthy subjects in both occipital and frontal lobes. Frontal lobe taurine also showed a decline in patients. The NP test results revealed declines in cognitive speed, motor function, executive function, and global cognitive status. Significant correlations were found between the altered metabolites and NP tests. Alteration in the mICh/Cr ratio was noted as a powerful discriminant between healthy subjects and the patients. The study demonstrates that relative metabolite levels determined by 2D MRS, in particular mICh/Cr, provide the best diagnostic prediction for MHE. The results suggest that depletions of myo-inositol, choline and taurine with respect to creatine correlate with measures of neuropsychological impairment. (c) 2010 Wiley-Liss, Inc.

  14. Accelerating two-dimensional nuclear magnetic resonance correlation spectroscopy via selective coherence transfer

    Science.gov (United States)

    Ye, Qimiao; Chen, Lin; Qiu, Wenqi; Lin, Liangjie; Sun, Huijun; Cai, Shuhui; Wei, Zhiliang; Chen, Zhong

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy serves as an important tool for both qualitative and quantitative analyses of various systems in chemistry, biology, and medicine. However, applications of one-dimensional 1H NMR are often restrained by the presence of severe overlap among different resonances. The advent of two-dimensional (2D) 1H NMR constitutes a promising alternative by extending the crowded resonances into a plane and thereby alleviating the spectral congestions. However, the enhanced ability in discriminating resonances is achieved at the cost of extended experimental duration due to necessity of various scans with progressive delays to construct the indirect dimension. Therefore, in this study, we propose a selective coherence transfer (SECOT) method to accelerate acquisitions of 2D correlation spectroscopy by converting chemical shifts into spatial positions within the effective sample length and then performing an echo planar spectroscopic imaging module to record the spatial and spectral information, which generates 2D correlation spectrum after 2D Fourier transformation. The feasibility and effectiveness of SECOT have been verified by a set of experiments under both homogeneous and inhomogeneous magnetic fields. Moreover, evaluations of SECOT for quantitative analyses are carried out on samples with a series of different concentrations. Based on these experimental results, the SECOT may open important perspectives for fast, accurate, and stable investigations of various chemical systems both qualitatively and quantitatively.

  15. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy.

    Science.gov (United States)

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-11-28

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the first time, Hypericin containing NPs are prepared by combining the miniemulsion technique with the solvent evaporation method. This approach yields an efficient loading of the NPs with Hypericin and allows for additional cargo molecules. To monitor the release of Hypercin from the NPs, an additional fluorescent lipophilic dye Coumarin-6 is incorporated in the NPs. Temporal and spatiotemporal image correlation spectroscopy is used to determine the fate of the NPs carrying the potential cargo. Both directed and non-directed motions are detected. By using image cross-correlation spectroscopy and specific fluorescent labeling of endosomes, lysosomes and mitochondria, the dynamics of the cargo loaded NPs in association with the organelles is studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Gamma Spectroscopy

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.; Butz, Tilman; Ertl, G.; Knözinger, H.; Schüth, F.

    2008-01-01

    No abstract. The sections in this article are 1 Introduction 2 Mössbauer Spectroscopy 3 Time-Differential Perturbed Angular Correlations (TDPAC) 4 Conclusions and Outlook Keywords: Mössbauer spectroscopy; gamma spectroscopy; perturbed angular correlation; TDPAC

  17. The Correlation Between Dislocations and Vacancy Defects Using Positron Annihilation Spectroscopy

    Science.gov (United States)

    Pang, Jinbiao; Li, Hui; Zhou, Kai; Wang, Zhu

    2012-07-01

    An analysis program for positron annihilation lifetime spectra is only applicable to isolated defects, but is of no use in the presence of defective correlations. Such limitations have long caused problems for positron researchers in their studies of complicated defective systems. In order to solve this problem, we aim to take a semiconductor material, for example, to achieve a credible average lifetime of single crystal silicon under plastic deformation at different temperatures using positron life time spectroscopy. By establishing reasonable positron trapping models with defective correlations and sorting out four lifetime components with multiple parameters, as well as their respective intensities, information is obtained on the positron trapping centers, such as the positron trapping rates of defects, the density of the dislocation lines and correlation between the dislocation lines, and the vacancy defects, by fitting with the average lifetime with the aid of Matlab software. These results give strong grounds for the existence of dislocation-vacancy correlation in plastically deformed silicon, and lay a theoretical foundation for the analysis of positron lifetime spectra when the positron trapping model involves dislocation-related defects.

  18. Designing multilayered nanoplatforms for SERS-based detection of genetically modified organisms

    Science.gov (United States)

    Uluok, Saadet; Guven, Burcu; Eksi, Haslet; Ustundag, Zafer; Tamer, Ugur; Boyaci, Ismail Hakki

    2015-01-01

    In this study, the multilayered surface-enhanced Raman spectroscopy (SERS) platforms were developed for the analysis of genetically modified organisms (GMOs). For this purpose, two molecules [11-mercaptoundecanoic acid (11-MUA) and 2-mercaptoethylamine (2-MEA)] were attached with Aurod and Auspherical nanoparticles to form multilayered constructions on the gold (Au)slide surface. The best multilayered platform structure was chosen depending on SERS enhancement, and this surface was characterised with atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy. After the optimum multilayered SERS platform and nanoparticle interaction was identified, the oligonucleotides on the Aurod nanoparticles and Auslide were combined to determine target concentrations from the 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) signals using SERS. The correlation between the SERS intensities for DTNB and target concentrations was found to be linear within a range of 10 pM to 1 µM, and with a detection limit of 34 fM. The selectivity and specificity of the developed sandwich assay were tested using negative and positive controls, and nonsense and real sample studies. The obtained results showed that the multilayered SERS sandwich method allows for sensitive, selective, and specific detection of oligonucleotide sequences.

  19. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    Science.gov (United States)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  20. Childhood temporal lobe epilepsy: correlation between electroencephalography and magnetic resonance spectroscopy: a case-control study.

    Science.gov (United States)

    Azab, Seham Fa; Sherief, Laila M; Saleh, Safaa H; Elshafeiy, Mona M; Siam, Ahmed G; Elsaeed, Wafaa F; Arafa, Mohamed A; Bendary, Eman A; Sherbiny, Hanan S; Elbehedy, Rabab M; Aziz, Khalid A

    2015-04-18

    The diagnosis of epilepsy should be made as early as possible to give a child the best chance for treatment success and also to decrease complications such as learning difficulties and social and behavioral problems. In this study, we aimed to assess the ability of magnetic resonance spectroscopy (MRS) in detecting the lateralization side in patients with Temporal lobe epilepsy (TLE) in correlation with EEG and MRI findings. This was a case-control study including 40 patients diagnosed (clinically and by EEG) as having temporal lobe epilepsy aged 8 to 14 years (mean, 10.4 years) and 20 healthy children with comparable age and gender as the control group. All patients were subjected to clinical examination, interictal electroencephalography and magnetic resonance imaging (MRI). Proton magnetic resonance spectroscopic examination (MRS) was performed to the patients and the controls. According to the findings of electroencephalography, our patients were classified to three groups: Group 1 included 20 patients with unitemporal (lateralized) epileptic focus, group 2 included 12 patients with bitemporal (non-lateralized) epileptic focus and group 3 included 8 patients with normal electroencephalography. Magnetic resonance spectroscopy could lateralize the epileptic focus in 19 patients in group 1, nine patients in group2 and five patients in group 3 with overall lateralization of (82.5%), while electroencephalography was able to lateralize the focus in (50%) of patients and magnetic resonance imaging detected lateralization of mesial temporal sclerosis in (57.5%) of patients. Magnetic resonance spectroscopy is a promising tool in evaluating patients with epilepsy and offers increased sensitivity to detect temporal pathology that is not obvious on structural MRI imaging.

  1. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses.

    Science.gov (United States)

    Vasconcelos, Maydla Dos Santos; Passos, Wilson Espíndola; Lescanos, Caroline Honaiser; Pires de Oliveira, Ivan; Trindade, Magno Aparecido Gonçalves; Caires, Anderson Rodrigues Lima; Muzzi, Rozanna Marques

    2018-01-01

    The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.). The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB) and ∼90% (RSLB). The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2), about 49%, and the oleic monounsaturated (18  :  1), ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3), ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  2. Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K; Asher, Sanford A

    2013-03-01

    Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.

  3. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O.

    2010-01-01

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties

  4. Anterior insula GABA levels correlate with emotional aspects of empathy: a proton magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Qianfeng Wang

    Full Text Available Empathy is a multidimensional construct referring to the capacity to understand and share the emotional and affective states of another person. Cerebral γ-aminobutyric acid (GABA-ergic levels are associated with a variety of neurological and psychiatric disorders. However, the role of the GABA system in different dimensions of empathy has not been investigated.Thirty-two right-handed healthy volunteers took part in this study. We used proton magnetic resonance spectroscopy to determine GABA concentrations in the anterior insula (AI and the anterior cingulate cortex (ACC and to examine the relationship between the GABA concentrations and the subcomponents of empathy evaluated by the Interpersonal Reactivity Index (IRI.Pearson correlation analyses (two-tailed showed that AI GABA was significantly associated with the empathy concern score (r = 0.584, p<0.05 and the personal distress score (r = 0.538, p<0.05 but not significantly associated with other empathy subscales. No significant correlation was found between ACC GABA and empathy subscores.Left AI GABA was positively correlated with the emotional aspects of empathy. These preliminary findings call into question whether AI GABA alterations might predict empathy dysfunction in major psychiatric disorders such as autism and schizophrenia, which have been described as deficits in emotional empathic abilities.

  5. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses

    Directory of Open Access Journals (Sweden)

    Maydla dos Santos Vasconcelos

    2018-01-01

    Full Text Available The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.. The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB and ∼90% (RSLB. The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2, about 49%, and the oleic monounsaturated (18  :  1, ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3, ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  6. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  7. Easy monitoring of velocity fields in microfluidic devices using spatiotemporal image correlation spectroscopy.

    Science.gov (United States)

    Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco

    2013-09-03

    Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.

  8. Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions

    Science.gov (United States)

    Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis

    2017-12-01

    We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.

  9. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    Science.gov (United States)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  10. Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes.

    Science.gov (United States)

    Lu, Guowei; Lei, Franck H; Angiboust, Jean-François; Manfait, Michel

    2010-04-01

    A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.

  11. Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Zhang Pudun; Li Liang; Dong Chaoqing; Qian Huifeng; Ren Jicun

    2005-01-01

    In this paper, fluorescence correlation spectroscopy (FCS) was applied to measure the size of water-soluble quantum dots (QDs). The measurements were performed on a home-built FCS system based on the Stokes-Einstein equation. The obtained results showed that for bare CdTe QDs the sizes from FCS were larger than the ones from transmission electron microscopy (TEM). The brightness of QDs was also evaluated using FCS technique. It was found that the stability of the surface chemistry of QDs would be significantly improved by capping it with hard-core shell. Our data demonstrated that FCS is a simple, fast, and effective method for characterizing the fluorescent quantum dots, and is especially suitable for determining the fluorescent nanoparticles less than 10 nm in water solution

  12. Toward practical SERS sensing

    Science.gov (United States)

    Zhao, Yiping

    2012-06-01

    Since its discovery more than 30 years ago, surface-enhanced Raman scattering (SERS) has been recognized as a highly sensitive detection technique for chemical and biological sensing and medical diagnostics. However, the practical application of this remarkably sensitive technique has not been widely accepted as a viable diagnostic method due to the difficulty in preparing robust and reproducible substrates that provide maximum SERS enhancement. Here, we demonstrate that the aligned silver nanorod (AgNR) array substrates engineered by the oblique angle deposition method are capable of providing extremely high SERS enhancement factors (>108). The substrates are large area, uniform, reproducible, and compatible with general microfabrication process. The enhancement factor depends strongly on the length and shape of the Ag nanorods and the underlying substrate coating. By optimizing AgNR SERS substrates, we show that SERS is able to detect trace amount of toxins, virus, bacteria, or other chemical and biological molecules, and distinguish different viruses/bacteria and virus/bacteria strains. The substrate can be tailored into a multi-well chip for high throughput screening, integrated into fiber tip for portable sensing, incorporated into fluid/microfluidic devices for in situ real-time monitoring, fabricated onto a flexible substrate for tracking and identification, or used as on-chip separation device for ultra-thin layer chromatography and diagnostics. By combining the unique SERS substrates with a handheld Raman system, it can become a practical and portable sensor system for field applications. All these developments have demonstrated that AgNR SERS substrates could play an important role in the future for practical clinical, industrial, defense, and security sensing applications.

  13. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2011-07-01

    Full Text Available Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces.

  14. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    Science.gov (United States)

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  15. Monitoring the staling of wheat bread using 2D MIR-NIR correlation spectroscopy

    DEFF Research Database (Denmark)

    Ringsted, Tine; Siesler, Heinz Wilhelm; Engelsen, Søren Balling

    2017-01-01

    Staling of bread is a major source of food waste and efficient monitoring of it can help the food industry in the development of anti-staling recipes. While the staling fingerprint in the mid-infrared region is fairly well established this paper set out to find the most informative parts...... of the near-infrared spectra with respect to staling. For this purpose, two-dimensional correlation spectroscopy on near- and mid-infrared spectra of wheat bread crumb during aging was employed for the first time. The important mid-infrared absorption band at 1047 cm−1 related to amylopectin retrogradation...... was found to correlate positively with increased bread hardness and to co-vary with the near-infrared band at 910 nm in the short wavelength region (r2 = 0.88 to hardness), the near-infrared band at 1688 nm in the 1. overtone region (r2 = 0.97 to hardness) and to the near-infrared band in the long...

  16. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  17. Neural correlates of belief-bias reasoning under time pressure: a near-infrared spectroscopy study.

    Science.gov (United States)

    Tsujii, Takeo; Watanabe, Shigeru

    2010-04-15

    The dual-process theory of reasoning explained the belief-bias effect, the tendency for human reasoning to be erroneously biased when logical conclusions are incongruent with belief about the world, by proposing a belief-based fast heuristic system and a logic-based slow analytic system. Although the claims were supported by behavioral findings that the belief-bias effect was enhanced when subjects were not given sufficient time for reasoning, the neural correlates were still unknown. The present study therefore examined the relationship between the time-pressure effect and activity in the inferior frontal cortex (IFC) during belief-bias reasoning using near-infrared spectroscopy (NIRS). Forty-eight subjects performed congruent and incongruent reasoning tasks, involving long-span (20 s) and short-span trials (10 s). Behavioral analysis found that only incongruent reasoning performance was impaired by the time-pressure of short-span trials. NIRS analysis found that the time-pressure decreased right IFC activity during incongruent trials. Correlation analysis showed that subjects with enhanced right IFC activity could perform better in incongruent trials, while subjects for whom the right IFC activity was impaired by the time-pressure could not maintain better reasoning performance. These findings suggest that the right IFC may be responsible for the time-pressure effect in conflicting reasoning processes. When the right IFC activity was impaired in the short-span trials in which subjects were not given sufficient time for reasoning, the subjects may rely on the fast heuristic system, which result in belief-bias responses. We therefore offer the first demonstration of neural correlates of time-pressure effect on the IFC activity in belief-bias reasoning. Copyright 2009 Elsevier Inc. All rights reserved.

  18. MR spectroscopy of prostate cancer: correlation study of metabolic characters with Gleason score

    International Nuclear Information System (INIS)

    Wang Xiaoying; Li Feiyu; Jiang Xuexiang; Shan Gangzhi; Zhou Liangping; Ding Jianping

    2006-01-01

    Objective: Using magnetic resonance spectroscopy (MRS) to measure the metabolic ratio [(choline + creatine)/citrate, CC/C] of prostate cancer(PCa) and to probe the correlation between the value of CC/C ratio and Gleason score. Methods: Twenty-one cases of PCa proved by operation or systemic biopsy were examined by MRS. The prostate was divided into 6 regions (left/right bottom, middle and tip), and the CC/C value of each region was measured. After biopsy, all the puncture locations were marked and enrolled in one of the regions mentioned above and the Gleason scores were recorded. The ratio of CC/C measured by MRS was compared with Gleason score in the corresponding regions. Results: The average CC/C ratio of the 74 regions with PCa was 2.13±0.82, whereas the average CC/C ratio of the 52 regions without PCa was 0.59±0.20. The difference of CC/C value was statistically significant (t=7.72, P=0.00). The ratios of CC/C in the regions of PCa were correlated with Gleason score (r=0.659, P=0.01). In group 1 (Gleason score≥7), the average CC/C ratio was 2.61±0.79. However, in group 2 (Gleasonscore <7) the average CC/C ratio was 1.69±0.59. There was statistically difference between the two groups (t=3.06, P=0.01). Conclusion: The metabolic ratio of CC/C is correlated to the Gleason score of PCa. MRS may be a useful method to evaluate the malignancy of PCa noninvasively. (authors)

  19. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    Science.gov (United States)

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    Science.gov (United States)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  1. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    Science.gov (United States)

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Tuning SERS for living erythrocytes

    DEFF Research Database (Denmark)

    Brazhe, Nadezda; Parshina, E.Y.; Khabanova, V.V.

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) is a unique technique to study submembrane hemoglobin (Hbsm) in erythrocytes. We report the detailed design of SERS experiments on living erythrocytes to estimate dependence of the enhancemen t factor for main Raman bands of Hbsm on silver nanoparticle (Ag......NP) properties. We demonstrate that the enhancement factor for 4/A1g, 10/B1g and A2g Raman bands of Hbsm varies from 105 to 107 under proposed experimental conditions with 473 nm laser excitation. For the first time we show that the enhancement of Raman scattering increases with the increase in the relative...... between small AgNPs and Hbsm and, consequently, leads to the higher enhancement of Raman scattering of Hbsm. The enhancement of higher wavenumber bands 10/B1g and A2g is more sensitive to AgNPs' size and the relative amount of small AgNPs than the enhancement of the lower wavenumber band 4/A1g. This can...

  3. por láser

    Directory of Open Access Journals (Sweden)

    Mayra Garcimuño

    2013-01-01

    Full Text Available En el presente trabajo, la técnica Espectroscopia de plasmas producidos por láser (Laser-induced breakdown spectroscopy –LIBS– se aplicó a la determinación cuan- titativa de Na en agua natural dulce, de interés en agricultura para el estudio de la alcalinidad de aguas de regadío. Para efectuar el análisis, se prepararon soluciones con concentraciones conocidas del analito, se mezclaron con óxido de calcio y se compactaron en pastillas sólidas. Los plasmas se produjeron en aire a presión atmos- férica utilizando un láser pulsado Nd:YAG. Se construyó una curva de calibración y se calculó el límite de detección. Se analizaron muestras de agua natural y los resultados se compararon con los obtenidos mediante espectroscopia de absorción atómica. Se demostró la factibilidad del método para la determinación de Na en agua natural dulce.

  4. Linear correlation for identification of materials by laser induced breakdown spectroscopy: Improvement via spectral filtering and masking

    Energy Technology Data Exchange (ETDEWEB)

    Gornushkin, I.B., E-mail: igor.gornushkin@bam.d [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); Panne, U. [BAM Federal Institute for Materials Research and Testing, Berlin (Germany); Winefordner, J.D. [University of Florida, Gainesville, Florida (United States)

    2009-10-15

    The purpose of this work is to improve the performance of a linear correlation method used for material identification in laser induced breakdown spectroscopy. The improved correlation procedure is proposed based on the selection and use of only essential spectral information and ignoring empty spectral fragments. The method is tested on glass samples of forensic interest. The 100% identification capability of the new method is demonstrated in contrast to the traditional approach where the identification rate falls below 100% for many samples.

  5. Diagnosis of non-exudative (DRY) age related macular degeneration by non-invasive photon-correlation spectroscopy.

    Science.gov (United States)

    Fankhauser, Franz Ii; Ott, Maria; Munteanu, Mihnea

    2016-01-01

    Photon-correlation spectroscopy (PCS) (quasi-elastic light scattering spectroscopy, dynamic light scattering spectroscopy) allows the non-invasively reveal of local dynamics and local heterogeneities of macromolecular systems. The capability of this technique to diagnose the retinal pathologies by in-vivo investigations of spatial anomalies of retinas displaying non-exudative senile macular degeneration was evaluated. Further, the potential use of the technique for the diagnosis of the macular degeneration was analyzed and displayed by the Receiver Operating Curve (ROC). The maculae and the peripheral retina of 73 normal eyes and of 26 eyes afflicted by an early stage of non-exudative senile macular degeneration were characterized by time-correlation functions and analyzed in terms of characteristic decay times and apparent size distributions. The characteristics of the obtained time-correlation functions of the eyes afflicted with nonexudative macular degeneration and of normal eyes differed significantly, which could be referred to a significant change of the nano- and microstructure of the investigated pathologic maculas. Photon-correlation spectroscopy is able to assess the macromolecular and microstructural aberrations in the macula afflicted by non-exudative, senile macular degeneration. It has been demonstrated that macromolecules of this disease show a characteristic abnormal behavior in the macula.

  6. a Study of the Concentration Dependence of Macromolecular Diffusion Using Photon Correlation Spectroscopy.

    Science.gov (United States)

    Marlowe, Robert Lloyd

    The dynamic light scattering technique of photon correlation spectroscopy has been used to investigate the dependence of the mutual diffusion coefficient of a macromolecular system upon concentration. The first part of the research was devoted to the design and construction of a single-clipping autocorrelator based on newly-developed integrated circuits. The resulting 128 channel instrument can perform real time autocorrelation for sample time intervals >(, )10 (mu)s, and batch processed autocorrelation for intervals down to 3 (mu)s. An improved design for a newer, all-digital autocorrelator is given. Homodyne light scattering experiments were then undertaken on monodisperse solutions of polystyrene spheres. The single-mode TEM(,oo) beam of an argon-ion laser ((lamda) = 5145 (ANGSTROM)) was used as the light source; all solutions were studied at room temperature. The scattering angle was varied from 30(DEGREES) to 110(DEGREES). Excellent agreement with the manufacturer's specification for the particle size was obtained from the photon correlation studies. Finally, aqueous solutions of the globular protein ovalbumin, ranging in concentration from 18.9 to 244.3 mg/ml, were illuminated under the same conditions of temperature and wavelength as before; the homodyne scattered light was detected at a fixed scattering angle of 30(DEGREES). The single-clipped photocount autocorrelation function was analyzed using the homodyne exponential integral method of Meneely et al. The resulting diffusion coefficients showed a general linear dependence upon concentration, as predicted by the generalized Stokes-Einstein equation. However, a clear peak in the data was evident at c (TURNEQ) 100 mg/ml, which could not be explained on the basis of a non -interacting particle theory. A semi-quantitative approach based on the Debye-Huckel theory of electrostatic interactions is suggested as the probable cause for the peak's rise, and an excluded volume effect for its decline.

  7. Using fluorescence correlation spectroscopy to study conformational changes in denatured proteins.

    Science.gov (United States)

    Sherman, Eilon; Itkin, Anna; Kuttner, Yosef Yehuda; Rhoades, Elizabeth; Amir, Dan; Haas, Elisha; Haran, Gilad

    2008-06-01

    Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool that allows dynamics and hydrodynamics of biomolecules to be studied under a broad range of experimental conditions. One application of FCS of current interest is the determination of the size of protein molecules in the various states they sample along their folding reaction coordinate, which can be accessed through the measurement of diffusion coefficients. It has been pointed out that the analysis of FCS curves is prone to artifacts that may lead to erroneous size determination. To set the stage for FCS studies of unfolded proteins, we first show that the diffusion coefficients of small molecules as well as proteins can be determined accurately even in the presence of high concentrations of co-solutes that change the solution refractive index significantly. Indeed, it is found that the Stokes-Einstein relation between the measured diffusion coefficient and solution viscosity holds even in highly concentrated glycerol or guanidinium hydrochloride (GuHCl) solutions. These measurements form the basis for an investigation of the structure of the denatured state of two proteins, the small protein L and the larger, three-domain protein adenylate kinase (AK). FCS is found useful for probing expansion in the denatured state beyond the unfolding transition. It is shown that the denatured state of protein L expands as the denaturant concentration increases, in a process akin to the transition from a globule to a coil in polymers. This process continues at least up to 5 M GuHCl. On the other hand, the denatured state of AK does not seem to expand much beyond 2 M GuHCl, a result that is in qualitative accord with single-molecule fluorescence histograms. Because both the unfolding transition and the coil-globule transition of AK occur at a much lower denaturant concentration than those of protein L, a possible correlation between the two phenomena is suggested.

  8. Wilson's disease: 31P and 1H MR spectroscopy and clinical correlation

    International Nuclear Information System (INIS)

    Sinha, Sanjib; Taly, A.B.; Prashanth, L.K.; Ravishankar, S.; Vasudev, M.K.

    2010-01-01

    Proton ( 1 H) magnetic resonance spectroscopy (MRS) changes are noted in Wilson's disease (WD). However, there are no studies regarding membrane phospholipid abnormality using 31 P MRS in these patients. We aimed to analyze the striatal spectroscopic abnormalities using 31 P and 1 H MRS in WD. Forty patients of WD (treated, 29; untreated,11) and 30 controls underwent routine MR image sequences and in vivo 2-D 31 P and 1 H MRS of basal ganglia using an image-selected technique on a 1.5-T MRI scanner. Statistical analysis was done using Student's t test. The mean durations of illness and treatment were 6.2 ± 7.4 and 4.8 ± 5.9 years, respectively. MRI images were abnormal in all the patients. 1 H MRS revealed statistically significant reduction of N-acetyl aspartate (NAA)/choline (Cho) and NAA/creatine ratios in striatum ( 1 H MRS) of treated patients compared to controls. The mean values of phosphomonoesters (PME) (p 31 P MRS study. The duration of illness correlated well with increased PME/PDE [p < 0.001], PME/TPh [p < 0.05], and PDE/TPh [p < 0.05] and decreased NAA/Cho [p < 0.05] ratios. There was correlation of MRI score and reduced NAA/Cho ratio with disease severity. The PME/PDE ratio (right) was elevated in the treated group [p < 0.001] compared to untreated group. There is reduced breakdown and/or increased synthesis of membrane phospholipids and increased neuronal damage in basal ganglia in patients with WD. (orig.)

  9. Investigation of hyperfine interactions in DNA nitrogenous bases using perturbed angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Silva, Andreia dos Santos; Carbonari, Artur Wilson; Lapolli, Andre Luis; Saxena, Rajendra Narain; Saitovitch, Henrique

    2013-01-01

    Perturbed γγ angular correlations (PAC) spectroscopy has been used to study the DNA nitrogenous bases (adenine, cytosine, guanine, thymine), using 111 In→ 111 Cd and 111m Cd→ 111 Cd probe nuclei. One of the advantages of applying PAC technique to biological molecules is that the experiments can be carried out on molecules in aqueous solution [1], approaching the function of molecules under conditions that are close to in vivo conditions. The measurements were carried out for DNA nitrogenous bases molecules at 295 K and 77 K in order to investigate dynamic and static hyperfine interactions, respectively. The interpretation of the results was based on the measurements of dynamic interaction characterized by the decay constant from which valuable information on the macroscopic behavior of the molecules was obtained [2; 3]. On the other hand, PAC measurements at low temperature showed interaction frequency (ν Q ), asymmetry parameter (η) and the distribution of the quadrupole frequency (δ). These parameters provide a local microscopic description of the chemical environment in the neighborhood of the probe nuclei. Results showed differences in the hyperfine interactions of probe nuclei bound to the studied biomolecules. Such differences were observed by variations in the hyperfine parameters, which depended on the type of biomolecule and the results also showed that the probe nuclei bounded at the molecules in some cases and at others did not. (author)

  10. Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror

    International Nuclear Information System (INIS)

    Etienne, Emilien; Lenne, Pierre-Francois; Sturgis, James N.; Rigneault, Herve

    2006-01-01

    In fluorescence correlation spectroscopy (FCS) analysis it is generally assumed that molecular species diffuse freely in volumes much larger than the three-dimensional FCS observation volume. However, this standard assumption is not valid in many measurement conditions, particularly in tubular structures with diameters in the micrometer range, such as those found in living cells (organelles, dendrites) and microfluidic devices (capillaries,reaction chambers). As a result the measured autocorrelation functions (ACFs) deviate from those predicted for free diffusion, and this can shift the measured diffusion coefficient by as much as ∼50% when the tube diameter is comparable with the axial extension of the FCS observation volume. We show that the range of validity of the FCS measurements can be drastically improved if the tubular structures are located in the close vicinity of a mirror on which FCS is performed. In this case a new fluctuation time in the ACF, arising from the diffusion of fluorescent probes in optical fringes,permits measurement of the real diffusion coefficient within the tubular structure without assumptions about either the confined geometry orthe FCS observation volume geometry. We show that such a measurement can be done when the tubular structure contains at least one pair of dark and bright fringes resulting from interference between the incoming and the reflected excitation beams on the mirror surface. Measurement of the diffusion coefficient of the enhanced green fluorescent protein (EGFP) and IscS-EGFP in the cytoplasm of living Escherichiacoli illustrates the capabilities of the technique

  11. On the performance of bioanalytical fluorescence correlation spectroscopy measurements in a multiparameter photon-counting microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mazouchi, Amir; Liu Baoxu; Bahram, Abdullah [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada); Gradinaru, Claudiu C., E-mail: claudiu.gradinaru@utoronto.ca [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada)

    2011-02-28

    Fluorescence correlation spectroscopy (FCS) data acquisition and analysis routines were developed and implemented in a home-built, multiparameter photon-counting microscope. Laser excitation conditions were investigated for two representative fluorescent probes, Rhodamine110 and enhanced green fluorescent protein (EGFP). Reliable local concentrations and diffusion constants were obtained by fitting measured FCS curves, provided that the excitation intensity did not exceed 20% of the saturation level for each fluorophore. Accurate results were obtained from FCS measurements for sample concentrations varying from pM to {mu}M range, as well as for conditions of high background signals. These experimental constraints were found to be determined by characteristics of the detection system and by the saturation behavior of the fluorescent probes. These factors actually limit the average number of photons that can be collected from a single fluorophore passing through the detection volume. The versatility of our setup and the data analysis capabilities were tested by measuring the mobility of EGFP in the nucleus of Drosophila cells under conditions of high concentration and molecular crowding. As a bioanalytical application, we studied by FCS the binding affinity of a novel peptide-based drug to the cancer-regulating STAT3 protein and corroborated the results with fluorescence polarization analysis derived from the same photon data.

  12. Comparison of photon correlation spectroscopy with photosedimentation analysis for the determination of aqueous colloid size distributions

    Science.gov (United States)

    Rees, Terry F.

    1990-01-01

    Colloidal materials, dispersed phases with dimensions between 0.001 and 1 μm, are potential transport media for a variety of contaminants in surface and ground water. Characterization of these colloids, and identification of the parameters that control their movement, are necessary before transport simulations can be attempted. Two techniques that can be used to determine the particle-size distribution of colloidal materials suspended in natural waters are compared. Photon correlation Spectroscopy (PCS) utilizes the Doppler frequency shift of photons scattered off particles undergoing Brownian motion to determine the size of colloids suspended in water. Photosedimentation analysis (PSA) measures the time-dependent change in optical density of a suspension of colloidal particles undergoing centrifugation. A description of both techniques, important underlying assumptions, and limitations are given. Results for a series of river water samples show that the colloid-size distribution means are statistically identical as determined by both techniques. This also is true of the mass median diameter (MMD), even though MMD values determined by PSA are consistently smaller than those determined by PCS. Because of this small negative bias, the skew parameters for the distributions are generally smaller for the PCS-determined distributions than for the PSA-determined distributions. Smaller polydispersity indices for the distributions are also determined by PCS.

  13. Photolithography and Fluorescence Correlation Spectroscopy used to examine the rates of exchange in reverse micelle systems

    Science.gov (United States)

    Norris, Zach; Mawson, Cara; Johnson, Kyron; Kessler, Sarah; Rebecca, Anne; Wolf, Nathan; Lim, Michael; Nucci, Nathaniel

    Reverse micelles are molecular complexes that encapsulate a nanoscale pool of water in a surfactant shell dissolved in non-polar solvent. These complexes have a wide range of applications, and in all cases, the degree to which reverse micelles (RM) exchange their contents is relevant for their use. Despite its importance, this aspect of RM behavior is poorly understood. Photolithography is employed here to create micro and nano scale fluidic systems in which mixing rates can be precisely measured using fluorescence correlation spectroscopy (FCS). Micro-channel patterns are etched using reactive ion etching process into a layer of silicon dioxide on crystalline silicon substrates. Solutions containing mixtures of reverse micelles, proteins, and fluorophores are placed into reservoirs in the patterns, while diffusion and exchange between RMs is monitored using a FCS system built from a modified confocal Raman spectrometer. Using this approach, the diffusion and exchange rates for RM systems are measured as a function of the components of the RM mixture. Funding provided by Rowan University.

  14. Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy.

    Science.gov (United States)

    Stortz, Martin; Angiolini, Juan; Mocskos, Esteban; Wolosiuk, Alejandro; Pecci, Adali; Levi, Valeria

    2018-05-01

    The hierarchical organization of the cell nucleus into specialized open reservoirs and the nucleoplasm overcrowding impose restrictions to the mobility of biomolecules and their interactions with nuclear targets. These properties determine that many nuclear functions such as transcription, replication, splicing or DNA repair are regulated by complex, dynamical processes that do not follow simple rules. Advanced fluorescence microscopy tools and, in particular, fluorescence correlation spectroscopy (FCS) provide complementary and exquisite information on the dynamics of fluorescent labeled molecules moving through the nuclear space and are helping us to comprehend the complexity of the nuclear structure. Here, we describe how FCS methods can be applied to reveal the dynamical organization of the nucleus in live cells. Specifically, we provide instructions for the preparation of cellular samples with fluorescent tagged proteins and detail how FCS can be easily instrumented in commercial confocal microscopes. In addition, we describe general rules to set the parameters for one and two-color experiments and the required controls for these experiments. Finally, we review the statistical analysis of the FCS data and summarize the use of numerical simulations as a complementary approach that helps us to understand the complex matrix of molecular interactions network within the nucleus. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Evidence for atomic scale disorder in indium nitride from perturbed angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Dogra, R; Shrestha, S K; Byrne, A P; Ridgway, M C; Edge, A V J; Vianden, R; Penner, J; Timmers, H

    2005-01-01

    The crystal lattice of bulk grains and state-of-the-art films of indium nitride was investigated at the atomic scale with perturbed angular correlation spectroscopy using the 111 In/Cd radioisotope probe. The probe was introduced during sample synthesis, by diffusion and by ion implantation. The mean quadrupole interaction frequency ν Q = 28 MHz was observed at the indium probe site in all types of indium nitride samples with broad frequency distributions. The observed small, but non-zero, asymmetry parameter indicates broken symmetry around the probe atoms. Results have been compared with theoretical calculations based on the point charge model. The consistency of the experimental results and their independence of the preparation technique suggest that the origin of the broad frequency distribution is inherent to indium nitride, indicating a high degree of disorder at the atomic scale. Due to the low dissociation temperature of indium nitride, furnace and rapid thermal annealing at atmospheric pressure reduce the lattice disorder only marginally

  16. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ronan Broderick

    Full Text Available Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase. Furthermore, the size of complexes containing Cdc45 was estimated in asynchronous, G1/S and S phase-synchronized cells using gel filtration chromatography; these findings complemented the in vivo FCS data. Analysis of the mobility of eGFP-Cdc45 and the size of complexes containing Cdc45 and eGFP-Cdc45 after UVC-mediated DNA damage revealed no significant changes in diffusion rates and complex sizes using FCS and gel filtration chromatography analyses. This suggests that after UV-damage, Cdc45 is still present in a large multi-protein complex and that its mobility within living cells is consistently similar following UVC-mediated DNA damage.

  17. Study of molybdenum oxide by means of Perturbed Angular Correlations (PAC) and Mössbauer spectroscopy

    CERN Multimedia

    Among transition-metal oxides, the molybdenum oxide compounds are particularly attractive due to the structural (2D) anisotropy and to the ability of the molybdenum ion to change its oxidation state. These properties make it suitable for applications on, e.g., chemical sensors, solar cells, catalytic and optoelectronic devices. At ISOLDE we aim studying the incorporation of selected dopants by ion implantation, using the nuclear techniques of Perturbed Angular Correlations (PAC) and Mössbauer spectroscopy (MS). Both techniques make use of highly diluted radioactive probe nuclei, which interact – as atomic-sized tips – with the host atoms and defects. The objectives of this project are to study at the atomic scale the probe’s local environment, its electronic configuration and polarization, the probe’s lattice sites, point defects and its recombination dynamics. In the case of e-$\\gamma$ PAC, the electron mobility on the host can be further studied, e.g., as a function of temperature.

  18. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ke Liu; Yu Tian; Burrows, Sean M.; Reif, Randall D. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States); Pappas, Dimitri, E-mail: d.pappas@ttu.edu [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)

    2009-09-28

    The ability to quickly measure flow parameters in microfluidic devices is critical for micro total analysis system ({mu}TAS) applications. Macrofluidic methods to assess flow suffer from limitations that have made conventional methods unsuitable for the flow behavior profiling. Single molecule fluorescence correlation spectroscopy (FCS) has been employed in our study to characterize the fluidic vortex generating at a T-shape junction of microscale channels. Due to its high spatial and temporal resolution, the corresponding magnitudes relative to different flow rates in the main channel can be quantitatively differentiated using flow time ({tau}{sub F}) measurements of dye molecules traversing the detection volume in buffer solution. Despite the parabolic flow in the channel upstream, a heterogeneous distribution of flow has been detected across the channel intersection. In addition, our current observations also confirmed the aspect of vortex-shaped flow in low-shear design that was developed previously for cell culture. This approach not only overcomes many technical barriers for examining hydrodynamic vortices and movements in miniature structures without physically integrating any probes, but it is also especially useful for the hydrodynamic studies in polymer-glass based micro -reactor and -mixer.

  19. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    International Nuclear Information System (INIS)

    Coppola, S; Pozzi, D; De Sanctis, S Candeloro; Caracciolo, G; Digman, M A; Gratton, E

    2013-01-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP–DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol–DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm 2 s −1 ). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm 2 s −1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes. (paper)

  20. Longitudinal, transcranial measurement of functional activation in the rat brain by diffuse correlation spectroscopy.

    Science.gov (United States)

    Blanco, Igor; Zirak, Peyman; Dragojević, Tanja; Castellvi, Clara; Durduran, Turgut; Justicia, Carles

    2017-10-01

    Neural activity is an important biomarker for the presence of neurodegenerative diseases, cerebrovascular alterations, and brain trauma; furthermore, it is a surrogate marker for treatment effects. These pathologies may occur and evolve in a long time-period, thus, noninvasive, transcutaneous techniques are necessary to allow a longitudinal follow-up. In the present work, we have customized noninvasive, transcutaneous, diffuse correlation spectroscopy (DCS) to localize changes in cerebral blood flow (CBF) induced by neural activity. We were able to detect changes in CBF in the somatosensory cortex by using a model of electrical forepaw stimulation in rats. The suitability of DCS measurements for longitudinal monitoring was demonstrated by performing multiple sessions with the same animals at different ages (from 6 to 18 months). In addition, functional DCS has been cross-validated by comparison with functional magnetic resonance imaging (fMRI) in the same animals in a subset of the time-points. The overall results obtained with transcutaneous DCS demonstrates that it can be utilized in longitudinal studies safely and reproducibly to locate changes in CBF induced by neural activity in the small animal brain.

  1. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    Science.gov (United States)

    Coppola, S.; Pozzi, D.; Candeloro De Sanctis, S.; Digman, M. A.; Gratton, E.; Caracciolo, G.

    2013-03-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP-DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol-DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm2 s-1). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm2 s-1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes.

  2. Electrohydrodynamic properties of succinoglycan as probed by fluorescence correlation spectroscopy, potentiometric titration and capillary electrophoresis.

    Science.gov (United States)

    Duval, Jérôme F L; Slaveykova, Vera I; Hosse, Monika; Buffle, Jacques; Wilkinson, Kevin J

    2006-10-01

    The electrostatic, hydrodynamic and conformational properties of aqueous solutions of succinoglycan have been analyzed by fluorescence correlation spectroscopy (FCS), proton titration, and capillary electrophoresis (CE) over a large range of pH values and electrolyte (NaCl) concentrations. Using the theoretical formalism developed previously for the electrokinetic properties of soft, permeable particles, a quantitative analysis for the electro-hydrodynamics of succinoglycan is performed by taking into account, in a self-consistent manner, the measured values of the diffusion coefficients, electric charge densities, and electrophoretic mobilities. For that purpose, two limiting conformations for the polysaccharide in solution are tested, i.e. succinoglycan behaves as (i) a spherical, random coil polymer or (ii) a rodlike particle with charged lateral chains. The results show that satisfactory modeling of the titration data for ionic strengths larger than 50 mM can be accomplished using both geometries over the entire range of pH values. Electrophoretic mobilities measured for sufficiently large pH values (pH > 5-6) are in line with predictions based on either model. The best manner to discriminate between these two conceptual models is briefly discussed. For low pH values (pH < 5), both models indicate aggregation, resulting in an increase of the hydrodynamic permeability and a decrease of the diffusion coefficient.

