WorldWideScience

Sample records for serrated plastic flow

  1. A study of serrated plastic flow behavior in an aluminum-lithium binary alloy

    International Nuclear Information System (INIS)

    Sun, D.L.; Yang, D.Z.; Lei, T.Q.

    1990-01-01

    The serrated plastic flow behavior of an Al-2.73wt%Li alloy at various aging conditions is investigated. The stress-strain curve of the alloy is examined using an Instron machine. The microstructure of the alloy before and after deformation is observed using a transmission electron microscope. It has been shown that the stress-strain curve in the alloy is serrated and both time and/or temperature of aging affect the formation of serrations. The δ' phase (Al 3 Li) which is induced by plastic deformation precipitates along dislocations. The formation mechanism of the serrated stress-strain curve in the Al-Li binary alloy is discussed. (orig.)

  2. Atomistic Origin of Rate-Dependent Serrated Plastic Flow in Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yao YG

    2008-01-01

    Full Text Available Abstract Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL theory.

  3. Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Wang, W. H.; Bai, H. Y., E-mail: hybai@aphy.iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, B. A. [Centre for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2016-02-07

    We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.

  4. The mechanism of critical strain and serration type of the serrated flow in Mg–Nd–Zn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.H. [The Group of Magnesium Alloys and Their Applications, Institute of Metal Research Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); School of Materials Science and Engineering, Shenyang Ligong University, 6 Nanpingzhong Road, Shenyang 110159 (China); Wu, D., E-mail: dwu@imr.ac.cn [The Group of Magnesium Alloys and Their Applications, Institute of Metal Research Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); Shah, S.S.A. [The Group of Magnesium Alloys and Their Applications, Institute of Metal Research Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); Chen, R.S., E-mail: rschen@imr.ac.cn [The Group of Magnesium Alloys and Their Applications, Institute of Metal Research Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016 (China); Lou, C.S. [School of Materials Science and Engineering, Shenyang Ligong University, 6 Nanpingzhong Road, Shenyang 110159 (China)

    2016-01-01

    In present research the serrated flow has been observed successfully after a critical amount of strain. Two relationships between the critical strain and temperature i.e. normal and inverse, corresponding to each serration type were studied. In order to investigate systematically the onset of serrated flow and serration type in NZ31 alloy, samples in solutionized condition were tensile tested at the temperature ranging from 100 °C to 300 °C with the strain rate ranging from 1×10{sup −4} s{sup −1} to 1×10{sup −2} s{sup −1}. Results showed that normal critical strain appeared with type A and B serrated flow at temperature from 150°C to 250 °C, and inverse critical strain appeared with type C at temperature from 275 °C to 300 °C. Through analyzing the mechanism of three serration types, we found that the production of serration required improvement in diffusion for solute atoms for pinning process at low temperature, and enhance the moving ability of dislocations for unpinning process at high temperature, which need the assistance of the strain and stress respectively. So, in this work, the critical strain for pinning and the critical stress for unpinning processes were defined, which give a better explanation to the variation tendency of two definitions in accordance with temperature. Furthermore, this relationship results in the critical strain for onset of serrated flow changing from normal to inverse and corresponding different serrations.

  5. Mechanism of serrated flow in binary Al-Li alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Pink, E. [Austrian Academy of Sciences, Leoben (Austria). Erich-Schmid-Inst. of Solid State Physics; Krol, J. [Polish Academy of Sciences, Krakow (Poland). Alexander-Krupkowski-Inst. of Metallurgy and Materials Science

    1996-09-15

    The work on serrated flow in Al-Li alloys has given rise to a controversy--whether serrations in these alloys are caused by lithium atoms in solid solution or by {delta}{prime}(Al{sub 3}Li)-precipitates. This controversy calls for further work to clarify the mechanism of serrated flow in the Al-Li alloys. Kumar and McShane have shown that in an Al-2.5Li-2Mg-0.14Zr alloy, non-shearable {delta}{prime}-precipitates, which are obtained in the under-aged and peak-aged conditions, might directly initiate serrated flow. However, the latter result was ambiguous because of the presence of other alloying elements, and the need to work on a binary Al-Li alloy was emphasized. The present work discusses the results from the binary Al-Li alloys.

  6. Serrated Flow and Dynamic Strain Aging in Fe-Mn-C TWIP Steel

    Science.gov (United States)

    Lan, Peng; Zhang, Jiaquan

    2018-01-01

    The tensile behavior, serrated flow, and dynamic strain aging of Fe-(20 to 24)Mn-(0.4 to 0.6)C twinning-induced plasticity (TWIP) steel have been investigated. A mathematical approach to analyze the DSA and PLC band parameters has been developed. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with a theoretical ordering index (TOI) between 0.1 and 0.3, DSA can occur at the very beginning of plastic deformation and provide serrations during work hardening, while for TOI less than 0.1 the occurrence of DSA is delayed and twinning-dominant work hardening remains relatively smooth. The critical strain for the onset of DSA and PLC bands in Fe-Mn-C TWIP steels decreases as C content increases, while the numbers of serrations and bands increase. As Mn content increases, the critical strain for DSA and PLC band varies irregularly, but the numbers of serrations and bands increase. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with grain size of about 10 to 20 μm, the twinning-induced work hardening rate is about 2.5 to 3.0 GPa, while the DSA-dominant hardening rate is about 2.0 GPa on average. With increasing engineering strain from 0.01 to 0.55 at an applied strain rate of 0.001s-1, the cycle time for PLC bands in Fe-Mn-C TWIP steel increases from 6.5 to 162 seconds, while the band velocity decreases from 4.5 to 0.5 mm s-1, and the band strain increases from 0.005 to 0.08. Increasing applied strain rate leads to a linear increase of band velocity despite composition differences. In addition, the influence of the Mn and C content on the tensile properties of Fe-Mn-C TWIP steel has been also studied. As C content increases, the yield strength and tensile strength of Fe-Mn-C TWIP steel increase, but the total elongation variation against C content is dependent on Mn content. As Mn content increases, the yield strength and tensile strength decrease, while the total elongation increases, despite C content. Taking both tensile properties and serrated flow behavior into

  7. Non-repeatability of large plasticity for Fe-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weiming [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Sun, Baoan [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Zhao, Yucheng, E-mail: zhaoyc1972@163.com [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Li, Qiang [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Hou, Long; Luo, Ning [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Dun, Chaochao [Department of Physics, Wake Forest University, Winston Salem, NC 27109 (United States); Zhao, Chengliang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Ma, Zhanguo [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Haishun, E-mail: liuhaishun@126.com [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Shen, Baolong [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-08-15

    Serrated flow is an essential characteristic of the plastic deformation of metallic glasses. Under restricted loading conditions, the formation and expansion of shear bands act as the serrated flow of stress-strain curves in metallic glasses. In this work, serrated flows in Fe{sub 50}Ni{sub 30}P{sub 13}C{sub 7} glassy samples with different plasticity were studied. The distribution histogram shows a monotonically decreasing trend during the initial deformation stage (i.e., the plastic deformation in the range of 0–8%), whereas in the following deformation stage (i.e., a plastic deformation of 8–14%), the stress drop frequency distribution presents both a monotonically decreasing distribution and a peak shape similar to chaotic dynamics. It is shown that the spatial evolution behavior of shear bands in Fe{sub 50}Ni{sub 30}P{sub 13}C{sub 7} metallic glasses evolved from self-organized critical to chaotic dynamics in the form of serrated flow, which reveals the origin of discrete plasticity of Fe-based bulk metallic glasses. This study has potential applications for understanding the plastic deformation mechanism. - Highlights: • Two-stage deformation mechanism in Fe-based bulk metallic glasses. • Distribution of the stress drop amplitude is significantly different at two stages. • The stages are related to multiple shear bands and discrete plasticity.

  8. Non-repeatability of large plasticity for Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Yang, Weiming; Sun, Baoan; Zhao, Yucheng; Li, Qiang; Hou, Long; Luo, Ning; Dun, Chaochao; Zhao, Chengliang; Ma, Zhanguo; Liu, Haishun; Shen, Baolong

    2016-01-01

    Serrated flow is an essential characteristic of the plastic deformation of metallic glasses. Under restricted loading conditions, the formation and expansion of shear bands act as the serrated flow of stress-strain curves in metallic glasses. In this work, serrated flows in Fe_5_0Ni_3_0P_1_3C_7 glassy samples with different plasticity were studied. The distribution histogram shows a monotonically decreasing trend during the initial deformation stage (i.e., the plastic deformation in the range of 0–8%), whereas in the following deformation stage (i.e., a plastic deformation of 8–14%), the stress drop frequency distribution presents both a monotonically decreasing distribution and a peak shape similar to chaotic dynamics. It is shown that the spatial evolution behavior of shear bands in Fe_5_0Ni_3_0P_1_3C_7 metallic glasses evolved from self-organized critical to chaotic dynamics in the form of serrated flow, which reveals the origin of discrete plasticity of Fe-based bulk metallic glasses. This study has potential applications for understanding the plastic deformation mechanism. - Highlights: • Two-stage deformation mechanism in Fe-based bulk metallic glasses. • Distribution of the stress drop amplitude is significantly different at two stages. • The stages are related to multiple shear bands and discrete plasticity.

  9. Constitutive model of discontinuous plastic flow at cryogenic temperatures

    CERN Document Server

    Skoczen, B; Bielski, J; Marcinek, D

    2010-01-01

    FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...

  10. Nanoindentation study on the characteristic of shear transformation zone in a Pd-based bulk metallic glass during serrated flow

    Science.gov (United States)

    Liao, G. K.; Long, Z. L.; Zhao, M. S. Z.; Peng, L.; Chai, W.; Ping, Z. H.

    2018-04-01

    This paper presents the research on the evolution of shear transformation zone (STZ) in a Pd-based bulk metallic glass (BMG) during serrated flow under nanoindentation. A novel method of estimating the STZ volume through statistical analysis of the serrated flow behavior was proposed for the first time. Based on the proposed method, the STZ volume of the studied BMG at various peak loads have been systematically investigated. The results indicate that the measured STZ volumes are in good agreement with that documented in literature, and the STZ size exhibits an increasing trend during indentation. Moreover, the correlation between the serrated flow dynamics and the STZ activation has also been evaluated. It is found that the STZ activation can promote the formation of self-organized critical (SOC) state during serrated flow.

  11. Porous Anodic Aluminum Oxide with Serrated Nanochannels

    Science.gov (United States)

    Li, Dongdong; Zhao, Liang; Lu, Jia G.

    2010-03-01

    Self-assembled nanoporous anodic aluminum oxide (AAO) membrane with straight channels has long been an important tool in synthesizing highly ordered and vertically aligned quasi-1D nanostructures for various applications. Recently shape-selective nanomaterials have been achieved using AAO as a template. It is envisioned that nanowires with multi-branches will significantly increase the active functional sites for applications as sensors, catalysts, chemical cells, etc. Here AAO membranes with serrated nanochannels have been successfully fabricated via a two-step annodization method. The serrated channels with periodic intervals are aligned at an angle of ˜25^circ along the stem channels. The formation of the serrated channels is attributed to the evolution of oxygen gas bubbles and the resulted plastic deformation in oxide membrane. In order to reveal the inside channel structure, Platinum are electrodeposited into the AAO template. The as-synthesized serrated Pt nanowires demonstrate a superior electrocatalytic activity. This is attributed to the enhanced electric field strength around serrated tips as shown in the electric field simulation by COMOSL. Moreover, hierarchical serrated/straight hybrid structures can be constructed using this simple and novel self assembly technique.

  12. Leaf Serration in Seedlings of Hetero blastic Woody Species Enhance Plasticity and Performance in Gaps But Not in the Under story

    International Nuclear Information System (INIS)

    Gamage, H.K.; Gamage, H.K.

    2010-01-01

    Leaf heteroblasty refers to dramatic ontogenetic changes in leaf size and shape, in contrast to homoblasty that exhibits little change, between seedling and adult stages. This study examined whether the plasticity in leaf morphology of heteroblastic species would be an advantage for their survival and growth over homoblastic congeners to changes in light. Two congeneric pairs of homoblastic (Hoheria lyallii, Aristotelia serrata) and heteroblastic species (H. sexstylosa, A. fruticosa) were grown for 18 months in canopy gap and forest understory sites in a temperate rainforest in New Zealand. Heteroblastic species that initially had serrated leaves reduced leaf serration in the understory, but increased in the gaps. Heteroblastic species also produced thicker leaves and had higher stomatal pore area (density x aperture length), maximum photosynthetic rate, survival, and greater biomass allocation to shoots than homoblastic relatives in the gaps. Findings indicate that increased leaf serration in heteroblastic species is an advantage over homoblastic congeners in high light.

  13. Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction.

    Science.gov (United States)

    Chong, Tze Pei; Dubois, Elisa

    2016-08-01

    This paper reports an aeroacoustic investigation of a NACA0012 airfoil with a number of poro-serrated trailing edge devices that contain porous materials of various air flow resistances at the gaps between adjacent members of the serrated-sawtooth trailing edge. The main objective of this work is to determine whether multiple-mechanisms on the broadband noise reduction can co-exist on a poro-serrated trailing edge. When the sawtooth gaps are filled with porous material of low-flow resistivity, the vortex shedding tone at low-frequency could not be completely suppressed at high-velocity, but a reasonably good broadband noise reduction can be achieved at high-frequency. When the sawtooth gaps are filled with porous material of very high-flow resistivity, no vortex shedding tone is present, but the serration effect on the broadband noise reduction becomes less effective. An optimal choice of the flow resistivity for a poro-serrated configuration has been identified, where it can surpass the conventional serrated trailing edge of the same geometry by achieving a further 1.5 dB reduction in the broadband noise while completely suppressing the vortex shedding tone. A weakened turbulent boundary layer noise scattering at the poro-serrated trailing edge is reflected by the lower-turbulence intensity at the near wake centreline across the whole spanwise wavelength of the sawtooth.

  14. Cyclooxygenase-2 overexpression is common in serrated and non-serrated colorectal adenoma, but uncommon in hyperplastic polyp and sessile serrated polyp/adenoma

    Directory of Open Access Journals (Sweden)

    Kirkner Gregory J

    2008-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2, PTGS2 plays an important role in colorectal carcinogenesis. COX-2 overexpression in colorectal cancer is inversely associated with microsatellite instability (MSI and the CpG island methylator phenotype (CIMP. Evidence suggests that MSI/CIMP+ colorectal cancer may arise through the serrated tumorigenic pathway through various forms of serrated neoplasias. Therefore, we hypothesized that COX-2 may play a less important role in the serrated pathway. Methods By immunohistochemistry, we assessed COX-2 expression in 24 hyperplastic polyps, 7 sessile serrated polyp/adenomas (SSA, 5 mixed polyps with SSA and adenoma, 27 traditional serrated adenomas, 515 non-serrated adenomas (tubular adenoma, tubulovillous adenoma and villous adenoma, 33 adenomas with intramucosal carcinomas, 96 adenocarcinomas with serration (corkscrew gland and 111 adenocarcinomas without serration. Results Strong (2+ COX-2 overexpression was more common in non-serrated adenomas (28% = 143/515 than in hyperplastic polyps (4.2% = 1/24, p = 0.008 and serrated polyps (7 SSAs and 5 mixed polyps (0% = 0/12, p = 0.04. Furthermore, any (1+/2+ COX-2 overexpression was more frequent in non-serrated adenomas (60% = 307/515 than in hyperplastic polyps (13% = 3/24, p Conclusion COX-2 overexpression is infrequent in hyperplastic polyp, SSA and mixed polyp with SSA and adenoma, compared to non-serrated and serrated adenoma. COX-2 overexpression becomes more frequent as tumors progress to higher grade neoplasias. Our observations suggest that COX-2 may play a less significant role in the serrated pathway of tumorigenesis; however, COX-2 may still play a role in later stage of the serrated pathway.

  15. Numerical simulation of airfoil trailing edge serration noise

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    In the present work, numerical simulations are carried out for a low noise airfoil with and without serrated Trailing Edge. The Ffowcs Williams-Hawkings acoustic analogy is implemented into the in-house incompressible flow solver EllipSys3D. The instantaneous hydrodynamic pressure and velocity...... field are obtained using Large Eddy Simulation. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FW-H approach. The extended length of the serration is about 16.7% of the airfoil chord and the geometric angle of the serration...... is 28 degrees. The chord based Reynolds number is around 1.5x106. Simulations are compared with existing wind tunnel experiments at various angles of attack. Even though the airfoil under investigation is already optimized for low noise emission, numerical simulations and wind tunnel experiments show...

  16. Hyper-Methylated Loci Persisting from Sessile Serrated Polyps to Serrated Cancers.

    Science.gov (United States)

    Andrew, Angeline S; Baron, John A; Butterly, Lynn F; Suriawinata, Arief A; Tsongalis, Gregory J; Robinson, Christina M; Amos, Christopher I

    2017-03-02

    Although serrated polyps were historically considered to pose little risk, it is now understood that progression down the serrated pathway could account for as many as 15%-35% of colorectal cancers. The sessile serrated adenoma/polyp (SSA/P) is the most prevalent pre-invasive serrated lesion. Our objective was to identify the CpG loci that are persistently hyper-methylated during serrated carcinogenesis, from the early SSA/P lesion through the later cancer phases of neoplasia development. We queried the loci hyper-methylated in serrated cancers within our rightsided SSA/Ps from the New Hampshire Colonoscopy Registry, using the Illumina Infinium Human Methylation 450 k panel to comprehensively assess the DNA methylation status. We identified CpG loci and regions consistently hyper-methylated throughout the serrated carcinogenesis spectrum, in both our SSA/P specimens and in serrated cancers. Hyper-methylated CpG loci included the known the tumor suppressor gene RET (p = 5.72 x 10-10), as well as loci in differentially methylated regions for GSG1L, MIR4493, NTNG1, MCIDAS, ZNF568, and RERG. The hyper-methylated loci that we identified help characterize the biology of SSA/P development, and could be useful as therapeutic targets, or for future identification of patients who may benefit from shorter surveillance intervals.

  17. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.

    Science.gov (United States)

    Rao, Chen; Liu, Hao

    2018-06-08

    Owls are a master to achieve silent flight in gliding and flapping flights under natural turbulent environments owing to their unique wing morphologies. While the leading-edge serrations are recently revealed, as a passive flow control micro-device, to play a crucial role in aerodynamic force production and sound suppression [25], the characteristics of wind-gust rejection associated with leading-edge serrations remain unclear. Here we address a large-eddy simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge serrations, which is conducted with clean and serrated wing models through mimicking wind-gusts under a longitudinal fluctuation in free-stream inflow and a lateral fluctuation in pitch angle over a broad range of angles of attack (AoAs) over 0° ≤ Φ ≤ 20°. Our results show that the leading-edge serration-based passive flow control mechanisms associated with laminar-turbulent transition work effectively under fluctuated inflow and wing pitch, indicating that the leading-edge serrations are of potential gust fluctuation rejection or robustness in aerodynamic performance. Moreover, it is revealed that the tradeoff between turbulent flow control (i.e., aero-acoustic suppression) and force production in the serrated model holds independently to the wind-gust environments: poor at lower AoAs but capable of achieving equivalent aerodynamic performance at higher AoAs > 15o compared to the clean model. Our results reveal that the owl-inspired leading-edge serrations can be a robust micro-device for aero-acoustic control coping with unsteady and complex wind environments in biomimetic rotor designs for various fluid machineries. © 2018 IOP Publishing Ltd.

  18. Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA).

    Science.gov (United States)

    Torlakovic, Emina Emilia; Gomez, Jose D; Driman, David K; Parfitt, Jeremy R; Wang, Chang; Benerjee, Tama; Snover, Dale C

    2008-01-01

    The morphologic distinction between various serrated polyps of the colorectum may be challenging. The distinction between sessile serrated adenoma (SSA) and traditional serrated adenoma (TSA) may be difficult using currently available criteria mostly based on cytologic characteristics. We have evaluated 66 serrated polyps including 29 SSA, 18 TSA, and 19 hyperplastic polyps for overall shape of the polyps, architectural features of individual crypts, the presence of eosinophilic cytoplasm, size and distribution of the proliferation and maturation zones, as well as Ki-67 and CK20 expression. The extent of the expression of CK20 and Ki-67 could not distinguish between the 3 types of serrated polyps, but the distribution of their expression was very helpful and differences were statistically significant. The distribution of Ki-67+ cells was the single most helpful distinguishing feature of the serrated polyp type (PTSA had low Ki-67 expression, which was limited to "ectopic crypts" and admixed tubular adenomalike areas. In serrated polyps, ectopic crypt formation (ECF) defined by the presence of ectopic crypts with their bases not seated adjacent to the muscularis mucosae was nearly exclusive to TSA and was found in all cases, while the presence of cytologic atypia and eosinophilia of the cytoplasm were characteristic, but not limited to TSA. No evidence of ECF, but nevertheless abnormal distribution of proliferation zone was characteristic of SSA, whereas HP had neither. The presence of the ECF defines TSA in a more rigorous fashion than previous diagnostic criteria and also explains the biologic basis of exuberant protuberant growth associated with TSA and the lack of such growth in SSA. Recognition of this phenomenon may also help in exploring the genetic and molecular basis for differences between SSA and TSA, because these architectural abnormalities may well be a reflection of abnormalities in genetically programmed mucosal development.

  19. Serrated adenoma of stomach: A premalignancy?

    Directory of Open Access Journals (Sweden)

    Divya Achutha Ail

    2015-01-01

    Full Text Available Serrated adenoma is a newly described entity in the group of gastric adenomas. Until date only 20 cases of gastric serrated adenoma have been reported. It is an important entity to be diagnosed accurately as it has a very high-risk of malignant transformation, especially those located in the cardia of stomach. Serrated adenoma associated with adenocarcinoma is more frequent in the elderly, but pure serrated adenoma is common in the young, in whom follow-up is mandatory. Gastric serrated adenoma has distinct location, definite histomorphology and characteristic Ki-67 immunohistochemical staining. Ki-67 staining helps to differentiated pure serrated adenoma from those associated with adenocarcinoma. We present a young adult male, incidentally detected to have gastric serrated adenoma.

  20. Plasticity of ductile metallic glasses: a self-organized critical state.

    Science.gov (United States)

    Sun, B A; Yu, H B; Jiao, W; Bai, H Y; Zhao, D Q; Wang, W H

    2010-07-16

    We report a close correlation between the dynamic behavior of serrated flow and the plasticity in metallic glasses (MGs) and show that the plastic deformation of ductile MGs can evolve into a self-organized critical state characterized by the power-law distribution of shear avalanches. A stick-slip model considering the interaction of multiple shear bands is presented to reveal complex scale-free intermittent shear-band motions in ductile MGs and quantitatively reproduce the experimental observations. Our studies have implications for understanding the precise plastic deformation mechanism of MGs.

  1. Model of discontinuous plastic flow at temperature close to absolute zero

    CERN Document Server

    Marcinek, Dawid Jarosław; Sgobba, Stefano

    In the present study cryogenic tensile tests performed on different materials (316LN, JK2LB) were used. The discontinuous plastic flow phenomenon was analysed, in order to develop a constitutive model of serrated yielding as a support for analysis of structural materials at low temperatures. Devices and structures, cooled be means of liquid helium, operate at the temperatures equal or lower than 4.2 K, which for the examined materials is below the transition threshold between screw and edge dislocations. It is considered a threshold for the appearance of DPF consisting in cyclic drop of load followed by deformation jumps and generation of heat. Temperature oscillations resulting from the thermodynamic instability in stainless steel can be of the order of dT = 40 K, which is exceptionally dangerous for superconducting cables. Suitably calibrated numerical algorithm allows prediction of the behaviour of the material subjected to deformation at low temperatures. The issues presented in the present study are curr...

  2. An investigation into the anti-releasing performance of a serrated bolt

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Hwan; Lee, Hyun Kyu; Park, Ke Un; Kim, Jong Bong [Seoul Natinal University, Seoul (Korea, Republic of)

    2015-11-15

    As the sizes of electric products, such as mobile phones and watch phones, decrease, the joining bolt for the electric product should also be miniaturized. However, the miniature-sized bolt has to support sufficient joining torque and joining force. The bolt also has to support sufficient anti-releasing torque to keep the product fastened. We investigated a serrated bolt as a candidate for a miniature-sized fastener to increase the anti-release torque. In the serrated bolt, serration shapes are formed on the bottom surface of a bolt head to create an obstacle to releasing. In this study, finite element analyses were carried out on joining and releasing, and the anti-release torque was predicted. Through the joining and releasing analyses for various values of the elastic modulus and yield strength of the joined part, the effect of the mechanical properties of the joined part on the anti-releasing performance were investigated. The analysis results showed that a high strength insert nut is needed to increase the anti-releasing torque when the yield strength of the joined part is low, such as a plastic board in a mobile phone.

  3. Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes.

    Directory of Open Access Journals (Sweden)

    Matthias Weger

    Full Text Available Owls have developed serrations, comb-like structures, along the leading edge of their wings. Serrations were investigated from a morphological and a mechanical point of view, but were not yet quantitatively compared for different species. Such a comparative investigation of serrations from species of different sizes and activity patterns may provide new information about the function of the serrations.Serrations on complete wings and on tenth primary remiges of seven owl species were investigated. Small, middle-sized, and large owl species were investigated as well as species being more active during the day and owls being more active during the night. Serrations occurred at the outer parts of the wings, predominantly at tenth primary remiges, but also on further wing feathers in most species. Serration tips were oriented away from the feather rachis so that they faced into the air stream during flight. The serrations of nocturnal owl species were higher developed as demonstrated by a larger inclination angle (the angle between the base of the barb and the rachis, a larger tip displacement angle (the angle between the tip of the serration and the base of the serration and a longer length. Putting the measured data into a clustering algorithm yielded dendrograms that suggested a strong influence of activity pattern, but only a weak influence of size on the development of the serrations.Serrations are supposed to be involved in noise reduction during flight and also depend on the aerodynamic properties that in turn depend on body size. Since especially nocturnal owls have to rely on hearing during prey capture, the more pronounced serrations of nocturnal species lend further support to the notion that serrations have an important function in noise reduction. The differences in shape of the serrations investigated indicate that a silent flight requires well-developed serrations.

  4. Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes)

    Science.gov (United States)

    Weger, Matthias; Wagner, Hermann

    2016-01-01

    Background Owls have developed serrations, comb-like structures, along the leading edge of their wings. Serrations were investigated from a morphological and a mechanical point of view, but were not yet quantitatively compared for different species. Such a comparative investigation of serrations from species of different sizes and activity patterns may provide new information about the function of the serrations. Results Serrations on complete wings and on tenth primary remiges of seven owl species were investigated. Small, middle-sized, and large owl species were investigated as well as species being more active during the day and owls being more active during the night. Serrations occurred at the outer parts of the wings, predominantly at tenth primary remiges, but also on further wing feathers in most species. Serration tips were oriented away from the feather rachis so that they faced into the air stream during flight. The serrations of nocturnal owl species were higher developed as demonstrated by a larger inclination angle (the angle between the base of the barb and the rachis), a larger tip displacement angle (the angle between the tip of the serration and the base of the serration) and a longer length. Putting the measured data into a clustering algorithm yielded dendrograms that suggested a strong influence of activity pattern, but only a weak influence of size on the development of the serrations. Conclusions Serrations are supposed to be involved in noise reduction during flight and also depend on the aerodynamic properties that in turn depend on body size. Since especially nocturnal owls have to rely on hearing during prey capture, the more pronounced serrations of nocturnal species lend further support to the notion that serrations have an important function in noise reduction. The differences in shape of the serrations investigated indicate that a silent flight requires well-developed serrations. PMID:26934104

  5. Experimental study of discontinuous plastic flow, phase transformation and micro-damage evolution in ductile materials at cryogenic temperatures

    CERN Document Server

    Marcinek, Dawid Jarosław; Sgobba, S

    2009-01-01

    The present Thesis deals with three low temperature phenomena occurring in ductile materials subjected to mechanical loads: serrated yielding, plastic strain induced γ-α’ phase transformation and evolution of micro-damage: - the Thesis explains the physical mechanisms governing each phenomenon at the micro and macroscopic levels; - the document describes in detail the advanced laboratory equipment needed for cryogenic experiments; - the results of tests carried out with unique precision and focused on serrated yielding and evolution of micro-damage (the observations were made with different strain rates and with the use of different materials) are presented; - validation of suitable kinetic laws and identification of parameters for tested materials is carried out.

  6. Serrated Polyposis: An Enigmatic Model of Colorectal Cancer Predisposition

    Directory of Open Access Journals (Sweden)

    Christophe Rosty

    2011-01-01

    Full Text Available Serrated polyposis has only recently been accepted as a condition which carries an increased personal and familial risk of colorectal cancer. Described over four decades ago, it remains one of the most underrecognized and poorly understood of all the intestinal polyposes. With a variety of phenotypic presentations, it is likely that serrated polyposis represents a group of diseases rather than a single entity. Further, neoplastic progression in serrated polyposis may be associated with premature aging in the normal mucosa, typified by widespread gene promoter hypermethylation. From this epigenetically altered field, arise diverse polyps and cancers which show a range of molecular features. Despite a high serrated polyp count, only one-third of colorectal cancers demonstrate a BRAF V600E mutation, the molecular hallmark of the canonical serrated pathway, suggesting that though multiple serrated polyps act as a marker of an abnormal mucosa, the majority of CRC in these patients arise within lesions other than BRAF-mutated serrated polyps.

  7. Investigation of Fastening Performance of Subminiature Serrated Bolt

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Myung Guen; Jeong, Jin Hwan; Jang, Yeon Hui; Kim, Hee Cheol; Kim, Jong-Bong [Seoul Nat’l Univ. of Science & Tech, Seoul (Korea, Republic of)

    2017-04-15

    As the size of electric products such as mobile phones and smart watches decrease, the bolts used to assemble these products should also be miniaturized. A miniature-sized bolt has to provide sufficient joining torque and anti-releasing torque to keep the components together. We studied a serrated bolt as a candidate for a miniature-sized fastener to increase the anti-releasing torque. In a serrated bolt, a serrated shape is formed on the bottom surface of the bolt head to create an obstacle to releasing. In this study, finite element analyses for the joining and releasing of bolts were carried out, and the anti-releasing performance was predicted. Based on the results of analyses using various numbers of serrations and fastening depths, the effects of the number of serrations and fastening depth on the anti-releasing performance were investigated.

  8. Investigation of Fastening Performance of Subminiature Serrated Bolt

    International Nuclear Information System (INIS)

    Jang, Myung Guen; Jeong, Jin Hwan; Jang, Yeon Hui; Kim, Hee Cheol; Kim, Jong-Bong

    2017-01-01

    As the size of electric products such as mobile phones and smart watches decrease, the bolts used to assemble these products should also be miniaturized. A miniature-sized bolt has to provide sufficient joining torque and anti-releasing torque to keep the components together. We studied a serrated bolt as a candidate for a miniature-sized fastener to increase the anti-releasing torque. In a serrated bolt, a serrated shape is formed on the bottom surface of the bolt head to create an obstacle to releasing. In this study, finite element analyses for the joining and releasing of bolts were carried out, and the anti-releasing performance was predicted. Based on the results of analyses using various numbers of serrations and fastening depths, the effects of the number of serrations and fastening depth on the anti-releasing performance were investigated.

  9. Shark teeth as edged weapons: serrated teeth of three species of selachians.

    Science.gov (United States)

    Moyer, Joshua K; Bemis, William E

    2017-02-01

    Prior to European contact, South Pacific islanders used serrated shark teeth as components of tools and weapons. They did this because serrated shark teeth are remarkably effective at slicing through soft tissues. To understand more about the forms and functions of serrated shark teeth, we examined the morphology and histology of tooth serrations in three species: the Tiger Shark (Galeocerdo cuvier), Blue Shark (Prionace glauca), and White Shark (Carcharodon carcharias). We show that there are two basic types of serrations. A primary serration consists of three layers of enameloid with underlying dentine filling the serration's base. All three species studied have primary serrations, although the dentine component differs (orthodentine in Tiger and Blue Sharks; osteodentine in the White Shark). Smaller secondary serrations are found in the Tiger Shark, formed solely by enameloid with no contribution from underlying dentine. Secondary serrations are effectively "serrations within serrations" that allow teeth to cut at different scales. We propose that the cutting edges of Tiger Shark teeth, equipped with serrations at different scales, are linked to a diet that includes large, hard-shelled prey (e.g., sea turtles) as well as smaller, softer prey such as fishes. We discuss other aspects of serration form and function by making analogies to man-made cutting implements, such as knives and saws. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. An analytically-based method for predicting the noise generated by the interaction between turbulence and a serrated leading edge

    Science.gov (United States)

    Mathews, J. R.; Peake, N.

    2018-05-01

    This paper considers the interaction of turbulence with a serrated leading edge. We investigate the noise produced by an aerofoil moving through a turbulent perturbation to uniform flow by considering the scattered pressure from the leading edge. We model the aerofoil as an infinite half plane with a leading edge serration, and develop an analytical model using a Green's function based upon the work of Howe. This allows us to consider both deterministic eddies and synthetic turbulence interacting with the leading edge. We show that it is possible to reduce the noise by using a serrated leading edge compared with a straight edge, but the optimal noise-reducing choice of serration is hard to predict due to the complex interaction. We also consider the effect of angle of attack, and find that in general the serrations are less effective at higher angles of attack.

  11. The role of APC in WNT pathway activation in serrated neoplasia.

    Science.gov (United States)

    Borowsky, Jennifer; Dumenil, Troy; Bettington, Mark; Pearson, Sally-Ann; Bond, Catherine; Fennell, Lochlan; Liu, Cheng; McKeone, Diane; Rosty, Christophe; Brown, Ian; Walker, Neal; Leggett, Barbara; Whitehall, Vicki

    2018-03-01

    Conventional adenomas are initiated by APC gene mutation that activates the WNT signal. Serrated neoplasia is commonly initiated by BRAF or KRAS mutation. WNT pathway activation may also occur, however, to what extent this is owing to APC mutation is unknown. We examined aberrant nuclear β-catenin immunolocalization as a surrogate for WNT pathway activation and analyzed the entire APC gene coding sequence in serrated and conventional pathway polyps and cancers. WNT pathway activation was a common event in conventional pathway lesions with aberrant nuclear immunolocalization of β-catenin and truncating APC mutations in 90% and 89% of conventional adenomas and 82% and 70% of BRAF wild-type cancers, respectively. WNT pathway activation was seen to a lesser extent in serrated pathway lesions. It occurred at the transition to dysplasia in serrated polyps with a significant increase in nuclear β-catenin labeling from sessile serrated adenomas (10%) to sessile serrated adenomas with dysplasia (55%) and traditional serrated adenomas (9%) to traditional serrated adenomas with dysplasia (39%) (P=0.0001). However, unlike the conventional pathway, truncating APC mutations were rare in the serrated pathway lesions especially sessile serrated adenomas even when dysplastic (15%) and in the BRAF mutant cancers with microsatellite instability that arise from them (8%). In contrast, APC missense mutations that were rare in conventional pathway adenomas and cancers (3% in BRAF wild-type cancers) were more frequent in BRAF mutant cancers with microsatellite instability (32%). We conclude that increased WNT signaling is important in the transition to malignancy in the serrated pathway but that APC mutation is less common and the spectrum of mutations is different than in conventional colorectal carcinogenesis. Moderate impact APC mutations and non-APC-related causes of increased WNT signaling may have a more important role in serrated neoplasia than the truncating APC mutations

  12. Parametric study on the characteristics of a SDBD actuator with a serrated electrode

    Science.gov (United States)

    Gao, Guoqiang; Peng, Kaisheng; Dong, Lei; Wei, Wenfu; Wu, Guangning

    2017-06-01

    Active flow control based on surface dielectric barrier discharge (SDBD) has become a focus of research in recent years, due to its unique advantages and diverse potential applications. Compared with the conventional SDBD with straight electrodes, the serrated electrode-based SDBD has a great advantage due to its 3D flow topology. It is believed that the boundary layer separation of moving objects can be controlled more effectively with this new type of SDBD. In SDBD with a serrated electrode, the R (tip sharpness) and N (tip number per unit length) have a great influence on the discharge and induced airflow characteristics. In this paper, a parametric study of the characteristics of SDBD with a serrated electrode has been conducted with different ranges of R and N. Aspects of the power consumption, the steady medium temperature distribution, and the maximum induced airflow velocity have been investigated. The results indicate that there is a critical value of R and N where the maximum power consumption and induced airflow velocity are achieved. The uniformity of the steady temperature distribution of the medium surface is found to be more dependent on N. We found that the accelerating effects of the induced airflow can be evaluated with the Schlieren technique, which agree well with the results from the pitot tube.

  13. Electrical resistance oscillations during plastic deformation in A Ti-Al-Nb-Zr alloy at 4·2 K

    Science.gov (United States)

    Nikiforenko, V. N.; Lavrentev, F. F.

    1986-10-01

    The serrated plastic flow in titanium alloy containing 5% Al, 2·5% Zr and 2% Nb has been investigated by measuring its electrical resistance and applying selective chemical etching. The electrical resistance was found to oscillate under active deformation at 4·2 K. Analysis of the possible causes seems to indicate a dominant role of break by dislocation pile-ups through obstacles, viz second phase precipitates and grain boundaries.

  14. Traditional serrated adenoma (TSA): morphological questions, queries and quandaries.

    Science.gov (United States)

    Chetty, Runjan

    2016-01-01

    Traditional serrated adenoma (TSA) is an uncommon type of serrated adenoma that can be a precursor to biologically aggressive colorectal cancer that invokes the serrated (accelerated) pathway. The purpose of this review is to address some of the more contentious issues around nomenclature, diagnostic criteria, histological variants, coexistence with other polyp types, the occurrence of dysplasia and the differential diagnosis. While the vast majority of TSAs are exophytic villiform polyps composed of deeply eosinophilic cells, flat top luminal serrations and numerous ectopic crypt foci, histological variants include flat TSA, filiform TSA and one composed of large numbers of mucin-containing cells. It is unlikely that there is any biological difference between the histological variants. There is a contention that TSAs are not dysplastic ab initio and that the majority do not show cytological atypia. Two types of dysplasia are associated with TSA. Serrated dysplasia is less well recognised and less commonly encountered than adenomatous dysplasia. TSA with dysplasia must be separated from TSA with coexisting conventional adenoma. TSA is a characteristic polyp that may be extremely exophytic, flat or composed of mucin-rich cells and is typified by numerous ectopic crypt foci. They may coexist with other serrated polyps and conventional adenomas. Approximately 20-25% will be accompanied by adenomatous dysplasia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Performance Testing Of A Modified Centrifugal Fan With Serrated Blade Impeller

    Directory of Open Access Journals (Sweden)

    Zaimar

    2017-10-01

    Full Text Available Changes of shape dimension and component part of impeller might change of characteristic fluid flow so that pressure static in the fan housing changed. Changing some geometric characteristics of the centrifugal fan has more efficiency taking with energy crises into consideration. Several factors that can affect fan performance namely design and type size rotation speed air condition or gas through a fan operating point on the nature of the relationship between a volume of air flow and pressure. The purpose of this research was to test of fan performance of the modified centrifugal fan with the serrated blade impeller. The addition of a percentage of closing the inlet causes the air volumetric rate the airflow energy BHP and total efficiency except for the fan total and static pressure. The experimental test results there are static pressure data and the resulting total pressure is different or distorted 10-17 of deviation from calculation data based on the fan laws. This is possible because of changes in the shape of the blade with serrated on the inside of the impeller. Based on the performance curve shows that the selection of impeller speeds of 800 RPM produces a relatively high air volumetric rate is proportional to the total pressure of the fan and the flow energy so that it is more efficient than other impeller speeds.

  16. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  17. How does the serrated polyp pathway alter CRC screening and surveillance?

    Science.gov (United States)

    Kahi, Charles J

    2015-03-01

    Screening and surveillance for colorectal cancer (CRC) reduces mortality through the detection of early-stage adenocarcinoma, and more importantly the detection and removal of premalignant polyps. While adenomas have historically been considered the most common and screening-relevant precursor lesions, there is accumulating evidence showing that the serrated pathway is an important contributor to CRC, and a disproportionate contributor to interval or postcolonoscopy CRC, particularly in the proximal colon. The serrated pathway is characterized by mutations in the BRAF gene, high levels of methylation of promoter CpG islands (CIMP-high), and the sessile serrated adenoma/polyp (SSA/P) is the most important precursor lesion. The study of serrated polyps has been complicated by evolving nomenclature, substantial variation among pathologists in the identification of SSA/Ps, high variability in endoscopic detection rates, and uncertainty regarding the relation to synchronous and metachronous colonic neoplasia. This paper presents an overview of the serrated polyp pathway and discusses its clinical implications including its impact on CRC screening.

  18. LES tests on airfoil trailing edge serration

    International Nuclear Information System (INIS)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x10 6 . In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device. (paper)

  19. Flow-induced plastic collapse of stacked fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D C; Scarton, H A

    1985-03-01

    Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.

  20. British Society of Gastroenterology position statement on serrated polyps in the colon and rectum.

    Science.gov (United States)

    East, James E; Atkin, Wendy S; Bateman, Adrian C; Clark, Susan K; Dolwani, Sunil; Ket, Shara N; Leedham, Simon J; Phull, Perminder S; Rutter, Matt D; Shepherd, Neil A; Tomlinson, Ian; Rees, Colin J

    2017-07-01

    Serrated polyps have been recognised in the last decade as important premalignant lesions accounting for between 15% and 30% of colorectal cancers. There is therefore a clinical need for guidance on how to manage these lesions; however, the evidence base is limited. A working group was commission by the British Society of Gastroenterology (BSG) Endoscopy section to review the available evidence and develop a position statement to provide clinical guidance until the evidence becomes available to support a formal guideline. The scope of the position statement was wide-ranging and included: evidence that serrated lesions have premalignant potential; detection and resection of serrated lesions; surveillance strategies after detection of serrated lesions; special situations-serrated polyposis syndrome (including surgery) and serrated lesions in colitis; education, audit and benchmarks and research questions. Statements on these issues were proposed where the evidence was deemed sufficient, and re-evaluated modified via a Delphi process until >80% agreement was reached. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) tool was used to assess the strength of evidence and strength of recommendation for finalised statements. Key recommendation : we suggest that until further evidence on the efficacy or otherwise of surveillance are published, patients with sessile serrated lesions (SSLs) that appear associated with a higher risk of future neoplasia or colorectal cancer (SSLs ≥10 mm or serrated lesions harbouring dysplasia including traditional serrated adenomas) should be offered a one-off colonoscopic surveillance examination at 3 years ( weak recommendation, low quality evidence, 90% agreement ). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Sessile serrated adenomas with dysplasia: morphological patterns and correlations with MLH1 immunohistochemistry.

    Science.gov (United States)

    Liu, Cheng; Walker, Neal I; Leggett, Barbara A; Whitehall, Vicki Lj; Bettington, Mark L; Rosty, Christophe

    2017-12-01

    Sessile serrated adenomas are the precursor polyp of approximately 20% of colorectal carcinomas. Sessile serrated adenomas with dysplasia are rarely encountered and represent an intermediate step to malignant progression, frequently associated with loss of MLH1 expression. Accurate diagnosis of these lesions is important to facilitate appropriate surveillance, particularly because progression from dysplasia to carcinoma can be rapid. The current World Health Organization classification describes two main patterns of dysplasia occurring in sessile serrated adenomas, namely, serrated and conventional. However, this may not adequately reflect the spectrum of changes seen by pathologists in routine practice. Furthermore, subtle patterns of dysplasia that are nevertheless associated with loss of MLH1 expression are not encompassed in this classification. We performed a morphological analysis of 266 sessile serrated adenomas with dysplasia with concurrent MLH1 immunohistochemistry with the aims of better defining the spectrum of dysplasia occurring in these lesions and correlating dysplasia patterns with MLH1 expression. We found that dysplasia can be divided morphologically into four major patterns, comprising minimal deviation (19%), serrated (12%), adenomatous (8%) and not otherwise specified (79%) groups. Minimal deviation dysplasia is defined by minor architectural and cytological changes that typically requires loss of MLH1 immunohistochemical expression to support the diagnosis. Serrated dysplasia and adenomatous dysplasia have distinctive histological features and are less frequently associated with loss of MLH1 expression (13 and 5%, respectively). Finally, dysplasia not otherwise specified encompasses most cases and shows a diverse range of morphological changes that do not fall into the other subgroups and are frequently associated with loss of MLH1 expression (83%). This morphological classification of sessile serrated adenomas with dysplasia may represent an

  2. ASSESSMENT OF PLASTIC FLOWS AND STOCKS IN SERBIA USING MATERIAL FLOW ANALYSIS

    Directory of Open Access Journals (Sweden)

    Goran Vujić

    2010-01-01

    Full Text Available Material flow analysis (MFA was used to assess the amounts of plastic materials flows and stocks that are annually produced, consumed, imported, exported, collected, recycled, and disposed in the landfills in Serbia. The analysis revealed that approximatelly 269,000 tons of plastic materials are directly disposed in uncontrolled landfills in Serbia without any preatretment, and that siginificant amounts of these materials have already accumulated in the landfills. The substantial amounts of landfilled plastics represent not only a loss of valuable recourses, but also pose a seriuos treath to the environment and human health, and if the trend of direct plastic landfilling is continued, Serbia will face with grave consecequnces.

  3. Colorectal cancer diagnosis in 2012: A new focus for CRC prevention--more serration, less inflammation

    NARCIS (Netherlands)

    East, James E.; Dekker, Evelien

    2013-01-01

    Knowledge of colorectal cancer (CRC) risks has been rebalanced in 2012. The 'serrated pathway' to CRC, exemplified by serrated polyposis syndrome, emphasizes the importance of serrated lesions. The dogma that patients with IBD are at high risk of CRC, however, might be overstated; optimizing CRC

  4. Improvement of creep-rupture properties by serrated grain boundaries in high-tungsten cobalt-base superalloys

    International Nuclear Information System (INIS)

    Tanaka, Manabu

    1993-01-01

    The improvement of creep-rupture properties by serrated grain boundaries was investigated using cobalt-base superalloys containing about 14 to 20 wt.% tungsten at 1089 and 1311 K. Serrated grain boundaries improved both the rupture life and the ductility, especially under lower stresses at 1089 K. The increase in rupture life was larger in the alloys containing a larger amount of W. Ductile grain boundary fracture surfaces, which involved dimple patterns and grain boundary ledges, were observed in the specimens with serrated grain boundaries whereas brittle grain boundary facets were observed in the specimens with normal straight grain boundaries ruptured at 1089 K. The strengthening by serrated grain boundaries was also effective at 1311 K, but there was little difference in rupture life between the specimens with serrated grain boundaries and those with straight grain boundaries under lower stresses, since serrated grain boundaries developed also in the specimens with straight grain boundaries according to grain boundary precipitates forming during creep at 1311 K. The increase in W content of the alloys led to the increase in rupture life of the specimens with serrated grain boundaries at 1089 and 1311 K. (orig.) [de

  5. Avalanches and plastic flow in crystal plasticity: an overview

    Science.gov (United States)

    Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr

    2018-01-01

    Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.

  6. Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows

    DEFF Research Database (Denmark)

    Lerner, Edan; Bailey, Nicholas; Dyre, J. C.

    2014-01-01

    Athermal steady-state plastic flows were simulated for the Kob-Andersen binary Lennard-Jones system and its repulsive version in which the sign of the attractive terms is changed to a plus. Properties evaluated include the distributions of energy drops, stress drops, and strain intervals between...... the flow events. We show that simulations at a single density in conjunction with an equilibrium-liquid simulation at the same density allow one to predict the plastic flow-event statistics at other densities. This is done by applying the recently established “hidden scale invariance” of simple liquids...

  7. Thermoinduced plastic flow and shape memory effects

    Directory of Open Access Journals (Sweden)

    Xiao Heng

    2011-01-01

    Full Text Available We propose an enhanced form of thermocoupled J2-flow models of finite deformation elastoplasticity with temperature-dependent yielding and hardening behaviour. The thermomechanical constitutive structure of these models is rendered free and explicit in the rigorous sense of thermodynamic consistency. Namely, with a free energy function explicitly introduced in terms of almost any given form of the thermomechanical constitutive functions, the requirements from the second law are identically fulfilled with positive internal dissipation. We study the case when a dependence of yielding and hardening on temperature is given and demonstrate that thermosensitive yielding with anisotropic hardening may give rise to appreciable plastic flow either in a process of heating or in a cyclic process of heating/cooling, thus leading to the findings of one- and two-way thermoinduced plastic flow. We then show that such theoretical findings turn out to be the effects found in shape memory materials, such as one- and two-way memory effects. Thus, shape memory effects may be explained to be thermoinduced plastic flow resulting from thermosensitive yielding and hardening behaviour. These and other relevant facts may suggest that, from a phenomenological standpoint, thermocoupled elastoplastic J2-flow models with thermosensitive yielding and hardening may furnish natural, straightforward descriptions of thermomechanical behaviour of shape memory materials.

  8. Experimental demonstration of wind turbine noise reduction through optimized airfoil shape and trailing-edge serrations

    Energy Technology Data Exchange (ETDEWEB)

    Oerlemans, S. [National Aerospace Laboratory NLR, Emmeloord (Netherlands); Schepers, J.G. [Unit Wind Energy, Energy research Centre of the Netherlands ECN, Petten (Netherlands); Guidati, G.; Wagner, S. [Institut fuer Aerodynamik und Gasdynamik IAG, Universitaet Stuttgart (Germany)

    2001-07-15

    The objective of the European project DATA (Design and Testing of Acoustically Optimized Airfoils for Wind Turbines) is a reduction of trailing-edge (TE) noise by modifying the airfoil shape and/or the application of trailing-edge serrations. This paper describes validation measurements that were performed in the DNW-LLF wind tunnel, on a model scale wind turbine with a two-bladed 4.5 m diameter rotor which was designed in the project. Measurements were done for one reference- and two acoustically optimized rotors, for varying flow conditions. The aerodynamic performance of the rotors was measured using a torque meter in the hub, and further aerodynamic information was obtained from flow visualization on the blades. The acoustic measurements were done with a 136 microphone out-of-flow acoustic array. Besides the location of the noise sources in the (stationary) rotor plane, a new acoustic processing method enabled identification of dominant noise source regions on the rotating blades. The results show dominant noise sources at the trailing-edge of the blade, close to the tip. The optimized airfoil shapes result in a significant reduction of TE noise levels with respect to the reference rotor, without loss in power production. A further reduction can be achieved by the application of trailing-edge serrations. The aerodynamic measurements are generally in good agreement with the aerodynamic predictions made during the design of the model turbine.