  3. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  4. Exchange-dynamics of a neutral hydrophobic dye in micellar solutions studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Bordello, Jorge; Novo, Mercedes; Al-Soufi, Wajih

    2010-05-15

    The dynamics of the exchange of the moderately hydrophobic neutral dye Coumarine 152 between the aqueous phase and the phase formed by neutral Triton X-100 micelles is studied by Fluorescence Correlation Spectroscopy. The changes in the photophysical properties of the dye in presence of the micelles are discussed. The low quantum yield, the low saturation threshold and the necessary high energetic excitation of this dye requires a careful selection of the experimental conditions in order to obtain dynamic and diffusional properties with reasonable precision. It is shown that the contrast between the brightness of free and bound dye has a strong influence on the sensitivity of the FCS experiment. The entry rate constant of the dye to the micelles, k(+)=(0.8±0.3)×10(10) M(-1) s(-1), is very near to the diffusion controlled limit. The high association equilibrium constant of K=(129±3)×10(3) M(-1) is mainly determined by the low exit rate constant, k(-)=(0.6±0.2)×10(5) s(-1). Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Decreased microvascular cerebral blood flow assessed by diffuse correlation spectroscopy after repetitive concussions in mice.

    Science.gov (United States)

    Buckley, Erin M; Miller, Benjamin F; Golinski, Julianne M; Sadeghian, Homa; McAllister, Lauren M; Vangel, Mark; Ayata, Cenk; Meehan, William P; Franceschini, Maria Angela; Whalen, Michael J

    2015-12-01

    Repetitive concussions are associated with long-term cognitive dysfunction that can be attenuated by increasing the time intervals between concussions; however, biomarkers of the safest rest interval between injuries remain undefined. We hypothesize that deranged cerebral blood flow (CBF) is a candidate biomarker for vulnerability to repetitive concussions. Using a mouse model of human concussion, we examined the effect of single and repetitive concussions on cognition and on an index of CBF (CBFi) measured with diffuse correlation spectroscopy. After a single mild concussion, CBFi was reduced by 35±4% at 4 hours (Pconcussions spaced 1 day apart, CBFi was also reduced from preinjury levels 4 hours after each concussion but had returned to preinjury levels by 72 hours after the final concussion. Interestingly, in this repetitive concussion model, lower CBFi values measured both preinjury and 4 hours after the third concussion were associated with worse performance on the Morris water maze assessed 72 hours after the final concussion. We conclude that low CBFi measured either before or early on in the evolution of injury caused by repetitive concussions could be a useful predictor of cognitive outcome.

  6. Fluorescence correlation spectroscopy to study antibody binding and stoichiometry of complexes

    Science.gov (United States)

    Swift, Kerry M.; Matayoshi, Edmund D.

    2008-02-01

    FCS (fluorescence correlation spectroscopy) was used to study the association at the single molecule level of tumor necrosis factor alpha (TNF-α) and two of its protein antagonists Humira (TM) (adalimumab), a fully humanized monoclonal antibody, and Enbrel (TM) (etanercept), a soluble form of the TNF receptor. Single molecule approaches potentially have the advantage not only of enhanced sensitivity, but also of observing at equilibrium the details that would otherwise be lost in classical ensemble experiments where heterogeneity is averaged. We prepared fluorescent conjugates of the protein drugs and their biological target, the trimeric soluble form of TNF-α. The bivalency of adalimumab and the trimeric nature of TNF-α potentially allow several forms of associative complexes that may differ in stoichiometry. Detailed knowledge of this reaction may be relevant to understanding adalimumab's pharmacological properties. Our FCS data showed that a single trimeric TNF-α can bind up to three adalimumab molecules. Under some conditions even larger complexes are formed, apparently the result of cross-linking of TNF-α trimers by adalimumab. In addition, distinct differences between Humira and Enbrel were observed in their association with TNF-α.

  7. Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fluerasu, Andrei [Brookhaven National Laboratory, NSLS-II, Upton, NY 11973 (United States); Kwasniewski, Pawel; Caronna, Chiara; Madsen, Anders [European Synchrotron Radiation Facility, ID10 (Troika), Grenoble 38043 (France); Destremaut, Fanny; Salmon, Jean-Baptiste [LOF, UMR 5258 CNRS-Rhodia Bordeaux 1, 33608 Pessac (France)], E-mail: fluerasu@bnl.gov

    2010-03-15

    X-ray photon correlation spectroscopy (XPCS) has emerged as a unique technique allowing the measurement of dynamics of materials on mesoscopic lengthscales. One of the most common problems associated with the use of bright x-ray beams is beam-induced radiation damage, and this is likely to become an even more limiting factor at future synchrotron and free-electron laser sources. Flowing the sample during data acquisition is one of the simplest methods allowing the radiation damage to be limited. In addition to distributing the dose over many different scatterers, the method also enables new functionalities such as time-resolved studies. Here, we further develop a recently proposed experimental technique that combines XPCS and continuously flowing samples. More specifically, we use a model colloidal suspension to show how the macroscopic advective response to flow and the microscopic dissipative dynamics (diffusion) can be quantified from the x-ray data. Our results show very good quantitative agreement with a Poisseuille-flow hydrodynamical model combined with Brownian mechanics. The method has many potential applications, e.g. in the study of dynamics of glasses and gels under continuous shear/flow, protein aggregation processes and the interplay between dynamics and rheology in complex fluids.

  8. Security effectiveness review (SER)

    International Nuclear Information System (INIS)

    Kouprianova, I.; Ek, D.; Showalter, R.; Bergman, M.

    1998-01-01

    As part of the on-going DOE/Russian MPC and A activities at the Institute of Physics and Power Engineering (IPPE) and in order to provide a basis for planning MPC and A enhancements, an expedient method to review the effectiveness of the MPC and A system has been adopted. These reviews involve the identification of appropriate and cost-effective enhancements of facilities at IPPE. This effort requires a process that is thorough but far less intensive than a traditional vulnerability assessment. The SER results in a quick assessment of current and needed enhancements. The process requires preparation and coordination between US and Russian analysts before, during, and after information gathering at the facilities in order that the analysis is accurate, effective, and mutually agreeable. The goal of this paper is to discuss the SER process, including the objectives, time scale, and lessons learned at IPPE

  9. SERS Engineering Collaboration

    Science.gov (United States)

    2012-06-01

    laser beam. In the second approach, a pulsed laser was used to texture a silicon wafer to form sharp features. Silver was evaporated onto the wafer...orders of magnitude larger than that measured on a gold nanoparticle array on a glass substrate. The largest SERS enhancement for a silver device was...surface plasmons," Yizhuo Chu and Kenneth B. Crozier, Optics Letters vol. 34, 244 (2009) K3. "Gold nanorings as substrates for surface-enhanced Raman

  10. Hypoxia-ischemic encephalopathy in full-term neonate: correlation proton MR spectroscopy with MR imaging

    International Nuclear Information System (INIS)

    Fan Guoguang; Wu Zhenhua; Chen Liying; Guo Qiyong; Ye Binbin; Mao Jian

    2003-01-01

    Introduction: To evaluate 1 H Magnetic Resonance Spectroscopy ( 1 HMRS) in the diagnosis of hypoxia-ischemic encephalopathy (HIE) of full-term neonates correlated with Magnetic Resonance Imaging (MRI). Materials and methods: Thirty-eight cases of full-term neonates diagnosed as HIE clinically were selected to perform MRI and 1 HMRS examination. The ages ranged from 7 to 17 days, with median age of 8.2 days. In which, 26 cases were followed up and/or MRI reexamined at 6 months of age or later. Eight healthy neonates, with no evidence of birth asphyxia, also underwent 1 HMRS for comparison. SE sequences were used for routine MR examination; point resolved spectroscopy sequence was required for 1 HMRS. The metabolites in the spectra includes: N-acetylaspartate (NAA), choline compounds (CHO), creatine compounds (CR), myo-inositol (MI), lactate (LAC), glutamate and glutamine (Glu-Gln). Results: The peaks of NAA were fall in two cases; the peaks of LAC, which were elevated, appeared as typical double-peaks appearance in 26 cases; the peaks of Glu-Gln, which were also elevated, appeared as zigzag appearance in nine cases. The peaks of CR were decreased in 11 cases, while those of MI were increased in seven cases. Mild type of lesions was present on MRI in 12 cases whose LAC/CR ratio lower than 0.5; mild and moderate types of lesions were present in 15 cases whose LAC/CR ratio between 0.5 and 1.5. Whereas, nine cases of severe lesions and two cases of moderate lesions were present on MRI in 11 cases whose LAC/CR ratio greater than 1.5. Twenty-six of 38 cases were followed up and/or MRI reexamined after 6 months, in which, sequelae were present in 12 cases. Among them, eight cases of sequelae in nine cases whose LAC/CR ratio greater than 1.5 were present (account for 88.89%). Conclusion: 1 HMRS plays an important role to diagnose and predict outcome of HIE

  11. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Maria-Cristina, E-mail: cpopescu@icmpp.ro [' Petru Poni' Institute of Macromolecular Chemistry (Romania); Gomez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz [Universidad de Alcala, Departamento de Quimica Inorganica (Spain); Simionescu, Bogdan C. [' Petru Poni' Institute of Macromolecular Chemistry (Romania)

    2013-06-15

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010-2,710, 1,530-1,170, and 1,170-625 cm{sup -1} regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 Degree-Sign C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si-O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH{sub 3} and CH{sub 3}-N{sup +} groups take place first. With increasing temperature, the intensity variation of the CH{sub 2}, C-N, Si-C and C-C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  12. Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of a carbosilane dendrimer with peripheral ammonium groups

    International Nuclear Information System (INIS)

    Popescu, Maria-Cristina; Gómez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz; Simionescu, Bogdan C.

    2013-01-01

    Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010–2,710, 1,530–1,170, and 1,170–625 cm −1 regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 °C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si–O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH 3 and CH 3 –N + groups take place first. With increasing temperature, the intensity variation of the CH 2 , C–N, Si–C and C–C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.

  13. Quantification of Protein Biomarker Using SERS Nano-Stress Sensing with Peak Intensity Ratiometry

    Science.gov (United States)

    Goh, Douglas; Kong, Kien Voon; Jayakumar, Perumal; Gong, Tianxun; Dinish, U. S.; Olivo, Malini

    We report a surface enhanced Raman spectroscopy (SERS) ratiometry method based on peak intensity coupled in a nano-stress sensing platform to detect and quantify biological molecules. Herein, we employed an antibody-conjugated p-aminothiophenol (ATP) functionalized on a bimetallic-film-over-nanosphere (BMFON) substrate as a sensitive SERS platform to detect human haptoglobin (Hp) protein, which is an acute phase protein and a biomarker for various cancers. Correlation between change in the ATP spectral characteristics and concentration of Hp protein was established by examining the peak intensity ratio at 1572cm-1 and 1592cm-1 that reflects the degree of stress experienced by the aromatic ring of ATP during Hp protein-antibody interaction. Development of this platform shows the potential in developing a low-cost and sensitive SERS sensor for the pre-screening of various biomarkers.

  14. Batch fabrication of disposable screen printed SERS arrays.

    Science.gov (United States)

    Qu, Lu-Lu; Li, Da-Wei; Xue, Jin-Qun; Zhai, Wen-Lei; Fossey, John S; Long, Yi-Tao

    2012-03-07

    A novel facile method of fabricating disposable and highly reproducible surface-enhanced Raman spectroscopy (SERS) arrays using screen printing was explored. The screen printing ink containing silver nanoparticles was prepared and printed on supporting materials by a screen printing process to fabricate SERS arrays (6 × 10 printed spots) in large batches. The fabrication conditions, SERS performance and application of these arrays were systematically investigated, and a detection limit of 1.6 × 10(-13) M for rhodamine 6G could be achieved. Moreover, the screen printed SERS arrays exhibited high reproducibility and stability, the spot-to-spot SERS signals showed that the intensity variation was less than 10% and SERS performance could be maintained over 12 weeks. Portable high-throughput analysis of biological samples was accomplished using these disposable screen printed SERS arrays.

  15. and Au nanoparticles for SERS applications

    Directory of Open Access Journals (Sweden)

    Fazio Enza

    2018-01-01

    Full Text Available The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  16. Fluorescence correlation spectroscopy diffusion laws in the presence of moving nanodomains

    International Nuclear Information System (INIS)

    Šachl, Radek; Hof, Martin; Bergstrand, Jan; Widengren, Jerker

    2016-01-01

    It has been shown by means of simulations that spot variation fluorescence correlation spectroscopy (sv-FCS) can be used for the identification and, to some extent, also characterization of immobile lipid nanodomains in model as well as cellular plasma membranes. However, in these simulations, the nanodomains were assumed to be stationary, whereas they actually tend to move like the surrounding lipids. In the present study, we investigated how such domain movement influences the diffusion time/spot-size dependence observed in FCS experiments, usually referred to as ‘diffusion law’ analysis. We show that domain movement might mask the effects of the ‘anomalous’ diffusion characteristics of membrane lipids or proteins predicted for stationary domains, making it difficult to identify such moving nanodomains by sv-FCS. More specifically, our simulations indicate that (i) for domains moving up to a factor of 2.25 slower than the surrounding lipids, such impeded diffusion cannot be observed and the diffusion behaviour of the proteins or lipids is indistinguishable from that of freely diffusing molecules, i.e. nanodomains are not detected; (ii) impeded protein/lipid diffusion behaviour can be observed in experiments where the radii of the detection volume are similar in size to the domain radii, the domain diffusion is about 10 times slower than that of the lipids, and the probes show a high affinity to the domains; and (iii) presence of nanodomains can only be reliably detected by diffraction limited sv-FCS when the domains move very slowly (about 200 times slower than the lipid diffusion). As nanodomains are expected to be in the range of tens of nanometres and most probes show low affinities to such domains, sv-FCS is limited to stationary domains and/or STED-FCS. However, even for that latter technique, diffusing domains smaller than 50 nm in radius are hardly detectable by FCS diffusion time/spot-size dependencies. (paper)

  17. Development of an X-ray delay unit for correlation spectroscopy and pump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Roseker, Wojciech

    2008-07-15

    Probing condensed matter on time scales ranging from femtoseconds to nanoseconds will be one of the key topics for future X-ray Free Electron Laser (XFEL) sources. The accessible time windows are, however, compromised by the intrinsic time structure of the sources. One way to overcome this limitation is the usage of a time delay unit. A prototype device capable of splitting an X-ray pulse into two adjustable fractions, delaying one of them with the aim to perform X-ray Photon Correlation Spectroscopy and pump-probe type studies was designed and manufactured. The device utilizes eight perfect crystals in vertical 90 scattering geometry. Its performance has been verified with 8.39 keV and 12.4 keV Xrays at various synchrotron sources. The measured throughput of the device with a Si(333) monochromator at 8.39 keV under ambient conditions is 0.6%. The stability was verified at 12.4 keV and operation without realignment and feedback was possible for more than 30 minutes. Time delays up to 2.95 ns have been achieved. The highest resolution achieved in an experiment was 15.4 ps, a value entirely determined by the diagnostics system. The influence of the delay unit optics on the coherence properties of the beam was investigated by means of Fraunhofer diffraction and static speckle analysis. The obtained high fringe visibility and contrast values larger than 23% indicate the feasibility of performing coherence based experiments with the delay line. (orig.)

  18. Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Kanmi [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-γ nuclei (e.g., 13C and 15N) via the sensitive high-{gamma} nuclei (e.g., 1H and 19F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for 1H-1H homonuclear decoupling. Also presented is a simple new strategy for optimization of 1H-1H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in 1H detected 2D 1H{l_brace}13C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional 13C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear 1H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5m$\\bar{x}$, PMLG5mm$\\bar{x}$x and SAM3) were analyzed to maximize the performance of through-bond transfer based

  19. Correlation effects in magnetic materials: An ab initio investigation on electronic structure and spectroscopy

    International Nuclear Information System (INIS)

    Minár, J.; Braun, J.; Ebert, H.

    2013-01-01

    Highlights: ► We compare spin-resolved ARPES data of ferromagnetic 3d transition metals to many-body LSDA + DMFT based spectroscopic calculations. ► We document LSDA + DMFT provides a detailed and reliable interpretation of the data. ► We demonstrate that local correlations are dominant in Ni, whereas non-local correlations are important in Fe and Co. ► We reproduce the 6 eV satellite structure in ferromagnetic Ni LDSDA + DMFT in combination with the one-step model of photoemission provides a more or less complete description of the electronic structure of Fe, Co and Ni. -- Abstract: Various technical developments enlarged the potential of angle-resolved photoemission spectroscopy (ARPES) tremendously during the last two decades. In particular improved momentum and energy resolution in combination with spin-resolution as well as the use of photon energies from few eV up to several keV makes ARPES a rather unique tool to investigate the electronic properties of solids and surfaces. Obviously, this rises the need for a corresponding theoretical formalism that allows to accompany experimental ARPES studies in an adequate way. As will be demonstrated by several examples this goal could be achieved by various recent developments on the basis of density functional theory (DFT) in combination with dynamical mean field theory (DMFT) and with the one-step model of photoemission (1SM). A concrete realization of electronic structure calculations in the framework of multiple scattering theory further more provides direct access to the spectral function of the initial states via the one-electron Green function. Based on this bare spectral function matrix-element and final-state effects as well as surface related features may be calculated in addition using the one-step formalism that offers the possibility to analyse corresponding angle-resolved photoemission experiments in a quantitative sense. The impact of chemical disorder can be handled by means of the coherent

  20. Verification of Ganoderma (lingzhi) commercial products by Fourier Transform infrared spectroscopy and two-dimensional IR correlation spectroscopy

    Science.gov (United States)

    Choong, Yew-Keong; Sun, Su-Qin; Zhou, Qun; Lan, Jin; Lee, Han-Lim; Chen, Xiang-Dong

    2014-07-01

    Ganoderma commercial products are typically based on two sources, raw material (powder form and/or spores) and extract (water and/or solvent). This study compared three types of Ganoderma commercial products using 1 Dimensional Fourier Transform infrared and second derivative spectroscopy. The analyzed spectra of Ganoderma raw material products were compared with spectra of cultivated Ganoderma raw material powder from different mushroom farms in Malaysia. The Ganoderma extract product was also compared with three types of cultivated Ganoderma extracts. Other medicinal Ganoderma contents in commercial extract product that included glucan and triterpenoid were analyzed by using FTIR and 2DIR. The results showed that water extract of cultivated Ganoderma possessed comparable spectra with that of Ganoderma product water extract. By comparing the content of Ganoderma commercial products using FTIR and 2DIR, product content profiles could be detected. In addition, the geographical origin of the Ganoderma products could be verified by comparing their spectra with Ganoderma products from known areas. This study demonstrated the possibility of developing verification tool to validate the purity of commercial medicinal herbal and mushroom products.

  1. Characterization of vacancy type defects in Electronic Materials by Positron Lifetime and Age-Momentum Correlation Spectroscopy

    Science.gov (United States)

    Suzuki, Ryoichi; Ohdaira, Toshiyuki

    2002-03-01

    Positron annihilation spectroscopy is known to be sensitive to vacancy type defects. At the National Institute of Advanced Industrial Science and Technology (AIST) Japan, the authors have developed a measurement system which enables us to perform depth-selective positron annihilation lifetime spectroscopy (PALS) and positron age-momentum correlation (AMOC) spectroscopy with an intense slow positron beam. PALS gives us information on the size of vacancies whereas AMOC gives us information on not only vacancy sizes but also impurities or chemical environments. Using this system, we have carried out defect characterization experiments on various electronic materials, e.g. ion implanted Si, SiO2/Si, MOS, CVD or SOD (spin-on-dielectric) grown low dielectric insulator films, etc.

  2. Cu(2) dynamical correlations in YBa2Cu3Ox studied by Moessbauer spectroscopy on substituted 170Yb3+

    International Nuclear Information System (INIS)

    Hodges, J.A.; Bonville, P.; Imbert, P.; Jehanno, G.

    1990-01-01

    Using Moessbauer spectroscopy, we follow the thermal dependence of the fluctuation rate of the Cu(2) internal (molecular) field acting on a 170 Yb 3+ probe diluted at the Y 3+ sites. We use the fluctuations of this field to track the collective fluctuations of the nearest neighbour correlated Cu(2) moments. Results are presented for oxygen levels x = 6.0 and 6.35 and for T ≤ 80K

  3. Slow Aging Dynamics and Avalanches in a Gold-Cadmium Alloy Investigated by X-Ray Photon Correlation Spectroscopy

    International Nuclear Information System (INIS)

    Mueller, L.; Waldorf, M.; Klemradt, U.; Gutt, C.; Gruebel, G.; Madsen, A.; Finlayson, T. R.

    2011-01-01

    Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au 50.5 Cd 49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.

  4. Slow aging dynamics and avalanches in a gold-cadmium alloy investigated by x-ray photon correlation spectroscopy.

    Science.gov (United States)

    Müller, L; Waldorf, M; Gutt, C; Grübel, G; Madsen, A; Finlayson, T R; Klemradt, U

    2011-09-02

    Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au50.5Cd49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.

  5. Cerebral oxygenation as measured by near-infrared spectroscopy in neonatal intensive care: correlation with arterial oxygenation.

    Science.gov (United States)

    Hunter, Carol Lu; Oei, Ju Lee; Lui, Kei; Schindler, Timothy

    2017-07-01

    To assess correlation between cerebral oxygenation (rScO 2 ), as measured by near-infrared spectroscopy (NIRS), and arterial oxygenation (PaO 2 ), as measured by arterial blood gases, in preterm neonates. Preterm neonates interpretation of NIRS values in neonatal intensive care, and further evaluation is needed to determine the applicability of NIRS to management of preterm infants. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  6. Quiero ser citado

    Directory of Open Access Journals (Sweden)

    Leonardo Romero

    2011-05-01

    Full Text Available Después de varios años de ser editor, muchos de mis jefes confunden la revista con el editor, y es común oír cosas como “conferencia a cargo de la revista” o en conversaciones se dirijan a mí para decir “y porque no te citan”, refiriéndose al motivo porqué la Rev peru biol. no es citada por otros trabajos. Aprovechando ese desquicio, en los siguientes párrafos encarnare a la revista y al editor, en la fusión mágica en la que algunos de mis jefes me imaginan.

  7. Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schneebeli, Lukas

    2009-11-27

    would be a great contribution in the growing field of quantum optics in semiconductors. The efforts in QD systems are again driven by the atomic systems which not only have shown the vacuum Rabi splitting, but also the second rung, e.g. via direct spectroscopy and via photon-correlation measurements. In this thesis, it is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission. The resonance fluorescence equations are derived and solved for strong-coupling semiconductor quantum-dot systems using a fully quantized multimode theory and a cluster-expansion approach. A reduced model is developed to explain the origin of auto- and cross-correlation resonances in the two-photon emission spectrum of the fluorescent light. These resonances are traced back to the two-photon strong-coupling states of Jaynes-Cummings ladder. The accuracy of the reduced model is verified via numerical solution of the resonance fluorescence equations. The analysis reveals the direct relation between the squeezed-light emission and the strong-coupling states in optically excited semiconductor systems. (orig.)

  8. Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra

    Czech Academy of Sciences Publication Activity Database

    Benda, A.; Kapusta, Peter; Hof, Martin; Gaus, K.

    2014-01-01

    Roč. 22, č. 3 (2014), s. 2973-2988 ISSN 1094-4087 R&D Projects: GA AV ČR KJB400400904; GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : spectroscopy * fluorescence and luminiscence * confocal microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.488, year: 2014

  9. Discrimination of different red wine by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    Science.gov (United States)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Fourier-transform infrared spectroscopy (FT-IR) and two-dimensional infrared (2D IR) correlation spectroscopy were applied to analyze main components of liquid red wine with different sugar contents and volatilization residues of dry red wine from different manufactures. The infrared spectra, second derivative spectra of dry red wine show the typical peaks of alcohol, while the spectra of sweet wine are composed of the peaks of both alcohol and sugar, and the contribution of sugar enhanced as the increase of sugar content. Using principal component analysis (PCA) method, dry and sweet wine can be readily classified. Analysis of the infrared spectra of the volatilization residues of dry red wine samples from five different manufactures indicates that dry red wine may be composed of glycerol, carboxylic acids or esters and carboxyl ate, at the same time, different dry red wine show different characteristic peaks in the second derivative spectra and 2D IR correlation spectra, which can be used to discriminate the different manufactures and evaluate the quality of wine samples. The results suggested that infrared spectroscopy is a direct and effective method for the analysis of principle components of different red wines and discrimination of different red wines.

  10. Aprendendo a ser psicoterapeuta

    Directory of Open Access Journals (Sweden)

    Elizabeth Amelio Faleiros

    Full Text Available Este estudo investiga, na perspectiva de Jacob Levy Moreno, a concepção que alunos de Psicologia têm sobre o que é ser psicoterapeuta, quais elementos são necessários para o desenvolvimento dessa tarefa e os fatores impeditivos para realizá-la. Propõe formas de soluções para o desempenho daquela função, favorecendo a reflexão sobre a importância dessa tarefa e a responsabilidade do profissional junto ao paciente. A metodologia utilizada é a qualitativa, pois esta permite abordar dimensões da subjetividade dos sujeitos. Os resultados revelam que os alunos possuem em sua concepção os alicerces básicos, cujos indicadores são apontados por Moreno e por outros autores, percebem os requisitos básicos que constituem a essência do papel de terapeuta, evidenciam críticas realistas sobre os fatores limitadores e sugerem ações pedagógicas para minimizá-los.

  11. Photon correlation spectroscopy of classical and non-classical light fields and its debt to Glauber and Harvard

    International Nuclear Information System (INIS)

    Pike, E.R.

    1985-01-01

    The Union Gikon Company of Japan has designed their new photon-correlation spectrometer to the outside world with the aid of a number of Japanese Universities and Industrial Research Laboratories. It comes with a list of some two dozen Japanese Institutions who have been using it successfully since its recent launch in their home country. The cost of the system is some $60,000 and it will no doubt, find its place in the market alongside existing well-known photon correlation systems such as those from Brookhaven Instruments Corporation, Hiac Royco, Coulter and Malvern Instruments. Although they may be used for other purposes, the main application of the instruments is the measurement of sizes of submicron particles such as proteins, enzymes, viruses, polymers and numerous other macro-molecular substances. A topical proposal, for example, is the detection of the immunological reactions of the AIDS virus. Photon correlation spectroscopy has become an important technique in modern laboratory practice

  12. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    International Nuclear Information System (INIS)

    Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D.K.; Skinner, J.M.; Skinner, M.J.; Stoner-Ma, D.; Sweet, R.M.

    2011-01-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  13. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis.

    Science.gov (United States)

    Carp, Stefan A; Farzam, Parisa; Redes, Norin; Hueber, Dennis M; Franceschini, Maria Angela

    2017-09-01

    Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the "MetaOx", designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise.

  14. Atmospheric Transmission Measurements Using IR Lasers, Fourier Transform Spectroscopy, and Gas-Filter Correlation Techniques

    National Research Council Canada - National Science Library

    Dowling, J

    1977-01-01

    ... and a gas filter correlation spectrometer. Results obtained from three concurrent experiments used to generate a data base appropriate to high resolution transmission model validation are displayed...

  15. Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Macháň, Radek; Hof, Martin

    2010-01-01

    Roč. 11, č. 2 (2010), s. 427-457 E-ISSN 1422-0067 R&D Projects: GA ČR GA203/08/0114; GA AV ČR GEMEM/09/E006 Institutional research plan: CEZ:AV0Z40400503 Keywords : lateral diffusion * fluorescence fluctuation spectroscopy * confocal microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.279, year: 2010

  16. Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research

    Czech Academy of Sciences Publication Activity Database

    Benda, Aleš; Fagulová, Veronika; Deyneka, Alexander; Enderlain, J.; Hof, Martin

    2006-01-01

    Roč. 22, č. 23 (2006), s. 9580-9585 ISSN 0743-7463 R&D Projects: GA ČR GA203/05/2308; GA MŠk LC06063 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100522 Keywords : spectroscopy * fluorescence * FLCS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.902, year: 2006

  17. On the use of band-target entropy minimization to simplify the interpretation of two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Widjaja, Effendi; Tan, Boon Hong; Garland, Marc

    2006-03-01

    Two-dimensional (2D) correlation spectroscopy has been extensively applied to analyze various vibrational spectroscopic data, especially infrared and Raman. However, when it is applied to real-world experimental data, which often contains various imperfections (such as noise interference, baseline fluctuations, and band-shifting) and highly overlapping bands, many artifacts and misleading features in synchronous and asynchronous maps will emerge, and this will lead to difficulties with interpretation. Therefore, an approach that counters many artifacts and therefore leads to simplified interpretation of 2D correlation analysis is certainly useful. In the present contribution, band-target entropy minimization (BTEM) is employed as a spectral pretreatment to handle many of the artifact problems before the application of 2D correlation analysis. BTEM is employed to elucidate the pure component spectra of mixtures and their corresponding concentration profiles. Two alternate forms of analysis result. In the first, the normally vxv problem is converted to an equivalent nvxnv problem, where n represents the number of species present. In the second, the pure component spectra are transformed into simple distributions, and an equivalent and less computationally intensive nv'xnv' problem results (v'evaporation study where in situ Fourier transform infrared (FT-IR) spectroscopy is used as the analytical tool.

  18. Study of the mixed alkali effect in lithium and sodium metaphosphate glass-forming liquids by photon correlation spectroscopy

    International Nuclear Information System (INIS)

    Changstrom, J R; Sidebottom, D L

    2008-01-01

    We report results of an extensive study of the structural relaxation occurring in mixed alkali metaphosphate liquids obtained by photon correlation spectroscopy. Values for the glass transition temperature, the fragility index, and the heterogeneity parameter (also known as the Kohlrausch exponent) are extracted from the measurements and are all shown to exhibit a mixed alkali effect wherein nonlinear variations with mixing occur. The depression in the glass transition temperature is shown to be the direct result of mechanical relaxations, present in the solid, which prematurely loosen the glass structure. A minimum in the fragility index is believed to be an artifact of the resulting depression of the glass transition temperature

  19. Membrane mobility and microdomain association of the dopamine transporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching

    DEFF Research Database (Denmark)

    Adkins, Erika M; Samuvel, Devadoss J; Fog, Jacob U

    2007-01-01

    To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent...... protein) a diffusion coefficient (D) of approximately 3.6 x 10(-9) cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization...

  20. Membrane mobility and microdomain association of the dopaminetransporter studied with fluorescence correlation spectroscopy and fluorescence recovery after photobleaching

    DEFF Research Database (Denmark)

    Adkins, Erika; Samuvel, Devadoss; Fog, Jacob

    2007-01-01

    To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent...... protein) a diffusion coefficient (D) of ~3.6 × 10-9 cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization...

  1. Label-free in situ SERS imaging of biofilms.

    Science.gov (United States)

    Ivleva, Natalia P; Wagner, Michael; Szkola, Agathe; Horn, Harald; Niessner, Reinhard; Haisch, Christoph

    2010-08-12

    Surface-enhanced Raman scattering (SERS) is a promising technique for the chemical characterization of biological systems. It yields highly informative spectra, can be applied directly in aqueous environment, and has high sensitivity in comparison with normal Raman spectroscopy. Moreover, SERS imaging can provide chemical information with spatial resolution in the micrometer range (chemical imaging). In this paper, we report for the first time on the application of SERS for in situ, label-free imaging of biofilms and demonstrate the suitability of this technique for the characterization of the complex biomatrix. Biofilms, being communities of microorganisms embedded in a matrix of extracellular polymeric substances (EPS), represent the predominant mode of microbial life. Knowledge of the chemical composition and the structure of the biofilm matrix is important in different fields, e.g., medicine, biology, and industrial processes. We used colloidal silver nanoparticles for the in situ SERS analysis. Good SERS measurement reproducibility, along with a significant enhancement of Raman signals by SERS (>10(4)) and highly informative SERS signature, enables rapid SERS imaging (1 s for a single spectrum) of the biofilm matrix. Altogether, this work illustrates the potential of SERS for biofilm analysis, including the detection of different constituents and the determination of their distribution in a biofilm even at low biomass concentration.

  2. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  3. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes; Reed, Umbertina Conti; Rosemberg, Sergio

    2008-01-01

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  4. Easy measurement of diffusion coefficients of EGFP-tagged plasma membrane proteins using k-space Image Correlation Spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Eva Arnspang; Koffman, Jennifer Skaarup; Marlar, Saw

    2014-01-01

    Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable...... routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely...... to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS. First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope Then...

  5. A method of mössbauer fourier spectroscopy for determination of the biopolimer coordinate correlation functions

    Science.gov (United States)

    Basovets, S. K.; Uporov, I. V.; Shaitan, K. V.; Krupyanskii, Yu. F.; Kurinov, I. V.; Suzdalev, I. P.; Rubin, A. B.; Goldanskii, V. I.

    1988-12-01

    A method of Mössbauer Fourier spectroscopy is developed to determine the correlation function of coordinates of a macromolecular system. The method does not require the use of an a priori dynamic model. The application of the method to the analysis of RSMR data for human serum albumin has demonstrated considerable changes in the dynamic behavior of the protein globule when the temperature is changed from 270 to 310 K. The main conclusions of the present work is the simultaneous observation of low-frequency (τ≥10-9 sec) and high-frequency (τ≪10-9 sec) large-scaled motions, that is the two-humped distribution of correlation times of protein motions.

  6. Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Hui, Y.Y.; Chang, Y.-R.; Lee, H.-Y.; Chang, H.-C.; Lim, T.-S.; Fann Wunshain

    2009-01-01

    The number of negatively charged nitrogen-vacancy centers (N-V) - in fluorescent nanodiamond (FND) has been determined by photon correlation spectroscopy and Monte Carlo simulations at the single particle level. By taking account of the random dipole orientation of the multiple (N-V) - fluorophores and simulating the probability distribution of their effective numbers (N e ), we found that the actual number (N a ) of the fluorophores is in linear correlation with N e , with correction factors of 1.8 and 1.2 in measurements using linearly and circularly polarized lights, respectively. We determined N a =8±1 for 28 nm FND particles prepared by 3 MeV proton irradiation

  7. Anharmonic Infrared Spectroscopy through the Fourier Transform of Time Correlation Function Formalism in ONETEP.

    Science.gov (United States)

    Vitale, Valerio; Dziedzic, Jacek; Dubois, Simon M-M; Fangohr, Hans; Skylaris, Chris-Kriton

    2015-07-14

    Density functional theory molecular dynamics (DFT-MD) provides an efficient framework for accurately computing several types of spectra. The major benefit of DFT-MD approaches lies in the ability to naturally take into account the effects of temperature and anharmonicity, without having to introduce any ad hoc or a posteriori corrections. Consequently, computational spectroscopy based on DFT-MD approaches plays a pivotal role in the understanding and assignment of experimental peaks and bands at finite temperature, particularly in the case of floppy molecules. Linear-scaling DFT methods can be used to study large and complex systems, such as peptides, DNA strands, amorphous solids, and molecules in solution. Here, we present the implementation of DFT-MD IR spectroscopy in the ONETEP linear-scaling code. In addition, two methods for partitioning the dipole moment within the ONETEP framework are presented. Dipole moment partitioning allows us to compute spectra of molecules in solution, which fully include the effects of the solvent, while at the same time removing the solvent contribution from the spectra.

  8. Superatom spectroscopy and the electronic state correlation between elements and isoelectronic molecular counterparts.

    Science.gov (United States)

    Peppernick, Samuel J; Gunaratne, K D Dasitha; Castleman, A W

    2010-01-19

    Detailed in the present investigation are results pertaining to the photoelectron spectroscopy of negatively charged atomic ions and their isoelectronic molecular counterparts. Experiments utilizing the photoelectron imaging technique are performed on the negative ions of the group 10 noble metal block (i.e. Ni-, Pd-, and Pt-) of the periodic table at a photon energy of 2.33 eV (532 nm). The accessible electronic transitions, term energies, and orbital angular momentum components of the bound electronic states in the atom are then compared with photoelectron images collected for isoelectronic early transition metal heterogeneous diatomic molecules, M-X- (M = Ti,Zr,W; X = O or C). A superposition principle connecting the spectroscopy between the atomic and molecular species is observed, wherein the electronic structure of the diatomic is observed to mimic that present in the isoelectronic atom. The molecular ions studied in this work, TiO-, ZrO-, and WC- can then be interpreted as possessing superatomic electronic structures reminiscent of the isoelectronic elements appearing on the periodic table, thereby quantifying the superatom concept.

  9. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution.

    Science.gov (United States)

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-15

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A comparison of single particle tracking and temporal image correlation spectroscopy for quantitative analysis of endosome motility

    DEFF Research Database (Denmark)

    Lund, F. W.; Wustner, D.

    2013-01-01

    Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used for measu......Single particle tracking (SPT) is becoming a standard method to extract transport parameters from time-lapse image sequences of fluorescent vesicles in living cells. Another method to obtain these data is temporal image correlation spectroscopy (TICS), but this method is less often used...... for measurement of intracellular vesicle transport. Here, we present an extensive comparison of SPT and TICS. First we examine the effect of photobleaching, shading and noise on SPT and TICS analysis using simulated image sequences. To this end, we developed a simple photophysical model, which relates spatially...... varying illumination intensity to the bleaching propensity and fluorescence intensity of the moving particles. We found that neither SPT nor TICS are affected by photobleaching per se, but the transport parameters obtained by both methods are sensitive to the signal-to-noise ratio. In addition, the number...

  11. Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aicha; Papon, Janine; Madelmont, Jean Claude

    2003-02-01

    Recent NMR spectroscopy developments, such as high-resolution magic angle spinning (HRMAS) probes and correlation-enhanced 2D sequences, now allow improved investigations of phospholipid (Plp) metabolism. Using these modalities we previously demonstrated that a mouse-bearing melanoma tumor responded to chloroethyl nitrosourea (CENU) treatment in vivo by altering its Plp metabolism. The aims of the present study were to investigate whether HRMAS proton total correlation spectroscopy (TOCSY) could be used as a quantitative technique to probe Plp metabolism, and to determine the Plp metabolism response of cultured B16 melanoma cells to CENU treatment in vitro. The exploited TOCSY signals of Plp derivatives arose from scalar coupling among the protons of neighbor methylene groups within base headgroups (choline and ethanolamine). For strongly expressed Plp derivatives, TOCSY signals were compared to saturation recovery signals and demonstrated a linear relationship. HRMAS proton TOCSY was thus used to provide concentrations of Plp derivatives during long-term follow-up of CENU-treated cell cultures. Strong Plp metabolism alteration was observed in treated cultured cells in vitro involving a down-regulation of phosphocholine, and a dramatic and irreversible increase of phosphoethanolamine. These findings are discussed in relation to previous in vivo data, and to Plp metabolism enzymatic involvement. Copyright 2003 Wiley-Liss, Inc.

  12. 2D FTIR correlation spectroscopy and EPR analysis of Urtica dioica leaves from areas of different environmental pollution

    Science.gov (United States)

    Moskal, Paulina; Wesełucha-Birczyńska, Aleksandra; Łabanowska, Maria; Kurdziel, Magdalena; Filek, Maria

    2018-01-01

    Leaves of Urtica dioica collected from two areas of different environmental pollution were analysed by fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) spectroscopy. Analysis of FTIR spectra allows to describe main component of plant like proteins, lipids and carbohydrates. Although the FTIR spectra of plants from these two geographical locations of different environmental pollution appear to be relatively similar, 2D correlation shows completely different patterns. Synchronous and asynchronous correlation maps showed sequences of changes occurring during development of plant, manly in Amide I and Amide II, lignin, lipids and cellulose. In addition, 2D analysis revealed another sequence of changes as the function of plant growth depending on the degree of the environmental pollution. Two various kinds of paramagnetic species, transition metal ions (Mn(II), Fe(III)) and stable organic radicals (chlorophyll, semiquinone, tyrosyl and carbon centered) were found in leaves of nettle collected at different stages of development and growing in clean and polluted environment. In plants growing in polluted area the injuries of protein molecules bonding metal ions and the disturbances of photosynthesis and redox equilibrium in cells, as well as instability of polysaccharide structure of cell walls were observed.

  13. Linear Optical and SERS Study on Metallic Membranes with Subwavelength Complementary Patterns

    Science.gov (United States)

    Hao, Qingzhen; Zeng, Yong; Jensen, Lasse; Werner, Douglas; Crespi, Vincent; Huang, Tony Jun; Interdepartmental Collaboration

    2011-03-01

    An efficient technique is developed to fabricate optically thin metallic films with subwavelength patterns and their complements simultaneously. By comparing the spectra of the complementary films, we show that Babinet's principle nearly holds in the optical domain. A discrete-dipole approximation can qualitatively describe their spectral dependence on the geometry of the constituent particles and the illuminating polarization. Using pyridine as probe molecules, we studied surface-enhanced Raman spectroscopy (SERS) from the complementary structure. Although the complementary structure posses closely related linear spectra, they have quite different near-field behaviors. For hole arrays, their averaged local field gains as well as the SERS enhancements are strongly correlated to their transmission spectra. We therefore can use cos 4 θ to approximately describe the dependence of the Raman intensity on the excitation polarization angle θ , while the complementary particle arrays present maximal local field gains at wavelengths generally much bigger than their localized surface plasmonic resonant wavelengths.

  14. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-01-01

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed

  15. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hiroaki; Sul, Soohwan [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States); Ge, Nien-Hui, E-mail: nhge@uci.edu [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States)

    2013-08-30

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  16. Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: Quantitative data analysis

    Science.gov (United States)

    Schmitz, R.; Yordanov, S.; Butt, H. J.; Koynov, K.; Dünweg, B.

    2011-12-01

    Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS) has recently [S. Yordanov , Optics ExpressOPEXFF1094-408710.1364/OE.17.021149 17, 21149 (2009)] been established as an experimental method to probe hydrodynamic flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence occurs only for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation functions provide only rather indirect information about the flow parameters of interest, such as the shear rate and the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling of the phenomena by Brownian dynamics simulations with accurate measurements of the correlation functions, in order to establish a quantitative method to retrieve the flow properties from the experiments. First, Brownian dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Second, these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to be smaller than 10nm, and, within the limitations of the experiments and the model, indistinguishable from zero.

  17. Feasibility of the simultaneous determination of polycyclic aromatic hydrocarbons based on two-dimensional fluorescence correlation spectroscopy

    Science.gov (United States)

    Yang, Renjie; Dong, Guimei; Sun, Xueshan; Yang, Yanrong; Yu, Yaping; Liu, Haixue; Zhang, Weiyu

    2018-02-01

    A new approach for quantitative determination of polycyclic aromatic hydrocarbons (PAHs) in environment was proposed based on two-dimensional (2D) fluorescence correlation spectroscopy in conjunction with multivariate method. 40 mixture solutions of anthracene and pyrene were prepared in the laboratory. Excitation-emission matrix (EEM) fluorescence spectra of all samples were collected. And 2D fluorescence correlation spectra were calculated under the excitation perturbation. The N-way partial least squares (N-PLS) models were developed based on 2D fluorescence correlation spectra, showing a root mean square error of calibration (RMSEC) of 3.50 μg L- 1 and root mean square error of prediction (RMSEP) of 4.42 μg L- 1 for anthracene and of 3.61 μg L- 1 and 4.29 μg L- 1 for pyrene, respectively. Also, the N-PLS models were developed for quantitative analysis of anthracene and pyrene using EEM fluorescence spectra. The RMSEC and RMSEP were 3.97 μg L- 1 and 4.63 μg L- 1 for anthracene, 4.46 μg L- 1 and 4.52 μg L- 1 for pyrene, respectively. It was found that the N-PLS model using 2D fluorescence correlation spectra could provide better results comparing with EEM fluorescence spectra because of its low RMSEC and RMSEP. The methodology proposed has the potential to be an alternative method for detection of PAHs in environment.

  18. Hepatocarcinogenesis tumor grading correlated with in vivo image-guided 1H-NMR spectroscopy in a rat model

    International Nuclear Information System (INIS)

    Towner, Rheal A.; Foley, Lesley M.; Painter, Dorothy M.

    2005-01-01

    Hepatocellular carcinoma (HCC) is a common malignancy worldwide, the occurrence of which is unevenly distributed. Most hepatocellular carcinoma cases present late and have a poor prognosis; therefore, early diagnosis is essential to prolong survival. Differential diagnosis with magnetic resonance imaging (MRI) is difficult. We studied the feasibility of using magnetic resonance spectroscopy (MRS) at 7.0 T for the diagnosis and grading of liver tumors. An animal model of hepatocarcinogenesis was used, which allowed tumor progression from precancerous lesions to hepatocellular carcinomas. This study was focused primarily on the grading of the tumors and its correlation with the ratio between the MRS peaks arising from MRS-detected lipid hydrogens (0.9, 1.3 and 5.3 ppm) and compared to the γ-methylene hydrogens of glutamate (Glu) and glutamine (Gln) which was used as an internal reference (2.4 ppm). The lipid methylene hydrogen (1.3 ppm) to (Glu + Gln) ratio was found to correlate with the formation of differentiated small foci and (precancerous) hepatic nodules, whereas the unsaturated olefinic lipid hydrogen (5.3 ppm) to (Glu + Gln) ratio was able to correlate with the formation of late stage tumors such as adenomas and hepatocellular carcinomas. The results of our study suggest that MRS-detected alterations in lipid metabolism can be correlated with the grading of liver tumor tissue at different stages during the carcinogenesis process

  19. Integration of Correlative Raman microscopy in a dual beam FIB-SEM J. of Raman Spectroscopy

    NARCIS (Netherlands)

    Timmermans, Frank Jan; Liszka, B.; Lenferink, Aufrid T.M.; van Wolferen, Hendricus A.G.M.; Otto, Cornelis

    2016-01-01

    We present an integrated confocal Raman microscope in a focused ion beam scanning electron microscope (FIB SEM). The integrated system enables correlative Raman and electron microscopic analysis combined with focused ion beam sample modification on the same sample location. This provides new

  20. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy

    International Nuclear Information System (INIS)

    Herbst, Christian

    2010-01-01

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of 13 C- 13 correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN n ν and RN n ν mixing sequences as well as heteronuclear RN n ν s ,ν k feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG) 97 -RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN n ν s ,ν k pulse sequences both 15 N- 13 C and 13 C- 15 N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D- 15 N- 13 C- 13 C and 13 C- 15 N-( 1 H)- 1 H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle χ in RNA. This was demonstrated by means of the (CUG) 97 -RNA. The simultaneous acquisition of all relevant crossing signals of the correlation spectra leads not only to an essential time saving, but

  1. NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal

    International Nuclear Information System (INIS)

    Echevarria, Aurea; Giesbrecht, Astrea

    1999-01-01

    A series of eleven Schiff Bases have been synthesized. They were obtained by condensation of piperonal (3,4-methylenedioxybenzaldehyde) with the corresponding aromatic primary amines. Their 1 H and 13 C-NMR spectra have been obtained and the Hammett correlations including chemical shifts and the substituent constants (σ p , σR e σI) were studied. Linear and bilinear significant correlations were observed for iminic carbon (C-α) and C-1 ' , showing a more significant resonance effect on chemical shifts. The chemical shifts for C-4 ' were highly affected by substituent effects, especially for halogens in the expected direction. Their biological activity against microorganisms has also been measured and significant activity was showed against Epidermophyton floccosum. The biological activity did not give a reasonable relationship with electronic effects. (author)

  2. Gender Differences in Musculoskeletal Lipid Metabolism as Assessed by Localized Two-Dimensional Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Sendhil Velan; Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia, U.S.A.

    2008-01-01

    Full Text Available Gender differences in lipid metabolism are poorly understood and difficult to study using conventional approaches. Magnetic resonance spectroscopy (MRS permits non-invasive investigation of lipid metabolism. We employed novel two- dimensional MRS techniques to quantify intramyocellular (IMCL and extramyocellular (EMCL lipid compartments and their degree of unsaturation in normal weight adult male and female subjects. Using muscle creatine (Cr for normalization, a statistically significant (p 0.05 increase in IMCL/Cr (7.8 ± 1.6 and EMCL/Cr (22.5 ± 3.6 for female subjects was observed (n = 8, as compared to IMCL/Cr (5.9 ± 1.7 and EMCL/Cr (18.4 ± 2.64 for male subjects. The degree of unsaturation within IMCL and EMCL was lower in female subjects, 1.3 ± 0.075 and 1.04 ± 0.06, respectively, as compared to that observed in males (n = 8, 1.5 ± 0.08 and 1.12 ± 0.03, respectively (p 0.05 male vs female for both comparisons. We conclude that certain salient gender differences in lipid metabolism can be assessed noninvasively by advanced MRS approaches.

  3. High-spin spectroscopy of {sup 168}Yb and the reduction of pairing correlations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J R.B. [Sao Paulo Univ., SP (Brazil); Stephens, F S; Deleplanque, M A; Diamond, R M [Lawrence Berkeley Lab., CA (United States); Draper, J E; Rubel, E; Duyar, C [California Univ., Davis, CA (United States); Beacker, J A; Henry, E A; Roy, N [Lawrence Livermore National Lab., CA (United States); Beausang, C W [Liverpool Univ. (United Kingdom); Frauendorf, S [Institut fur Kern und Hadronen Physik, F2-Rossendorf, Dresden (Germany)

    1992-08-01

    The high spin states of {sup 168}Yb were investigated by means of in-beam gamma spectroscopy with the High Energy Resolution Array at the 88 in. cyclotron of the Lawrence Berkeley Laboratory. The {sup 168}Yb nucleus was produced in the reaction {sup 48}Ca({sup 124}Sn,4n) at 210 MeV. Five bands previously reported were confirmed; additionally, four other bands, two extending to spins as high as 36 {Dirac_h} were observed. Cranked shell models suggest that one of the new bands can be interpreted as the continuation of the ground state band (above the AB crossing frequency) crossing into the four-quasiparticle band ABCD at about 0.38 MeV. Both relative alignment and Routhians are in good agreement with the experimental values. However, these calculations were done at constant pairing strength, which is not expected to be good at high rotational frequencies where one or more crossings have occurred in each band. Particle-hole calculations (with no pairing) were done for {sup 168}Yb as well as for other N {approx_equal} 98 nuclei for which good experimental data are available. In most cases, it is possible to associate a particle-hole configuration for each band observed at very high rotational frequencies, and the overall description is good. At frequencies below the first crossing, a full pairing calculation is necessary to describe the bands properly. At intermediate frequencies, the pairing strength is believed to be intermediate. 3 figs.

  4. Ultrafast optical pump terahertz-probe spectroscopy of strongly correlated electron materials

    International Nuclear Information System (INIS)

    Averitt, R.D.; Taylor, Antoinette J.; Thorsmolle, V.K.; Jia, Quanxi; Lobad, A.I.; Trugman, S.A.

    2001-01-01

    We have used optical-pump far-infrared probe spectroscopy to probe the low energy electron dynamics of high temperature superconductors and colossal magnetoresistance manganites. For the superconductor YBa2Cu3O7, picosecond conductivity measurements probe the interplay between Cooper-pairs and quasiparticles. In optimally doped films, the recovery time for long-range phase-coherent pairing increases from ∼1.5 ps at 4K to ∼3.5 ps near Tc, consistent with the closing of the superconducting gap. For underdoped films, the measured recovery time is temperature independent (3.5 ps) in accordance with the presence of a pseudogap. Ultrafast picosecond measurements of optically induced changes in the absolute conductivity of La0:7M0:3MnO3 thin films (M = Ca, Sr) from 10K to ∼0.9Tc reveal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from optically induced modification of the effective phonon temperature. The slower component, related to spin-lattice relaxation, has a lifetime that increases upon approaching Tc from below in accordance with an increasing spin specific heat. Our results indicate that for T<< Tc, the conductivity is determined by incoherent phonons while spin fluctuations dominate near Tc.

  5. Gender Differences in Musculoskeletal Lipid Metabolism as Assessed by Localized Two-Dimensional Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Sendhil Velan

    2008-01-01

    Full Text Available Gender differences in lipid metabolism are poorly understood and difficult to study using conventional approaches. Magnetic resonance spectroscopy (MRS permits non-invasive investigation of lipid metabolism. We employed novel two-dimensional MRS techniques to quantify intramyocellular (IMCL and extramyocellular (EMCL lipid compartments and their degree of unsaturation in normal weight adult male and female subjects. Using muscle creatine (Cr for normalization a statistically significant (p < 0.05 increase in IMCL/Cr (7.8 ± 1.6 and EMCL/Cr (22.5 ± 3.6 for female subjects was observed (n = 8, as compared to IMCL/Cr (5.9 ± 1.7 and EMCL/Cr (18.4 ± 2.64 for male subjects. The degree of unsaturation within IMCL and EMCL was lower in female subjects, 1.3 ± 0.075 and 1.04 ± 0.06, respectively, as compared to that observed in males (n = 8, 1.5 ± 0.08 and 1.12 ± 0.03, respectively (p < 0.05 male vs female for both comparisons. We conclude that certain salient gender differences in lipid metabolism can be assessed noninvasively by advanced MRS approaches.

  6. Applications of the surface enhanced Raman scattering (SERS)

    International Nuclear Information System (INIS)

    Picquart, M.; Haro P, E.; Bernard, S.

    2007-01-01

    Full text: Vibration spectroscopy techniques are used for many times to identify substances, determine molecular structure and quantify them, independently of their physical state. Raman spectroscopy as infrared absorption permit to access the vibration energy levels of molecules. In the second case, the permanent dipolar moment is involved while in the first one it is the polarizability (and the induced dipolar moment). Unfortunately, the classical Raman spectroscopy is low sensitive in particular in the case of biological molecules. On the opposite, the surface enhanced Raman spectroscopy (SERS) offers great potentialities. In this case, the molecules are adsorbed on a rough surface or on nanoparticles of gold or silver and the: signal can be increased by a factor of 10 7 to 10 8 . Moreover, the spectral enhancement is greater for the vibrations of the functional group of the molecule adsorbed on the substrate. In this work, we present the main theoretical bases of SERS, and some results obtain on different systems. (Author)

  7. Investigation of electric quadrupole interaction in TiO2 by means of perturbed gamma-gamma angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Martucci, Thiago; Ramos, Juliana Marques; Carbonari, Artur Wilson; Silva, Andreia S.; Saxena, Rajendra Narain

    2011-01-01

    TiO 2 has called attention in both basic research and technological applications as an energy converter in solar cells, photo catalyst for water purification, sunscreen material, drug detection, and other applications. In addition TiO 2 is a candidate for use in medical devices, food preparation surfaces, air conditioning filters and sanitary ware surfaces.TiO 2 has two crystalline phases: anatase and rutile. The structural properties and hyperfine interactions in TiO 2 were investigated by perturbed gamma-gamma angular correlation (PAC) spectroscopy using 111 In and 181 Hf as probe nuclei. The PAC spectroscopy provides information on crystalline and electronic structure at an atomic scale. In the present work, PAC measurements on TiO 2 were focused on the development of a methodology to prepare bulk samples, which have been characterized by conventional techniques such as x-ray diffraction, (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The samples were prepared by the sol gel Pechini method. The resulting powders were annealed at different temperatures in a tubular furnace under nitrogen atmosphere. The PAC measurements were carried out at room temperature in air. The occupation fraction of the probe nuclei reached 50% when the sample was annealed at 1373K and after measured at room temperature.In this case the frequency measured in site 1 is in agreement with that found in literature for substitutional titanium site in rutile structure when 111 In were used as probe nuclei. It was measured a frequency more closely to that was found in literature[7] for the case in which 181 Hf were used as probe nuclei when the sample annealed at 1373 K and measured at 973 K. (author)

  8. Real-time autocorrelator for fluorescence correlation spectroscopy based on graphical-processor-unit architecture: method, implementation, and comparative studies

    Science.gov (United States)

    Laracuente, Nicholas; Grossman, Carl

    2013-03-01

    We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College

  9. Proton and O sup(2-) ion diffusion studied by γ-γ angular correlation and by impedance spectroscopy

    International Nuclear Information System (INIS)

    Oliveira Damasceno, O. de.

    1988-01-01

    The interaction of sup(181) Ta quadrupole momentum with electric field gradient was measured by perturbed angular correlation spectroscopy in polycrystalline samples of hafnium hydride and hafnium oxide. The measurements were done as function of the temperature, in cubic and tetragonal phases of hafnium hydride. In the cubic phase, spin relaxation effects related to proton diffusion with activation energy of 0.43 ± 0.05eV were observed, and in the tetragonal phase, the interaction was purely static. The hafnium oxide was studied in cubic phase stabilized by addition of calcium oxide or magnesium oxide. Relaxation effects probably due to O sup(2-) ion diffusion were verified. The protonic conduction in K H sub(2) PO sub(4) was studied by impedance spectroscopy, in pellets prepared by melting or powder compression using silver and platinum electrodes. In the case of silver electrodes, in the low frequency region, the impedance spectrum tends to a 45 sup(0) typical line of the diffusion process. It was attributed to hydrogen injection in the electrode. Heating k H sub(2) PO sub(4) at about 230 sup(0)C modifies significantly the electric properties. Two relaxation annealing reduced conductivities to constant values independently of preparation method. (author)

  10. Nuclear spectroscopy study of the 117 Sn by the angular correlation technique

    International Nuclear Information System (INIS)

    Borges, Joao Baptista

    1977-01-01

    The directional correlation of gamma cascade (553-159) keV populated in 117 Sn through the β - decay of 117 In has been measured. An automatic gamma spectrometer utilizing Ge(Li) and NaI (Tl) detectors was used to measure the angular correlation. The results are analysed in terms of the multipole mixing ratio for the 159 keV transition in 117 Sn. The results are: A 22 = -0 064±0.005, A 44 = 0.005±0.007 with δ(E2/M1) 159keV = 0.036+0.021. The life time of the 159 keV state has also been determined by using the plastic scintillator detectors, and utilizing the delayed gamma-gamma coincidence method the resulting value of the life time is T 1/2 = 275±15 psec. Further measurements have been carried out to determine the nuclear g-factor of the 159 keV state utilizing the NaI(Tl) detectors and an external magnetic field of 25.5 k Gauss. The method of 'integral rotation with reverse field and constant angle' was utilized for the determination of the g-factor with the resulting value of g(159 keV) = +0.47±0.10. The experimental results are discussed in terms of single particle model and the pairing plus quadrupole model of Kisslinger and Sorensen. (author)

  11. Epileptic rat brain tissue analyzed by 2D correlation Raman spectroscopy

    Science.gov (United States)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Zięba-Palus, Janina; Lewandowski, Marian H.; Kowalski, Rafał; Palus, Katarzyna; Chrobok, Łukasz; Moskal, Paulina; Birczyńska, Malwina; Sozańska, Agnieszka

    2018-01-01

    Absence epilepsy is the neurological disorder characterized by the pathological spike-and wave discharges present in the electroencephalogram, accompanying a sudden loss of consciousness. Experiments were performed on brain slices obtained from young male WAG/Rij rats (2-3 weeks old), so that they were sampled before the appearance of brain-damaging seizures symptoms. Two differing brain areas of the rats' brain tissue were studied: the somatosensory cortex (Sc) and the dorsal lateral geniculate nucleus of the thalamus (DLG). The Raman spectra of the fresh brain scraps, kept during measurements in artificial cerebrospinal fluid, were collected using as an excitation source 442 nm, 514.5 nm, 785 nm and 1064 nm laser line. The average spectra were analyzed by 2D correlation method regarding laser line as an external perturbation. In 2D synchronous spectra positive auto-peaks corresponding to the Cdbnd C stretching and amide I band vibrations show maxima at 1660 cm- 1 and 1662 cm- 1 for Sc and DLG, respectively. The prominent auto-peak at 2937 cm- 1, originated from the CH3 mode in DLG brain area, seems to indicate the importance of methylation, considered to be significant in epileptogenesis. Synchronous and asynchronous correlations peaks, glutamic acid and gamma-aminobutyric acid (GABA), appear in Sc and DLG, respectively. In the 1730-1600 cm- 1 range occur cross-peaks which appearance might be triggered by glial fibrillary acidic protein (GFAP) activation.

  12. Studies of metal binding by the iron transport protein transferrin using time differential perturbed angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Then, G.M.

    1987-01-01

    The binding of the transition metal hafnium to transferrin was studied under various chemical conditions using time differential perturbed γγ angular correlation spectroscopy (TDPAC). Observing the electric quadrupole interaction of the 181 Hf probe nuclei size and symmetry of the electric field gradient induced by the ligands of the metal ions can be determined. The experimental data suggest how homogeneous the binding conditions are and to which extend relaxation phenomena are involved. Due to the excellent time resolution obtained with new BaF 2 detectors the quadrupole coupling parameters of 181 Hf-transferrin could be determined very accurately. Under nearly physiological conditions different binding configurations were quantitatively characterized by spectroscopic means and distinguished with high specificity. (orig./PW) [de

  13. Fibrillation mechanism of a model intrinsically disordered protein revealed by 2D correlation deep UV resonance Raman spectroscopy.

    Science.gov (United States)

    Sikirzhytski, Vitali; Topilina, Natalya I; Takor, Gaius A; Higashiya, Seiichiro; Welch, John T; Uversky, Vladimir N; Lednev, Igor K

    2012-05-14

    Understanding of numerous biological functions of intrinsically disordered proteins (IDPs) is of significant interest to modern life science research. A large variety of serious debilitating diseases are associated with the malfunction of IDPs including neurodegenerative disorders and systemic amyloidosis. Here we report on the molecular mechanism of amyloid fibrillation of a model IDP (YE8) using 2D correlation deep UV resonance Raman spectroscopy. YE8 is a genetically engineered polypeptide, which is completely unordered at neutral pH yet exhibits all properties of a fibrillogenic protein at low pH. The very first step of the fibrillation process involves structural rearrangements of YE8 at the global structure level without the detectable appearance of secondary structural elements. The formation of β-sheet species follows the global structural changes and proceeds via the simultaneous formation of turns and β-strands. The kinetic mechanism revealed is an important new contribution to understanding of the general fibrillation mechanism proposed for IDP.

  14. X-ray Photon Correlation Spectroscopy Study on Dynamics of the Free Surface in Entangled Polystyrene Melt Films

    International Nuclear Information System (INIS)

    Koga, Tadanori; Li Chunhua; Endoh, Maya K; Narayanan, Suresh; Lurio, Laurence; Sinha, Sunil K

    2011-01-01

    The dynamics of polymer chains near the surface of a melt and within thin films remains a subject of inquiry along with the nature of the glass transition in these systems. Recent studies show that the properties of the free surface region are crucial in determining the anomalous glass transition temperature (T g ) reduction of polymer thin films. In this study, by embedding 'dilute' gold nanoparticles in polystyrene (PS) thin films as 'markers', we could successfully probe the diffusive Brownian motion which tracks the local viscosity both at the free surface and within the rest of the single PS thin film far above bulk T g . The technique used was X-ray photon correlation spectroscopy with resonance-enhanced X-rays that allows us to independently measure the motion in the regions of interest at the nanometer scale. We found the presence of the surface reduced viscosity layer in entangled PS thin films at T>>T g .

  15. Nano-viscosity of supercooled liquid measured by fluorescence correlation spectroscopy: Pressure and temperature dependence and the density scaling

    Science.gov (United States)

    Meier, G.; Gapinski, J.; Ratajczyk, M.; Lettinga, M. P.; Hirtz, K.; Banachowicz, E.; Patkowski, A.

    2018-03-01

    The Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.

  16. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo

    2018-02-01

    Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    Science.gov (United States)

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2010-05-01

    AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.

  18. Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques.

    Science.gov (United States)

    Penjweini, Rozhin; Smisdom, Nick; Deville, Sarah; Ameloot, Marcel

    2014-05-01

    PVP-Hypericin (PVP: polyvinylpyrrolidone) is a potent anti-cancer photosensitizer for photodynamic diagnosis (PDD) and therapy (PDT). However, cellular targets and mechanisms involved in the cancer-selectivity of the photosensitizer are not yet fully understood. This paper gives new insights into the differential transport and localization of PVP-Hypericin in cancer and normal cells which are essential to unravel the mechanisms of action and cancer-selectivity. Temporal (TICS) and spatiotemporal (STICS) image correlation spectroscopy are used for the assessment of PVP-Hypericin diffusion and/or velocity in the case of concerted flow in human cervical epithelial HeLa and human lung carcinoma A549 cells, as well as in human primary dendritic cells (DC) and human peripheral blood mononuclear cells (PBMC). Spatiotemporal image cross-correlation spectroscopy (STICCS) based on organelle specific fluorescent labeling is employed to study the accumulation of the photosensitizer in nucleus, mitochondria, early-endosomes and lysosomes of the cells and to assess the dynamics of co-migrating molecules. Whereas STICS and TICS did not show a remarkable difference between the dynamics of PVP-Hypericin in HeLa, A549 and DC cells, a significantly different diffusion rate of the photosensitizer was measured in PBMC. STICCS detected a stationary accumulation of PVP-Hypericin within the nucleus, mitochondria, early endosomes and lysosomes of HeLa and A549 cells. However, significant flow due to the directed motion of the organelles was detected. In contrast, no accumulation in the nucleus and mitochondria of DC and PBMC could be monitored. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation

    International Nuclear Information System (INIS)

    Chen Yu; Tailor, Dharmesh R; Intes, Xavier; Chance, Britton

    2003-01-01

    We measure the tissue oxygen and haemoglobin concentrations in the rat brain during modulation of inhaled oxygen concentration (FiO 2 ), using non-invasive frequency domain near-infrared oximetry. The rise in oxygenated haemoglobin concentration and the decline in deoxygenated haemoglobin concentration are demonstrated in correspondence with the modulation of FiO 2 , which is changed from 20% to 100% in increments of 20%. Furthermore, the tissue oxygenation saturation also shows the corresponding trend and changes ranging from approximately 70% to 90%. The relative changes in deoxygenated haemoglobin concentration are compared to the blood-oxygenation-level-dependent (BOLD) MRI signal recorded during a similar FiO 2 protocol. A linear relationship with high correlation coefficient between the relative changes in the BOLD MRI signal and the NIRS signal is observed

  20. Correlation between near-infrared spectroscopy and magnetic resonance imaging of rat brain oxygenation modulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yu [Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA (United States); Tailor, Dharmesh R [Department of Bioengineering, University of Pennsylvania, Philadelphia, PA (United States); Intes, Xavier [Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA (United States); Chance, Britton [Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA (United States)

    2003-02-21

    We measure the tissue oxygen and haemoglobin concentrations in the rat brain during modulation of inhaled oxygen concentration (FiO{sub 2}), using non-invasive frequency domain near-infrared oximetry. The rise in oxygenated haemoglobin concentration and the decline in deoxygenated haemoglobin concentration are demonstrated in correspondence with the modulation of FiO{sub 2}, which is changed from 20% to 100% in increments of 20%. Furthermore, the tissue oxygenation saturation also shows the corresponding trend and changes ranging from approximately 70% to 90%. The relative changes in deoxygenated haemoglobin concentration are compared to the blood-oxygenation-level-dependent (BOLD) MRI signal recorded during a similar FiO{sub 2} protocol. A linear relationship with high correlation coefficient between the relative changes in the BOLD MRI signal and the NIRS signal is observed.

  1. Microrheology of polymeric solutions using x-ray photon correlation spectroscopy

    International Nuclear Information System (INIS)

    Papagiannopoulos, A; Waigh, T A; Fluerasu, A; Fernyhough, C; Madsen, A

    2005-01-01

    We demonstrate the technique of XPCS microrheology on opaque polymeric solutions (1-20% w/w) using colloidal silica probes. The short time decay of the intensity correlation function provides the mean square displacement (MSD) of the colloidal probes. The MSDs of the probes are subsequently transformed using the generalized Stokes-Einstein equation, allowing the linear viscoelastic spectra of a biopolymer (gellan) and a synthetic polyelectrolyte (polystyrene sulfonate, PSS) to be calculated over two decades of frequency. MSDs can be measured that are two orders of magnitude smaller than those possible with video particle tracking microrheology, with a sensitivity of ∼10 nm s -1 for displacements of ∼nms. The XPCS data for water, glycerol and PSS combs are in agreement with video particle tracking microrheology experiments performed at lower polymer concentrations. (letter to the editor)

  2. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis

    Directory of Open Access Journals (Sweden)

    T. Joshua Moore

    2018-05-01

    Full Text Available For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.

  3. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping

    International Nuclear Information System (INIS)

    Rossow, Molly; Gratton, Enrico; Mantulin, William M.

    2009-01-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles--such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  4. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  5. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping (abstract)

    Science.gov (United States)

    Rossow, Molly; Mantulin, William M.; Gratton, Enrico

    2009-04-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles-such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  6. Stamping SERS for creatinine sensing

    Science.gov (United States)

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2015-03-01

    Urine can be obtained easily, readily and non-invasively. The analysis of urine can provide metabolic information of the body and the condition of renal function. Creatinine is one of the major components of human urine associated with muscle metabolism. Since the content of creatinine excreted into urine is relatively constant, it is used as an internal standard to normalize water variations. Moreover, the detection of creatinine concentration in urine is important for the renal clearance test, which can monitor the filtration function of kidney and health status. In more details, kidney failure can be imminent when the creatinine concentration in urine is high. A simple device and protocol for creatinine sensing in urine samples can be valuable for point-of-care applications. We reported quantitative analysis of creatinine in urine samples by using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) based SERS substrate. S-SERS technique enables label-free and multiplexed molecular sensing under dry condition, while NPGD provides a robust, controllable, and high-sensitivity SERS substrate. The performance of S-SERS with NGPDs is evaluated by the detection and quantification of pure creatinine and creatinine in artificial urine within physiologically relevant concentration ranges.

  7. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Science.gov (United States)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  8. Correlation between memory, proton magnetic resonance spectroscopy, and interictal epileptiform discharges in temporal lobe epilepsy related to mesial temporal sclerosis.

    Science.gov (United States)

    Mantoan, Marcele Araújo Silva; Caboclo, Luís Otávio Sales Ferreira; de Figueiredo Ferreira Guilhoto, Laura Maria; Lin, Katia; da Silva Noffs, Maria Helena; de Souza Silva Tudesco, Ivanda; Belzunces, Erich; Carrete, Henrique; Bussoletti, Renato Tavares; Centeno, Ricardo Silva; Sakamoto, Américo Ceiki; Yacubian, Elza Márcia Targas

    2009-11-01

    The aim of the study described here was to examine the relationship between memory function, proton magnetic resonance spectroscopy ((1)H-MRS) abnormalities, and interictal epileptiform discharge (IED) lateralization in patients with temporal lobe epilepsy (TLE) related to unilateral mesial temporal sclerosis. We assessed performance on tests of memory function and intelligence quotient (IQ) in 29 right-handed outpatients and 24 controls. IEDs were assessed on 30-minute-awake and 30-minute-sleep EEG samples. Patients had (1)H-MRS at 1.5 T. There was a negative correlation between IQ (P=0.031) and Rey Auditory Verbal Learning Test results (P=0.022) and epilepsy duration; between(1)H-MRS findings and epilepsy duration (P=0.027); and between N-acetylaspartate (NAA) levels and IEDs (P=0.006) in contralateral mesial temporal structures in the left MTS group. (1)H-MRS findings, IEDs, and verbal function were correlated. These findings suggest that IEDs and NAA/(Cho+Cr) ratios reflecting neural metabolism are closely related to verbal memory function in mesial temporal sclerosis. Higher interictal activity on the EEG was associated with a decline in total NAA in contralateral mesial temporal structures.

  9. In situ fluorescence spectroscopy correlates ionomer degradation to reactive oxygen species generation in an operating fuel cell.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2013-11-21

    The rate of generation of reactive oxygen species (ROS) within the polymer electrolyte membrane (PEM) of an operating proton exchange member fuel cell (PEMFC) was monitored using in situ fluorescence spectroscopy. A modified barrier layer was introduced between the PEM and the electrocatalyst layer to eliminate metal-dye interactions and fluorescence resonance energy transfer (FRET) effects during measurements. Standard fuel cell operating parameters (temperature, relative humidity, and electrode potential) were systematically varied to evaluate their influence on the rate of ROS generation during PEMFC operation. Independently, the macroscopic rate of PEM degradation was measured by monitoring the fluoride ion emission rate (FER) in the effluent stream at each operating condition. The ROS generation reaction rate constant (estimated from the in situ fluorescence experiments) correlated perfectly with the measured FER across all conditions, demonstrating unequivocally for the first time that a direct correlation exists between in situ ROS generation and PEM macroscopic degradation. The activation energy for ROS generation within the PEM was estimated to be 12.5 kJ mol(-1).

  10. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues.

    Science.gov (United States)

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  11. Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets

    International Nuclear Information System (INIS)

    Huang, J.-S.; Ke, C.-B.; Lin, K.-C.

    2004-01-01

    We have investigated influence of matrix salts on the liquid droplets by laser-induced breakdown spectroscopy (LIBS). An electrospray ionization technique coupled with LIBS is employed to generate the microdroplets of the Na sample solution with various matrix salts added. A sequence of single-shot time-resolved LIB emission signals is detected. The LIB signal intensity integrated within a gate linearly correlates with the plasma-induced current response obtained simultaneously on a single-shot basis. The slopes thus obtained increase with the sample concentration, but appear to be irrespective of different matrix salts, added up to a 2000 mg/l concentration. The matrix salts involved have the same K + cation but different anions. Given a laser radiation emitting at 355 nm with the energy fixed at 23±1 mJ, a limit of detection (LOD) of 1.0 mg/l may be achieved for the Na analysis. The current normalization might have probably taken into account the ablated amount of the sample and the plasma temperature. Accordingly, the LIB/current correlated analysis becomes efficient to suppress the signal fluctuation, improve the LOD determination, and concurrently correct the matrix effect

  12. Fluorescence Correlation Spectroscopy to find the critical balance between extracellular association and intracellular dissociation of mRNA-complexes.

    Science.gov (United States)

    Zhang, Heyang; De Smedt, Stefaan C; Remaut, Katrien

    2018-05-10

    Fluorescence Correlation Spectroscopy (FCS) is a promising tool to study interactions on a single molecule level. The diffusion of fluorescent molecules in and out of the excitation volume of a confocal microscope leads to the fluorescence fluctuations that give information on the average number of fluorescent molecules present in the excitation volume and their diffusion coefficients. In this context, we complexed mRNA into lipoplexes and polyplexes and explored the association/dissociation degree of complexes by using gel electrophoresis and FCS. FCS enabled us to measure the association and dissociation degree of mRNA-based complexes both in buffer and protein-rich biological fluids such as human serum and ascitic fluid, which is a clear advantage over gel electrophoresis that was only applicable in protein-free buffer solutions. Furthermore, following the complex stability in buffer and biological fluids by FCS assisted to understand how complex characteristics, such as charge ratio and strength of mRNA binding, correlated to the transfection efficiency. We found that linear polyethyleneimine prevented efficient translation of mRNA, most likely due to a too strong mRNA binding, whereas the lipid based carrier Lipofectamine ® messengerMAX did succeed in efficient release and subsequent translation of mRNA in the cytoplasm of the cells. Overall, FCS is a reliable tool for the in depth characterization of mRNA complexes and can help us to find the critical balance keeping mRNA bound in complexes in the extracellular environment and efficient intracellular mRNA release leading to protein production. The delivery of messenger RNA (mRNA) to cells is promising to treat a variety of diseases. Therefore, the mRNA is typically packed in small lipid particles or polymer particles that help the mRNA to reach the cytoplasm of the cells. These particles should bind and carry the mRNA in the extracellular environment (e.g. blood, peritoneal fluid, ...), but should release

  13. ser en ortodoncia

    OpenAIRE

    Ruíz-Esculpi, María; Ricse-Chaupis, Estela; Villanueva-Vega, Judith; Torres-Maita, Liz

    2014-01-01

    La primera aplicación del láser en un diente fue realizada en 1965. Desde entonces ha presentado una constante evolución y desarrollo. La tecnología láser permite realizar procedimientos en tejidos duros y blandos, pudiendo ser utilizado con las siguientes finalidades: como prevención de la desmineralización, en la adhesión y remoción de brackets, en la reducción del dolor producto del movimiento dental, en la reparación ósea después de la expansión, en diversas cirugías y otras aplicaciones ...

  14. Development of SERS active fibre sensors

    International Nuclear Information System (INIS)

    Polwart, Ewan

    2002-01-01

    Surface-enhanced Raman scattering (SERS) is sensitive and selective and when coupled with fibre-optics could potentially produce an effective chemical sensing system. This thesis concerns the development of a single-fibre-based sensor, with an integral SERS-active substrate. A number of different methods for the manufacture of SERS-active surfaces on glass substrates were investigated and compared. The immobilisation of metal nanoparticles on glass functionalised with (3-aminopropyl)trimethoxysilane emerged as a suitable approach for the production of sensors. Substrates prepared by this approach were characterised using UV-visible spectroscopy, electron microscopy and Raman mapping. It was found that exposure of substrates to laser radiation led to a decrease in the signal recorded from adsorbed analytes. This speed of the decrease was shown to depend on the analyte, and the exciting wavelength and power. SERS-active fibre sensors were produced by immobilisation of silver nanoparticles at the distal end of a (3-aminopropyl)trimethoxysilane-derivatised optical fibre. These sensors were used to obtain spectra with good signal to noise ratios from 4-(benzotriazol-5-ylazo)-3,5-dimethoxyphenylamine and crystal violet. Sensing of dyes in effluent was also investigated. The development of sensors for the measurement of pH, by treating the SERS-active fibre tip with pH sensitive dyes is also described. Spectral changes were observed with these sensors as a response to the pH. Partial least squares regression was used to produce linear calibration models for the pH range 5-11 from which it was possible to predict the pH with an accuracy of ∼0.2 pH units. Some of the limitations of these sensors were explored. The feasibility of using these sensors for measurement of oxygen and thiols, was investigated. The measurement of oxygen using methylene blue as a transducer was demonstrated. Two transduction methodologies--reactions with iron porphyrins and pyrrole-2,5-diones

  15. Neural correlates of dual-task effect on belief-bias syllogistic reasoning: a near-infrared spectroscopy study.

    Science.gov (United States)

    Tsujii, Takeo; Watanabe, Shigeru

    2009-09-01

    Recent dual-process reasoning theories have explained the belief-bias effect, the tendency for human reasoning to be erroneously biased when logical conclusions are incongruent with beliefs about the world, by proposing a belief-based automatic heuristic system and logic-based demanding analytic system. Although these claims are supported by the behavioral finding that high-load secondary tasks enhance the belief-bias effect, the neural correlates of dual-task reasoning remain unknown. The present study therefore examined the relationship between dual-task effect and activity in the inferior frontal cortex (IFC) during belief-bias reasoning by near-infrared spectroscopy (NIRS). Forty-eight subjects participated in this study (MA=23.46 years). They were required to perform congruent and incongruent reasoning trials while responding to high- and low-load secondary tasks. Behavioral analysis showed that the high-load secondary task impaired only incongruent reasoning performance. NIRS analysis found that the high-load secondary task decreased right IFC activity during incongruent trials. Correlation analysis showed that subjects with enhanced right IFC activity could perform better in the incongruent reasoning trials, though subjects for whom right IFC activity was impaired by the secondary task could not maintain better reasoning performance. These findings suggest that the right IFC may be responsible for the dual-task effect in conflicting reasoning processes. When secondary tasks impair right IFC activity, subjects may rely on the automatic heuristic system, which results in belief-bias responses. We therefore offer the first demonstration of neural correlates of dual-task effect on IFC activity in belief-bias reasoning.

  16. Two-dimensional correlation infrared spectroscopy applied to analyzing and identifying the extracts of Baeckea frutescens medicinal materials.

    Science.gov (United States)

    Adib, Adiana Mohamed; Jamaludin, Fadzureena; Kiong, Ling Sui; Hashim, Nuziah; Abdullah, Zunoliza

    2014-08-05

    Baeckea frutescens or locally known as Cucur atap is used as antibacterial, antidysentery, antipyretic and diuretic agent. In Malaysia and Indonesia, they are used as an ingredient of the traditional medicine given to mothers during confinement. A three-steps infra-red (IR) macro-fingerprinting method combining conventional IR spectra, and the secondary derivative spectra with two dimensional infrared correlation spectroscopy (2D-IR) have been proved to be effective methods to examine a complicated mixture such as herbal medicines. This study investigated the feasibility of employing multi-steps IR spectroscopy in order to study the main constituents of B. frutescens and its different extracts (extracted by chloroform, ethyl acetate, methanol and aqueous in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. The structural information of the samples indicated that B. frutescens and its extracts contain a large amount of flavonoids, since some characteristic absorption peaks of flavonoids, such as ∼1600cm(-1), ∼1500cm(-1), ∼1450cm(-1), and ∼1270cm(-1) can be observed. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  18. La importancia de ser grande

    OpenAIRE

    Baisre, J. A.

    2007-01-01

    Se responde a las preguntas ¿por qué los mamíferos marinos son los animales más grandes del planeta?, ¿Por qué los peces no pueden ser más grandes?. Éstas y otras interrogantes son respondidas de forma sencilla y clara.