  9. The CIMP Phenotype in BRAF Mutant Serrated Polyps from a Prospective Colonoscopy Patient Cohort

    Directory of Open Access Journals (Sweden)

    Winnie C. Fernando

    2014-01-01

    Full Text Available Colorectal cancers arising via the serrated pathway are often associated with BRAF V600E mutation, CpG island methylator phenotype (CIMP, and microsatellite instability. Previous studies have shown a strong association between BRAF V600E mutation and serrated polyps. This study aims to evaluate CIMP status of all the serrated polyp subtypes and its association with functionally important genes such as MLH1, p16, and IGFBP7. CIMP status and methylation were evaluated using the real-time based MethyLight assay in 154 serrated polyps and 63 conventional adenomas. Results showed that CIMP-high serrated polyps were strongly associated with BRAF mutation and proximal colon. CIMP-high was uncommon in conventional adenomas (1.59%, occurred in 8.25% of hyperplastic polyps (HPs, and became common in sessile serrated adenomas (SSAs (51.43%. MLH1 methylation was mainly observed in the proximal colon and was significantly associated with BRAF mutation and CIMP-high. The number of samples methylated for p16 and IGFBP7 was the highest in SSAs. The methylation panel we used to detect CIMP is highly specific for CIMP-high cancers. With this panel, we demonstrate that CIMP-high is much more common in SSAs than HPs. This suggests that CIMP-high correlates with increased risk of malignant transformation which was also observed in methylation of functionally important genes.

  10. The CIMP Phenotype in BRAF Mutant Serrated Polyps from a Prospective Colonoscopy Patient Cohort.

    Science.gov (United States)

    Fernando, Winnie C; Miranda, Mariska S; Worthley, Daniel L; Togashi, Kazutomo; Watters, Dianne J; Leggett, Barbara A; Spring, Kevin J

    2014-01-01

    Colorectal cancers arising via the serrated pathway are often associated with BRAF V600E mutation, CpG island methylator phenotype (CIMP), and microsatellite instability. Previous studies have shown a strong association between BRAF V600E mutation and serrated polyps. This study aims to evaluate CIMP status of all the serrated polyp subtypes and its association with functionally important genes such as MLH1, p16, and IGFBP7. CIMP status and methylation were evaluated using the real-time based MethyLight assay in 154 serrated polyps and 63 conventional adenomas. Results showed that CIMP-high serrated polyps were strongly associated with BRAF mutation and proximal colon. CIMP-high was uncommon in conventional adenomas (1.59%), occurred in 8.25% of hyperplastic polyps (HPs), and became common in sessile serrated adenomas (SSAs) (51.43%). MLH1 methylation was mainly observed in the proximal colon and was significantly associated with BRAF mutation and CIMP-high. The number of samples methylated for p16 and IGFBP7 was the highest in SSAs. The methylation panel we used to detect CIMP is highly specific for CIMP-high cancers. With this panel, we demonstrate that CIMP-high is much more common in SSAs than HPs. This suggests that CIMP-high correlates with increased risk of malignant transformation which was also observed in methylation of functionally important genes.

  11. Deep learning of contrast-coated serrated polyps for computer-aided detection in CT colonography

    Science.gov (United States)

    Näppi, Janne J.; Pickhardt, Perry; Kim, David H.; Hironaka, Toru; Yoshida, Hiroyuki

    2017-03-01

    Serrated polyps were previously believed to be benign lesions with no cancer potential. However, recent studies have revealed a novel molecular pathway where also serrated polyps can develop into colorectal cancer. CT colonography (CTC) can detect serrated polyps using the radiomic biomarker of contrast coating, but this requires expertise from the reader and current computer-aided detection (CADe) systems have not been designed to detect the contrast coating. The purpose of this study was to develop a novel CADe method that makes use of deep learning to detect serrated polyps based on their contrast-coating biomarker in CTC. In the method, volumetric shape-based features are used to detect polyp sites over soft-tissue and fecal-tagging surfaces of the colon. The detected sites are imaged using multi-angular 2D image patches. A deep convolutional neural network (DCNN) is used to review the image patches for the presence of polyps. The DCNN-based polyp-likelihood estimates are merged into an aggregate likelihood index where highest values indicate the presence of a polyp. For pilot evaluation, the proposed DCNN-CADe method was evaluated with a 10-fold cross-validation scheme using 101 colonoscopy-confirmed cases with 144 biopsy-confirmed serrated polyps from a CTC screening program, where the patients had been prepared for CTC with saline laxative and fecal tagging by barium and iodine-based diatrizoate. The average per-polyp sensitivity for serrated polyps >=6 mm in size was 93+/-7% at 0:8+/-1:8 false positives per patient on average. The detection accuracy was substantially higher that of a conventional CADe system. Our results indicate that serrated polyps can be detected automatically at high accuracy in CTC.

  12. Interpreting the stress–strain response of Al micropillars through gradient plasticity

    International Nuclear Information System (INIS)

    Zhang, Xu; Aifantis, Katerina E.; Ngan, Alfonso H.W.

    2014-01-01

    Micropillar compression has fascinated the materials and mechanics communities for over a decade, due to the unique stochastic effects and slip zones that dictate their stress–strain curves and microstructure. Although plethora studies exist that capture experimentally the mechanical response of various types of micropillars, limited theoretical models can interpret the observed behavior. Particularly, single crystal micropillars exhibit multiple serrations in their stress–strain response, indicating the activation of slip zones, while bi-crystal pillars, in which the grain boundary lies parallel to the pillar axis, do not display such serrations, but rather a distinct “knee”, which indicates dislocation pileups at the grain boundary. In-situ synchrotron microdiffraction experiments have illustrated that not only dislocations, but also significant plastic strain gradients develop during micropillar compression. In the present study, therefore, appropriate gradient plasticity models that can account for the pillar microstructure, are successfully used to capture the stress–strain response of single- and bi-crystal Al pillars

  13. Effect of a serrated trailing edge on sound radiation from nearby quadrupoles.

    Science.gov (United States)

    Karimi, Mahmoud; Croaker, Paul; Kinns, Roger; Kessissoglou, Nicole

    2017-05-01

    A periodic boundary element technique is implemented to study the noise reduction capability of a plate with a serrated trailing edge under quadrupole excitation. It is assumed for this purpose that the quadrupole source tensor is independent of the trailing edge configuration and that the effect of the trailing edge shape is to modify sound radiation from prescribed boundary layer sources. The flat plate is modelled as a continuous structure with a finite repetition of small spanwise segments. The matrix equation formulated by the periodic boundary element method for this 3D acoustic scattering problem is represented as a block Toeplitz matrix. The discrete Fourier transform is employed in an iterative algorithm to solve the block Toeplitz system. The noise reduction mechanism for a serrated trailing edge in the near field is investigated by comparing contour plots obtained from each component of the quadrupole for unserrated and serrated trailing edge plate models. The noise reduction due to the serrated trailing edge is also examined as a function of the source location.

  14. Surface flow in severe plastic deformation of metals by sliding

    International Nuclear Information System (INIS)

    Mahato, A; Yeung, H; Chandrasekar, S; Guo, Y

    2014-01-01

    An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is described. The model system – a hard wedge sliding against a metal surface – is representative of surface conditioning processes typical of manufacturing, and sliding wear. By combining high speed imaging and image analysis, important characteristics of unconstrained plastic flow inherent to this system are highlighted. These characteristics include development of large plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like flow with vortex formation and surface folding, and defect and particle generation. Preferred conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for surface conditioning in manufacturing, modeling of surface deformation and wear are discussed

  15. Plastic Flow Induced by Single Ion Impacts on Gold

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Donnelly, S.E.

    1996-01-01

    The formation of holes in thin gold foils as a result of single ion impacts by 200keV Xe ions has been followed using transmission electron microscopy. Video recording provided details of microstructure evolution with a time resolution of 1/30th sec. Hole formation involves the movement by plastic flow of massive amounts of material, on the order of tens of thousands of Au atoms per ion impact. Plastic flow, as a consequence of individual ion impacts, results in a continual filling of both holes and craters as well as a thickening of the gold foil. Changes in morphology during irradiation is attributed to a localized, thermal-spike induced melting, coupled with plastic flow of effected material under the influence of surface forces. copyright 1996 The American Physical Society

  16. [Clinical and endoscopic features of a selected population with serrated colorectal adenomas in a private clinic in Lima - Peru].

    Science.gov (United States)

    Castillo, Ofelia; Barreda, Carlos; Recavarren, Sixto; Barriga, José A; Salazar M, Fernando; Yriberry, Simón; Barriga, Eduardo; Salazar C, Fernando

    2013-01-01

    To describe the clinical and endoscopic caracteristics of a population that has only serrated polyps of colon (mainly sessile serrated adenomas) in a private clinic in Lima, Perú, from 2009-2011. Retrospective study conducted at the endoscopy center of Clinic Ricardo Palma, Lima, Peru. Olympus colonoscope was used with high definition, including NBI (narrow band imaging) and electronic magnification. Patients had pathologic diagnosis of “polyps and / or colorectal serrated adenomas” and excluded those with synchronous tubular or villous adenomas. Images were evaluated by two endoscopists and then by a third gastroenterologist. We found 201 serrated polyps in 108 patients. Women were 60.2% and overweight predominated. Eighty (74.1%) had only one serrated adenoma and 23 (21.3%) with at least one synchronous hyperplastic polyp. The average size of sessile serrated adenomas was 5.12 mm (± 3.87 DS) and the flat type was 91 (58.7%). There were significant differences in the diameter of sessile serrated adenomas between the distal and proximal colon (4.47 mm ± 2.23 vs. 6.90 mm ± 6.25; p<0.000). The common features of sessile serrated adenomas were: White (31/36, 86.1%), smooth (28/36, 77.8%) and regular margins (26/36, 72.2%). There was a relationship between vascular pattern according NBI and serrated polyp histology (p=0.024). The endoscopic features of sessile serrated adenomas can evade detection to white light. NBI is a useful tool to define some features of these lesions.

  17. Variation of leaf margin serration in Populus nigra of industrial dumps

    Directory of Open Access Journals (Sweden)

    Yu. A. Shtirs

    2017-07-01

    Full Text Available The variability of leaf margin serration of Populus nigra L. in conditions of industrial dumps (coal mines dumps and overburden dumps and city park is estimated. The value of this indicator is in the range from 1.25 to 1.76 and significantly increases along the gradient: coal mines dumps – overburden dumps – city park. From the number of selected gradations of P. nigra leaf blades, the gradation with values of 1.45-1.55 is most pronounced according to the analyzed index for industrial dumps, for the park – with the values of 1.55-1.65. The degree of serration of edge leaf blade is characterized by low values of variation – coefficient of variation is less than 10.0%. We registered the significant positive correlation between the average values of leaf margin serration and the length of P. nigra leaf blade.

  18. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans.

    Science.gov (United States)

    Bongers, Gerold; Muniz, Luciana R; Pacer, Michelle E; Iuga, Alina C; Thirunarayanan, Nanthakumar; Slinger, Erik; Smit, Martine J; Reddy, E Premkumar; Mayer, Lloyd; Furtado, Glaucia C; Harpaz, Noam; Lira, Sergio A

    2012-09-01

    Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas

  19. LES tests on airfoil trailing edge serration

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-01-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform...

  20. Effect of transient change in strain rate on plastic flow behaviour of ...

    Indian Academy of Sciences (India)

    Steels; stress–strain measurement; plastic flow; mechanical properties; metallurgy. Abstract. Plastic flow behaviour of low carbon steel has been studied at room temperature during tensile deformation by ... Bulletin of Materials Science | News.

  1. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P.; Boucher, Kenneth M.; Burt, Randall W.; Neklason, Deborah W.; Hagedorn, Curt H.; Delker, Don A.

    2016-01-01

    Sessile serrated colon adenoma/polyps (SSA/Ps) are found during routine screening colonoscopy and may account for 20–30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. Additionally, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon and 20 control colon specimens. Differential expression and leave-one-out cross validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n=12) and sporadic SSA/Ps (n=9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability (MSI-H). A smaller seven-gene panel showed high sensitivity and specificity in identifying BRAF mutant, CpG island methylator phenotype high (CIMP-H) and MLH1 silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. PMID:27026680

  2. Strain gradient crystal plasticity effects on flow localization

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    for metals described by the reformulated Fleck-Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory...... in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered...

  3. Sessile serrated lesion and its borderline variant - Variables with impact on recorded data

    DEFF Research Database (Denmark)

    Mohammadi, Mahin; Garbyal, Rajendra S; Kristensen, Michael H.

    2011-01-01

    Sessile serrated lesion (SSL), belonging to non-dysplastic serrated polyps (SP), has lately received much focus. Its role in the serrated neoplasia pathway(s) seems well established. Data on prevalence rate, demography, and some polyp characteristics remain, however, to be firmly established. Nor...... has its relation to SPs with subtle aberrant features, falling short of definite SSL-histology, been sufficiently addressed. The aim of this study was to highlight variables that may influence recorded data on SSL and to further discuss the appropriate place of SPs that possess histological attributes...... intermediate between traditional hyperplastic polyp (HP) and SSL, termed borderline SSL (BSSL). Upon review of 8.324 consecutive colorectal polyps signed-out as HP, 219 SSLs and 206 BSSLs were segregated, using strict predetermined criteria. Predominant left-sidedness and equal gender distribution...

  4. MicroRNA-31 expression in relation to BRAF mutation, CpG island methylation and colorectal continuum in serrated lesions.

    Science.gov (United States)

    Ito, Miki; Mitsuhashi, Kei; Igarashi, Hisayoshi; Nosho, Katsuhiko; Naito, Takafumi; Yoshii, Shinji; Takahashi, Hiroaki; Fujita, Masahiro; Sukawa, Yasutaka; Yamamoto, Eiichiro; Takahashi, Taiga; Adachi, Yasushi; Nojima, Masanori; Sasaki, Yasushi; Tokino, Takashi; Baba, Yoshifumi; Maruyama, Reo; Suzuki, Hiromu; Imai, Kohzoh; Yamamoto, Hiroyuki; Shinomura, Yasuhisa

    2014-12-01

    The CpG island methylator phenotype (CIMP) is a distinct form of epigenomic instability. Many CIMP-high colorectal cancers (CRCs) with BRAF mutation are considered to arise from serrated pathway. We recently reported that microRNA-31 (miR-31) is associated with BRAF mutation in colorectal tumors. Emerging new approaches have revealed gradual changes in BRAF mutation and CIMP-high throughout the colorectum in CRCs. Here, we attempted to identify a possible association between miR-31 and epigenetic features in serrated pathway, and hypothesized that miR-31 supports the "colorectal continuum" concept. We evaluated miR-31 expression, BRAF mutation and epigenetic features including CIMP status in 381 serrated lesions and 222 non-serrated adenomas and examined associations between them and tumor location (rectum; sigmoid, descending, transverse and ascending colon and cecum). A significant association was observed between high miR-31 expression and CIMP-high status in serrated lesions with BRAF mutation (p = 0.0001). In contrast, miR-31 was slightly but insignificantly associated with CIMP status in the cases with wild-type BRAF. miR-31 expression in sessile serrated adenomas (SSAs) with cytological dysplasia was higher than that in SSAs, whereas, no significant difference was observed between traditional serrated adenomas (TSAs) and TSAs with high-grade dysplasia. The frequency of miR-31, BRAF mutation CIMP-high and MLH1 methylation increased gradually from the rectum to cecum in serrated lesions. In conclusion, miR-31 expression was associated with CIMP-high status in serrated lesions with BRAF mutation. Our data also suggested that miR-31 plays an important role in SSA evolution and may be a molecule supporting the colorectal continuum. © 2014 UICC.

  5. CpG Island Methylator Phenotype-High Colorectal Cancers and Their Prognostic Implications and Relationships with the Serrated Neoplasia Pathway.

    Science.gov (United States)

    Rhee, Ye-Young; Kim, Kyung-Ju; Kang, Gyeong Hoon

    2017-01-15

    The concept of a CpG island methylator phenotype (CIMP) was first introduced by Toyota and Issa to describe a subset of colorectal cancers (CRCs) with concurrent hypermethylation of multiple CpG island loci. The concept of CIMP as a molecular carcinogenesis mechanism was consolidated by the identification of the serrated neoplasia pathway, in which CIMP participates in the initiation and progression of serrated adenomas. Distinct clinicopathological and molecular features of CIMP-high (CIMP-H) CRCs have been characterized, including proximal colon location, older age of onset, female preponderance, and frequent associations of high-level microsatellite instability and BRAF mutations. CIMP-H CRCs arise in sessile or traditional serrated adenomas and thus tend to display the morphological characteristics of serrated adenomas, including epithelial serration, vesicular nuclei, and abundant cytoplasm. Both the frequent association of CIMP and poor prognosis and different responses of CRCs to adjuvant therapy depending on CIMP status indicate clinical implications. In this review, we present an overview of the literature documenting the relevant findings of CIMP-H CRCs and their relationships with the serrated neoplasia pathway.

  6. Detection rate of serrated polyps and serrated polyposis syndrome in colorectal cancer screening cohorts: a European overview.

    Science.gov (United States)

    IJspeert, J E G; Bevan, R; Senore, C; Kaminski, M F; Kuipers, E J; Mroz, A; Bessa, X; Cassoni, P; Hassan, C; Repici, A; Balaguer, F; Rees, C J; Dekker, E

    2017-07-01

    The role of serrated polyps (SPs) as colorectal cancer precursor is increasingly recognised. However, the true prevalence SPs is largely unknown. We aimed to evaluate the detection rate of SPs subtypes as well as serrated polyposis syndrome (SPS) among European screening cohorts. Prospectively collected screening cohorts of ≥1000 individuals were eligible for inclusion. Colonoscopies performed before 2009 and/or in individuals aged below 50 were excluded. Rate of SPs was assessed, categorised for histology, location and size. Age-sex-standardised number needed to screen (NNS) to detect SPs were calculated. Rate of SPS was assessed in cohorts with known colonoscopy follow-up data. Clinically relevant SPs (regarded as a separate entity) were defined as SPs ≥10 mm and/or SPs >5 mm in the proximal colon. Three faecal occult blood test (FOBT) screening cohorts and two primary colonoscopy screening cohorts (range 1.426-205.949 individuals) were included. Rate of SPs ranged between 15.1% and 27.2% (median 19.5%), of sessile serrated polyps between 2.2% and 4.8% (median 3.3%) and of clinically relevant SPs between 2.1% and 7.8% (median 4.6%). Rate of SPs was similar in FOBT-based cohorts as in colonoscopy screening cohorts. No apparent association between the rate of SP and gender or age was shown. Rate of SPS ranged from 0% to 0.5%, which increased to 0.4% to 0.8% after follow-up colonoscopy. The detection rate of SPs is variable among screening cohorts, and standards for reporting, detection and histopathological assessment should be established. The median rate, as found in this study, may contribute to define uniform minimum standards for males and females between 50 and 75 years of age. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Colorectal Adenocarcinoma with an Alternative Serrated Pathway

    Directory of Open Access Journals (Sweden)

    Makoto Eizuka

    2018-04-01

    Full Text Available In a 64-year-old woman, we identified a flat, elevated lesion that was located at the caecum and was composed of 3 different areas (areas A, B, and C. We diagnosed it as “carcinoma with sessile serrated adenoma/polyp (SSA/P” histologically. Although area A was diagnosed as classical SSA/P, area B was regarded as a high-grade SSA/P. In contrast, area C showed a differentiated-type adenocarcinoma that invaded the submucosa. The patient had a recurrence of cancer 1.5 years after endoscopic resection. Overexpression of TP53 was detected in area C. Although BRAF mutation was detected in all areas, CpG island methylator phenotype-high cancer was found only in area C. The genomic phenotype of the cancerous tissue was classified as microsatellite stable (MLH1 gene not methylated. In the present case, we showed that a lesion with genetic alterations based on the histological sequence SSA/P → high-grade SSA/P → cancer in SSA/P and an alternative serrated pathway may exhibit aggressive behavior.

  8. Noise model for serrated trailing edges compared to wind tunnel measurements

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong

    2016-01-01

    A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure...... levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However...

  9. The serrated neoplasia pathway of colorectal tumors: Identification of MUC5AC hypomethylation as an early marker of polyps with malignant potential.

    Science.gov (United States)

    Renaud, Florence; Mariette, Christophe; Vincent, Audrey; Wacrenier, Agnès; Maunoury, Vincent; Leclerc, Julie; Coppin, Lucie; Crépin, Michel; Van Seuningen, Isabelle; Leteurtre, Emmanuelle; Buisine, Marie-Pierre

    2016-03-15

    The serrated neoplasia pathway accounts for 20-30% of colorectal cancers (CRC), which are characterized by extensive methylation (CpG island methylation phenotype, CIMP), frequent BRAF mutation and high microsatellite instability (MSI). We recently identified MUC5AC mucin gene hypomethylation as a specific marker of MSI CRC. The early identification of preneoplastic lesions among serrated polyps is currently challenging. Here, we performed a detailed pathological and molecular analysis of a large series of colorectal serrated polyps and evaluated the usefulness of mucin genes MUC2 and MUC5AC to differentiate serrated polyps and to identify lesions with malignant potential. A series of 330 colorectal polyps including 218 serrated polyps [42 goblet cell-rich hyperplastic polyps (GCHP), 68 microvesicular hyperplastic polyps (MVHP), 100 sessile serrated adenoma (SSA) and eight traditional serrated adenoma (TSA)] and 112 conventional adenomas was analyzed for BRAF/KRAS mutations, MSI, CIMP, MLH1 and MGMT methylation, and MUC2 and MUC5AC expression and methylation. We show that MUC5AC hypomethylation is an early event in the serrated neoplasia pathway, and specifically detects MVHP and SSA, arguing for a filiation between MVHP, SSA and CIMP-H/MSI CRC, whereas GCHP and TSA arise from a distinct pathway. Moreover, MUC5AC hypomethylation specifically identified serrated lesions with BRAF mutation, CIMP-H or MSI, suggesting that it may be useful to identify serrated neoplasia pathway-related precursor lesions. Our data suggest that MVHP should be recognized among HP and require particular attention. © 2015 UICC.

  10. Forensic implications of the variation in morphology of marginal serrations on the teeth of the great white shark

    OpenAIRE

    Nambiar, P.; Brown, K. A.; Bridges, T. E.

    2017-01-01

    The teeth of the Great White Shark have been examined to ascertain whether there is any commonality in the arrangement or number of the marginal serrations (peaks) or, indeed, whether individual sharks have a unique pattern of shapes or size of the peaks. The teeth of the White Shark are characteristic in size and shape with serrations along almost the entire mesial and distal margins. This study has revealed no consistent pattern of size or arrangement of the marginal serrations that was suf...

  11. Forensic implications of the variation in morphology of marginal serrations on the teeth of the great white shark.

    Science.gov (United States)

    Nambiar, P; Brown, K A; Bridges, T E

    1996-06-01

    The teeth of the Great White Shark have been examined to ascertain whether there is any commonality in the arrangement or number of the marginal serrations (peaks) or, indeed, whether individual sharks have a unique pattern of shapes or size of the peaks. The teeth of the White Shark are characteristic in size and shape with serrations along almost the entire mesial and distal margins. This study has revealed no consistent pattern of size or arrangement of the marginal serrations that was sufficiently characteristic within an individual shark to serve as a reliable index of identification of a tooth as originating from that particular shark. Nonetheless, the serrations are sufficiently distinctive to enable the potential identification of an individual tooth as having been the cause of a particular bitemark.

  12. Clinical characteristics of patients with serrated polyposis syndrome in Korea: comparison with Western patients

    Directory of Open Access Journals (Sweden)

    Eun Ran Kim

    2017-07-01

    Full Text Available Background/Aims: Serrated polyposis syndrome (SPS has been shown to increase the risk of colorectal cancer (CRC. However, little is known about the characteristics of Asian patients with SPS. This study aimed to identify the clinicopathological features and risk of CRC in Korean patients with SPS as well as the differences between Korean and Western patients based on a literature review.Methods: This retrospective study included 30 patients with SPS as defined by World Health Organization classification treated at Samsung Medical Center, Korea, between March 1999 and May 2011.Results: Twenty patients (67% were male. The median patient age at diagnosis was 56 years (range, 39–76 years. A total of 702 polyps were identified during a median follow-up of 43 months (range, 0–149 months. Serrated polyps were noted more frequently in the distal colon (298/702, 55%. However, large serrated polyps and serrated adenomas were mainly distributed throughout the proximal colon (75% vs. 25% and 81% vs. 19%, respectively; 73.3% had synchronous adenomatous polyps. The incidence of CRC was 10% (3/30 patients, but no interval CRC was detected. A total of 87% of the patients underwent esophagogastroduodenoscopy and 19.2% had significant lesions.Conclusions: The phenotype of SPS in Korean patients is different from that of Western patients. In Korean patients, SPS is more common in men, there were fewer total numbers of serrated adenoma/polyps, and the incidence of CRC was lower than that in Western patients. Korean patients tend to more frequently have abnormal gastric lesions. However, the prevalence of synchronous adenomatous polyps is high in both Western and Korean patients.

  13. The Association Between Molecular Markers in Colorectal Sessile Serrated Polyps and Colorectal Cancer Risk

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0273 TITLE: The Association between Molecular Markers in Colorectal Sessile Serrated Polyps and Colorectal Cancer ... Colorectal Cancer Risk 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0273 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrea Burnett-Hartman 5d... cancer in patients with sessile serrated colorectal polyps (SSPs). The project’s specific aims are as follows: 1) Estimate the risk of colorectal

  14. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression.

    Science.gov (United States)

    Rao, Chen; Ikeda, Teruaki; Nakata, Toshiyuki; Liu, Hao

    2017-07-04

    Owls are widely known for silent flight, achieving remarkably low noise gliding and flapping flights owing to their unique wing morphologies, which are normally characterized by leading-edge serrations, trailing-edge fringes and velvet-like surfaces. How these morphological features affect aerodynamic force production and sound suppression or noise reduction, however, is still not well known. Here we address an integrated study of owl-inspired single feather wing models with and without leading-edge serrations by combining large-eddy simulations (LES) with particle-image velocimetry (PIV) and force measurements in a low-speed wind tunnel. With velocity and pressure spectra analysis, we demonstrate that leading-edge serrations can passively control the laminar-turbulent transition over the upper wing surface, i.e. the suction surface at all angles of attack (0°    15° where owl wings often reach in flight. Our results indicate that the owl-inspired leading-edge serrations may be a useful device for aero-acoustic control in biomimetic rotor designs for wind turbines, aircrafts, multi-rotor drones as well as other fluid machinery.

  15. Risk factors for colorectal cancer in patients with multiple serrated polyps: a cross-sectional case series from genetics clinics.

    Directory of Open Access Journals (Sweden)

    Daniel D Buchanan

    2010-07-01

    Full Text Available Patients with multiple serrated polyps are at an increased risk for developing colorectal cancer (CRC. Recent reports have linked cigarette smoking with the subset of CRC that develops from serrated polyps. The aim of this work therefore was to investigate the association between smoking and the risk of CRC in high-risk genetics clinic patients presenting with multiple serrated polyps.We identified 151 Caucasian individuals with multiple serrated polyps including at least 5 outside the rectum, and classified patients into non-smokers, current or former smokers at the time of initial diagnosis of polyposis. Cases were individuals with multiple serrated polyps who presented with CRC. Controls were individuals with multiple serrated polyps and no CRC. Multivariate logistic regression was performed to estimate associations between smoking and CRC with adjustment for age at first presentation, sex and co-existing traditional adenomas, a feature that has been consistently linked with CRC risk in patients with multiple serrated polyps. CRC was present in 56 (37% individuals at presentation. Patients with at least one adenoma were 4 times more likely to present with CRC compared with patients without adenomas (OR = 4.09; 95%CI 1.27 to 13.14; P = 0.02. For females, the odds of CRC decreased by 90% in current smokers as compared to never smokers (OR = 0.10; 95%CI 0.02 to 0.47; P = 0.004 after adjusting for age and adenomas. For males, there was no relationship between current smoking and CRC. There was no statistical evidence of an association between former smoking and CRC for both sexes.A decreased odds for CRC was identified in females with multiple serrated polyps who currently smoke, independent of age and the presence of a traditional adenoma. Investigations into the biological basis for these observations could lead to non-smoking-related therapies being developed to decrease the risk of CRC and colectomy in these patients.

  16. Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows

    NARCIS (Netherlands)

    Lerner, E.; Bailey, N.P.; Dyre, J.C.

    2014-01-01

    Athermal steady-state plastic flows were simulated for the Kob-Andersen binary Lennard-Jones system and its repulsive version in which the sign of the attractive terms is changed to a plus. Properties evaluated include the distributions of energy drops, stress drops, and strain intervals between the

  17. Advantages of magnifying narrow-band imaging for diagnosing colorectal cancer coexisting with sessile serrated adenoma/polyp.

    Science.gov (United States)

    Chino, Akiko; Osumi, Hiroki; Kishihara, Teruhito; Morishige, Kenjiro; Ishikawa, Hirotaka; Tamegai, Yoshiro; Igarashi, Masahiro

    2016-04-01

    In the present study, we investigated the advantages of narrow-band imaging (NBI) for efficient diagnosis of sessile serrated adenoma/polyp (SSA/P). The main objective of this study was to analyze the characteristic features of cancer coexisting with serrated lesion by carrying out NBI. We evaluated 264 non-malignant serrated lesions by using three modalities (conventional white light colonoscopy, magnifying chromoendoscopy, and magnifying NBI). Of the evaluated cancer cases with serrated lesions, 37 fulfilled the inclusion criteria. In diagnosing non-malignant SSA/P, an expanded crypt opening (ECO) under magnifying NBI is a useful sign. One hundred and twenty-five lesions (87%) of observed ECO were, at the same time, detected to have type II open pit pattern, which is known to be a valuable indicator when using magnifying chromoendoscopy. ECO had high sensitivity of 80% for identifying SSA/P, with 62% specificity and 83% positive predictive value (PPV). In detecting the cancer with SSA/P, irregular vessels under magnifying NBI were frequently observed with 100% sensitivity and 99% specificity, 86% PPV and 100% negative predictive value. A focus on irregular vessels in serrated lesions might be useful for identification of cancer with SSA/P. This is an advantage of carrying out magnifying NBI in addition to being used simultaneously with other modalities by switching, and observations can be made by using wash-in water alone. We can carry out advanced examinations for selected lesions with irregular vessels. To confirm cancerous demarcation and invasion depth, a combination of all three aforementioned modalities should be done. © 2016 The Authors Digestive Endoscopy © 2016 Japan Gastroenterological Endoscopy Society.

  18. Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale

    Science.gov (United States)

    Cui, Yinan; Po, Giacomo; Ghoniem, Nasr

    2018-05-01

    Three-dimensional discrete dislocation dynamics (3D-DDD) simulations reveal that, with reduction of sample size in the submicron regime, the mechanism of plastic flow localization in irradiated materials transitions from irradiation-controlled to an intrinsic dislocation source controlled. Furthermore, the spatial correlation of plastic deformation decreases due to weaker dislocation interactions and less frequent cross slip as the system size decreases, thus manifesting itself in thinner dislocation channels. A simple model of discrete dislocation source activation coupled with cross slip channel widening is developed to reproduce and physically explain this transition. In order to quantify the phenomenon of plastic flow localization, we introduce a "deformation localization index," with implications to the design of radiation-resistant materials.

  19. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  20. Nanomechanics of slip avalanches in amorphous plasticity

    Science.gov (United States)

    Cao, Penghui; Dahmen, Karin A.; Kushima, Akihiro; Wright, Wendelin J.; Park, Harold S.; Short, Michael P.; Yip, Sidney

    2018-05-01

    Discrete stress relaxations (slip avalanches) in a model metallic glass under uniaxial compression are studied using a metadynamics algorithm for molecular simulation at experimental strain rates. The onset of yielding is observed at the first major stress drop, accompanied, upon analysis, by the formation of a single localized shear band region spanning the entire system. During the elastic response prior to yielding, low concentrations of shear transformation deformation events appear intermittently and spatially uncorrelated. During serrated flow following yielding, small stress drops occur interspersed between large drops. The simulation results point to a threshold value of stress dissipation as a characteristic feature separating major and minor avalanches consistent with mean-field modeling analysis and mechanical testing experiments. We further interpret this behavior to be a consequence of a nonlinear interplay of two prevailing mechanisms of amorphous plasticity, thermally activated atomic diffusion and stress-induced shear transformations, originally proposed by Spaepen and Argon, respectively. Probing the atomistic processes at widely separate strain rates gives insight to different modes of shear band formation: percolation of shear transformations versus crack-like propagation. Additionally a focus on crossover avalanche size has implications for nanomechanical modeling of spatially and temporally heterogeneous dynamics.

  1. Pressure flaking to serrate bifacial points for the hunt during the MIS5 at Sibudu Cave (South Africa.

    Directory of Open Access Journals (Sweden)

    Veerle Rots

    Full Text Available Projectile technology is considered to appear early in the southern African Middle Stone Age (MSA and the rich and high resolution MSA sequence of Sibudu Cave in KwaZulu-Natal has provided many new insights about the use and hafting of various projectile forms. We present the results of a functional and technological analysis on a series of unpublished serrated bifacial points recently recovered from the basal deposits of Sibudu Cave. These serrated tools, which only find equivalents in the neighbouring site of Umhlatuzana, precede the Still Bay techno-complex and are older than 77 ka BP. Independent residue and use-wear analyses were performed in a phased procedure involving two separate analysts, which allowed the engagement between two separate lines of functional evidence. Thanks to the excellent preservation at Sibudu Cave, a wide range of animal, plant and mineral residues were observed in direct relation with diagnostic wear patterns. The combination of technological, wear and residue evidence allowed us to confirm that the serration was manufactured with bone compressors and that the serrated points were mounted with a composite adhesive as the tips of projectiles used in hunting activities. The suite of technological and functional data pushes back the evidence for the use of pressure flaking during the MSA and highlights the diversity of the technical innovations adopted by southern African MSA populations. We suggest the serrated points from the stratigraphic units Adam to Darya of Sibudu illustrate one important technological adaptation of the southern African MSA and provide another example of the variability of MSA bifacial technologies.

  2. Serrate, hyperplastiske – og hyperplasilignende,kolorektale polypper

    DEFF Research Database (Denmark)

    Brunbjerg Folker, Mille; Bernstein, Inge Thomsen; Holck, Susanne

    2006-01-01

    The colorectal hyperplastic polyp has generally been considered a finding of no clinical significance. Recent research has, however, called attention to the existence of some variants of hyperplastic polyp which are potentially malignant. The term "advanced serrated polyp" has been coined...... regarding the optimal management of such patients has not been obtained, but if the polyp is sizeable and located in the right colon, control should be considered. The small, usually left-sided traditional polyp as a rule needs no follow-up, but the context in which such a lesion is found and its morphology...

  3. Plastic flow and preferred orientation in molybdenum and zirconium films

    International Nuclear Information System (INIS)

    Window, B.

    1989-01-01

    X-ray diffraction measurements on samples of molybdenum and zirconium growth with ion assistance at low temperatures support the occurrence of plastic flow during growth, provided the level of bombardment is high enough. As the energy of the argon ions was increased, the lattice strain in the growth direction increased to a maximum before decreasing slowly. That this is a plastic flow transition is shown by the independence of the maximum strain on preparation conditions and by the changes in microstructure. In particular, the grain size in the growth direction decreased and the preferred orientation favored the usual wire drawing textures of these metals. For the zirconium films this involved a change in preferred orientation from a (00.2) to a (10.0) texture. A reduction in strain is observed at high bombardment levels

  4. Characterization of serrated yielding in service exposed Inconel 625 alloy

    International Nuclear Information System (INIS)

    Chatterjee, Arnomitra; Sharma, Garima; Chakravartty, J.K.

    2016-01-01

    The Alloy-625 is an austentic alloy which is being used for a variety of components in the aerospace, marine, chemical and nuclear industries. Tensile tests have been carried out on service exposed Inconel 625 ammonia cracker tube used at heavy water production plant to study the effect of microstructure on the mechanical properties of the material. Owing to temperature gradient during in service condition the microstructure was different in top (T), middle (M) and bottom (B) sections of the tube. The stress-strain curve obtained from conventional tensile test was found to exhibit serrated yielding with in an intermediate temperature regime of 250-600 °C. Both normal and inverse Portevin-Le Chatelier (PLC) effect could be identified at lower and higher temperature regime respectively. The normal behavior was associated with type (A+B) serrations and interstitial atom C was held responsible for the aging of dislocations in this region. On the contrary, the serrations were of type C in nature in inverse PLC regime and were attributed to the locking of dislocations by substitutional Mo atoms. Further analyses of activation energy and transition temperature for normal to inverse PLC dynamics, supported with Transmission Electron Microscopy (TEM) observation revealed that the basic deformation mechanism was different in M and B samples than that in the T samples. While the deformation in T samples were achieved by usual dislocation migration, in M and B samples it was through the propagation of stacking faults in large γ” precipitates. The transition temperature from normal to inverse PLC dynamics also varied appreciably in T samples than that of the M and B ones which could be explained in terms of the delayed depletion of Mo solutes in solution for T samples. (author)

  5. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Daniel Lepe-Soltero

    2017-12-01

    Full Text Available The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana, ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  6. Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana.

    Science.gov (United States)

    Lepe-Soltero, Daniel; Armenta-Medina, Alma; Xiang, Daoquan; Datla, Raju; Gillmor, C Stewart; Abreu-Goodger, Cei

    2017-12-01

    The genome annotation for the model plant Arabidopsis thaliana does not include the primary transcripts from which MIRNAs are processed. Here we present and analyze the raw mRNA sequencing data from wild type and serrate-1 globular stage embryos of A. thaliana , ecotype Columbia. Because SERRATE is required for pri-miRNA processing, these precursors accumulate in serrate-1 mutants, facilitating their detection using standard RNA-Seq protocols. We first use the mapping of the RNA-Seq reads to the reference genome to annotate the potential primary transcripts of MIRNAs expressed in the embryo. We then quantify these pri-miRNAs in wild type and serrate-1 mutants. Finally, we use differential expression analysis to determine which are up-regulated in serrate-1 compared to wild type, to select the best candidates for bona fide pri-miRNAs expressed in the globular stage embryos. In addition, we analyze a previously published RNA-Seq dataset of wild type and dicer-like 1 mutant embryos at the globular stage [1]. Our data are interpreted and discussed in a separate article [2].

  7. Anisotropic plastic deformation by viscous flow in ion tracks

    NARCIS (Netherlands)

    van Dillen, T; Polman, A; Onck, PR; van der Giessen, E

    2005-01-01

    A model describing the origin of ion beam-induced anisotropic plastic deformation is derived and discussed. It is based on a viscoelastic thermal spike model for viscous flow in single ion tracks derived by Trinkaus and Ryazanov. Deviatoric (shear) stresses, brought about by the rapid thermal

  8. Influence of flow stress choice on the plastic collapse estimation of axially cracked steam generator tubes

    International Nuclear Information System (INIS)

    Tonkovic, Zdenko; Skozrit, Ivica; Alfirevic, Ivo

    2008-01-01

    The influence of the choice of flow stress on the plastic collapse estimation of axially cracked steam generator (SG) tubes is considered. The plastic limit and collapse loads of thick-walled tubes with external axial semi-elliptical surface cracks are investigated by three-dimensional non-linear finite element (FE) analyses. The limit pressure solution as a function of the crack depth, length and tube geometry has been developed on the basis of extensive FE limit load analyses employing the elastic-perfectly plastic material behaviour and small strain theory. Unlike the existing solutions, the newly developed analytical approximation of the plastic limit pressure for thick-walled tubes is applicable to a wide range of crack dimensions. Further, the plastic collapse analysis with a real strain-hardening material model and a large deformation theory is performed and an analytical approximation for the estimation of the flow stress is proposed. Numerical results show that the flow stress, defined by some failure assessment diagram (FAD) methods, depends not only on the tube material, but also on the crack geometry. It is shown that the plastic collapse pressure results, in the case of deeper cracks obtained by using the flow stress as the average of the yield stress and the ultimate tensile strength, can become unsafe

  9. An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation

    International Nuclear Information System (INIS)

    Vu-Quoc, L.; Lesburg, L.; Zhang, X.

    2004-01-01

    An elasto-plastic frictional tangential force-displacement (TFD) model for spheres in contact for accurate and efficient granular-flow simulations is presented in this paper; the present TFD is consistent with the elasto-plastic normal force-displacement (NFD) model presented in [ASME Journal of Applied Mechanics 67 (2) (2000) 363; Proceedings of the Royal Society of London, Series A 455 (1991) (1999) 4013]. The proposed elasto-plastic frictional TFD model is accurate, and is validated against non-linear finite-element analyses involving plastic flows under both loading and unloading conditions. The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic contact area radius into an elastic part and a plastic part, (ii) the correction of the particles' radii at the contact point, and (iii) the correction of the particles' elastic moduli. The correction of the contact-area radius represents an effect of plastic deformation in colliding particles; the correction of the radius of curvature represents a permanent indentation after impact; the correction of the elastic moduli represents a softening of the material due to plastic flow. The construction of both the present elasto-plastic frictional TFD model and its consistent companion, the elasto-plastic NFD model, parallels the formalism of the continuum theory of elasto-plasticity. Both NFD and TFD models form a coherent set of force-displacement (FD) models not available hitherto for granular-flow simulations, and are consistent with the Hertz, Cattaneo, Mindlin, Deresiewicz contact mechanics theory. Together, these FD models will allow for efficient simulations of granular flows (or granular gases) involving a large number of particles

  10. A standardized imaging protocol for the endoscopic prediction of dysplasia within sessile serrated polyps (with video).

    Science.gov (United States)

    Tate, David J; Jayanna, Mahesh; Awadie, Halim; Desomer, Lobke; Lee, Ralph; Heitman, Steven J; Sidhu, Mayenaaz; Goodrick, Kathleen; Burgess, Nicholas G; Mahajan, Hema; McLeod, Duncan; Bourke, Michael J

    2018-01-01

    Dysplasia within sessile serrated polyps (SSPs) is difficult to detect and may be mistaken for an adenoma, risking incomplete resection of the background serrated tissue, and is strongly implicated in interval cancer after colonoscopy. The use of endoscopic imaging to detect dysplasia within SSPs has not been systematically studied. Consecutively detected SSPs ≥8 mm in size were evaluated by using a standardized imaging protocol at a tertiary-care endoscopy center over 3 years. Lesions suspected as SSPs were analyzed with high-definition white light then narrow-band imaging. A demarcated area with a neoplastic pit pattern (Kudo type III/IV, NICE type II) was sought among the serrated tissue. If this was detected, the lesion was labeled dysplastic (sessile serrated polyp with dysplasia); if not, it was labeled non-dysplastic (sessile serrated polyp without dysplasia). Histopathology was reviewed by 2 blinded specialist GI pathologists. A total of 141 SSPs were assessed in 83 patients. Median lesion size was 15.0 mm (interquartile range 10-20), and 54.6% were in the right side of the colon. Endoscopic evidence of dysplasia was detected in 36 of 141 (25.5%) SSPs; of these, 5 of 36 (13.9%) lacked dysplasia at histopathology. Two of 105 (1.9%) endoscopically designated non-dysplastic SSPs had dysplasia at histopathology. Endoscopic imaging, therefore, had an accuracy of 95.0% (95% confidence interval [CI], 90.1%-97.6%) and a negative predictive value of 98.1% (95% CI, 92.6%-99.7%) for detection of dysplasia within SSPs. Dysplasia within SSPs can be detected accurately by using a simple, broadly applicable endoscopic imaging protocol that allows complete resection. Independent validation of this protocol and its dissemination to the wider endoscopic community may have a significant impact on rates of interval cancer. (Clinical trial registration number: NCT03100552.). Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All

  11. Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting

    Science.gov (United States)

    Wu, Christine J.; Söderlind, Per; Glosli, James N.; Klepeis, John E.

    2009-03-01

    There are many structural and optical similarities between a liquid and a plastic flow. Thus, it is non-trivial to distinguish between them at high pressures and temperatures, and a detailed description of the transformation between these phenomena is crucial to our understanding of the melting of metals at high pressures. Here we report a shear-induced, partially disordered viscous plastic flow from body-centred-cubic tantalum under heating before it melts into a liquid. This thermally activated structural transformation produces a unique, one-dimensional structure analogous to a liquid crystal with the rheological characteristics of Bingham plastics. This mechanism is not specific to Ta and is expected to hold more generally for other metals. Remarkably, this transition is fully consistent with the previously reported anomalously low-temperature melting curve and thus offers a plausible resolution to a long-standing controversy about melting of metals under high pressures.

  12. Invasive Mucinous Adenocarcinoma Associated with Adjacent Sessile Serrated Lesion of the Appendix Vermiform: A Case Report

    Directory of Open Access Journals (Sweden)

    Osamu Kinoshita

    2014-01-01

    Full Text Available Although the definition of sessile serrated lesion (SSL of colon is controversial and the risk of progression to malignancy is also under investigation at present, SSL is generally described as a polyp characterized by a serrated architecture. It is estimated to represent a feature of a new cancerization pathway, coined “serrated neoplasia pathway,” particularly in right-sided colon adenocarcinomas. On the other hand, in appendix, the role of this pathway remains uncertain, probably because very few cases of appendiceal adenocarcinoma associated with SSL were reported, and furthermore, immunohistochemical examination was rarely carried out. We herein report an interesting case of invasive appendiceal mucinous adenocarcinoma exhibiting SSL, which was pathologically estimated as a potential precursor lesion, and performed representative immunohistochemistry for both the mucinous adenocarcinoma and SSL in the same specimen. To further elucidate the progression of the appendiceal carcinoma from SSL, both an adequate sectioning of the lesion and systematic immunohistochemical examination of a large number of appendiceal carcinoma cases containing adjacent SSL would be required.

  13. Sessile serrated polyps of the colorectum are rare in patients with Lynch syndrome and in familial colorectal cancer families

    DEFF Research Database (Denmark)

    Andersen, S H; Lykke, E; Folker, M B

    2008-01-01

    Whereas the generally accepted carcinogenesis pathway of the microsatellite instabile high (MSI-H) colorectal carcinoma (CRC) involves the traditional adenoma in patients with Lynch syndrome, a serrate pathway involving serrate adenomas (SA) and sessile serrate polyps (SSP) characterize...... the sporadic MSI-H counterpart. Recent studies have, however, challenged such simple one-pathway models, inviting the consideration of alternative, unexpected pathways. Here, the issue as to the possible role of SSP, primarily in the context of Lynch syndrome, but also in subjects from familial CRC families...... (FCF) is addressed. Polyps coded as hyperplastic polyps (HP) from subjects with Lynch syndrome and FCF enrolled in the HNPCC-register at the Hvidovre University Hospital as well as adenomas from this population were retrieved and reviewed for features of SSP. Ninety-eight polyps coded as HP and 41...

  14. The fabrication of plastic cages for suspension in mass air flow racks.

    Science.gov (United States)

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  15. A Comparison of the Plastic Flow Response of a Powder Metallurgy Nickel Base Superalloy (Postprint)

    Science.gov (United States)

    2017-04-01

    AFRL-RX-WP-JA-2017-0225 A COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) S.L...COMPARISON OF THE PLASTIC-FLOW RESPONSE OF A POWDER- METALLURGY NICKEL-BASE SUPERALLOY (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT...behavior at hot-working temperatures and strain rates of the powder- metallurgy superalloy LSHR was determined under nominally-isothermal and transient

  16. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps

    OpenAIRE

    HOKAZONO, KOJI; UEKI, TAKASHI; NAGAYOSHI, KINUKO; NISHIOKA, YASUNOBU; HATAE, TATSUNOBU; KOGA, YUTAKA; HIRAHASHI, MINAKO; ODA, YOSHINAO; TANAKA, MASAO

    2014-01-01

    A subset of colorectal cancers (CRCs) harbor the CpG island methylator phenotype (CIMP), with concurrent multiple promoter hypermethylation of tumor-related genes. A serrated pathway in which CIMP is developed from serrated polyps is proposed. The present study characterized CIMP and morphologically examined precursor lesions of CIMP. In total, 104 CRCs treated between January 1996 and December 2004 were examined. Aberrant promoter methylation of 15 cancer-related genes was analyzed. CIMP sta...

  17. Determination of stresses in gas-turbine disks subjected to plastic flow and creep

    Science.gov (United States)

    Millenson, M B; Manson, S S

    1948-01-01

    A finite-difference method previously presented for computing elastic stresses in rotating disks is extended to include the computation of the disk stresses when plastic flow and creep are considered. A finite-difference method is employed to eliminate numerical integration and to permit nontechnical personnel to make the calculations with a minimum of engineering supervision. Illustrative examples are included to facilitate explanation of the procedure by carrying out the computations on a typical gas-turbine disk through a complete running cycle. The results of the numerical examples presented indicate that plastic flow markedly alters the elastic-stress distribution.

  18. Subtypes of the Type II Pit Pattern Reflect Distinct Molecular Subclasses in the Serrated Neoplastic Pathway.

    Science.gov (United States)

    Aoki, Hironori; Yamamoto, Eiichiro; Yamano, Hiro-O; Sugai, Tamotsu; Kimura, Tomoaki; Tanaka, Yoshihito; Matsushita, Hiro-O; Yoshikawa, Kenjiro; Takagi, Ryo; Harada, Eiji; Nakaoka, Michiko; Yoshida, Yuko; Harada, Taku; Sudo, Gota; Eizuka, Makoto; Yorozu, Akira; Kitajima, Hiroshi; Niinuma, Takeshi; Kai, Masahiro; Nojima, Masanori; Suzuki, Hiromu; Nakase, Hiroshi

    2018-03-15

    Colorectal serrated lesions (SLs) are important premalignant lesions whose clinical and biological features are not fully understood. We aimed to establish accurate colonoscopic diagnosis and treatment of SLs through evaluation of associations among the morphological, pathological, and molecular characteristics of SLs. A total of 388 premalignant and 18 malignant colorectal lesions were studied. Using magnifying colonoscopy, microsurface structures were assessed based on Kudo's pit pattern classification system, and the Type II pit pattern was subcategorized into classical Type II, Type II-Open (Type II-O) and Type II-Long (Type II-L). BRAF/KRAS mutations and DNA methylation of CpG island methylator phenotype (CIMP) markers (MINT1, - 2, - 12, - 31, p16, and MLH1) were analyzed through pyrosequencing. Type II-O was tightly associated with sessile serrated adenoma/polyps (SSA/Ps) with BRAF mutation and CIMP-high. Most lesions with simple Type II or Type II-L were hyperplastic polyps, while mixtures of Type II or Type II-L plus more advanced pit patterns (III/IV) were characteristic of traditional serrated adenomas (TSAs). Type II-positive TSAs frequently exhibited BRAF mutation and CIMP-low, while Type II-L-positive TSAs were tightly associated with KRAS mutation and CIMP-low. Analysis of lesions containing both premalignant and cancerous components suggested Type II-L-positive TSAs may develop into KRAS-mutated/CIMP-low/microsatellite stable cancers, while Type II-O-positive SSA/Ps develop into BRAF-mutated/CIMP-high/microsatellite unstable cancers. These results suggest that Type II subtypes reflect distinct molecular subclasses in the serrated neoplasia pathway and that they could be useful hallmarks for identifying SLs at high risk of developing into CRC.