  19. Plasmonic crystal based solid substrate for biomedical application of SERS

    Science.gov (United States)

    Morasso, Carlo F.; Mehn, Dora; Picciolini, Silvia; Vanna, Renzo; Bedoni, Marzia; Gramatica, Furio; Pellacani, Paola; Frangolho, Ana; Marchesini, Gerardo; Valsesia, Andrea

    2014-02-01

    Surface Enhanced Raman Spectroscopy is a powerful analytical technique that combines the excellent chemical specificity of Raman spectroscopy with the good sensitivity provided by the enhancement of the signal observed when a molecule is located on (or very close to) the surface of suitable nanostructured metallic materials. The availability of cheap, reliable and easy to use SERS substrates would pave the road to the development of bioanalytical tests that can be used in clinical practice. SERS, in fact, is expected to provide not only higher sensitivity and specificity, but also the simultaneous and markedly improved detection of several targets at the same time with higher speed compared to the conventional analytical methods. Here, we present the SERS activity of 2-D plasmonic crystals made by polymeric pillars embedded in a gold matrix obtained through the combination of soft-lithography and plasma deposition techniques on a transparent substrates. The use of a transparent support material allowed us to perform SERS detection from support side opening the possibility to use these substrates in combination with microfluidic devices. In order to demonstrate the potentialities for bioanalytical applications, we used our SERS active gold surface to detect the oxidation product of apomorphine, a well-known drug molecule used in Parkinson's disease which has been demonstrated being difficult to study by traditional HPLC based approaches.

  20. Correlation between Onset Oxidation Temperature (OOT) and Fourier Transform Infrared Spectroscopy (FTIR) for monitoring the restabilization of Recycled Low-density Polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo-Filho, Adhemar; Pelozzi, Tadeu Luiz Alonso, E-mail: adhemar@power.ufscar.br [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica

    2013-07-01

    In this work a new method was developed for monitoring the oxidative stability of restabilized and non-restabilized low-density polyethylene (LDPE) during multiple extrusion cycles. The method is based on correlations between Fourier Transform Infrared Spectroscopy (FTIR) and Onset Oxidation Temperature (OOT). Non-linear calibration curves correlating the concentration of primary or secondary antioxidants and the OOT values were obtained. (author)

  1. The diffusion dynamics of PEGylated liposomes in the intact vitreous of the ex vivo porcine eye: A fluorescence correlation spectroscopy and biodistribution study

    DEFF Research Database (Denmark)

    Eriksen, Anne Zebitz; Brewer, Jonathan; Andresen, Thomas Lars

    2017-01-01

    correlation spectroscopy (FCS) to determine liposome diffusion coefficients in the intact vitreous (DVit) of ex vivo porcine eyes using a modified Miyake-Apple technique to minimize the disruption of the vitreous fine structure. We chose to investigate whether the zeta potential of polyethylene glycol...

  2. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    International Nuclear Information System (INIS)

    Shang, Yu; Yu, Guoqiang

    2014-01-01

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  3. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu [Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  4. Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells.

    Science.gov (United States)

    Ashdown, George W; Owen, Dylan M

    2018-02-02

    Many cellular processes are regulated by the spatio-temporal organisation of signalling complexes, cytoskeletal components and membranes. One such example is at the T cell immunological synapse where the retrograde flow of cortical filamentous (F)-actin from the synapse periphery drives signalling protein microclusters towards the synapse centre. The density of this mesh however, makes visualisation and analysis of individual actin fibres difficult due to the resolution limit of conventional microscopy. Recently, super-resolution methods such as structured illumination microscopy (SIM) have surpassed this resolution limit. Here, we apply SIM to better visualise the dense cortical actin meshwork in T cell synapses formed against activating, antibody-coated surfaces and image under total-internal reflection fluorescence (TIRF) illumination. To analyse the observed molecular flows, and the relationship between them, we apply spatio-temporal image correlation spectroscopy (STICS) and its cross-correlation variant (STICCS). We show that the dynamic cortical actin mesh can be visualised with unprecedented detail and that STICS/STICCS can output accurate, quantitative maps of molecular flow velocity and directionality from such data. We find that the actin flow can be disrupted using small molecule inhibitors of actin polymerisation. This combination of imaging and quantitative analysis may provide an important new tool for researchers to investigate the molecular dynamics at cellular length scales. Here we demonstrate the retrograde flow of F-actin which may be important for the clustering and dynamics of key signalling proteins within the plasma membrane, a phenomenon which is vital to correct T cell activation and therefore the mounting of an effective immune response. Copyright © 2018. Published by Elsevier Inc.

  5. Diffusion-weighted imaging and magnetic resonance spectroscopy of sporadic Creutzfeldt-Jakob disease: correlation with clinical course

    International Nuclear Information System (INIS)

    Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheolkyu; Chang, YoungHee; Kim, SangYun

    2011-01-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is a fatal disease with variable clinical courses. The presence or absence of basal ganglia (BG) involvement has been reported to be associated with clinical course. We investigated the association of clinical course of sCJD with diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) as well as BG involvement at early stage. DWI and single voxel proton MRS were performed in 14 patients with sCJD during the initial diagnostic workup. Apparent diffusion coefficient (ADC) and metabolites were measured in medial occipitoparietal cortices where large hyperintense DWI lesions were found in all patients. The presence or absence of BG involvement, ADC, N-acetylaspartate (NAA)/creatine (Cr) ratios, and choline (Cho)/Cr ratios were correlated with disease duration (i.e., the time from the symptom onset to death). The disease duration ranged from 2 to 31 months (median, 16). Hyperintense DWI lesions were observed bilaterally in both cortices and basal ganglia in eight patients and in cortices alone in six patients. Patients with BG involvement had shorter disease duration (median, 6.8 versus 20.5; p = 0.039) than those without and lower NAA/Cr ratios (median, 1.41 versus 2.03; p = 0.001). ADC and Cho/Cr ratios were not significantly different between the patients with BG involvement and those without. By multiple regression analysis, NAA/Cr ratios had the greatest correlation with the disease duration (p = 0.029). The disease duration of sCJD was variable. NAA/Cr ratios of the affected brain at the early stage of sCJD can be used as a useful parameter in predicting the clinical course. (orig.)

  6. Brain oxidative metabolism of the newborn dog: correlation between 31P NMR spectroscopy and pyridine nucleotide redox state.

    Science.gov (United States)

    Mayevsky, A; Nioka, S; Subramanian, V H; Chance, B

    1988-04-01

    The effects of both anoxia and short- and long-term hypoxia on brain oxidative metabolism were studied in newborn dogs. Oxidative metabolism was evaluated by two independent measures: in vivo continuous monitoring of mitochondrial NADH redox state and energy stores as calculated from the phosphocreatine (PCr)/Pi levels measured by 31P nuclear magnetic resonance (NMR) spectroscopy. The hemodynamic response to low oxygen supply was further evaluated by measuring the changes in the reflected light intensity at 366 nm (the excitation wavelength for NADH). The animal underwent surgery and was prepared for monitoring of the two signals (NADH and PCr/Pi). It was then placed inside a Phosphoenergetics 260-80 NMR spectrometer magnet with a 31-cm bore. Each animal (1-21 days old) was exposed to short-term anoxia or hypoxia as well as to long-term hypoxia (1-2 h). The results can be summarized as follow: (a) In the normoxic brain, the ratio between PCr and Pi was greater than 1 (1.2-1.4), while under hypoxia or asphyxia a significant decrease that was correlated to the FiO2 levels was recorded. (b) A clear correlation was found between the decrease in PCr/Pi values and the increased NADH redox state developed under decreased O2 supply to the brain. (c) Exposing the animal to moderately long-term hypoxia led to a stabilized low-energy state of the brain with a good recovery after rebreathing normal air. (d) Under long-term and severe hypoxia, the microcirculatory autoregulatory mechanism was damaged and massive vasoconstriction was optically recorded simultaneously with a significant decrease in PCr/Pi values.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. A flexible fluorescence correlation spectroscopy based method for quantification of the DNA double labeling efficiency with precision control

    International Nuclear Information System (INIS)

    Hou, Sen; Tabaka, Marcin; Sun, Lili; Trochimczyk, Piotr; Kaminski, Tomasz S; Kalwarczyk, Tomasz; Zhang, Xuzhu; Holyst, Robert

    2014-01-01

    We developed a laser-based method to quantify the double labeling efficiency of double-stranded DNA (dsDNA) in a fluorescent dsDNA pool with fluorescence correlation spectroscopy (FCS). Though, for quantitative biochemistry, accurate measurement of this parameter is of critical importance, before our work it was almost impossible to quantify what percentage of DNA is doubly labeled with the same dye. The dsDNA is produced by annealing complementary single-stranded DNA (ssDNA) labeled with the same dye at 5′ end. Due to imperfect ssDNA labeling, the resulting dsDNA is a mixture of doubly labeled dsDNA, singly labeled dsDNA and unlabeled dsDNA. Our method allows the percentage of doubly labeled dsDNA in the total fluorescent dsDNA pool to be measured. In this method, we excite the imperfectly labeled dsDNA sample in a focal volume of <1 fL with a laser beam and correlate the fluctuations of the fluorescence signal to get the FCS autocorrelation curves; we express the amplitudes of the autocorrelation function as a function of the DNA labeling efficiency; we perform a comparative analysis of a dsDNA sample and a reference dsDNA sample, which is prepared by increasing the total dsDNA concentration c (c > 1) times by adding unlabeled ssDNA during the annealing process. The method is flexible in that it allows for the selection of the reference sample and the c value can be adjusted as needed for a specific study. We express the precision of the method as a function of the ssDNA labeling efficiency or the dsDNA double labeling efficiency. The measurement precision can be controlled by changing the c value. (letter)

  8. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    Science.gov (United States)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-05-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1H/1H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials.

  9. Dynamics-based selective 2D 1H/1H chemical shift correlation spectroscopy under ultrafast MAS conditions

    International Nuclear Information System (INIS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2015-01-01

    Dynamics plays important roles in determining the physical, chemical, and functional properties of a variety of chemical and biological materials. However, a material (such as a polymer) generally has mobile and rigid regions in order to have high strength and toughness at the same time. Therefore, it is difficult to measure the role of mobile phase without being affected by the rigid components. Herein, we propose a highly sensitive solid-state NMR approach that utilizes a dipolar-coupling based filter (composed of 12 equally spaced 90° RF pulses) to selectively measure the correlation of 1 H chemical shifts from the mobile regions of a material. It is interesting to find that the rotor-synchronized dipolar filter strength decreases with increasing inter-pulse delay between the 90° pulses, whereas the dipolar filter strength increases with increasing inter-pulse delay under static conditions. In this study, we also demonstrate the unique advantages of proton-detection under ultrafast magic-angle-spinning conditions to enhance the spectral resolution and sensitivity for studies on small molecules as well as multi-phase polymers. Our results further demonstrate the use of finite-pulse radio-frequency driven recoupling pulse sequence to efficiently recouple weak proton-proton dipolar couplings in the dynamic regions of a molecule and to facilitate the fast acquisition of 1 H/ 1 H correlation spectrum compared to the traditional 2D NOESY (Nuclear Overhauser effect spectroscopy) experiment. We believe that the proposed approach is beneficial to study mobile components in multi-phase systems, such as block copolymers, polymer blends, nanocomposites, heterogeneous amyloid mixture of oligomers and fibers, and other materials

  10. Diffusion-weighted imaging and magnetic resonance spectroscopy of sporadic Creutzfeldt-Jakob disease: correlation with clinical course

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hyoung; Choi, Byung Se; Jung, Cheolkyu [Seoul National University Bundang Hospital, Department of Radiology, Seoul National University College of Medicine, Seongnam-si (Korea, Republic of); Chang, YoungHee; Kim, SangYun [Seoul National University Bundang Hospital, Department of Neurology, Seoul National University College of Medicine, Seongnam-si (Korea, Republic of)

    2011-12-15

    Sporadic Creutzfeldt-Jakob disease (sCJD) is a fatal disease with variable clinical courses. The presence or absence of basal ganglia (BG) involvement has been reported to be associated with clinical course. We investigated the association of clinical course of sCJD with diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) as well as BG involvement at early stage. DWI and single voxel proton MRS were performed in 14 patients with sCJD during the initial diagnostic workup. Apparent diffusion coefficient (ADC) and metabolites were measured in medial occipitoparietal cortices where large hyperintense DWI lesions were found in all patients. The presence or absence of BG involvement, ADC, N-acetylaspartate (NAA)/creatine (Cr) ratios, and choline (Cho)/Cr ratios were correlated with disease duration (i.e., the time from the symptom onset to death). The disease duration ranged from 2 to 31 months (median, 16). Hyperintense DWI lesions were observed bilaterally in both cortices and basal ganglia in eight patients and in cortices alone in six patients. Patients with BG involvement had shorter disease duration (median, 6.8 versus 20.5; p = 0.039) than those without and lower NAA/Cr ratios (median, 1.41 versus 2.03; p = 0.001). ADC and Cho/Cr ratios were not significantly different between the patients with BG involvement and those without. By multiple regression analysis, NAA/Cr ratios had the greatest correlation with the disease duration (p = 0.029). The disease duration of sCJD was variable. NAA/Cr ratios of the affected brain at the early stage of sCJD can be used as a useful parameter in predicting the clinical course. (orig.)

  11. Neural correlates of own- and other-race face recognition in children: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Ding, Xiao Pan; Fu, Genyue; Lee, Kang

    2014-01-15

    The present study used the functional Near-infrared Spectroscopy (fNIRS) methodology to investigate the neural correlates of elementary school children's own- and other-race face processing. An old-new paradigm was used to assess children's recognition ability of own- and other-race faces. FNIRS data revealed that other-race faces elicited significantly greater [oxy-Hb] changes than own-race faces in the right middle frontal gyrus and inferior frontal gyrus regions (BA9) and the left cuneus (BA18). With increased age, the [oxy-Hb] activity differences between own- and other-race faces, or the neural other-race effect (NORE), underwent significant changes in these two cortical areas: at younger ages, the neural response to the other-race faces was modestly greater than that to the own-race faces, but with increased age, the neural response to the own-race faces became increasingly greater than that to the other-race faces. Moreover, these areas had strong regional functional connectivity with a swath of the cortical regions in terms of the neural other-race effect that also changed with increased age. We also found significant and positive correlations between the behavioral other-race effect (reaction time) and the neural other-race effect in the right middle frontal gyrus and inferior frontal gyrus regions (BA9). These results taken together suggest that children, like adults, devote different amounts of neural resources to processing own- and other-race faces, but the size and direction of the neural other-race effect and associated functional regional connectivity change with increased age. © 2013.

  12. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    Science.gov (United States)

    Shang, Yu; Li, Ting; Chen, Lei; Lin, Yu; Toborek, Michal; Yu, Guoqiang

    2014-05-01

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αDB) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αDB. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αDB (errors values of errors in extracting αDB were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αDB using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.

  13. Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy, and electromyography.

    Science.gov (United States)

    Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.

  14. Diffuse correlation spectroscopy (DCS) study of blood flow changes during low level laser therapy (LLLT): a preliminary report

    Science.gov (United States)

    Soni, Sagar; Wang, Xinlong; Liu, Hanli; Tian, Fenghua

    2017-02-01

    Photobiomodulation with low-power, high-fluence light in the near-infrared range (600-1100nm), also known as low level laser therapy (LLLT), has been used for promoting healing of wounds, reducing pain, and so on. Understanding its physiological effect is essential for treatment optimization and evaluation. In this study, we used diffuse correlation spectroscopy (DCS) to investigate the changes of regional blood flow in skeletal muscle induced by a single session of LLLT. DCS is an emerging optical modality to probe microvascular blood flow in human tissues in vivo. We have developed a software-based autocorrelator system with the benefits such as flexibility in raw photon count data processing, portability and low cost. LLLT was administered at the human forearm with a 1064-nm, continuous-wave laser. The emitting power was 3.4 W in an area of 13.6 cm2, corresponding to 0.25W/cm2 irradiance. The emitting duration was 10 minutes. Eight healthy adults of any ethnic background, in an age range of 18-40 years old were included. The results indicate that LLLT causes reliable changes in regional blood flow. However, it remains unclear whether these changes are physiological or attributed to the heating effect of the stimulation laser.

  15. Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2014-11-01

    Full Text Available By using fluorescence correlation spectroscopy (FCS, we have studied the adsorption of human serum albumin (HSA onto Fe–Pt nanoparticles (NPs, 6 nm radius, CdSe/ZnS quantum dots (QDs, 5 nm radius and Au and Ag nanoclusters (1–4 nm radius, which are enshrouded by various water-solubilizing surface layers exposing different chemical functional groups (carboxyl, amino and both, thereby endowing the NPs with different surface charges. We have also measured the effects of modified surface functionalizations on the protein via succinylation and amination. A step-wise increase in hydrodynamic radius with protein concentration was always observed, revealing formation of protein monolayers coating the NPs, independent of their surface charge. The differences in the thickness of the protein corona were rationalized in terms of the different orientations in which HSA adsorbs onto the NPs. The midpoints of the binding transition, which quantifies the affinity of HSA toward the NP, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of specific Coulombic interactions between the proteins and the NP surfaces.

  16. Correlations between Diffusion Tensor Imaging (DTI and Magnetic Resonance Spectroscopy (1H MRS in schizophrenic patients and normal controls

    Directory of Open Access Journals (Sweden)

    Ng Johnny

    2007-06-01

    Full Text Available Abstract Background Evidence suggests that white matter integrity may play an underlying pathophysiological role in schizophrenia. N-acetylaspartate (NAA, as measured by Magnetic Resonance Spectroscopy (MRS, is a neuronal marker and is decreased in white matter lesions and regions of axonal loss. It has also been found to be reduced in the prefrontal and temporal regions in patients with schizophrenia. Diffusion Tensor Imaging (DTI allows one to measure the orientations of axonal tracts as well as the coherence of axonal bundles. DTI is thus sensitive to demyelination and other structural abnormalities. DTI has also shown abnormalities in these regions. Methods MRS and DTI were obtained on 42 healthy subjects and 40 subjects with schizophrenia. The data was analyzed using regions of interests in the Dorso-Lateral Prefrontal white matter, Medial Temporal white matter and Occipital white matter using both imaging modalities. Results NAA was significantly reduced in the patient population in the Medial Temporal regions. DTI anisotropy indices were also reduced in the same Medial Temporal regions. NAA and DTI-anisotropy indices were also correlated in the left medial temporal region. Conclusion Our results implicate defects in the medial temporal white matter in patients with schizophrenia. Moreover, MRS and DTI are complementary modalities for the study of white matter disruptions in patients with schizophrenia.

  17. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, Daniel J.; Buranda, T. (University of New Mexico, Albuquerque, NM); Burns, Alan Richard

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.

  18. Cortical Actin Flow in T Cells Quantified by Spatio-temporal Image Correlation Spectroscopy of Structured Illumination Microscopy Data.

    Science.gov (United States)

    Ashdown, George; Pandžić, Elvis; Cope, Andrew; Wiseman, Paul; Owen, Dylan

    2015-12-17

    Filamentous-actin plays a crucial role in a majority of cell processes including motility and, in immune cells, the formation of a key cell-cell interaction known as the immunological synapse. F-actin is also speculated to play a role in regulating molecular distributions at the membrane of cells including sub-membranous vesicle dynamics and protein clustering. While standard light microscope techniques allow generalized and diffraction-limited observations to be made, many cellular and molecular events including clustering and molecular flow occur in populations at length-scales far below the resolving power of standard light microscopy. By combining total internal reflection fluorescence with the super resolution imaging method structured illumination microscopy, the two-dimensional molecular flow of F-actin at the immune synapse of T cells was recorded. Spatio-temporal image correlation spectroscopy (STICS) was then applied, which generates quantifiable results in the form of velocity histograms and vector maps representing flow directionality and magnitude. This protocol describes the combination of super-resolution imaging and STICS techniques to generate flow vectors at sub-diffraction levels of detail. This technique was used to confirm an actin flow that is symmetrically retrograde and centripetal throughout the periphery of T cells upon synapse formation.

  19. A nu-space for image correlation spectroscopy: characterization and application to measure protein transport in live cells

    Science.gov (United States)

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.

    2013-08-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.

  20. Probing Temperature- and pH-Dependent Binding between Quantum Dots and Bovine Serum Albumin by Fluorescence Correlation Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zonghua Wang

    2017-04-01

    Full Text Available Luminescent quantum dots (QDs with unique optical properties have potential applications in bio-imaging. The interaction between QDs and bio-molecules is important to the biological effect of QDs in vivo. In this paper, we have employed fluorescence correlation spectroscopy (FCS to probe the temperature- and pH-dependent interactions between CdSe QDs with carboxyl (QDs-COOH and bovine serum albumin (BSA in buffer solutions. The results have shown that microscopic dissociation constant K′D is in the range of (1.5 ± 0.2 × 10−5 to (8.6 ± 0.1 × 10−7 M, the Hill coefficient n is from 0.4 to 2.3, and the protein corona thickness is from 3.0 to 9.4 nm. Variable-temperature measurements have shown both negative values of ∆H and ∆S for BSA adsorption on QDs-COOH, while pH has a profound effect on the adsorption. Additional, FCS measurement QDs-COOH and proteins in whole mice serum and plasma samples has also been conducted. Finally, simulation results have shown four favored QD binding sites in BSA.

  1. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek

    2016-03-01

    Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.

  2. SERS as a tool for in vitro toxicology.

    Science.gov (United States)

    Fisher, Kate M; McLeish, Jennifer A; Jamieson, Lauren E; Jiang, Jing; Hopgood, James R; McLaughlin, Stephen; Donaldson, Ken; Campbell, Colin J

    2016-06-23

    Measuring markers of stress such as pH and redox potential are important when studying toxicology in in vitro models because they are markers of oxidative stress, apoptosis and viability. While surface enhanced Raman spectroscopy is ideally suited to the measurement of redox potential and pH in live cells, the time-intensive nature and perceived difficulty in signal analysis and interpretation can be a barrier to its broad uptake by the biological community. In this paper we detail the development of signal processing and analysis algorithms that allow SERS spectra to be automatically processed so that the output of the processing is a pH or redox potential value. By automating signal processing we were able to carry out a comparative evaluation of the toxicology of silver and zinc oxide nanoparticles and correlate our findings with qPCR analysis. The combination of these two analytical techniques sheds light on the differences in toxicology between these two materials from the perspective of oxidative stress.

  3. Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2

    International Nuclear Information System (INIS)

    Zhang, Kai; Li, Chuanfu; Ma, Xiangxing; Meng, Xiangshui; Feng, Dechao; Liu, Ying; Li, Li

    2007-01-01

    Even low-grade astrocytomas infiltrate the entire brain, a feature that precludes their successful therapy. So to assess the invasive potential of astrocytoma is very important. The aim of this study was determine whether there is a significant correlation between the results of 1 H-magnetic resonance spectroscopy ( 1 H-MRS) and tumor invasive potential of astrocytoma, which is reflected by expression of matrix metalloproteinase-2 (MMP-2). The 1 H-MRS spectra of 41 histologically verified astrocytomas were obtained on a 3-T MR scanner. According to the World Health Organization classification criteria for central nervous system tumors, there were 16 low-grade astrocytomas (2 pilocytic astrocytomas, 14 grade II astrocytomas) and 25 high-grade astrocytomas (5 anaplastic astrocytomas, 20 glioblastomas).The choline/N-acetylaspartate (Cho/NAA) and choline/creatine (Cho/Cr) ratios were calculated. Of the 41 astrocytomas, 19 (8 low-grade and 11 high-grade) were analyzed immunohistochemically. Expression of MMP-2 was determined using streptavidin-peroxidase complex (SP) staining which was quantified by calculating its calibrated opacity density (COD) using an image analysis system. The correlations between metabolite ratios and the quantitative data from the immunohistochemical tests in the 19 astrocytomas were determined. The Cho/NAA and Cho/Cr ratios of high-grade astrocytoma were both significantly greater than those of low-grade astrocytoma (t = -6.222, P = 0.000; t = -6.533, P = 0.000, respectively). MMP-2 COD values of high-grade astrocytomas were also significantly greater than those of low-grade astrocytomas (t = -5.892, P 0.000). There were strong positive correlations between Cho/NAA ratio and MMP-2 COD (r = 0.669, P = 0.002), and between Cho/Cr ratio and MMP-2 COD (r = 0.689, P = 0.001). 1 H-MRS is helpful in evaluating the invasiveness of astrocytomas and predicting prognosis preoperatively by determining the Cho/NAA and Cho/Cr ratios. (orig.)

  4. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Madsen Sommer, Lea Mette; Johansen, Helle Krogh

    2017-01-01

    . The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm-1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After...

  5. Study of dynamic behavior of EDTA molecule in solution using perturbed gamma-gamma angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Amaral, Antonio A.; Silva, Andreia dos S.; Carbonari, Arthur W.; Lapolli, Andre L.

    2009-01-01

    In this work, PAC spectroscopy has been used to obtain the hyperfine parameters in EDTA molecules in solutions with pH 4.3 and pH 10.5 both measured at 77 K and 295 K using 181 Hf( 181 Ta) as probe nuclei. Both dynamic and static interactions were measured in aqueous solution, crystallized and re-hydrated samples in order to examine the motion and structure of EDTA-molecules. The hyperfine parameters, quadrupole interaction frequency (ν Q ), asymmetry (η), and the dynamic interaction frequency (λ) were obtained. The outcomes show that the rotational correlation time (τ CR ) is larger than the half-life of the intermediate state of probe nuclei. For samples with pH 4.3 and pH 10.5, it was observed an increase in ν Q when the temperature decreases, as expected, and also a variation of η, which is an evidence of a change in the EDTA molecule structure. 181 Hf is bound only to a single molecule site when the pH was 4.3, differently from the results for pH 10.5 sample, which showed two fractions with different ν Q indicating the possibility of 181 Hf being bonded to two different sites of the molecule. Measurements of the dehydrated sample presented different results leading us to conclude that the preparation procedure can causes alterations in the chemical bounds. Concluding, these results showed a systematic behavior of the 181 Hf-EDTA, with the variation of pH from 4 to approximately 11, and they are important to the knowledge of the dynamic behavior of this molecule. (author)

  6. Unfolding of hemoglobin variants--insights from urea gradient gel electrophoresis photon correlation spectroscopy and zeta potential measurements

    International Nuclear Information System (INIS)

    Bhattacharya, Jaydeep; GhoshMoulick, Ranjita; Choudhuri, Utpal; Chakrabarty, Prantar; Bhattacharya, Pranab K.; Lahiri, Prabir; Chakraborti, Bikas; Dasgupta, Anjan Kr.

    2004-01-01

    The unfolding pattern of crystal human hemoglobin and variants of hemoglobin obtained from hemolysate were studied using transverse urea gradient gel electrophoresis (TUGGE). A smooth sigmoid like increase of electrophoretic mobility was observed with increasing urea concentrations. A decrease in electrophoretic mobility resulted, if the protein was unfolded with guanidium hydrochloride (GdnHCl). The anomaly was resolved after the Stoke's radii (obtained using the photon correlation spectroscopy) and zeta potential (measured using laser Doppler velocimetry) measurements were made at different denaturant concentrations. Addition of denaturant led to formation of extended structure, irrespective of the nature of the denaturant, as indicated by increase in Stoke's radii in both cases (urea and GdnHCl). The unexpected increase in electrophoretic mobility in case of urea could be explained in terms of a critical redistribution of negative charge at intermediate stages of the unfolding process. In case of GdnHCl, the higher ionic strength masked the charge effect. The mobility, being solely dependent on size, decreased at higher denaturant concentration. Incidentally, folding loci of other hemoglobin variants (e.g. HbE) or that of post-translationally modified hemoglobin (e.g. HbA1c) could be determined by studying the charge distribution and hydrodynamic radius at varying denaturing stress and in each case the gel migration profile could be approximately scaled by the ratio of charge and hydrodynamic diameter of the protein. While unfolding induced charge effect was most pronounced in HbA0 (and crystal ferrous hemoglobin), the unfolding induced aggregation (manifested by the increase in Stoke's radii) was predominantly observed in the variant forms HbE and HbA1c. Representing the proteins by a plot, in which charge and hydrodynamic diameter are on independent axes, may be a useful way of characterizing protein variants having similar migration profiles on native gels

  7. Unfolding of hemoglobin variants--insights from urea gradient gel electrophoresis photon correlation spectroscopy and zeta potential measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Jaydeep; GhoshMoulick, Ranjita; Choudhuri, Utpal; Chakrabarty, Prantar; Bhattacharya, Pranab K.; Lahiri, Prabir; Chakraborti, Bikas; Dasgupta, Anjan Kr

    2004-09-27

    The unfolding pattern of crystal human hemoglobin and variants of hemoglobin obtained from hemolysate were studied using transverse urea gradient gel electrophoresis (TUGGE). A smooth sigmoid like increase of electrophoretic mobility was observed with increasing urea concentrations. A decrease in electrophoretic mobility resulted, if the protein was unfolded with guanidium hydrochloride (GdnHCl). The anomaly was resolved after the Stoke's radii (obtained using the photon correlation spectroscopy) and zeta potential (measured using laser Doppler velocimetry) measurements were made at different denaturant concentrations. Addition of denaturant led to formation of extended structure, irrespective of the nature of the denaturant, as indicated by increase in Stoke's radii in both cases (urea and GdnHCl). The unexpected increase in electrophoretic mobility in case of urea could be explained in terms of a critical redistribution of negative charge at intermediate stages of the unfolding process. In case of GdnHCl, the higher ionic strength masked the charge effect. The mobility, being solely dependent on size, decreased at higher denaturant concentration. Incidentally, folding loci of other hemoglobin variants (e.g. HbE) or that of post-translationally modified hemoglobin (e.g. HbA1c) could be determined by studying the charge distribution and hydrodynamic radius at varying denaturing stress and in each case the gel migration profile could be approximately scaled by the ratio of charge and hydrodynamic diameter of the protein. While unfolding induced charge effect was most pronounced in HbA0 (and crystal ferrous hemoglobin), the unfolding induced aggregation (manifested by the increase in Stoke's radii) was predominantly observed in the variant forms HbE and HbA1c. Representing the proteins by a plot, in which charge and hydrodynamic diameter are on independent axes, may be a useful way of characterizing protein variants having similar migration profiles on

  8. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leder, Verena [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lummer, Martina [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Tegeler, Kathrin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Humpert, Fabian [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lewinski, Martin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Schüttpelz, Mark [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Staiger, Dorothee, E-mail: dorothee.staiger@uni-bielefeld.de [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany)

    2014-10-10

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R{sup 49} abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K{sub d} value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R{sup 49} that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding.

  9. Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    Mély Yves

    2008-09-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Results Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization. Conclusion We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.

  10. PCR-free detection of genetically modified organisms using magnetic capture technology and fluorescence cross-correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhou

    2009-11-01

    Full Text Available The safety of genetically modified organisms (GMOs has attracted much attention recently. Polymerase chain reaction (PCR amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS. The cauliflower mosaic virus 35S (CaMV35S promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 microg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids.

  11. Analysis of the substrate recognition state of TDP-43 to single-stranded DNA using fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2018-07-01

    Full Text Available Normal function and abnormal aggregation of transactivation response (TAR DNA/RNA-binding protein 43 kDa (TDP-43 are directly associated with the lethal genetic diseases: cystic fibrosis, amyotrophic lateral sclerosis (ALS, and frontotemporal lobar degeneration (FTLD. The binding of TDP-43 to single-stranded DNA (ssDNA or RNA is involved in transcriptional repression, regulation of RNA splicing, and RNA stabilization. Equilibrium dissociation constants (Kd of TDP-43 and ssDNA or RNA have been determined using various methods; however, methods that can measure Kd with high sensitivity in a short time using a small amount of TDP-43 in solution would be advantageous. Here, in order to determine the Kd of TDP-43 and fluorescence-labeled ssDNA as well as the binding stoichiometry, we use fluorescence correlation spectroscopy (FCS, which detects the slowed diffusion of molecular interactions in solution with single-molecule sensitivity, in addition to electrophoretic mobility shift assay (EMSA. Using tandem affinity chromatography of TDP-43 dually tagged with glutathione-S-transferase and poly-histidine tags, highly purified protein was obtained. FCS successfully detected specific interaction between purified TDP-43 and TG ssDNA repeats, with a Kd in the nanomolar range. The Kd of the TDP-43 mutant was not different from the wild type, although mutant oligomers, which did not bind ssDNA, were observed. Analysis of the fluorescence brightness per dimerized TDP-43/ssDNA complex was used to evaluate their binding stoichiometry. The results suggest that an assay combining FCS and EMSA can precisely analyze ssDNA recognition mechanisms, and that FCS may be applied for the rapid and quantitative determination of the interaction strength between TDP-43 and ssDNA or RNA. These methods will aid in the elucidation of the substrate recognition mechanism of ALS- and FTLD-associated variants of TDP-43.

  12. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Leder, Verena; Lummer, Martina; Tegeler, Kathrin; Humpert, Fabian; Lewinski, Martin; Schüttpelz, Mark; Staiger, Dorothee

    2014-01-01

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R 49 abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K d value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R 49 that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding

  13. Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy

    Science.gov (United States)

    Reina, Francesco; Galiani, Silvia; Shrestha, Dilip; Sezgin, Erdinc; de Wit, Gabrielle; Cole, Daniel; Lagerholm, B. Christoffer; Kukura, Philipp; Eggeling, Christian

    2018-06-01

    Observation techniques with high spatial and temporal resolution, such as single-particle tracking based on interferometric scattering (iSCAT) microscopy, and fluorescence correlation spectroscopy applied on a super-resolution STED microscope (STED-FCS), have revealed new insights of the molecular organization of membranes. While delivering complementary information, there are still distinct differences between these techniques, most prominently the use of fluorescent dye tagged probes for STED-FCS and a need for larger scattering gold nanoparticle tags for iSCAT. In this work, we have used lipid analogues tagged with a hybrid fluorescent tag–gold nanoparticle construct, to directly compare the results from STED-FCS and iSCAT measurements of phospholipid diffusion on a homogeneous supported lipid bilayer (SLB). These comparative measurements showed that while the mode of diffusion remained free, at least at the spatial (>40 nm) and temporal (50  ⩽  t  ⩽  100 ms) scales probed, the diffussion coefficient was reduced by 20- to 60-fold when tagging with 20 and 40 nm large gold particles as compared to when using dye tagged lipid analogues. These FCS measurements of hybrid fluorescent tag–gold nanoparticle labeled lipids also revealed that commercially supplied streptavidin-coated gold nanoparticles contain large quantities of free streptavidin. Finally, the values of apparent diffusion coefficients obtained by STED-FCS and iSCAT differed by a factor of 2–3 across the techniques, while relative differences in mobility between different species of lipid analogues considered were identical in both approaches. In conclusion, our experiments reveal that large and potentially cross-linking scattering tags introduce a significant slow-down in diffusion on SLBs but no additional bias, and our labeling approach creates a new way of exploiting complementary information from STED-FCS and iSCAT measurements.

  14. A study of the dynamics of PTEN proteins in living cells using in vivo fluorescence correlation spectroscopy

    Science.gov (United States)

    Du, Zhixue; Dong, Chaoqing; Ren, Jicun

    2017-06-01

    PTEN (phosphatase and tensin homolog on chromosome 10) is one of the most important tumor-suppressor proteins, which plays a key role in negative regulation of the PI3K/AKT pathway, and governs many cellular processes including growth, proliferation, survival and migration. The dynamics of PTEN proteins in single living cells is as yet unclear owing to a shortage of suitable in vivo approaches. Here, we report a single-molecule method for in vivo study of the dynamics of PTEN proteins in living cells using fluorescence correlation spectroscopy (FCS). First, we established a monoclonal H1299 stable cell line expressing enhanced green fluorescent protein (EGFP) and PTEN (EGFP-PTEN) fusion proteins; we then developed an in vivo FCS method to study the dynamics of EGFP-PTEN both in the nucleus and the cytoplasm. We investigated the diffusion behaviors of EGFP and EGFP-PTEN in solution, nucleus and cytosol, and observed that the motion of PTEN in living cells was restricted compared with EGFP. Finally, we investigated the protein dynamics in living cells under oxidative stress stimulation and a cellular ATP depletion treatment. Under oxidative stress stimulation, the EGFP-PTEN concentration increased in the nucleus, but slightly decreased in the cytoplasm. The diffusion coefficient and alpha value of EGFP-PTEN reduced significantly both in the nucleus and cytoplasm; the significantly decreased alpha parameter indicates a more restricted Brownian diffusion behavior. Under the cellular ATP depletion treatment, the concentration of EGFP-PTEN remained unchanged in the nucleus and decreased significantly in cytosol. The diffusion coefficient of EGFP-PTEN decreased significantly in cytosol, but showed no significant change in the nucleus; the alpha value decreased significantly in both the nucleus and cytoplasm. These results suggest that the concentration and mobility of PTEN in the nucleus and cytoplasm can be regulated by stimulation methods. Our approach provides a unique

  15. Highly Sensitive Filter Paper Substrate for SERS Trace Explosives Detection

    Directory of Open Access Journals (Sweden)

    Pedro M. Fierro-Mercado

    2012-01-01

    Full Text Available We report on a novel and extremely low-cost surface-enhanced Raman spectroscopy (SERS substrate fabricated depositing gold nanoparticles on common lab filter paper using thermal inkjet technology. The paper-based substrate combines all advantages of other plasmonic structures fabricated by more elaborate techniques with the dynamic flexibility given by the inherent nature of the paper for an efficient sample collection, robustness, and stability. We describe the fabrication, characterization, and SERS activity of our substrate using 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 1,3,5-trinitrobenzene as analytes. The paper-based SERS substrates presented a high sensitivity and excellent reproducibility for analytes employed, demonstrating a direct application in forensic science and homeland security.

  16. Wilson's disease: {sup 31}P and {sup 1}H MR spectroscopy and clinical correlation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Sanjib; Taly, A.B.; Prashanth, L.K. [National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neurology, Bangalore (India); Ravishankar, S.; Vasudev, M.K. [National Institute of Mental Health and Neurosciences (NIMHANS), Department of Neuroimaging and Interventional Radiology, Bangalore (India)

    2010-11-15

    Proton ({sup 1}H) magnetic resonance spectroscopy (MRS) changes are noted in Wilson's disease (WD). However, there are no studies regarding membrane phospholipid abnormality using {sup 31}P MRS in these patients. We aimed to analyze the striatal spectroscopic abnormalities using {sup 31}P and {sup 1}H MRS in WD. Forty patients of WD (treated, 29; untreated,11) and 30 controls underwent routine MR image sequences and in vivo 2-D {sup 31}P and {sup 1}H MRS of basal ganglia using an image-selected technique on a 1.5-T MRI scanner. Statistical analysis was done using Student's t test. The mean durations of illness and treatment were 6.2 {+-} 7.4 and 4.8 {+-} 5.9 years, respectively. MRI images were abnormal in all the patients. {sup 1}H MRS revealed statistically significant reduction of N-acetyl aspartate (NAA)/choline (Cho) and NAA/creatine ratios in striatum ({sup 1}H MRS) of treated patients compared to controls. The mean values of phosphomonoesters (PME) (p < 0.0001), phosphodiesters (PDE) (p < 0.0001), and total phosphorus (TPh) (p < 0.0001) were elevated in patients compared to controls. Statistically significant elevated levels of ratio of PME/PDE (p = 0.05) observed in the striatum were noted in treated patients as compared to controls in the {sup 31}P MRS study. The duration of illness correlated well with increased PME/PDE [p < 0.001], PME/TPh [p < 0.05], and PDE/TPh [p < 0.05] and decreased NAA/Cho [p < 0.05] ratios. There was correlation of MRI score and reduced NAA/Cho ratio with disease severity. The PME/PDE ratio (right) was elevated in the treated group [p < 0.001] compared to untreated group. There is reduced breakdown and/or increased synthesis of membrane phospholipids and increased neuronal damage in basal ganglia in patients with WD. (orig.)

  17. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    Science.gov (United States)

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Correlation between the structure and the piezoelectric properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics studied by XRD and Raman spectroscopy.

    Science.gov (United States)

    Rubio-Marcos, Fernando; Marchet, Pascal; Romero, Juan José; Fernández, Jose F

    2011-09-01

    This article reviews on the use of Raman spectroscopy for the study of (K,Na,Li)(Nb,Ta,Sb)O(3) lead-free piezoceramics. Currently, this material appears to be one of the most interesting and promising alternatives to the well-known PZT piezoelectric materials. In this work, we prepare piezoceramics with different stoichiometries and study their structural, ferroelectric, and piezoelectric properties. By using both Raman spectroscopy and X-ray diffraction, we establish a direct correlation between the structure and the properties. The results demonstrate that the wavenumber of the A(1g) vibration is proportional to the tetragonality, the remnant polarization, and the piezoelectric coefficients of these materials. Thus, Raman spectroscopy appears as a very useful technique for a fast evaluation of the crystalline structure and the ferroelectric/ piezoelectric properties.

  19. Correlation between the local stress and the grain misorientation in the polycrystalline Al2O3 measured by near-field luminescence spectroscopy

    Science.gov (United States)

    Tomimatsu, Toru; Takigawa, Ryo

    2018-06-01

    Owing to its high spatial resolution, near-field spectroscopy is a useful method for sensing the stress in a narrow region of submicron order. Here, on the basis of the highly resolved images obtained by near-field luminescence spectroscopy, we propose a statistical method of analyzing grain anisotropy-induced stress in polycrystalline Al2O3. We focus on two characteristics of a spectra: the intensity ratio and peak shift of luminescence of two lines (R1 and R2) from Al2O3 to discuss crystal orientation and stress, respectively. By incorporating the concept of the crystal misorientation parameter using intensity ratio, an apparent correlation between the magnitude of stress and the misorientation is found. This correlation analysis provides an important insight for the investigation of local thermal stress in Al2O3.

  20. Enhancing SERS by Means of Supramolecular Charge Transfer

    Science.gov (United States)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  1. SERS substrates for in-situ biosensing (Conference Presentation)

    Science.gov (United States)

    Venugopalan, Priyamvada; Quilis, Nestor; Jakub, Dostalek; Wolfgang, Knoll

    2017-06-01

    Abstract: Recent years have seen a rapid progress in the field of surface-enhanced Raman spectroscopy (SERS) which is attributed to the thriving field of plasmonics [1]. SERS is a susceptible technique that can address basic scientific questions and technological problems. In both cases, it is highly dependent upon the plasmonic substrate, where excitation of the localized surface plasmon resonance enhances the vibrational scattering signal of the analyte molecules adsorbed on to the surface [2]. In this work, using finite difference time domain (FDTD) method we investigate the optical properties of plasmonic nanostructures with tuned plasmonic resonances as a function of dielectric environment and geometric parameters. An optimized geometry will be discussed based on the plasmonic resonant position and the SERS intensity. These SERS substrates will be employed for the detection of changes in conformation caused by interactions between an aptamer and analyte molecules. This will be done by using a microfluidic channel designed within the configuration of the lab-on-a-chip concept based on the intensity changes of the SERS signal. More efficient and reproducible results are obtained for such a quantitative measurement of analytes at low concentration levels. We will also demonstrate that the plasmonic substrates fabricated by top down approach such as e-beam lithography (EBL) and laser interference lithography (LIL) are highly reproducible, robust and can result in high electric field enhancement. Our results demonstrate the potential to use SERS substrates for highly sensitive detection schemes opening up the window for a wide range of applications including biomedical diagnostics, forensic investigation etc. Acknowledgement: This work was supported by the Austrian Science Fund (FWF), project NANOBIOSENSOR (I 2647). References: [1] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. V. Duyne., " Biosensing with plasmonic nanosensors," Nature

  2. Potential application of SERS for arsenic speciation in biological matrices.

    Science.gov (United States)

    Yang, Mingwei; Matulis, Shannon; Boise, Lawrence H; McGoron, Anthony J; Cai, Yong

    2017-08-01

    Speciation of arsenic is usually carried out using chromatography-based methods coupled with spectroscopic determination; however, the inevitable procedures involving sample preparation and separation could potentially alter the integrity of the arsenic metabolites present in biological samples. Surface-enhanced Raman spectroscopy (SERS) could be a promising alternative for providing a reliable arsenic analysis under the influence of a cellular matrix. A method for arsenic speciation using SERS in cellular matrix was developed in this study and four arsenicals were selected, including arsenite (As III ), arsenate (As V ), monomethylarsonic acid (MMA V ) and dimethylarsinic acid (DMA V ). Silver nanoparticles in the form of colliodal suspension with different surface charges, i.e., coated with citrate (AgNPs-Citrate) and spermine (AgNPs-Spermine) were employed as SERS substrates. Adsorption of arsenicals on nanoparticles in colloidal suspensions and the cellular matrix and the pH, size, and zeta potential of the colloidal suspensions were investigated for a better understanding of the SERS signal response of arsenicals in the colloidal suspensions or under the influence of cellular matrix. Arsenicals showed substantially different SERS responses in the two colloidal suspensions, mainly because of the distinct difference in the interaction between the arsenicals and the nanoparticles. Arsenic speciation in cell lysate could be successfully carried out in AgNPs-Spermine suspension, while AgNPs-Citrate could not yield significant SERS signals under the experimental conditions. This study proved that AgNPs-Spermine colloidal suspension could be a promising SERS substrate for studying arsenic metabolism in a biological matrix, reducing the bias caused by traditional techniques that involve sample extraction and pretreatment.

  3. SERS-based application in food analytics (Conference Presentation)

    Science.gov (United States)

    Cialla-May, Dana; Radu, Andreea; Jahn, Martin; Weber, Karina; Popp, Jürgen

    2017-02-01

    To establish detection schemes in life science applications, specific and sensitive methods allowing for fast detection times are required. Due to the interaction of molecules with strong electromagnetic fields excited at metallic nanostructures, the molecular fingerprint specific Raman spectrum is increased by several orders of magnitude. This effect is described as surface-enhanced Raman spectroscopy (SERS) and became a very powerful analytical tool in many fields of application. Within this presentation, we will introduce innovative bottom-up strategies to prepare SERS-active nanostructures coated with a lipophilic sensor layer. To do so, the food colorant Sudan III, an indirect carcinogen substance found in chili powder, palm oil or spice mixtures, is detected quantitatively in the background of the competitor riboflavin as well as paprika powder extracts. The SERS-based detection of azorubine (E122) in commercial available beverages with different complexity (e.g. sugar content, alcohol concentration) illustrates the strong potential of SERS as a qualitative as well as semiquantitative prescan method in food analytics. Here, a good agreement between the estimated concentration employing SERS as well as the gold standard technique HPLC, a highly laborious method, is found. Finally, SERS is applied to detect vitamin B2 and B12 in cereals as well as the estimate the ratio of lycopene and β-carotene in tomatoes. Acknowledgement: Funding the projects "QuantiSERS" and "Jenaer Biochip Initiative 2.0" within the framework "InnoProfile Transfer - Unternehmen Region" the Federal Ministry of Education and Research, Germany (BMBF) is gratefully acknowledged.

  4. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    OpenAIRE

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.; Yu, Guoqiang

    2013-01-01

    The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measure...

  5. Source Determination of Red Gel Pen Inks using Raman Spectroscopy and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy combined with Pearson's Product Moment Correlation Coefficients and Principal Component Analysis.

    Science.gov (United States)

    Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee

    2018-01-01

    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.

  6. Ser do tempo em Bergson

    OpenAIRE

    Coelho,Jonas Gonçalves

    2004-01-01

    O artigo apresenta a concepção bergsoniana de duração. Pretende-se mostrar que, segundo Bergson, o tempo dos filósofos e cientistas é um tempo fictício, um esquema espacial que oculta a natureza do tempo real, o qual não pode ser separado dos acontecimentos físicos e psicológicos. Para Bergson, o tempo real é sucessão, continuidade, mudança, memória e criação. El presente artículo trata de la concepción bergsoniana de duración. Pretendemos mostrar que, según Bergson, el tiempo de los filós...

  7. Ser do tempo em Bergson

    OpenAIRE

    Coelho, Jonas Gonçalves

    2004-01-01

    O artigo apresenta a concepção bergsoniana de duração. Pretende-se mostrar que, segundo Bergson, o tempo dos filósofos e cientistas é um tempo fictício, um esquema espacial que oculta a natureza do tempo real, o qual não pode ser separado dos acontecimentos físicos e psicológicos. Para Bergson, o tempo real é sucessão, continuidade, mudança, memória e criação. We considered Bergson's duration concept. We intended to show that, according to Bergson, the time of philosophers and scientists i...

  8. for SERS and Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2011-01-01

    Full Text Available ZnS/Si nanocables were synthesized via a simple two-step thermal evaporation method. The shape and diameter of the ZnS/Si nanocables can be controlled by adjusting the morphologies of the ZnS nanostructures (nanowire or nanoribbon obtained in the first step and the deposition time of the Si shell in the second step, respectively. Furthermore, we obtained polycrystalline Si nanotubes with different shapes and diameters by etching away the inner ZnS core. The as-prepared Si nanotubes were employed as SERS-active substrates, which exhibited a high sensitivity for the detection of R6G. The Si nanotubes also showed effective photocatalytic activity on the decomposition of R6G under the irradiation of visible light.

  9. Superhydrophobic Ag nanostructures on polyaniline membranes with strong SERS enhancement.

    Science.gov (United States)

    Liu, Weiyu; Miao, Peng; Xiong, Lu; Du, Yunchen; Han, Xijiang; Xu, Ping

    2014-11-07

    We demonstrate here a facile fabrication of n-dodecyl mercaptan-modified superhydrophobic Ag nanostructures on polyaniline membranes for molecular detection based on SERS technique, which combines the superhydrophobic condensation effect and the high enhancement factor. It is calculated that the as-fabricated superhydrophobic substrate can exhibit a 21-fold stronger molecular condensation, and thus further amplifies the SERS signal to achieve more sensitive detection. The detection limit of the target molecule, methylene blue (MB), on this superhydrophobic substrate can be 1 order of magnitude higher than that on the hydrophilic substrate. With high reproducibility, the feasibility of using this SERS-active superhydrophobic substrate for quantitative molecular detection is explored. A partial least squares (PLS) model was established for the quantification of MB by SERS, with correlation coefficient R(2) = 95.1% and root-mean-squared error of prediction (RMSEP) = 0.226. We believe this superhydrophobic SERS substrate can be widely used in trace analysis due to its facile fabrication, high signal reproducibility and promising SERS performance.

  10. Study of pyruvate decarboxylase and thiamine kinase from brewer's yeast by SERS

    Science.gov (United States)

    Maskevich, Sergei A.; Chernikevich, Ivan P.; Gachko, Gennedy A.; Kivach, Leonid N.; Strekal, Nataliya D.

    1993-06-01

    The Surface Enhanced Raman Scattering (SERS) spectra of holopyruvate decarboxylase (PDC) and thiamine kinase (ThK) adsorbed on silver electrode were obtained. In contrast to the Raman, the SERS spectrum of PDC contained no modes of tryptophan residues, it indicates a removal of this moiety from the surface. In the SERS spectrum of ThK the bands belonging to ligands bound to the protein were observed. A correlation between the SERS signal intensity and the enzymatic activity of the ThK separate fraction and found. The influence of amino acids on SERS spectra of thiamine (Th) was studied to determine the possible composition on microsurrounding of coenzyme.

  11. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    Energy Technology Data Exchange (ETDEWEB)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com [Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033 (India); Yadav, A. K. [Atomic and molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It is a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.

  12. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    Science.gov (United States)

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  13. Sonochemically synthesized Ag nanoparticles as a SERS active substrate and effect of surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Dar, Nitzan, E-mail: n58987012@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China); Chen, Kuang-Yu [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China); Nien, Yung-Tang, E-mail: ytnien@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 63201, Taiwan (China); Perkas, Nina [Institute of nanotechnology and advanced materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Gedanken, Aharon, E-mail: Aharon.Gedanken@biu.ac.il [Institute of nanotechnology and advanced materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002 (Israel); Chen, In-Gann, E-mail: ingann@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101 Taiwan (China)

    2015-03-15

    Highlights: • Solid state Ag SERS active substrates were sonochemically synthesized. • High intensity SERS spectra of both crystal violet and rhodamine 6G were observed. • We discovered that PVP aided synthesized substrates showed higher SERS intensity. - Abstract: Surface enhanced Raman scattering (SERS) enables the detection of substances at low concentrations using silver or gold nanostructure. The SERS technique has many applications, such as environmental detection and biosensing. Sonochemistry is an excellent and cheap deposition technique for coating substrates in a form of nanostructure at ambient temperature. It can also be utilized to prepare large SERS substrates. Here, we used the advantages of sonochemistry to deposit solid SERS substrates immobilized on GaN nanostructure. Morphology was studied by scanning electron microscopy. The elemental composition and the spatial distribution were examined by energy dispersive X-ray spectroscopy. The crystal structure and atomic presence was confirmed by X-ray diffraction. SERS substrates were examined with the analytes crystal violet (10{sup −5} M) and rhodamine 6G (10{sup −6} M), they showed prominent characteristic peaks. We discovered that the SERS intensity of poly-vinyl-pyrrolidinone aided sonochemical deposition of Ag nanoparticles was increased. The reason for the effect is morphological changes of the Ag nanoparticles. Smaller nanoparticles were fabricated, which increase their SERS intensity.

  14. A correlative study on data from pork carcass and processed meat (Bauernspeck) for automatic estimation of chemical parameters by means of near-infrared spectroscopy.

    Science.gov (United States)

    Boschetti, Lucio; Ottavian, Matteo; Facco, Pierantonio; Barolo, Massimiliano; Serva, Lorenzo; Balzan, Stefania; Novelli, Enrico

    2013-11-01

    The use of near-infrared spectroscopy (NIRS) is proposed in this study for the characterization of the quality parameters of a smoked and dry-cured meat product known as Bauernspeck (originally from Northern Italy), as well as of some technological traits of the pork carcass used for its manufacturing. In particular, NIRS is shown to successfully estimate several key quality parameters (including water activity, moisture, dry matter, ash and protein content), suggesting its suitability for real time application in replacement of expensive and time consuming chemical analysis. Furthermore, a correlative approach based on canonical correlation analysis was used to investigate the spectral regions that are mostly correlated to the characteristics of interest. The identification of these regions, which can be linked to the absorbance of the main functional chemical groups, is intended to provide a better understanding of the chemical structure of the substrate under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Recoil ion momentum spectroscopy in atomic and nuclear physics: applications to low energy ion-atom/molecule collisions and to beta-neutrino angular correlation in beta decay

    International Nuclear Information System (INIS)

    Flechard, X.

    2012-12-01

    Since the early 1990's, Recoil Ion Momentum Spectroscopy is an ideal tool for ion-atom and ion-molecule collisions study. We detail here the development of this experimental technique during the last twenty years, illustrated with some of the most striking results obtained at GANIL (Caen) and J.R. Mac Donald Laboratory (Kansas State University). Recoil Ion Momentum Spectroscopy is also particularly well suited for β-ν angular correlation measurements in nuclear β decay. The LPCTrap experiment, installed at GANIL, is based on this technique, coupled to the use of a Paul trap for the radioactive ions confinement. The precise measurements performed with this setup allow both, to test specific aspects of the Standard Model of elementary particles, and to study the electron shake-off process following β decay. (author)

  16. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  17. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester

    2015-04-09

    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  18. Correlation analysis between surface electromyography and continuous-wave near-infrared spectroscopy parameters during isometric exercise to volitional fatigue

    OpenAIRE

    ŞAYLİ, Ömer; AKIN, Ata; ÇOTUK, Hasan Birol

    2014-01-01

    In this study, the process of muscular fatigue was examined using surface electromyography (sEMG) and continuous-wave near-infrared spectroscopy (cw-NIRS) simultaneously during an isometric hand grip exercise at 50% and 75% of the maximal voluntary contraction (MVC), sustained until volitional fatigue. The mean frequency of the sEMG decreased during the whole exercise, whereas the root mean square had a tendency to increase. Oxyhemoglobin/deoxyhemoglobin concentration changes computed ...

  19. Two-trace two-dimensional (2T2D) correlation spectroscopy - A method for extracting useful information from a pair of spectra

    Science.gov (United States)

    Noda, Isao

    2018-05-01

    Two-trace two-dimensional (2T2D) correlation spectroscopy, where a pair of spectra are compared as 2D maps by a form of cross correlation analysis, is introduced. In 2T2D, spectral intensity changes of bands arising from the same origin, which cannot change independently of each other, are synchronized. Meanwhile, those arising from different sources may and often do change asynchronously. By taking advantage of this property, one can distinguish and classify a number of contributing bands present in the original pair of spectra in a systematic manner. Highly overlapped neighboring bands originating from different sources can also be identified by the presence of asynchronous cross peaks, thus enhancing the apparent spectral resolution. Computational procedure to obtain 2T2D correlation spectra and their interpretation method, as well as an illustrative description of the basic concept in the vector phase space, are provided. 2T2D spectra may also be viewed as individual building blocks of the generalized 2D correlation spectra derived from a series of more than two spectral data. Some promising application potentials of 2T2D correlation and integration with established advanced 2D correlation techniques are discussed.

  20. Entre contener y ser contenido

    Directory of Open Access Journals (Sweden)

    Jorge Morales Meneses

    2016-08-01

    Full Text Available El presente artículo propone una nueva manera de entender los elementos comunes en la formación y el hacer del diseño y de la arquitectura, posibilitando un pensar común y un coactuar en diversas escalas de intervención, necesarias para el manejo de la complejidad del paisaje contemporáneo. La convicción de un pensar común entre ambas disciplinas permite explorar un marco filosófico que incluye a pensadores tan trascendentales como Aristóteles, Kant y Heidegger, estableciendo un orden de pensamiento que los relaciona y sitúa. En momentos en que el territorio está siendo visible y negativamente afectado por elementos no pensados o que fueron imaginados separadamente, este artículo propone una mirada que le dé sentido de totalidad a las acciones del diseño y de la arquitectura, como elementos que permanentemente se contienen en otros de diferente escala, pero que siempre están vinculados. Reconocer el paisaje físico y mental, tangible e intangible que contiene al diseño y a la arquitectura contribuirá a establecer un marco de acción donde todos los elementos construidos por el ser humano puedan tener un rol específico y una escala asumida, e intercomprenderse para mejor utilización de los recursos, disminuir el impacto ambiental y contribuir a un orden social mejor interpretado por los objetos, espacios y sus representaciones.

  1. Hippocampal proton MR spectroscopy as a novel approach in the assessment of radiation injury and the correlation to neurocognitive function impairment: initial experiences

    International Nuclear Information System (INIS)

    Pospisil, Petr; Kazda, Tomas; Bulik, Martin; Dobiaskova, Marie; Burkon, Petr; Hynkova, Ludmila; Slampa, Pavel; Jancalek, Radim

    2015-01-01

    The hippocampus is considered as the main radiosensitive brain structure responsible for postradiotherapy cognitive decline. We prospectively assessed correlation of memory change to hippocampal N-acetylaspartate (h-tNAA) concentration, a neuronal density and viability marker, by 1 H-MR spectroscopy focused on the hippocampus. Patients with brain metastases underwent whole brain radiotherapy (WBRT) to a dose of 30 Gy in ten fractions daily. Pre-radiotherapy 1 H-MR spectroscopy focused on the h-tNAA concentration and memory testing was performed. Memory was evaluated by Auditory Verbal Learning Test (AVLT) and Brief Visuospatial Memory Test-Revised (BVMT-R). Total recall, recognition and delayed recall were reported. The both investigation procedures were repeated 4 months after WBRT and the h-tNAA and memory changes were correlated. Of the 20 patients, ten passed whole protocol. The h-tNAA concentration significantly decreased from pre-WBRT 8.9, 8.86 and 8.88 [mM] in the right, left and both hippocampi to 7.16, 7.65 and 7.4 after WBRT, respectively. In the memory tests a significant decrease was observed in AVLT total-recall, BVMT-R total-recall and BVMT-R delayed-recall. Weak to moderate correlations were observed between left h-tNAA and AVLT recognition and all BVMT-R subtests and between the right h-tNAA and AVLT total-recall. A significant decrease in h-tNAA after WBRT was proven by 1 H-MR spectroscopy as a feasible method for the in vivo investigation of radiation injury. Continuing patient recruitment focusing on other cognitive tests and metabolites is needed

  2. Patchy silica-coated silver nanowires as SERS substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-05-08

    We report a class of core-shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4- mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV-visible spectroscopy and phase-analysis light scattering for measuring effective surface charge. Surprisingly, the patchy silica coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  3. Patchy silica-coated silver nanowires as SERS substrates

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.

    2013-01-01

    We report a class of core–shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4-mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV–visible spectroscopy, and phase-analysis light-scattering for measuring effective surface charge. Surprisingly, the patchy silica-coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  4. [TLC-FT-SERS study on ingredients of Isrhynchophylline].

    Science.gov (United States)

    Wang, Yuan; Wang, Song-ying; Zhao, Yi-xue; Ren, Gui-fen; Zi, Feng-lan

    2002-02-01

    A new method for analysing the ingredients of Isrhynchophylline in Uncaria Rhynchophylla Jacks by thin layer chromatography (TLC) and the surface-enhanced Raman spectroscopy (SERS) is reported in this paper. The results show that the characteristic spectra bands of Isrhynchophylline situated at the thin layer with the amount of sample about 2.5 micrograms were obtained. The difference between SERS and solid spectra was found. Great enhancement of the 1,615 cm-1 spectral band was abstained. Molecule was absorbed in surface silver sol by pi electrons in phenyl and by pair of electrons in N together. An absorption model of Isrhynchophylline and silver sol was proposed. This method can be used to analyse the chemical ingredients with high sensitivity.

  5. [TLC-SERS study on evodiamine in evodia rutaecarpa].

    Science.gov (United States)

    Zhang, Jin-zhi; Wang, Yuan; Chen, Hui; Shao, Hui-bo

    2007-05-01

    A new method for analyzing the ingredients of evodiamine (EV), rutaecarpine (RU), hydroxyevodiamine (HYD), evodiamide (ED), dihydrorutaecarpine (DRU) and 14-formyldihydrorutaecarpine (FDRU) in evodia rutaecarpa using high performance thin layer chromatography (TLC) and surface enhanced Raman spectroscopy (SERS) technique is reported. The character of this method is that standard samples are not needed. The results show that the characteristic spectral bands of EV, RU, HYD, and ED can be obtained from the TLC spot with microgramme of sample. The spectral band at 1562 cm(-1) was obtained with great enhancement. Molecule absorbed in surface silver sol by nr electrons in ring. The spectral bands of EV, RU, HYD and ED are obviously different due to their differences in structure. The TLC and SERS techniques standard samples are a convenient and speedy method to analyze chemical ingredients with high sensitivity for the study of the Chinese traditional medicine.

  6. Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance.

    Science.gov (United States)

    Kuttner, Christian; Mayer, Martin; Dulle, Martin; Moscoso, Ana; López-Romero, Juan Manuel; Förster, Stephan; Fery, Andreas; Pérez-Juste, Jorge; Contreras-Cáceres, Rafael

    2018-04-04

    We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV-vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 10 4 and 5.6 × 10 4 and nanomolar limit of detection (10 -8 -10 -9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.

  7. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    Science.gov (United States)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  8. Investigation of the Brill transition in nylon 6,6 by Raman, THz-Raman, and two-dimensional correlation spectroscopy.

    Science.gov (United States)

    Bertoldo Menezes, D; Reyer, A; Musso, M

    2018-02-05

    The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Two-dimensional correlation spectroscopy reveals the underlying compositions for FT-NIR identification of the medicinal bulbs of the genus Fritillaria

    Science.gov (United States)

    Chen, Jianbo; Wang, Yue; Liu, Aoxue; Rong, Lixin; Wang, Jingjuan

    2018-03-01

    Fritillariae Bulbus, the dried bulbs of several species of the genus Fritillaria, is often used in traditional Chinese medicine for the treatment of cough and pulmonary diseases. However, the similar appearances make it difficult to identify different kinds of Fritillariae Bulbus. In this research, Fourier transform near-infrared (FT-NIR) spectroscopy with a reflection fiber probe is employed for the direct testing and automatic identification of different kinds of Fritillariae Bulbus to ensure the authenticity, efficacy and safety. The bulbs can be measured directly without pulverizing. According to the two-dimensional (2D) correlation analysis and statistical analysis, the height ratio of the two peaks near 4860 cm-1 and 4750 cm-1 in the second derivative spectra is specific to the species of Fritillariae Bulbus. This indicates that the relative amount of protein and carbohydrate may be critical to identify Fritillariae Bulbus. With the help of the SIMCA model, the four kinds of Fritillariae Bulbus can be identified correctly by FT-NIR spectroscopy. The results show the potential of FT-NIR spectroscopy with a reflection fiber probe in the rapid testing and identification of Fritillariae Bulbus.

  10. [Study on the ingredients of reserpine by TLC-FT-SERS].

    Science.gov (United States)

    Wang, Y; Zi, F; Wang, Y; Zhao, Y; Zhang, X; Weng, S

    1999-12-01

    A new method for analysing the ingredients of reserpine by thin layer chromatography (TLC) and surface-enhanced Raman spectroscopy (SERS) is reported in this paper. The results show that the characteristic spectral bands of reserpine satuated at the thin layer with the amount of sample about 2 microg were obtained. The difference between SERS and solid spectra was found. An absorption model of reserpine and silver sol was proposed. This method can be used to analyse the chemical ingredients with high sensitivity.

  11. Ultrahigh-Resolution Magnetic Resonance in Inhomogeneous Magnetic Fields: Two-Dimensional Long-Lived-Coherence Correlation Spectroscopy

    Science.gov (United States)

    Chinthalapalli, Srinivas; Bornet, Aurélien; Segawa, Takuya F.; Sarkar, Riddhiman; Jannin, Sami; Bodenhausen, Geoffrey

    2012-07-01

    A half-century quest for improving resolution in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI) has enabled the study of molecular structures, biological interactions, and fine details of anatomy. This progress largely relied on the advent of sophisticated superconducting magnets that can provide stable and homogeneous fields with temporal and spatial variations below ΔB0/B0LLC-COSY) opens the way to overcome both inhomogeneous and homogeneous broadening, which arise from local variations in static fields and fluctuating dipole-dipole interactions, respectively. LLC-COSY makes it possible to obtain ultrahigh resolution two-dimensional spectra, with linewidths on the order of Δν=0.1 to 1 Hz, even in very inhomogeneous fields (ΔB0/B0>10ppm or 5000 Hz at 9.7 T), and can improve resolution by a factor up to 9 when the homogeneous linewidths are determined by dipole-dipole interactions. The resulting LLC-COSY spectra display chemical shift differences and scalar couplings in two orthogonal dimensions, like in “J spectroscopy.” LLC-COSY does not require any sophisticated gradient switching or frequency-modulated pulses. Applications to in-cell NMR and to magnetic resonance spectroscopy (MRS) of selected volume elements in MRI appear promising, particularly when susceptibility variations tend to preclude high resolution.

  12. Chemical analysis of industrial scale deposits by combined use of correlation coefficients with emission line detection of laser induced breakdown spectroscopy spectra

    International Nuclear Information System (INIS)

    Siozos, P.; Philippidis, A.; Hadjistefanou, M.; Gounarakis, C.; Anglos, D.

    2013-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the mineral composition of various industrial scale samples. The aim of the study has been to investigate the capacity of LIBS to provide a fast, reliable analytical tool for carrying out routine analysis of inorganic scales, potentially on site, as a means to facilitate decision making concerning scale removal procedures. LIBS spectra collected in the range of 200–660 nm conveyed information about the metal content of the minerals. Via a straightforward analysis based on linear correlation of LIBS spectra it was possible to successfully discriminate scale samples into three main groups, Fe-rich, Ca-rich and Ba-rich, on the basis of correlation coefficients. By combining correlation coefficients with spectral data collected in the NIR, 860–960 nm, where sulfur emissions are detected, it became further possible to discriminate sulfates from carbonates as confirmed by independent analysis based on Raman spectroscopy. It is emphasized that the proposed LIBS-based method successfully identifies the major mineral or minerals present in the samples classifying the scales into relevant groups hence enabling process engineers to select appropriate scale dissolution strategies. - Highlights: • LIBS was used to determine the mineral composition of industrial scale samples. • Three groups of inorganic scales were identified: Ca rich, Ba rich and Fe rich. • A method that combines correlation coefficients and line detection is proposed. • The method successfully identifies the main mineral, or minerals, in the samples. • The results were compared with results obtained by use of Raman analysis

  13. A Widely Applicable Silver Sol for TLC Detection with Rich and Stable SERS Features

    Science.gov (United States)

    Zhu, Qingxia; Li, Hao; Lu, Feng; Chai, Yifeng; Yuan, Yongfang

    2016-04-01

    Thin-layer chromatography (TLC) coupled with surface-enhanced Raman spectroscopy (SERS) has gained tremendous popularity in the study of various complex systems. However, the detection of hydrophobic analytes is difficult, and the specificity still needs to be improved. In this study, a SERS-active non-aqueous silver sol which could activate the analytes to produce rich and stable spectral features was rapidly synthesized. Then, the optimized silver nanoparticles (AgNPs)-DMF sol was employed for TLC-SERS detection of hydrophobic (and also hydrophilic) analytes. SERS performance of this sol was superior to that of traditional Lee-Meisel AgNPs due to its high specificity, acceptable stability, and wide applicability. The non-aqueous AgNPs would be suitable for the TLC-SERS method, which shows great promise for applications in food safety assurance, environmental monitoring, medical diagnoses, and many other fields.

  14. Fragmentation of the C60 molecule in collision with light ions studied by a multi-correlation technique. Cross-sections, electron spectroscopy

    International Nuclear Information System (INIS)

    Rentenier, A.

    2004-04-01

    A quantitative study of the C60 fullerenes fragmentation in collision with light ions (H n + with n=1,2,3, He q+ with q=1,2) in the velocity range 0,1 - 2,3 u.a.) is presented. The multi-correlation technique, developed between fragment ions and electrons with well defined energy, has enlightened some of the dependences and properties of fragmentation mechanisms (cross sections, electron spectroscopy, size distributions, kinetic energy of fragment ions, Campi's scatter plot, activation energies). The deposited energy hence appeared as an important parameter. Cross sections have been measured, for the first time, for all the collisional processes. Ionisation and capture only depends on the collision velocity. On the other hand, scaling laws with the deposited energy have been observed for the cross sections of multifragmentation, which depends on the collision energy and the nature of the projectile. The deposited energy has also been found as an essential parameter to understand the evolution of the charged fragment size distributions. The electron spectroscopy, achieved at an emission angle of 35 degrees, showed spectra peaked at important energies (from 5 to 20 eV). The spectra shape depends on the collision velocity. A first theoretical analysis points out the link between the observed energy distribution and the presence of a centrifugal potential barrier. Finally, correlation experiments between produced ions and electron energy reveal that electron energy increases with internal energy. (author)

  15. A Rapid Identification Method for Calamine Using Near-Infrared Spectroscopy Based on Multi-Reference Correlation Coefficient Method and Back Propagation Artificial Neural Network.

    Science.gov (United States)

    Sun, Yangbo; Chen, Long; Huang, Bisheng; Chen, Keli

    2017-07-01

    As a mineral, the traditional Chinese medicine calamine has a similar shape to many other minerals. Investigations of commercially available calamine samples have shown that there are many fake and inferior calamine goods sold on the market. The conventional identification method for calamine is complicated, therefore as a result of the large scale of calamine samples, a rapid identification method is needed. To establish a qualitative model using near-infrared (NIR) spectroscopy for rapid identification of various calamine samples, large quantities of calamine samples including crude products, counterfeits and processed products were collected and correctly identified using the physicochemical and powder X-ray diffraction method. The NIR spectroscopy method was used to analyze these samples by combining the multi-reference correlation coefficient (MRCC) method and the error back propagation artificial neural network algorithm (BP-ANN), so as to realize the qualitative identification of calamine samples. The accuracy rate of the model based on NIR and MRCC methods was 85%; in addition, the model, which took comprehensive multiple factors into consideration, can be used to identify crude calamine products, its counterfeits and processed products. Furthermore, by in-putting the correlation coefficients of multiple references as the spectral feature data of samples into BP-ANN, a BP-ANN model of qualitative identification was established, of which the accuracy rate was increased to 95%. The MRCC method can be used as a NIR-based method in the process of BP-ANN modeling.

  16. SERS Technique for Rapid Bacterial Screening

    Science.gov (United States)

    This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating E. coli, Listeria, and Salmonella. FT-Raman and SERS spectra of both silver colloids and colloid-K3PO4 mixtures were collected and analyzed to evaluate the reproducibility and stability of silver colloids...

  17. Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram

    Science.gov (United States)

    Wang, Bin; Zhang, Li; Zhou, Xia

    2014-03-01

    The silver cube-like nanostructure with uniform size and high yield have been synthesized through the rapid sulfide-mediated polyol method. The morphology, structure and optical properties of the as-prepared silver nanocubes were characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The Surface-Enhanced Raman Scattering (SERS) performance of the as-prepared Ag nanocubes was characterized by crystal violet (CV) as the probe molecules. Furthermore, the low levels of thiram and pesticide paraoxon can be detected by the SERS technique, which shows that the silver nanocubes as a SERS substrate have excellent sensitivity and reproducibility.

  18. Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate

    Science.gov (United States)

    Zentel, Tobias; Overbeck, Viviane; Michalik, Dirk; Kühn, Oliver; Ludwig, Ralf

    2018-02-01

    The properties of the hydrogen bonds in ethylammonium nitrate (EAN) are analyzed by using molecular dynamics simulations and infrared as well as nuclear magnetic resonance experiments. EAN features a flexible three-dimensional network of hydrogen bonds with moderate strengths, which makes it distinct from related triethylammonium-based ionic liquids. First, the network’s flexibility is manifested in a not very pronounced correlation of the hydrogen bond geometries, which is caused by rapid interchanges of bonding partners. The large flexibility of the network also leads to a substantial broadening of the mid-IR absorption band, with the contributions due to N-H stretching motions ranging from 2800 to 3250 cm-1. Finally, the different dynamics are also seen in the rotational correlation of the N-H bond vector, where a correlation time as short as 16.1 ps is observed.

  19. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling

    International Nuclear Information System (INIS)

    Wang, Chao; Yu, Chenxu

    2015-01-01

    With the rapid development of analytical techniques, it has become much easier to detect chemical and biological analytes, even at very low detection limits. In recent years, techniques based on vibrational spectroscopy, such as surface enhanced Raman spectroscopy (SERS), have been developed for non-destructive detection of pathogenic microorganisms. SERS is a highly sensitive analytical tool that can be used to characterize chemical and biological analytes interacting with SERS-active substrates. However, it has always been a challenge to obtain consistent and reproducible SERS spectroscopic results at complicated experimental conditions. Microfluidics, a tool for highly precise manipulation of small volume liquid samples, can be used to overcome the major drawbacks of SERS-based techniques. High reproducibility of SERS measurement could be obtained in continuous flow generated inside microfluidic devices. This article provides a thorough review of the principles, concepts and methods of SERS-microfluidic platforms, and the applications of such platforms in trace analysis of chemical and biological analytes. (topical review)

  20. Simultaneous 31P-NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: a correlation study

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, P; Thomsen, C; Sinkjaer, T

    1995-01-01

    A large number of studies have shown amplitude and spectral changes of the electromyogram during exercise, leading to several theories of how these changes might be related to the underlying metabolic changes. The amplitude and spectral changes are generally interpreted as changes in motor unit...... of the muscle. Simultaneous 31P-nuclear magnetic resonance spectroscopy and surface electromyography were performed during sustained static exercise and recovery in healthy volunteers and a patient with McArdle's disease. A clear dissociation between the median power frequency of the surface electromyogram...... and pH was seen in the healthy volunteers during recovery and during exercise in the patient with McArdle's disease. The results indicate that proton or lactate accumulation is not primarily responsible for the spectral changes of the surface electromyogram as previously suggested. The motor unit...

  1. Accessibility of nucleic acid-complexed biomolecules to hydroxyl radicals correlates with their conformation: a fluorescence polarization spectroscopy study

    International Nuclear Information System (INIS)

    Makrigiorgos, G.M.; Bump, E.; Huang, C.; Kassis, A.I.; Baranowska-Kortylewicz, J.

    1994-01-01

    A fluorescence methodology has been developed to examine the relationship between the conformational state of specific biomolecules in simple chromatin models and their accessibility to hydroxyl radicals ( . OH). Polylysine and histone H1 were labelled with SECCA, the succinimidyl ester of coumarin-3-carboxylic acid, which generates the fluorescent derivative 7-OH-SECCA following its interaction with radiation-induced . OH in aqueous solution. The fluorescence induced per unit γ-ray dose reflecting the accessibility of . OH to such SECCA-conjugated biomolecules was recorded. The biomolecules were also labelled with the fluorescent derivative 7-OH-SECCA in trace amounts to study their conformation under identical conditions via fluorescence polarization spectroscopy. (author)

  2. Non-Steroidal Biphenyl Gelators: Correlation of Xerogel Structure with Solid-State Structure and Circular Dichroism Spectroscopy

    Directory of Open Access Journals (Sweden)

    H. Cristina Geiger

    2018-04-01

    Full Text Available Because the factors favoring the formation of well-formed single crystals are dissimilar to those conducive to gel formation, few examples of single-crystal structural characterizations of organogelators are found in the literature. A series of biphenyl methyl and ethyl diester derivatives of varying chain length were synthesized and their gelation abilities explored. X-ray diffraction of single crystals of one of the gelators reveals a columnar extended structure. Based on XRD results for xerogels obtained from the reported organogelators, the members of the series are isostructural and so also adopt a columnar superstructure. Scanning electron microscopy (SEM was used for the investigation of the morphology of the xerogels, which display either platelet-like morphologies or more typical entangled twisted ribbon-like aggregates. The gels exhibit chirality, which depends on the sol-gel transition history, as observed by induced circular dichroism (ICD spectroscopy.

  3. Value of Proton-MR-Spectroscopy in the Diagnosis of Temporal Lobe Epilepsy; Correlation of Metabolite Alterations With Electroencephalography

    International Nuclear Information System (INIS)

    Aydin, Hasan; Oktay, Nilay Aydin; Kizilgoz, Volkan; Altin, Elif; Tatar, Idil Gunes; Hekimoglu, Baki

    2012-01-01

    Epilepsy, a well-known mostly idiopathic neurologic disorder, has to be correctly diagnosed and properly treated. Up to now, several diagnostic approaches have been processed to determine the epileptic focus. The aim of this study was to discover whether proton-MR-spectroscopic imaging (MRSI) aids in the diagnosis of temporal lobe epilepsy in conjunction with classical electroencephalography (EEG) findings. Totally, 70 mesial temporal zones consisting of 39 right hippocampi and 31 left hippocampi of 46 patients (25 male, 21 female) were analyzed by proton MRSI. All patients underwent a clinical neurologic examination, scalp EEG recording and prolonged video EEG monitoring. Partial seizures on the right, left or both sides were recorded in all patients. All patients were under medical treatment and none of the patients underwent amygdalohippocampectomy and similar surgical procedures. The normal average lactate (Lac), phosphocreatine, N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), myo-inositol, glutamate and glutamine (Glx) peaks and Nacetyl aspartate/Cr, NAA/ Cho + Cr, Cho/Cr ratios were measured from the healthy opposite hippocampi or from the control subjects. The Lac, glutamate and glutamine (Glx), myo-inositol, phosphocreatine and NAA metabolites plus Cho/Cr ratio showed statistical difference between the normal and the epileptic hippocampi. Cho, Cr metabolites plus NAA/Cr, NAA/ Cho + Cr ratios were almost the same between the groups. The sensitivity of Proton-MR-Spectroscopy for lateralization of the epileptic foci in all patients was 96% and the specificity was 50%. Proton-MRSI can easily be considered as an alternative modality of choice in the diagnosis of temporal lobe epilepsy and in the future; Proton-MR-Spectroscopy may become the most important technique used in epilepsy centers

  4. Nanofabrication of SERS Substrates for Single/Few Molecules Detection

    KAUST Repository

    Melino, Gianluca

    2015-05-04

    Raman spectroscopy is among the most widely employed methods to investigate the properties of materials in several fields of study. Evolution in materials science allowed us to fabricate suitable substrates, at the nanoscale, capable to enhance the electromagnetic field of the signals coming from the samples which at this range turn out to be in most cases singles or a few molecules. This particular variation of the classical technique is called SERS (Surface Enanched Raman Spectroscopy). In this work, the enhancement of the electromagnetic field is obtained by manipulation of the optical properties of metals with respect to their size. By using electroless deposition (bottom up technique), gold and silver nanoparticles were deposited in nanostructured patterns obtained on silicon wafers by means of electron beam lithography (top down technique). Rhodamine 6G in aqueous solution at extremely low concentration (10-8 M) was absorbed on the resultant dimers and the collection of the Raman spectra demonstrated the high efficiency of the substrates.

  5. [Current views on surface enhanced Raman spectroscopy in microbiology].

    Science.gov (United States)

    Jia, Xiaoxiao; Li, Jing; Qin, Tian; Deng, Aihua; Liu, Wenjun

    2015-05-01

    Raman spectroscopy has generated many branches during the development for more than 90 years. Surface enhanced Raman spectroscopy (SERS) improves SNR by using the interaction between tested materials and the surface of rough metal, as to quickly get higher sensitivity and precision spectroscopy without sample pretreatment. This article describes the characteristic and classification of SERS, and updates the theory and clinical application of SERS. It also summarizes the present status and progress of SERS in various disciplines and illustrates the necessity and urgency of its research, which provides rationale for the application for SERS in microbiology.

  6. Studies of atomic diffusion in binary alloys by X-ray photon correlation spectroscopy with particular attention to B2 phases

    International Nuclear Information System (INIS)

    Stana, M.B.