  19. Loss of expression and promoter methylation of SLIT2 are associated with sessile serrated adenoma formation.

    Directory of Open Access Journals (Sweden)

    Andrew D Beggs

    2013-05-01

    Full Text Available Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1-4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson "two hit" hypothesis.

  20. Mathematical Modeling of Bingham Plastic Model of Blood Flow Through Stenotic Vessel

    OpenAIRE

    S.R. Verma

    2014-01-01

    The aim of the present paper is to study the axially symmetric, laminar, steady, one-dimensional flow of blood through narrow stenotic vessel. Blood is considered as Bingham plastic fluid. The analytical results such as pressure drop, resistance to flow and wall shear stress have been obtained. Effect of yield stress and shape of stenosis on resistance to flow and wall shear stress have been discussed through tables and graphically. It has been shown that resistance to flow and th...

  1. Doppler ultrasound compatible plastic material for use in rigid flow models.

    Science.gov (United States)

    Wong, Emily Y; Thorne, Meghan L; Nikolov, Hristo N; Poepping, Tamie L; Holdsworth, David W

    2008-11-01

    A technique for the rapid but accurate fabrication of multiple flow phantoms with variations in vascular geometry would be desirable in the investigation of carotid atherosclerosis. This study demonstrates the feasibility and efficacy of implementing numerically controlled direct-machining of vascular geometries into Doppler ultrasound (DUS)-compatible plastic for the easy fabrication of DUS flow phantoms. Candidate plastics were tested for longitudinal speed of sound (SoS) and acoustic attenuation at the diagnostic frequency of 5 MHz. Teflon was found to have the most appropriate SoS (1376 +/- 40 m s(-1) compared with 1540 m s(-1) in soft tissue) and thus was selected to construct a carotid bifurcation flow model with moderate eccentric stenosis. The vessel geometry was machined directly into Teflon using a numerically controlled milling technique. Geometric accuracy of the phantom lumen was verified using nondestructive micro-computed tomography. Although Teflon displayed a higher attenuation coefficient than other tested materials, Doppler data acquired in the Teflon flow model indicated that sufficient signal power was delivered throughout the depth of the vessel and provided comparable velocity profiles to that obtained in the tissue-mimicking phantom. Our results indicate that Teflon provides the best combination of machinability and DUS compatibility, making it an appropriate choice for the fabrication of rigid DUS flow models using a direct-machining method.

  2. Molecular features of colorectal hyperplastic polyps and sessile serrated adenoma/polyps from Korea.

    Science.gov (United States)

    Kim, Kyoung-Mee; Lee, Eui Jin; Ha, Sangyun; Kang, So Young; Jang, Kee-Taek; Park, Cheol Keun; Kim, Jin Yong; Kim, Young Ho; Chang, Dong Kyung; Odze, Robert Daniel

    2011-09-01

    Abundant recent data suggest that sessile serrated adenoma/polyp (SSA/P) is an early precursor lesion in the serrated pathway of carcinogenesis. It is believed that SSA/Ps develop cancer by an SSA/P-dysplasia-carcinoma sequence. Hyperplastic polyps (HPs) share some histologic and molecular characteristics with SSA/P, but it is unclear whether SSA/Ps are derived from HPs or whether they develop by a different pathogenetic pathway. Previous studies have shown that serrated polyps from Korean patients show different prevalence rates of certain molecular abnormalities compared with similar lesions from American patients, and this suggests that lifestyle and dietary factors may influence the serrated neoplasia pathway. The purpose of this study was to evaluate the molecular features of HPs and SSA/Ps, the latter both with and without dysplasia, from Korean patients and to compare the findings with similar lesions from American patients. One hundred and eleven serrated polyps, consisting of 45 HPs (30 microvesicular, 11 goblet cell, 4 mucin depleted) and 56 SSA/Ps (36 with dysplasia, 20 without dysplasia), were retrieved from the pathology files of a large medical center in Korea and 38 SSA/P from American patients were evaluated for BRAF and KRAS mutations, microsatellite instability, and hypermethylation of O6-methylguanine-DNA methyltransferase (MGMT), hMLH1, adenomatous polyposis coli (APC), p16, methylated in tumor-1 (MINT-1), MINT2, and MINT31. Methylation of hMLH1 was performed using 2 different sets of primers. Twenty-three conventional adenomas from Korean patients were included as controls. The data were compared between polyp subtypes and between polyps in the right versus the left colon. With regard to HP, KRAS mutations were present in 31.1% of polyps and BRAF mutations in 46.7% of polyps. KRAS mutations were significantly more common in goblet cell HP and BRAF in microvesicular HP (MVHP). Methylation of MGMT, hMLH1, APC, p16, MINT1, MINT2, and MINT31 were

  3. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    Science.gov (United States)

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  4. Collective flow measured with the Plastic Ball

    International Nuclear Information System (INIS)

    Ritter, H.G.; Gutbrod, H.H.; Kampert, K.H.; Kolb, B.; Poskanzer, A.M.; Schicker, R.; Schmidt, H.R.; Siemiarczuk, T.

    1989-08-01

    The experimental results from the Plastic Ball detector have contributed vastly to the understanding of the reaction mechanism of nuclear collisions at several hundred MeV per nucleon. The discovery of the collective flow phenomena (bounce-off of spectator fragments, side-splash in the reaction plane, and squeeze-out out of the reaction plane), as they were predicted by hydrodynamical models, has led to the experimental observation of compressed nuclear matter, which is a necessary condition before one can study the equation of state in detail and search for phase transitions at higher energies. 39 refs., 9 figs., 1 tab

  5. Theoretical performance of serrated external occulters for solar coronagraphy. Application to ASPIICS

    Science.gov (United States)

    Rougeot, R.; Aime, C.

    2018-04-01

    Context. This study is made in the context of the future solar coronagraph ASPIICS of the ESA formation-flying mission Proba-3. Aims: In the context of solar coronagraphy, we provide a comparative study of the theoretical performance of serrated (or toothed) external occulters by varying the number and size of the teeth, which we compare to the sharp-edged and apodized disks. The tooth height is small (a few centimeters), to avoid hindering the observation of the solar corona near the limb. We first analyze the diffraction pattern produced by such occulters. In a second step, we compute the umbra profile by integration over the Sun. Methods: We explored a few methods to compute the diffraction pattern. Two of them were implemented. The first is based on 2D fast Fourier transformation (FFT) routines and a multiplication by the Fresnel filter of the form exp(-iπλzu2). Simple rules were derived and discussed to set the sampling conditions. The Maggi-Rubinowicz representation is then proposed as an alternative method, and is proven to be very efficient for this study. Results: Serrated occulters tend to create a two-level intensity pattern, the inner being the darker, which perfectly matches a previously reported geometrical prediction. The diffraction in this central region is lower by two to four orders of magnitude when compared to the sharp-edged disk. The achieved umbra level at the center ranges from 10-4 to below 10-7, depending on the geometry of the teeth. Conclusions: Our study shows that serrated occulters can achieve a high rejection and can almost reach the performance of the apodized disk when very many teeth are used. We prove that shaped occulters must be preferred to simple disks in solar and stellar coronagraphy.

  6. Serrated leaf mutant in mungbean (Vigna radiata (L) Wilczek)

    International Nuclear Information System (INIS)

    Malik, I.A.; Ghulam, Sarwar; Yousaf, Ali; Saleem, M.

    1988-01-01

    Dry dormant seeds of mungbean (Vigna radiata (L) Wilczek) were treated with gamma rays (15, 30 and 60 kR). The serrated leaf mutation was noticed in M 2 of cultivar Pak 32 treated with 60 kR. Cf 14 plants, 3 showed the altered leaf structure and the others were normal. The feature of this mutant was the deep serration of leaflet margins. The mutant had large thick leaflets with prominent venation. The mutant bred true in the M 3 and successive generation. Details of the morphological characteristics of the mutant are presented. The mutant exhibited slower growth particularly during the early stages of development, flowered later and attained shorter height. There was an increase in the number of pods, in seed weight and in seed protein content, but number of seed per pod was considerably reduced. The seed coat colour showed a change from green to yellowish green. In the mutant's flowers the stamina were placed much below the stigma level and the stigma sometimes protruded the corolla. Outcrossing of 4% recorded in some of the mutant lines revealed a reduced cleistogamy. The low number of seeds per pod in the mutant could be due to reduced pollen fertility. The mutant behaved as monogenic recessive. The symbols SL/sl are proposed for this allelic pair. The mutant may have use as a green manure crop because of its large foliage and for the breeders as a genetic marker

  7. Serrated flow behavior in tungsten heavy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Das, Jiten, E-mail: das.jiten@gmail.com; Sankaranarayana, M.; Nandy, T.K.

    2015-10-14

    Flow behavior of a tungsten heavy alloy of composition, 90.5 wt% W–7.1 wt% Ni–1.65 wt% Fe–0.5 wt% Co–0.25 wt% Mo was investigated in a temperature range of 223–973 K and strain rate range of 10{sup −5}–10{sup −2} s{sup −1}. In the temperature range of 773–873 K, the stress strain curves were characterized by jerky flow pointing towards Dynamic Strain Ageing (DSA)/Portevin Le-Chatelier's (PLC) effect. Characteristics of DSA were analyzed in detail. Based on the value of activation energy determined from the critical strain method, diffusion of interstitials (carbon, oxygen, nitrogen and hydrogen) were thought to be responsible for the DSA effect. The results were discussed in relation to information existing in this area in tungsten heavy alloys. The study of fracture surface of tensile tested samples (in the range of 823–973 K) showed that the fractographic features, mostly intergranular, predominantly govern the overall ductility of the alloy and do not change except for surface oxidation at relatively higher temperatures.

  8. Yield strengths of flows on the earth, Mars, and moon. [application of Bingham plastic model to lava flows

    Science.gov (United States)

    Moore, H. J.; Arthur, D. W. G.; Schaber, G. G.

    1978-01-01

    Dimensions of flows on the earth, Mars, and moon and their topographic gradients obtained from remote measurements are used to calculate yield strengths with a view to explore the validity of the Bingham plastic model and determine whether there is a relation between yield strengths and silica contents. Other factors are considered such as the vagaries of natural phenomena that might contribute to erroneous interpretations and measurements. Comparison of yield strengths of Martian and lunar flows with terrestrial flows suggests that the Martian and lunar flows are more akin to terrestrial basalts than they are to terrestrial andesites, trachytes, and rhyolites.

  9. Plastic deformation behavior of Fe–Co–B–Si–Nb–Cr bulk metallic glasses under nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.T.; Hong, S.H.; Lee, C.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, J.M., E-mail: jinman_park@hotmail.com [Materials Research Center, Samsung Advanced Institute of Technology (SAIT), San 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea, Republic of); Kim, T.W.; Lee, W.H. [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Yim, H.I. [Department of Physics, Sookmyung Women’s University, Hyochangwongil 52, Yongsan-ku, Seoul 140-742 (Korea, Republic of); Kim, K.B., E-mail: kbkim@sejong.ac.kr [HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2014-02-25

    Highlights: • Additional Cr modulation of atomic structure of Fe-Co-B-Si-Nb BMGs. • An amount of free volume characterized by a combination of nanoindentation and AFM. • Free volume determined by height measurement of AFM after nanoindentation. -- Abstract: In this work, we investigate the effect of Cr addition on thermal properties and indentation behavior of Fe{sub 52}Co{sub 20−x}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub x} alloys with x = 0, 1, 3 and 5 at.%, respectively. Among all studied alloys, the Fe{sub 52}Co{sub 17}B{sub 20}Si{sub 4}Nb{sub 4}Cr{sub 3} bulk metallic glass (BMG) exhibits the highest thermal stability with large supercooled liquid region of 40 K and the pronounced plastic deformation features which is serrated flow (pop-in event) and significant pile-up of materials around indents. This demonstrates that the appropriate addition of Cr in Fe-based BMG can induce the internal atomic structure modulation and promote the mechanical softening, which are discussed in terms of free volume concept.

  10. Plastic deformation behavior of Fe–Co–B–Si–Nb–Cr bulk metallic glasses under nanoindentation

    International Nuclear Information System (INIS)

    Kim, J.T.; Hong, S.H.; Lee, C.H.; Park, J.M.; Kim, T.W.; Lee, W.H.; Yim, H.I.; Kim, K.B.

    2014-01-01

    Highlights: • Additional Cr modulation of atomic structure of Fe-Co-B-Si-Nb BMGs. • An amount of free volume characterized by a combination of nanoindentation and AFM. • Free volume determined by height measurement of AFM after nanoindentation. -- Abstract: In this work, we investigate the effect of Cr addition on thermal properties and indentation behavior of Fe 52 Co 20−x B 20 Si 4 Nb 4 Cr x alloys with x = 0, 1, 3 and 5 at.%, respectively. Among all studied alloys, the Fe 52 Co 17 B 20 Si 4 Nb 4 Cr 3 bulk metallic glass (BMG) exhibits the highest thermal stability with large supercooled liquid region of 40 K and the pronounced plastic deformation features which is serrated flow (pop-in event) and significant pile-up of materials around indents. This demonstrates that the appropriate addition of Cr in Fe-based BMG can induce the internal atomic structure modulation and promote the mechanical softening, which are discussed in terms of free volume concept

  11. Filiform serrated adenomatous polyposis arising in a diverted rectum of an inflammatory bowel disease patient

    DEFF Research Database (Denmark)

    Klarskov, Louise; Mogensen, Anne Mellon; Jespersen, Niels

    2011-01-01

    Klarskov L, Mogensen AM, Jespersen N, Ingeholm P, Holck S. Filiform serrated adenomatous polyposis arising in a diverted rectum of an inflammatory bowel disease patient. APMIS 2011; 119: 393-8. A 54-year-old man, previously colectomized for inflammatory bowel disease, developed carcinoma in the i......Klarskov L, Mogensen AM, Jespersen N, Ingeholm P, Holck S. Filiform serrated adenomatous polyposis arising in a diverted rectum of an inflammatory bowel disease patient. APMIS 2011; 119: 393-8. A 54-year-old man, previously colectomized for inflammatory bowel disease, developed carcinoma...... during the adenoma carcinoma sequence included the acquisition of CK7 expression in the malignant portion. Gastric mucin may play a role in the initial step of the neoplastic evolution and CK7 may denote neoplastic progression. This case confirms the notion of a widely variegated morphology of precursor...

  12. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids

    International Nuclear Information System (INIS)

    Wang Weihua

    2011-01-01

    We study the similarity and correlations between relaxations and plastic deformation in metallic glasses (MGs) and MG-forming liquids. It is shown that the microscope plastic events, the initiation and formation of shear bands, and the mechanical yield in MGs where the atomic sites are topologically unstable induced by applied stress, can be treated as the glass to supercooled liquid state transition induced by external shear stress. On the other hand, the glass transition, the primary and secondary relaxations, plastic deformation and yield can be attributed to the free volume increase induced flow, and the flow can be modeled as the activated hopping between the inherent states in the potential energy landscape. We then propose an extended elastic model to describe the flow based on the energy landscape theory. That is, the flow activation energy density is linear proportional to the instantaneous elastic moduli, and the activation energy density ρ E is determined to be a simple expression of ρ E =(10/11)G+(1/11)K. The model indicates that both shear and bulk moduli are critical parameters accounting for both the homogeneous and inhomogeneous flows in MGs and MG-forming liquids. The elastic model is experimentally certified. We show that the elastic perspectives offers a simple scenario for the flow in MGs and MG-forming liquids and are suggestive for understanding the glass transition, plastic deformation, and nature and characteristics of MGs

  13. On hydrogen-induced plastic flow localization during void growth and coalescence

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, D.C.; Sofronis, P. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States); Dodds, R.H. Jr. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2007-11-15

    Hydrogen-enhanced localized plasticity (HELP) is recognized as a viable mechanism of hydrogen embrittlement. A possible way by which the HELP mechanism can bring about macroscopic material failure is through hydrogen-induced accelerated void growth and coalescence. Assuming a periodic array of spherical voids loaded axisymmetrically, we investigate the hydrogen effect on the occurrence of plastic flow localization upon void growth and its dependence on macroscopic stress triaxiality. Under a macroscopic stress triaxiality equal to 1 and prior to void coalescence, the finite element calculation results obtained with material data relevant to A533B steel indicate that a hydrogen-induced localized shear band forms at an angle of about 45 {sup circle} from the axis of symmetry. At triaxiality equal to 3, void coalescence takes place by accelerated hydrogen-induced localization of plasticity mainly in the ligament between the voids. Lastly, we discuss the numerical results within the context of experimental observations on void growth and coalescence in the presence of hydrogen. (author)

  14. Identification of risk factors for sessile and traditional serrated adenomas of the colon by using big data analysis.

    Science.gov (United States)

    Pyo, Jeung Hui; Ha, Sang Yun; Hong, Sung Noh; Chang, Dong Kyung; Son, Hee Jung; Kim, Kyoung-Mee; Kim, Hyeseung; Kim, Kyunga; Kim, Jee Eun; Choi, Yoon-Ho; Kim, Young-Ho

    2018-05-01

    Little is known about the risk factors associated with serrated polyps, because the early studies, which occurred before the new World Health Organization classification was introduced, included mixtures of serrated polyps. This study aimed to evaluate the risk factors associated with the presence of sessile serrated adenomas (SSAs) and traditional serrated adenomas (TSAs) using big data analytics. Using a case-control design, we evaluated the risk factors associated with the presence of SSAs and TSAs. Subjects who underwent colonoscopies from 2002 to 2012 as part of the comprehensive health screening programs undertaken at the Samsung Medical Center, Korea, participated in this study. Of the 48 677 individuals who underwent colonoscopies, 183 (0.4%) had SSAs and 212 (0.4%) had TSAs. The multivariate analysis determined that being aged ≥ 50 years (odds ratio [OR] 1.91, 95% confidential interval [CI] 1.27-2.90, P = 0.002) and a history of colorectal cancer among first-degree relatives (OR 3.14, 95% CI 1.57-6.27, P = 0.001) were significant risk factors associated with the presence of SSAs and that being aged ≥ 50 years (OR 2.61, 95% CI 1.79-3.80, P < 0.001), obesity (OR 1.63, 95% CI 1.12-2.36, P = 0.010), and a higher triglyceride level (OR 1.63, 95% CI 1.12-2.36, P = 0.010) were independent risk factors associated with the presence of TSAs. We used big data analytics to determine the risk factors associated with the presence of specific polyp subgroups, and individuals who have these risk factors should be carefully scrutinized for the presence of SSAs or TSAs during screening colonoscopies. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  15. Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo

    2014-03-01

    Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.

  16. Endoscopic detection rate of sessile serrated lesions in Lynch syndrome patients is comparable to an age- and gender-matched control population: case-control study with expert pathology review

    NARCIS (Netherlands)

    Vleugels, Jasper L. A.; Sahin, Husna; Hazewinkel, Yark; Koens, Lianne; van den Berg, Jose G.; van Leerdam, Monique E.; Dekker, Evelien

    2017-01-01

    Carcinogenesis in Lynch syndrome involves fast progression of adenomas to colorectal cancer (CRC) due to microsatellite instability. The role of sessile serrated lesions (SSLs) and the serrated neoplasia pathway in these patients is unknown. The aim of this matched case-control study was to compare

  17. Laser Shock Peening on Zr-based Bulk Metallic Glass and Its Effect on Plasticity: Experiment and Modeling

    Science.gov (United States)

    Cao, Yunfeng; Xie, Xie; Antonaglia, James; Winiarski, Bartlomiej; Wang, Gongyao; Shin, Yung C.; Withers, Philip J.; Dahmen, Karin A.; Liaw, Peter K.

    2015-05-01

    The Zr-based bulk metallic glasses (BMGs) are a new family of attractive materials with good glass-forming ability and excellent mechanical properties, such as high strength and good wear resistance, which make them candidates for structural and biomedical materials. Although the mechanical behavior of BMGs has been widely investigated, their deformation mechanisms are still poorly understood. In particular, their poor ductility significantly impedes their industrial application. In the present work, we show that the ductility of Zr-based BMGs with nearly zero plasticity is improved by a laser shock peening technique. Moreover, we map the distribution of laser-induced residual stresses via the micro-slot cutting method, and then predict them using a three-dimensional finite-element method coupled with a confined plasma model. Reasonable agreement is achieved between the experimental and modeling results. The analyses of serrated flows reveal plentiful and useful information of the underlying deformation process. Our work provides an easy and effective way to extend the ductility of intrinsically-brittle BMGs, opening up wider applications of these materials.

  18. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  19. Visco-Plastic Flow of Glacial Covers and the Laws of Ice Deformation,

    Science.gov (United States)

    The report presents the results of investigations which were made by the author during the Second Antartic Expedition (1956-1958). In the first part...plastic flow of glacial covers and a comparison of the analytic results which were obtained with data from observations under natural conditions in the Antartic . (Author)

  20. ANALYSIS OF DEPENDENCE OF THE FLOW TEMPERATURE OF THE PLASTICIZED POLYMER ON THE CHEMICAL STRUCTURE AND CONCENTRATION OF THE POLYMER AND THE PLASTICIZER

    Directory of Open Access Journals (Sweden)

    Askadskiy Andrey Aleksandrovich

    2012-10-01

    Full Text Available Polymeric materials are widely used in construction. The properties of polymeric construction materials vary to a substantial extent; their durability, thermal stability, frost resistance, waterproof and dielectric properties are particularly pronounced. Their properties serve as the drivers of the high market demand for these products. These materials are applied as finishing materials, molded sanitary engineering products and effective thermal insulation and water proofing materials. The authors analyze the influence of the chemical structure and structural features of polymers on their properties. The authors consider flow and vitrification temperatures of polymers. These temperatures determine the parameters of polymeric products, including those important for the construction process. The analysis of influence of concentration of the plasticizer on the vitrification temperature is based on the two basic theories. In accordance with the first one, reduction of the vitrification temperature is proportionate to the molar fraction of the injected plasticizer. According to the second concept, reduction of the vitrification temperature is proportionate to the volume fraction of the injected solvent. Dependencies of the flow temperature on the molecular weight and the molar fraction of the plasticizer are derived for PVC. As an example, two plasticizers were considered, including dibutyl sebacate and dioctylftalatalate. The basic parameters of all mixtures were calculated through the employment of "Cascade" software programme (A.N. Nesmeyanov Institute of Organoelemental Connections, Russian Academy of Sciences.

  1. A Conservative Formulation for Plasticity

    Science.gov (United States)

    1992-01-01

    concepts that apply to a broad class of macroscopic models: plastic deformation and plastic flow rule. CONSERVATIVE PLASTICITY 469 3a. Plastic Defrrnation...temperature. We illustrate these concepts with a model that has been used to describe high strain-rate plastic flow in metals [11, 31, 32]. In the case...JOURDREN, AND P. VEYSSEYRE. Un Modele ttyperelastique- Plastique Euldrien Applicable aux Grandes Dtformations: Que/ques R~sultats 1-D. preprint, 1991. 2. P

  2. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  3. Stopping times in cessation flows of Bingham plastics with slip at the wall

    Science.gov (United States)

    Philippou, Maria; Damianou, Yiolanda; Kaoullas, George; Georgiou, Georgios C.

    2012-09-01

    We solve numerically the cessation of axisymmetric Poiseuille flow of a Bingham plastic assuming that slip occurs along the wall. A power-law expression is used to relate the wall shear stress to the slip velocity. The numerical results show that the velocity becomes and remains uniform before complete cessation and that the stopping time is finite only when the exponent sBingham number and the volumetric flow rate decays exponentially. When s>1, the decay is much slower, i.e. polynomial. The asymptotic expressions for the volumetric flow rate in the case of full-slip are also derived.

  4. Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses

    International Nuclear Information System (INIS)

    Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.

    1998-01-01

    The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent

  5. Distinct features between MLH1-methylated and unmethylated colorectal carcinomas with the CpG island methylator phenotype: implications in the serrated neoplasia pathway.

    Science.gov (United States)

    Kim, Jung Ho; Bae, Jeong Mo; Cho, Nam-Yun; Kang, Gyeong Hoon

    2016-03-22

    The presence or absence of MLH1 methylation may critically affect the heterogeneity of colorectal carcinoma (CRC) with the CpG island methylator phenotype (CIMP). Here, we investigated the differential characteristics of CIMP-high (CIMP-H) CRCs according to MLH1 methylation status. To further confirm the MLH1-dependent features in CIMP-H CRC, an independent analysis was performed using data from The Cancer Genome Atlas (TCGA). In our CIMP-H CRC samples, MLH1-methylated tumors were characterized by older patient age, proximal colonic location, mucinous histology, intense lymphoid reactions, RUNX3/SOCS1 promoter methylation, BRAF mutations, and microsatellite instability-high (MSI-H) status. By contrast, MLH1-unmethylated tumors were associated with earlier age of onset, increased distal colorectal localization, adverse pathologic features, and KRAS mutations. In the TCGA dataset, the MLH1-silenced CIMP-H CRC demonstrated proximal location, MSI-H status, hypermutated phenotype, and frequent BRAF mutations, but the MLH1-non-silenced CIMP-H CRC was significantly associated with high frequencies of KRAS and APC mutations. In conclusion, the differential nature of CIMP-H CRCs depends primarily on the MLH1 methylation status. Based on the current knowledge, the sessile serrated adenoma/polyp may be the major precursor of MLH1-methylated CIMP-H CRCs, whereas MLH1-unmethylated CIMP-H CRCs may develop predominantly from KRAS-mutated traditional serrated adenomas and less commonly from BRAF-mutated traditional serrated adenomas and/or sessile serrated adenomas/polyps.

  6. Acoustic heating produced in the thermoviscous flow of a Bingham plastic

    Science.gov (United States)

    Perelomova, Anna

    2011-02-01

    This study is devoted to the instantaneous acoustic heating of a Bingham plastic. The model of the Bingham plastic's viscous stress tensor includes the yield stress along with the shear viscosity, which differentiates a Bingham plastic from a viscous Newtonian fluid. A special linear combination of the conservation equations in differential form makes it possible to reduce all acoustic terms in the linear part of of the final equation governing acoustic heating, and to retain those belonging to the thermal mode. The nonlinear terms of the final equation are a result of interaction between sounds and the thermal mode. In the field of intense sound, the resulting nonlinear acoustic terms form a driving force for the heating. The final governing dynamic equation of the thermal mode is valid in a weakly nonlinear flow. It is instantaneous, and does not imply that sounds be periodic. The equations governing the dynamics of both sounds and the thermal mode depend on sign of the shear rate. An example of the propagation of a bipolar initially acoustic pulse and the evolution of the heating induced by it is illustrated and discussed.

  7. Assessment of finite element and smoothed particles hydrodynamics methods for modeling serrated chip formation in hardened steel

    Directory of Open Access Journals (Sweden)

    Usama Umer

    2016-05-01

    Full Text Available This study aims to perform comparative analyses in modeling serrated chip morphologies using traditional finite element and smoothed particles hydrodynamics methods. Although finite element models are being employed in predicting machining performance variables for the last two decades, many drawbacks and limitations exist with the current finite element models. The problems like excessive mesh distortions, high numerical cost of adaptive meshing techniques, and need of geometric chip separation criteria hinder its practical implementation in metal cutting industries. In this study, a mesh free method, namely, smoothed particles hydrodynamics, is implemented for modeling serrated chip morphology while machining AISI H13 hardened tool steel. The smoothed particles hydrodynamics models are compared with the traditional finite element models, and it has been found that the smoothed particles hydrodynamics models have good capabilities in handling large distortions and do not need any geometric or mesh-based chip separation criterion.

  8. A perturbation model for the oscillatory flow of a Bingham plastic in rigid and periodically displaced tubes.

    Science.gov (United States)

    De Chant, L J

    1999-10-01

    An approximate analytical model for the pulsatile flow of an ideal Bingham plastic fluid in both a rigid and a periodically displaced tube has been developed using regular perturbation methods. Relationships are derived for the velocity field and dimensionless flow rate. The solution compares adequately with available experimentally measured oscillatory non-Newtonian fluid flow data. These solutions provide useful analytical models supporting experimental and computation studies of arterial blood flow.

  9. Simulations of dislocations dynamics at a mesoscopic scale: a study of plastic flow

    International Nuclear Information System (INIS)

    Devincre, Benoit

    1993-01-01

    This work is concerned with the numerical modelling of the plastic flow of crystalline materials. A new simulation technique is proposed to simulate dislocation dynamics in two and three dimensions, in an isotropic elastic continuum. The space and time scales used (≅10 -6 m and 10 -9 s) allow to take into account the elementary properties of dislocations, their short and long range interactions, their collective properties as well as the slip geometry. This original method is able to reproduce the inherent heterogeneity of plastic flow, the self-organization properties of the dislocation microstructures and the corresponding mechanical properties. In two dimensions, the simulations of cyclic deformation lead to the formation of periodic arrays of dipolar dislocation walls. These configurations are examined and discussed. A phenomenological model is proposed which predicts their characteristic wavelength as a function of the applied stress and dislocation density. A striking resemblance between the simulated behaviour and experimental data is emphasized. In three dimensions, the simulations are more realistic and can directly be compared with the experimental data. They are, however, restricted to small plastic strains, of the order of 10 -3 . The properties examined and discussed are concerned with the forest model, the internal stress, which is shown to contribute to about 20 pc of the flow stress and the mechanisms of strain hardening in relation with the models of Friedel-Saada and Kocks. The investigation of the dislocation microstructures focusses on two essential ingredients for the occurrence of self-organization, the internal stress and the intersections of non coplanar dislocations. These results suggest that, to understand the strain hardening properties as well as the formation of dislocation cells during multiple slip, one must take into account the influence of local internal stresses and cross-slip on the mechanisms of areal glide. (author) [fr

  10. Design and simulation of Macro-Fiber composite based serrated microflap for wind turbine blade fatigue load reduction

    Science.gov (United States)

    Sun, Xiao; Dai, Qingli; Bilgen, Onur

    2018-05-01

    A Macro-Fiber Composite (MFC) based active serrated microflap is designed in this research for wind turbine blades. Its fatigue load reduction potential is evaluated in normal operating conditions. The force and displacement output of the MFC-based actuator are simulated using a bimorph beam model. The work done by the aerodynamic, centripetal and gravitational forces acting on the microflap were calculated to determine the required capacity of the MFC-based actuator. MFC-based actuators with a lever mechanical linkage are designed to achieve the required force and displacement to activate the microflap. A feedback control scheme is designed to control the microflap during operation. Through an aerodynamic-aeroelastic time marching simulation with the designed control scheme, the time responses of the wind turbine blades are obtained. The fatigue analysis shows that the serrated microflap can reduce the standard deviation of the blade root flapwise bending moment and the fatigue damage equivalent loads.

  11. [Serrated polyps and their association with synchronous advanced colorectal neoplasia].

    Science.gov (United States)

    Urman, Jesús; Gomez, Marta; Basterra, Marta; Mercado, María Del Rosario; Montes, Marta; Gómez Dorronsoro, Marisa; Garaigorta, Maitane; Fraile, María; Rubio, Eva; Aisa, Gregorio; Galbete, Arkaitz

    2016-11-01

    Large serrated polyps (SP), proximal SP, SP with dysplasia and the presence of multiple sessile serrated adenomas/polyps (SSA/P), which we refer to as SP with increased risk of metachronous lesions (SPIRML), have been associated with an increased risk of advanced colon lesions on follow-up. It is unclear, however, whether SPIRML are also associated with an increased risk of synchronous advanced colorectal neoplasia (ACN). The aim of this study was to estimate the prevalence of SPIRML and to evaluate the association between SPIRML and synchronous ACN. A cross-sectional population-based study in all patients (1,538) with histological diagnosis of SP obtained from colonoscopies, sigmoidoscopies and colonic surgery performed in Navarra Health Service hospitals (Spain) in 2011. Demographic parameters and synchronous colonic lesions (adenomas, advanced adenomas [AA] and ACN) were analyzed. One fourth of the sample (384 patients) presented SPIRML. These were older patients, with a slight predominance of women, and with no differences in body mass index (BMI) compared to patients without SPIRML. In the univariate analysis, patients with SPIRML showed an increased risk of adenoma, AA and ACN. In the multivariate analysis, the SPIRML group had a higher risk of synchronous AA and ACN (odds ratio [OR]: 2.38 [1.77-3.21] and OR: 2.29 [1.72-3.05], respectively); in the case of ACN, this risk was statistically significant in both locations (proximal or distal), with OR slightly higher for the proximal location. Different subtypes of SPIRML had a higher risk of AA and synchronous NA. SPIRML were common in patients with SP, and their presence was associated with an increased risk of synchronous ACN. Copyright © 2016 Elsevier España, S.L.U. y AEEH y AEG. All rights reserved.

  12. Physiological Plasticity to Water Flow Habitat in the Damselfish, Acanthochromis polyacanthus: Linking Phenotype to Performance

    Science.gov (United States)

    Binning, Sandra A.; Ros, Albert F. H.; Nusbaumer, David; Roche, Dominique G.

    2015-01-01

    The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology. PMID:25807560

  13. Numerical analysis on interactions between fluid flow and structure deformation in plate-fin heat exchanger by Galerkin method

    Science.gov (United States)

    Liu, Jing-cheng; Wei, Xiu-ting; Zhou, Zhi-yong; Wei, Zhen-wen

    2018-03-01

    The fluid-structure interaction performance of plate-fin heat exchanger (PFHE) with serrated fins in large scale air-separation equipment was investigated in this paper. The stress and deformation of fins were analyzed, besides, the interaction equations were deduced by Galerkin method. The governing equations of fluid flow and heat transfer in PFHE were deduced by finite volume method (FVM). The distribution of strain and stress were calculated in large scale air separation equipment and the coupling situation of serrated fins under laminar situation was analyzed. The results indicated that the interactions between fins and fluid flow in the exchanger have significant impacts on heat transfer enhancement, meanwhile, the strain and stress of fins includes dynamic pressure of the sealing head and flow impact with the increase of flow velocity. The impacts are especially significant at the conjunction of two fins because of the non-alignment fins. It can be concluded that the soldering process and channel width led to structure deformation of fins in the exchanger, and degraded heat transfer efficiency.

  14. A CpG island methylator phenotype of colorectal cancer that is contiguous with conventional adenomas, but not serrated polyps.

    Science.gov (United States)

    Hokazono, Koji; Ueki, Takashi; Nagayoshi, Kinuko; Nishioka, Yasunobu; Hatae, Tatsunobu; Koga, Yutaka; Hirahashi, Minako; Oda, Yoshinao; Tanaka, Masao

    2014-11-01

    A subset of colorectal cancers (CRCs) harbor the CpG island methylator phenotype (CIMP), with concurrent multiple promoter hypermethylation of tumor-related genes. A serrated pathway in which CIMP is developed from serrated polyps is proposed. The present study characterized CIMP and morphologically examined precursor lesions of CIMP. In total, 104 CRCs treated between January 1996 and December 2004 were examined. Aberrant promoter methylation of 15 cancer-related genes was analyzed. CIMP status was classified according to the number of methylated genes and was correlated with the clinicopathological features, including the concomitant polyps in and around the tumors. The frequency of aberrant methylation in each CRC showed a bimodal pattern, and the CRCs were classified as CIMP-high (CIMP-H), CIMP-low (CIMP-L) and CIMP-negative (CIMP-N). CIMP-H was associated with aberrant methylation of MLH1 (P=0.005) and with an improved recurrence-free survival (RFS) rate following curative resection compared with CIMP-L/N (five-year RFS rate, 93.8 vs. 67.1%; P=0.044), while CIMP-N tumors were associated with frequent distant metastases at diagnosis (P=0.023). No concomitant serrated lesions were present in the tumors, whereas conventional adenoma was contiguous with 11 (10.6%) of 104 CRCs, including four CIMP-H CRCs. CIMP-H was classified in CRCs by a novel CIMP marker panel and the presence of concomitant tumors revealed that certain CIMP-H CRCs may have arisen from conventional adenomas.

  15. Split-Ring Springback Simulations with the Non-associated Flow Rule and Evolutionary Elastic-Plasticity Models

    Science.gov (United States)

    Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.

    2018-06-01

    Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.

  16. Investigation of Mechanical Properties and Plastic Deformation Behavior of (Ti45Cu40Zr10Ni5100−xAlx Metallic Glasses by Nanoindentation

    Directory of Open Access Journals (Sweden)

    Lanping Huang

    2014-01-01

    Full Text Available The effect of Al addition on mechanical properties and plastic deformation behavior of (Ti45Cu40Zr10Ni5100−xAlx (x = 0, 2, 4, 6 and 8 amorphous alloy ribbons have been investigated by nanoindentation. The hardness and elastic modulus do not simply increase with the increase of Al content. The alloy with 8 at.% Al exhibits the highest hardness and elastic modulus. The serrations or pop-in events are strongly dependent on the loading rate and alloy composition.

  17. Analytical method for predicting plastic flow in notched fiber composite materials

    International Nuclear Information System (INIS)

    Flynn, P.L.; Ebert, L.J.

    1977-01-01

    An analytical system was developed for prediction of the onset and progress of plastic flow of oriented fiber composite materials in which both externally applied complex stress states and stress raisers were present. The predictive system was a unique combination of two numerical systems, the ''SAAS II'' finite element analysis system and a micromechanics finite element program. The SAAS II system was used to generate the three-dimensional stress distributions, which were used as the input into the finite element micromechanics program. Appropriate yielding criteria were then applied to this latter program. The accuracy of the analytical system was demonstrated by the agreement between the analytically predicted and the experimentally measured flow values of externally notched tungsten wire reinforced copper oriented fiber composites, in which the fiber fraction was 50 vol pct

  18. Research on geometrical model and mechanism for metal deformation based on plastic flow

    International Nuclear Information System (INIS)

    An, H P; Li, X; Rui, Z Y

    2015-01-01

    Starting with general conditions of metal plastic deformation, it analyses the relation between the percentage spread and geometric parameters of a forming body with typical machining process are studied. A geometrical model of deforming metal is set up according to the characteristic of a flowing metal particle. Starting from experimental results, the effect of technological parameters and friction between workpiece and dies on plastic deformation of a material were studied and a slippage deformation model of mass points within the material was proposed. Finally, the computing methods for strain and deformation energy and temperature rise are derived from homogeneous deformation. The results can be used to select technical parameters and compute physical quantities such as strain, deformation energy, and temperature rise. (paper)

  19. On the theory of critical currents and flux flow in superconductors by the mechanism of plastic deformation of the flux-line lattice

    International Nuclear Information System (INIS)

    Welch, D.O.

    1999-01-01

    In this paper the author will discuss how the nature of the stress state in the flux-line lattice (FLL) of superconductors arises from the distribution, density, geometry, and strength of pinning centers. Under certain conditions this stress causes the onset of plastic deformation in the FLL for values of the current density below that required for flux-flow by general depinning. He will describe an analytic framework, based on a theory of plasticity of the FLL, which describes the flux-flow characteristics, including the possibility of thermally-activated flow and flux creep

  20. Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model

    Directory of Open Access Journals (Sweden)

    Song-Gui Chen

    2016-01-01

    Full Text Available This paper presents a three-dimensional (3D parallel multiple-relaxation-time lattice Boltzmann model (MRT-LBM for Bingham plastics which overcomes numerical instabilities in the simulation of non-Newtonian fluids for the Bhatnagar–Gross–Krook (BGK model. The MRT-LBM and several related mathematical models are briefly described. Papanastasiou’s modified model is incorporated for better numerical stability. The impact of the relaxation parameters of the model is studied in detail. The MRT-LBM is then validated through a benchmark problem: a 3D steady Poiseuille flow. The results from the numerical simulations are consistent with those derived analytically which indicates that the MRT-LBM effectively simulates Bingham fluids but with better stability. A parallel MRT-LBM framework is introduced, and the parallel efficiency is tested through a simple case. The MRT-LBM is shown to be appropriate for parallel implementation and to have high efficiency. Finally, a Bingham fluid flowing past a square-based prism with a fixed sphere is simulated. It is found the drag coefficient is a function of both Reynolds number (Re and Bingham number (Bn. These results reveal the flow behavior of Bingham plastics.

  1. Optimization of mass of plastic scintillator film for flow-cell based tritium monitoring: a Monte Carlo study

    International Nuclear Information System (INIS)

    Roy, Arup Singha; Palani Selvam, T.; Raman, Anand; Raja, V.; Chaudhury, Probal

    2014-01-01

    Over the years, various types of tritium-in-air monitors have been designed and developed based on different principles. Ionization chamber, proportional counter and scintillation detector systems are few among them. A plastic scintillator based, flow-cell type online tritium-in-air monitoring system was developed for online monitoring of tritium in air. The value of the scintillator mass inside the cell-volume, which maximizes the response of the detector system, should be obtained to get maximum efficiency. The present study is aimed to optimize the amount of mass of the plastic scintillator film for the flow-cell based tritium monitoring instrument so that maximum efficiency is achieved. The Monte Carlo based EGSnrc code system has been used for this purpose

  2. A novel serrated columnar phased array ultrasonic transducer

    Science.gov (United States)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  3. HIGLE is a bifunctional homing endonuclease that directly interacts with HYL1 and SERRATE in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Cho, Seok Keun; Ryu, Moon Young; Poulsen, Christian

    2017-01-01

    A highly coordinated complex known as the microprocessor precisely processes primary transcripts of MIRNA genes into mature miRNAs. In plants, the microprocessor minimally consists of three components: Dicer-like protein 1 (DCL1), HYPONASTIC LEAF 1 (HYL1), and SERRATE (SE). To precisely modulate ...

  4. Morphology Dependent Flow Stress in Nickel-Based Superalloys in the Multi-Scale Crystal Plasticity Framework

    Directory of Open Access Journals (Sweden)

    Shahriyar Keshavarz

    2017-11-01

    Full Text Available This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ’ morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ’ morphology in the design scope that has been adopted for the model developed by authors. In general, the two-phase γ-γ’ morphology in nickel-based superalloys can be divided into three variables including γ’ shape, γ’ volume fraction and γ’ size in the sub-grain microstructure. In order to obtain the flow stress, non-Schmid crystal plasticity constitutive models at two length scales are employed and bridged through a homogenized multi-scale framework. The multi-scale framework includes two sub-grain and homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based finite element model (FEM of the representative volume element (RVE with explicit depiction of the γ-γ’ morphology is developed as a building block for the homogenization. For the next scale, an activation-energy-based crystal plasticity model is developed for the homogenized single crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior of nickel-based superalloys for a large temperature range and include orientation dependencies and tension-compression asymmetry. This homogenized model is used to obtain the morphology dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order to cast and design superalloys.

  5. Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses

    International Nuclear Information System (INIS)

    Jiang, W.H.; Liu, F.X.; Wang, Y.D.; Zhang, H.F.; Choo, H.; Liaw, P.K.

    2006-01-01

    As-cast bulk and as-spun ribbon Cu 60 Zr 30 Ti 10 metallic glasses were characterized using differential-scanning calorimetry and instrumented nanoindentation. Two alloys show a significant difference in the amount of free volume, which is attributed to the difference in a cooling rate, while exhibiting a similar serrated plastic flow. Atomic-force-microscopy observations demonstrate the pile-ups containing shear bands around the indents in both alloys. The as-cast bulk alloy has higher hardness and elastic modulus than the as-spun ribbon alloy. The difference in the strengths of two alloys may be related to the different amount of free volume. The strength seems to be more sensitive to a cooling rate during solidification than the plastic-flow behavior in the Cu 60 Zr 30 Ti 10

  6. Dislocation mechanisms for plastic flow of nickel in the temperature range 4.2-1200K

    International Nuclear Information System (INIS)

    Sastry, D.H.; Tangri, K.

    1975-01-01

    The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow. In the low-temperature thermally activated region (<250K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (<750K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell-Stokes law is obeyed over large strains in the range 750-1200K. (author)

  7. Limit analysis of narrow support elements in W7-X considering the serration effect of the stress-strain relation at 4 K

    International Nuclear Information System (INIS)

    Briani, E.; Gianini, C.; Lucca, F.; Marin, A.; Fellinger, J.; Bykov, V.

    2011-01-01

    The magnet support system of the Wendelstein 7-X (W7-X) fusion stellarator includes challenging components, called Narrow Support Elements (NSEs), placed between the Non Planar Coils (NPCs) at the inboard side and aimed at reducing deformation of the coils. NSEs are small contact elements, with special coating to reduce friction, that have to withstand high compressive and shear forces. The objective of this article is to demonstrate the structural reliability of the NSEs under electromagnetic loading (EML), taking into account in a conservative way the relevant material properties at cryogenic temperatures. To this purpose, an appropriate parametric local Finite Element (FE) model of one highly loaded NSE with its components (pad, pad frame and counter pad) and of a portion of the coils has been developed with ABAQUS code and isotropic elastic-plastic material model with hardening/softening has been used, in order to include the serration effect at 4 K. Different mechanical limit analyses have been performed including consecutive steps of shrink fitting the NSEs in the coils, cooling down to 4 K and gradual increasing of the coil displacements induced by the EML.

  8. Limit analysis of narrow support elements in W7-X considering the serration effect of the stress-strain relation at 4 K

    Energy Technology Data Exchange (ETDEWEB)

    Briani, E., E-mail: erica.briani@ltcalcoli.it [L.T.Calcoli SaS, Piazza Prinetti 26/B, 23807, Merate (Saint Lucia) (Italy); Gianini, C.; Lucca, F.; Marin, A. [L.T.Calcoli SaS, Piazza Prinetti 26/B, 23807, Merate (Saint Lucia) (Italy); Fellinger, J.; Bykov, V. [MPI fur Plasmaphysik (IPP) Wendelsteinstrasse I, D-17491 Greifswald (Germany)

    2011-10-15

    The magnet support system of the Wendelstein 7-X (W7-X) fusion stellarator includes challenging components, called Narrow Support Elements (NSEs), placed between the Non Planar Coils (NPCs) at the inboard side and aimed at reducing deformation of the coils. NSEs are small contact elements, with special coating to reduce friction, that have to withstand high compressive and shear forces. The objective of this article is to demonstrate the structural reliability of the NSEs under electromagnetic loading (EML), taking into account in a conservative way the relevant material properties at cryogenic temperatures. To this purpose, an appropriate parametric local Finite Element (FE) model of one highly loaded NSE with its components (pad, pad frame and counter pad) and of a portion of the coils has been developed with ABAQUS code and isotropic elastic-plastic material model with hardening/softening has been used, in order to include the serration effect at 4 K. Different mechanical limit analyses have been performed including consecutive steps of shrink fitting the NSEs in the coils, cooling down to 4 K and gradual increasing of the coil displacements induced by the EML.

  9. A Coupled Plastic Damage Model for Concrete considering the Effect of Damage on Plastic Flow

    OpenAIRE

    Zhou, Feng; Cheng, Guangxu

    2015-01-01

    A coupled plastic damage model with two damage scalars is proposed to describe the nonlinear features of concrete. The constitutive formulations are developed by assuming that damage can be represented effectively in the material compliance tensor. Damage evolution law and plastic damage coupling are described using the framework of irreversible thermodynamics. The plasticity part is developed without using the effective stress concept. A plastic yield function based on the true stress is ado...

  10. Plastic deformation of solids viewed as a self-excited wave process

    International Nuclear Information System (INIS)

    Zuev, L.B.; Danilov, V.I.

    1998-01-01

    A self-excited wave model of plastic flow in crystalline solids is proposed. Experimental data on plastic flow in single crystals and polycrystalline solids involving different mechanisms have been correlated. The main types of strain localization in the materials investigated have been established and correlated with the respective stages of plastic flow curves. The best observing conditions have been defined for the major types of autowaves emerging by plastic deformation. The synergetic concepts of self-organization are shown to apply to description of plastic deformation. Suggested is a self-excited wave model of plastic flow in materials with different mechanisms of deformation. (orig.)

  11. The clinical significance and synchronous polyp burden of large (≥ 20 mm) sessile serrated polyps in patients without serrated polyposis syndrome.

    Science.gov (United States)

    Desomer, Lobke; Tate, David J; Jayanna, Mahesh; Pellise, Maria; Awadie, Halim; Burgess, Nicholas G; McLeod, Duncan; Mahajan, Hema; Lee, Eric Y T; Williams, Stephen J; Bourke, Michael J

    2018-05-08

     Sessile serrated polyps (SSPs) are important precursors of colorectal carcinoma and interval cancer. Large SSPs (≥ 20 mm) outside the definition of serrated polyposis syndrome (SPS) have not been studied in comparison with SPS. We aimed to describe the characteristics of patients with large SSPs in this context.  Patients with at least one SSP (≥ 20 mm) were eligible. Data from three consecutive colonoscopies were used to compare clinical and endoscopic characteristics in three patient groups: SPS, a solitary large SSP, and patients with at least two SSPs without fulfilling the criteria for SPS (oligo-SSP). Data on the diagnostic colonoscopy were collected retrospectively, whereas the remaining data was collected prospectively.  67/146 patients (45.9 %) had SPS, 53/146 (36.3 %) had a solitary SSP, and 26/146 (17.8 %) were categorized as oligo-SSP. Personal (16.4 %, 9.4 %, and 11.5 %, respectively) and family (17.9 %, 17.0 %, and 23.1 %, respectively) history of colorectal carcinoma did not differ significantly between groups. Polyp burden was greater in SPS compared with solitary SSP but was not different from oligo-SSP (advanced adenomas: SPS 32.8 % vs. solitary SSP 9.4 % [ P  = 0.002] vs. oligo-SSP 34.6 % [ P  = 0.87]; ≥ 10 conventional adenomas: 11.9 % vs. 0 % [ P  = 0.01] vs. 3.8 % [ P  = 0.44], respectively). Dysplasia in large SSPs was frequent in all groups (41.1 % overall). SPS was recognized by referring endoscopists in only 9.0 % of cases.  Patients with oligo-SSPs have similar synchronous polyp burden and clinical characteristics as patients with SPS and may require similar surveillance. Modification of the criteria for the diagnosis of SPS to include this group seems warranted. Patients with a solitary SSP have a lower risk of synchronous polyps, including advanced adenomas. Larger studies are warranted to determine whether these patients may return to standard surveillance

  12. A Serrate-Notch-Canoe complex mediates essential interactions between glia and neuroepithelial cells during Drosophila optic lobe development

    Czech Academy of Sciences Publication Activity Database

    Pérez-Gómez, R.; Slováková, J.; Rives-Quinto, N.; Krejčí, Alena; Carmena, A.