    2015-01-01

    The way single atoms change places in a condensed system determines many of its properties. Insight into the mechanisms controlling such processes, therefore, yields a better understanding of matter which in turn allows for improving fabrication and tailoring of material properties. Intermetallic alloys have many attractive features for industrial applications, such as high specific strength, good corrosion and oxidation resistance and low raw material cost. Their application is, however, still strongly limited by properties such as high brittleness at low temperatures. Methods capable of studying diffusion on an atomistic level have been restricted to high temperatures close to the melting point of intermetallics until now. The new method of atomic- scale X-ray Photon Correlation Spectroscopy provides a means of studying these materials at technically relevant working temperatures. This thesis demonstrates the application of this new technique to binary intermetallic alloys. In the first part the theoretical concepts underlying atomic-scale X-ray Photon Correlation Spectroscopy such as correlation, rate equations, scattering and reciprocal space will be tho- roughly discussed. As computer simulation techniques play an important role in data evaluation, a chapter is dedicated to this topic. The experimental preconditions are then treated. The last chapters are devoted to the presentation of experimental results. It is shown that a new diffusion mechanism is required to explain atomic hops at relatively low temperature in a B2 Fe-Al alloy with a few percent of excess Fe, while in a B2 Ag-Mg alloy with excess Ag commonly known mechanisms can explain the observed diffusion behavior. (author) [de

  7. Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fusheng [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Polizzotto, Matthew L. [Department of Soil Science, North Carolina State University, Raleigh, NC 27695 (United States); Guan, Dongxing [Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210026 (China); Wu, Jun [College of Environment, Zhejiang University of Technology, Hangzhou 310014 (China); Shen, Qirong; Ran, Wei [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Wang, Boren [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081 (China); Yu, Guanghui, E-mail: yuguanghui@njau.edu.cn [Jiangsu Provincial Key Lab for Organic Solid Waste Utilization and National Engineering Research Center for Organic-Based Fertilizers, College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2017-03-15

    Highlights: • The interactions and binding between Cd and functional groups are essential for their fates. • Two-dimensional correlation spectroscopy can identify Cd binding to functional groups in soils. • Synchrotron radiation based spectromicroscopy shows the micro-scale distribution of Cd in soils. • Soil functional groups controlling Cd binding can be modified by fertilization treatments. - Abstract: Understanding how heavy metals bind and interact in soils is essential for predicting their distributions, reactions and fates in the environment. Here we propose a novel strategy, i.e., combining two-dimensional correlation spectroscopy (2D COS) and synchrotron radiation based spectromicroscopies, for identifying heavy metal binding to functional groups in soils. The results showed that although long-term (23 yrs) organic fertilization treatment caused the accumulation of Cd (over 3 times) in soils when compared to no fertilization and chemical fertilization treatments, it significantly (p < 0.05) reduced the Cd concentration in wheat grain. The 2D COS analyses demonstrated that soil functional groups controlling Cd binding were modified by fertilization treatments, providing implications for the reduced bioavailability of heavy metals in organic fertilized soils. Furthermore, correlative micro X-ray fluorescence spectromicroscopy, electron probe micro-analyzer mapping, and synchrotron-radiation-based FTIR spectromicroscopy analysis showed that Cd, minerals, and organic functional groups were heterogeneously distributed at the micro-scale in soil colloids. Only minerals, rather than organic groups, had a similar distribution pattern with Cd. Together, this strategy has a potential to explore the interactions and binding sites among heavy metals, minerals and organic components in soil.

  8. Detection of occlusal caries lesions using fluorescence: correlation between histology and obtained results for Diagnodent and spectroscopy

    International Nuclear Information System (INIS)

    Rocha-Cabral, Renata Maciel

    2006-01-01

    The aims of this study were to develop and test a method to detect caries lesions in vivo and in vitro, using a portable spectrometer (PS); to analyze the performance of PS as well as the commercial device Diagnodent (Dd); correlate them with the gold standard, their transversal section areas and lesions depth and between themselves. 66 occlusal pre-molars sites were examined in vivo with Dd. Sequentially, fluorescence (λexc ∼ 657 nm) was collected by an optical fiber, conducted to PS and then analyzed as spectra, which were normalized and had calculated the Ratios of their Areas Under the Curves (RAUC) of carious and sound tissues. Experiments were conducted in vitro in the same sites. Gold Standard was obtained by polarized light microscopy. Pearson correlation was used to compare the devices with transversal section area, lesions depth and between themselves. The area under ROC curve, sensitivity, specificity as well as accuracy were calculated and verified with McNemar test. Dd and RAUC showed statistically significant correlation with gold standard (p < 0.01 for Dd and p < 0.05 for RAUC) and between themselves (r = 0,83 in vivo and r = 0,87 in vitro). Although it was significant, the devices showed low correlation with depth of lesions in vivo and in vitro (r = ∼ 0.43). The transversal section area of the lesion had no influence on readings in both devices. Dd showed higher sensitivity (0.76) than PS (0.60) in vivo (p < 0.05), though this fact was not able to improve its performance. In turn, PS showed higher sensitivity (0.88) than Dd (0.79) in vitro, but this difference was not significantly. The other parameters did not show statistically significant differences (p < 0.05) between methods. PS showed positive correlation with Dd, equal correlation with lesions depth and higher ability of detecting the disease in vitro, what suggests that if accompanied with a conic and an angulated probe and a dedicated software, the PS method could be useful in clinics

  9. Two-Dimensional Raman Correlation Spectroscopy Study of Poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] Copolymers.

    Science.gov (United States)

    Noda, Isao; Roy, Anjan; Carriere, James; Sobieski, Brian J; Chase, D Bruce; Rabolt, John F

    2017-07-01

    Two-dimensional correlation analysis was applied to the time-dependent evolution of Raman spectra during the isothermal crystallization of bioplastic, poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] or PHBHx copolymer. Simultaneous Raman measurement of both carbonyl stretching and low-frequency crystalline lattice mode regions made it possible to carry out the highly informative hetero-mode correlation analysis. The crystallization process of PHBHx involves: (1) the early nucleation stage; (2) the primary growth of well-ordered crystals of PHBHx; and (3) the secondary crystal growth phase. The latter stage probably occurs in the inter-lamellar region, with an accompanying reduction of the amorphous component, which occurs most dominantly during the primary crystal growth. The development of a fully formed lamellar structure comprising the 2 1 helices occurs after the primary growth of crystals. In the later stage, secondary inter lamellar space crystallization occurs after the full formation of packed helices comprising the lamellae.

  10. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    Science.gov (United States)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  11. Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna-Matthew-Olson photosynthetic complex

    International Nuclear Information System (INIS)

    Caram, Justin R.; Lewis, Nicholas H. C.; Fidler, Andrew F.; Engel, Gregory S.

    2012-01-01

    Long-lived excitonic coherence in photosynthetic proteins has become an exciting area of research because it may provide design principles for enhancing the efficiency of energy transfer in a broad range of materials. In this publication, we provide new evidence that long-lived excitonic coherence in the Fenna-Mathew-Olson pigment-protein (FMO) complex is consistent with the assumption of cross correlation in the site basis, indicating that each site shares bath fluctuations. We analyze the structure and character of the beating crosspeak between the two lowest energy excitons in two-dimensional (2D) electronic spectra of the FMO Complex. To isolate this dynamic signature, we use the two-dimensional linear prediction Z-transform as a platform for filtering coherent beating signatures within 2D spectra. By separating signals into components in frequency and decay rate representations, we are able to improve resolution and isolate specific coherences. This strategy permits analysis of the shape, position, character, and phase of these features. Simulations of the crosspeak between excitons 1 and 2 in FMO under different regimes of cross correlation verify that statistically independent site fluctuations do not account for the elongation and persistence of the dynamic crosspeak. To reproduce the experimental results, we invoke near complete correlation in the fluctuations experienced by the sites associated with excitons 1 and 2. This model contradicts ab initio quantum mechanic/molecular mechanics simulations that observe no correlation between the energies of individual sites. This contradiction suggests that a new physical model for long-lived coherence may be necessary. The data presented here details experimental results that must be reproduced for a physical model of quantum coherence in photosynthetic energy transfer.

  12. Free volume of mixed cation borosilicate glass sealants elucidated by positron annihilation lifetime spectroscopy and its correlation with glass properties

    Science.gov (United States)

    Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.

    2015-01-01

    The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.

  13. MR spectroscopy of normal prostate, prostate cancer and benign prostate hyperplasia: correlative study of metabolic characteristics with histopathological findings

    International Nuclear Information System (INIS)

    Zhou Liangping; Wang Xiaoying; Ding Jianping; Li Feiyu; Shan Gangzhi; Xiao Jiangxi; Jiang Xuexiang

    2005-01-01

    Objective: To quantify and compare the metabolic characteristics of normal prostate, prostate cancer (PCa), and benign prostate hyperplasia (BPH) by using MR spectroscopy (MRS). Methods: Twenty-one cases of Pca, 23 cases of BPH proved by operation or systemic biopsy, and 17 cases of normal prostate were examined by MRS. The prostate was divided into 6 regions (left/ right bottom, middle, and tip), and the (Choline + Creatine)/Citrate (CC/C) value of each region was measured. After biopsy, all the puncture locations were marked and enrolled in one of the regions mentioned above. The average CC/C ratios of the normal prostate peripheral zone, the area of Pca, and the central zone of BPH were calculated. Results: The average ratio of CC/C for prostate cancer (2.13 ± 0.82) was statistically higher than that of normal prostate tissue (0.42 ± 0.19) and the regions of BPH (0.62 ± 0.19) (t 0.725, P=0.000; t=0.684, P=0.000). Conclusion: The difference of metabolic levels measured by MRS between PCa and BPH is statistically significant. MRS may be useful in the differential diagnosis of PCa and BPH. (authors)

  14. Electrochemical impedance spectroscopy analysis with a symmetric cell for LiCoO2 cathode degradation correlated with Co dissolution

    Directory of Open Access Journals (Sweden)

    Hiroki Nara

    2016-04-01

    Full Text Available Static degradation of LiCoO2 cathodes is a problem that hinders accurate analysis using our developed separable symmetric cell. Therefore, in this study we investigate the static degradation of LiCoO2 cathodes in separable symmetric cells by electrochemical impedance spectroscopy (EIS and inductively coupled plasma analyses. EIS measurements of LiCoO2 cathodes are conducted in various electrolytes, with different anions and with or without HF and/or H2O. This allows us to determine the static degradation of LiCoO2 cathodes relative to their increase of charge transfer resistance. The increase of the charge transfer resistance of the LiCoO2 cathodes is attributed to cobalt dissolution from the active material of LiCoO2. Cobalt dissolution from LiCoO2 is revealed to occur even at low potential in the presence of HF, which is generated from LiPF6 and H2O. The results indicate that avoidance of HF generation is important for the analysis of lithium-ion battery electrodes by using the separable cell. These findings reveal the condition to achieve accurate analysis by EIS using the separable cell.

  15. From Mahan excitons to Landau levels at high magnetic fields: 2DFT spectroscopy reveals hidden quantum correlations (Conference Presentation)

    Science.gov (United States)

    Karaiskaj, Denis

    2017-02-01

    Two-dimensional electron gases have been the subject of research for decades. Modulation doped GaAs quantum wells in the absence of magnetic fields exhibit interesting many-body physics such as the Fermi edge singularity or Mahan exciton and can be regarded as a collective excitation of the system. Under high magnetic fields Landau levels form which have been studied using transport and optical measurements. Nonlinear coherent two-dimensional Fourier transform (2DFT) spectroscopy however provides new insights into these systems. We present the 2DFT spectra of Mahan Excitons associated with the heavy-hole and light-hole resonances observed in a modulation doped GaAs/AlGaAs single quantum well [1]. These resonances are observed to be strongly coupled through many-body interactions. The 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations and reveal striking differences. Furthermore, 2DFT spectra at high magnetic fields performed at the National High Magnetic Field Lab (NHMFL) in Tallahassee, Florida will be discussed. The spectra exhibit new features and peculiar line shapes suggesting interesting underlying physics. [1] J. Paul, C. E. Stevens, C. Liu, P. Dey, C. McIntyre, V. Turkowski, J. L. Reno, D. J. Hilton, and D. Karaiskaj, Phys. Rev. Lett.116, 157401 (2016).

  16. Multivariate statistical process control (MSPC) using Raman spectroscopy for in-line culture cell monitoring considering time-varying batches synchronized with correlation optimized warping (COW).

    Science.gov (United States)

    Liu, Ya-Juan; André, Silvère; Saint Cristau, Lydia; Lagresle, Sylvain; Hannas, Zahia; Calvosa, Éric; Devos, Olivier; Duponchel, Ludovic

    2017-02-01

    Multivariate statistical process control (MSPC) is increasingly popular as the challenge provided by large multivariate datasets from analytical instruments such as Raman spectroscopy for the monitoring of complex cell cultures in the biopharmaceutical industry. However, Raman spectroscopy for in-line monitoring often produces unsynchronized data sets, resulting in time-varying batches. Moreover, unsynchronized data sets are common for cell culture monitoring because spectroscopic measurements are generally recorded in an alternate way, with more than one optical probe parallelly connecting to the same spectrometer. Synchronized batches are prerequisite for the application of multivariate analysis such as multi-way principal component analysis (MPCA) for the MSPC monitoring. Correlation optimized warping (COW) is a popular method for data alignment with satisfactory performance; however, it has never been applied to synchronize acquisition time of spectroscopic datasets in MSPC application before. In this paper we propose, for the first time, to use the method of COW to synchronize batches with varying durations analyzed with Raman spectroscopy. In a second step, we developed MPCA models at different time intervals based on the normal operation condition (NOC) batches synchronized by COW. New batches are finally projected considering the corresponding MPCA model. We monitored the evolution of the batches using two multivariate control charts based on Hotelling's T 2 and Q. As illustrated with results, the MSPC model was able to identify abnormal operation condition including contaminated batches which is of prime importance in cell culture monitoring We proved that Raman-based MSPC monitoring can be used to diagnose batches deviating from the normal condition, with higher efficacy than traditional diagnosis, which would save time and money in the biopharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Advanced Gas Sensors Using SERS-Activated Waveguides

    Science.gov (United States)

    Lascola, Robert; McWhorter, Scott; Murph, Simona Hunyadi

    2010-08-01

    This contribution describes progress towards the development and testing of a functionalized capillary that will provide detection of low-concentration gas-phase analytes through SERS. Measurement inside a waveguide allows interrogation of a large surface area, potentially overcoming the short distance dependence of the SERS effect. The possible use of Raman spectroscopy for gas detection is attractive for IR-inactive molecules or scenarios where infrared technology is inconvenient. However, the weakness of Raman scattering limits the use of the technique to situations where low detection limits are not required or large gas pressures are present. With surface-enhanced Raman spectroscopy (SERS), signal enhancements of 106 are often claimed, and higher values are seen in specific instances. However, most of the examples of SERS analysis are on liquid-phase samples, where the molecular density is high, usually combined with some sort of sample concentration at the surface. Neither of these factors is present in gas-phase samples. Because the laser is focused to a small point in the typical experimental setup, and the spatial extent of the effect above the surface is small (microns), the excitation volume is miniscule. Thus, exceptionally large enhancements are required to generate a signal comparable to that obtained by conventional Raman measurements. A reflective waveguide offers a way to increase the interaction volume of the laser with a SERS-modified surface. The use of a waveguide to enhance classical Raman measurements was recently demonstrated by S.M. Angel and coworkers, who obtained 12- to 30-fold sensitivity improvements for nonabsorbing gases (CO2, CH4) with a silvered capillary (no SERS enhancement). Shi et al.. demonstrated 10-to 100-fold enhancement of aqueous Rhodamine 6G in a capillary coated with silver nanoparticles. They observed enhancements of 10- to 100-fold compared to direct sampling, but this relied on a "double substrate", which required

  18. Correlative study of proton magnetic resonance spectroscopy and histopathology in a neonatal piglet model of hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Wang Xiaoming; Guo Qiyong; Lin Nan; Ding Changwei; Wang Shuxuan; Chen Liying; Lv Qingjie; Jiang Weiguo

    2005-01-01

    Objective: To evaluate proton magnetic resonance spectroscopy ( 1 H-MRS) in the diagnosis of hypoxic ischemic brain damage (HIBD) in hyperacute period using an animal model. Methods: Twenty-five term piglets at the age of 3 to 7 days were subjected and divided into one control group (n=5) and two experimental groups. 1 H spectrum curve was measured continuously in all cases at 0-6, 20-24, 44-48, and 68-72 h after hypoxic ischemia in frontoparietal region, basal ganglia, and hippocampus. Lac/Cr was calculated. Histopathologic examination included hematoxylin and glial fibrillary acidic protein (GFAP) stain, teminal transferase mediated dUTP-biotin nick- end eosin (HE) stain, labeling (TUNEL) stain, and transmission electron microscope. Results: Lac/Cr in hippocampus region was 0.95 ± 0.88 in control group compared with 5.65 ± 1.93 in model group 1 and 8.93 ± 6.95 in model group 2. Model group 1 showed significantly glial cells swelling in hippocampus region on histopathologic examination. Model group 2 showed neurons and glial cells swelling significantly in hippocampus, and prominent apoptosis was seen in the peripheral neurons and glial cells. Further more Lac/Cr remained high within 72 h. Lac /Cr was 0.41 ± 0.03 in basal ganglia in control group compared with no significant elevation in model group 1 and 13.59 ± 10.23 in model group 2. Model group 1 did not show significant neuron and glial cell pathological changes in basal ganglia. Model group 2 showed obvious glial cell swelling, while neurons changed mildly. Lac/Cr was high within 48 h, and then declined. Lac/Cr in frontoparietal region also increased, but the value was lower than the former two regions. Conclusion: Neurons have an acute energy consumption after hypoxic ischemia, and Lac/Cr reflectes the extent of lesions correctly. (authors)

  19. Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis.

    Science.gov (United States)

    Geitner, Robert; Götz, Stefan; Stach, Robert; Siegmann, Michael; Krebs, Patrick; Zechel, Stefan; Schreyer, Kristin; Winter, Andreas; Hager, Martin D; Schubert, Ulrich S; Gräfe, Stefanie; Dietzek, Benjamin; Mizaikoff, Boris; Schmitt, Michael; Popp, Jürgen

    2018-03-15

    The presented study reports the synthesis and the vibrational spectroscopic characterization of different matrix-embedded model photocatalysts. The goal of the study is to investigate the interaction of a polymer matrix with photosensitizing dyes and metal complexes for potential future photocatalytic applications. The synthesis focuses on a new rhodamine B derivate and a Pt(II) terpyridine complex, which both contain a polymerizable methacrylate moiety and an acid labile acylhydrazone group. The methacrylate moieties are afterward utilized to synthesize functional model hydrogels mainly consisting of poly(ethylene glycol) methacrylate units. The pH-dependent and temperature-dependent behavior of the hydrogels is investigated by means of Raman and IR spectroscopy assisted by density functional theory calculations and two-dimensional correlation spectroscopy. The spectroscopic results reveal that the Pt(II) terpyridine complex can be released from the polymer matrix by cleaving the C═N bond in an acid environment. The same behavior could not be observed in the case of the rhodamine B dye although it features a comparable C═N bond. The temperature-dependent study shows that the water evaporation has a significant influence neither on the molecular structure of the hydrogel nor on the model photocatalytic moieties.

  20. Engineering Metal Nanostructure for SERS Application

    Directory of Open Access Journals (Sweden)

    Yanqin Cao

    2013-01-01

    Full Text Available Surface-enhanced Raman scattering (SERS has attracted great attention due to its remarkable enhancement and excellent selectivity in the detection of various molecules. Noble metal nanomaterials have usually been employed for producing substrates that can be used in SERS because of their unique local plasma resonance. As the SERS enhancement of signals depends on parameters such as size, shape, morphology, arrangement, and dielectric environment of the nanostructure, there have been a number of studies on tunable nanofabrication and synthesis of noble metals. In this work, we will illustrate progress in engineering metallic nanostructures with various morphologies using versatile methods. We also discuss their SERS applications in different fields and the challenges.

  1. Dual channel detection of ultra low concentration of bacteria in real time by scanning fluorescence correlation spectroscopy

    Science.gov (United States)

    Altamore, Ilaria; Lanzano, Luca; Gratton, Enrico

    2013-06-01

    We describe a novel method to detect very low concentrations of bacteria in water. Our device consists of a portable horizontal geometry small confocal microscope with large pinhole and a holder for cylindrical cuvettes containing the sample. Two motors provide fast rotational and slow vertical motion of the cuvette so the device looks like a simplified flow cytometer without flow. To achieve high sensitivity, the design has two detection channels. Bacteria are stained by two different nucleic acid dyes and excited with two different lasers. Data are analyzed with a correlation filter based on particle passage pattern recognition. The passage of a particle through the illumination volume is compared with a Gaussian pattern in both channels. The width of the Gaussian correlates with the time of passage of the particle so one particle is counted when the algorithm finds a match with a Gaussian in both channels. The concentration of particles in the sample is deduced from the total number of coincident hits and the total volume scanned. This portable setup provides higher sensitivity, low-cost advantage, and it can have a wide use ranging from clinical applications to pollution monitors and water and air quality control.

  2. Dual channel detection of ultra low concentration of bacteria in real time by scanning fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Altamore, Ilaria; Lanzano, Luca; Gratton, Enrico

    2013-01-01

    We describe a novel method to detect very low concentrations of bacteria in water. Our device consists of a portable horizontal geometry small confocal microscope with large pinhole and a holder for cylindrical cuvettes containing the sample. Two motors provide fast rotational and slow vertical motion of the cuvette so the device looks like a simplified flow cytometer without flow. To achieve high sensitivity, the design has two detection channels. Bacteria are stained by two different nucleic acid dyes and excited with two different lasers. Data are analyzed with a correlation filter based on particle passage pattern recognition. The passage of a particle through the illumination volume is compared with a Gaussian pattern in both channels. The width of the Gaussian correlates with the time of passage of the particle so one particle is counted when the algorithm finds a match with a Gaussian in both channels. The concentration of particles in the sample is deduced from the total number of coincident hits and the total volume scanned. This portable setup provides higher sensitivity, low-cost advantage, and it can have a wide use ranging from clinical applications to pollution monitors and water and air quality control. (paper)

  3. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    Science.gov (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  4. Characterization of magnetic core-shell nanoparticles by fluxgate magnetorelaxometry, ac susceptibility, transmission electron microscopy and photon correlation spectroscopy-A comparative study

    International Nuclear Information System (INIS)

    Ludwig, Frank; Heim, Erik; Schilling, Meinhard

    2009-01-01

    We have compared the structure parameters of magnetic core-shell nanoparticles determined from fluxgate magnetorelaxometry measurements applying the moment superposition model with the results from other methods. For the characterization of the magnetic cores, the nanoparticles are immobilized by freeze-drying. The core size distribution estimated for superparamagnetic Fe 3 O 4 magnetic nanoparticles (MNPs) with polyacrylic acid shell agrees well with that from transmission electron microscopy measurements. The distribution of hydrodynamic diameters of nanoparticle suspensions estimated from magnetorelaxometry measurements is in good agreement with that obtained from ac susceptibility and photon correlation spectroscopy measurements. Advantages of magnetorelaxometry compared to the other two integral techniques are that it is fast and the signal is less dominated by larger particles.

  5. A novel normalization method based on principal component analysis to reduce the effect of peak overlaps in two-dimensional correlation spectroscopy

    Science.gov (United States)

    Wang, Yanwei; Gao, Wenying; Wang, Xiaogong; Yu, Zhiwu

    2008-07-01

    Two-dimensional correlation spectroscopy (2D-COS) has been widely used to separate overlapped spectroscopic bands. However, band overlap may sometimes cause misleading results in the 2D-COS spectra, especially if one peak is embedded within another peak by the overlap. In this work, we propose a new normalization method, based on principal component analysis (PCA). For each spectrum under discussion, the first principal component of PCA is simply taken as the normalization factor of the spectrum. It is demonstrated that the method works well with simulated dynamic spectra. Successful result has also been obtained from the analysis of an overlapped band in the wavenumber range 1440-1486 cm -1 for the evaporation process of a solution containing behenic acid, methanol, and chloroform.

  6. [A comparative analysis of the informative value of anti-AChR-antibody radioimmunoassay and laser correlation spectroscopy in myasthenia gravis].

    Science.gov (United States)

    Alchinova, I B; Yakovenko, E N; Sidnev, D V; Dedaev, S Yu; Sanadze, A G; Karganov, M Yu

    An aim of the study was to compare informative value of traditional approach (anti-AChR antibody radioimmunoassay) and evaluation of metabolic shifts by laser correlation spectroscopy in myasthenia gravis. The search for the relationship between the disease severity in 77 patients, 12-80 years and the distribution pattern of subfraction serum components revealed three informative zones: 6-15, 27-67, and 127-223 nm. In patients without disturbances of vital functions, the contribution of the first zone particles into light scatter increases and that of the third zone particles decreases. Considerable differences attaining the level of statistical significance in zones 6 and 20 nm were revealed in the spectra of serum from patients with myasthenia gravis of the same severity with and without thymoma. This opens prospects for dynamic monitoring of the efficiency of therapy.

  7. A versatile setup for ultrafast broadband optical spectroscopy of coherent collective modes in strongly correlated quantum systems

    Directory of Open Access Journals (Sweden)

    Edoardo Baldini

    2016-11-01

    Full Text Available A femtosecond pump-probe setup is described that is optimised for broadband transient reflectivity experiments on solid samples over a wide temperature range. By combining high temporal resolution and a broad detection window, this apparatus can investigate the interplay between coherent collective modes and high-energy electronic excitations, which is a distinctive characteristic of correlated electron systems. Using a single-shot readout array detector at frame rates of 10 kHz allows resolving coherent oscillations with amplitudes <10−4. We demonstrate its operation on the charge-transfer insulator La2CuO4, revealing coherent phonons with frequencies up to 13 THz and providing access into their Raman matrix elements.

  8. Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips

    DEFF Research Database (Denmark)

    Semenova, Anna; Goodilin, Eugene; Brazhe, Nadezda

    2012-01-01

    Surface-enhanced Raman spectroscopy (SERS) of living cells has rapidly become a powerful trend in biomedical diagnostics. It is a common belief that highly ordered, artificially engineered substrates are the best future decision in this field. This paper, however, describes an alternative...

  9. Conocer y ser en el paradigma constructivista

    Directory of Open Access Journals (Sweden)

    Jose Antonio Camargo Rodriguez

    2014-03-01

    Full Text Available Toda teoría acerca del aprendizaje se fundamenta en una interpretación del conocimiento, la cual se encuentra, a su vez, ligada a una cierta concepción de «ser». No será posible asimilar verdaderamente cualquiera de tales teorías si se ignoran, o no se consideran con el debido detenimiento, las ideas de conocer y «ser» que le sirven de base. Sc pone de presente que el constructivismo, en contraste con la teoría transmisionista de la enseñanza y el aprendizaje, predominante en la pedagogía tradicional, tiene su fundamento en la interpretación según la cual el conocer es una actividad humana en la que, a medida quo conoce, el hombre construye el «ser». Antes de todo conocimiento, las cosas no tienen un «ser»; están ahí, pero no se sabe lo que son. El «ser», quo constituye el objeto de todo conocer, aquello que el sujeto persigue a través de su conocimiento, no toes dada de antemano, ni le viene de fuera, sino quo es una elaboración quo el mismo realiza a través de su actividad cognoscitiva, un contenido de su propia conciencia. Hay, pues, una cierta paradoja entre las ideas de conocer y «ser» que sirven de fundamento al constructivismo, cuya reflexión se propone en aras de ganar una mejor comprensión, de encontrarle a este paradigma un sentido más allá de la pedagogía y la didáctica.

  10. Investigation of hyperfine interactions in pure silicon and NTD silicon by means of perturbed angular γ-γ correlation spectroscopy

    International Nuclear Information System (INIS)

    Cordeiro, Moacir Ribeiro

    2007-01-01

    III the present work, a microscopic investigation of hyperfine interactions in single crystal silicon samples was carried out by means of Perturbed Angular γ -γ correlation technique (PAC), which is based in hyperfine interactions. In order to achieve these measurements, it was used 111 In → 111 Cd radioactive probe nuclei, which decay through the well known γ cascade 171-245 keV with an intermediate level of 245 keV ( I 5 + /2, Q = 0.83b, T 1/2 = 84.5 ns). The samples were prepared using different probe nuclei insertion methods, making possible to increase our understanding on the impact generated by each of these techniques in PAC measurements. Ion implantation, diffusion and evaporation were carefully investigated giving emphasis on its characteristics and particularities. Then, it was made a study about the concentration of intrinsic defects as function of severe annealing processes. Finally, a comparative analysis was made for all these probe nuclei insertion methods. This work also accomplished PAC measurements in single crystal silicon doped with phosphorus by means of Neutron Transmutation Doping (NTD) method, carried out in a research nuclear reactor. The extremely high doping uniformity allied to the nonexistence of previous measurements in these materials emphasize the importance of the results obtained. These results are then compared with literature results for samples doped by conventional methods presenting the respective conclusions. (author)

  11. An experimental study on acute brain radiation injury: Dynamic changes in proton magnetic resonance spectroscopy and the correlation with histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui, E-mail: lihui@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Li, Jian-peng, E-mail: lijp@sysucc.org.cn [Department of Radiology, Dongguan People' s Hospital, Dongguan City (China); Lin, Cheng-guang, E-mail: linchg@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou (China); Liu, Xue-wen, E-mail: liuxw@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Geng, Zhi-jun, E-mail: gengzhj@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Mo, Yun-xian, E-mail: moyx@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Zhang, Rong, E-mail: zhangr@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China); Xie, Chuan-miao, E-mail: xchuanm@sysucc.org.cn [State Key Laboratory of Oncology in Southern China, Guangzhou (China); Medical Imaging and Minimally Invasive Interventional Center, Cancer Center, Sun Yat-sen University, Guangzhou (China)

    2012-11-15

    Purpose: To investigate the correlation between the alterations of single-voxel {sup 1}H MRS and the histopathological characteristics of radiation brain injury following radiation. Materials and methods: Twenty-seven rabbits were randomized into nine groups to receive radiation with a single dose of 25 Gy. The observation time points included a pre-radiation and 1, 2, 3, 4, 5, 6, 7, and 8 wk following radiation. Each treatment group underwent conventional MRI and single-voxel {sup 1}H MRS, N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) were observed over the region of interest, and the presence or absence of lactate (Lac) and lipid (Lip) was detected. Histological specimens of each group were obtained after image acquisition. Results: The values of Cho were significantly increased in the first 3 wk, and decreased over the following 5 wk after radiation. Levels of NAA showed a trend toward a decrease 5 wk after radiation. The levels of Cr were not changed between before and after radiation. The Cho/NAA metabolic ratio was significantly increased in weeks 6, 7, and 8 following irradiation, compared to pre-radiation values. Vascular and glial injury appeared on 2 wk after RT in the histology samples, until 4 wk after RT, necrosis of the oligodendrocytes, neuronal degeneration and demyelination could be observed. Conclusions: MRS is sensitive to detect metabolic changes following radiation, and can be used in the early diagnosis of radiation brain injury.

  12. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy.

    Science.gov (United States)

    Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe

    2013-08-14

    Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.

  13. Validation of diffuse correlation spectroscopy sensitivity to nicotinamide-induced blood flow elevation in the murine hindlimb using the fluorescent microsphere technique

    Science.gov (United States)

    Proctor, Ashley R.; Ramirez, Gabriel A.; Han, Songfeng; Liu, Ziping; Bubel, Tracy M.; Choe, Regine

    2018-03-01

    Nicotinamide has been shown to affect blood flow in both tumor and normal tissues, including skeletal muscle. Intraperitoneal injection of nicotinamide was used as a simple intervention to test the sensitivity of noninvasive diffuse correlation spectroscopy (DCS) to changes in blood flow in the murine left quadriceps femoris skeletal muscle. DCS was then compared with the gold-standard fluorescent microsphere (FM) technique for validation. The nicotinamide dose-response experiment showed that relative blood flow measured by DCS increased following treatment with 500- and 1000-mg / kg nicotinamide. The DCS and FM technique comparison showed that blood flow index measured by DCS was correlated with FM counts quantified by image analysis. The results of this study show that DCS is sensitive to nicotinamide-induced blood flow elevation in the murine left quadriceps femoris. Additionally, the results of the comparison were consistent with similar studies in higher-order animal models, suggesting that mouse models can be effectively employed to investigate the utility of DCS for various blood flow measurement applications.

  14. An Open-Label Exploratory Study with Memantine: Correlation between Proton Magnetic Resonance Spectroscopy and Cognition in Patients with Mild to Moderate Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Marc L. Gordon

    2012-08-01

    Full Text Available Aim: To characterize progression of Alzheimer’s disease (AD using proton magnetic resonance spectroscopy (1H MRS. Methods: Eleven subjects with mild to moderate AD underwent neurocognitive testing and single-voxel 1H MRS from the precuneus and posterior cingulate region at baseline, after 24 weeks of monotherapy with a cholinesterase inhibitor, and after another 24 weeks of combination therapy with open-label memantine and a cholinesterase inhibitor. Baseline metabolites [N-acetylaspartate (NAA, myo-inositol (mI, choline (Cho, and creatine (Cr] and their ratios in AD subjects were compared with those of an age-matched control group of 28 cognitively normal subjects. Results: AD subjects had significantly higher mI/Cr and lower NAA, NAA/Cr, NAA/Cho, and NAA/mI. Baseline Alzheimer’s Disease Cooperative Study Activities of Daily Living (ADCS-ADL scores significantly correlated with NAA/Cr, mI/Cr, and NAA/mI. There was an increase in mI and a decrease in NAA/mI, but no significant change in other metabolites or ratios, or neurocognitive measures, when memantine was added to a cholinesterase inhibitor. Conclusion: Metabolite ratios significantly differed between AD and control subjects. Baseline metabolite ratios correlated with function (ADCS-ADL. There was an increase in mI and a decrease in NAA/mI, but no changes in other metabolites, ratios, or cognitive measures, when memantine was added to a cholinesterase inhibitor.

  15. Nanosphere Templating Through Controlled Evaporation: A High Throughput Method For Building SERS Substrates

    Science.gov (United States)

    Alexander, Kristen; Hampton, Meredith; Lopez, Rene; Desimone, Joseph

    2009-03-01

    When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.

  16. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    International Nuclear Information System (INIS)

    Manno, D; Filippo, E; Fiore, R; Serra, A; Urso, E; Rizzello, A; Maffia, M

    2010-01-01

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrP C . In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrP C at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  17. Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta.

    Science.gov (United States)

    Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie

    2018-05-01

    UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at

  18. Preliminary observations on the correlation of proliferative phenomena with in vivo /sup 31/P NMR spectroscopy after tumor chemotherapy

    International Nuclear Information System (INIS)

    Schiffer, L.M.; Braunschweiger, P.G.; Glickson, J.D.; Evanochko, W.T.; Ng, T.C.

    1985-01-01

    In order to translate the concepts that have been developed in animal systems to human treatment programs, there is an urgent need for noninvasive techniques to study tumor cell biology. The characteristics of the ideal technique for the noninvasive monitoring of cell proliferation are truly imposing. The method should not require repeated biopsies; it should be amenable to repeated studies at frequent intervals without patient discomfort; it should monitor the proliferative response to the treatment modality; and it should not, in itself, perturb the tumor. Ideally, one would also like to be able to evaluate normal cell proliferation as well. It appears now that a new technique, /sup 31/P nuclear magnetic resonance (/sup 31/PNMR), may fulfill these rather rigid requirements. However, many studies in animal systems are necessary before it can be applied to the study of human tumors. The theory and mechanics of /sup 31/P NMR have been well described. Recently, its use as a noninvasive technique to study in vivo metabolic processes has become important. The authors presented a series of reports on the use of /sup 31/P NMR for the evaluation of tumor metabolism in animal systems under a variety of conditions. Studies of subcutaneously transplanted mouse tumors and human xenografts detected significant changes in nucleotide triphosphate (NTP), phosphocreatine, and inorganic phosphorus (Pi) as a result of tumor growth and perturbation with chemotherapeutic drugs, radiation, and hyperthermia. Their collabortive studies were designed to evaluate the changing effects of a noncurative single dose of cyclophosphamide on the /sup 31/P NMR resonances from the RIF-1 tumor, and to compare them with the proliferative changes that occur with time after drug administration. They were carried out in the hope of finding a noninvasive correlate with tumor cell proliferation

  19. Silicon nitride grids are compatible with correlative negative staining electron microscopy and tip-enhanced Raman spectroscopy for use in the detection of micro-organisms.

    Science.gov (United States)

    Lausch, V; Hermann, P; Laue, M; Bannert, N

    2014-06-01

    Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.

  20. Investigation of hyperfine interactions in DNA and antibody of different lineages of mice infected by T. cruzi by perturbed gamma-gamma angular correlation spectroscopy

    International Nuclear Information System (INIS)

    Silva, Andreia dos Santos

    2012-01-01

    In the present work perturbed angular correlation (PAC) spectroscopy was used to measured electric quadrupole interactions in DNA biomolecules of different mice lineages (A/J, C57BL/6, B6AF1, BXA1 e BXA2), samples of different isotypes of immunoglobulin G (IgG1, IgG2a e IgG2b) and active portions of complete and fragmented immunoglobulin responsible by the immune response. Electric quadrupole interactions were also measured in DNA nitrogenous bases (adenine, cytosine, guanine, thymine). PAC measurements were performed using 111 In → 111C d; 111mC d → 111 Cd; 111 Ag → 111 Cd; e 181 Hf → 181 Ta as probe nuclei, and carried out at room temperature and liquid nitrogen temperature, in order to investigate dynamic and static hyperfine interactions, respectively. The biomolecule samples were directly marked with the radioactive parent nuclei, whose atom link to a certain site in the biomolecules. The biological materials as well as the probe nuclei were chosen to investigate the possibility to use PAC spectroscopy to measure hyperfine parameters at nuclei from metallic elements bound to biomolecules (including the use of different probe nuclei produced in the decay of parent nuclei of four different metals) and also to study the behavior of different biomolecules by means of the measured hyperfine parameters. Results show differences in the hyperfine interactions of probe nuclei bound to the studied biomolecules. Such differences were observed by variations in the hyperfine parameters, which depend on the type of biomolecule and the results also show that the probe nuclei atom bound to the molecule in some cases and in others do not. (author)

  1. Ag nanoparticles agargel nanocomposites for SERS detection of cultural heritage interest pigments

    Science.gov (United States)

    Amato, F.; Micciche', C.; Cannas, M.; Gelardi, F. M.; Pignataro, B.; Li Vigni, M.; Agnello, S.

    2018-02-01

    Agarose gel (agargel) composites with commercial and laboratory made silver nanoparticles were prepared by a wet solution method at room temperature. The gel composites were used for pigment extraction and detection by Raman spectroscopy. Red (alizarin) and violet (crystal violet) pigments deposited on paper were extracted by the composites and were investigated by micro-Raman spectroscopy. Evaluation was carried out of the surface-enhanced Raman spectroscopy (SERS) effect induced by the silver nanoparticles embedded in the gel. A kinetic approach as a function of time was used to determine the efficiency of pigments extraction by composites deposition. A non-invasive extraction process of few minutes is demonstrated. This process induces active SERS for both used pigments. The reported results show the full exploitability of agargel silver nanoparticle composites for the extraction of pigments from paper based artworks.

  2. Laser ablation studies of Deposited Silver Colloids Active in SERS

    International Nuclear Information System (INIS)

    La Porte, R.T.; Moreno, D.S.; Striano, M.C.; Munnoz, M.M.; Garcia-Ramos, J.V.; Cortes, S.S.; Koudoumas, E.

    2002-01-01

    Laser ablation of deposited silver colloids, active in SERS, is carried out at three different laser wavelengths (KrF, XeCl and Nd:YAG at λ = 248, 308 and 532 nm respectively). Emission form excited neutral Ag and Na atoms, present in the ablation plume, is detected with spectral and temporal resolution. The expansion velocity of Ag in the plume is estimated in ∼1x104m s-1, Low-fluence laser ablation of the colloids yields ionized species that are analyzed by time-of-flight mass spectroscopy. Na+ and Agn+(n≤3) are observed. Composition of the mass spectra and widths of the mass peaks are found to be dependent on laser wavelength, suggesting that the dominant ablation mechanisms are different at the different wavelenghts.

  3. Surface-enhanced Raman spectroscopy: nonlocal limitations

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Xiao, Sanshui

    2012-01-01

    for our understanding of surface-enhanced Raman spectroscopy (SERS). The intrinsic length scale of the electron gas serves to smear out assumed field singularities, leaving the SERS enhancement factor finite, even for geometries with infinitely sharp features. For silver nanogroove structures, mimicked...

  4. Acerca de tres dimensiones del ser humano

    OpenAIRE

    Fúnez, Rubén

    2007-01-01

    El autor resume las ideas importantes del libro "Tres dimensiones del ser humano", se pregunta por la importancia del planteamiento zubiriano, tanto para la historia de la filosofía, como para la situación que actualmente nos ha tocado vivir.

  5. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.

    Science.gov (United States)

    Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J

    2014-12-02

    The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.