    2013-01-01

    Roč. 126, č. 21 (2013), s. 4873-4884 ISSN 0021-9533 Grant - others:Spanish Government(ES) BFU2009-08833; Spanish Government(ES) BFU2012-33020; Spanish Government(ES) CSD2007-00023 Institutional support: RVO:60077344 Keywords : glia * Serrate- Notch signaling * optic lobe Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.325, year: 2013

  13. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    Science.gov (United States)

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  14. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient...... plasticity. The problems are the tangential and normal loading of a finite rectangular block of material bonded to rigid platens and having traction-free ends, and the normal loading of a half-space by a flat, rigid punch. The solutions illustrate fundamental features of plasticity at the micron scale...... that are not captured by conventional plasticity theory. These include the role of material length parameters in establishing the size dependence of strength and the elevation of resistance to plastic flow resulting from constraint on plastic flow at boundaries. Details of the finite element method employed...

  15. Phenomenology of the plastic flow of amorphous solids induced by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Klaumuenzer, S.; Benyagoub, A.

    1991-01-01

    Amorphous solids exhibit at temperatures far below the glass transition plastic flow when bombarded with fast heavy ions (kinetic energy ∼1 MeV/u). The dimensions perpendicular to the ion beam grow whereas the sample dimension parallel to the ion beam shrinks. The strain tensor describing phenomenologically these dimensional changes is derived from symmetry considerations and compared with experiment. Particular attention is devoted to angular changes, which have not been discussed in this context so far

  16. Effect of T-stress on the cleavage crack growth resistance resulting from plastic flow

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1998-01-01

    Crack growth is studied numerically for cases where fracture occurs by atomic separation, sc that the length scale of the fracture process is typically much smaller than the dislocation spacing. Thus, the crack growth mechanism is brittle, but due to plastic flow at some distance from the crack tip......, the materials show crack growth resistance. It is shown here that the resistance is strongly dependent on the value of the non-singular T-stress, acting parallel to the crack plane. The numerical technique employed makes use of a thin dislocation-free strip of elastic material inside which the crack propagates......, with the material outside described by continuum plasticity. Thus the width of the strip is a material length scale comparable to the dislocation spacing or the dislocation cell size....

  17. Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method

    OpenAIRE

    Syrakos, Alexandros; Georgiou, Georgios C.; Alexandrou, Andreas N.

    2016-01-01

    We investigate the performance of the finite volume method in solving viscoplastic flows. The creeping square lid-driven cavity flow of a Bingham plastic is chosen as the test case and the constitutive equation is regularised as proposed by Papanastasiou [J. Rheol. 31 (1987) 385-404]. It is shown that the convergence rate of the standard SIMPLE pressure-correction algorithm, which is used to solve the algebraic equation system that is produced by the finite volume discretisation, severely det...

  18. Long-Term Impact of the Dutch Colorectal Cancer Screening Program on Cancer Incidence and Mortality-Model-Based Exploration of the Serrated Pathway

    NARCIS (Netherlands)

    Greuter, Marjolein J. E.; Demirel, Erhan; Lew, Jie-Bin; Berkhof, Johannes; Xu, Xiang-Ming; Canfell, Karen; Dekker, Evelien; Meijer, Gerrit A.; Coupé, Veerle M. H.

    2016-01-01

    We aimed to predict the long-term colorectal cancer incidence, mortality, and colonoscopy demand of the recently implemented Dutch colorectal cancer screening program. The Adenoma and Serrated pathway to Colorectal Cancer model was set up to simulate the Dutch screening program consisting of

  19. AC loss characteristics of Bi2223/Ag sheathed tape wires subjected to mechanical strains and stresses

    International Nuclear Information System (INIS)

    Tsukamoto, Osami; Li, Z

    2007-01-01

    The influence of uniaxial tensile stress-strain on the AC loss characteristics of multifilamentary Bi2223/Ag sheathed tape wires was investigated. The uniaxial tensile stress-strain was applied to the sample wire in liquid nitrogen at atmospheric pressure, and the AC losses (transport, magnetization and total losses) were measured by an electric method. Two kinds of wire, oxide-dispersion strengthened Ag-alloy sheathed and Ag-alloy sheathed wires, were tested. The stress-strain curves of the tested wires were divided in three regions, i.e. elastic deformation, continuous plastic deformation and serrated-like plastic deformation regions, though the ranges of those regions were different for different kinds of wire. In the elastic and continuous plastic regions, the stress-strain curve was smooth and continuous, and in the serrated-like plastic region, the curve was rough. In the serrated-like plastic region, the wires kept elongating, while increase of the tensile stress was suspended. Dependences of the critical currents on the stress-strain were generally as follows. While decreases of the wire critical currents were in the range of less than 4% of the original values of the no-stress condition, the critical currents of the wires were reversible, that is, the critical currents recovered the original values at zero stress when the stress were released, regardless of whether the wires were in the elastic or continuous plastic region. In the continuous plastic region, the critical currents decreased up to 10%-15% of the original values and the critical currents were irreversible when the degradations of the critical currents exceeded about 4%. In the serrated-like plastic regions, the critical currents were more severely degraded. The AC loss characteristics of the wires are different in those regions. In the elastic and continuous plastic regions, the absolute values of AC losses were dependent on the stress-strain. However, the dependences of those normalized

  20. Combined model of strain-induced phase transformation and orthotropic damage in ductile materials at cryogenic temperatures

    CERN Document Server

    Garion, Cedric

    2003-01-01

    Ductile materials (like stainless steel or copper) show at cryogenic temperatures three principal phenomena: serrated yielding (discontinuous in terms of dsigma/depsilon), plastic strain-induced phase transformations and evolution of ductile damage. The present paper deals exclusively with the two latter cases. Thus, it is assumed that the plastic flow is perfectly smooth. Both in the case of damage evolution and for the gamma-alpha prime phase transformation, the principal mechanism is related to the formation of plastic strain fields. In the constitutive modeling of both phenomena, a crucial role is played by the accumulated plastic strain, expressed by the Odqvist parameter p. Following the general trends, both in the literature concerning the phase transformation and the ductile damage, it is assumed that the rate of transformation and the rate of damage are proportional to the accumulated plastic strain rate. The gamma-alpha prime phase transformation converts the initially homogenous material to a two-p...

  1. A Finite Strain Model of Stress, Diffusion, Plastic Flow and Electrochemical Reactions in a Lithium-ion Half-cell

    OpenAIRE

    Bower, Allan F.; Guduru, Pradeep R.; Sethuraman, Vijay A.

    2011-01-01

    We formulate the continuum field equations and constitutive equations that govern deformation, stress, and electric current flow in a Li-ion half-cell. The model considers mass transport through the system, deformation and stress in the anode and cathode, electrostatic fields, as well as the electrochemical reactions at the electrode/electrolyte interfaces. It extends existing analyses by accounting for the effects of finite strains and plastic flow in the electrodes, and by exploring in deta...

  2. A Study on Compressive Anisotropy and Nonassociated Flow Plasticity of the AZ31 Magnesium Alloy in Hot Rolling

    Directory of Open Access Journals (Sweden)

    Guoqiang Wang

    2014-01-01

    Full Text Available Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR. The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

  3. BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: Primary or secondary genetic events in colorectal carcinogenesis?

    Directory of Open Access Journals (Sweden)

    Schmitt Fernando

    2008-09-01

    Full Text Available Abstract Background BRAF, KRAS and PIK3CA mutations are frequently found in sporadic colorectal cancer (CRC. In contrast to KRAS and PIK3CA mutations, BRAF mutations are associated with tumours harbouring CpG Island methylation phenotype (CIMP, MLH1 methylation and microsatellite instability (MSI. We aimed at determine the frequency of KRAS, BRAF and PIK3CA mutations in the process of colorectal tumourigenesis using a series of colorectal polyps and carcinomas. In the series of polyps CIMP, MLH1 methylation and MSI were also studied. Methods Mutation analyses were performed by PCR/sequencing. Bisulfite treated DNA was used to study CIMP and MLH1 methylation. MSI was detected by pentaplex PCR and Genescan analysis of quasimonomorphic mononucleotide repeats. Chi Square test and Fisher's Exact test were used to perform association studies. Results KRAS, PIK3CA or BRAF occur in 71% of polyps and were mutually exclusive. KRAS mutations occur in 35% of polyps. PIK3CA was found in one of the polyps. V600E BRAF mutations occur in 29% of cases, all of them classified as serrated adenoma. CIMP phenotype occurred in 25% of the polyps and all were mutated for BRAF. MLH1 methylation was not detected and all the polyps were microsatellite stable. The comparison between the frequency of oncogenic mutations in polyps and CRC (MSI and MSS lead us to demonstrate that KRAS and PIK3CA are likely to precede both types of CRC. BRAF mutations are likely to precede MSI carcinomas since the frequency found in serrated polyps is similar to what is found in MSI CRC (P = 0.9112, but statistically different from what is found in microsatellite stable (MSS tumours (P = 0.0191. Conclusion Our results show that BRAF, KRAS and PIK3CA mutations occur prior to malignant transformation demonstrating that these oncogenic alterations are primary genetic events in colorectal carcinogenesis. Further, we show that BRAF mutations occur in association with CIMP phenotype in colorectal

  4. BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: Primary or secondary genetic events in colorectal carcinogenesis?

    International Nuclear Information System (INIS)

    Velho, Sérgia; Moutinho, Cátia; Cirnes, Luís; Albuquerque, Cristina; Hamelin, Richard; Schmitt, Fernando; Carneiro, Fátima; Oliveira, Carla; Seruca, Raquel

    2008-01-01

    BRAF, KRAS and PIK3CA mutations are frequently found in sporadic colorectal cancer (CRC). In contrast to KRAS and PIK3CA mutations, BRAF mutations are associated with tumours harbouring CpG Island methylation phenotype (CIMP), MLH1 methylation and microsatellite instability (MSI). We aimed at determine the frequency of KRAS, BRAF and PIK3CA mutations in the process of colorectal tumourigenesis using a series of colorectal polyps and carcinomas. In the series of polyps CIMP, MLH1 methylation and MSI were also studied. Mutation analyses were performed by PCR/sequencing. Bisulfite treated DNA was used to study CIMP and MLH1 methylation. MSI was detected by pentaplex PCR and Genescan analysis of quasimonomorphic mononucleotide repeats. Chi Square test and Fisher's Exact test were used to perform association studies. KRAS, PIK3CA or BRAF occur in 71% of polyps and were mutually exclusive. KRAS mutations occur in 35% of polyps. PIK3CA was found in one of the polyps. V600E BRAF mutations occur in 29% of cases, all of them classified as serrated adenoma. CIMP phenotype occurred in 25% of the polyps and all were mutated for BRAF. MLH1 methylation was not detected and all the polyps were microsatellite stable. The comparison between the frequency of oncogenic mutations in polyps and CRC (MSI and MSS) lead us to demonstrate that KRAS and PIK3CA are likely to precede both types of CRC. BRAF mutations are likely to precede MSI carcinomas since the frequency found in serrated polyps is similar to what is found in MSI CRC (P = 0.9112), but statistically different from what is found in microsatellite stable (MSS) tumours (P = 0.0191). Our results show that BRAF, KRAS and PIK3CA mutations occur prior to malignant transformation demonstrating that these oncogenic alterations are primary genetic events in colorectal carcinogenesis. Further, we show that BRAF mutations occur in association with CIMP phenotype in colorectal serrated polyps and verified that colorectal serrated

  5. Prevalence, distribution and risk of sessile serrated adenomas/polyps at a center with a high adenoma detection rate and experienced pathologists

    NARCIS (Netherlands)

    IJspeert, Joep E. G.; de Wit, Koos; van der Vlugt, Manon; Bastiaansen, Barbara A. J.; Fockens, Paul; Dekker, Evelien

    2016-01-01

    Sessile serrated adenomas/polyps (SSA/Ps) are the precursors of 15 % - 30 % of colorectal cancers (CRC). We aimed to determine the prevalence and distribution of SSA/Ps and to evaluate the association between SSA/Ps and the risk of synchronous advanced neoplasia at a high quality colonoscopy center.

  6. Studies of elastic-plastic instabilities

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1999-01-01

    Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formati...

  7. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    Science.gov (United States)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min [1, 2]. This paper presents the design features, operational methods, calibration, and detector applications.

  8. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    International Nuclear Information System (INIS)

    Schell, W.R.; Vives-Batlle, J.; Yoon, S.R; Tobin, M.J.

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, operational methods, calibration, and detector applications

  9. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    CERN Document Server

    Schell, W R; Yoon, S R; Tobin, M J

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, opera...

  10. Collective flow effects observed with the Plastic Ball

    International Nuclear Information System (INIS)

    Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.

    1984-01-01

    At the Bevalac, collisions of Ca + Ca and Nb + Nb at 400 MeV/nucleon have been studied with the Plastic Ball/Plastic Wall detector. The Plastic Ball covers the angular region between 10 0 and 160 0 . It consists of 815 detectors where each module is a ΔE-E telescope capable of identifying the hydrogen and helium isotopes and positive pions. The ΔE measurement is performed with a 4-mm thick CaF crystal and the E counter is a 36-cm long plastic scintillator. Both signals are read out by a single photomultiplier tube. Due to the different decay times of the two scintillators, ΔE and E information can be separated by gating two different ADC-s at different times. The positive pions are additionally identified by measuring the delayed decay. The Platic Wall, placed 6 m downstream from the target, covers the angular range from 0 0 to 10 0 and measures time of flight, energy loss and position of the reaction products. In addition, the information from the inner counters (0 0 to 2 0 ) is used to produce a trigger signal. Data show two different collection effects

  11. The plasticity of clays

    Science.gov (United States)

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  12. Analysis of Microstructure and Chip Formation When Machining Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Islam Shyha

    2018-03-01

    Full Text Available Microstructure and chip formation were evaluated during the step shoulder down-milling of Ti-6Al-4V using a water-miscible vegetable oil-based cutting fluid. Experiments were conducted using the Cut-list fluid supply system previous developed by the authors and a conventional cutting fluid supply system. A thin plastically deformed layer below the machined surface was observed during the metallurgical investigation of the surfaces produced using both systems. Despite noticeable reductions in cutting fluid consumption achieved by Cut-list, no significant disparity was found in microstructural damage. The microstructure of the machined surfaces was strongly affected by cutting speed and fluid flow rate with a discontinuous serrated chip being the principal type. However, increases in cutting fluid flow rate associated with increased cutting speed significantly changed chip morphology where average distance between chip segments increased with cutting speed. Cut-list produced smaller saw-tooth height and larger segmented width, while the transition from aperiodic to periodic serrated chip formation was governed by cutting speed and feed rate. Chip segmentation frequency and shear angle were also sensitive to cutting speed.

  13. Plastic flow in weak shock waves in uranium

    International Nuclear Information System (INIS)

    Tonks, D.L.

    1992-01-01

    Measurements of the particle velocity in weak shock waves in metals are available for a number of materials. These measurements use the laser interferometer or VISAR technique in conjunction with a plate impact experiment. These measurements are important for determining the elastic -- plastic behavior of materials at high strain rates. Strain rates up to 10 7 /s are measurable with this technique, while more conventional mechanical testing machines, such as the Hopkinson bar, achieve rates only up to about 10 4 /s. In this paper, the VISAR measurements of Grady on uranium are analyzed using the weak shock analysis of Wallace to extract the plastic and total strains, the deviatoric and total stresses, and the plastic strain rates. A brief error analysis of the results will be given. 7 refs

  14. Endoscopic detection rate of sessile serrated lesions in Lynch syndrome patients is comparable with an age- and gender-matched control population: case-control study with expert pathology review.

    Science.gov (United States)

    Vleugels, Jasper L A; Sahin, Husna; Hazewinkel, Yark; Koens, Lianne; van den Berg, Jose G; van Leerdam, Monique E; Dekker, Evelien

    2018-05-01

    Carcinogenesis in Lynch syndrome involves fast progression of adenomas to colorectal cancer (CRC) because of microsatellite instability. The role of sessile serrated lesions (SSLs) and the serrated neoplasia pathway in these patients is unknown. The aim of this matched case-control study was to compare endoscopic detection rates and distribution of SSLs in Lynch syndrome patients with a matched control population. We collected data of Lynch syndrome patients with a proven germline mutation who underwent colonoscopy between January 2011 and April 2016 in 2 tertiary referral hospitals. Control subjects undergoing elective colonoscopy from 2011 and onward for symptoms or surveillance were selected from a prospectively collected database. Patients were matched 1:1 for age, gender, and index versus surveillance colonoscopy. An expert pathology review of serrated polyps was performed. The primary outcomes included the detection rates and distribution of SSLs. We identified 321 patients with Lynch syndrome who underwent at least 1 colonoscopy. Of these, 223 Lynch syndrome patients (mean age, 49.3; 59% women; index colonoscopy, 56%) were matched to 223 control subjects. SSLs were detected in 7.6% (95% confidence interval, 4.8-11.9) of colonoscopies performed in Lynch syndrome patients and in 6.7% (95% confidence interval, 4.1-10.8) of control subjects (P = .86). None of the detected SSLs in Lynch syndrome patients contained dysplasia. The detection rate of SSLs in Lynch syndrome patients undergoing colonoscopy is comparable with a matched population. These findings suggest that the role of the serrated neoplasia pathway in CRC development in Lynch syndrome seems to be comparable with that in the general population. Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  15. Plastic Models Designed to Produce Large Height-to-Length Ratio Steady-State Planar and Axisymmetric (Radial) Viscous Liquid Laminar Flow Gravity Currents

    Science.gov (United States)

    Blanck, Harvey F.

    2012-01-01

    Naturally occurring gravity currents include events such as air flowing through an open front door, a volcanic eruption's pyroclastic flow down a mountainside, and the spread of the Bhopal disaster's methyl isocyanate gas. Gravity currents typically have a small height-to-distance ratio. Plastic models were designed and constructed with a…

  16. Detection of colorectal serrated polyps by stool DNA testing: comparison with fecal immunochemical testing for occult blood (FIT.

    Directory of Open Access Journals (Sweden)

    Russell I Heigh

    Full Text Available Precursors to 1/3 of colorectal cancer (CRC, serrated polyps have been under-detected by screening due to their inconspicuous, non-hemorrhagic, and proximal nature. A new multi-target stool DNA test (multi-target sDNA shows high sensitivity for both CRC and advanced adenomas. Screen detection of serrated polyps by this approach requires further validation. We sought to assess and compare noninvasive detection of sessile serrated polyps (SSP ≥ 1 cm by sDNA and an occult blood fecal immunochemical test (FIT.In a blinded prospective study, a single stool sample used for both tests was collected from 456 asymptomatic adults prior to screening or surveillance colonoscopy (criterion standard. All 29 patients with SSP ≥ 1 cm were included as cases and all 232 with no neoplastic findings as controls. Buffered stool samples were processed and frozen on receipt; Exact Sciences performed sDNA in batches using optimized analytical methods. The sDNA multi-marker panel targets methylated BMP3 (mBMP3 and NDRG4, mutant KRAS, β-actin, and hemoglobin. FIT (Polymedco OC-FIT Check was performed in separate lab ≤ 2 days post defecation and evaluated at cutoffs of 50 (FIT-50 and 100 ng/ml (FIT-100.MEDIAN AGES: cases 61 (range 57-77, controls 62 (52-70, p = NS. Women comprised 59% and 51%, p = NS, respectively. SSP median size was 1.2 cm (1-3 cm, 93% were proximal, and 64% had synchronous diminutive polyps. Among multi-target sDNA markers, mBMP3 proved highly discriminant for detection of SSP ≥ 1 cm (AUC = 0.87, p<0.00001; other DNA markers provided no incremental sensitivity. Hemoglobin alone showed no discrimination (AUC = 0.50, p = NS. At matched specificities, detection of SSP ≥ 1 cm by stool mBMP3 was significantly greater than by FIT-50 (66% vs 10%, p = 0.0003 or FIT-100 (63% vs 0%, p<0.0001.In a screening and surveillance setting, SSP ≥ 1 cm can be detected noninvasively by stool assay of exfoliated DNA markers, especially mBMP3. FIT appears to

  17. Thermally activated plastic flow in the presence of multiple obstacle types

    International Nuclear Information System (INIS)

    Dong, Y; Curtin, W A

    2012-01-01

    The rate- and temperature-dependent plastic flow in a material containing two types of thermally activatable obstacles to dislocation motion is studied both numerically and theoretically in a regime of relative obstacle densities for which the zero-temperature stress is additive. The numerical methods consider the low-density ‘forest’ obstacles first as point obstacles and then as extended obstacles having a finite interaction length with the dislocation, while the high-density ‘solute’ obstacles are treated as point obstacles. Results show that the finite-temperature flow stresses due to different obstacle strengthening mechanisms are additive, as proposed by Kocks et al, only when all strengthening obstacles can be approximated as point-like obstacles. When the activation distance of the low-density extended obstacles exceeds the spacing between the high-density obstacles, the finite-temperature flow stress is non-additive and the effective activation energy differs from that of the Kocks et al model. An analytical model for the activation energy versus flow stress is proposed, based on analysis of the simulation results, to account for the effect of the finite interaction length. In this model, for high forest activation energies, the point-pinning solute obstacles provide a temperature-dependent backstress σ b on dislocation and the overall activation energy is otherwise controlled by the forest activation energy. The model predictions agree well with numerical results for a wide range of obstacle properties, clearly showing the effect due to the finite interaction between dislocation and the obstacles. The implications of our results on the activation volume are discussed with respect to experimental results on solute-strengthened fcc alloys. (paper)

  18. A model for evaluating the flow rate of an extruder for plastic recycling

    International Nuclear Information System (INIS)

    Oke, S.A.; Popoola, I.O.

    2007-01-01

    For several years, Municipal Solid Wastes (MSW) from packaging, newspapers, batteries, furniture, metals, clothing's, bottles, and food scraps have contributed negatively to the increased deterioration of our environments particularly in developing countries. It has resulted in activities that threaten lives (such as disease outbreaks and severe health hazards). As a result, governments and other stakeholders in environment have considered both theoretical and practical approaches to waste control. Recycling, which has enormous benefits of reducing manufacturing cost of new products and providing employment for the populace has been chosen as a viable option. Despite the multi-disciplinary efforts involved recycling models, guidelines applicable in the design of flow rates of extruders for plastic recycling processes are missing. This gap is addressed in the current paper. This paper conceptualizes the flow rates as an input-output system in a continuous dynamic state. With a focus on the melting activity (operation section), the analysis of flow in the metering zone involves an estimation of the quantity of recycled materials that could be produced per time. The work hopefully stimulates research in an area where quantitative methodologies are sparse. (author)

  19. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    International Nuclear Information System (INIS)

    Schell, W.R.; Tobin, M.J.; Vives-Batlle, J.; Yoon, S.R.

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min. This paper presents the design features, operational methods, calibration, and detector applications. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. An incremental flow theory for crystal plasticity incorporating strain gradient effects

    DEFF Research Database (Denmark)

    Nellemann, Christopher; Niordson, Christian Frithiof; Nielsen, Kim Lau

    2017-01-01

    The present work investigates a new approach to formulating a rate-independent strain gradient theory for crystal plasticity. The approach takes as offset recent discussions published in the literature for isotropic plasticity, and a key ingredient of the present work is the manner in which...... a gradient enhanced effective slip measure governs hardening evolution. The effect of both plastic strains and plastic strain gradients are combined into this scalar effective slip quantity, the energy associated with plastic strain is dissipative (unrecoverable), while the energy from plastic strain...... gradients is recoverable (free). The framework developed forms the basis of a finite element implementation and is demonstrated on benchmark problems designed to bring out effects such as strengthening and hardening. Monotonic loading and plane strain deformation is assumed throughout, but despite this, non...

  1. Methodology for plastic fracture - a progress report

    International Nuclear Information System (INIS)

    Wilkinson, J.P.D.; Smith, R.E.E.

    1977-01-01

    This paper describes the progress of a study to develop a methodology for plastic fracture. Such a fracture mechanics methodology, having application in the plastic region, is required to assess the margin of safety inherent in nuclear reactor pressure vessels. The initiation and growth of flaws in pressure vessels under overload conditions is distinguished by a number of unique features, such as large scale yielding, three-dimensional structural and flaw configurations, and failure instabilities that may be controlled by either toughness or plastic flow. In order to develop a broadly applicable methodology of plastic fracture, these features require the following analytical and experimental studies: development of criteria for crack initiation and growth under large scale yielding; the use of the finite element method to describe elastic-plastic behaviour of both the structure and the crack tip region; and extensive experimental studies on laboratory scale and large scale specimens, which attempt to reproduce the pertinent plastic flow and crack growth phenomena. This discussion centers on progress to date on the selection, through analysis and laboratory experiments, of viable criteria for crack initiation and growth during plastic fracture. (Auth.)

  2. Effect of swaging on the 1000 C compressive slow plastic flow characteristics of the directionally solidified eutectic alloy gamma/gamma prime-alpha

    Science.gov (United States)

    Whittenberger, J. D.; Wirth, G.

    1983-01-01

    Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.

  3. Developmental and evolutionary novelty in the serrated teeth of theropod dinosaurs.

    Science.gov (United States)

    Brink, K S; Reisz, R R; LeBlanc, A R H; Chang, R S; Lee, Y C; Chiang, C C; Huang, T; Evans, D C

    2015-07-28

    Tooth morphology and development can provide valuable insights into the feeding behaviour and evolution of extinct organisms. The teeth of Theropoda, the only clade of predominantly predatory dinosaurs, are characterized by ziphodonty, the presence of serrations (denticles) on their cutting edges. Known today only in varanid lizards, ziphodonty is much more pervasive in the fossil record. Here we present the first model for the development of ziphodont teeth in theropods through histological, SEM, and SR-FTIR analyses, revealing that structures previously hypothesized to prevent tooth breakage instead first evolved to shape and maintain the characteristic denticles through the life of the tooth. We show that this novel complex of dental morphology and tissues characterizes Theropoda, with the exception of species with modified feeding behaviours, suggesting that these characters are important for facilitating the hypercarnivorous diet of most theropods. This adaptation may have played an important role in the initial radiation and subsequent success of theropods as terrestrial apex predators.

  4. Application of microdynamics and lattice mechanics to problems in plastic flow and fracture. Final report, 1 April 1973--31 March 1978

    International Nuclear Information System (INIS)

    Bilello, J.C.; Liu, J.M.

    1978-01-01

    Progress in an investigation of the application of microdynamics and lattice mechanics to the problems in plastic flow and fracture is described. The research program consisted of both theoretical formulations and experimental measurements of a number of intrinsic material parameters in bcc metals and alloys including surface energy, phonon-dispersion curves for dislocated solids, dislocation-point defect interaction energy, slip initiation and microplastic flow behavior. The study has resulted in an improved understanding in the relationship among the experimentally determined fracture surface energy, the intrinsic cohesive energy between atomic planes, and the plastic deformation associated with the initial stages of crack propagation. The values of intrinsic surface energy of tungsten, molybdenum, niobium and niobium-molybdenum alloys, deduced from the measurements, serve as a starting point from which fracture toughness of these materials in engineering service may be intelligently discussed

  5. Plastic flow properties and fracture toughness characterization of unirradiated and irradiated tempered martensitic steels

    International Nuclear Information System (INIS)

    Spaetig, P.; Bonade, R.; Odette, G.R.; Rensman, J.W.; Campitelli, E.N.; Mueller, P.

    2007-01-01

    We investigate the plastic flow properties at low and high temperature of the tempered martensitic steel Eurofer97. We show that below room temperature, where the Peierls friction on the screw dislocation is active, it is necessary to modify the usual Taylor's equation between the flow stress and the square root of the dislocation density and to include explicitly the Peierls friction stress in the equation. Then, we compare the fracture properties of the Eurofer97 with those of the F82H steel. A clear difference of the fracture toughness-temperature behavior was found in the low transition region. The results indicate a sharper transition for Eurofer97 than for the F82H. Finally, the shift of the median toughness-temperature curve of the F82H steel was determined after two neutron irradiations performed in the High Flux Reactor in Petten

  6. Basic Strain Gradient Plasticity Theories with Application to Constrained Film Deformation

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, John W.

    2011-01-01

    films: the compression or extension of a finite layer joining rigid platens. Full elastic-plastic solutions are obtained for the same problem based on a finite element method devised for the new class of flow theories. Potential difficulties and open issues associated with the new class of flow theories......A family of basic rate-independent strain gradient plasticity theories is considered that generalize conventional J(2) deformation and flow theories of plasticity to include a dependence on strain gradients in a simple way. The theory builds on three recent developments: the work of Gudmundson (J....... Mech. Phys. Solids 52 (2004), 1379-1406) and Gurtin and Anand (J. Mech. Phys. Solids 57 (2009), 405-421), proposing constitutive relations for flow theories consistent with requirements of positive plastic dissipation; the work of Fleck and Willis (J. Mech. Phys. Solids 57 (2009), 161-177 and 1045...

  7. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...... growth and interaction between neighboring voids, and on a comparison between the developed strain gradient crystal plasticity theory and a discrete dislocation plasticity theory. Furthermore, voids and rigid inclusions in isotropic materials have been studied using a strain gradient plasticity theory...

  8. Transformation plasticity and hot pressing

    International Nuclear Information System (INIS)

    Chaklader, A.C.D.

    1975-01-01

    The transformation plasticity during the phase transition of quartz to cristobalite, monoclinic reversible tetragonal of zirconia, metakaolin to a spinel phase, and brucite to periclase was investigated by studying their compaction characteristics. Viscous flow was found to be the predominant mechanism of mass transport (after an initial particle rearrangement stage) in the case of quartz to cristobalite phase change where the transformation was associated with the formation of an intermediate amorphous silica phase. The results on the monoclinic reversible tetragonal transformation of zirconia indicated that it is most likely controlled by internal strain induced by the stress associated with the volume change (ΔV/V) and the flow stress of the weaker phase. Particle movement and deformation of the weaker phase (possibly tetragonal) may be the manifestation of this plasticity. The plasticity in the case of metakaolin to a spinel phase appeared to start before the exothermic reaction (generally encountered in a dta plot) and may be diffusion controlled. The plasticity encountered during brucite to periclase transformation may be the combined effect of disintegration of precursor particles, vapor-phase lubrication and some deformability of freshly formed very fine MgO particles

  9. The creep low application for numerical modeling of elastic-plastic flows

    Science.gov (United States)

    Tyapin, Anatoly; Rudenko, Vladimir; Chekhunov, Evgeny; Shaburov, Michail

    1999-06-01

    The present paper demonstrates the applicability of Lomnitz logarithm creep law [1] in some approximated version for calculating the elastic-plastic flows. The model has been developed resulting from the intention to have appropriate calculation approximation for particle-velocity -vs-time histories observed in plate 6061-T6 Al samples of various thickness under shock loading and subsequent release and additional compression. The approximation is unique in the whole loading range, from very low to such that elastic precursor is swallowed up by plastic wave . The model is based on Lipkin and Asay [2] remark on scale similarity of the above mentioned particle velocity -vs-time histories for equal shock loading and on approximate equality of velocities that initial portions of release and recompression waves travel at. A Lomnitz creep law presents an ideal phenomenological tool providing both of the requirements be fulfilled at the same time. Its application to high rate processes of loading and release has required some law modification and a nontrivial review of the dislocation mechanism for stress relaxation. The agreement achieved with the experiment is illustrated in figures. The model is worked out and realized in the 1D user software MAG. 1. Lomnitz C. Joun. of Geology, 1956, vol. 64, p. 473-479. 2. Lipkin J., Asay J.R. J. Appl. Phys. ,1977, vol. 48, 1, p.182-189. 3. Johnson J., Barker L. J. Appl. Phys., 1969, vol. 40, 11, p. 4321-4334. 4. Asay J.R., Chhabildas L. M.: Metallurgia., 1984, p. 110-120.

  10. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    Science.gov (United States)

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  11. Atomic mechanism of shear localization during indentation of a nanostructured metal

    International Nuclear Information System (INIS)

    Sansoz, F.; Dupont, V.

    2007-01-01

    Shear localization is an important mode of deformation in nanocrystalline metals. However, it is very difficult to verify the existence of local shear planes in nanocrystalline metals experimentally. Sharp indentation techniques may provide novel opportunities to investigate the effect of shear localization at different length scales, but the relationship between indentation response and atomic-level shear band formation has not been fully addressed. This paper describes an effort to provide direct insight on the mechanism of shear localization during indentation of nanocrystalline metals from atomistic simulations. Molecular statics is performed with the quasi-continuum method to simulate the indentation of single crystal and nanocrystalline Al with a sharp cylindrical probe. In the nanocrystalline regime, two grain sizes are investigated, 5 nm and 10 nm. We find that the indentation of nanocrystalline metals is characterized by serrated plastic flow. This effect seems to be independent of the grain size. Serration in nanocrystalline metals is found to be associated with the formation of shear bands by sliding of aligned interfaces and intragranular slip, which results in deformation twinning

  12. Plastic Flow of the Vortex Solid in Bi_2Sr_2CaCu_2O_8+δ Crystals

    Science.gov (United States)

    Keener, C. D.; Ammirata, S. M.; Trawick, M. L.; Hebboul, S. E.; Garland, J. C.

    1997-03-01

    We have recently presented evidence in electrical transport data for a first order vortex lattice melting transition in Bi_2Sr_2CaCu_2O_8+δ single crystals. Below the melting temperature T_m, current-induced motion of the vortex solid causes dissipation for sufficiently high currents. We have measured resistance vs. temperature curves in magnetic fields 50 Oe = 1 mA). Below Tm (≈ 80 K at 100 Oe), we find large temporal resistance fluctuations which are characteristic of vortex plastic flow. This vortex motion seems to be well described as ``intermittently flowing rivers" of vortices.(F. Nori, Science 271, 1373 (1996).)

  13. Dynamic strain aging of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing

    International Nuclear Information System (INIS)

    Kim, J.G.; Hong, S.; Anjabin, N.; Park, B.H.; Kim, S.K.; Chin, K.-G.; Lee, S.; Kim, H.S.

    2015-01-01

    The dynamic strain aging (DSA) of metallic materials due to solute atom diffusion to mobile dislocations induce deformation instability with load fluctuations and deformation localizations, hence reducing their sheet formability. In this paper, DSA behaviors of twinning induced plasticity (TWIP) steel with and without Al during tensile testing and deep drawing are investigated in terms of strain localization and the Portevin-Le Chatelier (PLC) band. A theoretical DSA model with internal variables of dislocation density and twin volume fraction is presented for an estimation of strain localization and strain hardening behavior of TWIP steels. The simulation results of the load history and PLC bands during tensile testing and deep drawing are in good agreement with the experimental values. A serration behavior is observed in high-Mn TWIP steels and its tensile residual stress is higher than that in the Al-added TWIP steels, which results in a deformation crack or delayed fracture of deep drawn specimens

  14. Crack growth resistance for anisotropic plasticity with non-normality effects

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2006-01-01

    For a plastically anisotropic solid a plasticity model using a plastic flow rule with non-normality is applied to predict crack growth. The fracture process is modelled in terms of a traction–separation law specified on the crack plane. A phenomenological elastic–viscoplastic material model...... is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy, and in each case the effect of the normality flow rule is compared with the effect of non-normality. Conditions of small scale yielding are assumed, with mode I loading conditions far from the crack......-tip, and various directions of the crack plane relative to the principal axes of the anisotropy are considered. It is found that the steady-state fracture toughness is significantly reduced when the non-normality flow rule is used. Furthermore, it is shown that the predictions are quite sensitive to the value...

  15. Robust Return Algorithm for Anisotropic Plasticity Models

    DEFF Research Database (Denmark)

    Tidemann, L.; Krenk, Steen

    2017-01-01

    Plasticity models can be defined by an energy potential, a plastic flow potential and a yield surface. The energy potential defines the relation between the observable elastic strains ϒe and the energy conjugate stresses Τe and between the non-observable internal strains i and the energy conjugat...

  16. Evaluation Of Gas Diffusion Through Plastic Materials Used In Experimental And Sampling Equipment

    DEFF Research Database (Denmark)

    Kjeldsen, Peter

    1993-01-01

    . Calculations show that diffusion of oxygen through plastic tubing and reactors into anoxic water can be a serious problem for a series of plastic materials. Comparison of the method for turbulent and laminar flow in tubings shows that the difference is insignificant for most cases. Calculations show also......Plastic materials are often used in experimental and sampling equipment. Plastics are not gas tight, since gases are able to diffuse through the walls of tubing and containers made of plastic. Methods for calculating the significance of gas diffusion through the walls of containers and the walls...... of tubings for both turbulent and laminar flow conditions is presented. A more complex model for diffusion under laminar flow conditions is developed. A comprehensive review on gas diffusion coefficients for the main gases (O2, N2, CO2, CH4 etc.) and for a long range of plastic materials is also presented...

  17. Portevin-Le Chatelier effect in a Ni–Cr–Mo alloy containing ordered phase with Pt{sub 2}Mo-type structure at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liang, E-mail: yuanliang031@163.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Hu, Rui, E-mail: rhu@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Jinshan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Zhang, Xiaoqing; Yang, Yan’an [Xi’an Filter Metal Materials Co., Ltd., Xi’an 710072 (China)

    2016-01-05

    Serrated flow behavior or the Portevin-Le Chatelier (PLC) effect in a Ni–Cr–Mo alloy containing ordered phase was investigated at uniaxial tensile and nanoindentation tests at room temperature. Results demonstrate that the periodic arrangement of atoms for nano-sized ordered phase with Pt{sub 2}Mo-type structure obtained by ageing treatment at 600 °C, induces the appearance of an embedded serration (a small serration is embedded in two adjacent large serrations) in the alloy during uniaxial tensile tests at room temperature with strain rates of 10{sup −3} and 10{sup −4} s{sup −1}. The behavior characteristic of small serration is almost independent on strain rate, but that of large serration is significantly dependent on strain rate. Both the stress drop (Δσ) of the large serration and the interval (t{sub w}) between adjacent large serrations increase with decreasing strain rate from 10{sup −3} to 10{sup −4} s{sup −1}. Moreover, a single serration also appears in load-displacement curve of aged sample at loading rate of 10{sup −3} s{sup −1}. Both formation of order-disorder transformation-induced twins and twinning of ordered phase itself are responsible for the occurrence of the embedded serrations.

  18. Production and technological plasticity of commercially pure Titanium in submicrocrystalline state

    International Nuclear Information System (INIS)

    Danilov, V. I.; Zuev, L. B.; Shlyahova, G. V.; Orlova, D. V; Sharkeev, Yu. P.

    2010-01-01

    Presented is the method for producing solid billets of commercially pure titanium having low dimensional nanostructure (structural elements < 100 nm). The method is based on multiple unidirectional pressing, with the direction of pressing being changed every other cycle, followed by cold rolling. The microstructure, mechanical characteristics and plastic deformation behavior of material produced by the above method was investigated. The results obtained are presented herein. The loading diagram of titanium alloy in nanostructure state shows a lengthy prefracture portion, which suggests that material undergoes practically no deformation hardening. The latter stage is also distinguished by the emergence of macroscopic nuclei of localized plastic flow, which differ in the level of accumulated deformation. The maximal-amplitude nucleus will remain stationary, pinpointing the place of future fracture. On the meso-scale level formation of meso-bands (folds) is observed, with the distribution and characteristic sizes of the meso-bands corresponding to the arrangement of localized plastic flow macro-nuclei. Characteristically, the local and global loss of plastic flow stability will occur simultaneously in titanium alloy in nanostructure state. On the base of experimental evidence certain modifications can be introduced into the pressing schedules employed by the production of materials in nanostructure state. Key words: titanium, nanostructure state, method of severe plastic deformation, deformation behavior, localized plastic flow, fracture

  19. Various sizes of sliding event bursts in the plastic flow of metallic glasses based on a spatiotemporal dynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jingli, E-mail: renjl@zzu.edu.cn, E-mail: g.wang@shu.edu.cn; Chen, Cun [School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001 (China); Wang, Gang, E-mail: renjl@zzu.edu.cn, E-mail: g.wang@shu.edu.cn [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Cheung, Wing-Sum [Department of Mathematics, The University of HongKong, HongKong (China); Sun, Baoan; Mattern, Norbert [IFW-dresden, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Siegmund, Stefan [Department of Mathematics, TU Dresden, D-01062 Dresden (Germany); Eckert, Jürgen [IFW-dresden, Institute for Complex Materials, P.O. Box 27 01 16, D-01171 Dresden (Germany); Institute of Materials Science, TU Dresden, D-01062 Dresden (Germany)

    2014-07-21

    This paper presents a spatiotemporal dynamic model based on the interaction between multiple shear bands in the plastic flow of metallic glasses during compressive deformation. Various sizes of sliding events burst in the plastic deformation as the generation of different scales of shear branches occurred; microscopic creep events and delocalized sliding events were analyzed based on the established model. This paper discusses the spatially uniform solutions and traveling wave solution. The phase space of the spatially uniform system applied in this study reflected the chaotic state of the system at a lower strain rate. Moreover, numerical simulation showed that the microscopic creep events were manifested at a lower strain rate, whereas the delocalized sliding events were manifested at a higher strain rate.

  20. Sinuous Flow in Cutting of Metals

    Science.gov (United States)

    Yeung, Ho; Viswanathan, Koushik; Udupa, Anirudh; Mahato, Anirban; Chandrasekar, Srinivasan

    2017-11-01

    Using in situ high-speed imaging, we unveil details of a highly unsteady plastic flow mode in the cutting of annealed and highly strain-hardening metals. This mesoscopic flow mode, termed sinuous flow, is characterized by repeated material folding, large rotation, and energy dissipation. Sinuous flow effects a very large shape transformation, with local strains of ten or more, and results in a characteristic mushroomlike surface morphology that is quite distinct from the well-known morphologies of metal-cutting chips. Importantly, the attributes of this unsteady flow are also fundamentally different from other well-established unsteady plastic flows in large-strain deformation, like adiabatic shear bands. The nucleation and development of sinuous flow, its dependence on material properties, and its manifestation across material systems are demonstrated. Plastic buckling and grain-scale heterogeneity are found to play key roles in triggering this flow at surfaces. Implications for modeling and understanding flow stability in large-strain plastic deformation, surface quality, and preparation of near-strain-free surfaces by cutting are discussed. The results point to the inadequacy of the widely used shear-zone models, even for ductile metals.

  1. Revealing flow behaviors of metallic glass based on activation of flow units

    Energy Technology Data Exchange (ETDEWEB)

    Ge, T. P.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-05-28

    Atomic level flow plays a critical role in the mechanical behavior of metallic glass (MG) while the connection between the flow and the heterogeneous microstructure of the glass remains unclear. We describe the heterogeneity of MGs as the elastic matrix with “inclusions” of nano-scale liquid-like flow units, and the plastic flow behavior of MGs is considered to be accommodated by the flow units. We show that the model can explain the various deformation behaviors, the transformation from inhomogeneous deformation to homogeneous flow upon strain rate or temperature, and the deformation map in MGs, which might provide insights into the flow mechanisms in glasses and inspiration for improving the plasticity of MGs.

  2. A compact cyclic plasticity model with parameter evolution

    DEFF Research Database (Denmark)

    Krenk, Steen; Tidemann, L.

    2017-01-01

    The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  3. MAGNETAR FIELD EVOLUTION AND CRUSTAL PLASTICITY

    International Nuclear Information System (INIS)

    Lander, S. K.

    2016-01-01

    The activity of magnetars is believed to be powered by colossal magnetic energy reservoirs. We sketch an evolutionary picture in which internal field evolution in magnetars generates a twisted corona, from which energy may be released suddenly in a single giant flare, or more gradually through smaller outbursts and persistent emission. Given the ages of magnetars and the energy of their giant flares, we suggest that their evolution is driven by a novel mechanism: magnetic flux transport/decay due to persistent plastic flow in the crust, which would invalidate the common assumption that the crustal lattice is static and evolves only under Hall drift and Ohmic decay. We estimate the field strength required to induce plastic flow as a function of crustal depth, and the viscosity of the plastic phase. The star’s superconducting core may also play a role in magnetar field evolution, depending on the star’s spindown history and how rotational vortices and magnetic fluxtubes interact.

  4. Electromigration-induced plasticity and texture in Cu interconnects

    International Nuclear Information System (INIS)

    Advanced Light Source; Tamura, Nobumichi; Budiman, A. S.; Hau-Riege, C.S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-01-01

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study [1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10 o ). In out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {110} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the grains will have a direction nearly parallel to the direction of electron flow. Thus, strong textures lead to more plasticity, as we observe

  5. Electromigration-induced Plasticity and Texture in Cu Interconnects

    Science.gov (United States)

    Budiman, A. S.; Hau-Riege, C. S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-10-01

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study[1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10°). In out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {110} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the grains will have a direction nearly parallel to the direction of electron flow. Thus, strong textures lead to more plasticity, as we observe.

  6. Mechanisms of large strain, high strain rate plastic flow in the explosively driven collapse of Ni-Al laminate cylinders

    International Nuclear Information System (INIS)

    Olney, K L; Chiu, P H; Nesterenko, V F; Higgins, A; Serge, M; Weihs, T P; Fritz, G; Stover, A; Benson, D J

    2014-01-01

    Ni-Al laminates have shown promise as reactive materials due to their high energy release through intermetallic reaction. In addition to the traditional ignition methods, the reaction may be initiated in hot spots that can be created during mechanical loading. The explosively driven thick walled cylinder (TWC) technique was performed on two Ni-Al laminates composed of thin foil layers with different mesostructues: concentric and corrugated. These experiments were conducted to examine how these materials accommodate large plastic strain under high strain rates. Finite element simulations of these specimens with mesostuctures digitized from the experimental samples were conducted to provide insight into the mesoscale mechanisms of plastic flow. The dependence of dynamic behaviour on mesostructure may be used to tailor the hot spot formation and therefore the reactivity of the material system.

  7. The cutting of metals via plastic buckling

    Science.gov (United States)

    Udupa, Anirudh; Viswanathan, Koushik; Ho, Yeung; Chandrasekar, Srinivasan

    2017-06-01

    The cutting of metals has long been described as occurring by laminar plastic flow. Here we show that for metals with large strain-hardening capacity, laminar flow mode is unstable and cutting instead occurs by plastic buckling of a thin surface layer. High speed in situ imaging confirms that the buckling results in a small bump on the surface which then evolves into a fold of large amplitude by rotation and stretching. The repeated occurrence of buckling and folding manifests itself at the mesoscopic scale as a new flow mode with significant vortex-like components-sinuous flow. The buckling model is validated by phenomenological observations of flow at the continuum level and microstructural characteristics of grain deformation and measurements of the folding. In addition to predicting the conditions for surface buckling, the model suggests various geometric flow control strategies that can be effectively implemented to promote laminar flow, and suppress sinuous flow in cutting, with implications for industrial manufacturing processes. The observations impinge on the foundations of metal cutting by pointing to the key role of stability of laminar flow in determining the mechanism of material removal, and the need to re-examine long-held notions of large strain deformation at surfaces.

  8. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory

    Science.gov (United States)

    Basu, Jayeeta; Siegelbaum, Steven A.

    2015-01-01

    Synaptic plasticity serves as a cellular substrate for information storage in the central nervous system. The entorhinal cortex (EC) and hippocampus are interconnected brain areas supporting basic cognitive functions important for the formation and retrieval of declarative memories. Here, we discuss how information flow in the EC–hippocampal loop is organized through circuit design. We highlight recently identified corticohippocampal and intrahippocampal connections and how these long-range and local microcircuits contribute to learning. This review also describes various forms of activity-dependent mechanisms that change the strength of corticohippocampal synaptic transmission. A key point to emerge from these studies is that patterned activity and interaction of coincident inputs gives rise to associational plasticity and long-term regulation of information flow. Finally, we offer insights about how learning-related synaptic plasticity within the corticohippocampal circuit during sensory experiences may enable adaptive behaviors for encoding spatial, episodic, social, and contextual memories. PMID:26525152

  9. Wide-field piecemeal cold snare polypectomy of large sessile serrated polyps without a submucosal injection is safe.

    Science.gov (United States)

    Tate, David J; Awadie, Halim; Bahin, Farzan F; Desomer, Lobke; Lee, Ralph; Heitman, Steven J; Goodrick, Kathleen; Bourke, Michael J

    2018-03-01

    BACKGROUND AND STUDY AIMS : Large series suggest endoscopic mucosal resection is safe and effective for the removal of large (≥ 10 mm) sessile serrated polyps (SSPs), but it exposes the patient to the risks of electrocautery, including delayed bleeding. We examined the feasibility and safety of piecemeal cold snare polypectomy (pCSP) for the resection of large SSPs.  Sequential large SSPs (10 - 35 mm) without endoscopic evidence of dysplasia referred over 12 months to a tertiary endoscopy center were considered for pCSP. A thin-wire snare was used in all cases. Submucosal injection was not performed. High definition imaging of the defect margin was used to ensure the absence of residual serrated tissue. Adverse events were assessed at 2 weeks and surveillance was planned for between 6 and 12 months.  41 SSPs were completely removed by pCSP in 34 patients. The median SSP size was 15 mm (interquartile range [IQR] 14.5 - 20 mm; range 10 - 35 mm). The median procedure duration was 4.5 minutes (IQR 1.4 - 6.3 minutes). There was no evidence of perforation or significant intraprocedural bleeding. At 2-week follow-up, there were no significant adverse events, including delayed bleeding and post polypectomy syndrome. First follow-up has been undertaken for 15 /41 lesions at a median of 6 months with no evidence of recurrence.  There is potential for pCSP to become the standard of care for non-dysplastic large SSPs. This could reduce the burden of removing SSPs on patients and healthcare systems, particularly by avoidance of delayed bleeding. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator.

    Directory of Open Access Journals (Sweden)

    Derry Voisin

    2009-10-01

    Full Text Available Mutations in LACERATA (LCR, FIDDLEHEAD (FDH, and BODYGUARD (BDG cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses. To better understand how plants adapt to these mutations, we performed a genome-wide gene expression analysis. We found that apparent compensatory transcriptional responses in these mutants involve the induction of wax, cutin, cell wall, and defense genes. To gain greater insight into the mechanism by which cuticular mutations trigger this response in the plants, we performed an overlap meta-analysis, which is termed MASTA (MicroArray overlap Search Tool and Analysis, of differentially expressed genes. This suggested that different cell integrity pathways are recruited in cesA cellulose synthase and cuticular mutants. Using MASTA for an in silico suppressor/enhancer screen, we identified SERRATE (SE, which encodes a protein of RNA-processing multi-protein complexes, as a likely enhancer. In confirmation of this notion, the se lcr and se bdg double mutants eradicate severe leaf deformations as well as the organ fusions that are typical of lcr and bdg and other cuticular mutants. Also, lcr does not confer resistance to Botrytis cinerea in a se mutant background. We propose that there is a role for SERRATE-mediated RNA signaling in the cuticle integrity pathway.

  11. Dislocation-Disclination Substructures Formed in FCC Polycrystals Under Large Plastic Deformations: Evolution and Association with Flow Stress

    Science.gov (United States)

    Kozlov, É. V.; Koneva, N. A.; Trishkina, L. I.

    2014-06-01

    The evolution of dislocation substructures formed in polycrystalline Cu-Al and Cu-Mn alloys undergoing large plastic deformations is studied, using transmission electron microscopy. Microband and fragmented substructures are examined. The Al and Mn alloying element concentrations for which the substructures are formed have been found. The mechanisms involved in the formation of the substructures during the substructural evolution in the alloys subjected to deformation have been revealed. Parameters describing the substructures under study have been measured. The dependence of the parameters on the flow stress has been established.

  12. Measurement and Enhancement of Plasticity Indices of some ...

    African Journals Online (AJOL)

    Experimental procedures were followed and one basic modification was made to Worrall and Khan measurement of rate of flow of plastic clays in order to prevent sud-den rush of compressed air. Results indicate that plasticity brought about by ageing can be measured for clays in aqueous and organic medium. Clays aged ...

  13. Soil plasticity with a different porosity

    Directory of Open Access Journals (Sweden)

    Klovanych Sergii

    2017-01-01

    Full Text Available The model of soils with different porosity in the framework of the associated theory of plasticity is presented The single analytical function describes the loading surface in the stress space. The deformational hardening/softening and the phenomenon of dilatancy during plastic flow are incorporated in the model. The triaxial compression tests are simulated and compared with the experimental results for different values of the void ratio and initial hydrostatic stresses.

  14. Microstructure and strain-stress analysis of the dynamic strain aging in inconel 625 at high temperature

    Science.gov (United States)

    Maj, P.; Zdunek, J.; Mizera, J.; Kurzydlowski, K. J.; Sakowicz, B.; Kaminski, M.

    2017-01-01

    Serrated flow is a result of unstable plastic flow, which occurs during tensile and compression tests on some dilute alloys. This phenomenon is referred as the Portevin Le-Chatelier effect (PLC effect). The aim of this research was to investigate and analyze this phenomenon in Inconel 625 solution strengthened superalloy. The tested material was subjected to tensile tests carried out within the temperature range 200-700 °C, with three different strain rates: 0.002 1/s, 0.01/s, and 0.05 1/s and additional compression tests with high deformation speeds of 0.1, 1, and 10 1/s. The tensile strain curves were analyzed in terms of intensity and the observed patterns of serrations Using a modified stress drop method proposed by the authors, the activation energy was calculated with the assumption that the stress drops' distribution is a direct representation of an average solute atom's interaction with dislocations. Subsequently, two models, the standard vacancy diffusion Bilby-Cottrell model and the realistic cross-core diffusion mechanism proposed by Zhang and Curtin, were compared. The results obtained show that the second one agrees with the experimental data. Additional microstructure analysis was performed to identify microstructure elements that may be responsible for the PLC effect. Based on the results, the relationship between the intensity of the phenomenon and the conditions of the tests were determined.

  15. Electromigration-induced plasticity and texture in Cu interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Tamura, Nobumichi; Budiman, A. S.; Hau-Riege, C.S.; Besser, P. R.; Marathe, A.; Joo, Y.-C.; Tamura, N.; Patel, J. R.; Nix, W. D.

    2007-10-31

    Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong <111> textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study [1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a <112> direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10{sup o}). In <111> out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {l_brace}110{r_brace} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the <111> grains will have a <112> direction nearly parallel to the direction of electron flow. Thus, strong <111> textures lead to more plasticity, as we observe.

  16. On the impact of the elastic-plastic flow upon the process of destruction of the solenoid in a super strong pulsed magnetic field

    Science.gov (United States)

    Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.

    2018-01-01

    At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.

  17. Maladaptive Plasticity Masks the Effects of Natural Selection in the Red-Shouldered Soapberry Bug.

    Science.gov (United States)

    Cenzer, Meredith L

    2017-10-01

    Natural selection can produce local adaptation, but local adaptation can be masked by maladaptive plasticity. Maladaptive plasticity may arise as a result of gene flow producing novel gene combinations that have not been exposed to selection. In the 1980s, populations of the red-shouldered soapberry bug (Jadera haematoloma) were locally adapted to feed on the seeds of a native host plant and an introduced host plant; by 2014, local differentiation in beak length had been lost, likely as a consequence of increased gene flow. In this study, I assess the relative contributions of natural selection and plasticity to beak length on these two hosts. I confirm the earlier hypothesis that the host plant seedpod drives divergent natural selection on beak length. I then demonstrate that the proximate cause of the loss of observable differentiation in beak length is maladaptive plasticity, which masks persistent genetic differences between host-associated populations. Maladaptive plasticity is highest in areas where the two plants co-occur; in combination with historical measures of plasticity in hybrids, this indicates that maladaptive plasticity may be a consequence of ongoing gene flow. Although natural selection produced locally adapted genotypes in soapberry bugs, maladaptive plasticity is masking phenotypic differences between populations in nature.

  18. Flow and Heat Transfer of Bingham Plastic Fluid over a Rotating Disk with Variable Thickness

    Science.gov (United States)

    Liu, Chunyan; Pan, Mingyang; Zheng, Liancun; Ming, Chunying; Zhang, Xinxin

    2016-11-01

    This paper studies the steady flow and heat transfer of Bingham plastic fluid over a rotating disk of finite radius with variable thickness radially in boundary layer. The boundary layer flow is caused by the rotating disk when the extra stress is greater than the yield stress of the Bingham fluid. The analyses of the velocity and temperature field related to the variable thickness disk have not been investigated in current literatures. The governing equations are first simplified into ordinary differential equations owing to the generalized von Kármán transformation for seeking solutions easily. Then semi-similarity approximate analytical solutions are obtained by using the homotopy analysis method for different physical parameters. It is found that the Bingham number clearly influences the velocity field distribution, and the skin friction coefficient Cfr is nonlinear growth with respect to the shape parameter m. Additionally, the effects of the involved parameters (i.e. shape parameter m, variable thickness parameter β, Reynolds number Rev, and Prandtl number Pr) on velocity and temperature distribution are investigated and analyzed in detail.

  19. The Plastic Potential, Double-slip, Double-spin and Viscoplasticity

    Science.gov (United States)

    Harris, David

    2010-05-01

    In this paper we describe two classical models for rate-independent behaviour of granular materials, namely the plastic potential and the double shearing model, emphasising their ill-posedness. We then describe a model, called the doubleslip and double-spin model which generalises the plastic potential model and is closely related to the double shearing model. This new model eliminates the causes of the ill-posedness in the classical models and provides a suitable basis for the analysis of the deformation and flow of granular materials in the rate-independent regime. There has been considerable recent interest in the intermediate regime between densely-packed, rate-independent, quasistatic flow and the rate-dependent dilute gaseous regime. In this intermediate regime the material also exhibits a degree of ratedependence. The natural extension of a rate-independent plasticity model to incorporate rate-dependent material behaviour is by way of viscoplasticity. The archetypal example here is the Bingham material which generalises a von Mises type plasticity model and introduces a viscosity parameter into the model. We propose an extension of the double-slip and double-spin model to incorporate viscosity, thereby extending the range of the model to incorporate rate-dependent behaviour. The new model is then applied to a simplified problem of pipe flow.

  20. Recovery of PET from packaging plastics mixtures by wet shaking table.

    Science.gov (United States)

    Carvalho, M T; Agante, E; Durão, F

    2007-01-01

    Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.

  1. Mechanical properties and microstructure of commercial amorphous golf club heads made of Zr-Ti-Cu-Ni-Be bulk metallic glass

    International Nuclear Information System (INIS)

    Choi, Y.C.; Hong, S.I.

    2007-01-01

    Mechanical properties and microstructures of Zr 41.2 Ti 13.8 Cu 12.5 Ni 10 Be 22.5 (numbers indicate at.%) bulk metallic glass taken from commercial golf club heads were investigated at room temperature and 573 K. Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) indicate that the thin central section of the golf club head is amorphous and the outer rim of the head is crystallized. X-ray diffraction (XRD) analyses revealed the presence of Zr 2 Cu, ZrBe 2 , Cu 2 Ni and BeNi in the rim of the iron head. In the crystallized region, crystalline particles with the size of ∼1 μm were observed. At room temperature, amorphous sample (∼2100 MPa) revealed higher fracture stress than crystallized sample (∼1700 MPa). Crystallized sample fractured in the elastic region whereas the amorphous sample displayed some plasticity corresponding serrated flow before the fracture. The serrated flow region with some plasticity in the amorphous alloy results from strain hardening and repetitive shear band initiation and propagation. The crystallized alloy extracted from the thick part of the club fractured in the elastic region, at a much lower stress level than the amorphous, suggesting that relatively coarse crystal particles formed during cooling cause the brittle fracture. Scanning electron microscope observations revealed that the compressive fracture surface of the samples from the central thin section mainly consisted of vein-like structure, but the samples from the outer rim of the head showed mixture of vein-like structure and featureless brittle fracture morphology. At 573 K, both samples exhibited the decrease of strength and fractured in the elastic region. In this study, the effect of crystallization on the reliability and safety of golf club heads was also examined

  2. Micro-thermomechanical constitutive model of transformation induced plasticity and its application on armour steel

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.Y. [School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China)], E-mail: suncy@me.ustb.edu.cn; Fang, G.; Lei, L.P.; Zeng, P. [Key Laboratory of Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2009-01-15

    Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J{sub 2} flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results.

  3. Micro-thermomechanical constitutive model of transformation induced plasticity and its application on armour steel

    International Nuclear Information System (INIS)

    Sun, C.Y.; Fang, G.; Lei, L.P.; Zeng, P.

    2009-01-01

    Based on the crystallographic theory of martensitic transformation and internal variable constitutive theory, a micromechanical constitutive model of martensitic transformation induced plasticity was developed. Plastic strains of product and parent phases as well as the volume fraction of each martensitic variant were considered as internal variables describing the microstructure evolution. The plasticity flow both in austenite and martensitic variants domain is described by J 2 flow theory. The thermodynamic driving force acting on these internal variables was obtained through the determination of the intrinsic dissipation due to plastic flow and the growth of martensitic domains. The evolution laws of the internal variables are derived, furthermore macroscopic response due to the change of internal variables is obtained. Thermomechanical behavior of armour steel under uniaxial loading was tested which showed a good agreement with experimental results

  4. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics

    International Nuclear Information System (INIS)

    Sun, Q.; Zhao, Z.; Chen, W.; Qing, X.; Xu, X.; Dai, F.

    1994-01-01

    Stress-induced martensitic transformation plastic zones in ceria-stabilized tetragonal zirconia polycrystalline ceramics (Ce-TZP), under loading conditions of uniaxial tension, compression, and three-point bending, are studied by experiments. The transformed monoclinic phase volume fraction distribution and the corresponding plastic strain distribution and the surface morphology (surface uplift) are measured by means of moire interferometry, Raman microprobe spectroscopy, and the surface measurement system. The experimental results from the above three kinds of specimens and methods consistently show that the stress-induced transformation at room temperature of the above specimen is not uniform within the transformation zone and that the plastic deformation is concentrated in some narrow band; i.e., macroscopic plastic flow localization proceeds during the initial stage of plastic deformation. Flow localization phenomena are all observed in uniaxial tension, compression, and three-point bending specimens. Some implications of the flow localization to the constitutive modeling and toughening of transforming thermoelastic polycrystalline ceramics are explored

  5. Metallurgical production from North-east of the Iberian Peninsula during III millennium cal. BC: the Bauma del Serrat del Pont (Tortellá, Girona workshop

    Directory of Open Access Journals (Sweden)

    Alcalde, Gabriel

    1998-06-01

    Full Text Available We examine the third millennium cal. BC levels from the small rockshelter of Bauma del Serrat del Pont. The site was settled by a small group, building a perishable structure except in the II. 5 level. Some evidence suggests a seasonal occupation of the site. Multidisciplinary research shows a broad spectrum of local resources involved in the dairy life of this people, including those related to metallurgical activity. We find very old tin alloys, plain or bell beaker decorated pot-furnaces (used to smelt copper ores and clay tuyeres.

    Se presentan los resultados de la excavación en los niveles del III milenio cal. AC del pequeño abrigo rocoso de la Bauma del Serrat del Pont. El yacimiento fue ocupado por un grupo pequeño que organizó el espacio interno con una estructura de material perecedero, excepto en el nivel II.5. Algunos datos indican que las ocupaciones pudieron tener un carácter estacional. Los estudios multidisciplinares reconstruyen un aprovechamiento diversificado de recursos locales, entre los que se integran los dedicados a las tareas metalúrgicas. Se documentan aleaciones intencionadas de bronce de gran antigüedad, el empleo de vasijas horno con o sin decoración campaniforme, y toberas de arcilla.

  6. Mechanoluminescence response to the plastic flow of coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.; Bagri, A.K.; Chandra, V.K.

    2010-01-01

    , diffusion time of holes towards F-centres, the energy gap E a between the bottom of acceptor dislocation band and the energy level of interacting F-centres, and work-hardening exponent of the crystals can be determined. As in the elastic region the strain increases linearly with stress, the ML intensity also increases linearly with stress, however, as in the plastic region, the strain increases drastically with stress and follows power law, the ML intensity also increases drastically with stress and follows power law. Thus, the ML is intimately related to the plastic flow of alkali halide crystals.

  7. Enhanced mechanical properties of single walled carbon nanotube-borosilicate glass composite due to cushioning effect and localized plastic flow

    Directory of Open Access Journals (Sweden)

    Sujan Ghosh

    2011-12-01

    Full Text Available A borosilicate glass composite has been fabricated incorporating Single Wall Carbon Nanotubes (SWCNT in the glass matrix by melt-quench technique. Hardness and the fracture toughness of the composite, were found to increase moderately with respect to the base glass. Interestingly one can observe accumulation of SWCNT bundles around the crack zone though no such accumulation was observed in the crack free indentation zone. The enhanced hardness of the composite was discussed by correlating the cushioning as well as toughening behavior of the agglomerated SWCNT bundles. On the other hand enhanced plastic flow was proposed to be the prime reason for the accumulation of SWCNT bundles around the crack, which increases the toughness of the composite by reducing the crack length. Moreover to ascertain the enhanced plasticity of the composite than that of the glass we calculated the recovery resistance of glass and the composite where recovery resistance of composite was found to be higher than that of the glass.

  8. Visualization of flowing current in braided carbon fiber reinforced plastics using SQUID gradiometer for nondestructive evaluation

    International Nuclear Information System (INIS)

    Hatsukade, Y; Yoshida, K; Kage, T; Tanaka, S; Takai, Y; Aly-Hassan, M S; Hamada, H; Nakai, A

    2013-01-01

    In this paper, visualization of flowing current in various braided carbon fiber reinforced plastics (CFRPs) was demonstrated using high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) gradiometer, in order to study electrical properties and integrity of the braided CFRP samples. Step-by-step tensile loading was also applied to the samples, in order to study their mechanical properties and destructive mechanism. Experimental results indicated that the addition of carbon nano fibers and middle-end carbon fiber bundles attributed to modify not only the mechanical properties, but also the electrical properties of the samples. Combining the results by the both methods, a scenario of the destructive mechanism of one sample was estimated.

  9. Disorientations and work-hardening behaviour during severe plastic deformation

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang

    2012-01-01

    Orientation differences develop during plastic deformation even in grains of originally uniform orientation. The evolution of these disorientations is modelled by dislocation dynamics taking into account different storage mechanisms. The predicted average disorientation angles across different ty...... pressure torsion, but also rationalizes the work-hardening behaviour at large plastic strains as well as a saturation of the flow stress....

  10. Modelling of elasto-plastic material behaviour

    International Nuclear Information System (INIS)

    Halleux, J.P.

    1981-01-01

    The present report describes time-independent elasto-plastic material behaviour modelling techniques useful for implementation in fast structural dynamics computer programs. Elasto-plastic behaviour is characteristic for metallic materials such as steel and is thus of particular importance in the study of reactor safety-related problems. The classical time-independent elasto-plastic flow theory is recalled and the fundamental incremental stress-strain relationships are established for strain rate independent material behaviour. Some particular expressions useful in practice and including reversed loading are derived and suitable computational schemes are shwon. Modelling of strain rate effects is then taken into account, according to experimental data obtained from uniaxial tension tests. Finally qualitative strain rate history effects are considered. Applications are presented and illustrate both static and dynamic material behaviour

  11. Rupture model based on non-associated plasticity

    Science.gov (United States)

    Pradeau, Adrien; Yoon, Jeong Whan; Thuillier, Sandrine; Lou, Yanshan; Zhang, Shunying

    2018-05-01

    This research work is about modeling the mechanical behavior of metallic sheets of AA6016 up to rupture using non-associated flow rule. Experiments were performed at room temperature in uniaxial tension and simple shear in different directions according to the rolling direction and an additional hydraulic bulge test. The anisotropy of the material is described by a Yld2000-2d yield surface [1], calibrated by stress ratios, and a plastic potential represented by Hill1948 [2], calibrated using Lankford coefficients. That way, the former is able to reproduce the yield stresses in different directions and the latter is able to reproduce the deformations in different directions as well [3], [4]. Indeed, the non-associated flow rule allows for the direction of the plastic flow not to be necessarily normal to the yield surface. Concerning the rupture, the macroscopic ductile fracture criterion DF2014 was used [5]. It indirectly uses the three invariants of the stress tensor by using the three following parameters: the stress triaxiality η, the Lode parameter L and the equivalent plastic strain to fracture ∈f-p . In order to be consistent with the plastic model and to add more flexibility to the p criterion, the equivalent stress σ ¯ and the equivalent strain to fracture ∈f-p have been substituted respectively as Yld2000-2d and Hill1948 in the DF2014 fracture criterion. The parameters for the fracture criterion were obtained by optimization and the fracture locus can be plotted in the (η ,L ,∈-p) space. The damage indicator D is then numerically predicted with respect of average strain values. A good correlation with the experimental results is obtained.

  12. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity

    Science.gov (United States)

    2014-01-01

    Background Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with minimal gene flow’ in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Results Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Conclusions Our study reveals

  13. Plastic creep flow processes in fracture at elevated temperatures

    International Nuclear Information System (INIS)

    Rice, J.R.

    1979-01-01

    Recent theoretical developments on fracture at elevated temperature in the presence of overall plastic (dislocation) creep are discussed. Two topics are considered: stress fields at tips of macroscopic cracks in creeping solids; and diffusive growth of microscopic grain boundary cavities in creeping solids

  14. Thermal homogeneity of plastication processes in single-screw extruders

    Science.gov (United States)

    Bu, L. X.; Agbessi, Y.; Béreaux, Y.; Charmeau, J.-Y.

    2018-05-01

    Single-screw plastication, used in extrusion and in injection moulding, is a major way of processing commodity thermoplastics. During the plastication phase, the polymeric material is melted by the combined effects of shear-induced self-heating (viscous dissipation) and heat conduction coming from the barrel. In injection moulding, a high level of reliability is usually achieved that makes this process ideally suited to mass market production. Nonetheless, process fluctuations still appear that make moulded part quality control an everyday issue. In this work, we used a combined modelling of plastication, throughput calculation and laminar dispersion, to investigate if, and how, thermal fluctuations could propagate along the screw length and affect the melt homogeneity at the end of the metering section. To do this, we used plastication models to relate changes in processing parameters to changes in the plastication length. Moreover, a simple model of throughput calculation is used to relate the screw geometry, the polymer rheology and the processing parameters to get a good estimate of the mass flow rate. Hence, we found that the typical residence time in a single screw is around one tenth of the thermal diffusion time scale. This residence time is too short for the dispersion coefficient to reach a steady state, but too long to be able to neglect radial thermal diffusion and resort to a purely convective solution. Therefore, a full diffusion/convection problem has to be solved with a base flow described by the classic pressure and drag velocity field. Preliminary results already show the major importance of the processing parameters in the breakthrough curve of an arbitrary temperature fluctuation at the end of the metering section of injection moulding screw. When the flow back-pressure is high, the temperature fluctuation is spread more evenly with time, whereas a pressure drop in the flow will results in a breakthrough curve which presents a larger peak of

  15. Cyclic plastic hinges with degradation effects for frame structures

    DEFF Research Database (Denmark)

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex...... shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each generalized stress-strain component describing yield level, ultimate stress capacity, elastic...... and stiffness parameters. The cyclic plastic hinges are introduced into a six-component equilibrium-based beam element, using additive element and hinge flexibilities. When converted to stiffness format the plastic hinges are incorporated into the element stiffness matrix. The cyclic plastic hinge model...

  16. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  17. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  18. Die design and process optimization of plastic gear extrusion

    Science.gov (United States)

    Zhang, Lei; Fu, Zhihong; Yao, Chen; Zang, Gongzheng; Wan, Yue

    2018-01-01

    The flow velocity of the melt in the extruder was simulated by using software Polyflow, and the size of the die channel with the best flow uniformity was obtained. The die profile shape is obtained by reverse design. The length of the shaping section is determined by Ansys transient thermal analysis. According to the simulation results, the design and manufacture of extrusion die of plastic gear and vacuum cooling setting were obtained. The influence of the five process parameters on the precision of the plastic gear were studied by the single factor analysis method, such as the die temperature T, the screw speed R, the die spacing S, the vacuum degree M and the hauling speed V. The optimal combination of process parameters was obtained by using the neural network particle swarm optimization algorithm(T = 197.05 °C, R = 9.04rpm, S = 67mm, M = -0.0194MPa). The tooth profile deviation of the extruded plastic gear can reach 9 level of accuracy.

  19. Separation of Flame and Nonflame-retardant Plastics Utilizing Magneto-Archimedes Method

    International Nuclear Information System (INIS)

    Misawa, Kohei; Kobayashi, Takayuki; Mori, Tatsuya; Akiyama, Yoko; Nishijima, Shigehiro; Mishima, Fumihito

    2017-01-01

    In physical recycling process, the quality of recycled plastics becomes usually poor in case various kinds of plastic materials are mixed. In order to solve the problem, we tried to separate flame and nonflame-retardant plastics used for toner cartridges as one example of mixed plastics by using magneto-Archimedes method. By using this method, we can control levitation and settlement of the particles in the medium by controlling the density and magnetic susceptibility of the medium and the magnetic field. In this study, we introduced the separation system of plastics by the combination of wet type specific gravity separation and magneto-Archimedes separation. In addition, we examined continuous and massive separation by introducing the system which can separate the plastics continuously in the flowing fluid. (paper)

  20. Stability and Volumetric Properties of Asphalt Mixture Containing Waste Plastic

    Directory of Open Access Journals (Sweden)

    Abd Kader Siti Aminah

    2017-01-01

    Full Text Available The objectives of this study are to determine the optimum bitumen content (OBC for every percentage added of waste plastics in asphalt mixtures and to investigate the stability properties of the asphalt mixtures containing waste plastic. Marshall stability and flow values along with density, air voids in total mix, voids in mineral aggregate, and voids filled with bitumen were determined to obtain OBC at different percentages of waste plastic, i.e., 4%, 6%, 8%, and 10% by weight of bitumen as additive. Results showed that the OBC for the plastic-modified asphalt mixtures at 4%, 6%, 8%, and 10% are 4.98, 5.44, 5.48, and 5.14, respectively. On the other hand, the controlled specimen’s shows better volumetric properties compared to plastic mixes. However, 4% additional of waste plastic indicated better stability than controlled specimen.

  1. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids

    Science.gov (United States)

    Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard

    2013-02-01

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.

  2. The influence of maltodextrins on the structure and properties of compression-molded starch plastic sheets

    NARCIS (Netherlands)

    Soest, van J.J.G.; Kortleve, P.M.

    1999-01-01

    Starch plastic sheets were prepared by compression molding of starch-based plastic granulates. The granulates were prepared by extrusion processing of mixtures of granular potato starch and several maltodextrins (5% w/w) in the presence of glycerol and water as plasticizers and lecithin as melt flow

  3. UTILIZATION OF WASTE PLASTIC BOTTLES IN ASPHALT MIXTURE

    Directory of Open Access Journals (Sweden)

    TAHER BAGHAEE MOGHADDAM

    2013-06-01

    Full Text Available Nowadays, large amounts of waste materials are being produced in the world. One of the waste materials is plastic bottle. Generating disposable plastic bottles is becoming a major problem in many countries. Using waste plastic as a secondary material in construction projects would be a solution to overcome the crisis of producing large amount of waste plastics in one hand and improving the structure’s characteristics such as resistance against cracking on the other hand. This study aimed to investigate the effects of adding plastic bottles in road pavement. Marshall properties as well as specific gravity of asphalt mixture containing different percentages of plastic bottles were evaluated. Besides, Optimum Asphalt Content (OAC was calculated for each percentages of plastic bottles used in the mix. The stiffness and fatigue characteristics of mixture were assessed at OAC value. Results showed that the stability and flow values of asphalt mixture increased by adding waste crushed plastic bottle into the asphalt mixture. Further, it was shown that the bulk specific gravity and stiffness of mixtures increased by adding lower amount of plastic bottles; however, adding higher amounts of plastic resulted in lower specific gravity and mix stiffness. In addition, it was concluded that the mixtures containing waste plastic bottles have lower OAC values compared to the conventional mixture, and this may reduce the amount of asphalt binder can be used in road construction projects. Besides, the mixtures containing waste plastic showed significantly greater fatigue resistance than the conventional mixture.

  4. Flow-Injection Amperometric Determination of Tacrine based on Ion Transfer across a Water–Plasticized Polymeric Membrane Interface

    Directory of Open Access Journals (Sweden)

    C. Rueda

    2007-07-01

    Full Text Available A flow-injection pulse amperometric method for determining tacrine, based onion transfer across a plasticized poly(vinyl chloride (PVC membrane, was developed. Afour-electrode potentiostat with ohmic drop compensation was used, while a flow-throughcell incorporated the four electrodes and the membrane, which containedtetrabutylammonium tetraphenylborate. The influence of the applied potential and of theflow-injection variables on the determination of tacrine was studied. In the selectedconditions, a linear relationship between peak height and tacrine concentration was foundup to 4x10-5M tacrine. The detection limit was 1x10-7M. Good repeatability was obtained.Some common ions and pharmaceutical excipients did not interfere.

  5. Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches

    Science.gov (United States)

    Bresch, D.; Fernández-Nieto, E. D.; Ionescu, I. R.; Vigneaux, P.

    In this paper we propose a well-balanced finite volume/augmented Lagrangian method for compressible visco-plastic models focusing on a compressible Bingham type system with applications to dense avalanches. For the sake of completeness we also present a method showing that such a system may be derived for a shallow flow of a rigid-viscoplastic incompressible fluid, namely for incompressible Bingham type fluid with free surface. When the fluid is relatively shallow and spreads slowly, lubrication-style asymptotic approximations can be used to build reduced models for the spreading dynamics, see for instance [N.J. Balmforth et al., J. Fluid Mech (2002)]. When the motion is a little bit quicker, shallow water theory for non-Newtonian flows may be applied, for instance assuming a Navier type boundary condition at the bottom. We start from the variational inequality for an incompressible Bingham fluid and derive a shallow water type system. In the case where Bingham number and viscosity are set to zero we obtain the classical Shallow Water or Saint-Venant equations obtained for instance in [J.F. Gerbeau, B. Perthame, DCDS (2001)]. For numerical purposes, we focus on the one-dimensional in space model: We study associated static solutions with sufficient conditions that relate the slope of the bottom with the Bingham number and domain dimensions. We also propose a well-balanced finite volume/augmented Lagrangian method. It combines well-balanced finite volume schemes for spatial discretization with the augmented Lagrangian method to treat the associated optimization problem. Finally, we present various numerical tests.

  6. High order curvilinear finite elements for elastic–plastic Lagrangian dynamics

    International Nuclear Information System (INIS)

    Dobrev, Veselin A.; Kolev, Tzanio V.; Rieben, Robert N.

    2014-01-01

    This paper presents a high-order finite element method for calculating elastic–plastic flow on moving curvilinear meshes and is an extension of our general high-order curvilinear finite element approach for solving the Euler equations of gas dynamics in a Lagrangian frame [1,2]. In order to handle transition to plastic flow, we formulate the stress–strain relation in rate (or incremental) form and augment our semi-discrete equations for Lagrangian hydrodynamics with an additional evolution equation for the deviatoric stress which is valid for arbitrary order spatial discretizations of the kinematic and thermodynamic variables. The semi-discrete equation for the deviatoric stress rate is developed for 2D planar, 2D axisymmetric and full 3D geometries. For each case, the strain rate is approximated via a collocation method at zone quadrature points while the deviatoric stress is approximated using an L 2 projection onto the thermodynamic basis. We apply high order, energy conserving, explicit time stepping methods to the semi-discrete equations to develop the fully discrete method. We conclude with numerical results from an extensive series of verification tests that demonstrate several practical advantages of using high-order finite elements for elastic–plastic flow

  7. Corrosion Induced Loss of Capacity of Post Tensioned Seven Wire Strand Cable Used in Multistrand Anchor Systems Installed at Corps Projects

    Science.gov (United States)

    2016-12-01

    wedges. Method 4: Using a plastic -coated aluminum wire mesh to act as a cushion around the cable to reduce the bite of the serrations in the wedges...PT seven-wire strand cable surrounded by copper sheet layers and the wedges. Method 6: Using one wrap of 0.005 in. bronze shim stock to act as a...sterilized before use to reduce the presence of biological agents that will affect the sample during shipment. Plastics are lighter than glass

  8. Localization of plastic yield and fracture mechanism in high-strength niobium alloy with ultra-fine particles of non-metallic phase

    International Nuclear Information System (INIS)

    Tyumentsev, A.N.; Gonchikov, V.Ch.; Korotaev, A.D.; Pinzhin, Yu.P.; Tyumentseva, S.F.

    1989-01-01

    The regularities of localization of plastic flow in high-strength dispersion-strengthened niobium alloy are studied. On the basis of investigations of the microstructure of strain localization zones the mechanism of stability losses of plastic flow including, the processes of diffusion of nonequilibrium vacancies in fields of nonuniform stresses, is proposed. The role of diffuse strain mechanisms during reorientation of the crystalline lattice is discussed. The regularities of fracture of high-strength alloy under conditions of rotational-shift instability of plastic flow are investigated

  9. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vanaja, J., E-mail: jvanaja4@gmail.com [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sam, Shiju [Institute for Plasma Research, Gandhinagar, Gujarat (India); Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat (India)

    2012-05-15

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  10. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic-martensitic steel

    Science.gov (United States)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-05-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  11. Influence of strain rate and temperature on tensile properties and flow behaviour of a reduced activation ferritic–martensitic steel

    International Nuclear Information System (INIS)

    Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M.D.; Jayakumar, T.; Rajendra Kumar, E.

    2012-01-01

    Tensile strength and flow behaviour of a Reduced Activation Ferritic–Martensitic (RAFM) steel (9Cr–1W–0.06Ta–0.22V–0.08C) have been investigated over a temperature range of 300–873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.

  12. Plastic Deformation of Metal Tubes Subjected to Lateral Blast Loads

    Directory of Open Access Journals (Sweden)

    Kejian Song

    2014-01-01

    Full Text Available When subjected to the dynamic load, the behavior of the structures is complex and makes it difficult to describe the process of the deformation. In the paper, an analytical model is presented to analyze the plastic deformation of the steel circular tubes. The aim of the research is to calculate the deflection and the deformation angle of the tubes. A series of assumptions are made to achieve the objective. During the research, we build a mathematical model for simply supported thin-walled metal tubes with finite length. At a specified distance above the tube, a TNT charge explodes and generates a plastic shock wave. The wave can be seen as uniformly distributed over the upper semicircle of the cross-section. The simplified Tresca yield domain can be used to describe the plastic flow of the circular tube. The yield domain together with the plastic flow law and other assumptions can finally lead to the solving of the deflection. In the end, tubes with different dimensions subjected to blast wave induced by the TNT charge are observed in experiments. Comparison shows that the numerical results agree well with experiment observations.

  13. Implementation of an e-learning module improves consistency in the histopathological diagnosis of sessile serrated lesions within a nationwide population screening programme.

    Science.gov (United States)

    IJspeert, Joep E G; Madani, Ariana; Overbeek, Lucy I H; Dekker, Evelien; Nagtegaal, Iris D

    2017-05-01

    Distinguishing premalignant sessile serrated lesions (SSLs) from hyperplastic polyps (HPs) is difficult for pathologists in daily practice. We aimed to evaluate nationwide variability within histopathology laboratories in the frequency of diagnosing an SSL as compared with an HP within the Dutch population-based screening programme for colorectal cancer and to assess the effect of an e-learning module on interlaboratory consistency. Data were retrieved from the Dutch Pathology Registry from the start of the nationwide population screening programme, January 2014, until December 2015. An obligatory e-learning module was implemented among pathologists in October 2014. The ratio between SSL and HP diagnosis was determined per laboratory. Odds ratios (ORs) for the diagnosis of an SSL per laboratory were compared with the laboratory with the median odds (median laboratory), before and after implementation of the e-learning module. In total, 14 997 individuals with 27 879 serrated polyps were included; 6665 (23.9%) were diagnosed as SSLs, and 21 214 as HPs (76.1%). The ratio of diagnosing an SSL ranged from 5% to 47% (median 23%) within 44 laboratories. Half of the laboratories showed a significantly different OR (range 3.47-0.16) for diagnosing an SSL than the median laboratory. Variability decreased after implementation of the e-learning module (P = 0.02). Of all pathology laboratories, 70% became more consistent with the median laboratory after e-learning implementation. We demonstrated substantial interlaboratory variability in the histopathological diagnosis of SSLs, which significantly decreased after implementation of a structured e-learning module. Widespread implementation of education might contribute to more homogeneous practice among pathologists. © 2016 John Wiley & Sons Ltd.

  14. Plastic forming simulation analysis of marine engine crankshaft single-throw

    Directory of Open Access Journals (Sweden)

    LIU Peipei

    2016-08-01

    Full Text Available The research object is for marine engine crankshaft single-throw.A 3D model of the crankshaft single-throw blank and die in forging process is established by SolidWorks software,then the 3D model is imported into metal plastic forming CAE software DEFROM-3D to carry on the plastic forming simulation,to verify the relationship between the internal flow stress and the external deformation conditions in the process of metal plastic deformation under different strain rate and temperature,and to carry on the scientific analysis based on the obtained data.The result shows that the preset temperature is higher,the stress-strain curve is relatively lower when the strain rate is constant.Sample internal flow stress will be greater and the resistance to fatigue strength will be poorer at a higher strain rate when the temperature of the blank is constant.The result also provides a theoretical basis for further optimization design.

  15. Granular flows in constrained geometries

    Science.gov (United States)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  16. Psychosomatic plasticity: An "emergent property" of personality research?

    Science.gov (United States)

    Jawer, Michael

    2006-03-01

    Psychosomatic plasticity, defined as an extreme capacity to turn suggestions into bodily realities, is as phenomenon well worth investigating because it challenges mainstream conceptions about the relationship between mind and body in health as well as illness. The field of psychoneuroimmunology (PNI) offers a framework within which to understand this phenomenon because PNI makes a compelling case for the biological unity of self. Hartmann's Boundaries concept is particularly applicable because it suggests that the minds of "thin-boundary" persons are relatively fluid and able to make numerous connections. Wilson and Barber's identification of the fantasy prone person and Thalbourne's transliminality concept are similarly relevant. Taking these explorations a step further, this author proposes that the flow of feeling within individuals represents the key to psychosomatic plasticity. Blushing, psoriasis, and immune reactions are offered as examples, as are more anomalous reports such as those provided by heart transplantation recipients and cases said to be indicative of reincarnation. In each instance, persons who are highly sensitive (ie, have a speedier and more direct flow of feeling) are more likely to evidence physical reactions. Psychosomatic plasticity represents an emerging area of interest in personality research, one that clearly merits further investigation.

  17. Probing the limits of metal plasticity with molecular dynamics simulations

    Science.gov (United States)

    Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.

    2017-10-01

    Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong

  18. Slip-line field analysis of metal flow during two dimensional forging

    International Nuclear Information System (INIS)

    Fenton, R.G.; Khataan, H.A.

    1981-01-01

    A method of computation and a computer software package were developed for solving problems of two dimensional plastic flow between symmetrical dies of any specified shape. The load required to initiate plastic flow, the stress and velocity distributions in the plastic region of the metal, and the pressure distribution acting on the die are determined. The method can be used to solve any symmetrical plane strain flow problem regardless of the complexity of the die. The accurate solution obtained by this efficient method can provide valuable help to forging die designers. (Author) [pt

  19. Managing plastic waste in urban Kenya: niche innovations in production and recycling

    OpenAIRE

    Ombis, L.O.

    2012-01-01

    The problems with plastic waste in Kenyan cities are increasing to alarming levels. Especially disposable packaging made of very light plastic materials continues to burden the environment as well as compromise management capacities for waste by city authorities. In light of this, major cities of Kenya have in the last two decades registered participation of formal and informal private actors with strategies to curtail the flow of plastic waste to the environment. This study argues that such...

  20. Flow stress anisotropy in aluminium

    DEFF Research Database (Denmark)

    Juul Jensen, D.; Hansen, N.

    1990-01-01

    The plastic anisotropy of cold-rolled high purity aluminum (99.996%) and commercially pure aluminum (99.6%) has been investigated. Sample parameters were the initial grain size and the degree of plastic strain (ϵ < 3.00). Flow stresses (0.2% offset) were measured at room temperature by uniaxial t...

  1. Plastic in the Thames: a river runs through it.

    Science.gov (United States)

    Morritt, David; Stefanoudis, Paris V; Pearce, Dave; Crimmen, Oliver A; Clark, Paul F

    2014-01-15

    Although contamination of the marine ecosystems by plastics is becoming recognised as a serious pollution problem, there are few studies that demonstrate the contribution made by freshwater catchments. Over a three month period from September to December 2012, at seven localities in the upper Thames estuary, 8490 submerged plastic items were intercepted in eel fyke nets anchored to the river bed. Whilst there were significant differences in the numbers of items at these locations, the majority were some type of plastic. Additionally in excess of 20% of the litter items were components of sanitary products. The most contaminated sites were in the vicinity of sewage treatment works. While floating litter is visible, this study also demonstrates that a large unseen volume of submerged plastic is flowing into the marine environment. It is therefore important that this sub-surface component is considered when assessing plastic pollution input into the sea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Application of IAEA TECDOC 717 to the assessment of brittle fracture in transport containers with plastic flow shock absorbers

    International Nuclear Information System (INIS)

    Gray, I.L.S.; Sievwright, R.W.T.; Cardwell, S.; Donelan, P.

    1995-01-01

    UK Nirex is developing re-usable shielded transport containers (RSTCs) in a range of shielding thicknesses (from 70 mm to 285 mm) to transport immobilised intermediate level radioactive waste (ILW) to a deep repository. The RSTCs are being designed to meet the requirements of the IAEA Transport Regulations for Type B packages, including the requirement to maintain shielding and containment following a drop of 9 m onto an unyielding surface. The RSTCs are essentially monolithic in construction and the heaviest version weighs up to 65 tonnes when loaded with contents. They rely principally on plastic flow of the material of construction to absorb the high energies involved in impact events. Specific features of the designs, such as the solid metal corner shock absorbers and side ribs have been optimised for this purpose. Nirex has investigated the feasibility of manufacturing the RSTCs from ductile cast iron (DCI) or cast steel instead of from forgings, since this would bring advantages of reduced manufacturing time and costs. In this paper the methodology set out in IAEA-TECDOC-717 is applied to the Nirex RSTC, including the application of elastic plastic fracture mechanics methods. (author)

  3. Interface crack growth for anisotropic plasticity with non-normality effects

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2007-01-01

    A plasticity model with a non-normality plastic flow rule is used to analyze crack growth along an interface between a solid with plastic anisotropy and an elastic substrate. The fracture process is represented in terms of a traction-separation law specified on the crack plane. A phenomenological...... an oscillating stress singularity, and with conditions of small scale yielding this solution is applied as boundary conditions on the outer edge of the region analyzed. Crack growth resistance curves are calculated numerically, and the effect of the near-tip mode mixity on the steady-state fracture toughness...

  4. Adaptive plasticity model for bucket foundations

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim A.

    2014-01-01

    Based on experimental investigations, the literature proposes different methods for modeling the behavior and capacity of foundations subjected to combined loading. Generally, two methods are used to predict the behavior of foundations: traditional approaches and hardening plasticity solutions......, potential, and failure surfaces are found to be dependent on the embedment ratio (i.e., ratio of skirt length to the diameter) and load path. For the models tested, associated flow is observed to be plausible in the radial planes, whereas nonassociated flow is observed in the planes along the V-axis....

  5. Recycling potential of post-consumer plastic packaging waste in Finland.

    Science.gov (United States)

    Dahlbo, Helena; Poliakova, Valeria; Mylläri, Ville; Sahimaa, Olli; Anderson, Reetta

    2018-01-01

    Recycling of plastics is urged by the need for closing material loops to maintain our natural resources when striving towards circular economy, but also by the concern raced by observations of plastic scrap in oceans and lakes. Packaging industry is the sector using the largest share of plastics, hence packaging dominates in the plastic waste flow. The aim of this paper was to sum up the recycling potential of post-consumer plastic packaging waste in Finland. This potential was evaluated based on the quantity, composition and mechanical quality of the plastic packaging waste generated by consumers and collected as a source-separated fraction, within the mixed municipal solid waste (MSW) or within energy waste. Based on the assessment 86,000-117,000 tons (18 kg/person/a) of post-consumer plastic packaging waste was generated in Finland in 2014. The majority, 84% of the waste was in the mixed MSW flow in 2014. Due to the launching of new sorting facilities and separate collections for post-consumer plastic packaging in 2016, almost 40% of the post-consumer plastic packaging could become available for recycling. However, a 50% recycling rate for post-consumer plastic packaging (other than PET bottles) would be needed to increase the overall MSW recycling rate from the current 41% by around two percentage points. The share of monotype plastics in the overall MSW plastics fraction was 80%, hence by volume the recycling potential of MSW plastics is high. Polypropylene (PP) and low density polyethylene (LDPE) were the most common plastic types present in mixed MSW, followed by polyethylene terephthalate (PET), polystyrene (PS) and high density polyethylene (HDPE). If all the Finnish plastic packaging waste collected through the three collection types would be available for recycling, then 19,000-25,000 tons of recycled PP and 6000-8000 tons of recycled HDPE would be available on the local market. However, this assessment includes uncertainties due to performing the

  6. Cyclic plastic hinges with degradation effects for frame structures

    OpenAIRE

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each gen...

  7. Pattern formation in plastic liquid films on elastomers by ratcheting.

    Science.gov (United States)

    Huang, Jiangshui; Yang, Jiawei; Jin, Lihua; Clarke, David R; Suo, Zhigang

    2016-04-20

    Plastic liquids, also known as Bingham liquids, retain their shape when loads are small, but flow when loads exceed a threshold. We discovered that plastic liquid films coated on elastomers develop wavy patterns under cyclic loads. As the number of cycles increases, the wavelength of the patterns remains unchanged, but the amplitude of the patterns increases and then saturates. Because the patterns develop progressively under cyclic loads, we call this phenomenon as "patterning by ratcheting". We observe the phenomenon in plastic liquids of several kinds, and studied the effects of thickness, the cyclic frequency of the stretch, and the range of the stretch. Finite element simulations show that the ratcheting phenomenon can occur in materials described by a commonly used model of elastic-plastic deformation.

  8. Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube

    International Nuclear Information System (INIS)

    Eraslan, Ahmet N.; Akis, Tolga

    2006-01-01

    Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters

  9. Filling behaviour of wood plastic composites

    Science.gov (United States)

    Duretek, I.; Lucyshyn, T.; Holzer, C.

    2017-01-01

    Wood plastic composites (WPC) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth’s resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection moulding processes. This work presents the results of numerical simulation and experimental visualisation of the mould filling process in injection moulding of WPC. The 3D injection moulding simulations were done with the commercial software package Autodesk® Moldflow® Insight 2016 (AMI). The mould filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the moulded part, especially at high filler content.

  10. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    Science.gov (United States)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  11. Performance of maleated castor oil based plasticizer on rubber: rheology and curing characteristic studies

    Science.gov (United States)

    Indrajati, I. N.; Dewi, I. R.

    2017-07-01

    The objective of this study was to evaluate the performance of maleated castor oil (MACO) as plasticizer on natural rubber (NR), ethylene propylene diene monomer (EPDM), and nitrile butadiene rubber (NBR). The parameter studied were involving rheological, curing and swelling properties. The MACOs were prepared by an esterification reaction between castor oil (CO) and maleic anhydride (MAH) with the help of xylene as water entrainer to improve water removal. Resulting oils then applied as a plasticizer in each of those rubbers within a fixed loading of 5 phr. Comparison has been made to evaluate the performance of MACO and conventional plasticizer (paraffinic oil for NR and EPDM, DOP for NBR) on each rubber. Rheology, curing characteristic and swelling of each rubber were studied. The results showed that rubber (NR/EPDM/NBR) plasticized with MACO had given similar flow characteristic to conventional plasticizers. MACO exhibited slow curing, confirmed by higher t90, but the scorch safety was of the same magnitude. MAH loading tended to decrease the flow properties and curing rate, while scorch time (ts2) was independent.

  12. Method for determining the work hardening function to describe plasticity of metals

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1978-01-01

    A method for obtaining a constitutive relation that relates the flow stress to the equivalent plastic strain is developed. The method uses simple tension test data to suggest a functional form. This form is then used as a constitutive model in a computer program that simulates the tension test. The calculated results are compared with the experimental results and the functional form is refined until agreement is obtained between calculations and experiments. The importance of knowing the relationship between the flow stress and the plastic strain is discussed. A work hardening function is calibrated for 6061 T6 aluminum

  13. A numerical basis for strain-gradient plasticity theory: Rate-independent and rate-dependent formulations

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2014-01-01

    of a single plastic zone is analyzed to illustrate the agreement with earlier published results, whereafter examples of (ii) multiple plastic zone interaction, and (iii) elastic–plastic loading/unloading are presented. Here, the simple shear problem of an infinite slab constrained between rigid plates......A numerical model formulation of the higher order flow theory (rate-independent) by Fleck and Willis [2009. A mathematical basis for strain-gradient plasticity theory – part II: tensorial plastic multiplier. Journal of the Mechanics and Physics of Solids 57, 1045-1057.], that allows for elastic–plastic...... loading/unloading and the interaction of multiple plastic zones, is proposed. The predicted model response is compared to the corresponding rate-dependent version of visco-plastic origin, and coinciding results are obtained in the limit of small strain-rate sensitivity. First, (i) the evolution...

  14. Designing Business Solutions for Plastic Waste Management to Enhance Circular Transitions in Kenya

    Directory of Open Access Journals (Sweden)

    Balint Horvath

    2018-05-01

    Full Text Available Least-developed countries face many challenges regarding their plastic waste management systems. In 2017, Kenya imposed a selective ban targeting manufacturers and consumers of plastic carrier bags. However, this selectivity does not avoid the continuous use of other plastic products. The present paper states that circular priorities, which have been defined to advanced economies, would not be entirely valid for the rest of the world. While high-income countries face only the impacts of their own consumption, developing nations must endure the externalities of these developed economies. Thus, the focus of the least developed part of the world must not be on reducing its relatively normal (or even low consumption, but to manage its surplus material flow. According to the employed circular evaluation methodology (CEV—Circular Economic Value, the circularity level in Kenya’s plastic material flow stands on a rather low stage with 32.72%. This result outlines the linear deficiencies of the plastic waste management system and urges the prevention of further material leakage (such as energy use. Through the Business Model Canvas (BMC approach this study offers a holistic business solution which can improve the system’s sustainability.

  15. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities

    OpenAIRE

    Schwarzb?ck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2016-01-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternati...

  16. Portevin-Le Chatelier effect in an E911 creep resistant steel with 3%Co additives

    International Nuclear Information System (INIS)

    Kipelova, A; Kaibyshev, R; Skorobogatykh, V; Schenkova, I

    2010-01-01

    The effect of tempering temperature on mechanical properties of an E911+3%Co creep resistant steel was investigated. The mechanical tensile tests were carried out at temperatures from 298 to 1073 K and at strain rates varying from 2.1 x 10 -5 s -1 to 2.1 x 10 -1 s -1 . The Portevin-Le Chatelier (PLC) effect was found in the temperature range of 473 to 623 K. Various attributes of dynamic strain aging (DSA) like serrated flow with an acoustic emission were observed. With increasing temperature the ultimate tensile strength (UTS) and the yield strength (YS) increased while the ductility decreased. The dependences of the critical plastic strain on strain rate and temperature exhibited 'inverse' behavior that was associated with concentrated solid solution in the DSA regime.

  17. Methodology for plastic fracture. A progress report

    International Nuclear Information System (INIS)

    Wilkinson, J.P.D.; Hahn, G.T.; Smith, R.E.E.

    1977-01-01

    The initiation and growth of flaws in pressure vessels under overload conditions is distinguished by a number of unique features, such as large scale yielding, three-dimensional structural and flaw configurations, and failure instabilities that may be controlled by either toughness or plastic flow. In order to develop a broadly applicable methodology of plastic fracture, these features require the following analytical and experimental studies: development of criteria for crack initiation and growth under large scale yielding; the use of the finite element method to describe elastic-plastic behavior of both the structure and the crack tip region; and extensive experimental studies on laboratory scale and large scale specimens, which attempt to reproduce the pertinent plastic flow and crack growth phenomena. A variety of candidate criteria for crack initiation and growth are examined. For the case of crack initiation, these criteria include the J-integral, crack opening displacement, and strain amplitude. In the case of crack growth, the criteria examined include in addition the strain amplitude at the crack tip, work done in a crack tip process zone, and a generalized energy release-rate approach. Each test specimen configuration is analyzed through the finite element method in order to predict its experimental behavior. Specimens include the compact tension specimen and center cracked panels. The basic materials used in the program are a single heat of reactor grade A533 Grade B Class 1 steel, purchased in the form of a plate of size 4.5 m (178 in.) square and 0.2 m (8 in.) thick, and two alloys with yield strength-to-roughness ratios about five times

  18. A constitutive law for dense granular flows.

    Science.gov (United States)

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  19. COMPUTER MODELING IN DEFORM-3D FOR ANALYSIS OF PLASTIC FLOW IN HIGH-SPEED HOT EXTRUSION OF BIMETALLIC FORMATIVE PARTS OF DIE TOOLING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2015-01-01

    Full Text Available The modern development of industrial production is closely connected with the use of science-based and high technologies to ensure competitiveness of the manufactured products on the world market. There is also much tension around an energy- and resource saving problem which can be solved while introducing new technological processes and  creation of new materials that provide productivity increase through automation and improvement of tool life. Development and implementation of such technologies are rather often considered as time-consuming processes  which are connected with complex calculations and experimental investigations. Implementation of a simulation modelling for materials processing using modern software products serves an alternative to experimental and theoretical methods of research.The aim of this paper is to compare experimental results while obtaining bimetallic samples of a forming tool through the method of speed hot extrusion and the results obtained with the help of computer simulation using DEFORM-3D package and a finite element method. Comparative analysis of plastic flow of real and model samples has shown that the obtained models provide high-quality and reliable picture of plastic flow during high-speed hot extrusion. Modeling in DEFORM-3D make it possible to eliminate complex calculations and significantly reduce a number of experimental studies while developing new technological processes.