  6. Infants’ neural responses to facial emotion in the prefrontal cortex are correlated with temperament: A functional near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Miranda M Ravicz

    2015-07-01

    Full Text Available Accurate decoding of facial expressions is critical for human communication, particularly during infancy, before formal language has developed. Different facial emotions elicit distinct neural responses within the first months of life. However, there are broad individual differences in such responses, such that the same emotion can elicit different brain responses in different infants. In this study we sought to investigate such differences in the processing of emotional faces by analyzing infants’ cortical metabolic responses to face stimuli and examining whether individual differences in these responses might vary as a function of infant temperament.Seven-month-old infants (N = 24 were shown photographs of women portraying happy expressions, and neural activity was recorded using functional near-infrared spectroscopy (fNIRS. Temperament data were collected using the Revised Infant Behavior Questionnaire Short Form, which assesses the broad temperament factors of Surgency/Extraversion (S/E, Negative Emotionality (NE, and Orienting/Regulation (O/R. We observed that oxyhemoglobin (oxyHb responses to happy face stimuli were negatively correlated with infant temperament factors in channels over the left prefrontal cortex (uncorrected for multiple comparisons. To investigate the brain activity underlying this association, and to explore the use of fNIRS in measuring cortical asymmetry, we analyzed hemispheric asymmetry with respect to temperament groups. Results showed preferential activation of the left hemisphere in low-NE infants in response to smiling faces.These results suggest that individual differences in temperament are associated with differential prefrontal oxyHb responses to faces. Overall, these analyses contribute to our current understanding of face processing during infancy, demonstrate the use of fNIRS in measuring prefrontal asymmetry, and illuminate the neural correlates of face processing as modulated by temperament.

  7. Correlating laser-induced breakdown spectroscopy with neutron activation analysis to determine the elemental concentration in the ionome of the Populus trichocarpa leaf

    Science.gov (United States)

    Martin, Madhavi Z.; Glasgow, David C.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Gunter, Lee E.; Engle, Nancy L.; Wymore, Ann M.; Weston, David J.

    2017-12-01

    The black cottonwood poplar (Populus trichocarpa) leaf ionome (inorganic trace elements and mineral nutrients) is an important aspect for determining the physiological and developmental processes contributing to biomass production. A number of techniques are used to measure the ionome, yet characterizing the leaf spatial heterogeneity remains a challenge, especially in solid samples. Laser-induced breakdown spectroscopy (LIBS) has been used to determine the elemental composition of leaves and is able to raster across solid matrixes at 10 μm resolution. Here, we evaluate the use of LIBS for solid sample leaf elemental characterization in relation to neutron activation. In fact, neutron activation analysis is a laboratory-based technique which is used by the National Institute of Standards and Technology (NIST) to certify trace elements in candidate reference materials including plant leaf matrices. Introduction to the techniques used in this research has been presented in this manuscript. Neutron activation analysis (NAA) data has been correlated to the LIBS spectra to achieve quantification of the elements or ions present within poplar leaves. The regression coefficients of calibration and validation using multivariate analysis (MVA) methodology for six out of seven elements have been determined and vary between 0.810 and 0.998. LIBS and NAA data has been presented for the elements such as, calcium, magnesium, manganese, aluminum, copper, and potassium. Chlorine was also detected but it did not show good correlation between the LIBS and NAA techniques. This research shows that LIBS can be used as a fast, high-spatial resolution technique to quantify elements as part of large-scale field phenotyping projects.

  8. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  9. Low axial drift stage and temperature controlled liquid cell for z-scan fluorescence correlation spectroscopy in an inverted confocal geometry

    International Nuclear Information System (INIS)

    Allgeyer, Edward S.; Sterling, Sarah M.; Neivandt, David J.; Mason, Michael D.

    2011-01-01

    A recent iteration of fluorescence correlation spectroscopy (FCS), z-scan FCS, has drawn attention for its elegant solution to the problem of quantitative sample positioning when investigating two-dimensional systems while simultaneously providing an excellent method for extracting calibration-free diffusion coefficients. Unfortunately, the measurement of planar systems using (FCS and) z-scan FCS still requires extremely mechanically stable sample positioning, relative to a microscope objective. As axial sample position serves as the inherent length calibration, instabilities in sample position will affect measured diffusion coefficients. Here, we detail the design and function of a highly stable and mechanically simple inverted microscope stage that includes a temperature controlled liquid cell. The stage and sample cell are ideally suited to planar membrane investigations, but generally amenable to any quantitative microscopy that requires low drift and excellent axial and lateral stability. In the present work we evaluate the performance of our custom stage system and compare it with the stock microscope stage and typical sample sealing and holding methods.

  10. Detection of Amide and Aromatic Proton Resonances of Human Brain Metabolites Using Localized Correlated Spectroscopy Combined with Two Different Water Suppression Schemes

    Directory of Open Access Journals (Sweden)

    Rajakumar Nagarajan

    2010-01-01

    Full Text Available The purpose of the study was to demonstrate the J-coupling connectivity network between the amide, aliphatic, and aromatic proton resonances of metabolites in human brain using two-dimensional (2D localized correlated spectroscopy (L-COSY. Two different global water suppression techniques were combined with L-COSY, one before and another after localizing the volume of interest (VOI. Phantom solutions containing several cerebral metabolites at physiological concentrations were evaluated initially for sequence optimization. Nine healthy volunteers were scanned using a 3T whole body MRI scanner. The VOI for 2D L-COSY was placed in the right occipital white/gray matter region. The 2D cross and diagonal peak volumes were measured for several metabolites such as N-acetyl aspartate (NAA, creatine (Cr, free choline (Ch, glutamate/glutamine (Glx, aspartate (Asp, myo-inositol (mI, GABA, glutathione (GSH, phosphocholine (PCh, phosphoethanolamine (PE, tyrosine (Tyr, lactate (Lac, macromolecules (MM and homocarnosine (Car. Using the pre-water suppression technique with L-COSY, the above mentioned metabolites were clearly identifiable and the relative ratios of metabolites were calculated. In addition to detecting multitude of aliphatic resonances in the high field region, we have demonstrated that the amide and aromatic resonances can also be detected using 2D L-COSY by pre water suppression more reliably than the post-water suppression.

  11. Application of ultra-small-angle X-ray scattering / X-ray photon correlation spectroscopy to relate equilibrium or non-equilibrium dynamics to microstructure

    Science.gov (United States)

    Allen, Andrew; Zhang, Fan; Levine, Lyle; Ilavsky, Jan

    2013-03-01

    Ultra-small-angle X-ray scattering (USAXS) can probe microstructures over the nanometer-to-micrometer scale range. Through use of a small instrument entrance slit, X-ray photon correlation spectroscopy (XPCS) exploits the partial coherence of an X-ray synchrotron undulator beam to provide unprecedented sensitivity to the dynamics of microstructural change. In USAXS/XPCS studies, the dynamics of local structures in a scale range of 100 nm to 1000 nm can be related to an overall hierarchical microstructure extending from 1 nm to more than 1000 nm. Using a point-detection scintillator mode, the equilibrium dynamics at ambient temperature of small particles (which move more slowly than nanoparticles) in aqueous suspension have been quantified directly for the first time. Using a USAXS-XPCS scanning mode for non-equilibrium dynamics incipient processes within dental composites have been elucidated, prior to effects becoming detectable using any other technique. Use of the Advanced Photon Source, an Office of Science User Facility operated for the United States Department of Energy (U.S. DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

  12. Tutorial on use of intraclass correlation coefficients for assessing intertest reliability and its application in functional near-infrared spectroscopy-based brain imaging.

    Science.gov (United States)

    Li, Lin; Zeng, Li; Lin, Zi-Jing; Cazzell, Mary; Liu, Hanli

    2015-05-01

    Test-retest reliability of neuroimaging measurements is an important concern in the investigation of cognitive functions in the human brain. To date, intraclass correlation coefficients (ICCs), originally used in interrater reliability studies in behavioral sciences, have become commonly used metrics in reliability studies on neuroimaging and functional near-infrared spectroscopy (fNIRS). However, as there are six popular forms of ICC, the adequateness of the comprehensive understanding of ICCs will affect how one may appropriately select, use, and interpret ICCs toward a reliability study. We first offer a brief review and tutorial on the statistical rationale of ICCs, including their underlying analysis of variance models and technical definitions, in the context of assessment on intertest reliability. Second, we provide general guidelines on the selection and interpretation of ICCs. Third, we illustrate the proposed approach by using an actual research study to assess interest reliability of fNIRS-based, volumetric diffuse optical tomography of brain activities stimulated by a risk decision-making protocol. Last, special issues that may arise in reliability assessment using ICCs are discussed and solutions are suggested.

  13. Functional Groups Determine Biochar Properties (pH and EC as Studied by Two-Dimensional (13C NMR Correlation Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    Full Text Available While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D (13C nuclear magnetic resonance (NMR correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The results showed that the agricultural biomass carbonized to biochars was a dehydroxylation/dehydrogenation and aromatization process, mainly involving the cleavage of O-alkylated carbons and anomeric O-C-O carbons in addition to the production of fused-ring aromatic structures and aromatic C-O groups. With increasing charring temperature, the mass cleavage of O-alkylated groups and anomeric O-C-O carbons occurred prior to the production of fused-ring aromatic structures. The regression analysis between functional groups and biochar properties (pH and electrical conductivity further demonstrated that the pH and electrical conductivity of rice straw derived biochars were mainly determined by fused-ring aromatic structures and anomeric O-C-O carbons, but the pH of rice bran derived biochars was determined by both fused-ring aromatic structures and aliphatic O-alkylated (HCOH carbons. In summary, this work suggests a novel tool for characterising the development of functional groups in biochars.

  14. Tutorial on use of intraclass correlation coefficients for assessing intertest reliability and its application in functional near-infrared spectroscopy-based brain imaging

    Science.gov (United States)

    Li, Lin; Zeng, Li; Lin, Zi-Jing; Cazzell, Mary; Liu, Hanli

    2015-05-01

    Test-retest reliability of neuroimaging measurements is an important concern in the investigation of cognitive functions in the human brain. To date, intraclass correlation coefficients (ICCs), originally used in inter-rater reliability studies in behavioral sciences, have become commonly used metrics in reliability studies on neuroimaging and functional near-infrared spectroscopy (fNIRS). However, as there are six popular forms of ICC, the adequateness of the comprehensive understanding of ICCs will affect how one may appropriately select, use, and interpret ICCs toward a reliability study. We first offer a brief review and tutorial on the statistical rationale of ICCs, including their underlying analysis of variance models and technical definitions, in the context of assessment on intertest reliability. Second, we provide general guidelines on the selection and interpretation of ICCs. Third, we illustrate the proposed approach by using an actual research study to assess intertest reliability of fNIRS-based, volumetric diffuse optical tomography of brain activities stimulated by a risk decision-making protocol. Last, special issues that may arise in reliability assessment using ICCs are discussed and solutions are suggested.

  15. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    Science.gov (United States)

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.; Yu, Guoqiang

    2013-03-01

    The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements.

  16. A practicable detection system for genetically modified rice by SERS-barcoded nanosensors.

    Science.gov (United States)

    Chen, Kun; Han, Heyou; Luo, Zhihui; Wang, Yanjun; Wang, Xiuping

    2012-04-15

    Since the global cultivation of genetically modified crops constantly expands, it remains a high demand to establish different ways to sort food and feed that consist or contain genetically modified organisms. Surface-enhanced Raman scattering (SERS) spectroscopy is a flexible tool for biological analysis due to its excellent properties for detecting wide varieties of target biomolecules including nucleic acids. In the present study, a SERS-barcoded nanosensor was developed to detect Bacillus thuringiensis (Bt) gene-transformed rice expressing insecticidal proteins. The barcoded sensor was designed by encapsulation of gold nanoparticles with silica and conjugation of oligonucleotide strands for targeting DNA strands. The transition between the cry1A(b) and cry1A(c) fusion gene sequence was used to construct a specific SERS-based detection method with a detection limit of 0.1 pg/mL. In order to build the determination models to screen transgene, a series mixture of Bt rice and normal rice were prepared for SERS assay, and the limit of detection was 0.1% (w/w) transgenic Bt rice relative to normal rice. The sensitivity and accuracy of the SERS-based assay was comparable with real-time PCR. The SERS-barcoded analytical method would provide precise detection of transgenic rice varieties but also informative supplement to avoid false positive outcomes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  17. Label-free SERS in biological and biomedical applications: Recent progress, current challenges and opportunities

    Science.gov (United States)

    Zheng, Xiao-Shan; Jahn, Izabella Jolan; Weber, Karina; Cialla-May, Dana; Popp, Jürgen

    2018-05-01

    To achieve an insightful look within biomolecular processes on the cellular level, the development of diseases as well as the reliable detection of metabolites and pathogens, a modern analytical tool is needed that is highly sensitive, molecular-specific and exhibits fast detection. Surface-enhanced Raman spectroscopy (SERS) is known to meet these requirements and, within this review article, the recent progress of label-free SERS in biological and biomedical applications is summarized and discussed. This includes the detection of biomolecules such as metabolites, nucleic acids and proteins. Further, the characterization and identification of microorganisms has been achieved by label-free SERS-based approaches. Eukaryotic cells can be characterized by SERS in order to gain information about the outer cell wall or to detect intracellular molecules and metabolites. The potential of SERS for medically relevant detection schemes is emphasized by the label-free detection of tissue, the investigation of body fluids as well as applications for therapeutic and illicit drug monitoring. The review article is concluded with an evaluation of the recent progress and current challenges in order to highlight the direction of label-free SERS in the future.

  18. Chemically Roughened Solid Silver: A Simple, Robust and Broadband SERS Substrate

    Directory of Open Access Journals (Sweden)

    Shavini Wijesuriya

    2016-10-01

    Full Text Available Surface-enhanced Raman spectroscopy (SERS substrates manufactured using complex nano-patterning techniques have become the norm. However, their cost of manufacture makes them unaffordable to incorporate into most biosensors. The technique shown in this paper is low-cost, reliable and highly sensitive. Chemical etching of solid Ag metal was used to produce simple, yet robust SERS substrates with broadband characteristics. Etching with ammonium hydroxide (NH4OH and nitric acid (HNO3 helped obtain roughened Ag SERS substrates. Scanning electron microscopy (SEM and interferometry were used to visualize and quantify surface roughness. Flattened Ag wires had inherent, but non-uniform roughness having peaks and valleys in the microscale. NH4OH treatment removed dirt and smoothened the surface, while HNO3 treatment produced a flake-like morphology with visibly more surface roughness features on Ag metal. SERS efficacy was tested using 4-methylbenzenethiol (MBT. The best SERS enhancement for 1 mM MBT was observed for Ag metal etched for 30 s in NH4OH followed by 10 s in HNO3. Further, MBT could be quantified with detection limits of 1 pM and 100 µM, respectively, using 514 nm and 1064 nm Raman spectrometers. Thus, a rapid and less energy intensive method for producing solid Ag SERS substrate and its efficacy in analyte sensing was demonstrated.

  19. Fabrication of a novel transparent SERS substrate comprised of Ag-nanoparticle arrays and its application in rapid detection of ractopamine on meat

    Science.gov (United States)

    Surface-enhanced Raman spectroscopy (SERS) is an emerging analytical tool that boasts the feature of high detection sensitivity and molecular fingerprint specificity attracting increased attention and showing promise in applications including detecting residues of veterinary drugs. In practice, spec...

  20. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  1. Flexible SERS Substrates: Challenges and Opportunities

    Science.gov (United States)

    2016-01-28

    are still widely used due to the ease with which silver and gold nanoparticles can be produced. Nanoparticle inks are colloidal suspensions of...interactions between the analyte, silver nanoparticles, and a salt. This system has also been applied to detection of trace antibiotics for food safety...Cleanable SERS Substrates Based on Silver Nanoparticle Decorated Electrospun Nano-fibrous Membranes Chaoyang Jiang Porous electrospun nanofibrous

  2. Criatividade em ação: ser criativo é ser criança

    Directory of Open Access Journals (Sweden)

    Antonio Mendes Silva Filho

    2012-11-01

    Full Text Available Todo ser humano é criativo e isso decorre da capacidade de imaginação. Essa capacidade é acentuada quando você tem a possibilidade de explorar e a curiosidade aguçada. Não exemplo melhor do que uma criança. Ser criativo é ser criança. Esta capacidade alcança o ápice quando se busca criar como criança fazendo uso de sagacidade, persistência, desorganização e com a possibilidade de errar. Isso é explorar e experimentar, deixando o cérebro livre e sem pressão, agindo despreocupadamente em determinado período de tempo. Nesse sentido, este artigo explora a importancia dar oportunidade do ser humano explorar sua capacidade de criar via imaginação

  3. Electromagnetic Modelling of Raman Enhancement from Nanoscale Structures as a Means to Predict the Efficacy of SERS Substrates

    Directory of Open Access Journals (Sweden)

    Richard J. C. Brown

    2007-01-01

    Full Text Available The requirement to optimise the balance between signal enhancement and reproducibility in surface enhanced Raman spectroscopy (SERS is stimulating the development of novel substrates for enhancing Raman signals. This paper describes the application of finite element electromagnetic modelling to predict the Raman enhancement produced from a variety of SERS substrates with differently sized, spaced and shaped morphologies with nanometre dimensions. For the first time, a theoretical comparison between four major generic types of SERS substrate (including metal nanoparticles, structured surfaces, and sharp tips has been performed and the results are presented and discussed. The results of the modelling are consistent with published experimental data from similar substrates.

  4. Coupling FT Raman and FT SERS microscopy with TLC plates for in situ identification of chemical compounds

    Science.gov (United States)

    Caudin, J. P.; Beljebbar, A.; Sockalingum, G. D.; Angiboust, J. F.; Manfait, M.

    1995-11-01

    Direct analysis of sub-femtogram quantities of chemical compounds on thin layer chromatography plates has been made possible by associating Fourier transform Raman microspectroscopy with SERS spectroscopy. The interfacing elements of the FT Raman microscope system are discussed and optimised such that a lateral resolution on the micron scale is achieved in the sample plane. Micro-FT SERS results obtained from a model biological molecule indicate preservation of molecular conformation upon adsorption at the SERS active surface. With NIR radiation it is thus possible to analyse plates with or without fluorescence indicators.

  5. Fluorescence correlation spectroscopy analysis for accurate determination of proportion of doubly labeled DNA in fluorescent DNA pool for quantitative biochemical assays.

    Science.gov (United States)

    Hou, Sen; Sun, Lili; Wieczorek, Stefan A; Kalwarczyk, Tomasz; Kaminski, Tomasz S; Holyst, Robert

    2014-01-15

    Fluorescent double-stranded DNA (dsDNA) molecules labeled at both ends are commonly produced by annealing of complementary single-stranded DNA (ssDNA) molecules, labeled with fluorescent dyes at the same (3' or 5') end. Because the labeling efficiency of ssDNA is smaller than 100%, the resulting dsDNA have two, one or are without a dye. Existing methods are insufficient to measure the percentage of the doubly-labeled dsDNA component in the fluorescent DNA sample and it is even difficult to distinguish the doubly-labeled DNA component from the singly-labeled component. Accurate measurement of the percentage of such doubly labeled dsDNA component is a critical prerequisite for quantitative biochemical measurements, which has puzzled scientists for decades. We established a fluorescence correlation spectroscopy (FCS) system to measure the percentage of doubly labeled dsDNA (PDL) in the total fluorescent dsDNA pool. The method is based on comparative analysis of the given sample and a reference dsDNA sample prepared by adding certain amount of unlabeled ssDNA into the original ssDNA solution. From FCS autocorrelation functions, we obtain the number of fluorescent dsDNA molecules in the focal volume of the confocal microscope and PDL. We also calculate the labeling efficiency of ssDNA. The method requires minimal amount of material. The samples have the concentration of DNA in the nano-molar/L range and the volume of tens of microliters. We verify our method by using restriction enzyme Hind III to cleave the fluorescent dsDNA. The kinetics of the reaction depends strongly on PDL, a critical parameter for quantitative biochemical measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. PLA-PEG nanocapsules radiolabeled with 99mTechnetium-HMPAO: release properties and physicochemical characterization by atomic force microscopy and photon correlation spectroscopy.

    Science.gov (United States)

    Pereira, Maira Alves; Mosqueira, Vanessa Carla Furtado; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Ramaldes, Gilson Andrade; Cardoso, Valbert Nascimento

    2008-01-01

    The present work describes the preparation, characterization and labelling of conventional and surface-modified nanocapsules (NC) with 99m Tc-HMPAO. The size, size distribution and homogeneity were determined by photon correlation spectroscopy (PCS) and zeta potential by laser doppler anemometry. The morphology and the structural organization were evaluated by atomic force microscopy (AFM). The stability and release profile of the NC were determined in vitro in plasma. The results showed that the use of methylene blue induces significant increase in the encapsulation efficiency of 99m Tc-HMPAO, from 24.4 to 49.8% in PLA NC and 22.37 to 52.93% in the case of PLA-PEG NC (P<0.05) by improving the complex stabilization. The average diameter of NC calculated by PCS varied from 216 to 323 nm, while the average diameter determined by AFM varied from 238 to 426 nm. The AFM analysis of diameter/height ratios suggested a greater homogeneity of the surface-modified PLA-PEG nanocapsules compared to PLA NC concerning their flattening properties. The in vitro release of the 99m Tc-HMPAO in plasma medium was faster for the conventional PLA NC than for the surface-modified NC. For the latter, 60% of the radioactivity remained associated with NC, even after 12h of incubation. The results suggest that the surface-modified 99m Tc-HMPAO-PLA-PEG NC was more stable against label leakage in the presence of proteins and could present better performance as radiotracer in vivo.

  7. Fe2O3-Au hybrid nanoparticles for sensing applications via sers analysis

    International Nuclear Information System (INIS)

    Murph, Simona Hunyadi; Searles, Emily

    2017-01-01

    Nanoparticles with large amounts of surface area and unique characteristics that are distinct from their bulk material provide an interesting application in the enhancement of inelastic scattering signal. Surface Enhanced Raman Spectroscopy (SERS) strives to increase the Raman scattering effect when chemical species of interest are in the close proximity of metallic nnaostructures. Gold nanoparticles of various shapes have been used for sensing applications via SERS as they demonstrate the greatest effect of plasmonic behavior in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. Multifunctional iron oxide-gold hybrid nanostructures have been created via solution chemistries and investigated for analyte detection of a model analyte. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies.

  8. Effect of Etching on the Optical, Morphological Properties of Ag Thin Films for SERS Active Substrates

    Directory of Open Access Journals (Sweden)

    Desapogu Rajesh

    2013-01-01

    Full Text Available Structural, optical, and morphological properties of Ag thin films before and after etching were investigated by using X-ray diffraction, UV-Vis spectrophotometer, and field emission scanning electron microscopy (FESEM. The HNO3 roughened Ag thin films exhibit excellent enhancement features and better stability than pure Ag thin films. Further, the Ag nanostructures are covered with Rhodamine 6G (Rh6G and then tested with surface enhanced raman spectroscopy (SERS for active substrates. Etched Ag films were found to exhibit a strong SERS effect and excellent thermal stability. Hence, the present method is found to be useful in the development of plasmon-based analytical devices, especially SERS-based biosensors.

  9. Combining surface enhanced Raman scattering (SERS) and high-performance thin-layer chromatography (HPTLC)

    Science.gov (United States)

    Koglin, E.

    A new method for preparing SERS active surfaces using silver colloidal spheres deposited on HPTLC plates, used for thin-layer chromatography, is discussed in detail. The sensitivity of these activated HPTLC plates is so high that in-situ vibrational investigations of chromatogram spots are possible at the nanogram level. The HPTLC/SERS spectra of purine, benzoic acid and 1-nitro-pyrene adsorbed on silver colloidal activated silica gel plates are measured in the nanogram region. In addition we also report in this paper on the results of a feasibility study performed to evaluate the analytical potential of micro-Raman spectroscopy (triple monochromator, multichannel detection system) in SERS/HPTLC spot characterization. It permits the acquisition of Raman spectra from HPTLC spots down to 1 μm in size or other forms of microsamples approaching the picogram level in mass.

  10. Ultra-thin layer chromatography with integrated silver colloid-based SERS detection.

    Science.gov (United States)

    Wallace, Ryan A; Lavrik, Nickolay V; Sepaniak, Michael J

    2017-01-01

    Simplified lab-on-a-chip techniques are desirable for quick and efficient detection of analytes of interest in the field. The following work involves the use of deterministic pillar arrays on the micro-scale as a platform to separate compounds, and the use of Ag colloid within the arrays as a source of increased signal via surface enhanced Raman spectroscopy (SERS). One problem traditionally seen with SERS surfaces containing Ag colloid is oxidation; however, our platforms are superhydrophobic, reducing the amount of oxidation taking place on the surface of the Ag colloid. This work includes the successful separation and SERS detection of a fluorescent dye compounds (resorufin and sulforhodamine 640), fluorescent anti-tumor drugs (Adriamycin and Daunomycin), and purine and pyrimidine bases (adenine, cytosine, guanine, hypoxanthine, and thymine). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis by picosecond laser ablation of ligand-free Ag and Au nanoparticles for SERS applications

    Science.gov (United States)

    Fazio, Enza; Spadaro, Salvatore; Santoro, Marco; Trusso, Sebastiano; Lucotti, Andrea.; Tommasini, Matteo.; Neri, Fortunato; Maria Ossi, Paolo

    2018-01-01

    The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS) measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  12. Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates

    Science.gov (United States)

    Rodríguez-Torres, Maria del Pilar; Díaz-Torres, Luis Armando; Romero-Servin, Sergio

    2014-01-01

    Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. PMID:25342319

  13. Study of optoelectronic properties of thin film solar cell materials Cu2ZnSn(S,Se)4 using multiple correlative spatially-resolved spectroscopy techniques

    Science.gov (United States)

    Chen, Qiong

    Containing only earth abundant and environmental friendly elements, quaternary compounds Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe 4 (CZTSe) are considered as promising absorber materials for thin film solar cells. The best record efficiency for this type of thin film solar cell is now 12.6%. As a promising photovoltaic (PV) material, the electrical and optical properties of CZTS(Se) have not been well studied. In this work, an effort has been made to understand the optoelectronic and structural properties, in particular the spatial variations, of CZTS(Se) materials and devices by correlating multiple spatially resolved characterization techniques with sub-micron resolution. Micro-Raman (micro-Raman) spectroscopy was used to analyze the chemistry compositions in CZTS(Se) film; Micro-Photoluminescence (micro-PL) was used to determine the band gap and possible defects. Micro-Laser-Beam-Induced-Current (micro-LBIC) was used to examine the photo-response of CZTS(Se) solar cell in different illumination conditions. Micro-reflectance was used to estimate the reflectance loss. And Micro-I-V measurement was used to compare important electrical parameters from CZTS(Se) solar cells with different device structure or absorber compositions. Scanning electron microscopy and atomic force microscopy were used to characterize the surface morphology. Successfully integrating and correlating these techniques was first demonstrated during the course of this work in our laboratory, and this level of integration and correlation has been rare in the field of PV research. This effort is significant not only for this particular project and also for a wide range of research topics. Applying this approach, in conjunction with high-temperature and high-excitation-power optical spectroscopy, we have been able to reveal the microscopic scale variations among samples and devices that appeared to be very similar from macroscopic material and device characterizations, and thus serve as a very powerful tool

  14. El Segundo Cerebro del ser humano.

    OpenAIRE

    Rocío Ponce

    2015-01-01

    Existen dos tipos de cerebros, el conocido por todos formado por el sistema nervioso central, que sería el cerebro donde las emociones se forman en base a las experiencias anteriores. El segundo cerebro, el otro, ignorado por la mayoría de seres humanos es el cerebro que está en los intestinos, Sistema Nervioso Enteral o mesentérico, que se caracteriza por la relación del cerebro y aparato digestivo, este cerebro posee más neuronas que su par, guarda emociones, determina la respuesta de acuer...

  15. Surface Transient Binding-Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of the Time Window to Seconds.

    Science.gov (United States)

    Peng, Sijia; Wang, Wenjuan; Chen, Chunlai

    2018-05-10

    Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.

  16. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  17. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  18. On the chemical enhancement in SERS

    Science.gov (United States)

    Jensen, Lasse

    2012-12-01

    In Surface-enhanced Raman scattering (SERS), the Raman signal of a molecule adsorbed on a metal surface is enhanced by many orders of magnitude. This provides a "finger-print" of molecules which can be used in ultrasensitive sensing devises. Here we present a time-dependent density functional theory (TDDFT) study of the molecule-surface chemical coupling in SERS. A systematic study of the chemical enhancement (CHEM) of meta-and para-substituted pyridines interacting with a small silver cluster (Ag20) is presented. We find that the magnitude of chemical enhancement is governed to a large extent by the energy difference between the highest occupied energy level (HOMO) of the metal and the lowest unoccupied energy level (LUMO) of the molecule. A two-state approximation shows that the enhancement scales roughly as (ωX/ω¯e)4, where accent="true">ω¯e is an average excitation energy between the HOMO of the metal and the LUMO of the molecule and wX the HOMO-LUMO gap of the free molecule. Furthermore, we demonstrate that it is possible to control the CHEM enhancement by switching a dithienylethene photoswitch from its closed form to its open form. The open form of the photoswitch is found to be the strongest Raman scatterer when adsorbed on the surface whereas the opposite is found for the free molecule. This trend is explained using the simple two-state approximation.

  19. Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate

    Science.gov (United States)

    Coman, Cristina; Leopold, Loredana Florina; Rugină, Olivia Dumitriţa; Barbu-Tudoran, Lucian; Leopold, Nicolae; Tofană, Maria; Socaciu, Carmen

    2014-01-01

    A green synthesis was used for preparing stable colloidal gold nanoparticles by using Allium sativum aqueous extract both as reducing and capping agent. The obtained nanoparticles were characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy. Moreover, their potential to be used as surface-enhanced Raman scattering (SERS) substrate was investigated. The obtained gold nanoparticles have spherical shape with mean diameters of 9-15 nm (depending on the amount of reducing agent used under boiling conditions) and are stable up to several months. FTIR spectroscopy shows that the nanoparticles are capped by protein molecules from the extract. The protein shell offers a protective coating, relatively impervious to external molecules, thus, rendering the nanoparticles stable and quite inert. These nanoparticles have the potential to be used as SERS substrates, both in solution and inside human fetal lung fibroblast HFL-1 living cells. We were able to demonstrate both the internalization of the nanoparticles inside HFL-1 cells and their ability to preserve the SERS signal after cellular internalization.

  20. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates

    Science.gov (United States)

    Lu, Fei; Guo, Yue; Wang, Yunxin; Song, Wei; Zhao, Bing

    2018-05-01

    In this study, we have investigated the effect of the surface morphologies of the zinc oxide (ZnO) substrates on surface enhanced Raman spectroscopy (SERS). During synthetic process, the self-assembly monolayers (SAMs) with different terminal groups are used as templates to induce the nucleation and growth of Zn(NO3)2·6H2O crystals, then different morphologies micro-nano ZnO powders are obtained by annealing Zn(NO3)2·6H2O crystals at 450 °C. The products obtained at different conditions are characterized by means of X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM) and Raman spectra. The as-prepared ZnO micro-sized particles have been used the efficient Surface enhanced Raman scattering (SERS) substrates, and the SERS signals of 4-mercaptopyridine (Mpy) probe molecules are much influenced by the morphologies of the ZnO structures. Results indicated that the more (0001) facets appear in the of ZnO morphology, the greater degree of charge-transfer (PCT) for the SERS enhancement on the surface of semiconductors is achieved. The chemical interaction between ZnO structures and Mpy molecules plays a very important role in the SERS enhancement.

  1. SERS study of transformation of phenylalanine to tyrosine under particle irradiation

    Science.gov (United States)

    Zhang, Jingjing; Huang, Qing; Yao, Guohua; Ke, Zhigang; Zhang, Hong; Lu, Yilin

    2014-08-01

    Surface enhanced Raman scattering or spectroscopy (SERS) is a very powerful analytical tool which has been widely applied in many scientific research and application fields. It is therefore also very intriguing for us to introduce SERS technique in the radiobiological research, where in many cases only a very few of biomolecules are subjected to changes which however can lead to significant biological effects. The radiation induced biochemical reactions are normally very sophisticated with different substances produced in the system, so currently it is still a big challenge for SERS to analyze such a mixture system which contains multiple analytes. In this context, this work aimed to establish and consolidate the feasibility of SERS as an effective tool in radiation chemistry, and this purpose, we employed SERS as a sensitive probe to a known process, namely, the oxidation of phenylalanine (Phe) under particle irradiation, where the energetic particles were obtained from either plasma discharge or electron-beam. During the irradiation, three types of tyrosine (Tyr), namely, p-Tyr, m-Tyr and o-Tyr were produced, and all these tyrosine isomers together with Phe could be identified and measured based on the SERS spectral analysis of the corresponding enhanced characteristic signals, namely, 1002 cm-1 for Phe, 1161 cm-1 for p-Tyr, 990 cm-1 for m-Tyr, and 970 cm-1 for o-Tyr, respectively. The estimation of the quantities of different tyrosine isomers were also given and verified by conventional method such as high performance liquid chromatography (HPLC). As for comparison of different ways of particle irradiation, our results also indicated that electron-beam irradiation was more efficient for converting Phe into Tyr than plasma discharge treatment, confirming the role of hydroxyl radicals in the Phe-Tyr conformation. Therefore, our work has not only demonstrated that SERS can be successfully applied in the radiobiological study, but also given insights into the

  2. Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

    Science.gov (United States)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-02-01

    Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time

  3. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  4. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy

    Science.gov (United States)

    El-Zahry, Marwa R.; Lendl, Bernhard

    2018-03-01

    A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.

  5. Ser lo mismo, ser diferente: contra la masificación

    OpenAIRE

    Saldarriaga Roa, Alberto

    2005-01-01

    La sociedad moderna se ha configurado, en los dos últimos siglos, como una sociedad de masas. Esto parece ser una condición sine qua non de su estructura y operatividad. La masificación se manifiesta no sólo en el comportamiento social sino también en el

  6. SERS detection of biomolecules using lithographed nanoparticles towards a reproducible SERS biosensor

    Energy Technology Data Exchange (ETDEWEB)

    David, Catalina; Guillot, Nicolas; Chapelle, Marc Lamy de la [Laboratoire CSPBAT (FRE 3043), UFR SMBH, Universite Paris XIII, 74 rue Marcel Cachin, F-93017 Bobigny (France); Shen, Hong; Toury, Timothee, E-mail: marc.lamydelachapelle@univ-paris13.fr [ICD-LNIO-UMR, CNRS 6279, Universite de technologie de Troyes, 12 rue Marie Curie, F-10010 Troyes (France)

    2010-11-26

    In this paper we highlight the accurate spectral detection of bovine serum albumin and ribonuclease-A using a surface-enhanced Raman scattering (SERS) substrate based on gold nanocylinders obtained by electron-beam lithography (EBL). The nanocylinders have diameters from 100 to 180 nm with a gap of 200 nm. We demonstrate that optimizing the size and the shape of the lithographed gold nanocylinders, we can obtain SERS spectra of proteins at low concentration. This SERS study enabled us to estimate high enhancement factors (10{sup 5} for BSA and 10{sup 7} for RNase-A) of important bands in the protein Raman spectrum measured for 1 mM concentration. We demonstrate that, to reach the highest enhancement, it is necessary to optimize the SERS signal and that the main parameter of optimization is the LSPR position. The LSPR have to be suitably located between the laser excitation wavelength, which is 632.8 nm, and the position of the considered Raman band. Our study underlines the efficiency of gold nanocylinder arrays in the spectral detection of proteins.

  7. SERS Nanosensors for in Vivo Glucose Sensing

    Science.gov (United States)

    2017-09-01

    laser beam. All data were processed using GRAMS/AI 7.0 (Thermo Galactic, Salem, NH). UV −Vis Spectroscopy. Scattering spectra (400−900 nm) were...Norland Optical Adhesive) is a generic name for commercially available one-part adhesive liquids that can be cured under UV light exposure at room...molds with NOA, removing air bubbles by gentle vacuum, and curing the polymer by UV exposure. The solidified array is then removed from the mold

  8. SERS microRaman spectral probing of adsorbate-containing, liquid-overlayed nanosponge Ag aggregates assembled from fractal aggregates

    Czech Academy of Sciences Publication Activity Database

    Sutrova, V.; Šloufová, I.; Nevoralová, Martina; Vlčková, B.

    2015-01-01

    Roč. 46, č. 6 (2015), s. 559-565 ISSN 0377-0486 R&D Projects: GA ČR GAP208/10/0941 Institutional support: RVO:61389013 Keywords : surface-enhanced Raman scattering (SERS) spectroscopy * Ag nanoparticles * Ag nanosponge aggregate Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.395, year: 2015

  9. Stabilization of alanine substituted p53 protein at Ser15, Thr18, and Ser20 in response to ionizing radiation

    International Nuclear Information System (INIS)

    Yamauchi, Motohiro; Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2004-01-01

    Phosphorylation of p53 at Ser15, Thr18, and Ser20 has been thought to be important for p53 stabilization in response to ionizing radiation. In the present study, we examined the X-ray-induced stabilization of Ala-substituted p53 protein at Ser15, Thr18, and Ser20, whose gene expression was controlled under an ecdyson-inducible promoter. We found that all single-, double-, or triple-Ala-substituted p53 at Ser15, Yhr18, and Ser20 were accumulated in the nucleus similarly to wild-type p53 after X-irradiation. These results indicate that the phosphorylation of p53 at Ser15, Thr18, and Ser20 is not necessarily needed for p53 stabilization in response to ionizing radiation

  10. Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects

    Science.gov (United States)

    Yang, Chen; Liang, Pei; Tang, Lisha; Zhou, Yongfeng; Cao, Yanting; Wu, Yanxiong; Zhang, De; Dong, Qianmin; Huang, Jie; He, Peng

    2018-04-01

    As a means of chemical identification and analysis, Surface enhanced Raman spectroscopy (SERS), with the advantages of high sensitivity and selectivity, non-destructive, high repeatability and in situ detection etc., has important significance in the field of composition detection, environmental science, biological medicine etc. Physical model of coupling effect between different semiconductor substrates and noble metal particles were investigated by using 3D-FDTD method. Mechanism and the effects of excitation wavelength, particle spacing and semiconductor substrate types on the SERS effect were discussed. The results showed that the optimal excitation wavelengths of three noble metals of Ag, Au, Cu, were located at 510, 600 and 630 nm, respectively; SERS effect of Ag, Au, Cu increases with the decreasing of the inter distance of particles, while the distance of the NPs reaches the critical value of 3 nm, the strength of SERS effect will be greatly enhanced. For the four different types of substrate of Ge, Si, SiO2 (glass) and Al2O3, the SERS effect of Ag on SiO2 > Ge > Al2O3 > Si. For Au and Cu nanoparticles, the SERS effect of them on oxide substrate is stronger than that on non-oxide substrate. In order to verify FDTD simulations, taking silver nanoparticles as an example, and silver nanoparticles prepared by chemical method were spinning coating on the four different substrates with R6G as probe molecules. The results show that the experimental results are consistent with FDTD theoretical simulations, and the SERS enhancement effect of Ag-SiO2 substrate is best. The results of this study have important theoretical significance to explain the variations of SERS enhancement on different noble metals, which is also an important guide for the preparation of SERS substrates, especially for the microfluidics. The better Raman effect can be realized by choosing proper substrate type, particle spacing and excitation wavelength, result in expanding the depth and width

  11. A microfluidic dialysis device for complex biological mixture SERS analysis

    KAUST Repository

    Perozziello, Gerardo

    2015-08-01

    In this paper, we present a microfluidic device fabricated with a simple and inexpensive process allowing rapid filtering of peptides from a complex mixture. The polymer microfluidic device can be used for sample preparation in biological applications. The device is fabricated by micromilling and solvent assisted bonding, in which a microdialysis membrane (cut-off of 12-14 kDa) is sandwiched in between an upper and a bottom microfluidic chamber. An external frame connects the microfluidic device to external tubes, microvalves and syringe pumps. Bonding strength and interface sealing are pneumatically tested. Microfluidic protocols are also described by using the presented device to filter a sample composed of specific peptides (MW 1553.73 Da, at a concentration of 1.0 ng/μl) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancer, and albumin (MW 66.5 kDa, at a concentration of 35 μg/μl), the most represented protein in human plasma. The filtered samples coming out from the microfluidic device were subsequently deposited on a SERS (surface enhanced Raman scattering) substrate for further analysis by Raman spectroscopy. By using this approach, we were able to sort the small peptides from the bigger and highly concentrated protein albumin and to detect them by using a label-free technique at a resolution down to 1.0 ng/μl.

  12. Correlated Raman micro-spectroscopy and scanning electron microscopy analyses of flame retardants in environmental samples: a micro-analytical tool for probing chemical composition, origin and spatial distribution.