  20. Neutron-gamma discrimination of boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    Wang Dong; He Bin; Zhang Quanhu; Wu Chuangxin; Luo Zhonghui

    2010-01-01

    Boron loaded plastic scintillator could detect both fast neutrons thanks to hydrogen and thermal neutrons thanks to 10B. Both reactions have large cross sections, and results in high detection efficiency of incident neutrons. However, similar with other organic scintillators, boron loaded plastic scintillator is sensitive to gamma rays and neutrons. So gamma rays must be rejected from neutrons using their different behavior in the scintillator. In the present research zero crossing method was used to test neutron-gamma discrimination of BC454 boron loaded plastic scintillator. There are three Gaussian peaks in the time spectrum, they are corresponding to gamma rays, fast neutrons and flow neutrons respectively. Conclusion could be made that BC454 could clear discriminate slow neutrons and gamma, but the discrimination performance turns poor as the neutrons' energy becomes larger. (authors)

  1. Diagnostic value of mammography flowing plastic and reconstructive breast surgery

    International Nuclear Information System (INIS)

    Wardzynska, K.; Wesolowska, E.

    2009-01-01

    Breast cancer is the most frequent malignant neoplasm in women. Due to the growing knowledge and self- consciousness about the disease itself as well as regarding treatment options among breast cancer patients. Main indications for reconstruction after mastectomy include fear of both physical and psychological damage and, in a broader sense, the lack of contraindications for the procedure. Altogether, these factors are in fact directly responsible for the increase in the number of reconstructive procedures, which have become one of the important elements in breast cancer treatment. Year by year, the number of plastic surgery procedures has been growing. Assessment of the breast aimed at discerning the presence diminishing procedures. In women with prostheses implanted for cosmetic reasons, mamsaography provides an opportunity to correctly diagnose and confirm implant damage. Women who have undergonew such procedures should be screened mammographically in the same way as the rest of the female population is. The aim of this paper is to summarize the value of diagnostic mammagraphy after plastic and reconstructive surgery. (authors)

  2. Plastic zone size for nanoindentation of irradiated Fe–9%Cr ODS

    Energy Technology Data Exchange (ETDEWEB)

    Dolph, Corey K. [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Silva, Douglas J. da [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310, São Carlos, São Paulo (Brazil); Swenson, Matthew J. [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Wharry, Janelle P., E-mail: jwharry@purdue.edu [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Purdue University, 400 Central Drive, West Lafayette, IN 47907 (United States)

    2016-12-01

    The objective of this study is to determine irradiation effects on the nanoindentation plastic zone morphology in a model Fe–9%Cr ODS alloy. Specimens are irradiated to 50 displacements per atom at 400°C with Fe{sup ++} self-ions or to 3 dpa at 500°C with neutrons. The as-received specimen is also studied as a control. The nanoindentation plastic zone size is calculated using two approaches: (1) an analytical model based on the expanding spherical cavity analogy, and (2) finite element modeling (FEM). Plastic zones in all specimen conditions extend radially outward from the indenter, ∼4–5 times the tip radius, indicative of fully plastic contact. Non-negligible plastic flow in the radial direction requires the experimentalist to consider the plastic zone morphology when nanoindenting ion-irradiated specimens; a single nanoindent may sample non-uniform irradiation damage, regardless of whether the indent is made top-down or in cross-section. Finally, true stress-strain curves are generated.

  3. A standardized method to create peripheral nerve injury in dogs using an automatic non-serrated forceps

    Institute of Scientific and Technical Information of China (English)

    Xuhui Wang; Shiting Li; Liang Wan; Xinyuan Li; Youqiang Meng; Ningxi Zhu; Min Yang; Baohui Feng; Wenchuan Zhang; Shugan Zhu

    2012-01-01

    This study describes a method that not only generates an automatic and standardized crush injury in the skull base, but also provides investigators with the option to choose from a range of varying pressure levels. We designed an automatic, non-serrated forceps that exerts a varying force of 0 to 100 g and lasts for a defined period of 0 to 60 seconds. This device was then used to generate a crush injury to the right oculomotor nerve of dogs with a force of 10 g for 15 seconds, resulting in a deficit in the pupil-light reflex and ptosis. Further testing of our model with Toluidine-blue staining demonstrated that, at 2 weeks post-surgery disordered oculomotor nerve fibers, axonal loss, and a thinner than normal myelin sheath were visible. Electrophysiological examination showed occasional spontaneous potentials. Together, these data verified that the model for oculomotor nerve injury was successful, and that the forceps we designed can be used to establish standard mechanical injury models of peripheral nerves.

  4. Cleavage crack growth resistance due to plastic flow around a near-tip dislocation-free region

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    ; but plastic yielding far from the tip still adds to the fracture toughness. The model employed makes use of a dislocation-free strip of elastic material, inside which the crack propagates, while the material outside the strip is described by continuum plasticity. The approximation involved in assuming......Crack growth resistance curves are computed numerically for cases where fracture occurs by atomic separation, so that the length scale of the fracture process is typically much smaller than the dislocation spacing. Here, continuum plasticity would not give realistic stress levels near the crack tip...

  5. Plastic debris retention and exportation by a mangrove forest patch

    International Nuclear Information System (INIS)

    Ivar do Sul, Juliana A.; Costa, Monica F.; Silva-Cavalcanti, Jacqueline S.; Araújo, Maria Christina B.

    2014-01-01

    Highlights: • Estuaries and mangrove forests are rarely studied for marine plastic debris loads. • Types of plastic items and mangrove forest habitats determine the potential of debris retention. • Mangrove habitats are temporary sinks of plastic debris from river and marine origins. • Plastics rapidly accumulate in mangrove forest, but are exported slowly. • Fauna and fishers using mangrove forest habitats are at risk of interaction with plastic debris. -- Abstract: An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years)

  6. An inverse method based on finite element model to derive the plastic flow properties from non-standard tensile specimens of Eurofer97 steel

    Directory of Open Access Journals (Sweden)

    S. Knitel

    2016-12-01

    Full Text Available A new inverse method was developed to derive the plastic flow properties of non-standard disk tensile specimens, which were so designed to fit irradiation rods used for spallation irradiations in SINQ (Schweizer Spallations Neutronen Quelle target at Paul Scherrer Institute. The inverse method, which makes use of MATLAB and the finite element code ABAQUS, is based upon the reconstruction of the load-displacement curve by a succession of connected small linear segments. To do so, the experimental engineering stress/strain curve is divided into an elastic and a plastic section, and the plastic section is further divided into small segments. Each segment is then used to determine an associated pair of true stress/plastic strain values, representing the constitutive behavior. The main advantage of the method is that it does not rely on a hypothetic analytical expression of the constitutive behavior. To account for the stress/strain gradients that develop in the non-standard specimen, the stress and strain were weighted over the volume of the deforming elements. The method was validated with tensile tests carried out at room temperature on non-standard flat disk tensile specimens as well as on standard cylindrical specimens made of the reduced-activation tempered martensitic steel Eurofer97. While both specimen geometries presented a significant difference in terms of deformation localization during necking, the same true stress/strain curve was deduced from the inverse method. The potential and usefulness of the inverse method is outlined for irradiated materials that suffer from a large uniform elongation reduction.

  7. Equation of limiting plasticity of the metal upon complex stress state

    International Nuclear Information System (INIS)

    Tin'gaev, A.K.

    2002-01-01

    A method for evaluation of the limiting plasticity of the metal in the zones of complex 3D stress state is presented. An analytic equation is derived for limiting plasticity. Parameters of the equation are expresses through the standard characteristics of the mechanical properties determined upon static tension of the smooth sample. Introduced into the obtained analytical equation is a universal fracture constant which indirectly characterizes the state of the material from the point of view of its capacity for elastic overstrain relaxation in the form of plastic flow or fracture. The new equation makes it possible to estimate the limiting plasticity of the metal in a state of complex stress on the basis of traditional characteristics of mechanical properties, which are not difficult to determine [ru

  8. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  9. Plastic recycling in the Nordics: A value chain market analysis.

    Science.gov (United States)

    Milios, Leonidas; Holm Christensen, Lena; McKinnon, David; Christensen, Camilla; Rasch, Marie Katrine; Hallstrøm Eriksen, Mikael

    2018-06-01

    There is low utilisation of plastic waste in the Nordic region and only a fraction of plastic materials go back into production processes through reuse and recycling practices. This paper aims to increase knowledge concerning factors that inhibit demand for recycled plastics, and to identify critical barriers for plastic recycling across the regional plastics value chain. A literature review and targeted interviews with key actors across the plastics value chain enabled the mapping of interactions between the major actors and identified hotspots that act as barriers to the flow of plastic materials. Barriers identified include the lack of both supply and demand of recycled plastic and are mainly attributed to the fragmented market of secondary materials. The main hotspots identified are the low demand due to price considerations, insufficient traceability and transparency in value chain transactions, and general design deficiencies in the recyclability of products. Value chain coordination is considered as the most important intervention by the interviewees, followed by the need for increased investment in innovation and technology development. Complementary measures that could counteract the identified barriers include public procurement for resource efficiency, ban on the incineration of recyclable materials, and specifications on the design of plastic products for reducing the number of different polymers, and the number and usage of additives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Hydraulic separation of plastic wastes: Analysis of liquid-solid interaction.

    Science.gov (United States)

    Moroni, Monica; Lupo, Emanuela; La Marca, Floriana

    2017-08-01

    The separation of plastic wastes in mechanical recycling plants is the process that ensures high-quality secondary raw materials. An innovative device employing a wet technology for particle separation is presented in this work. Due to the combination of the characteristic flow pattern developing within the apparatus and density, shape and size differences among two or more polymers, it allows their separation into two products, one collected within the instrument and the other one expelled through its outlet ducts. The kinematic investigation of the fluid flowing within the apparatus seeded with a passive tracer was conducted via image analysis for different hydraulic configurations. The two-dimensional turbulent kinetic energy results strictly connected to the apparatus separation efficacy. Image analysis was also employed to study the behaviour of mixtures of passive tracer and plastic particles with different physical characteristics in order to understand the coupling regime between fluid and solid phases. The two-dimensional turbulent kinetic energy analysis turned out to be fundamental to this aim. For the tested operating conditions, two-way coupling takes place, i.e., the fluid exerts an influence on the plastic particle and the opposite occurs too. Image analysis confirms the outcomes from the investigation of the two-phase flow via non-dimensional numbers (particle Reynolds number, Stokes number and solid phase volume fraction). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction

    Science.gov (United States)

    Budiman, A. S.; Nix, W. D.; Tamura, N.; Valek, B. C.; Gadre, K.; Maiz, J.; Spolenak, R.; Patel, J. R.

    2006-06-01

    Plastic deformation was observed in damascene Cu interconnect test structures during an in situ electromigration experiment and before the onset of visible microstructural damage (voiding, hillock formation). We show here, using a synchrotron technique of white beam x-ray microdiffraction, that the extent of this electromigration-induced plasticity is dependent on the linewidth. In wide lines, plastic deformation manifests itself as grain bending and the formation of subgrain structures, while only grain rotation is observed in the narrower lines. The deformation geometry leads us to conclude that dislocations introduced by plastic flow lie predominantly in the direction of electron flow and may provide additional easy paths for the transport of point defects. Since these findings occur long before any observable voids or hillocks are formed, they may have direct bearing on the final failure stages of electromigration.

  12. Study of an athermal quasi static plastic deformation in a 2D granular material

    Science.gov (United States)

    Zhang, Jie

    2017-11-01

    In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.

  13. Clinical outcomes of surveillance colonoscopy for patients with sessile serrated adenoma

    Directory of Open Access Journals (Sweden)

    Sung Jae Park

    2018-01-01

    Full Text Available Background/Aims: Sessile serrated adenomas (SSAs are known to be precursors of colorectal cancer (CRC. The proper interval of follow-up colonoscopy for SSAs is still being debated. We sought to determine the proper interval of colonoscopy surveillance in patients diagnosed with SSAs in South Korea. Methods: We retrospectively reviewed the medical records of patients diagnosed with SSAs who received 1 or more follow-up colonoscopies. The information reviewed included patient baseline characteristics, SSA characteristics, and colonoscopy information. Results: From January 2007 to December 2011, 152 SSAs and 8 synchronous adenocarcinomas were identified in 138 patients. The mean age of the patients was 62.2 years and 60.1% patients were men. SSAs were located in the right colon (i.e., from the cecum to the hepatic flexure in 68.4% patients. At the first follow-up, 27 SSAs were identified in 138 patients (right colon, 66.7%. At the second follow-up, 6 SSAs were identified in 65 patients (right colon, 66.7%. At the 3rd and 4th follow-up, 21 and 11 patients underwent colonoscopy, respectively, and no SSAs were detected. The total mean follow-up duration was 33.9 months. The mean size of SSAs was 8.1±5.0 mm. SSAs were most commonly found in the right colon (126/185, 68.1%. During annual follow-up colonoscopy surveillance, no cancer was detected. Conclusions: Annual colonoscopy surveillance is not necessary for identifying new CRCs in all patients diagnosed with SSAs. In addition, the right colon should be examined more carefully because SSAs occur more frequently in the right colon during initial and follow-up colonoscopies.

  14. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia

    Science.gov (United States)

    Crabtree, Gregg W.; Gogos, Joseph A.

    2014-01-01

    Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations. PMID:25505409

  15. Experimental assessment of unvalidated assumptions in classical plasticity theory.

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, Rebecca Moss (University of Utah, Salt Lake City, UT); Burghardt, Jeffrey A. (University of Utah, Salt Lake City, UT); Bauer, Stephen J.; Bronowski, David R.

    2009-01-01

    This report investigates the validity of several key assumptions in classical plasticity theory regarding material response to changes in the loading direction. Three metals, two rock types, and one ceramic were subjected to non-standard loading directions, and the resulting strain response increments were displayed in Gudehus diagrams to illustrate the approximation error of classical plasticity theories. A rigorous mathematical framework for fitting classical theories to the data, thus quantifying the error, is provided. Further data analysis techniques are presented that allow testing for the effect of changes in loading direction without having to use a new sample and for inferring the yield normal and flow directions without having to measure the yield surface. Though the data are inconclusive, there is indication that classical, incrementally linear, plasticity theory may be inadequate over a certain range of loading directions. This range of loading directions also coincides with loading directions that are known to produce a physically inadmissible instability for any nonassociative plasticity model.

  16. Melt rheology and its applications in the plastics industry

    CERN Document Server

    Dealy, John M

    2013-01-01

    This is the second edition of Melt Rheology and its Role in Plastics Processing, although the title has changed to reflect its broadened scope. Advances in the recent years in rheometer technology and polymer science have greatly enhanced the usefulness of rheology in the plastics industry. It is now possible to design polymers having specific molecular structures and to predict the flow properties of melts having those structures. In addition, rheological properties now provide more precise information about molecular structure. This book provides all the information that is needed for the intelligent application of rheology in the development of new polymers, the determination of molecular structure and the correlation of processability with laboratory test data. Theory and equations are limited to what is essential for the use of rheology in the characterization of polymers, the development of new plastics materials and the prediction of plastics processing behavior. The emphasis is on information that wil...

  17. Bio-mimetic Flow Control

    Science.gov (United States)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  18. Recycling of plastics in Germany

    International Nuclear Information System (INIS)

    Thienen, N. von; Patel, M.

    1999-01-01

    This article deals with the waste management of post-consumer plastics in Germany and its potential to save fossil fuels and reduce CO 2 emissions. Since most experience is available for packaging, the paper first gives an overview of the legislative background and the material flows for this sector. Then recycling and recovery processes for plastics waste from all sectors are assessed in terms of their contribution to energy saving and CO 2 abatement. Practically all the options studied show a better performance than waste treatment in an average incinerator which has been chosen as the reference case. High ecological benefits can be achieved by mechanical recycling if virgin polymers are substituted. The paper then presents different scenarios for managing plastic waste in Germany in 1995: considerable savings can be made by strongly enhancing the efficiency of waste incinerators. Under these conditions the distribution of plastics waste among mechanical recycling, feedstock recycling and energy recovery has a comparatively mall impact on the overall results. The maximum savings amount to 74 PJ of energy, i.e, 9% of the chemical sector energy demand in 1995 and 7.0 Mt CO 2 , representing 13% of the sector's emissions. The assessment does not support a general recommendation of energy recovery due to the large difference between the German average and the best available municipal waste-to-energy facilities and also due to new technological developments in the field of mechanical recycling

  19. Non-dimensional characterization of the friction stir/spot welding process using a simple Couette flow model part I: Constant property Bingham plastic solution

    International Nuclear Information System (INIS)

    Buck, Gregory A.; Langerman, Michael

    2004-01-01

    A simplified model for the material flow created during a friction stir/spot welding process has been developed using a boundary driven cylindrical Couette flow model with a specified heat flux at the inner cylinder for a Bingham plastic material. Non-dimensionalization of the constant property governing equations identified three parameters that influence the velocity and temperature fields. Analytic solutions to these equations are presented and some representative results from a parametric study (parameters chosen and varied over ranges expected for the welding of a wide variety of metals) are discussed. The results also provide an expression for the critical radius (location of vanishing material velocity) as functions of the relevant non-dimensional parameters. A final study was conducted in which values for the non-dimensional heat flux parameter were chosen to produce peak dimensional temperatures on the order of 80% of the melting temperature for a typical 2000 series aluminum. Under these conditions it was discovered that the ratio of the maximum rate of shear work within the material (viscous dissipation) to the rate of energy input at the boundary due to frictional heating, ranged from about 0.0005% for the lowest pin tool rotation rate, to about 1.3% for the highest tool rotation rate studied. Curve fits to previous Gleeble data taken for a number of aluminum alloys provide reasonable justification for the Bingham plastic constitutive model, and although these fits indicate a strong temperature dependence for critical flow stress and viscosity, this work provides a simple tool for more sophisticated model validation. Part II of this study will present numerical solutions for velocity and temperature fields resulting from the non-linear coupling of the momentum and energy equations created by temperature dependent transport properties

  20. Particle stabilization of plastic flow in nanostructured Al-1 %Si Alloy

    DEFF Research Database (Denmark)

    Huang, Tianlin; Li, Chao; Wu, Guilin

    2014-01-01

    A nanostructured Al-1 %Si alloy containing a dispersion of Si particles in ultrapure aluminum (99.9996 %) was produced by heavy cold rolling to study the effect of second-phase particles on the occurrence of plastic instability during tensile testing of a nanostructured metal. Tensile tests were...

  1. Contribution of plastic waste recovery to greenhouse gas (GHG) savings in Spain.

    Science.gov (United States)

    Sevigné-Itoiz, Eva; Gasol, Carles M; Rieradevall, Joan; Gabarrell, Xavier

    2015-12-01

    This paper concentrates on the quantification of greenhouse gas (GHG) emissions of post-consumer plastic waste recovery (material or energy) by considering the influence of the plastic waste quality (high or low), the recycled plastic applications (virgin plastic substitution or non-plastic substitution) and the markets of recovered plastic (regional or global). The aim is to quantify the environmental consequences of different alternatives in order to evaluate opportunities and limitations to select the best and most feasible plastic waste recovery option to decrease the GHG emissions. The methodologies of material flow analysis (MFA) for a time period of thirteen years and consequential life cycle assessment (CLCA) have been integrated. The study focuses on Spain as a representative country for Europe. The results show that to improve resource efficiency and avoid more GHG emissions, the options for plastic waste management are dependent on the quality of the recovered plastic. The results also show that there is an increasing trend of exporting plastic waste for recycling, mainly to China, that reduces the GHG benefits from recycling, suggesting that a new focus should be introduced to take into account the split between local recycling and exporting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    International Nuclear Information System (INIS)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L 9 (3 4 ) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics

  3. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chong-Qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, You-Nian

    2015-01-15

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.

  4. Development of Intergranular Residual Stress and Its Implication to Mechanical Behaviors at Elevated Temperatures in AL6XN Austenitic Stainless Steel

    Science.gov (United States)

    Hong, Yanyan; Li, Shilei; Li, Hongjia; Li, Jian; Sun, Guangai; Wang, Yan-Dong

    2018-05-01

    Neutron diffraction was used to investigate the residual lattice strains in AL6XN austenitic stainless steel subjected to tensile loading at different temperatures, revealing the development of large intergranular stresses after plastic deformation. Elastic-plastic self-consistent modeling was employed to simulate the micromechanical behavior at room temperature. The overall variations of the modeled lattice strains as a function of the sample direction with respect to the loading axis agree in general with the experimental values, indicating that dislocation slip is the main plastic deformation mode. At 300 °C, the serrated flow in the stress-strain curve and the great amount of slip bands indicate the appearance of dynamic strain aging. Except for promoting the local strain concentration, the long-range stress field caused by the planar slip bands near the grain boundaries is also attributed to the decrease in the experimental intergranular strains. An increase in the lattice strains localized at some specific specimen orientations for reflections at 600 °C may be explained by the segregation of solute atoms (Cr and Mo) at dislocation slip bands. The evolution of full-width at half-maximum demonstrates that the dynamic recovery indeed plays an important role in alleviating the local strain concentrations during tensile loading at 600 °C.

  5. Magical Engineering Plastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwang Ung

    1988-01-15

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  6. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  7. The evolution of phenotypic plasticity in fish swimming

    Science.gov (United States)

    Oufiero, Christopher E.; Whitlow, Katrina R.

    2016-01-01

    Abstract Fish have a remarkable amount of variation in their swimming performance, from within species differences to diversity among major taxonomic groups. Fish swimming is a complex, integrative phenotype and has the ability to plastically respond to a myriad of environmental changes. The plasticity of fish swimming has been observed on whole-organismal traits such as burst speed or critical swimming speed, as well as underlying phenotypes such as muscle fiber types, kinematics, cardiovascular system, and neuronal processes. Whether the plastic responses of fish swimming are beneficial seems to depend on the environmental variable that is changing. For example, because of the effects of temperature on biochemical processes, alterations of fish swimming in response to temperature do not seem to be beneficial. In contrast, changes in fish swimming in response to variation in flow may benefit the fish to maintain position in the water column. In this paper, we examine how this plasticity in fish swimming might evolve, focusing on environmental variables that have received the most attention: temperature, habitat, dissolved oxygen, and carbon dioxide variation. Using examples from previous research, we highlight many of the ways fish swimming can plastically respond to environmental variation and discuss potential avenues of future research aimed at understanding how plasticity of fish swimming might evolve. We consider the direct and indirect effects of environmental variation on swimming performance, including changes in swimming kinematics and suborganismal traits thought to predict swimming performance. We also discuss the role of the evolution of plasticity in shaping macroevolutionary patterns of diversity in fish swimming. PMID:29491937

  8. Elastic-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. For the 'elasto-plastic' superelements the specific plastic computations such as updating of the incremental stiffness matrix and subsequent reduction (i.e. static condensation of all degrees of freedom being local to the superelements) have to be carried out repeatedly during the nonlinear solution process. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium interations. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. (Auth.)

  9. Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing

    KAUST Repository

    Iwata, Yuji

    2013-08-05

    Efficient and precise microRNA (miRNA) biogenesis in Arabidopsis is mediated by the RNaseIII-family enzyme DICER-LIKE 1 (DCL1), double-stranded RNA-binding protein HYPONASTIC LEAVES 1 and the zinc-finger (ZnF) domain-containing protein SERRATE (SE). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that SE is integral to pri-miRNA processing by DCL1. SE stimulates DCL1 cleavage of the pri-miRNA in an ionic strength-dependent manner. SE uses its N-terminal domain to bind to RNA and requires both N-terminal and ZnF domains to bind to DCL1. However, when DCL1 is bound to RNA, the interaction with the ZnF domain of SE becomes indispensible and stimulates the activity of DCL1 without requiring SE binding to RNA. Our results suggest that the interactions among SE, DCL1 and RNA are a potential point for regulating pri-miRNA processing. 2013 The Author(s) 2013.

  10. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-05-15

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Structural test and analysis of a model of a BWR suppression chamber support in the plastic regime

    International Nuclear Information System (INIS)

    Blumer, U.R.; Klaeui, E.; Bosshard, E.P.

    1991-01-01

    A BWR Mark I suppression pool support has been analysed and tested in the laboratory. The aim was the demonstration of the acceptability of hypothetical dynamic loadings resulting from simultaneous steam blowdown through all safety relief valves. The analysis has shown that plastic deformation will locally occur, which is difficult to assess purely theoretical. Therefore tests in reduced scale were performed that show the amount and distribution of plastic flow in the supports. The paper describes the elastic analysis, the theory of the scaling laws for the reduced scale test, the test and its results. It also shows the thermographical method that has been used to determine the plastic material flow in the support structure. (author)

  12. Substance flow analysis of polybrominated diphenyl ethers in plastic from EEE/WEEE in Nigeria in the frame of Stockholm Convention as a basis for policy advice.

    Science.gov (United States)

    Babayemi, Joshua; Sindiku, Omotayo; Osibanjo, Oladele; Weber, Roland

    2015-10-01

    This study investigated the material/substance flow of polybrominated diphenyl ethers listed in the Stockholm Convention (SC) as persistent organic pollutant (POP-PBDEs) in the most relevant plastic fractions in Nigeria. Considering the prohibition of production and the use of POP-PBDEs and knowing that these pollutants are still contained in electrical and electronic equipment (EEE) and associated wastes (WEEE), it is necessary to determine their flows, especially in developing countries with limited end-of-life management. Following the inventory approach of the SC Guidance and utilizing the existing national e-waste inventory together with monitoring data, a material/substance flow analysis was conducted using the STAN tool. Within the period of 2000 to 2010, the total import for EEE/WEEE in Category 3 and 4 was approximately 8 million tonnes (Mt) containing approximately 2.4 Mt of polymers. For the inventory year 2010, it was estimated that from these polymers, about 0.8 Mt was still in stock and 1.6 Mt has reached the end-of-life. It was also estimated that approximately 1.1 Mt has ended in dumpsites, 0.3 Mt was burned in the open, and 0.2 Mt was recycled. In the plastic fractions, 1,270 t of POP-PBDEs was contained with about 370 t still in use/stock and approximately 900 t has entered the end-of-life phase. All three major end-of-life treatments result in environmental pollution with associated exposure risk. The implementation of the Stockholm Convention represents an important opportunity to improve this management situation in Nigeria and other developing countries.

  13. 4 π physics with the plastic ball

    International Nuclear Information System (INIS)

    Gutbrod, H.H.; Loehner, H.; Poskanzer, A.M.; Renner, T.; Riedesel, H.; Ritter, H.G.; Warwick, A.; Weik, F.; Wieman, H.

    1982-10-01

    4 π data taken with the Plastic Ball show that cluster production in relativistic nuclear collisions depends on both the size of the participant volume and the finite size of the cluster. The measurement of the degree of thermalization and the search for collective flow will permit the study of the applicability of macroscopic concepts such as temperature and density

  14. Concerning the problem of the plastic deformation mechanism changeover in neutron-irradiated metals and alloys

    International Nuclear Information System (INIS)

    Kolesnikov, A.N.; Krasnoselov, V.A.; Prokhorov, V.I.

    1982-01-01

    With a phenomenological model of plastic deformation instability as a basis, an analysis was made of the neutron irradition effects on the characteristics of strength and plasticity vs. structural parameters and radiation damage morphology. It was demonstrated that the enchanced plasticity in the initial stage of neutron irradiation has to do with the solid solution disintegration. Introduction of indestructible strengthening barriers enhances the stress-resistance of the neck-formation by 1.22 times. The ''big grain'' effect is observable during the deformation channel production only. Both the deformation twinning and deformation-induced martensite transformation raise the plastic flow stability

  15. Evaluación de la reproducibilidad del diagnóstico microscópico del adenoma serrado de sésil de colon Assessing the reproducibility of the microscopic diagnosis of sessile serrated adenoma of the colon

    Directory of Open Access Journals (Sweden)

    M. Bustamante-Balén

    2009-04-01

    Full Text Available Introducción: el adenoma serrado sésil (ASS es una lesión descrita recientemente y que puede estar relacionada con el desarrollo de hasta un 15% de los cánceres colorrectales (CCR. Objetivo: determinar la eficacia de los criterios morfológicos para el diagnóstico del ASS evaluando el grado de acuerdo entre patólogos. Material y métodos: se estudió la concordancia entre dos patólogos para el diagnóstico de las lesiones serradas de colon en 195 lesiones (187 pólipos hiperplásicos y 7 adenomas serrados. De cada lesión se recogió el tamaño, la localización, la morfología y la forma de obtención de la muestra. Los dos patólogos eran desconocedores del diagnóstico inicial, las características macroscópicas y la localización de las lesiones. Los posibles diagnósticos fueron: ASS, adenoma serrado tradicional (AST, pólipo hiperplásico (PH, pólipo serrado, adenoma tubular o formas mixtas. Las dudas diagnósticas debían describirse. La concordancia entre los dos observadores se evaluó mediante el índice kappa (κ. También se evaluó la influencia de las variables recogidas de las lesiones en el grado de acuerdo en el diagnóstico. Resultados: el acuerdo global para el diagnóstico histológico fue pobre (κ = 0,14. También lo fue el acuerdo para el diagnóstico de ASS (κ = 0,23. La concordancia para el diagnóstico de ASS mejoró con el tamaño > 5 mm (κ = 0,64 y para la localización proximal (κ = 0,43. Conclusión: en un contexto clínico real, los criterios morfológicos existentes para la identificación del ASS pueden ser de difícil aplicación.Introduction: sessile serrated adenoma (SSA is a recently described lesion that may be related to the development of up to 15% of colorectal cancers (CRCs. Objective: to determine the accuracy of morphological criteria for the diagnosis of SSA by assessing concordance between pathologists. Material and methods: concordance between two pathologists in the diagnosis of

  16. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  17. MLH1-93 G/a polymorphism is associated with MLH1 promoter methylation and protein loss in dysplastic sessile serrated adenomas with BRAFV600E mutation.

    Science.gov (United States)

    Fennell, Lochlan J; Jamieson, Saara; McKeone, Diane; Corish, Tracie; Rohdmann, Megan; Furner, Tori; Bettington, Mark; Liu, Cheng; Kawamata, Futoshi; Bond, Catherine; Van De Pols, Jolieke; Leggett, Barbara; Whitehall, Vicki

    2018-01-05

    Sessile serrated adenomas with BRAF mutation progress rapidly to cancer following the development of dysplasia (SSAD). Approximately 75% of SSADs methylate the mismatch repair gene MLH1, develop mismatch repair deficiency and the resultant cancers have a good prognosis. The remaining SSADs and BRAF mutant traditional serrated adenomas (TSA) develop into microsatellite stable cancers with a poor prognosis. The reason for this dichotomy is unknown. In this study, we assessed the genotypic frequency of the MLH1-93 polymorphism rs1800734 in SSADs and TSAs to determine if the uncommon variant A allele predisposes to MLH1 promoter hypermethylation. We performed genotyping for the MLH1-93 polymorphism, quantitative methylation specific PCR, and MLH1 immunohistochemistry on 124 SSAD, 128 TSA, 203 BRAF mutant CRCs and 147 control subjects with normal colonoscopy. The minor A allele was significantly associated with a dose dependent increase in methylation at the MLH1 promoter in SSADs (p = 0.022). The AA genotype was only observed in SSADs with MLH1 loss. The A allele was also overrepresented in BRAF mutant cancers with MLH1 loss. Only one of the TSAs showed loss of MLH1 and the overall genotype distribution in TSAs did not differ from controls. The MLH1-93 AA genotype is significantly associated with promoter hypermethylation and MLH1 loss in the context of SSADs. BRAF mutant microsatellite stable colorectal cancers with the AA genotype most likely arise in TSAs since the A allele does not predispose to methylation in this context.

  18. Chapter 4. Fundamental mechanisms of the low temperature plastic deformation of metals

    International Nuclear Information System (INIS)

    Fouquet, J. de

    1976-01-01

    The influence of microstructure, grain boundaries, and strain hardening, on the low temperature plasticity of polycristals is studied. The experimental data on flow stress, work hardening, temperature and strain rate effects, alloying elements and grain size effect are firstly considered, on a macroscopic scale. The mechanisms of the low temperature plastic deformation, and the strain-stress relations are then described in terms of slip modes, mobility, configuration and distributions and interactions of dislocations [fr

  19. Towards simulation of elasto-plastic deformation: An investigation

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    This paper tries to capture the various steps of the investigation .... most plasticity theories are inclined towards an Eulerian formulation in stress space setting. This is mainly because of its analogy with viscous fluid flow, the construction of the .... cartesian coordinate form, it does not help us to obtain the importance of the ...

  20. Recycling of plastic waste: Screening for brominated flame retardants (BFRs).

    Science.gov (United States)

    Pivnenko, K; Granby, K; Eriksson, E; Astrup, T F

    2017-11-01

    Flame retardants are chemicals vital for reducing risks of fire and preventing human casualties and property losses. Due to the abundance, low cost and high performance of bromine, brominated flame retardants (BFRs) have had a significant share of the market for years. Physical stability on the other hand, has resulted in dispersion and accumulation of selected BFRs in the environment and receiving biota. A wide range of plastic products may contain BFRs. This affects the quality of waste plastics as secondary resource: material recycling may potentially reintroduce the BFRs into new plastic product cycles and lead to increased exposure levels, e.g. through use of plastic packaging materials. To provide quantitative and qualitative data on presence of BFRs in plastics, we analysed bromophenols (tetrabromobisphenol A (TBBPA), dibromophenols (2,4- and 2,6-DBP) and 2,4,6-tribromophenol (2,4,6-TBP)), hexabromocyclododecane stereoisomers (α-, β-, and γ-HBCD), as well as selected polybrominated diphenyl ethers (PBDEs) in samples of household waste plastics, virgin and recycled plastics. A considerable number of samples contained BFRs, with highest concentrations associated with acrylonitrile butadiene styrene (ABS, up to 26,000,000ngTBBPA/g) and polystyrene (PS, up to 330,000ng∑HBCD/g). Abundancy in low concentrations of some BFRs in plastic samples suggested either unintended addition in plastic products or degradation of higher molecular weight BFRs. The presence of currently restricted flame retardants (PBDEs and HBCD) identified in the plastic samples illustrates that circular material flows may be contaminated for extended periods. The screening clearly showed a need for improved documentation and monitoring of the presence of BFRs in plastic waste routed to recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Numerical investigation of heat transfer in Plastic Leaded Chip ...

    African Journals Online (AJOL)

    Plastic Leaded Chip Carrier (PLCC) package has been emerged a promising option to tackle the thermal management issue of micro-electronic devices. In the present study, three dimensional numerical analysis of heat and fluid flow through PLCC packages oriented in-line and mounted horizontally on a printed circuit ...

  2. Bingham plastic fluid flow model in tape casting of ceramics using two doctor blades – analytical approach

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hattel, Jesper Henri

    2014-01-01

    One of the most common processes used in manufacturing of multilayer ceramic packages, multilayer capacitors and large scale integration circuits is tape casting. In this process, the wet tape thickness is one of the single most determining parameters affecting the final properties of the product......, and it is therefore of great interest to be able to control it. One way to control the tape thickness is to use a two doctor blade configuration in the tape casting machine. In this case, it becomes important to fix the height of the slurry in front of both doctor blades according to the desired tape thickness...... and casting speed (belt velocity). In the present work, the flow in both doctor blade regions of a slurry is described with a steady state momentum equation in combination with a Bingham plastic constitutive equation, and this is integrated to a closed form analytical solution for both reservoirs based...

  3. Manufacture of plastic parts by radiation molding

    International Nuclear Information System (INIS)

    Leszyk, G.M.; Morrison, E.D.; Williams, R.F. Jr.

    1977-01-01

    Thin plastic parts which can have precise tolerances and can be of complex shape are prepared by casting a viscous radiation-curable composition onto a support, such as a moving web of polymeric material, in the shape of the desired part and then irradiating, for example with ultraviolet radiation or high energy electrons, to cause curing of the composition to a solid plastic. The radiation-curable composition is formulated with viscosity and flow characteristics it to be cast in the exact shape of the part desired yet retain this shape during curing while supported only by the surface on which it has been cast. Plastic parts made by this method can be formed entirely of the radiation-curable composition by casting onto a web having a release surface from which the part can be stripped subsequent to curing or can be formed partially from a web material and partially from the radiation-curable composition by casting onto a web to which the composition will bond and subsequently cutting the web into discrete portions which include the cured composition

  4. Investigation on method of elasto-plastic analysis for piping system (benchmark analysis)

    International Nuclear Information System (INIS)

    Kabaya, Takuro; Kojima, Nobuyuki; Arai, Masashi

    2015-01-01

    This paper provides method of an elasto-plastic analysis for practical seismic design of nuclear piping system. JSME started up the task to establish method of an elasto-plastic analysis for nuclear piping system. The benchmark analyses have been performed in the task to investigate on method of an elasto-plastic analysis. And our company has participated in the benchmark analyses. As a result, we have settled on the method which simulates the result of piping exciting test accurately. Therefore the recommended method of an elasto-plastic analysis is shown as follows; 1) An elasto-plastic analysis is composed of dynamic analysis of piping system modeled by using beam elements and static analysis of deformed elbow modeled by using shell elements. 2) Bi-linear is applied as an elasto-plastic property. Yield point is standardized yield point multiplied by 1.2 times, and second gradient is 1/100 young's modulus. Kinematic hardening is used as a hardening rule. 3) The fatigue life is evaluated on strain ranges obtained by elasto-plastic analysis, by using the rain flow method and the fatigue curve of previous studies. (author)

  5. Plastic waste disposal apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kito, S

    1972-05-01

    A test plant plastic incinerator was constructed by the Takuma Boiler Manufacturing Co. for Sekisui Chemical Industries, and the use of a continuous feed spreader was found to be most effective for prevention of black smoke, and the use of a venturi scrubber proved to be effective for elimination of hydrogen chloride gas. The incinerator was designed for combustion of polyvinyl chloride exclusively, but it is also applicable for combustion of other plastics. When burning polyethylene, polypropylene, or polystyrene, (those plastics which do not produce toxic gases), the incinerator requires no scrubber for the combustion gas. The system may or may not have a pretreatment apparatus. For an incinerator with a pretreatment system, the flow chart comprises a pit, a supply crane, a vibration feeder, a metal eliminator, a rotation shredder, a continuous screw feeder with a quantitative supply hopper, a pretreatment chamber (300 C dry distillation), a quantitative supply hopper, and the incinerator. The incinerator is a flat non-grid type combustion chamber with an oil burner and many air nozzles. From the incinerator, ashes are sent by an ash conveyor to an ash bunker. The combustion gas goes to the boiler, and the water supplied the boiler water pump creates steam. The heat from the gas is sent back to the pretreatment system through a heat exchanger. The gas then goes to a venturi scrubber and goes out from a stack.

  6. A study on compound contents for plastic injection molding products of metallic resin pigment

    International Nuclear Information System (INIS)

    Park, Young Whan; Kwak, Jae Seob; Lee, Gyu Sang

    2016-01-01

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated

  7. A study on compound contents for plastic injection molding products of metallic resin pigment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  8. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, Gary Wayne [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.

  9. Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

    International Nuclear Information System (INIS)

    Pinkerton, G.W.

    1993-01-01

    The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression

  10. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    Science.gov (United States)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  11. Comparison of linear-elastic-plastic, and fully plastic failure models in the assessment of piping integrity

    International Nuclear Information System (INIS)

    Streit, R.D.

    1981-01-01

    The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)

  12. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    Science.gov (United States)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  13. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian; Demiral, Murat; El Sayed, Tamer S.

    2014-01-01

    plasticity as the flow rule, the critical cavitation condition, appearing when the derivative of the externally imposed mean stress with respect to the current void radius becomes zero, is rewritten analytically according to the Leibniz relation and found

  14. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    International Nuclear Information System (INIS)

    Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling

    2015-01-01

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  15. Modelling irradiation-induced softening in BCC iron by crystal plasticity approach

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiazi [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China); Terentyev, Dmitry, E-mail: dterenty@SCKCEN.BE [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Yu, Long; Song, Dingkun [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Bakaev, A. [Structural Material Group, Institute of Nuclear Materials Science, SCK-CEN, Mol (Belgium); Duan, Huiling, E-mail: hlduan@pku.edu.cn [State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); CAPT, HEDPS and IFSA Collaborative Innovation Center of MoE, Peking University, Beijing 100871 (China)

    2015-11-15

    Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation. - Highlights: • A stress- and thermal-activated defect absorption model is proposed for the dislocation-loop interaction. • A temperature-dependent plasticity theory is proposed for the irradiation-induced strain softening of irradiated BCC metals. • The numerical results of the model match with the corresponding experimental data.

  16. The industrial metabolism of plastics : analysis of material flows, energy consumption and CO2 emissions in the lifecycle of plastics

    NARCIS (Netherlands)

    Joosten, Ludovicus Antonius Josephus

    2001-01-01

    This thesis deals with the question: Which are promising options for decreasing material consumption, energy consumption and CO2 emissions in the lifecycle of plastics? The research described in this thesis mainly focuses on measures that change the material system, i.e. measures that change the

  17. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  18. Computational description of nanocrystalline deformation based on crystal plasticity

    International Nuclear Information System (INIS)

    Fu, H.-H.; Benson, David J.; Andre Meyers, Marc

    2004-01-01

    The effect of grain size on the mechanical response of polycrystalline metals was investigated computationally and applied to the nanocrystalline domain. A phenomenological constitutive description is adopted to build the computational crystal model. Two approaches are implemented. In the first, the material is envisaged as a composite; the grain interior is modeled as a monocrystalline core surrounded by a mantle (grain boundary) with a lower yield stress and higher work hardening rate response. Both a quasi-isotropic and crystal plasticity approaches are used to simulate the grain interiors. The grain boundary is modeled either by an isotropic Voce equation (Model I) or by crystal plasticity (Model II). Elastic and plastic anisotropy are incorporated into this simulation. An implicit Eulerian finite element formulation with von Mises plasticity or rate dependent crystal plasticity is used to study the nonuniform deformation and localized plastic flow. The computational predictions are compared with the experimentally determined mechanical response of copper with grain sizes of 1 μm and 26 nm. Shear localization is observed during work hardening in view of the inhomogeneous mechanical response. In the second approach, the use of a continuous change in mechanical response, expressed by the magnitude of the maximum shear stress orientation gradient, is introduced. It is shown that the magnitude of the gradient is directly dependent on grain size. This gradient term is inserted into a constitutive equation that predicts the local stress-strain evolution

  19. Field-effect Flow Control in Polymer Microchannel Networks

    Science.gov (United States)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  20. Plastic Surgery

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Plastic Surgery KidsHealth / For Teens / Plastic Surgery What's in ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  1. A 3D elasto-plastic soil model for lateral buckling analysis

    DEFF Research Database (Denmark)

    Hededal, Ole; Strandgaard, Torsten

    2008-01-01

    Modeling the lay-down of pipelines and subsequently the in- service conditions for a pipeline involves definition of a pipe-soil interaction model. A generalized true 3D elasto-plastic spring element based on an anisotropic hardening/degradation model for sliding is presented. The basis...... for the model is the elasto-plastic framework. A generic format is selected, allowing different yield criteria and flow rules to be implemented in a simple way. The model complies to a finite element format allowing it to be directly implemented into a standard finite element code. Examples demonstrating...

  2. Tube Length and Water Flow

    Directory of Open Access Journals (Sweden)

    Ben Ruktantichoke

    2011-06-01

    Full Text Available In this study water flowed through a straight horizontal plastic tube placed at the bottom of a large tank of water. The effect of changing the length of tubing on the velocity of flow was investigated. It was found that the Hagen-Poiseuille Equation is valid when the effect of water entering the tube is accounted for.

  3. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  4. Ice sheets on plastically-yielding beds

    Science.gov (United States)

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  5. Plastic limit analysis with non linear kinematic strain hardening for metalworking processes applications

    International Nuclear Information System (INIS)

    Chaaba, Ali; Aboussaleh, Mohamed; Bousshine, Lahbib; Boudaia, El Hassan

    2011-01-01

    Limit analysis approaches are widely used to deal with metalworking processes analysis; however, they are applied only for perfectly plastic materials and recently for isotropic hardening ones excluding any kind of kinematic hardening. In the present work, using Implicit Standard Materials concept, sequential limit analysis approach and the finite element method, our objective consists in extending the limit analysis application for including linear and non linear kinematic strain hardenings. Because this plastic flow rule is non associative, the Implicit Standard Materials concept is adopted as a framework of non standard plasticity modeling. The sequential limit analysis procedure which considers the plastic behavior with non linear kinematic strain hardening as a succession of perfectly plastic behavior with yielding surfaces updated after each sequence of limit analysis and geometry updating is applied. Standard kinematic finite element method together with a regularization approach is used for performing two large compression cases (cold forging) in plane strain and axisymmetric conditions

  6. Propelling plastics into the circular economy - weeding out the toxics first.

    Science.gov (United States)

    Leslie, H A; Leonards, P E G; Brandsma, S H; de Boer, J; Jonkers, N

    2016-09-01

    The Stockholm Convention bans toxic chemicals on its persistent organic pollutants (POPs) list in order to promote cleaner production and prevent POPs accumulation in the global environment. The original 'dirty dozen' set of POPs has been expanded to include some of the brominated diphenyl ether flame retardants (POP-BDEs). In addition to cleaner production, there is an urgent need for increased resource efficiency to address the finite amount of raw materials on Earth. Recycling plastic enhances resource efficiency and is part of the circular economy approach, but how clean are the materials we are recycling? With the help of a new screening method and detailed analyses, we set out to investigate where these largely obsolete BDEs were showing up in Dutch automotive and electronics waste streams, calculate mass flows and determine to what extent they are entering the new product chains. Our study revealed that banned BDEs and other toxic flame retardants are found at high concentrations in certain plastic materials destined for recycling markets. They were also found in a variety of new consumer products, including children's toys. A mass flow analysis showed that 22% of all the POP-BDE in waste electrical and electronic equipment (WEEE) is expected to end up in recycled plastics because these toxic, bioaccumulative and persistent substances are currently not effectively separated out of plastic waste streams. In the automotive sector, this is 14%, while an additional 19% is expected to end up in second-hand parts (reuse). These results raise the issue of delicate trade-offs between consumer safety/cleaner production and resource efficiency. As petroleum intensive materials, plastic products ought to be repaired, reused, remanufactured and recycled, making good use of the 'inner circles' of the circular economy. Keeping hazardous substances - whether they are well known POPs or emerging contaminants - out of products and plastic waste streams could make these

  7. The plastic flow localization effect on crystalline material

    International Nuclear Information System (INIS)

    Pajot, A.

    2011-01-01

    Irradiation affects the mechanical properties of materials. In particular, an increase of yield strength followed by a decrease of ductility and a reduction of the elongation to fracture are observed above a threshold irradiation dose. The last two phenomena are correlated with the appearance of bands free of defects (clear bands) in which plastic deformation is confined. These bands also determine accumulation of dislocations at grain boundaries, thereby favouring local grain decohesion and possibly initiating fracture. Clear bands have an important impact on metal resistance, nevertheless our level of understanding is not sufficient to evaluate quantitatively their effect on the loss of ductility and reduction of elongation to fracture that are observed experimentally. A clear band is a microstructural defect, created when loading an irradiated material. Its complex interaction with defects on the nano scale affects the behaviour of the metal at the macroscopic scale. A full understanding implies the application of a multi scale modeling approach. This explains why, even though clear bands have first been

  8. Design study of plastic film heat exchanger

    Science.gov (United States)

    Guyer, E. C.; Brownell, D. L.

    1986-02-01

    This report presents the results of an effort to develop and design a unique thermoplastic film heat exchanger for use in an industrial heat pump evaporator system and other energy recovery applications. The concept for the exchanger is that of individual heat exchange elements formed by two adjoining and freely hanging plastic films. Liquid flows downward in a regulated fashion between the films due to the balance of hydrostatic and frictional forces. The fluid stream on the outside of film may be a free-falling liquid film, a condensing gas, or a noncondensing gas. The flow and structural principles are similar to those embodied in an earlier heat exchange system developed for use in waste water treatment systems (Sanderson). The design allows for high heat transfer rates while working within the thermal and structural limitations of thermoplastic materials. The potential of this new heat exchanger design lies in the relatively low cost of plastic film and the high inherent corrosion and fouling resistance. This report addresses the selection of materials, the potential heat transf er performance, the mechanical design and operation of a unit applied in a low pressure steam recovery system, and the expected selling price in comparison to conventional metallic shell and tube heat exchangers.

  9. Modeling and flow analysis of pure nylon polymer for injection molding process

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N

    2016-01-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)

  10. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  11. Elastic unloading of a disk after plastic deformation by a circular heat source

    International Nuclear Information System (INIS)

    Gamer, U.; Mack, W.

    1987-01-01

    Subject of the investigation is the transient stress distribution in an elastic-plastic disk acted upon by a circular heat source. The disk serves as a mechanical model of the rotating anode of an X-ray-tube. The calculation is based on Tresca's yield criterion and the flow rule associatd to it. During heating, a plastic region spreads around the source, which is absorbed by an unloaded zone after the removal of the source. (orig.) [de

  12. plastic waste recycling

    African Journals Online (AJOL)

    Dr Ahmed

    incinerators is increasing around the world. Discarded plastic products ... Agency (EPA) estimated that the amount of plastics throw away is. 50 % greater in the ... The waste plastics were identified using the Society of the Plastic. Industry (SPI) ...

  13. The dependence of granular plasticity on particle shape

    Science.gov (United States)

    Murphy, Kieran; Jaeger, Heinrich

    Granular materials plastically deform through reworking an intricate network of particle-particle contacts. Some particle rearrangements have only a fleeting effect before being forgotten while others set in motion global restructuring. How particle shape affects local interactions and how those, in turn, influence the nature of the aggregate's plasticity is far from clear, especially in three dimensions. Here we investigate the remarkably wide range of behaviors in the yielding regime, from quiescent flow to violent jerks, depending on particle shape. We study this complex dependence via uniaxial compression experiments on aggregates of 3D-printed particles, and complement stress-strain data with simultaneous x-ray videos and volumetric strain measurements. We find power law distributions of the slip magnitudes, and discuss their universality. Our data show that the multitude of small slips serves to gradually dilate the packing whereas the fewer large ones accompany significant compaction events. Our findings provide new insights into general features of granular materials during plastic deformation and highlight how small changes in particle shape can give rise to drastic differences in yielding behavior.

  14. Shock wave plasticity in Mo at 293K and 1673K

    International Nuclear Information System (INIS)

    Tonks, D.L.

    1996-01-01

    The shock wave plasticity of Mo is extracted from two VISAR wave profiles; of about 110 kbar strength at 293 K and of about 120 kbar strength at 1673 K. The Wallace weak shock analysis is used to obtain the plastic strain and deviatoric stress, and the normal stress and volumetric strain, through the shock rise from the velocity profile data. The Wallace analysis uses the steady wave assumption for the plastic portion of the shock rise, a plausible evolution for the precursor portion, a thermoelastic model, and the mechanical equations of motion. Comparison of the high and low temperature results is of interest in assessing the mechanisms of plastic flow. In the results, the (von Mises equivalent) peak deviatoric stresses are 12.8 kbar and 20.3 kbar, for the hot and cold Mo, respectively, while the peak plastic strain rate of the hot Mo is about 2.6 times that of the cold Mo. These values rule out thermal activation. In addition, they are not consistent with a simple phonon viscosity linear in the temperature. Additional effects are needed to explain the results, e.g. evolution of the mobile dislocation density. copyright 1996 American Institute of Physics

  15. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  16. Oral epithelial cell reaction after exposure to Invisalign plastic material.

    Science.gov (United States)

    Premaraj, Thyagaseely; Simet, Samantha; Beatty, Mark; Premaraj, Sundaralingam

    2014-01-01

    Invisalign plastic aligners (Align Technology, Santa Clara, Calif) are used to correct malocclusions. The aligners wrap around the teeth and are in contact with gingival epithelium during treatment. The purpose of this study was to evaluate the cellular responses of oral epithelium exposed to Invisalign plastic in vitro. Oral epithelial cells were exposed to eluate obtained by soaking Invisalign plastic in either saline solution or artificial saliva for 2, 4, and 8 weeks. Cells grown in media containing saline solution or saliva served as controls. Morphologic changes were assessed by light microscopy. The 3-[4, 5-dimethythiazol- 2-yl]-2, 5-diphenyl tetrazolium bromide assay and flow cytometry were used to determine cell viability and membrane integrity, respectively. Cellular adhesion and micromotion of epithelial cells were measured in real time by electrical cell-substrate impedance sensing. Cells exposed to saline-solution eluate appeared rounded, were lifted from the culture plates, and demonstrated significantly increased metabolic inactivity or cell death (P <0.05). Saliva eluates did not induce significant changes in cell viability compared with untreated cells. Flow cytometry and electric cell-substrate impedance sensing showed that cells treated with saline-solution eluate exhibited compromised membrane integrity, and reduced cell-to-cell contact and mobility when compared with saliva-eluate treatment. Exposure to Invisalign plastic caused changes in viability, membrane permeability, and adhesion of epithelial cells in a saline-solution environment. Microleakage and hapten formation secondary to compromised epithelial integrity might lead to isocyanate allergy, which could be systemic or localized to gingiva. However, these results suggest that saliva might offer protection. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  17. Elevated temperature mechanical properties of line pipe steels

    Science.gov (United States)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow

  18. Magnetic heat pump flow director

    Science.gov (United States)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  19. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like...

  20. Circular economy measures to keep plastics and their value in the economy, avoid waste and reduce marine litter

    OpenAIRE

    Ten Brink, Patrick; Schweitzer, Jean-pierre; Watkins, Emma; De Smet, Michel; Leslie, Heather; Galgani, Francois

    2017-01-01

    We live in the plastic age (the “plasticene”), producing over 300 million tonnes (mt) of plastic every year globally, 5-15 mt of which flow into already polluted oceans. Plastic remains a key material in the global economy, but low rates of collection, reuse and recycling, emissions of microplastic from product wear and tear, and often insufficient disposal measures are leading to far-reaching environmental, health, social and economic impacts. The costs of inaction are unacceptably high. Glo...

  1. Plasticizer Effect on Rheological Behaviour of Screen Printing Pastes Based on Barium Titanate Nanopowder

    International Nuclear Information System (INIS)

    Dulina, I; Umerova, S; Ragulya, A

    2015-01-01

    The dependence of rheological behaviour of pastes based on BaTiO 3 nanopowder vs. plasticizer content has been investigated. All pastes prepared for research can be divided into groups by structure types and viscosity. Such a grouping has been explained by different interaction between nanoparticles and binder in the pastes. Particles with molecules of binder form clusters – the representative units in the volume of paste where particles are uniformly distributed. Plasticizer adding effects on binder molecule conformation and change clusters size. Bond strength between clusters can be specified with rheopexy in the area of low shear stress and low strain rates. Rheopexy degree increasing authenticates interaction intensification between clusters. Rheopexy structure destruction leads to separate clusters formation and initiation of the pseudoplastic flow stage. The end of pseudoplastic flow corresponds to structure with clusters assembled into separated layers. Further shear stress increasing leads to inter-clusters bonds appear which can be deformed elastically and the temporary local linkage is possible. Such a phenomenon fully discloses the features of thixotropic structure destruction in plasticized pastes. (paper)

  2. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Elasto-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium iterations. In this connection, a comparative numerical study of the Newton-Raphson iteration scheme, the initial stress method, and modified Newton-Raphson iteration schemes is presented. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. Firstly, an elasto-plastic analysis of a plate with a central hole and subjected to tensile forces is carried out. The results are compared with experimental values. Secondly, a three dimensional analysis of a thick plate with a central through-crack subjected to tensile forces is considered. The variation through the plate thickness of the size of the plastic zones at the crack tip is studied. The numerical examples show that the present method is a powerful and efficient tool in elasto-plastic analysis

  4. Anisotropic Constitutive Model of Strain-induced Phenomena in Stainless Steels at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2004-01-01

    A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...

  5. 3D printed metal molds for hot embossing plastic microfluidic devices.

    Science.gov (United States)

    Lin, Tung-Yi; Do, Truong; Kwon, Patrick; Lillehoj, Peter B

    2017-01-17

    Plastics are one of the most commonly used materials for fabricating microfluidic devices. While various methods exist for fabricating plastic microdevices, hot embossing offers several unique advantages including high throughput, excellent compatibility with most thermoplastics and low start-up costs. However, hot embossing requires metal or silicon molds that are fabricated using CNC milling or microfabrication techniques which are time consuming, expensive and required skilled technicians. Here, we demonstrate for the first time the fabrication of plastic microchannels using 3D printed metal molds. Through optimization of the powder composition and processing parameters, we were able to generate stainless steel molds with superior material properties (density and surface finish) than previously reported 3D printed metal parts. Molds were used to fabricate poly(methyl methacrylate) (PMMA) replicas which exhibited good feature integrity and replication quality. Microchannels fabricated using these replicas exhibited leak-free operation and comparable flow performance as those fabricated from CNC milled molds. The speed and simplicity of this approach can greatly facilitate the development (i.e. prototyping) and manufacture of plastic microfluidic devices for research and commercial applications.

  6. Study on Plastic Coated Overburnt Brick Aggregate as an Alternative Material for Bituminous Road Construction

    Directory of Open Access Journals (Sweden)

    Dipankar Sarkar

    2016-01-01

    Full Text Available There are different places in India where natural stone aggregates are not available for constructional work. Plastic coated OBBA can solve the problem of shortage of stone aggregate to some extent. The engineers are always encouraged to use locally available materials. The present investigation is carried out to evaluate the plastic coated OBBA as an alternative material for bituminous road construction. Shredded waste plastics are mixed with OBBA in different percentages as 0.38, 0.42, 0.46, 0.50, 0.54, and 0.60 of the weight of brick aggregates. Marshall Method of mix design is carried out to find the optimum bitumen content of such bituminous concrete mix prepared by plastic coated OBBA. Bulk density, Marshall Stability, flow, Marshall Quotient, ITS, TSR, stripping, fatigue life, and deformations have been determined accordingly. Marshall Stability value of 0.54 percent of plastic mix is comparatively higher than the other mixes except 0.60 percent of plastic mix. Test results are within the prescribed limit for 0.54 percent of plastic mix. There is a significant reduction in rutting characteristics of the same plastic mix. The fatigue life of the mix is also significantly higher. Thus plastic coated OBBA is found suitable in construction of bituminous concrete road.

  7. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  8. Circular economy measures to keep plastics and their value in the economy, avoid waste and reduce marine litter

    OpenAIRE

    ten Brink, Patrick; Schweitzer, Jean-Pierre; Watkins, Emma; Janssens, Charlotte; De Smet, Michiel; Leslie, Heather; Galgani, François

    2018-01-01

    We live in the plastic age (the “plasticene”), producing over 300 million tonnes (mt) of plastic every year globally, 5–15 mt of which flow into already polluted oceans. Plastic remains a key material in the global economy, but low rates of collection, reuse and recycling, emissions of microplastic from product wear and tear, and often insufficient disposal measures are leading to far-reaching environmental, health, social and economic impacts. The costs of inaction are unacceptably high. Glo...

  9. The behavior of plastic deformation in a duplex Cu-Zn alloy, in the temperature range 24-3000C

    International Nuclear Information System (INIS)

    Andrade, A.H.P. de.

    1978-01-01

    The mechanical behavior of Muntz Metal (Cu-40%Zn) containing duplex microstructure with a coarse grain size approximately 40μm) has been investigated at the temperature range 2 0 -300 0 C, and at strain rat e of epsilon=2.6x10 -4 S -1 , as a function of the second phase volume fraction(v(subβ)). Whereas at room temperature yielding increases with v(subβ) for v(subβ)>0.35, it remains virtually independent of v(subβ in the range 0.26 0 C. At low temperature (RT) and strains (epsilon approximately 0.01 the work hardening rate increases strongly with v subβ up to v subβ approximately 0.45. At higher temperatures and strains work hardening rate decreases for all volume fractions due to the thermal and dynamic recovery respectively. Then ultimate tensile strength (UTS) at room temperature increases with v subβ up to v subβ = 0.45, thus resulting in overall increase in U.T.S. The Portevin - Le Chatelier Effect (PLE)in Muntz Metal, at the temperature range 24 0 -300 0 C manifests itself in essentially two different forms. At RT, irregular serrations are observed, where amplitude decreases with increases in v subβ. At higher temperatures (100 0 C), serrations become regular, with increase in amplitude. At 200 0 C or over the serrations amplitude decrease at almost disappearing completely. These observations have been explained on the basis of collective behavior of mobile dislocations, influenced by the internal stress fields created during deformation by the presence of phase β. The Voce equation fits well with the experimental stress-strain data for temperatures up to 200 0 C. The method of Hollomon requires the use of stages in sigma-epsilon curve, curve, which does not have a physical significance. (Author) [pt

  10. Conventional colon adenomas harbor various disturbances in microsatellite stability and contain micro-serrated foci with microsatellite instability.

    Directory of Open Access Journals (Sweden)

    Piotr Lewitowicz

    Full Text Available Colorectal cancer belongs to the most frequent occurring malignancies. A prediction of the clinical outcome and appropriate choice of neoadjuvant chemotherapy needs personalized insight to the main driving pathways. Because most CRCs have polyps as progenitor lesions, studying the pathways driving to adenomagenesis is no less important.Our purpose was the evaluation of microsatellite stability status within conventional colon adenomas and also β-catenin, BRAFV600E and p53 contribution.The cohort included 101 cases of typical colon adenomas with high grade epithelial dysplasia according to WHO. An immunohistochemistry method was used for the depiction of the expression of targeted proteins, as also their heterogeneity.Generally, we noted a 10% frequency of MSI events where MSI-H reached a 5% share occurred within the left colon and rectal polyps. β-catenin nuclear overexpression was noted with a 70% frequency and p53 with close to a 24% frequency. In addition, we found a presence of micro-serration foci more often within tubular adenomas, where focal MSI took place more often. Our results indicate that MSI events occur more often than had been theorized earlier. It results in tumour heterogeneity, more complex underlying pathways and finally ontogenetic molecular-diversity of tumours besides similar occurring histopathological features.

  11. Our plastic age.

    Science.gov (United States)

    Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S

    2009-07-27

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.

  12. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  13. Numerical modeling of foam flows

    International Nuclear Information System (INIS)

    Cheddadi, Ibrahim

    2010-01-01

    Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)

  14. Horizontal, floating, plastic hose oil skimmer

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-01

    A horizontal, floating, plastic hose oil skimmer operates at -20/sup 0/ to +100/sup 0/C as a moving belt driven by a motor at 0.7 kw at 1400 rpm to pick up oil by adhesion from a surface such as that of used cooling water or cutting oil for subsequent stripping and collection by gravity flow. Two models provide collection rates of 10-45 l./hr for diesel oil, 35-115 l./hr for hydraulic oil, and 170-455 l./hr for gear oils and heavy heating oils.

  15. Plastic debris retention and exportation by a mangrove forest patch.

    Science.gov (United States)

    Ivar do Sul, Juliana A; Costa, Monica F; Silva-Cavalcanti, Jacqueline S; Araújo, Maria Christina B

    2014-01-15

    An experiment observed the behavior of selected tagged plastic items deliberately released in different habitats of a tropical mangrove forest in NE Brazil in late rainy (September) and late dry (March) seasons. Significant differences were not reported among seasons. However, marine debris retention varied among habitats, according to characteristics such as hydrodynamic (i.e., flow rates and volume transported) and relative vegetation (Rhizophora mangle) height and density. The highest grounds retained significantly more items when compared to the borders of the river and the tidal creek. Among the used tagged items, PET bottles were more observed and margarine tubs were less observed, being easily transported to adjacent habitats. Plastic bags were the items most retained near the releasing site. The balance between items retained and items lost was positive, demonstrating that mangrove forests tend to retain plastic marine debris for long periods (months-years). Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink

    International Nuclear Information System (INIS)

    Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo

    2017-01-01

    Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and

  17. Impact of Bio-Based Plastics on Current Recycling of Plastics

    Directory of Open Access Journals (Sweden)

    Luc Alaerts

    2018-05-01

    Full Text Available Bio-based plastics are increasingly appearing in a range of consumption products, and after use they often end up in technical recycling chains. Bio-based plastics are different from fossil-based ones and could disturb the current recycling of plastics and hence inhibit the closure of plastic cycles, which is undesirable given the current focus on a transition towards a circular economy. In this paper, this risk has been assessed via three elaborated case studies using data and information retrieved through an extended literature search. No overall risks were revealed for bio-based plastics as a group; rather, every bio-based plastic is to be considered as a potential separate source of contamination in current recycling practices. For PLA (polylactic acid, a severe incompatibility with PET (polyethylene terephthalate recycling is known; hence, future risks are assessed by measuring amounts of PLA ending up in PET waste streams. For PHA (polyhydroxy alkanoate there is no risk currently, but it will be crucial to monitor future application development. For PEF (polyethylene furanoate, a particular approach for contamination-related issues has been included in the upcoming market introduction. With respect to developing policy, it is important that any introduction of novel plastics is well guided from a system perspective and with a particular eye on incompatibilities with current and upcoming practices in the recycling of plastics.

  18. Plastic condoms.

    Science.gov (United States)

    1968-01-01

    Only simple equipment, simple technology and low initial capital investment are needed in their manufacture. The condoms can be made by people who were previously unskilled or only semi-skilled workers. Plastic condoms differ from those made of latex rubber in that the nature of the plastic film allows unlimited shelf-life. Also, the plastic has a higher degree of lubricity than latex rubber; if there is a demand for extra lubrication in a particular market, this can be provided. Because the plastic is inert, these condoms need not be packaged in hermetically sealed containers. All these attributes make it possible to put these condoms on the distributors' shelves in developing countries competitively with rubber condoms. The shape of the plastic condom is based on that of the lamb caecum, which has long been used as luxury-type condom. The plastic condom is made from plastic film (ethylene ethyl acrilate) of 0.001 inch (0.0254 mm.) thickness. In addition, a rubber ring is provided and sealed into the base of the condom for retention during coitus. The advantage of the plastic condom design and the equipment on which it is made is that production can be carried out either in labour-intensive economy or with varying degrees of mechanization and automation. The uniform, finished condom if made using previously untrained workers. Training of workers can be done in a matter of hours on the two machines which are needed to produce and test the condoms. The plastic film is provided on a double wound roll, and condom blanks are prepared by means of a heat-sealing die on the stamping machine. The rubber rings are united to the condom blanks on an assembly machine, which consists of a mandrel and heat-sealing equipment to seal the rubber ring to the base of the condom. Built into the assembly machine is a simple air-testing apparatus that can detect the smallest pinhole flaw in a condom. The manufacturing process is completed by unravelling the condom from the assembly

  19. Taylor-plasticity-based analysis of length scale effects in void growth

    KAUST Repository

    Liu, Junxian

    2014-09-25

    We have studied the void growth problem by employing the Taylor-based strain gradient plasticity theories, from which we have chosen the following three, namely, the mechanism-based strain gradient (MSG) plasticity (Gao et al 1999 J. Mech. Phys. Solids 47 1239, Huang et al 2000 J. Mech. Phys. Solids 48 99-128), the Taylor-based nonlocal theory (TNT; 2001 Gao and Huang 2001 Int. J. Solids Struct. 38 2615) and the conventional theory of MSG (CMSG; Huang et al 2004 Int. J. Plast. 20 753). We have addressed the following three issues which occur when plastic deformation at the void surface is unconstrained. (1) Effects of elastic deformation. Elasticity is essential for cavitation instability. It is therefore important to guarantee that the gradient term entering the Taylor model is the effective plastic strain gradient instead of the total strain gradient. We propose a simple elastic-plastic decomposition method. When the void size approaches the minimum allowable initial void size related to the maximum allowable geometrically necessary dislocation density, overestimation of the flow stress due to the negligence of the elastic strain gradient is on the order of lεY/R0 near the void surface, where l, εY and R0 are, respectively, the intrinsic material length scale, the yield strain and the initial void radius. (2) MSG intrinsic inconsistency, which was initially mentioned in Gao et al (1999 J. Mech. Phys. Solids 47 1239) but has not been the topic of follow-up studies. We realize that MSG higher-order stress arises due to the linear-strain-field approximation within the mesoscale cell with a nonzero size, lε. Simple analysis shows that within an MSG mesoscale cell near the void surface, the difference between microscale and mesoscale strains is on the order of (lε/R0)2, indicating that when lε/R0 ∼ 1.0, the higher-order stress effect can make the MSG result considerably different from the TNT or CMSG results. (3) Critical condition for cavitation instability

  20. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  1. Rheological investigation and simulation of a debris-flow event in the Fella watershed

    Directory of Open Access Journals (Sweden)

    M. A. Boniello

    2010-05-01

    Full Text Available To set an approach for the future territorial planning, the Geological Survey of Friuli Venezia Giulia Region, through the researchers of Trieste University, started a program of debris-flow risk analysis using Flo-2D software as tool to delimit the hazardous areas. In the present paper, as a case study, a debris flow, called Fella sx, occurring in a torrent catchment was analyzed. The choice was due to the abundance of information about past events, inundated areas, rain fall, geology and to its representativeness. An initial back-analysis investigation identified a couple of representative rheological parameters. Riverbed samples were collected, sieve analyses were performed and rheological tests were carried out on the fraction finer than 0.063 mm using a rotationally controlled stress rehometer equipped with the serrated parallel plate geometry. The shear dependent behaviour was examined at different concentrations ranging from 33 to 48%, by weight. Viscosity data treatment was performed to determine the most suitable rheological model to provide the best approximation of the debris-flow behaviour. The rheological parameters, derived from experimental data, were used and compared with those obtained through the back-analysis and with the real inundated area. Data obtained through rheological analysis are useful in constructing scenarios of future events where no data for back-analysis are available.

  2. Characterization of plastic blends made from mixed plastics waste of different sources.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.

  3. The Prevalence of Cosmetic Facial Plastic Procedures among Facial Plastic Surgeons.

    Science.gov (United States)

    Moayer, Roxana; Sand, Jordan P; Han, Albert; Nabili, Vishad; Keller, Gregory S

    2018-04-01

    This is the first study to report on the prevalence of cosmetic facial plastic surgery use among facial plastic surgeons. The aim of this study is to determine the frequency with which facial plastic surgeons have cosmetic procedures themselves. A secondary aim is to determine whether trends in usage of cosmetic facial procedures among facial plastic surgeons are similar to that of nonsurgeons. The study design was an anonymous, five-question, Internet survey distributed via email set in a single academic institution. Board-certified members of the American Academy of Facial Plastic and Reconstructive Surgery (AAFPRS) were included in this study. Self-reported history of cosmetic facial plastic surgery or minimally invasive procedures were recorded. The survey also queried participants for demographic data. A total of 216 members of the AAFPRS responded to the questionnaire. Ninety percent of respondents were male ( n  = 192) and 10.3% were female ( n  = 22). Thirty-three percent of respondents were aged 31 to 40 years ( n  = 70), 25% were aged 41 to 50 years ( n  = 53), 21.4% were aged 51 to 60 years ( n  = 46), and 20.5% were older than 60 years ( n  = 44). Thirty-six percent of respondents had a surgical cosmetic facial procedure and 75% has at least one minimally invasive cosmetic facial procedure. Facial plastic surgeons are frequent users of cosmetic facial plastic surgery. This finding may be due to access, knowledge base, values, or attitudes. By better understanding surgeon attitudes toward facial plastic surgery, we can improve communication with patients and delivery of care. This study is a first step in understanding use of facial plastic procedures among facial plastic surgeons. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Recycling of plastic waste: Presence of phthalates in plastics from households and industry.

    Science.gov (United States)

    Pivnenko, K; Eriksen, M K; Martín-Fernández, J A; Eriksson, E; Astrup, T F

    2016-08-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large volumes and are commonly used as plasticisers in plastics manufacturing. Potential impacts on human health require restricted use in selected applications and a need for the closer monitoring of potential sources of human exposure. Although the presence of phthalates in a variety of plastics has been recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP had the highest frequency of detection in the samples analysed, with 360μg/g, 460μg/g and 2700μg/g as the maximum measured concentrations, respectively. Among other, statistical analysis of the analytical results suggested that phthalates were potentially added in the later stages of plastic product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications is recommended if recycled plastics are to be used as raw material in production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    Plastics recycling has the potential to substitute virgin plastics partially as a source of raw materials in plastic product manufacturing. Plastic as a material may contain a variety of chemicals, some potentially hazardous. Phthalates, for instance, are a group of chemicals produced in large...... recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...

  6. Biodegradability of Plastics

    Directory of Open Access Journals (Sweden)

    Yutaka Tokiwa

    2009-08-01

    Full Text Available Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.. In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  7. Characterization of Elevated Temperature Properties of Heat Exchanger and Steam Generator Alloys

    International Nuclear Information System (INIS)

    Wright, J.K.; Carroll, L.J.; Benz, J.K.; Simpson, J.A.; Wright, R.N.; Lloyd, W.R.; Chapman, J.A.

    2010-01-01

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. In general dynamic strain aging is observed to begin at higher temperatures and serrated flow persists to higher temperatures in Alloy 617 compared to Alloy 800H. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. The role of dynamic strain aging in the creep-fatigue behavior of Alloy 617 at temperatures of 800 C and above has also been examined in detail. Serrated flow is found to persist in cyclic stress-strain curves up to nearly the cycle to failure in some temperature and strain regimes. Results of those experiments and implications for creep-fatigue testing protocols will be described.

  8. Circular economy of plastic packaging: Current practice and perspectives in Austria.

    Science.gov (United States)

    Van Eygen, Emile; Laner, David; Fellner, Johann

    2018-02-01

    Plastics, especially from packaging, have gained increasing attention in waste management, driving many policy initiatives to improve the circularity of these materials in the economy to increase resource efficiency. In this context, the EU has proposed increasing targets to encourage the recycling of (plastic) packaging. To accurately calculate the recycling rates, detailed information on the flows of plastic packaging is needed. Therefore, the aim of this paper is to quantitatively and qualitatively investigate the waste management system for plastic packaging in Austria in 2013 using material flow analysis, taking into account the used product types and the polymer composition. The results show that 300,000 ± 3% t/a (35 kg/cap·a) of waste plastic packaging were produced, mainly composed of large and small films and small hollow bodies, including PET bottles. Correspondingly, the polymer composition of the waste stream was dominated by LDPE (46% ± 6%), PET (19% ± 4%) and PP (14% ± 6%). 58% ± 3% was collected separately, and regarding the final treatment, 26% ± 7% of the total waste stream was recovered as re-granulates, whereas the rest was thermally recovered in waste-to-energy plants (40% ± 3%) and the cement industry (33% ± 6%). The targets set by the EU and Austria were reached comfortably, although to reach the proposed future target major technological steps regarding collection and sorting will be needed. However, the current calculation point of the targets, i.e. on the input side of the recycling plant, is not deemed to be fully in line with the overall objective of the circular economy, namely to keep materials in the economy and prevent losses. It is therefore recommended that the targets be calculated with respect to the actual output of the recycling process, provided that the quality of the output products is maintained, to accurately assess the performance of the waste management system. Copyright © 2017

  9. Growth plasticity of the southern Iberian barbel along longitudinal gradients in a highly regulated Mediterranean basin.

    Directory of Open Access Journals (Sweden)

    Ana Sánchez-Pérez

    2015-11-01

    At the present, studied parameters show that L. sclateri presents a great phenotypic plasticity to adapt to flow changes. This study offers a multi sites perspective of the relationships between barbel growth traits and hydrological variability, providing water resources managers with needed perspective about the effect of human induced alteration of flow magnitudes and regimes.

  10. Elastic-plastic behaviour of thick-walled containers considering plastic compressibility

    International Nuclear Information System (INIS)

    Betten, J.; Frosch, H.G.

    1983-01-01

    In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de

  11. Approximate Solution of Dam-break Flow of Low Viscosity Bingham Fluid

    Science.gov (United States)

    Puay, How Tion; Hosoda, Takashi

    In this study, we investigate the characteristics of dam-break flow of low viscosity Bingham fluid by deriving an approximate solution for the time development of the front position and depth at the origin of the flow. The asymptotic solutions representing the characteristic of Bingham fluid in the limit of low plastic viscosity are verified with a depth-averaged numerical model. Numerical simulations showed that with the decrease of plastic viscosity, the time development of the front position and depth at the origin approach to the theoretical asymptotic solution.

  12. Determining the amount of waste plastics in the feed of Austrian waste-to-energy facilities.

    Science.gov (United States)

    Schwarzböck, Therese; Van Eygen, Emile; Rechberger, Helmut; Fellner, Johann

    2017-02-01

    Although thermal recovery of waste plastics is widely practiced in many European countries, reliable information on the amount of waste plastics in the feed of waste-to-energy plants is rare. In most cases the amount of plastics present in commingled waste, such as municipal solid waste, commercial, or industrial waste, is estimated based on a few waste sorting campaigns, which are of limited significance with regard to the characterisation of plastic flows. In the present study, an alternative approach, the so-called Balance Method, is used to determine the total amount of plastics thermally recovered in Austria's waste incineration facilities in 2014. The results indicate that the plastics content in the waste feed may vary considerably among different plants but also over time. Monthly averages determined range between 8 and 26 wt% of waste plastics. The study reveals an average waste plastics content in the feed of Austria's waste-to-energy plants of 16.5 wt%, which is considerably above findings from sorting campaigns conducted in Austria. In total, about 385 kt of waste plastics were thermally recovered in all Austrian waste-to-energy plants in 2014, which equals to 45 kg plastics cap -1 . In addition, the amount of plastics co-combusted in industrial plants yields a total thermal utilisation rate of 70 kg cap -1  a -1 for Austria. This is significantly above published rates, for example, in Germany reported rates for 2013 are in the range of only 40 kg of waste plastics combusted per capita.

  13. Study of plasticity in metals by numerical simulations

    International Nuclear Information System (INIS)

    Clouet, E.

    2013-01-01

    We present a study of the plastic behaviour in metals based on the modelling of dislocation properties. Different simulation tools have been used and developed to study plasticity in structural materials, in particular metals used in the nuclear industry. In iron or zirconium alloys, plasticity is controlled at low temperature by the glide of screw dislocations. Atomistic simulations can be used to model dislocation core properties and thus to obtain a better knowledge of the mechanisms controlling dislocation glide. Such atomistic simulations need nevertheless some special care because of the long range elastic field induced by the dislocations. We have therefore developed a modelling approach relying both on atomistic simulations, using either empirical interatomic potentials or ab initio calculations, and on elasticity theory. Such an approach has been used to obtain dislocation intrinsic core properties. These simulations allowed us to describe, in iron, the variations of these core properties with the dislocation character. In zirconium, we could identity the origin of the high lattice friction and obtain a better understanding of the competition between the different glide systems. At high temperature, dislocations do not only glide but can also cross-slip or climb. This leads to a motion of the dislocations out of their glide plane which needs to be considered when modelling the plastic flow. We performed a study of dislocation climb at different scales, leading to the implementation of a dislocation climb model in dislocation dynamics simulations. (author) [fr

  14. Effect of temperature and aluminium additions on the mechanical properties of the 13% chromium ferrite stainless steels

    International Nuclear Information System (INIS)

    Martins, S.

    1975-01-01

    The potential interest of the ferritic stainless steels as component materials for nuclear power reactors led to investigate how aluminium influences the mechanical properties of 13% chromium ferritic stainless steels between room temperature and about 700 0 C. Nominal 13% chromium and 0.04 to 0.08% carbon ferritic stainless steels containing 0, 0.13, 2.19 and 4.15% aluminium, respectively, were obtained by vacuum remelting of a commercial martensitic-ferritic stainless steel and suitable additions of aluminium. After successive rolling operations and recrystallizations performed in order to obtain final 0.5 mm thick sheets with similar average grain sizes the specimens of the above mentioned steels were tested in a tensile test Instron machine, with a constant strain rate (approximately equal to 1.6 x 10 -3 min -1 ), at room temperature, 140, 265, 415, 565 and 715 0 C. The results obtained show that strengthening by aluminium is strongly temperature dependent. At 265 0 C all the steels presentes serrated plastic deformation (Portevin-Le Chatelier effect), which is attributed to interactions of the interstitial and substitutional solute atoms with dislocations in the body centered cubic structure. Flow stress drops were still observed at 465 0 C, although the tests performed at 565 and 715 0 C showed work-softening of the materials and total absence of serrations. Stress relaxation tests at room temperature yielded values of the apparent activation volumes, which are scattered between about 100 and 130 b 3 (b-Burgers vector), being almost constant with stress, strain and aluminium content. Therefore, although aluminium appreciably strengthens the 13% chromium steel, the behaviour summarized suggests that the mechanism controlling plastic deformation at room temperature is the same for all the tested steels, the values of the apparent activitation volumes being probably determined by the interstitial content. Stress relaxation tests at 20, 75, 140 and 265 0 C for

  15. Mechanically equivalent elastic-plastic deformations and the problem of plastic spin

    Directory of Open Access Journals (Sweden)

    Steigmann David J.

    2011-01-01

    Full Text Available The problem of plastic spin is phrased in terms of a notion of mechanical equivalence among local intermediate configurations of an elastic/ plastic crystalline solid. This idea is used to show that, without further qualification, the plastic spin may be suppressed at the constitutive level. However, the spin is closely tied to an underlying undistorted crystal lattice which, once specified, eliminates the freedom afforded by mechanical equivalence. As a practical matter a constitutive specification of plastic spin is therefore required. Suppression of plastic spin thus emerges as merely one such specification among many. Restrictions on these are derived in the case of rate-independent response.

  16. Hydrogen-plasticity interactions in nickel and nickel base alloys

    International Nuclear Information System (INIS)

    Girardin, G.

    2004-03-01

    We evaluate the different contributions of the hydrogen-dislocation interactions to the plasticity of fcc materials in order to feed predictive models of stress corrosion cracking. Static strain ageing experiments are used to quantify the hardening contribution of solute drag by dislocations to the flow stress. We demonstrate the role of hydrogen transport by dislocations on the fracture mechanism. We model the influence of the screening of the elastic field of dislocations by hydrogen on elementary plasticity mechanisms and we conclude that the decrease of the cross slip ability arises from the combined action of elastic and core effects. The testing of single crystals shows that the major effect is on the cross slip mechanism. Tensile tests on polycrystals enlighten the diversity of macroscopic responses observed in alloys. (author)

  17. Free convection of Walter's fluid flow in a vertical double-passage ...

    African Journals Online (AJOL)

    user

    flat-plate solar collectors and flat-plate condensers in refrigerators. ... Hot rolling, extrusion of plastics, flow in journal bearings, lubrication, and flow in a shock ... which disturb the boundary layer growth and enhance the heat transfer between.

  18. Collective flow in 158AGeV Pb+Pb collisions

    NARCIS (Netherlands)

    Nishimura, S

    1998-01-01

    Anisotropic transverse flow has been studied with a magnetic spectrometer at mid-rapidity and the Plastic Ball detector at target rapidity in the WA98 experiment. Our preliminary results show the existence of directed and elliptic flow in semi-central Pb+Pb collisions. The magnitude of the directed

  19. Plastics and health risks.

    Science.gov (United States)

    Halden, Rolf U

    2010-01-01

    By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.

  20. Recycling of plastic waste: Presence of phthalates in plastics from households and industry

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Eriksen, Marie Kampmann; Martín-Fernández, J. A.

    2016-01-01

    recognised, the influence of plastic recycling on phthalate content has been hypothesised but not well documented. In the present work we analysed selected phthalates (DMP, DEP, DPP, DiBP, DBP, BBzP, DEHP, DCHP and DnOP) in samples of waste plastics as well as recycled and virgin plastics. DBP, DiBP and DEHP...... product manufacturing (labelling, gluing, etc.) and were not removed following recycling of household waste plastics. Furthermore, DEHP was identified as a potential indicator for phthalate contamination of plastics. Close monitoring of plastics intended for phthalates-sensitive applications...

  1. Plastic dislocation motion via nonequilibrium molecular and continuum dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.; Ladd, A.J.C.; Hoover, N.E.

    1980-01-01

    The classical two-dimensional close-packed triangular lattice, with nearest-neighbor spring forces, is a convenient standard material for the investigation of dislocation motion and plastic flow. Two kinds of calculations, based on this standard material, are described here: (1) Molecular Dynamics simulations, incorporating adiabatic strains described with the help of Doll's Tensor, and (2) Continuum Dynamics simulations, incorporating periodic boundaries and dislocation interaction through stress-field superposition

  2. Criteria for prediction of plastic instabilities for hot working processes. (Part I: Theoretical review)

    International Nuclear Information System (INIS)

    Al Omar, A.; Prado, J. M.

    2010-01-01

    Hot working processes often induce high levels of deformation at high strain rates, and impose very complex multiaxial modes of solicitation. These processes are essentially limited by apparition and development of plastic instabilities. These may be the direct cause of rapid crack propagation, which lead to a possible final rupture. The complexity of deformation modes and the simultaneous intervention of several parameters have led many researchers to develop various criteria, with different approaches, to predict the occurrence of defects and to optimize process control parameters. The aim of the present paper is to summarize the general characteristics of some instability criteria, widely used in the literature, for the prediction of plastic instabilities during hot working. It was considered appropriate to divide the work into two parts: part I presents the phenomenological criteria for the prediction of plastic instabilities, based on descriptive observation of microscopic phenomena of the deformation (strain hardening and strain rate sensitivity), and discusses the continuum criteria based on the principle of maximum rate of entropy production of irreversible thermodynamics applied to continuum mechanics of large plastic flow. Also, this part provides a bibliographical discussion among several authors with regard to the physical foundations of dynamic materials model. In part II, of the work, a comparative study has been carried out to characterize the flow instability during a hot working process of a medium carbon microalloyed using phenomenological and continuum criteria. (Author) 83 refs.

  3. Defective cerebellar control of cortical plasticity in writer’s cramp

    Science.gov (United States)

    Hubsch, Cecile; Roze, Emmanuel; Popa, Traian; Russo, Margherita; Balachandran, Ammu; Pradeep, Salini; Mueller, Florian; Brochard, Vanessa; Quartarone, Angelo; Degos, Bertrand; Vidailhet, Marie; Kishore, Asha

    2013-01-01

    in healthy subjects, behavioural parameters reflecting their capacity for adapting to the rotation and for washing-out of an earlier adaptation predicted the efficacy of inhibitory cerebellar conditioning to influence sensorimotor plasticity: the better the online adaptation, the smaller the influence of cerebellar inhibitory stimulation on motor cortex plasticity. Altered cerebellar encoding of incoming afferent volleys may result in decoupling the motor component from the afferent information flow, and also in maladjusted sensorimotor calibration. The loss of cerebellar control over sensorimotor plasticity might also lead to building up an incorrect motor program to specific adaptation tasks such as writing. PMID:23801734

  4. A third-order moving mesh cell-centered scheme for one-dimensional elastic-plastic flows

    Science.gov (United States)

    Cheng, Jun-Bo; Huang, Weizhang; Jiang, Song; Tian, Baolin

    2017-11-01

    A third-order moving mesh cell-centered scheme without the remapping of physical variables is developed for the numerical solution of one-dimensional elastic-plastic flows with the Mie-Grüneisen equation of state, the Wilkins constitutive model, and the von Mises yielding criterion. The scheme combines the Lagrangian method with the MMPDE moving mesh method and adaptively moves the mesh to better resolve shock and other types of waves while preventing the mesh from crossing and tangling. It can be viewed as a direct arbitrarily Lagrangian-Eulerian method but can also be degenerated to a purely Lagrangian scheme. It treats the relative velocity of the fluid with respect to the mesh as constant in time between time steps, which allows high-order approximation of free boundaries. A time dependent scaling is used in the monitor function to avoid possible sudden movement of the mesh points due to the creation or diminishing of shock and rarefaction waves or the steepening of those waves. A two-rarefaction Riemann solver with elastic waves is employed to compute the Godunov values of the density, pressure, velocity, and deviatoric stress at cell interfaces. Numerical results are presented for three examples. The third-order convergence of the scheme and its ability to concentrate mesh points around shock and elastic rarefaction waves are demonstrated. The obtained numerical results are in good agreement with those in literature. The new scheme is also shown to be more accurate in resolving shock and rarefaction waves than an existing third-order cell-centered Lagrangian scheme.

  5. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  6. Effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory

    International Nuclear Information System (INIS)

    Spitzig, W.A.; Sober, R.J.; Richmond, O.

    1976-01-01

    Earlier results showed that the difference between the tensile and compressive strengths of tempered martensites is primarily a manifestation of the general pressure dependence of flow stress in these materials. However, the same results also showed that the volume expansion after deformation was much smaller than that predicted by the normality flow rule of plasticity theory for materials with such pressure dependence. Additional results now obtained on maraging and HY-80 steels support these conclusions. The results for all these materials exhibit a strong, but not perfect, correlation between pressure dependence, yield stress, and volume expansion. The volume expansion, however, which is believed to result primarily from the generation of new dislocations, is very small and does not appear to be essential to the pressure dependence. Most of the pressure dependence, the portion responsible for the discrepancy with the normality flow rule, may be an effect on dislocation motion. The results suggest that an appropriate plasticity model would be one in which the octahedral shear yield stress is linearly dependent on the mean pressure, but the volume change is negligible in violation of the normality flow rule. Such a model has been proposed previously for the plastic deformation of soils. However, unlike that model, the present theory includes strain hardening. 17 fig

  7. Individual differences in behavioural plasticities.

    Science.gov (United States)

    Stamps, Judy A

    2016-05-01

    Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural

  8. Durability of wood plastic composites manufactured from recycled plastic

    Directory of Open Access Journals (Sweden)

    Irina Turku

    2018-03-01

    Full Text Available The influence of accelerated weathering, xenon-arc light and freeze-thaw cycling on wood plastic composites extruded from a recycled plastic was studied. The results showed that, in general, weathering had a stronger impact on samples made from plastic waste compared to a sample made from virgin material. After weathering, the mechanical properties, tensile and flexural, were reduced by 2–30%, depending on the plastic source. Wettability of the samples was shown to play a significant role in their stability. Chemical analysis with infrared spectroscopy and surface observation with a scan electron microscope confirmed the mechanical test results. Incorporation of carbon black retained the properties during weathering, reducing the wettability of the sample, diminishing the change of mechanical properties, and improving color stability. Keywords: Environmental science, Mechanical engineering, Materials science

  9. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  10. Kinematics of deformation bands in an austenitic FeMnC TWIP steel

    International Nuclear Information System (INIS)

    Chateau, J P; Jacques, A; Lebedkina, T A; Lebyodkin, M A; Allain, S

    2010-01-01

    Tensile tests on a Fe22Mn0.6C steel at room temperature and different strain rates show serrations on the curves similar to Portevin-Le Chatelier (PLC) serrations of type A, associated with negative strain rate sensitivity. Propagation of deformation bands have been observed by high-rate extensometry over more than two orders of magnitude of the applied strain rate. This constitutes a remarkable difference with the PLC effect which shows a transition to static bands (type B or C) when the applied strain rate decreases. In this steel, bands moving as slow as a few tenth of mm/s are observed instead of static bands, which is two orders of magnitude lower than what is reported for type A PLC bands. This emphasises a strong correlation between plastic events, also confirmed by multifractal analysis of the tensile curves. Twinning which is responsible of the high strain hardening rate of this steel at room temperature is discussed as one of mechanisms of correlation between instabilities.

  11. Plastic waste as a resource. Strategies for reduction and utilization of plastic waste

    OpenAIRE

    Pasqual i Camprubí, Gemma

    2010-01-01

    Plastic materials have experienced a spectacular rate of growth in recent decades, consequently, production of plastics, and likewise their consumption, has increased markedly since 1950. Moreover, they are lightweight and durable, as well as can be moulded into a variety of products that can be manufactured in many different types of plastic and in a wide range of applications. Inevitably, continually increasing amounts of used plastic are originating daily, resulting in a plastic waste prob...

  12. Thermal degradation and plasticizing mechanism of poly(vinyl chloride) plasticized with a novel cardanol derived plasticizer

    Science.gov (United States)

    Chen, J.; Nie, X. A.; Jiang, J. C.; Zhou, Y. H.

    2018-01-01

    A natural plasticizer cardanol derivatives glycidyl ether (CGE) was synthesized and employed as a plasticizer for the poly(vinyl chloride). The effect of CGE on thermal degradation of PVC films and its plasticizing mechanism were firstly reported. The molecular structure of CGE was characterized with Fourier transform infrared spectroscopy (FTIR). Thermal properties, degradation properties and compatibility of the PVC films were investigated by Differential scanning calorimeter analysis (DSC), Thermogravimetric analysis (TGA) and FTIR, respectively. Compared with the commercial plasticizers dioctylphthalate (DOP), CGE can endow PVC film with a decrease of 4.31 °C in glass transition temperature (Tg), an increase of 24.01 °C and 25.53 °C in 10% weight loss (T 10) and 50% weight loss (T 50) respectively, and a higher activetion energy of thermal degradation (Ea ).

  13. Variational methods for problems from plasticity theory and for generalized Newtonian fluids

    CERN Document Server

    Fuchs, Martin

    2000-01-01

    Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.

  14. Comparison of Plastic Surgery Residency Training in United States and China.

    Science.gov (United States)

    Zheng, Jianmin; Zhang, Boheng; Yin, Yiqing; Fang, Taolin; Wei, Ning; Lineaweaver, William C; Zhang, Feng

    2015-12-01

    Residency training is internationally recognized as the only way for the physicians to be qualified to practice independently. China has instituted a new residency training program for the specialty of plastic surgery. Meanwhile, plastic surgery residency training programs in the United States are presently in a transition because of restricted work hours. The purpose of this study is to compare the current characteristics of plastic surgery residency training in 2 countries. Flow path, structure, curriculum, operative experience, research, and evaluation of training in 2 countries were measured. The number of required cases was compared quantitatively whereas other aspects were compared qualitatively. Plastic surgery residency training programs in 2 countries differ regarding specific characteristics. Requirements to become a plastic surgery resident in the United States are more rigorous. Ownership structure of the regulatory agency for residency training in 2 countries is diverse. Training duration in the United States is more flexible. Clinical and research training is more practical and the method of evaluation of residency training is more reasonable in the United States. The job opportunities after residency differ substantially between 2 countries. Not every resident has a chance to be an independent surgeon and would require much more training time in China than it does in the United States. Plastic surgery residency training programs in the United States and China have their unique characteristics. The training programs in the United States are more standardized. Both the United States and China may complement each other to create training programs that will ultimately provide high-quality care for all people.

  15. Helene: A Plastic Model

    Science.gov (United States)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; Schenk, P.; White, O. L.

    2014-12-01

    Helene, the Saturnian L4 Trojan satellite co-orbiting Dionne and sitting within the E-ring, possesses an unusual morphology characteristic of broad km-scale basins and depressions and a generally smooth surface patterned with streaks and grooves which are indicative of non-typical mass transport. Elevation angles do not appear to exceed 10o at most. The nature and origin of the surface materials forming these grooved patterns is unknown. Given the low surface gravity (plastic-like flow like a Bingham fluid, we setup and test a number of likely scenarios to explain the observations. The numerical results qualitatively indicate that treating the mass-wasting materials as a Bingham material reproduces many of the qualitative features observed. We also find that in those simulations in which accretion is concomitant with Bingham mass-wasting, the long time-evolution of the surface flow shows intermittency in the total surface activity (defined as total surface integral of the absolute magnitude of the mass-flux). Detailed analyses identify the locations where this activity is most pronounced and we will discuss these and its implications in further detail.

  16. Do plastic particles affect microalgal photosynthesis and growth?

    Science.gov (United States)

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A Modeling Approach for Plastic-Metal Laser Direct Joining

    Science.gov (United States)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca

    2017-09-01

    Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

  18. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  19. Flow of nuclear matter

    International Nuclear Information System (INIS)

    Ritter, H.G.; Doss, K.G.R.; Gustafsson, H.A.

    1985-08-01

    The systems Nb + Nb and Au + Au have been measured at different energies at the Bevalac with the Plastic Ball spectrometer. Distributions of the flow angles as a function of charged particle multiplicity are presented. Also shown is a transverse momentum analysis for 400 MeV per nucleon Nb + Nb. 25 refs., 5 figs., 1 tab

  20. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  1. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  2. Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis

    International Nuclear Information System (INIS)

    Çepelioğullar, Özge; Pütün, Ayşe E.

    2013-01-01

    Graphical abstract: - Highlights: • Co-pyrolysis of biomass together with the plastic wastes in thermogravimetric analyzer. • Investigations into thermal and kinetic behaviors at high temperature regions. • Determination of the kinetic parameters. - Abstract: In this study, co-pyrolysis characteristics and kinetics of biomass-plastic blends were investigated. Cotton stalk, hazelnut shell, sunflower residue, and arid land plant Euphorbia rigida, were blended in definite ratio (1:1, w/w) with polyvinyl chloride (PVC) and polyethylene terephthalate (PET). Experiments were conducted with a heating rate of 10 °C min −1 from room temperature to 800 °C in the presence of N 2 atmosphere with a flow rate of 100 cm 3 min −1 . After thermal decomposition in TGA, a kinetic analysis was performed to fit thermogravimetric data and a detailed discussion of co-pyrolysis mechanism was achieved. Experimental results demonstrated that the structural differences between biomass and plastics directly affect their thermal decomposition behaviors. Biomass pyrolysis generally based on three main steps while plastic material’s pyrolysis mechanism resulted in two steps for PET and three steps for PVC. Also, the required activation energies needed to achieve the thermal degradation for plastic were found higher than the biomass materials. In addition, it can be concluded that the evaluation of plastic materials together with biomass created significant changes not only for the thermal behaviors but also for the kinetic behaviors

  3. Dislocation-drag contribution to high-rate plastic deformation in shock-loaded tantalum

    International Nuclear Information System (INIS)

    Tonks, D.L.; Hixson, R.S.; Johnson, J.N.; Gray, G.T. III

    1994-01-01

    Time-resolved plastic waves in plate-impact experiments give information on the relationship between applied shear stress and plastic strain rate at low plastic strain. This information is essentially different from that obtained at intermediate strain rates using Hopkins on bar techniques, because in the former case the material deformation state is driven briefly into the regime dominated by dislocation drag rather than thermal activation. Two VISAR records of the particle velocity at the tantalum/sapphire (window) interface are obtained for symmetric impact producing peak in situ longitudinal stresses of approximately 75 kbar and 111 kbar. The risetimes of the plastic waves are about 100 ns and 60 ns, respectively, with peak strain rates of about 2x10 5 /s and 1x10 6 /s, respectively, as determined by weak-shock analysis [Wallace, Phys. Rev. B 22, 1487 (1980), and Tonks, Los Alamos DataShoP Report LA-12068-MS (1991)]. These data show a much stronger dependence of plastic strain rate on applied shear stress than previously predicted by linear viscous drag models in combination with thermal activation through a large Peierls barrier. The data also show complex evolution of the mobile dislocation density during early stages of high-rate plastic flow. This measurement and analysis aid significantly in establishing the fundamental picture of dynamic deformation of BCC metals and the evolution of the internal material state at early times following shock compression. copyright 1994 American Institute of Physics

  4. Plasticity of decagonal Al-Ni-Co single quasicrystals

    International Nuclear Information System (INIS)

    Schall, P.

    2002-03-01

    Decagonal quasicrystals exhibit quasiperiodic order along two spatial directions and periodic order along the third. Many physical properties of these materials show an anisotropic behaviour. Three different modifications of the decagonal phase in the Al-Ni-Co system were grown as single crystals using the Bridgman and flux growth techniques: quasicrystals of a nickel-rich composition, the so-called basic Ni phase, of a composition of about Al 70 Ni 15 Co 15 and of a cobalt-rich composition, so-called basic Co. Plastic deformation experiments at constant strain rate were carried out on these phases at temperatures of about 70 to 85% of the melting temperature. Stress-relaxation tests and temperature changes were performed during the deformation to study the strain-rate and temperature sensitivity of the flow stress, respectively. Distinct anisotropies are observed in the plastic behaviour, which differ fundamentally for the three modifications. Microstructural investigations of deformed samples by transmission electron microscopy show that plastic deformation is mediated by a dislocation mechanism. Depending on orientation a pure glide, a pure climb or a mixed glide and climb process is observed. Burgers vectors were determined by convergent beam electron diffraction in direction and length. Three different types of dislocations are observed, i.e. dislocations with a periodic, quasiperiodic and a mixed Burgers vector. The Burgers vectors were identified in a current structure model. The dislocations with the periodic and the mixed Burgers vector exhibit reactions which are of fundamental importance for the macroscopic deformation behaviour. In particular, they explain the different plastic behaviours of the three modifications. (orig.)

  5. A bi-projection method for Bingham type flows

    OpenAIRE

    Chupin , Laurent; Dubois , Thierry

    2015-01-01

    We propose and study a new numerical scheme to compute the isothermal and unsteady flow of an incompressible viscoplastic Bingham medium.The main difficulty, for both theoretical and numerical approaches, is due to the non-differentiability of the plastic part of stress tensor in regionswhere the rate-of-strain tensor vanishes. This is handled by reformulating the definition of the plastic stress tensor in terms ofa projection.A new time scheme, based on the classical incremental projection m...