    Science.gov (United States)

    Ghosal, Sutapa; Wagner, Jeff

    2013-07-07

    We present correlated application of two micro-analytical techniques: scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS) for the non-invasive characterization and molecular identification of flame retardants (FRs) in environmental dusts and consumer products. The SEM/EDS-RMS technique offers correlated, morphological, molecular, spatial distribution and semi-quantitative elemental concentration information at the individual particle level with micrometer spatial resolution and minimal sample preparation. The presented methodology uses SEM/EDS analyses for rapid detection of particles containing FR specific elements as potential indicators of FR presence in a sample followed by correlated RMS analyses of the same particles for characterization of the FR sub-regions and surrounding matrices. The spatially resolved characterization enabled by this approach provides insights into the distributional heterogeneity as well as potential transfer and exposure mechanisms for FRs in the environment that is typically not available through traditional FR analysis. We have used this methodology to reveal a heterogeneous distribution of highly concentrated deca-BDE particles in environmental dust, sometimes in association with identifiable consumer materials. The observed coexistence of deca-BDE with consumer material in dust is strongly indicative of its release into the environment via weathering/abrasion of consumer products. Ingestion of such enriched FR particles in dust represents a potential for instantaneous exposure to high FR concentrations. Therefore, correlated SEM/RMS analysis offers a novel investigative tool for addressing an area of important environmental concern.

  13. O Talco deve ser utilizado para Pleurodese

    Directory of Open Access Journals (Sweden)

    Steven A. Sahn

    2001-03-01

    Full Text Available RESUMO: A pleurodese està recomendada nos den·ames pleurais malignos quando o tumor não é sensível à quimioterapia. Aprcsenta taxas de sucesso vari:lveis em parte justificadas pelos diferentes agentes e doses utilizadas, a selecção de doentes eo tipo de técnica aplicada. O talco parece ser o agente mais efi caz de pleurodese.Steven Sahn defende que o talco deve ser utilizado para pleurodese, apoiando a sua opini ao em diferentes factores:Mecanisme da pleurodese para talcagcm - o talco após contacto com as células mesoteliais promove um influxo de neutrófil os IL8 mediadus e posterior acumulação de macrófagos, diminuiçãa actividade fibrinolftica e aumento do factor de crescimento dos fi broblastos. Quando o tumor reveste uma grande area de mesotclio, a pleurodese não é tao eficaz.Eficácia - uma revisão da li teratura inglesa de I966 a 1994 constatou que u talco foi o agente mais eficaz de pleurodese, cum uma taxa de sucesso de 93%, comparada cum a da tetraciclina de 67 %, doxicicli na de 72% e bleomicina de 54%. Outras séries reve1aram uma taxa de sucesso do talco sempre superior a 91 %.Custo - o talco é pouco dispendioso e se apl icado em suspensao (“slutTy” por tubo de toracostomia ainda reduz mais os custos inerentes a uma toracoscopia 4uando se utiliza o talco em pó, aprescntando cstas duas tecnicas, taxas ue eticacia scmelhantes. Reacçãoes Adversas Minor e Major Agudas- a toracalgia e a febre são OS efcitos adversos mains frequcntes, frequcntes de todos os agentes de pleurudese. A toracalgia surge em 7% dos doentcs submetiuos a plcurodesc com talco, em 28% com a bleomicina c 40% com a dox iciclina. A tetraciclina provoca geralmente wracalgia grave. A febre surge entre I6 a 69% após talcagem não ultrapassando as 72 horas.As reacçãoes adversas graves sao raras e incluern o cmpiema. arritmia cardfaca e insufcicncia rcspiratória. Se o talco

  14. MODOS DE SER DA JUVENTUDE OCIDENTAL

    Directory of Open Access Journals (Sweden)

    Prof. Dr. Luiz Antônio Dias

    2015-09-01

    Full Text Available O presente artigo é resultado de investigações ainda em andamento no Grupo de Pesquisa “Culturas juvenis, consumo e mobilidade urbana na contemporaneidade”, iniciadas em 2013 junto ao Programa de Mestrado Interdisciplinar em Ciências Humanas da Universidade de Santo Amaro (UNISA. A pesquisa dedica-se a entender, entre outras reflexões, o percurso dos jovens na sociedade contemporânea e as contribuições que eles trouxeram para repensar o espaço urbano. Nesse estudo buscamos localizar no espaço e no tempo em quais condições históricas o sentimento de juventude apareceu para a sociedade. Em seguida, fazemos um minucioso levantamento da trajetória dessa nova categoria social nos mais diferentes períodos da história contemporânea. Chegamos, assim, ao século XX, momento em que as reuniões juvenis deixam de ser fatos isolados e adquirem conotações de manifestações verdadeiramente sociais. Ainda nessa perspectiva de análise, buscamos compreender as similitudes, aproximações e distanciamentos do movimento punk com seus congêneres do passado.

  15. Llegar a ser Simone de Beauvoir

    Directory of Open Access Journals (Sweden)

    Nora Levinton Dolman

    2009-01-01

    Full Text Available A la manera de un Psicoanálisis aplicado a la obra de Simone de Beauvoir se señalan algunos aspectos cruciales que reflejan cómo se va configurando la vida y el pensamiento de una mujer que encarnó, para muchas de nosotras, un modelo de identificación. Su trabajo es en este sentido un espejo y una valiosa muestra de la naturaleza proyectiva de muchos de sus enunciados, donde a partir de su irreemplazable experiencia Simone arriba a conclusiones en las que podemos seguir el rastro de sus vivencias personales. En el contexto singular de su historia personal y en cómo es relatada. Al exponer su vida en sus libros y en numerosas entrevistas concedidas a distintos medios, ha dado lugar a que surgieran diferentes interpretaciones, por lo tanto a que sus palabras y argumentos puedan, como en este artículo, ser utilizados, contrastados entre sí y sometidos a exploración.

  16. Libertas que serás enfermagem

    Directory of Open Access Journals (Sweden)

    Mary Anne Fontenele Martins

    1998-09-01

    Full Text Available O título deste ensaio nos faz lembrar a Inconfidência Mineira, que teve como líder José Joaquim da Silva Xavier, o Tiradentes, sendo um movimento que ansiava por liberdade, assim como a enfermagem que, ao longo dos anos, vem construindo sua história e caminhando em busca de sua autonomia. A presente pesquisa tem como objetivo investigar os caminhos percorridos pela enfermagem, enquanto ciência na busca de sua autonomia, e refletir sobre a atuação do enfermeiro enquanto profissional criativo e autônomo. Estudo respaldado no materialismo histórico e dialético, realizado no período de maio a agosto de 1997 com enfermeiras do Estado do Ceará, que estão envolvidas com o processo histórico da profissão. Os resultados deram origem a uma categoria central, prática profissional e outras três: autonomia, criatividade e disposição para enfrentar desafios, que favoreceram uma melhor compreensão dos caminhos já trilhados pela enfermagem, além de nos permitir entender que o enfermeiro pode ser autônomo e livre.

  17. Fabrication of SERS Active Surface on Polyimide Sample by Excimer Laser Irradiation

    Directory of Open Access Journals (Sweden)

    T. Csizmadia

    2014-01-01

    Full Text Available A possible application of excimer laser irradiation for the preparation of surface enhanced Raman spectroscopy (SERS substrate is demonstrated. A polyimide foil of 125 μm thickness was irradiated by 240 pulses of focused ArF excimer laser beam (λ = 193 nm, FWHM = 20 ns. The applied fluence was varied between 40 and 80 mJ/cm2. After laser processing, the sample was coated with 40 nm silver by PLD in order to create a conducting layer required for the SERS application. The SERS activity of the samples was tested by Raman microscopy. The Raman spectra of Rhodamine 6G aqueous solution (c=10−3 mol/dm3 were collected from the patterned and metalized areas. For areas prepared at 40–60 mJ/cm2 laser fluences, the measured Raman intensities have shown a linear dependence on the applied laser fluence, while above 60 mJ/cm2 saturation was observed. The morphology of the SERS active surface areas was investigated by scanning electron microscopy. Finite element modeling was performed in order to simulate the laser-absorption induced heating of the polyimide foil. The simulation resulted in the temporal and spatial distribution of the estimated temperature in the irradiated polyimide sample, which are important for understanding the structure formation process.

  18. Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools

    Science.gov (United States)

    El-Said, Waleed A.; Yoon, Jinho; Choi, Jeong-Woo

    2018-04-01

    Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.

  19. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    Energy Technology Data Exchange (ETDEWEB)

    Manno, D; Filippo, E; Fiore, R; Serra, A [Dipartimento di Scienza dei Materiali, Universita del Salento, Lecce (Italy); Urso, E; Rizzello, A; Maffia, M [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita del Salento, Lecce (Italy)

    2010-04-23

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrP{sup C}. In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrP{sup C} at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  20. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection

    Science.gov (United States)

    Lu, Junfeng; Xu, Chunxiang; Nan, Haiyan; Zhu, Qiuxiang; Qin, Feifei; Manohari, A. Gowri; Wei, Ming; Zhu, Zhu; Shi, Zengliang; Ni, Zhenhua

    2016-08-01

    Dopamine (DA) is a potential neuro modulator in the brain which influences a variety of motivated behaviors and plays a key role in life science. A hybrid ZnO/Ag microcavity based on Whispering Gallery Mode (WGM) effect has been developed for ultrasensitive detection of dopamine. Utilizing this effect of structural cavity mode, a Raman signal of R6G (5 × 10-3 M) detected by this designed surface-enhanced Raman spectroscopy (SERS)-active substrate was enhanced more than 10-fold compared with that of ZnO film/Ag substrate. Also, this hybrid microcavity substrate manifests high SERS sensitivity to rhodamine 6 G and detection limit as low as 10-12 M to DA. The Localized Surface Plasmons of Ag nanoparticles and WGM-enhanced light-matter interaction mainly contribute to the high SERS sensitivity and help to achieve a lower detection limit. This designed SERS-active substrate based on the WGM effect has the potential for detecting neurotransmitters in life science.

  1. [TLC-FT-SERS study on a pair of optic isomers in ephedra].

    Science.gov (United States)

    Wang, Yuan; Zhang, Jin-zhi; Ma, Xin-yong

    2004-11-01

    A new method for analyzing the ingredients of a pair of optic isomers in ephedra, nor-ephedrine and nor-pseudo-ephedrine, using hyphenated high-efficiency thin layer chromatography (TLC) and surface-enhanced Raman spectroscopy (SERS) techniques, is reported. The results show that the characteristic spectral bands of nor-ephedrine and nor-pseudo-ephedrine can be obtained from the TLC spot with 8 microg sample of about 2.0 mm in diameter. The difference between the SERS and solid spectra was found. Spectral bands at 1004 cm(-1) and 1605 cm(-1) were found greatly enhanced. Molecule was absorbed in surface silver sol by pi electrons in ring. Under similar experimental conditions the spectral information of Levo-nor-ephedrine ramifications TLC-SERS is rich with strong credibility, whereas dextral-nor-ephedrine ramifications show a relatively strong fluorescence backdrop with less spectral information and weak credibility. The effective combination of TLC and SERS can be used to analyse the chemical ingredients with high sensitivity.

  2. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon.

    Science.gov (United States)

    Bandarenka, Hanna V; Girel, Kseniya V; Zavatski, Sergey A; Panarin, Andrei; Terekhov, Sergei N

    2018-05-21

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  3. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon

    Directory of Open Access Journals (Sweden)

    Hanna V. Bandarenka

    2018-05-01

    Full Text Available The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs, and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  4. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design.

    Science.gov (United States)

    Guicheteau, J A; Tripathi, A; Emmons, E D; Christesen, S D; Fountain, Augustus W

    2017-12-04

    Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule-metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting

  5. Instaurando maneiras de ser, conhecer e interpretar

    Directory of Open Access Journals (Sweden)

    Maria Stephanou

    1998-01-01

    Full Text Available O artigo propõe a discussão e a problematização do tema "currículo e história". Na primeira parte explicita os fundamentos propostos para a abordagem, as concepções de currículo e história. Na segunda, privilegia as indicações de autores e a experiência pessoal para: a caracterizar o que têm sido os currículos e o ensino de história, particularmente no ensino fundamental, comentan-do suas implicações; b examinar alternativas e encaminhamentos propostos pelos debates da atualidade. Sugere que a aprendizagem de conteúdos históricos na escola, para além da mera aquisição de informações, implica a produção ativa de subjetividades, ou maneiras de ser, conhecer e interpretar o mundo e a si próprio.This article proposes to discuses and to question the theme "curriculum & history". On first part, it explains the fundaments proposed to the dissertation, the conception of curriculum & history. On the second, it grants privilege upon authors remarks and personal experience for purpose to: a characterize what were the curricular activities and the teaching of history, inside primary school particularly, with comments about its implications. b examine alternatives and forwarding proposed by present debates. It suggests that in the school the apprenticeship around historical contents, other than a pure acquisition of information, implies and actives production of subjectivities or manners of being, knowing and interpreting the world and oneself.

  6. Engineering Plasmonic Nanopillar Arrays for Surface-enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wu, Kaiyu

    This Ph.D. thesis presents (i) an in-depth understanding of the localized surface plasmon resonances (LSPRs) in the nanopillar arrays (NPs) for surface-enhanced Raman spectroscopy (SERS), and (ii) systematic ways of optimizing the fabrication process of NPs to improve their SERS efficiencies. Thi...

  7. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    Science.gov (United States)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  8. Optical Characterization of SERS Substrates Based on Porous Au Films Prepared by Pulsed Laser Deposition

    Directory of Open Access Journals (Sweden)

    V. V. Strelchuk

    2015-01-01

    Full Text Available The SERS (surface enhanced Raman spectroscopy substrates based on nanocomposite porous films with gold nanoparticles (Au NPs arrays were formed using the method of the pulsed laser deposition from the back low-energy flux of erosion torch particles on the glass substrate fixed at the target plain. The dependencies of porosity, and morphology of the surface of the film regions located near and far from the torch axis on the laser ablation regime, laser pulses energy density, their number, and argon pressure in the vacuum chamber, were ascertained. The Au NPs arrays with the controllable extinction spectra caused by the local surface plasmon resonance were prepared. The possibility of the formation of SERS substrates for the detection of the Rhodamine 6G molecules with the concentration 10−10 Mol/L with the enhancement factor 4·107 was shown.

  9. The effect of artificial seawater on SERS spectra of amino acids-Ag colloids: An experiment of prebiotic chemistry

    Science.gov (United States)

    Nascimento, Fernanda C.; Carneiro, Cristine E. A.; Santana, Henrique de; Zaia, Dimas A. M.

    2014-01-01

    The large enhancement of signal observed in surface enhanced Raman spectroscopy (SERS) could be helpful for identifying amino acids on the surface of other planets, in particular for Mars, as well as in prebiotic chemistry experiments of interaction minerals/amino acids. This paper reports the effect of several substances (NaCl, MgCl2, KBr, CaSO4, K2SO4, MgSO4, KI, NH4Cl, SrCl2, CaCl2, Na2SO4, KOH, NaOH, H3BO3) on the SERS spectra of colloid of sodium citrate-CSC and colloid of sodium borohydride-CSB. The effect of four different artificial seawaters and these artificial seawaters plus amino acids (α-Ala-alanine, Gly-glycine, Cys-cysteine, AIB-2-aminoisobutiric acid) on SERS spectra using both CSC and CSB was also studied. For CSC, the effect of water, after dilution of the colloid, was the appearance of several absorption bands belonging to sodium citrate in the SERS spectrum. In general, artificial seawaters enhanced several bands in SERS spectra using CSC and CSB and CSC was more sensitive to those artificial seawaters than CSB. The identification of Gly, α-Ala and AIB using CSC or CSB was not possible because several bands belonging to artificial seawaters, sodium citrate or sodium borohydride were enhanced. On the other hand, artificial seawaters did not interfere in the SERS spectra of Cys using CSC or CSB, although the interaction of Cys with each colloid was different. For CSC the band at 2568 cm-1 (S-H stretching) of Cys vanished and for CSB the intensity of this band decreased, indicating the -SH of Cys was bonded to Ag to form -S-Ag. Thus SERS spectroscopy could be used for Cys detection on Mars soils using Mars land rovers as well as to study the interaction between Cys and minerals in prebiotic chemistry experiments.

  10. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    Science.gov (United States)

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    Directory of Open Access Journals (Sweden)

    Rikke Kragh Lauridsen

    2015-09-01

    Full Text Available Lung infections with Pseudomonas aeruginosa (PA is the most common cause of morbidity and mortality in cystic fibrosis (CF patients. Due to its ready adaptation to the dehydrated mucosa of CF airways, PA infections tend to become chronic, eventually killing the patient. Hydrogen cyanide (HCN at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band at ∼2133 cm−1, is an excellent case for the SERS-based detection due to the infrequent occurrence of triple bonds in nature. For demonstration of direct HCN detection in the gas phase, a gold-coated silicon nanopillar substrate was exposed to 5 ppm HCN in N2. Results showed that HCN adsorbed on the SERS substrate can be consistently detected under different experimental conditions and up to 9 days after exposure. For detection of lower cyanide concentrations serial dilution experiments using potassium cyanide (KCN demonstrated cyanide quantification down to 1 μM in solution (corresponding to 18 ppb. Lower KCN concentrations of 10 and 100 nM (corresponding to 0.18 and 1.8 ppb produced SERS intensities that were relatively similar to the reference signal. Since HCN concentration in the breath of PA colonized CF children is reported to be ∼13.5 ppb, the detection of cyanide is within the required range. Keywords: Surface-Enhanced Raman Spectroscopy, Hydrogen cyanide, Pseudomonas aeruginosa, Cystic fibrosis, Breath analysis

  12. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    Science.gov (United States)

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  13. Orange-red emitting Gd2Zr2O7:Sm3+: Structure-property correlation, optical properties and defect spectroscopy

    Science.gov (United States)

    Gupta, Santosh K.; Reghukumar, C.; Sudarshan, K.; Ghosh, P. S.; Pathak, Nimai; Kadam, R. M.

    2018-05-01

    Local structure analysis of dopant ion, understanding host to dopant energy transfer dynamics and defects characterization in a doped material which plays an important role in the designing a highly efficient opto-electronic material. In this connection a new Sm3+ doped Gd2Zr2O7 pyrochlore material was synthesized using gel-combustion technique and was characterized systematically using X-ray diffraction (XRD), time resolved photoluminescence spectroscopy (TRPLS), positron annihilation lifetime spectroscopy (PALS) and density functional theory (DFT) based ab-initio calculation. Based on DFT site selective energetics calculation and luminescence decay measurement, it was observed that the Sm3+ was distributed at both Gd3+ and Zr4+ site with higher Sm3+ fraction at the Gd3+ site. PALS was used to probe the presence of defects in the phosphor. In this work intense orange-red emission is realized through manipulating the energy transfer from host defect emission (oxygen vacancies) to Sm3+ which allows color emission from green in undoped to orange-red in doped samples. Effect of dopant concentration and annealing temperature was probed using TRPLS and PALS. These all information is highly important for researcher looking to achieve pyrochlore based phosphor materials with high quantum yield.

  14. Inclusion of gold nanoparticles in meso-porous silicon for the SERS analysis of cell adhesion on nano-structured surfaces

    KAUST Repository

    Coluccio, M.L.; De Vitis, S.; Strumbo, G.; Candeloro, P.; Perozziello, G.; Di Fabrizio, Enzo M.; Gentile, F.

    2016-01-01

    MeP Si surfaces were realized by anodization of a Si wafer, creating the device for cell adhesion and growth. Gold nanoparticles were deposited on porous silicon by an electroless technique. We thus obtained devices with superior SERS capabilities, whereby cell activity may be controlled using Raman spectroscopy. MCF-7 breast cancer cells were cultured on the described substrates and SERS maps revealing the different expression and distribution of adhesion molecules were obtained by Raman spectroscopic analyses.

  15. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    Science.gov (United States)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  16. [AgBr colloids prepared by electrolysis and their SERS activity research].

    Science.gov (United States)

    Si, Min-Zhen; Fang, Yan; Dong, Gang; Zhang, Peng-Xiang

    2008-01-01

    Ivory-white AgBr colloids were prepared by means of electrolysis. Two silver rods 1.0 cm in diameter and 10.0 cm long were respectively used as the negative and positive electrodes, the aqueous solution of hexadecyl trimethyl ammonium bromide was used as the electrolyte, and a 7 V direct current was applied on the silver rods for three hours. The obtained AgBr colloids were characterized by UV-Vis spectroscopy, transmission electron microscopy, and SERS using a 514. 5 nm laser line on Renishaw 2000 Raman spectrometer. These particles are about nanometer size and their shapes are as spherical or elliptic, with a slight degree of particle aggregation. The UV-Vis spectra exhibit a large plasmon resonance band at about 292.5 nm, similar to that reported in the literature. The AgBr colloids were very stable at room temperature for months. In order to test if these AgBr colloids can be used for SERS research, methyl orange, Sudan red and pyridine were used. It was found that AgBr colloids have SERS activity to these three molicules. For methyl orange, the intense Raman peaks are at 1 123, 1 146, 1 392, 1 448 and 1 594 cm(-1); for Sudan red, the intense Raman peaks are at 1 141, 1 179, 1 433 and 1 590 cm(-1); and for pyridine, the intense Raman peaks are at 1 003, 1 034 and 1 121 cm(-1). It is noticeable that SERS of methyl orange was observed on AgBr colloids, but not on the gray and yellow silver colloids prepared by traditional means. The possible reason was explained. One major advantage of this means is the absence of the spectral interference such as citrate, BH4- arising from reaction products of the colloids formation process. On AgBr colloids, one can get some molecular SERS impossible to get on the gray and yellow silver colloids.

  17. Identifying inter-residue resonances in crowded 2D {sup 13}C-{sup 13}C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao Yimin; Cross, Timothy A. [Florida State University, Department of Chemistry and Biochemistry (United States); Fu Riqiang, E-mail: rfu@magnet.fsu.edu [National High Magnet Field Lab (United States)

    2013-07-15

    The feasibility of using difference spectroscopy, i.e. subtraction of two correlation spectra at different mixing times, for substantially enhanced resolution in crowded two-dimensional {sup 13}C-{sup 13}C chemical shift correlation spectra is presented. With the analyses of {sup 13}C-{sup 13}C spin diffusion in simple spin systems, difference spectroscopy is proposed to partially separate the spin diffusion resonances of relatively short intra-residue distances from the longer inter-residue distances, leading to a better identification of the inter-residue resonances. Here solid-state magic-angle-spinning NMR spectra of the full length M2 protein embedded in synthetic lipid bilayers have been used to illustrate the resolution enhancement in the difference spectra. The integral membrane M2 protein of Influenza A virus assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Based on known amino acid resonance assignments from amino acid specific labeled samples of truncated M2 sequences or from time-consuming 3D experiments of uniformly labeled samples, some inter-residue resonances of the full length M2 protein can be identified in the difference spectra of uniformly {sup 13}C labeled protein that are consistent with the high resolution structure of the M2 (22-62) protein (Sharma et al., Science 330(6003):509-512, 2010)

  18. Myofilament Calcium Sensitivity: Mechanistic Insight into TnI Ser-23/24 and Ser-150 Phosphorylation Integration

    Directory of Open Access Journals (Sweden)

    Hussam E Salhi

    2016-12-01

    Full Text Available Troponin I (TnI is a major regulator of cardiac muscle contraction and relaxation. During physiological and pathological stress, TnI is differentially phosphorylated at multiple residues through different signaling pathways to match cardiac function to demand. The combination of these TnI phosphorylations can exhibit an expected or unexpected functional integration, whereby the function of two phosphorylations are different than that predicted from the combined function of each individual phosphorylation alone. We have shown that TnI Ser-23/24 and Ser-150 phosphorylation exhibit functional integration and are simultaneously increased in response to cardiac stress. In the current study, we investigated the functional integration of TnI Ser-23/24 and Ser-150 to alter cardiac contraction. We hypothesized that Ser-23/24 and Ser-150 phosphorylation each utilize distinct molecular mechanisms to alter the TnI binding affinity within the thin filament. Mathematical modeling predicts that Ser-23/24 and Ser-150 phosphorylation affect different TnI affinities within the thin filament to distinctly alter the Ca2+-binding properties of troponin. Protein binding experiments validate this assertion by demonstrating pseudo-phosphorylated Ser-150 decreases the affinity of isolated TnI for actin, whereas Ser-23/24 pseudo-phosphorylation is not different from unphosphorylated. Thus, our data supports that TnI Ser-23/24 affects TnI-TnC binding, while Ser-150 phosphorylation alters TnI-actin binding. By measuring force development in troponin-exchanged skinned myocytes, we demonstrate that the Ca2+ sensitivity of force is directly related to the amount of phosphate present on TnI. Furthermore, we demonstrate that Ser-150 pseudo-phosphorylation blunts Ser-23/24-mediated decreased Ca2+-sensitive force development whether on the same or different TnI molecule. Therefore, TnI phosphorylations can integrate across troponins along the myofilament. These data demonstrate

  19. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  20. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.

    2011-01-01

    For the first time, the differences between the spectra of amphetamine and amphetamine-H+ and between different conformers are thoroughly studied by ab initio model calculations, and Raman and surface-enhanced Raman spectroscopy (SERS) spectra are measured for different species of amphetamine....... The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...

  1. El SERS como sensor de pH en entornos nanométricos

    OpenAIRE

    López-Tocón, Isabel

    2015-01-01

    La Espectroscopia SERS (Surface-Enhanced Raman Spectroscopy) se caracteriza por la enorme intensificación de la señal Raman de una molécula cuando se encuentra en las proximidades de una superficie metálica rugosa a escala nanométrica. Se trata, por tanto, de una técnica de alta sensibilidad que permite el registro de muestras a muy baja concentración y además, de alta selectividad, ya que únicamente aquellas moléculas que presenten un centro capaz de interaccionar con el metal, como un par ...

  2. Molecular spectroscopy

    International Nuclear Information System (INIS)

    Kokh, Eh.; Zonntag, B.

    1981-01-01

    The latest investigation results on molecular spectroscopy with application of synchrotron radiation in the region of vacuum ultraviolet are generalized. Some results on investigation of excited, superexcited and ionized molecule states with the use of adsorption spectroscopy, photoelectron spectroscopy, by fluorescent and mass-spectrometric methods are considered [ru

  3. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  4. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  5. Aggregation of nanoparticles in endosomes and lysosomes produces surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Lucas, Leanne J.; Chen, Xiaoke K.; Smith, Aaron J.; Korbelik, Mladen; Zeng, Haishan; Lee, Patrick W. K.; Hewitt, Kevin Cecil

    2015-01-01

    The purpose of this study was to explore the use of surface-enhanced Raman spectroscopy (SERS) to image the distribution of epidermal growth factor receptor (EGFR) in cells. To accomplish this task, 30-nm gold nanoparticles (AuNPs) tagged with antibodies to EGFR (1012 per mL) were incubated with cells (106 per mL) of the A431 human epidermoid carcinoma and normal human bronchial epithelial cell lines. Using the 632.8-nm excitation line of a He-Ne laser, Raman spectroscopy measurements were performed using a point mapping scheme. Normal cells show little to no enhancement. SERS signals were observed inside the cytoplasm of A431 cells with an overall enhancement of 4 to 7 orders of magnitude. Raman intensity maps of the 1450 and 1583 cm-1 peaks correlate well with the expected distribution of EGFR and AuNPs, aggregated following uptake by endosomes and lysosomes. Spectral features from tyrosine and tryptophan residues dominate the SERS signals.

  6. QUE É O "SER DA FAMÍLIA"?

    Directory of Open Access Journals (Sweden)

    Josefa Aida Delgado

    2005-01-01

    Full Text Available Es un estudio basado en la filosofía fenomenológica heideggeriana, su propósito es desvelar los elementos estructurales de la existencia del "ser de la familia". El camino metodológico fue construido con base en el pensamiento de Heidegger. Los datos de la familia fueron recolectados por medio de las entrevistas y las observaciones. Cada uno de nosotros contribuye para su existencia, y ella posibilita el desarrollo de nuestro "ser-en el-mundo" al vivenciar y compartir experiencias cotidianas de la familia. Allí surge la posibilidad de compartir un modo de ser en el mundo, un modo de cuidado para "ser familia en el mundo". Un mundo que genera esa unidad de relacionamiento que emerge de sentimientos interligados entre los integrantes, respondiendo a las exigencias de cada miembro, por el sentimiento de pertenencia primaria generado en ellos. Esa unidad da la posibilidad de nacer a cada uno de nosotros, asi también, nos da la posibilidad de poder ser ser humano, llegando a ser un referencial de sí misma en cada ser humano.

  7. IR, Raman and SERS studies of methyl salicylate

    Science.gov (United States)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  8. Cu(I), Ag(I), Cd(II), and Pb(II) binding to biomolecules studied by perturbed angular correlation of $\\gamma$-rays (PAC) spectroscopy

    CERN Multimedia

    Metal ions display diverse functions in biological systems and are essential components in both protein and nucleic acid structure and function, and in control of biochemical reaction paths and signalling. Similarly, metal ions may be used to control structure and function of synthetic biomolecules, and thus be a tool in the design of molecules with a desired function. In this project we address a variety of questions concerning both the function of metal ions in natural systems, in synthetic biomolecules, and the toxic effect of some metal ions. All projects involve other experimental techniques such as NMR, EXAFS, UV-Vis, fluorescence, and CD spectroscopies providing complementary data, as well as interpretation of the experimental data by quantum mechanical calculations of spectroscopic properties. The isotopes to be employed in the proposal are the following: $^{111m}$Cd, $^{111}$Ag, $^{199m}$Hg, $^{204m}$Pb, $^{61}$Cu, $^{68m}$Cu

  9. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Wang, Xiang-Dong; Tian, Ting; Chu, Li-Qiang, E-mail: chuliqiang@tust.edu.cn

    2017-06-15

    Highlights: • POEGMA/AgNPs composite film prepared via the in-stacking method is employed as 3D SERS substrate. • Control over POEGMA chain length is achieved via SI-ATRP method. • Influence of POEGMA chain length and in-stacking process on SERS performance is investigated. • The 3D SERS substrate is used for the ultrasensitive detection of ATP and S. aureus. - Abstract: Surface-enhanced Raman scattering (SERS) sensors have been extensively studied for ultrasensitive detection of diverse chemical or biological analytes. Facile fabrication of highly sensitive SERS substrates is believed to be of crucial importance in these analytical applications. In this regard, the preparation of 3-dimensional (3D) SERS substrates are explored via the incorporation of multilayered silver nanoparticles (AgNPs) into poly (oligo(ethylene glycol) methacrylate) (POEGMA) brushes by repeating the immersion-rinsing-drying steps for different lengths of time (i.e., the so-called in-stacking method). The POEGMA brushes of different chain lengths are synthesized by surface-initiated atom transfer radical polymerization (ATRP) with various reaction time. The resulting POEGMA/AgNP nanocomposites are characterized by FE-SEM, UV–vis and Raman spectroscopy. FE-SEM and UV–vis results indicate that the AgNPs are successfully incorporated into the POEGMA brushes with a 3D configuration. The nanocomposite films are employed as SERS substrates for the detection of a Raman reporter molecule (i.e., 4-aminothiophenol), giving rise to an enhancement factor of up to 1.29 × 10{sup 7} and also having relatively good uniformity and reproducibility. The obtained 3D SERS substrates are also used for the detection of a typical gram-positive bacterium, Staphylococcus aureus. The limit of detection is found to be as low as ca. 8 CFU/mL.

  10. Photonic Crystal Fibre SERS Sensors Based on Silver Nanoparticle Colloid

    International Nuclear Information System (INIS)

    Zhi-Guo, Xie; Yong-Hua, Lu; Pei, Wang; Kai-Qun, Lin; Jie, Yan; Hai, Ming

    2008-01-01

    A photonic crystal fibre (PCF) surface enhanced Raman scattering (SERS) sensor is developed based on silver nanoparticle colloid. Analyte solution and silver nanoparticles are injected into the air holes of PCF by a simple modified syringe to overcome mass-transport constraints, allowing more silver nanoparticles involved in SERS activity. This sensor offers significant benefit over the conventional SERS sensor with high flexibility, easy manufacture. We demonstrate the detection of 4-mercaptobenzoic acid (4-MBA) molecules with the injecting way and the common dipping measurement. The injecting way shows obviously better results than the dipping one. Theoretical analysis indicates that this PCF SERS substrate offers enhancement of about 7 orders of magnitude in SERS active area

  11. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  12. Fe2O3-Au hybrid nanoparticles for sensing applications via sers analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Searles, Emily [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-25

    Nanoparticles with large amounts of surface area and unique characteristics that are distinct from their bulk material provide an interesting application in the enhancement of inelastic scattering signal. Surface Enhanced Raman Spectroscopy (SERS) strives to increase the Raman scattering effect when chemical species of interest are in the close proximity of metallic nnaostructures. Gold nanoparticles of various shapes have been used for sensing applications via SERS as they demonstrate the greatest effect of plasmonic behavior in the visible-near IR region of the spectrum. When coupled with other nanoparticles, namely iron oxide nanoparticles, hybrid structures with increased functionality were produced. Multifunctional iron oxide-gold hybrid nanostructures have been created via solution chemistries and investigated for analyte detection of a model analyte. By exploiting their magnetic properties, nanogaps or “hot spots” were rationally created and evaluated for SERS enhancement studies.

  13. Investigation of neural correlates between perception of pain and hemodynamic response measured in the pre-frontal cortex using functional near infra-red spectroscopy

    Science.gov (United States)

    Krishnamurthy, Venkatagiri

    Perception of pain is multi-dimensional, comprising three major psychological dimensions: sensory-discriminative, motivational-affective and cognitive-evaluative. This dissertation study investigates the cognitive evaluation of pain, by acquiring functional Near Infra-Red Spectroscopic (fNIRS) measurements from the prefrontal cortex (PFC) areas, during mechanical and thermal pain stimulation induced on the subject's volar forearm. Clustered-wise analysis on the oxy-hemoglobin (HbO) response from specific PFC areas was followed by categorizing the resulting HbO response into early (0.1--12sec) and late (12.1--25sec) phases. For each respective phase, regression analysis was carried between the HbO-derived parameters and behaviorally measured pain rating. The major findings of this study include: (1) across both 41°C and 48°C thermal stimulation, significant DeltaHbO deactivation was observed during the late phase, in the left hemispheric (LH) anterior PFC (aPFC) or Brodmann area 10 (BA 10). (2) Significant correlates of pain rating were observed in the LH prefrontal areas: (a) under mechanical stimulation, early phase HbO-derived peak intensity (PI) from LH aPFC correlated with the pain rating. (b) Under both 41°C and 48°C thermal stimulation, late phase HbO-derived PI from the LH dorsolateral PFC (DLPFC or BA 46) showed correlation with the pain rating. (3) The significant correlates observed from the right hemispheric (RH) PFC were: (a) under mechanical stimulation, early phase HbO-derived FWHM from the RH aPFC correlated with the pain rating. (b) Under 41°C thermal stimulation, late phase HbO-derived PI from the RH DLPFC area correlated with the pain rating. (4) The late phase HbO-derived time to peak from LH aPFC reflected cognitive discrimination of two different pain levels (41°C and 48°C). The observed trend for DeltaHbO activation and deactivation could possibly be due to synaptic-induced vasodilation and vasoconstriction leading to increased or

  14. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  15. A Flow System for Generation of Concentration Perturbation in Two-Dimensional Correlation Near-Infrared Spectroscopy: Application to Variable Selection in Multivariate Calibration

    OpenAIRE

    Pereira, CF; Pasquini, C

    2010-01-01

    A flow system is proposed to produce a concentration perturbation in liquid samples, aiming at the generation of two-dimensional correlation near-infrared spectra. The system presents advantages in relation to batch systems employed for the same purpose: the experiments are accomplished in a closed system; application of perturbation is rapid and easy; and the experiments can be carried out with micro-scale volumes. The perturbation system has been evaluated in the investigation and selection...

  16. Intermolecular spectroscopy

    International Nuclear Information System (INIS)

    Gelbart, W.M.

    1980-01-01

    In this article some of the theoretical background is presented for the following papers on 'Intermolecular Spectroscopy and Dynamical Properties of Dense Systems'. In Section 1 we outline a simple semi-classical description of the interaction between optical radiation and matter. The motion of a many-body polarizability is introduced; limiting forms of this complicated quantity lead to the familiar cases of light scattering spectra. In Section 2 we consider the linear response approximation, and the equation of motion for the many-body density matrix is solved to first order in the matter-radiation interaction. The often quoted fluctuation-dissipation theorem and the time-dependent, equilibrium correlation functions are discussed. Section 3 treats the problem of the local field. In Section 4 we consider the special case of collision-induced light scattering by atomic fluids in the low-density limit. This allows us to focus on determining the interaction polarizability for simple gases. Finally, in Section 5 we distinguish between collision-induced and multiple light scattering, and discuss the double-light-scattering analyses which provide new information about critical and thermodynamically unstable fluids. (KBE)

  17. Measurement of the exchange rate of waters of hydration in elastin by 2D T{sub 2}-T{sub 2} correlation nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun Cheng; Boutis, Gregory S, E-mail: gboutis@brooklyn.cuny.edu [Brooklyn College, Department of Physics, 2900 Bedford Avenue, Brooklyn, NY 11210 (United States)

    2011-02-15

    We report on a direct measurement of the exchange rate of waters of hydration in elastin by T{sub 2}-T{sub 2} exchange spectroscopy. The exchange rates in bovine nuchal ligament elastin and aortic elastin at temperatures near, below and at the physiological temperature are reported here. Using an inverse Laplace transform (ILT) algorithm, we are able to identify four components in the relaxation times. While three of the components are in good agreement with previous measurements that used multi-exponential fitting, the ILT algorithm distinguishes a fourth component having relaxation times close to that of free water and is identified as water between fibers. With the aid of scanning electron microscopy, a model is proposed that allows for the application of a two-site exchange analysis between any two components for the determination of exchange rates between reservoirs. The results of the measurements support a model (described by Urry and Parker 2002 J. Muscle Res. Cell Motil. 23 543-59) wherein the net entropy of waters of hydration should increase with increasing temperature in the inverse temperature transition.

  18. Measurement of the exchange rate of waters of hydration in elastin by 2D T2-T2 correlation nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Sun Cheng; Boutis, Gregory S

    2011-01-01

    We report on a direct measurement of the exchange rate of waters of hydration in elastin by T 2 -T 2 exchange spectroscopy. The exchange rates in bovine nuchal ligament elastin and aortic elastin at temperatures near, below and at the physiological temperature are reported here. Using an inverse Laplace transform (ILT) algorithm, we are able to identify four components in the relaxation times. While three of the components are in good agreement with previous measurements that used multi-exponential fitting, the ILT algorithm distinguishes a fourth component having relaxation times close to that of free water and is identified as water between fibers. With the aid of scanning electron microscopy, a model is proposed that allows for the application of a two-site exchange analysis between any two components for the determination of exchange rates between reservoirs. The results of the measurements support a model (described by Urry and Parker 2002 J. Muscle Res. Cell Motil. 23 543-59) wherein the net entropy of waters of hydration should increase with increasing temperature in the inverse temperature transition.

  19. Impedance spectroscopy of SrBi2Ta2O9 and SrBi2Nb2O9 ceramics correlation with fatigue behavior

    International Nuclear Information System (INIS)

    Chen, T.; Thio, C.; Desu, S.B.

    1997-01-01

    In this research, a fatigue model for ferroelectric materials is proposed. The reasons for the electrical fatigue resistance of SrBi 2 Ta 2 O 9 (SBT), SrBi 2 Nb 2 O 9 (SBN), and PbZr 1-x Ti x O 3 (PZT) are discussed in terms of the bulk ionic conductivities of the compounds. To obtain the bulk ionic conductivity of SBT and SBN, we have used impedance spectroscopy which provides an effective method that allows us to separate the individual contributions of bulk, grain boundaries, and electrode-ferroelectric interfaces from the total capacitor impedance. The bulk ionic conductivities of SBT and SBN (∼10 -7 S/cm) are much higher than those of the perovskite ferroelectrics, e.g., PZT (∼10 -11 -10 -10 S/cm). The high ionic conductivities led us to conclude that the good fatigue resistance of SrBi 2 Ta 2 O 9 and SrBi 2 Nb 2 O 9 is due to easy recovery of defects. Specifically, oxygen vacancies entrapped within the capacitors are easily released, resulting in limited space charge buildup and domain wall pinning during the polarization reversal process. However, the oxygen vacancies in PZT are trapped at trap sites to become space charges, resulting in capacitor fatigue. copyright 1997 Materials Research Society

  20. Phase synchronization of oxygenation waves in the frontal areas of children with attention-deficit hyperactivity disorder detected by optical diffusion spectroscopy correlates with medication

    Science.gov (United States)

    Wigal, Sharon B.; Polzonetti, Chiara M.; Stehli, Annamarie; Gratton, Enrico

    2012-12-01

    The beneficial effects of pharmacotherapy on children with attention-deficit hyperactivity disorder (ADHD) are well documented. We use near-infrared spectroscopy (NIRS) methodology to determine reorganization of brain neurovascular properties following the medication treatment. Twenty-si