  6. Time between plastic displacements of elasto-plastic oscillators subject to Gaussian white noise

    DEFF Research Database (Denmark)

    Tarp-Johansen, Niels Jacob; Ditlevsen, Ove Dalager

    2001-01-01

    A one degree of freedom elasto-plastic oscillator subject to stationary Gaussian white noise has a plastic displacement response process of intermittent character. During shorter or longer time intervals the oscillator vibrates within the elastic domain without undergoing any plastic displacements...... between the clumps of plastic displacements. This is needed for a complete description of the plastic displacement process. A quite accurate fast simulation procedure is presented based on an amplitude model to determine the short waiting times in the transient regime of the elastic vibrations existing...

  7. Mechanical characteristics of plastic base Ports and impact on flushing efficacy.

    Science.gov (United States)

    Guiffant, Gérard; Flaud, Patrice; Royon, Laurent; Burnet, Espérie; Merckx, Jacques

    2017-01-01

    Three types of totally implantable venous access devices, Ports, are currently in use: titanium, plastic (polyoxymethylene, POM), and mixed (titanium base with a POM shell). Physics theory suggests that the interaction between a non-coring needle (NCN, made of stainless steel) and a plastic base would lead to the stronger material (steel) altering the more malleable material (plastic). To investigate whether needle impacts can alter a plastic base's surface, thus potentially reducing flushing efficacy. A Port made of POM was punctured 200 times with a 19-gauge NCN. Following the existing guidelines, the needle tip pricked the base with each puncture. The Port's base was then examined using a two-dimensional optical instrument, and a bi-dimensional numerical simulation using COMSOL ® was performed to investigate potential surface irregularities and their impact on fluid flow. Each needle impact created a hole (mean depth, 0.12 mm) with a small bump beside it (mean height, 0.02 mm) the Reynolds number Re k ≈10. A numerical simulation of the one hole/bump set showed that the flushing efficacy was 60% that of flushing along a flat surface. In clinical practice, the number of times a Port is punctured depends on patient and treatment characteristics, but each needle impact on the plastic base may increase the risk of decreased flushing effectiveness. Therefore, the more a plastic Port is accessed, the greater the risk of microorganisms, blood products, and medication accumulation. Multiple needle impacts created an irregular surface on the Port's base, which decreased flushing efficacy. Clinical investigation is needed to determine whether plastic base Ports are associated with an increased risk of Port infection and occlusion compared to titanium base Ports.

  8. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    Science.gov (United States)

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  9. A screen-printed flexible flow sensor

    International Nuclear Information System (INIS)

    Moschos, A; Kaltsas, G; Syrovy, T; Syrova, L

    2017-01-01

    A thermal flow sensor was printed on a flexible plastic substrate using exclusively screen-printing techniques. The presented device was implemented with custom made screen-printed thermistors, which allows simple, cost-efficient production on a variety of flexible substrates while maintaining the typical advantages of thermal flow sensors. Evaluation was performed for both static (zero flow) and dynamic conditions using a combination of electrical measurements and IR imaging techniques in order to determine important characteristics, such as temperature response, output repeatability, etc. The flow sensor was characterized utilizing the hot-wire and calorimetric principles of operation, while the preliminary results appear to be very promising, since the sensor was successfully evaluated and displayed adequate sensitivity in a relatively wide flow range. (paper)

  10. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  11. Application of Soft Computing for the Prediction of Warpage of Plastic Injection

    Directory of Open Access Journals (Sweden)

    Vijaya Kumar Reddy

    2009-01-01

    Full Text Available This paper deals with the development of accurate warpage prediction model for plastic injection molded parts using softcomputing tools namely, artificial neural networks and support vector machines. For training, validating and testing of thewarpage model, a number of MoldFlow (FE analyses have been carried out using Taguchi’s orthogonal array in the designof experimental technique by considering the process parameters such as mold temperature, melt temperature, packing pressure,packing time and cooling time. The warpage values were found by analyses which were done by MoldFlow PlasticInsight (MPI 5.0 software. The artificial neural network model and support vector machine regression model have beendeveloped using conjugate gradient learning algorithm and ANOVA kernel function respectively. The adequacy of the developedmodels is verified by using coefficient of determination. To judge the ability and efficiency of the models to predictthe warpage values absolute relative error has been used. The finite element results show, artificial neural network modelpredicts with high accuracy compared with support vector machine model.

  12. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  13. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  14. Selection of polychlorinated plastics in plastic waste by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Kumasaki, H.; Shinozaki, Y.

    1979-01-01

    The X-ray fluorescence method using a small source of 55 Fe was examined and found to be applicable for the selection of polychlorinated plastics from plastic waste in model areas in Tokyo designated for investigating their content in the waste. The weight ratios of soft and hard polychlorinated plastics to the total plastic waste estimated by this method were found to be 15.6% and 0.29% respectively. These values agree well with the results obtained with the Beilstein method. (author)

  15. Alternative method for assessing coking coal plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Dzuy Nguyen; Susan Woodhouse; Merrick Mahoney [University of Adelaide (Australia). BHP Billiton Newcastle Technology Centre

    2008-07-15

    Traditional plasticity measurements for coal have a number of limitations associated with the reproducibility of the tests and their use in predicting coking behaviour. This report reviews alternative rheological methods for characterising the plastic behaviour of coking coals. It reviews the application of more fundamental rheological measurements to the coal system as well as reviewing applications of rheology to other physical systems. These systems may act as potential models for the application of fundamental rheological measurements to cokemaking. The systems considered were polymer melts, coal ash melts, lava, bread making and ice cream. These systems were chosen because they exhibit some physically equivalent processes to the processes occurring during cokemaking, eg, the generation of bubbles within a softened system that then resolidifies. A number of recommendations were made; the steady and oscillatory shear squeeze flow techniques be further investigated to determine if the measured rheology characteristics are related to transformations within the coke oven and the characteristics of resultant coke; modification of Gieseler plastometers for more fundamental rheology measurements not be attempted.

  16. Toxicological Threats of Plastic

    Science.gov (United States)

    Plastics pose both physical (e.g., entanglement, gastrointestinal blockage, reef destruction) and chemical threats (e.g., bioaccumulation of the chemical ingredients of plastic or toxic chemicals sorbed to plastics) to wildlife and the marine ecosystem.

  17. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  18. Vegetative and reproductive evaluation of hot peppers under different plastic mulches in poly/plastic tunnel

    International Nuclear Information System (INIS)

    Iqbal, Q.; Amjad, M.; Ahmad, R.

    2009-01-01

    Since the beginning of civilization, the man has developed technologies to increase the efficiency of food production. The use of plastic mulch in commercial vegetable production is one of these traditional techniques that have been used for centuries. Studies were conducted to assess the efficacy of plastic mulch on growth and yield of two hot pepper hybrids, viz. Sky Red and Maha in poly/plastic tunnel. The treatments were black plastic mulch, clear plastic mulch and bare soil as control. Both hot pepper hybrids mulched with black plastic showed significantly better vegetative growth (plant height, leaf area etc) and fruit yield. Clear plastic mulch significantly increased soil temperature and reduced the number of days to first flower than black plastic mulch and bare soil. However, fruit yield was higher by 39.56 and 36.49% respectively in both hybrids when they were grown on black and clear plastic mulch as compared to bare soil. Overall results indicated that the use of plastic mulch is an ideal option to maximize hot pepper productivity as well as to extend their production season in poly/plastic tunnels. (author)

  19. Mechanisms of the plastic deformation of uranium alloys at low temperature

    International Nuclear Information System (INIS)

    Le Poac, P.; Nomine, A.M.; Miannay, D.

    1976-01-01

    The mechanical characteristics of the bcc binary alloys U-6Mo, U-8Mo, U-10Mo, U-12Mo and bcc ternary alloys U-8Mo-1Ti, U-10Mo-1Ti, U-10Mo-1Zr, stressed in compression, were determined between -196 deg C and + 450 deg C. The plastic flow shear stress in non-dependent on temperature above 300 deg C. At lower temperature shear stress is highly activated, except for the alloy U-6Mo and U-12Mo. Athermal shear stress above 300 deg C is due to the hardening of the solid solution described by Mott and Nabarro. In the thermal range, the recombination of the dissociated dislocations controls the plastic deformation [fr

  20. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and Seversk State Technological Institute (National Research Nuclear University MEPhI), Seversk, 636036 (Russian Federation); Barannikova, Svetlana A., E-mail: bsa@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Tomsk State University of Architecture and Building, Tomsk, 634003 (Russian Federation); Zuev, Lev B., E-mail: lbz@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  1. Multi-scale Modeling of Plasticity in Tantalum.

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hojun [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Battaile, Corbett Chandler. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carroll, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weinberger, Christopher [Drexel Univ., Philadelphia, PA (United States)

    2015-12-01

    In this report, we present a multi-scale computational model to simulate plastic deformation of tantalum and validating experiments. In atomistic/ dislocation level, dislocation kink- pair theory is used to formulate temperature and strain rate dependent constitutive equations. The kink-pair theory is calibrated to available data from single crystal experiments to produce accurate and convenient constitutive laws. The model is then implemented into a BCC crystal plasticity finite element method (CP-FEM) model to predict temperature and strain rate dependent yield stresses of single and polycrystalline tantalum and compared with existing experimental data from the literature. Furthermore, classical continuum constitutive models describing temperature and strain rate dependent flow behaviors are fit to the yield stresses obtained from the CP-FEM polycrystal predictions. The model is then used to conduct hydro- dynamic simulations of Taylor cylinder impact test and compared with experiments. In order to validate the proposed tantalum CP-FEM model with experiments, we introduce a method for quantitative comparison of CP-FEM models with various experimental techniques. To mitigate the effects of unknown subsurface microstructure, tantalum tensile specimens with a pseudo-two-dimensional grain structure and grain sizes on the order of millimeters are used. A technique combining an electron back scatter diffraction (EBSD) and high resolution digital image correlation (HR-DIC) is used to measure the texture and sub-grain strain fields upon uniaxial tensile loading at various applied strains. Deformed specimens are also analyzed with optical profilometry measurements to obtain out-of- plane strain fields. These high resolution measurements are directly compared with large-scale CP-FEM predictions. This computational method directly links fundamental dislocation physics to plastic deformations in the grain-scale and to the engineering-scale applications. Furthermore, direct

  2. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    Science.gov (United States)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  3. Modelling piloted ignition of wood and plastics

    International Nuclear Information System (INIS)

    Blijderveen, Maarten van; Bramer, Eddy A.; Brem, Gerrit

    2012-01-01

    Highlights: ► We model piloted ignition times of wood and plastics. ► The model is applied on a packed bed. ► When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  4. Size effects in olivine control strength in low-temperature plasticity regime

    Science.gov (United States)

    Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.

    2017-12-01

    The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.

  5. The evolution of human phenotypic plasticity: age and nutritional status at maturity.

    Science.gov (United States)

    Gage, Timothy B

    2003-08-01

    Several evolutionary optimal models of human plasticity in age and nutritional status at reproductive maturation are proposed and their dynamics examined. These models differ from previously published models because fertility is not assumed to be a function of body size or nutritional status. Further, the models are based on explicitly human demographic patterns, that is, model human life-tables, model human fertility tables, and, a nutrient flow-based model of maternal nutritional status. Infant survival (instead of fertility as in previous models) is assumed to be a function of maternal nutritional status. Two basic models are examined. In the first the cost of reproduction is assumed to be a constant proportion of total nutrient flow. In the second the cost of reproduction is constant for each birth. The constant proportion model predicts a negative slope of age and nutritional status at maturation. The constant cost per birth model predicts a positive slope of age and nutritional status at maturation. Either model can account for the secular decline in menarche observed over the last several centuries in Europe. A search of the growth literature failed to find definitive empirical documentation of human phenotypic plasticity in age and nutritional status at maturation. Most research strategies confound genetics with phenotypic plasticity. The one study that reports secular trends suggests a marginally insignificant, but positive slope. This view tends to support the constant cost per birth model.

  6. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  7. Migratory patterns and population structure among breeding and wintering red-breasted mergansers (Mergus serrator) and common mergansers (M. merganser)

    Science.gov (United States)

    Pearce, J.M.; McCracken, K.G.; Christensen, Thomas K.; Zhuravlev, Y.N.

    2009-01-01

    Philopatry has long been assumed to structure populations of waterfowl and other species of birds genetically, especially via maternally transmitted mitochondrial DNA (mtDNA), yet other migratory behaviors and nesting ecology (use of ground vs. cavity sites) may also contribute to population genetic structure. We investigated the effects of migration and nesting ecology on the population genetic structure of two Holarctic waterfowl, the Red-breasted Merganser (Mergus serrator) and Common Merganser (M. merganser), using mtDNA control-region sequence data. Red-breasted Mergansers (a ground-nesting species) exhibited lower levels of population differentiation across their North American range, possibly as a result of post-Pleistocene range expansion and population growth. By contrast, Common Mergansers (a cavity-nesting species) breeding in western and eastern North America were strongly differentiated, as were continental groups in North America and Europe. Our hypothesis that population differentiation of breeding female Common Mergansers results from limited migration during non-breeding periods was not supported, in that equally heterogeneous mtDNA lineages were observed in males and females on several wintering areas. The interspecific differences in mtDNA patterns for these two closely related species may have resulted from factors related to nesting ecology (ground vs. cavity nesting) and responses to historical climate change.

  8. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  9. Plasticity characteristic obtained by indentation

    International Nuclear Information System (INIS)

    Mil'man, Yu.V.; Chugunova, S.I.; Goncharova, I.V.

    2011-01-01

    Methods for determination plasticity characteristic δH in the measurement of hardness and nanohardness are considered. Parameter δH characterizes the plasticity of a material by the part of plastic deformation in the total elastic-plastic deformation. The value of δH is defined for metals with different types of crystal lattice, covalent and partially covalent crystals, intermetallics, metallic glasses and quasicrystals. It is discussed the dependence of the plasticity characteristic δH on structural factors and temperature. Parameter δH allows to analyze and compare the plasticity of materials which are brittle at standard mechanical tests. The combination of hardness H, as the strength characteristic, and the plasticity characteristic δH makes possible the better characterization of mechanical behavior of materials than only the hardness H. The examples of plasticity characteristic δH application are represented.

  10. Plastic frames: Reduction of the kinematical inequality and optimization

    International Nuclear Information System (INIS)

    Brousse, P.

    1979-01-01

    It is well-known that the following inequality plays an essential part in the theory of perfectly plastic frames: for all kinematically admissible mechanisms and for bending moments associated with the hinge rotations by the flow rule, the plastic dissipation power is greater than or equal to the load power. This inequality will be termed as the kinematic inequality. It contains parameters generating the mechanisms. In simple cases, several ingenious authors obtained appreciable results excluding parameters. But, in more complicated cases, for instance when the given quantities are not numerical, the parameters remain in the kinematic inequality, thereby precluding exploitation of the kinematic approach. In the present work we overcome this dificulty: we reduce the kinematic inequality, i.e., we replace it by inequalities containing no variable parameter; we then state a process giving automatically such inequalities; finally, we treat a practical application. (orig.)

  11. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  12. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  13. ENVIRONMENTAL ISSUE-PLASTIC

    OpenAIRE

    Sunita Shakle

    2017-01-01

    Polythene is the most common plastic, the annual global production is approximately 60 million tones, and its primary use is in packing. Plastic bags pollute soil and waters and kill thousands of marine generalize plastic bags are not biodegradable they clog water ways, spoil the land scape and end up in landfills. Where they may take 1000 year or more to break down into ever smaller particals that continue to pollution the soil and water.

  14. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  15. Flow stress, subgrain size, and subgrain stability at elevated temperature

    International Nuclear Information System (INIS)

    Sherby, O.D.; Klundt, R.H.; Miller, A.K.

    1977-01-01

    Well defined subgrain boundaries dominate the microstructural changes occurring during plastic flow of polycrystalline metals at elevated temperature. The quantitative influence of subgrain size on elevated-temperature plastic flow is considered. Based on the results of tests under constant-stress and constant-structure conditions, and equation is developed which predicts the creep rate as a function of subgrain size, stress, diffusion coefficient, and elastic modulus. In general, the subgrain size is a unique function of the current modulus-compensated flow stress, but if fine subgrains can be introduced and stabilized, large increases in creep strength may result. The applicability of the phenomenological relation developed to the behavior of dispersion-strengthened materials (where the second-phase particles may predetermine the effective subgrain size) is discussed. When subgrain effects are included, it is shown that the creep rate is less dependent on stacking fault energy than has been previously thought

  16. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  17. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  18. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  19. Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton

    Science.gov (United States)

    Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui

    2009-05-01

    This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.

  20. Our plastic age

    OpenAIRE

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste pl...

  1. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  2. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  3. Starch-zein beldns formed by shear flow

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.; Dekkers, B.; Goot, van der A.J.; Boom, R.M.

    2008-01-01

    A newly in-house developed shearing device was used to explore the formation of new types of microstructures in concentrated starch¿zein blends. The device allowed processing of the biopolymer blends under homogeneous, simple shear flow conditions. Water and glycerol were added as plasticizers.

  4. Experimental Investigation of the Productivity of a Wet Separation Process of Traditional and Bio-Plastics

    Directory of Open Access Journals (Sweden)

    Monica Moroni

    2018-05-01

    Full Text Available The separation process within a mechanical recycling plant plays a major role in the context of the production of high-quality secondary raw materials and the reduction of extensive waste disposal in landfills. Traditional plants for plastic separation employ dry or wet processes that rely on the different physical properties among the polymers. The hydraulic separator is a device employing a wet technology for particle separation. It allows the separation of two-polymer mixtures into two products, one collected within the instrument and the other one expelled through its outlet ducts. Apparatus performance were analyzed as a function of fluid and solid flow rates, flow patterns developing within the apparatus, in addition to the density, shape, and size of the polymers. For the hydraulic configurations tested, a two-way coupling takes place where the fluid exerts an influence on the plastic particles and the opposite occurs too. The interaction between the solid and liquid phases determines whether a certain polymer settles within the device or is expelled from the apparatus. Tests carried out with samples of increasing volumes of solid particles demonstrate that there are no significant differences in the apparatus effectiveness as far as a two-way interaction takes place. Almost pure concentrates of Polyethylene Terephthalate (PET, Polyvinyl Chloride (PVC, and Polycarbonate (PC can be obtained from a mixture of traditional polymers. Tests conducted on Polylactic Acid (PLA and Mater-Bi® samples showed that the hydraulic separator can be effectively employed to separate bio-plastics from conventional plastics with remarkable grade and recovery.

  5. Synaptic Plasticity and Nociception

    Institute of Scientific and Technical Information of China (English)

    ChenJianguo

    2004-01-01

    Synaptic plasticity is one of the fields that progresses rapidly and has a lot of success in neuroscience. The two major types of synaptie plasticity: long-term potentiation ( LTP and long-term depression (LTD are thought to be the cellular mochanisms of learning and memory. Recently, accumulating evidence suggests that, besides serving as a cellular model for learning and memory, the synaptic plasticity involves in other physiological or pathophysiological processes, such as the perception of pain and the regulation of cardiovascular system. This minireview will focus on the relationship between synaptic plasticity and nociception.

  6. Analysis of Metal Flow Behavior and Residual Stress Formation of Complex Functional Profiles under High-Speed Cold Roll-Beating

    Directory of Open Access Journals (Sweden)

    Fengkui Cui

    2018-01-01

    Full Text Available To obtain a good surface layer performance of the complex functional profile during the high-speed cold roll-beating forming process, this paper analyzed the metal plastic flow and residual stress-formed mechanism by using a theoretical model of the metal flow and residual stress generation. By using simulation software, the cold roll-beating forming process of a spline shaft was simulated and analyzed. The metal flow and residual stress formation law in the motion were researched. In a practical experiment, the changes in the grains in the spline tooth profile section and the residual stress distribution on the tooth profile were studied. A microcorrespondence relationship was established between the metal plastic flow and the residual stress generation. The conclusions indicate that the rate at which the metal flow decreases changes gradually at different metal layers. The residual stress value is directly related to the plastic flow difference. As the roll-beating speed increases, the uneven degree of plastic deformation at the workpiece surface increases, and the residual stress in the tooth profile is generally greater. At the same roll-beating speed, the rate change trend of the metal flow decreases gradually from the surface to the inner layer and from the dedendum to the addendum. The residual stress distribution on the surface of the tooth profile decreases from the dedendum to the addendum. These findings provide a basis and guidance for the controlled use of residual stress, obtaining better surface layer quality in the high-speed cold roll-beating process of the complex functional profile.

  7. Phenotypic plasticity despite source-sink population dynamics in a long-lived perennial plant.

    Science.gov (United States)

    Anderson, Jill T; Sparks, Jed P; Geber, Monica A

    2010-11-01

    • Species that exhibit adaptive plasticity alter their phenotypes in response to environmental conditions, thereby maximizing fitness in heterogeneous landscapes. However, under demographic source-sink dynamics, selection should favor traits that enhance fitness in the source habitat at the expense of fitness in the marginal habitat. Consistent with source-sink dynamics, the perennial blueberry, Vaccinium elliottii (Ericaceae), shows substantially higher fitness and population sizes in dry upland forests than in flood-prone bottomland forests, and asymmetrical gene flow occurs from upland populations into bottomland populations. Here, we examined whether this species expresses plasticity to these distinct environments despite source-sink dynamics. • We assessed phenotypic responses to a complex environmental gradient in the field and to water stress in the glasshouse. • Contrary to expectations, V. elliottii exhibited a high degree of plasticity in foliar and root traits (specific leaf area, carbon isotope ratios, foliar nitrogen content, root : shoot ratio, root porosity and root architecture). • We propose that plasticity can be maintained in source-sink systems if it is favored within the source habitat and/or a phylogenetic artifact that is not costly. Additionally, plasticity could be advantageous if habitat-based differences in fitness result from incipient niche expansion. Our results illuminate the importance of evaluating phenotypic traits and fitness components across heterogeneous landscapes. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  8. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  9. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    Science.gov (United States)

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  10. Mixture theory for a thermoelasto-plastic porous solid considering fluid flow and internal mass exchange

    DEFF Research Database (Denmark)

    Ristinmaa, M.; Ottosen, N.S.; Johannesson, Björn

    2011-01-01

    A thermoelastic-plastic body consisting of two phases, a solid and a fluid, each comprising two constituents is considered where one constituent in one phase is allowed to exchange mass with another constituent (of the same substance) in the other phase. A large strain setting is adopted and the ......A thermoelastic-plastic body consisting of two phases, a solid and a fluid, each comprising two constituents is considered where one constituent in one phase is allowed to exchange mass with another constituent (of the same substance) in the other phase. A large strain setting is adopted......, and in particular, a general evolution law for the rate of deformation tensor related to mass exchange is proposed and this leads to general absorption and desorption evolution laws for mass exchange between two constituents (of the same substance), one belonging to the solid phase and the other to the fluid phase....... Equilibrium curves for absorption and desorption also emerge from the theory....

  11. Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2016-04-01

    We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive

  12. Preliminary investigation of the transport of small plastic litter along a vegetated riverbank

    Science.gov (United States)

    Liu, Da; Valyrakis, Manousos

    2017-04-01

    Plastics are widely used in consumer products, due to its low cost, low weight and high durability compared to other types of materials. Contamination of marine ecosystems due to plastics (including microplastics) is a challenge that has received a lot of attention due to the significant risks it poses for the environment and human health. Plastics find their way to the ocean from land via the river system. Studying and obtaining a better understanding of the mechanisms contributing to the fate of plastic litter is therefore important in proactively devising methods to reduce their quantity or produce designs to trap plastic pollutants and prevent them from entering the ocean through estuaries. In this context, it is a common observation of hydraulic practitioners and field geomorphologists, that plastic litter can be trapped within riparian vegetation patches along streams or canals, which can be washed away in periods of high flows. To this goal this study aims to use a series of purpose specific physical experiments to examine the mechanisms of dispersion of plastic litter along the water surface of a channel with simulated riparian vegetation. The set of experiments are conducted in a recirculating flume with rigid riverbank and riparian vegetation modeled by a large number of acrylic rods, placed on the top of the riverbank section. Six different sizes of pieces of Styrofoam are used to simulate plastic litter. These are released from different locations upstream and in the vicinity of the riparian vegetation for various configurations (linear, staggered and random) of characteristic solid density. The trajectory of the plastic litter is recorded with a camera offering a top view of the arrangement. From the analysis of this a variety of results are obtained including transport metrics (including transport velocity and time to trapping) and litter-trapping location. The relation between the size of the litter, the vegetation configuration and the traveling

  13. Excellent plasticity of a new Ti-based metallic glass matrix composite upon dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Jiao, Z.M. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Y.S.; Wang, Z. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Z.H.; Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-11-20

    Quasi-static and dynamic compressive properties of in-situ Ti{sub 60}Zr{sub 14}V{sub 12}Cu{sub 4}Be{sub 10} bulk metallic glass matrix composites containing ductile dendrites were investigated. Upon quasi-static compressive loading, the composite exhibits a high fracture strength of ~2,600 MPa, combined with a considerable plasticity of ~40% at room temperature. However, upon dynamic loading, an excellent plasticity of ~16% can be obtained due to the abundant dislocations and severe lattice distortions within dendrites and multiplication of shear bands within the glass matrix analyzed by transmission-electron microscopy. A constitutive relationship is obtained by Johnson-Cook plasticity model, which is employed to model the dynamic flow stress behavior. In addition, under dynamic compression, the adiabatic temperature rise increases with increasing strain rates, resulting in that the softening effect within the glass matrix is obviously enhanced during deformation.

  14. Synthesis of biodegradable plastic from tapioca with N-Isopropylacrylamid and chitosan using glycerol as plasticizer

    Science.gov (United States)

    Syaubari; Safwani, S.; Riza, M.

    2018-04-01

    One of natural polymers that can be used as raw material in the manufacture of biodegradable plastic is tapioca and chitosan. The addition of other compounds such as glycerol as plasticizer is to improve the characteristics of the plastic that already produced. N- Isopropylacrylamid (NIPAm) is an organic compound that can be synthesized into a polymer or polymer grafting which also biodegradable too. This research aims tostudy the synthesis of biodegradable plastics from tapioca with the addition of chitosan, NIPAm, poly(NIPAm) and analyze the characteristics of biodegradable plastics that already produced. This research was done in three stages, there are (1) polymerization NIPAm, (2) the grafting of chitosan-poly NIPAm and (3) the synthesis of biodegradable plastics from starch mixture with variation of addition chitosan, NIPAm, poly(NIPAm), chitosan-graft-poly(NIPAm) and also variations of glycerol as plasticizer. The results of this research is a thin sheet of plastic which is will get analyzed for the characteristics of functional groups, mechanical, morphological and its biodegradability. FTIR spectra showed the grafting process with the new group formation of CO single-bond at 850 cm-1. Plastic with the addition of NIPAm and 1 ml glycerol has the highest tensile strength value about 31.1 MPa. Plastic with poly(NIPAm) and 4 ml glycerol produces the highest elongation value about 153.72%. Plastic with Chitosan-graft-poly(NIPAm) with 1 ml glycerol has the longest biodegradation because of the small mass-loss for six weeks which is about 6.6%.

  15. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Ghoniem, N.M.; Trinkaus, H.

    2002-01-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved

  17. Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N. E-mail: bachu.singh@risoe.dk; Ghoniem, N.M.; Trinkaus, H

    2002-12-01

    The analysis of the available experimental observations shows that the occurrence of a sudden yield drop and the associated plastic flow localization are the major concerns regarding the performance and lifetime of materials exposed to fission or fusion neutrons. In the light of the known mechanical properties and microstructures of the as-irradiated and irradiated and deformed materials, it has been argued that the increase in the upper yield stress, the sudden yield drop and the initiation of plastic flow localization, can be rationalized in terms of the cascade induced source hardening (CISH) model. Various aspects of the model (main assumptions and predictions) have been investigated using analytical calculations, 3-D dislocation dynamics and molecular dynamics simulations. The main results and conclusions are briefly summarized. Finally, it is pointed out that even though the formation of cleared channels may be rationalized in terms of climb-controlled glide of the source dislocation, a number of problems regarding the initiation and the evolution of these channels remain unsolved.

  18. Melting the Plastic Ceiling: Overcoming Obstacles to Foster Leadership in Women Plastic Surgeons.

    Science.gov (United States)

    Silva, Amanda K; Preminger, Aviva; Slezak, Sheri; Phillips, Linda G; Johnson, Debra J

    2016-09-01

    The underrepresentation of women leaders in plastic surgery echoes a phenomenon throughout society. The importance of female leadership is presented, and barriers to gender equality in plastic surgery, both intrinsic and extrinsic, are discussed. Strategies for fostering women in leadership on an individual level and for the specialty of plastic surgery are presented.

  19. Closed Loop Recycling of Plastic Housing for Flat Screen TVs

    OpenAIRE

    Peeters, Jef; Vanegas, Paul; Devoldere, Tom; Dewulf, Wim; Duflou, Joost

    2012-01-01

    The treatment of the rapidly increasing number of End-of-Life (EoL) Flat screen Televisions (FTVs) presents major challenges and opportunities. Closing loops in plastic housing material flows remains a particular technical challenge because of the presence of additives, such as Flame Retardants (FR) in recovered housings. In the framework of a collaborative project PRIME with TP Vision the TV development site for Philips TVs and a Van Gansewinkel first level recycling plant, series of experim...

  20. Limits to ductility set by plastic flow localization

    International Nuclear Information System (INIS)

    Needleman, A.; Rice, J.R.

    1977-11-01

    The theory of strain localization is reviewed with reference both to local necking in sheet metal forming processes and to more general three dimensional shear band localizations that sometimes mark the onset of ductile rupture. Both bifurcation behavior and the growth of initial imperfections are considered. In addition to analyses based on classical Mises-like constitutive laws, approaches to localization based on constitutive models that may more accurately model processes of slip and progressive rupturing on the microscale in structural alloys are discussed. Among these non-classical constitutive features are the destabilizing roles of yield surface vertices and of non-normality effects, arising, for example, from slight pressure sensitivity of yield. Analyses based on a constitutive model of a progressively cavitating dilational plastic material which is intended to model the process of ductile void growth in metals are also discussed. A variety of numerical results are presented. In the context of the three dimensional theory of localization, it is shown that a simple vertex model predicts ratios of ductility in plane strain tension to ductility in axisymmetric tension qualitatively consistent with experiment, and the destabilizing influence of a hydrostatic stress dependent void nucleation criterion is illustrated. In the sheet necking context, and focussing on positive biaxial stretching, it is shown that forming limit curves based on a simple vertex model and those based on a simple void growth model are qualitatively in accord, although attributing instability to very different physical mechanisms. These forming limit curves are compared with those obtained from the Mises material model and employing various material and geometric imperfections

  1. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube

    International Nuclear Information System (INIS)

    Kostov, Konstantin G; Prysiazhnyi, Vadym; Honda, Roberto Y; Machida, Munemasa

    2015-01-01

    This work proposes an experimental configuration for the generation of a cold atmospheric pressure plasma jet at the downstream end of a long flexible plastic tube. The device consists of a cylindrical dielectric chamber where an insulated metal rod that serves as high-voltage electrode is inserted. The chamber is connected to a long (up to 4 m) commercial flexible plastic tube, equipped with a thin floating Cu wire. The wire penetrates a few mm inside the discharge chamber, passes freely (with no special support) along the plastic tube and terminates a few millimeters before the tube end. The system is flushed with Ar and the dielectric barrier discharge (DBD) is ignited inside the dielectric chamber by a low frequency ac power supply. The gas flow is guided by the plastic tube while the metal wire, when in contact with the plasma inside the DBD reactor, acquires plasma potential. There is no discharge inside the plastic tube, however an Ar plasma jet can be extracted from the downstream tube end. The jet obtained by this method is cold enough to be put in direct contact with human skin without an electric shock. Therefore, by using this approach an Ar plasma jet can be generated at the tip of a long plastic tube far from the high-voltage discharge region, which provides the safe operation conditions and device flexibility required for medical treatment. (paper)

  2. Some Limitations in the Use of Plastic and Dyed Plastic Dosimeters

    DEFF Research Database (Denmark)

    Miller, Arne; Bjergbakke, Erling; McLaughlin, W. L.

    1975-01-01

    Several practical plastic and dyed plastic dosimeters were examined under irradiation conditions similar to those used for radiation processing of materials. Cellulose triacetate, polymethyl methacrylate, polyvinyl chloride, dyed polymethyl methacrylate, dyed Cellophane and dyed Nylon were given...

  3. Mechanical characteristics of plastic base Ports and impact on flushing efficacy

    Directory of Open Access Journals (Sweden)

    Guiffant G

    2017-01-01

    Full Text Available Gérard Guiffant,1 Patrice Flaud,1 Laurent Royon,1 Espérie Burnet,2 Jacques Merckx1–3 1University Paris Diderot, Biofluidic Group, UMR CNRS, 2Pulmonary Department and Adult Cystic Fibrosis Centre, Cochin Hospital, 3University Teaching Hospital, Necker-Enfants Malades, Paris, France Background: Three types of totally implantable venous access devices, Ports, are currently in use: titanium, plastic (polyoxymethylene, POM, and mixed (titanium base with a POM shell. Physics theory suggests that the interaction between a non-coring needle (NCN, made of stainless steel and a plastic base would lead to the stronger material (steel altering the more malleable material (plastic. Objectives: To investigate whether needle impacts can alter a plastic base’s surface, thus potentially reducing flushing efficacy. Study design and methods: A Port made of POM was punctured 200 times with a 19-gauge NCN. Following the existing guidelines, the needle tip pricked the base with each puncture. The Port’s base was then examined using a two-dimensional optical instrument, and a bi-dimensional numerical simulation using COMSOL® was performed to investigate potential surface irregularities and their impact on fluid flow. Results: Each needle impact created a hole (mean depth, 0.12 mm with a small bump beside it (mean height, 0.02 mm the Reynolds number Rek≈10. A numerical simulation of the one hole/bump set showed that the flushing efficacy was 60% that of flushing along a flat surface. Discussion: In clinical practice, the number of times a Port is punctured depends on patient and treatment characteristics, but each needle impact on the plastic base may increase the risk of decreased flushing effectiveness. Therefore, the more a plastic Port is accessed, the greater the risk of microorganisms, blood products, and medication accumulation. Conclusions: Multiple needle impacts created an irregular surface on the Port’s base, which decreased flushing efficacy

  4. Development and Characterization of a Rate-Dependent Three-Dimensional Macroscopic Plasticity Model Suitable for Use in Composite Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2015-01-01

    Several key capabilities have been identified by the aerospace community as lacking in the material/models for composite materials currently available within commercial transient dynamic finite element codes such as LS-DYNA. Some of the specific desired features that have been identified include the incorporation of both plasticity and damage within the material model, the capability of using the material model to analyze the response of both three-dimensional solid elements and two dimensional shell elements, and the ability to simulate the response of composites composed with a variety of composite architectures, including laminates, weaves and braids. In addition, a need has been expressed to have a material model that utilizes tabulated experimentally based input to define the evolution of plasticity and damage as opposed to utilizing discrete input parameters (such as modulus and strength) and analytical functions based on curve fitting. To begin to address these needs, an orthotropic macroscopic plasticity based model suitable for implementation within LS-DYNA has been developed. Specifically, the Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The coefficients in the yield function are determined based on tabulated stress-strain curves in the various normal and shear directions, along with selected off-axis curves. Incorporating rate dependence into the yield function is achieved by using a series of tabluated input curves, each at a different constant strain rate. The non-associative flow-rule is used to compute the evolution of the effective plastic strain. Systematic procedures have been developed to determine the values of the various coefficients in the yield function and the flow rule based on the tabulated input data. An algorithm based on the radial return method has been developed to facilitate the numerical implementation of the material

  5. ECM remodeling and its plasticity

    Science.gov (United States)

    Feng, Jingchen; Jones, Christopher A. R.; Cibula, Matthew; Mao, Xiaoming; Sander, Leonard M.; Levine, Herbert; Sun, Bo

    The mechanical interactions between cells and Extracellular Matrix (ECM) are of great importance in many cellular processes. These interactions are reciprocal, i.e. contracting cells pull and reorganize the surrounding matrix, while the remodeled matrix feeds back to regulate cell activities. Recent experiments show in collagen gels with densely distributed cells, aligned fiber bundles are formed in the direction between neighboring cells. Fibers flow into the center region between contracting cell pairs in this process, which causes the concentration of fibers in the fiber bundles to become significantly enhanced. Using an extended lattice-based model, we show that viscoelasticity plays an essential role in ECM remodeling and contributes to the enhanced concentration in fiber bundles. We further characterize ECM plasticity within our model and verify our results with rheometer experiments.

  6. A stationary bulk planar ideal flow solution for the double shearing model

    Science.gov (United States)

    Lyamina, E. A.; Kalenova, N. V.; Date, P. P.

    2018-04-01

    This paper provides a general ideal flow solution for the double shearing model of pressure-dependent plasticity. This new solution is restricted to a special class of stationary planar flows. A distinguished feature of this class of solutions is that one family of characteristic lines is straight. The solution is analytic. The mapping between Cartesian and principal lines based coordinate systems is given in parametric form with characteristic coordinates being the parameters. A simple relation that connects the scale factor for one family of coordinate curves of the principal lines based coordinate system and the magnitude of velocity is derived. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to granular materials.

  7. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    Science.gov (United States)

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  8. Effects of B2 precipitate size on transformation-induced plasticity of Cu–Zr–Al glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.N. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Huang, J.C., E-mail: jacobc@mail.nsysu.edu.tw [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Li, J.B.; Jang, J.S.C. [Institute of Materials Science and Engineering, Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan, ROC (China); Lin, C.H. [Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Nieh, T.G. [Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC (China); Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996 (United States)

    2014-03-25

    Highlights: • This paper addresses the effects of the CuZr B2 size and distribution on plasticity. • There is a critical size to induce the martensitic/twinning transformation. • An analytic model based on melt flow dynamics is settled. -- Abstract: To demonstrate the effect of processing on the microstructure and subsequent mechanical property of bulk metallic glasses, we prepared two alloys, Cu{sub 47.5}Zr{sub 47.5}Al{sub 5} and Cu{sub 47.5}Zr{sub 48}Al{sub 4}Co{sub 0.5}, using two different designs of suction mold – one with a sharp inlet and one with a blunt inlet. The two alloys have been demonstrated previously to be ductile via phase transformation of the B2 phase and twin formation during plastic deformation. Microstructures of the as-cast as well plastically deformed samples, in particular, the size and distribution of the B2 phase, were examined using X-ray diffraction, scanning and transmission electron microscopy. Compressive tests were conducted on samples cast by different molds and their properties were found to closely correlate with the B2 morphology. Fluid dynamics during suction casting was also analyzed. Effects of Vena contracta, flow velocity, and Reynolds number were discussed and compared favorably with experimental observations.

  9. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  10. Rheological characterization of plasticized corn proteins for fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Dalgalarrondo, Michèle; Della Valle, Guy; Lourdin, Denis; Marion, Didier; Leroy, Eric

    2017-10-01

    Additive Manufacturing (AM) of tailored natural biopolymer-based objects by Fused Deposition Modeling (FDM) opens new perspectives for applications such as biomedical temporary devices, or pharmaceutical tablets. This exploits the biocompatibility, resorbability and edibility properties of biopolymers. When adequately plasticized, zeins, storage proteins from endosperm of maize kernels, displayed thermomechanical properties possibly matching FDM processing requirements at a convenient temperature Tprinting=130°C. Indeed, with 20% glycerol added (Tg=42°C), plasticized zeins present a high modulus, E'>1GPa, at ambient conditions, which drops below 0.6 MPa at the processing temperature T=130°C, before flowing in the molten state. The rheological characterization shows that the processing window is limited by a progressive increase of viscosity linked to proteins aggregation and crosslinking by S-S bonding between cysteine amino acid residues, which can lead to gelation. However, for short residence time typical of FDM, the viscosity of plasticized zeins is comparable to the one of standard polymers, like ABS or PLA in their FDM processing conditions: indeed, in presence of glycerol, the molten zeins show a shear-thinning behavior with |η*|≈3kPa.s at 1s-1, decreasing to |η*|≈0.3kPa.s at 100s-1, at 130°C. Moreover, zeins presenting both hydrophilic and hydrophobic domains, amphiphilic plasticizers can be used supplementary to tune their rheological behavior. With 20% oleic acid added to the previous composition, the viscosity is divided down to a ratio about 1/2 at 100s-1 at 130°C, below the value of a standard polymer as PLA at its printing temperature. These results show the possible enhancement of the printability of zein-based materials in the molten state, by combining polar and amphiphilic plasticizers.

  11. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex

    Directory of Open Access Journals (Sweden)

    Florian Müller-Dahlhaus

    2010-07-01

    Full Text Available Spike-timing dependent plasticity (STDP has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behaviour such as learning and memory.

  12. Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Roland Le Borgne

    2005-04-01

    Full Text Available Signaling by the Notch ligands Delta (Dl and Serrate (Ser regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur and Mind bomb (Mib, have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila.

  13. Plastic and Non-plastic Debris Ingestion in Three Gull Species Feeding in an Urban Landfill Environment.

    Science.gov (United States)

    Seif, S; Provencher, J F; Avery-Gomm, S; Daoust, P-Y; Mallory, M L; Smith, P A

    2018-04-01

    Plastic debris is recognized as a widespread, common and problematic environmental pollutant. An important consequence of this pollution is the ingestion of plastic debris by wildlife. Assessing the degree to which different species ingest plastics, and the potential effects of these plastics on their health are important research needs for understanding the impacts of plastic pollution. We examined debris (plastic and other types) ingestion in three sympatric overwintering gull species (Herring gulls Larus smithsonianus, Great Black-backed Gulls Larus marinus, and Iceland Gulls Larus glaucoides) to understand how debris ingestion differs among species, age classes and sexes in gulls. We also assessed how plastic burdens were associated with body condition to investigate how gulls may be affected by debris ingestion. There were no differences among the species, age classes or sexes in the incidence of debris ingestion (plastic or otherwise), the mass or number of debris pieces ingested. We found no correlation between ingested plastics burdens and individual condition. Gulls ingested plastic debris, but also showed high levels of other debris types as well, including metal, glass and building materials, including a metal piece of debris found within an abscess in the stomach. Thus, when the health effects of debris ingestion on gulls, and other species that ingest debris, is of interest, either from a physical or chemical perspective, it may be necessary to consider all debris types and not just plastic burdens as is often currently done for seabirds.

  14. Education on the Business of Plastic Surgery During Training: A Survey of Plastic Surgery Residents.

    Science.gov (United States)

    Ovadia, Steven A; Gishen, Kriya; Desai, Urmen; Garcia, Alejandro M; Thaller, Seth R

    2018-06-01

    Entrepreneurial skills are important for physicians, especially plastic surgeons. Nevertheless, these skills are not typically emphasized during residency training. Evaluate the extent of business training at plastic surgery residency programs as well as means of enhancing business training. A 6-question online survey was sent to plastic surgery program directors for distribution to plastic surgery residents. Responses from residents at the PGY2 level and above were included for analysis. Tables were prepared to present survey results. Hundred and sixty-six residents including 147 PGY2 and above residents responded to our survey. Only 43.5% reported inclusion of business training in their plastic surgery residency. A majority of residents reported they do not expect on graduation to be prepared for the business aspects of plastic surgery. Additionally, a majority of residents feel establishment of a formal lecture series on the business of plastic surgery would be beneficial. Results from our survey indicate limited training at plastic surgery programs in necessary business skills. Plastic surgery residency programs should consider incorporating or enhancing elements of business training in their curriculum. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  15. Features of dynamic strain aging in high strength Al-Zn-Mg-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Peng Kaiping; Chen Wenzhe; Zhang Haoguo; Qian Kuangwu [Fuzhou Univ., Fujian (China)

    1997-08-30

    The present work investigates mainly the regulation and features of the occurrence of serrated yielding phenomenon of a high strength Al-Zn-Mg-Cu alloy LC4 under various heat treatments and loading conditions. The main results are: (1) In the serrated yielding temperature region a critical transition temperature T{sub t} exists. The critical plastic strain has a negative or positive temperature coefficient within the temperature region lower or higher than T{sub t}; (2) The reason for this phenomenon might be the existence of an absorbed resource which diminishes the pinning effect of solute atoms to mobile dislocations; (3) in the positive coefficient region two reverse thermal activation processes occur simultaneously. One is the solute atoms diffuse to the moving dislocations and pin the dislocations. The other one is the absorbed resource absorbs the solute and diminishes the pinning effect; (4) for LC4, the activation energy of the first process is equivalent to the diffusion activation energy of Mg in Al matrix and the second one is equivalent to that of the interface absorbed solute atoms. (orig.) 6 refs.

  16. The effects of plastic waves on the numerical convergence of the viscous-plastic and elastic-viscous-plastic sea-ice models

    Science.gov (United States)

    Williams, James; Tremblay, L. Bruno; Lemieux, Jean-François

    2017-07-01

    The plastic wave speed is derived from the linearized 1-D version of the widely used viscous-plastic (VP) and elastic-viscous-plastic (EVP) sea-ice models. Courant-Friedrichs-Lewy (CFL) conditions are derived using the propagation speed of the wave. 1-D numerical experiments of the VP, EVP and EVP* models successfully recreate a reference solution when the CFL conditions are satisfied, in agreement with the theory presented. The IMplicit-EXplicit (IMEX) method is shown to effectively alleviate the plastic wave CFL constraint on the timestep in the implicitly solved VP model in both 1-D and 2-D. In 2-D, the EVP and EVP* models show first order error in the simulated velocity field when the plastic wave is not resolved. EVP simulations are performed with various advective timestep, number of subcycles, and elastic-wave damping timescales. It is found that increasing the number of subcycles beyond that needed to resolve the elastic wave does not improve the quality of the solution. It is found that reducing the elastic wave damping timescale reduces the spatial extent of first order errors cause by the unresolved plastic wave. Reducing the advective timestep so that the plastic wave is resolved also reduces the velocity error in terms of magnitude and spatial extent. However, the parameter set required for convergence to within the error bars of satellite (RGPS) deformation fields is impractical for use in climate model simulations. The behavior of the EVP* method is analogous to that of the EVP method except that it is not possible to reduce the damping timescale with α = β.

  17. Coliquefaction of coal, tar sand bitumen and plastic (interaction among coal, bitumen and plastic); Sekitan/tar sand bitumen/plastic no kyoekika ni okeru kyozon busshitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Okuyama, Y.; Matsubara, K. [NKK Corp., Tokyo (Japan); Kamo, T.; Sato, Y. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    For the improvement of economy, coliquefaction of coal, tar sand bitumen and plastic was performed under low hydrogen pressure, to investigate the influence of interaction among these on the liquefaction characteristics. For comparison, coliquefaction was also performed under the hydrogen pressure same as the NEDOL process. In addition, for clarifying its reaction mechanism, coliquefaction of dibenzyl and plastic was performed as a model experiment, to illustrate the distribution of products and composition of oil, and to discuss the interaction between dibenzyl and various plastics, and between various plastics. Under direct coal liquefaction conditions, coprocessing of Tanito Harum coal, Athabasca tar sand and plastic was carried out under low hydrogen pressure with an autoclave. The observed value of oil yield was higher than the calculated value based on the values from separate liquefaction of coal and plastic, which suggested the interaction between coal and the mixed plastic. The results of coliquefaction of coal, tar sand bitumen and plastic could be explained from the obtained oil yield and its composition by the coliquefaction of dibenzyl and plastic. 2 refs., 3 tabs.

  18. Pulmonary functions in plastic factory workers: a preliminary study.

    Science.gov (United States)

    Khaliq, Farah; Singh, Pawan; Chandra, Prakash; Gupta, Keshav; Vaney, Neelam

    2011-01-01

    Exposure to long term air pollution in the work environment may result in decreased lung functions and various other health problems. A significant occupational hazard to lung functions is experienced by plastic factory workers. The present study is planned to assess the pulmonary functions of workers in the plastic factory where recycling of pastic material was done. These workers were constantly exposed to fumes of various chemicals throughout the day. Thirty one workers of plastic factory were assessed for their pulmonary functions. Parameters were compared with 31 age and sex matched controls not exposed to the same environment. The pulmonary function tests were done using Sibelmed Datospir 120 B portable spirometer. A significant decrease in most of the flow rates (MEF 25%, MEF 50%, MEF 75% and FEF 25-75%) and most of the lung volumes and capacities (FVC, FEV1, VC, TV, ERV, MVV) were observed in the workers. Smoking and duration of exposure were not affecting the lung functions as the non smokers also showed a similar decrement in pulmonary functions. Similarly the workers working for less than 5 years also had decrement in pulmonary functions indicating that their lungs are being affected even if they have worked for one year. Exposure to the organic dust in the work environment should be controlled by adequate engineering measures, complemented by effective personal respiratory protection.

  19. Analysis of metal forming processes by using physical modeling and new plastic similarity condition

    International Nuclear Information System (INIS)

    Gronostajski, Z.; Hawryluk, M.

    2007-01-01

    In recent years many advances have been made in numerical methods, for linear and non-linear problems. However the success of them depends very much on the correctness of the problem formulation and the availability of the input data. Validity of the theoretical results can be verified by an experiment using the real or soft materials. An essential reduction of time and costs of the experiment can be obtained by using soft materials, which behaves in a way analogous to that of real metal during deformation. The advantages of using of the soft materials are closely connected with flow stress 500 to 1000 times lower than real materials. The accuracy of physical modeling depend on the similarity conditions between physical model and real process. The most important similarity conditions are materials similarity in the range of plastic and elastic deformation, geometrical, frictional and thermal similarities. New original plastic similarity condition for physical modeling of metal forming processes is proposed in the paper. It bases on the mathematical description of similarity of the flow stress curves of soft materials and real ones

  20. Incorporation of Plasticity and Damage Into an Orthotropic Three-Dimensional Model with Tabulated Input Suitable for Use in Composite Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Rajan,Subramaniam; Blackenhorn, Gunther

    2015-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within commercial transient dynamic finite element codes, several features have been identified as being lacking in the currently available material models that could substantially enhance the predictive capability of the impact simulations. A specific desired feature pertains to the incorporation of both plasticity and damage within the material model. Another desired feature relates to using experimentally based tabulated stress-strain input to define the evolution of plasticity and damage as opposed to specifying discrete input properties (such as modulus and strength) and employing analytical functions to track the response of the material. To begin to address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed for implementation within the commercial code LS-DYNA. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. The effective plastic strain is computed by using the non-associative flow rule in combination with appropriate numerical methods. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used, in which a load in one direction results in a stiffness reduction in multiple coordinate directions. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed