WorldWideScience

Sample records for serovar typhimurium genes

  1. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid.

    Directory of Open Access Journals (Sweden)

    Uday Shankar Allam

    Full Text Available Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Δhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+ T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

  2. Characterization and differential gene expression between two phenotypic phase variants in Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Sheila K Patterson

    Full Text Available Salmonella enterica serovar Typhimurium strain 798 has previously been shown to undergo phenotypic phase variation. One of the phenotypes expresses virulence traits such as adhesion, while the other phenotype does not. Phenotypic phase variation appears to correlate with the ability of this strain to cause persistent, asymptomatic infections of swine. A new method to detect cells in either phenotypic phase was developed using Evans Blue-Uranine agar plates. Using this new assay, rates of phenotypic phase variation were obtained. The rate of phase variation from non-adhesive to adhesive phenotype was approximately 10(-4 per cell per generation while phase variation from the adhesive to the non-adhesive phenotype was approximately 10(-6 per cell per generation. Two highly virulent S. Typhimurium strains, SL1344 and ATCC 14028, were also shown to undergo phase variation. However, while the rate from adhesive to non-adhesive phenotype was approximately the same as for strain 798, the non-adhesive to adhesive phenotype shift was 37-fold higher. Differential gene expression was measured using RNA-Seq. Eighty-three genes were more highly expressed by 798 cells in the adhesive phenotype compared to the non-adhesive cells. Most of the up-regulated genes were in virulence genes and in particular all genes in the Salmonella pathogenicity island 1 were up-regulated. When compared to the virulent strain SL1344, expression of the virulence genes was approximately equal to those up-regulated in the adhesive phenotype of strain 798. A comparison of invasive ability demonstrated that strain SL1344 was the most invasive followed by the adhesive phenotype of strain 798, then the non-adhesive phenotype of strain 798. The least invasive strain was ATCC 14028. The genome of strain 798 was sequenced and compared to SL1344. Both strains had very similar genome sequences and gene deletions could not readily explain differences in the rates of phase variation from non

  3. Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium

    Science.gov (United States)

    Background Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline an...

  4. A functional cra gene is required for Salmonella enterica serovar typhimurium virulence in BALB/c mice

    DEFF Research Database (Denmark)

    Allen, J. H.; Utley, M.; Van den Bosch, H.

    2000-01-01

    A minitransposon mutant of Salmonella enterica serovar Typhimurium SR-11, SR-11 Fad(-), is unable to utilize gluconeogenic substrates as carbon sources and is avirulent and immunogenic when administered perorally to BALB/c mice (M. J. Utley et al., FEMS Microbiol. Lett., 163:129-134, 1998). Here,...

  5. Comprehensive identification of Salmonella enterica serovar typhimurium genes required for infection of BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Roy R Chaudhuri

    2009-07-01

    Full Text Available Genes required for infection of mice by Salmonella Typhimurium can be identified by the interrogation of random transposon mutant libraries for mutants that cannot survive in vivo. Inactivation of such genes produces attenuated S. Typhimurium strains that have potential for use as live attenuated vaccines. A quantitative screen, Transposon Mediated Differential Hybridisation (TMDH, has been developed that identifies those members of a large library of transposon mutants that are attenuated. TMDH employs custom transposons with outward-facing T7 and SP6 promoters. Fluorescently-labelled transcripts from the promoters are hybridised to whole-genome tiling microarrays, to allow the position of the transposon insertions to be determined. Comparison of microarray data from the mutant library grown in vitro (input with equivalent data produced after passage of the library through mice (output enables an attenuation score to be determined for each transposon mutant. These scores are significantly correlated with bacterial counts obtained during infection of mice using mutants with individual defined deletions of the same genes. Defined deletion mutants of several novel targets identified in the TMDH screen are effective live vaccines.

  6. Arginine-dependent acid resistance in Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Kieboom, J.; Abee, T.

    2006-01-01

    Salmonella enterica serovar Typhimurium does not survive a pH 2.5 acid challenge under conditions similar to those used for Escherichia coli (J. W. Foster, Nat. Rev. Microbiol. 2:898-907, 2004). Here, we provide evidence that S. enterica serovar Typhimurium can display arginine-dependent acid

  7. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    International Nuclear Information System (INIS)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho

    2008-01-01

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response

  8. Gene expression profiles following high-dose exposure to gamma radiation in salmonella enterica serovar typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Yong; Jung, Sun Wook; Joe, Min Ho; Kim, Dong Ho [Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2008-08-15

    Microarrays can measure the expression of thousands of genes to identify the changes in expression between different biological states. To survey the change of whole Salmonella genes after a relatively high dose of gamma radiation (1 kGy), transcriptome dynamics were examined in the cells by using DNA microarrays. At least 75 genes were induced and 89 genes were reduced two-fold or more after irradiation. Several genes located in pSLT plasmid, cyo operon, and Gifsy prophage were induced along with many genes encoding uncharacterized proteins.While, the expression of genes involved in the virulence of Salmonella as well as metabolic functions were decreased. Although the radiation response as a whole could not be illustrated by using DNA microarrays, the data suggest that the response to high dose of irradiation might be more complex than the SOS response.

  9. Mathematical model of flagella gene expression dynamics in Salmonella enterica serovar typhimurium

    OpenAIRE

    Jain, Kirti; Pradhan, Amit; Mokashi, Chaitanya; Saini, Supreet

    2015-01-01

    Flagellar assembly in Salmonella is controlled by an intricate genetic and biochemical network. This network comprises of a number of inter-connected feedback loops, which control the assembly process dynamically. Critical among these are the FliA–FlgM feedback, FliZ-mediated positive feedback, and FliT-mediated negative feedback. In this work, we develop a mathematical model to track the dynamics of flagellar gene expression in Salmonella. Analysis of our model demonstrates that the network ...

  10. The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Kröger, Carsten; Dillon, Shane C.; Cameron, Andrew D. S.

    2012-01-01

    More than 50 y of research have provided great insight into the physiology, metabolism, and molecular biology of Salmonella enterica serovar Typhimurium (S. Typhimurium), but important gaps in our knowledge remain. It is clear that a precise choreography of gene expression is required......-thirds of these TSSs were associated with σ70 (including phoP, slyA, and invF) from which we identified the −10 and −35 motifs of σ70-dependent S. Typhimurium gene promoters. Overall, we corrected the location of important genes and discovered 18 times more promoters than identified previously. S. Typhimurium...

  11. Defining the Core Genome of Salmonella enterica Serovar Typhimurium for Genomic Surveillance and Epidemiological Typing

    Science.gov (United States)

    Fu, Songzhe; Octavia, Sophie; Tanaka, Mark M.; Sintchenko, Vitali

    2015-01-01

    Salmonella enterica serovar Typhimurium is the most common Salmonella serovar causing foodborne infections in Australia and many other countries. Twenty-one S. Typhimurium strains from Salmonella reference collection A (SARA) were analyzed using Illumina high-throughput genome sequencing. Single nucleotide polymorphisms (SNPs) in 21 SARA strains ranged from 46 to 11,916 SNPs, with an average of 1,577 SNPs per strain. Together with 47 strains selected from publicly available S. Typhimurium genomes, the S. Typhimurium core genes (STCG) were determined. The STCG consist of 3,846 genes, a set that is much larger than that of the 2,882 Salmonella core genes (SCG) found previously. The STCG together with 1,576 core intergenic regions (IGRs) were defined as the S. Typhimurium core genome. Using 93 S. Typhimurium genomes from 13 epidemiologically confirmed community outbreaks, we demonstrated that typing based on the S. Typhimurium core genome (STCG plus core IGRs) provides superior resolution and higher discriminatory power than that based on SCG for outbreak investigation and molecular epidemiology of S. Typhimurium. STCG and STCG plus core IGR typing achieved 100% separation of all outbreaks compared to that of SCG typing, which failed to separate isolates from two outbreaks from background isolates. Defining the S. Typhimurium core genome allows standardization of genes/regions to be used for high-resolution epidemiological typing and genomic surveillance of S. Typhimurium. PMID:26019201

  12. A Constitutively Mannose-Sensitive Agglutinating Salmonella enterica subsp. enterica Serovar Typhimurium Strain, Carrying a Transposon in the Fimbrial Usher Gene stbC, Exhibits Multidrug Resistance and Flagellated Phenotypes

    Directory of Open Access Journals (Sweden)

    Kuan-Hsun Wu

    2012-01-01

    Full Text Available Static broth culture favors Salmonella enterica subsp. enterica serovar Typhimurium to produce type 1 fimbriae, while solid agar inhibits its expression. A transposon inserted in stbC, which would encode an usher for Stb fimbriae of a non-flagellar Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, conferred it to agglutinate yeast cells on both cultures. RT-PCR revealed that the expression of the fimbrial subunit gene fimA, and fimZ, a regulatory gene of fimA, were both increased in the stbC mutant when grown on LB agar; fimW, a repressor gene of fimA, exhibited lower expression. Flagella were observed in the stbC mutant and this phenotype was correlated with the motile phenotype. Microarray data and RT-PCR indicated that the expression of three genes, motA, motB, and cheM, was enhanced in the stbC mutant. The stbC mutant was resistant to several antibiotics, consistent with the finding that expression of yhcQ and ramA was enhanced. A complementation test revealed that transforming a recombinant plasmid possessing the stbC restored the mannose-sensitive agglutination phenotype to the stbC mutant much as that in the parental Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, indicating the possibility of an interplay of different fimbrial systems in coordinating their expression.

  13. Proteome analysis of serovars Typhimurium and Pullorum of Salmonella enterica subspecies I

    Directory of Open Access Journals (Sweden)

    Begum Shajna

    2005-07-01

    Full Text Available Abstract Background Salmonella enterica subspecies I includes several closely related serovars which differ in host ranges and ability to cause disease. The basis for the diversity in host range and pathogenic potential of the serovars is not well understood, and it is not known how host-restricted variants appeared and what factors were lost or acquired during adaptations to a specific environment. Differences apparent from the genomic data do not necessarily correspond to functional proteins and more importantly differential regulation of otherwise identical gene content may play a role in the diverse phenotypes of the serovars of Salmonella. Results In this study a comparative analysis of the cytosolic proteins of serovars Typhimurium and Pullorum was performed using two-dimensional gel electrophoresis and the proteins of interest were identified using mass spectrometry. An annotated reference map was created for serovar Typhimurium containing 233 entries, which included many metabolic enzymes, ribosomal proteins, chaperones and many other proteins characteristic for the growing cell. The comparative analysis of the two serovars revealed a high degree of variation amongst isolates obtained from different sources and, in some cases, the variation was greater between isolates of the same serovar than between isolates with different sero-specificity. However, several serovar-specific proteins, including intermediates in sulphate utilisation and cysteine synthesis, were also found despite the fact that the genes encoding those proteins are present in the genomes of both serovars. Conclusion Current microbial proteomics are generally based on the use of a single reference or type strain of a species. This study has shown the importance of incorporating a large number of strains of a species, as the diversity of the proteome in the microbial population appears to be significantly greater than expected. The characterisation of a diverse selection of

  14. Genomics of an emerging clone of Salmonella serovar Typhimurium ST313 from Nigeria and the Democratic Republic of Congo.

    Science.gov (United States)

    Leekitcharoenphon, Pimlapas; Friis, Carsten; Zankari, Ea; Svendsen, Christina Aaby; Price, Lance B; Rahmani, Maral; Herrero-Fresno, Ana; Fashae, Kayode; Vandenberg, Olivier; Aarestrup, Frank M; Hendriksen, Rene S

    2013-10-15

    Salmonella enterica serovar Typhimurium ST313 is an invasive and phylogenetically distinct lineage present in sub-Saharan Africa. We report the presence of S. Typhimurium ST313 from patients in the Democratic Republic of Congo and Nigeria. Eighteen S. Typhimurium ST313 isolates were characterized by antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). Additionally, six of the isolates were characterized by whole genome sequence typing (WGST). The presence of a putative virulence determinant was examined in 177 Salmonella isolates belonging to 57 different serovars. All S. Typhimurium ST313 isolates harbored resistant genes encoded by blaTEM1b, catA1, strA/B, sul1, and dfrA1. Additionally, aac(6')1aa gene was detected. Phylogenetic analyses revealed close genetic relationships among Congolese and Nigerian isolates from both blood and stool. Comparative genomic analyses identified a putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and S. Dublin. We showed in a limited number of isolates that S. Typhimurium ST313 is a prevalent sequence-type causing gastrointestinal diseases and septicemia in patients from Nigeria and DRC. We found three distinct phylogenetic clusters based on the origin of isolation suggesting some spatial evolution. Comparative genomics showed an interesting putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and invasive S. Dublin.

  15. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar.

    Science.gov (United States)

    Kingsley, Robert A; Kay, Sally; Connor, Thomas; Barquist, Lars; Sait, Leanne; Holt, Kathryn E; Sivaraman, Karthi; Wileman, Thomas; Goulding, David; Clare, Simon; Hale, Christine; Seshasayee, Aswin; Harris, Simon; Thomson, Nicholas R; Gardner, Paul; Rabsch, Wolfgang; Wigley, Paul; Humphrey, Tom; Parkhill, Julian; Dougan, Gordon

    2013-08-27

    Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.

  16. Molecular Characterization of Multidrug-Resistant Salmonella enterica subsp. enterica Serovar Typhimurium Isolates from Swine

    OpenAIRE

    Gebreyes, Wondwossen Abebe; Altier, Craig

    2002-01-01

    As part of a longitudinal study of antimicrobial resistance among salmonellae isolated from swine, we studied 484 Salmonella enterica subsp. enterica serovar Typhimurium (including serovar Typhimurium var. Copenhagen) isolates. We found two common pentaresistant phenotypes. The first was resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (the AmCmStSuTe phenotype; 36.2% of all isolates), mainly of the definitive type 104 (DT104) phage type (180 of 187 ...

  17. Curcumin increases the pathogenicity of Salmonella enterica serovar Typhimurium in murine model.

    Directory of Open Access Journals (Sweden)

    Sandhya A Marathe

    Full Text Available Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium (S. Typhimurium to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer's patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides--pmrD and pmrHFIJKLM and genes with antioxidant function--mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin's mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.

  18. Multilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals

    Directory of Open Access Journals (Sweden)

    Reza Ranjbar

    2017-09-01

    Full Text Available Background: Salmonella enterica serovar Typhimurium is one of the most important serovars of Salmonella enterica and is associated with human salmonellosis worldwide. Many epidemiological studies have focused on the characteristics of Salmonella Typhimurium in many countries as well as in Asia. This study was conducted to investigate the genetic characteristics of Salmonella Typhimurium using multilocus sequence typing (MLST. Methods: Clinical samples (urine, blood, and stool were collected from patients, who were admitted to 2 hospitals in Tehran between April and September, 2015. Salmonella Typhimurium strains were identified by conventional standard biochemical and serological testing. The antibiotic susceptibility patterns of the Salmonella Typhimurium isolates against 16 antibiotics was determined using the disk diffusion assay. The clonal relationship between the strains of Salmonella Typhimurium was analyzed using MLST. Results: Among the 68 Salmonella isolates, 31% (n=21 were Salmonella Typhimurium. Of the total 21 Salmonella Typhimurium isolates, 76% (n=16 were multidrug-resistant and showed resistance to 3 or more antibiotic families. The Salmonella Typhimurium isolates were assigned to 2 sequence types: ST19 and ST328. ST19 was more common (86%. Both sequence types were further assigned to 1 eBURST group. Conclusion: This is the first study of its kind in Iran to determine the sequence types of the clinical isolates of Salmonella Typhimurium in Tehran hospitals using MLST. ST19 was detected as the major sequence type of Salmonella Typhimurium.

  19. Salmonella enterica serovars Typhimurium and Enteritidis causing mixed infections in febrile children in Mozambique

    Directory of Open Access Journals (Sweden)

    García V

    2018-01-01

    Full Text Available Vanesa García,1 Inácio Mandomando,2,3 Joaquim Ruiz,4 Silvia Herrera-León,5 Pedro L Alonso,3,4 M Rosario Rodicio1 1Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain; 2Centro de Investigação em Saúde de Manhiça, 3Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique; 4ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic, Universitat de Barcelona, Barcelona, 5Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain Background and purpose: Invasive nontyphoidal salmonellosis, mostly caused by serovars Typhimurium and Enteritidis of Salmonella enterica, has emerged as a major public health problem in sub-Saharan Africa. The aim of this study was the clinical and microbiological characterization of nontyphoidal salmonellosis episodes affecting febrile children in Mozambique. Patients and methods: The clinical records of the patients were evaluated, and S. enterica isolates were characterized with regard to serovar, phage type, antimicrobial resistance (phenotype/responsible genes, plasmid content, pulsed-field gel electrophoresis, and multilocus sequence typing. Results: Fifteen S. Typhimurium and 21 S. Enteritidis isolates were recovered from blood samples of 25 children, the majority with underlying risk factors. With regard to phage typing, most isolates were either untypeable or reacted but did not conform, revealing that a number of previously unrecognized patterns are circulating in Mozambique. Most isolates were multidrug-resistant, with nearly all of the responsible genes located on derivatives of serovar-specific virulence plasmids. ST313 and ST11 were the predominant sequence types associated with S. Typhimurium and S. Enteritidis, respectively, and the uncommon ST1479 was also detected in S. Enteritidis. A distinct XbaI fragment of ~350 kb was associated with pulsed-field gel electrophoresis patterns of

  20. Detection of Salmonella enterica Serovar Typhimurium from Avians Using Multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Alireza Talebi

    2011-09-01

    Full Text Available Abstract Salmonella enterica serovar Typhimurium and S.enterica serovar Enteritidis are the most frequently isolated serovars from food-borne diseases throughout the world. According to their antigenic profiles, salmonella shows different disease syndromes and host specificities. It is necessary and important to discriminate salmonella serovars from each other in order to ensure that each pathogen and its epidemiology are correctly recognized. Many PCR-based methods have been developed to identify salmonella serovars. The objective of present study was to identify S. Typhimurium in avians from different regions including: North, Northwest and capital city (Tehran of Iran. Also in this research, the quality of CHROMagar™ Salmonella medium (CAS medium in veterinary medicine was evaluated. The results of present study showed that out of 1870 intestine samples, fifty two S. Typhimurium including broiler (n=13, layer (n=12, duck (n=5, goose (n=5, sparrow (n=8, canary (n=3, pigeon (n=5 and African grey parrot (n=1 were identified using serotyping as well as multiplex-PCR. In conclusion, important measures must be taken on prevention and propagation of S. Typhimurium among avians. CHROMagar™ Salmonella medium has high levels of sensitivity and specificity and reduced the time to final identification of salmonella spp. in comparison with biochemical tests.

  1. Genomic analysis of $\\textit{Salmonella enterica}$ serovar Typhimurium from wild passerines in England and Wales

    OpenAIRE

    Mather, Alison E; Lawson, Becki; de, Pinna Elizabeth; Wigley, Paul; Parkhill, Julian; Thomson, Nicholas R; Page, Andrew J; Holmes, Mark Adrian; Paterson, Gavin K

    2016-01-01

    Passerine salmonellosis is a well-recognised disease of birds in the order Passeriformes, including common songbirds such as finches and sparrows, caused by infection with $\\textit{Salmonella enterica}$ serovar Typhimurium. Previous research has suggested that some subtypes of S. Typhimurium – definitive phage types (DT) 40, 56 variant, and 160 – are host-adapted to passerines, and that these birds may represent a reservoir of infection for humans and other animals. Here, we have used whole g...

  2. Risk factors associated with Salmonella enterica serovar typhimurium infection in Danish broiler flocks

    DEFF Research Database (Denmark)

    Skov, M. N.; Angen, Øystein; Chriel, M.

    1999-01-01

    A retrospective longitudinal study was conducted to identify risk factors associated with Salmonella enterica serovar typhimurium (S. typhimurium) infection in Danish broiler flocks. The data included all broiler flocks slaughtered in 1995, and the epidemiological unit was the individual broiler...... flock. The S. typhimurium status was determined by microbiological examination of 60 fresh fecal samples. This procedure should detect an infected flock with a probability above 95%, if the prevalence is above 5%, and given that the sensitivity of the test is 100%. Nineteen variables were selected...... for analysis. Five factors and an interaction term were found significant by multivariate logistic regression analysis. An increased risk for S, typhimurium infection was associated with two parent flocks, one confirmed infected and one suspected of being infected with S. typhimurium, with two...

  3. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.; Le Hello, Simon

    2016-01-01

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally struc...

  4. Tetracycline promotes the expression of ten fimbrial operons in specific Salmonella enterica serovar Typhimurium isolates

    Science.gov (United States)

    Multidrug-resistant (MDR) Salmonella is associated with increased morbidity in humans and presents an important food safety concern. Antibiotic resistance among isolates of Salmonella enterica serovar Typhimurium has become especially prevalent as over 27 per cent of isolates from humans in the Unit...

  5. Genome and Transcriptome Adaptation Accompanying Emergence of the Definitive Type 2 Host-Restricted Salmonella enterica Serovar Typhimurium Pathovar

    OpenAIRE

    Kingsley, Robert A.; Kay, Sally; Connor, Thomas; Barquist, Lars; Sait, Leanne; Holt, Kathryn E.; Sivaraman, Karthi; Wileman, Thomas; Goulding, David; Clare, Simon; Hale, Christine; Seshasayee, Aswin; Harris, Simon; Thomson, Nicholas R.; Gardner, Paul

    2013-01-01

    Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few diff...

  6. Influence of Temperature and Predation on Survival of Salmonella enterica Serovar Typhimurium and Expression of invA in Soil and Manure-Amended Soil▿

    Science.gov (United States)

    García, R.; Bælum, J.; Fredslund, L.; Santorum, P.; Jacobsen, C. S.

    2010-01-01

    The effects of three temperatures (5, 15, and 25°C) on the survival of Salmonella enterica serovar Typhimurium in topsoil were investigated in small microcosms by three different techniques: plate counting, invA gene quantification, and invA mRNA quantification. Differences in survival were related to the effect of protozoan predation. Tetracycline-resistant Salmonella serovar Typhimurium was inoculated into soil and manure-amended soil at 1.5 × 108 cells g soil−1. Population densities were determined by plate counting and by molecular methods and monitored for 42 days. Simultaneous extraction of RNA and DNA, followed by quantitative PCR, was used to investigate invA gene levels and expression. Analysis by these three techniques showed that Salmonella serovar Typhimurium survived better at 5°C. Comparing DNA and CFU levels, significantly higher values were determined by DNA-based techniques. invA mRNA levels showed a fast decrease in activity, with no detectable mRNA after an incubation period of less than 4 days in any of the soil scenarios. A negative correlation was found between Salmonella serovar Typhimurium CFU levels and protozoan most probable numbers, and we propose the role of the predator-prey interaction as a factor to explain the die-off of the introduced strain by both culture- and DNA quantification-based methods. The results indicate that temperature, manure, and protozoan predation are important factors influencing the survival of Salmonella serovar Typhimurium in soil. PMID:20562283

  7. The Homolog of the Gene bstA of the BTP1 Phage from Salmonella enterica Serovar Typhimurium ST313 Is an Antivirulence Gene in Salmonella enterica Serovar Dublin

    DEFF Research Database (Denmark)

    Herrero-Fresno, Ana; Espinel, Irene Cartas; Spiegelhauer, Malene Roed

    2018-01-01

    -pathogen interaction in S. Dublin, a mutant where this gene was deleted (S. Dublin ΔbstA) and a mutant which was further genetically complemented with bstA (S. Dublin 3246-C) were constructed and tested in models of in vitro and in vivo infection as well as during growth competition assays in M9 medium, Luria...... macrophages and higher net replication within human THP-1 cells. Furthermore, during mouse infections, S. Dublin ΔbstA was more virulent than the wild type following a single intraperitoneal infection and showed an increased competitive index during competitive infection assays. Deletion of bstA did...... not affect either the amount of cytokines released by THP-1 macrophages or the cytotoxicity toward these cells. The histology of the livers and spleens of mice infected with the wild-type strain and the S. Dublin ΔbstA mutant revealed similar levels of inflammation between the two groups. The gene...

  8. Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence.

    Science.gov (United States)

    Maier, R J; Olczak, A; Maier, S; Soni, S; Gunn, J

    2004-11-01

    Based on available annotated gene sequence information, the enteric pathogen salmonella, like other enteric bacteria, contains three putative membrane-associated H2-using hydrogenase enzymes. These enzymes split molecular H2, releasing low-potential electrons that are used to reduce quinone or heme-containing components of the respiratory chain. Here we show that each of the three distinct membrane-associated hydrogenases of Salmonella enterica serovar Typhimurium is coupled to a respiratory pathway that uses oxygen as the terminal electron acceptor. Cells grown in a blood-based medium expressed four times the amount of hydrogenase (H2 oxidation) activity that cells grown on Luria Bertani medium did. Cells suspended in phosphate-buffered saline consumed 2 mol of H2 per mol of O2 used in the H2-O2 respiratory pathway, and the activity was inhibited by the respiration inhibitor cyanide. Molecular hydrogen levels averaging over 40 microM were measured in organs (i.e., livers and spleens) of live mice, and levels within the intestinal tract (the presumed origin of the gas) were four times greater than this. The half-saturation affinity of S. enterica serovar Typhimurium for H2 is only 2.1 microM, so it is expected that H2-utilizing hydrogenase enzymes are saturated with the reducing substrate in vivo. All three hydrogenase enzymes contribute to the virulence of the bacterium in a typhoid fever-mouse model, based on results from strains with mutations in each of the three hydrogenase genes. The introduced mutations are nonpolar, and growth of the mutant strains was like that of the parent strain. The combined removal of all three hydrogenases resulted in a strain that is avirulent and (in contrast to the parent strain) one that is unable to invade liver or spleen tissue. The introduction of one of the hydrogenase genes into the triple mutant strain on a low-copy-number plasmid resulted in a strain that was able to both oxidize H2 and cause morbidity in mice within 11

  9. Epidemiology of a Salmonella enterica subsp. Enterica serovar Typhimurium strain associated with a songbird outbreak.

    Science.gov (United States)

    Blehert, David S.; Hernandez, Sonia M.; Keel, Kevin; Sanchez, Susan; Trees, Eija; ,

    2012-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. This Salmonella serovar is also responsible for die-offs in songbird populations. In 2009, there was an S. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and human S. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This same S. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 total S. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature of S. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast.

  10. Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Bárbara M. Schultz

    2018-05-01

    Full Text Available Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS and interleukin (IL-10−/− mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10−/− mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2. Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10−/− mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2.

  11. Polyamines Are Required for Virulence in Salmonella enterica Serovar Typhimurium

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Thomsen, Line Elnif; Wallrodt, Inke

    2012-01-01

    for studying typhoid fever. Central to its virulence are two major virulence loci Salmonella Pathogenicity Island 1 and 2 (SPI1 and SPI2). SPI1 promotes invasion of epithelial cells, whereas SPI2 enables S. Typhimurium to survive and proliferate within specialized compartments inside host cells. In this study......, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion...

  12. Quantification of contamination of lettuce by GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium

    NARCIS (Netherlands)

    Franz, Eelco; Visser, Anna A; Van Diepeningen, Anne D; Klerks, Michel M; Termorshuizen, Aad J; van Bruggen, Ariena H C

    The primary objective of this study was to determine the possibility of internalization of GFP-expressing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium (S. Typhimurium) strains MAE 110 (multi-cellular morphology) and 119 (wild type morphology) into lettuce seedlings (Lactuca

  13. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    Science.gov (United States)

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  14. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso.

    Science.gov (United States)

    Kagambèga, Assèta; Lienemann, Taru; Frye, Jonathan G; Barro, Nicolas; Haukka, Kaisa

    2018-01-01

    Multidrug-resistant Salmonella is an important cause of morbidity and mortality in developing countries. The aim of this study was to characterize and compare multidrug-resistant Salmonella enterica serovar Typhimurium isolates from patients and poultry feces. Salmonella strains were isolated from poultry and patients using standard bacteriological methods described in previous studies. The strains were serotype according to Kaufmann-White scheme and tested for antibiotic susceptibility to 12 different antimicrobial agents using the disk diffusion method. The whole genome of the S. Typhimurium isolates was analyzed using Illumina technology and compared with 20 isolates of S. Typhimurium for which the ST has been deposited in a global MLST database.The ResFinder Web server was used to find the antibiotic resistance genes from whole genome sequencing (WGS) data. For comparative genomics, publicly available complete and draft genomes of different S. Typhimurium laboratory-adapted strains were downloaded from GenBank. All the tested Salmonella serotype Typhimurium were multiresistant to five commonly used antibiotics (ampicillin, chloramphenicol, streptomycin, sulfonamide, and trimethoprim). The multilocus sequence type ST313 was detected from all the strains. Our sequences were very similar to S. Typhimurium ST313 strain D23580 isolated from a patient with invasive non-typhoid Salmonella (NTS) infection in Malawi, also located in sub-Saharan Africa. The use of ResFinder web server on the whole genome of the strains showed a resistance to aminoglycoside associated with carriage of the following resistances genes: strA , strB , and aadA1 ; resistance to β-lactams associated with carriage of a bla TEM-1B genes; resistance to phenicol associated with carriage of catA1 gene; resistance to sulfonamide associated with carriage of sul1 and sul2 genes; resistance to tetracycline associated with carriage of tet B gene; and resistance to trimethoprim associated to dfrA1 gene

  15. Salmonella Enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes

    Energy Technology Data Exchange (ETDEWEB)

    deLivron, M.; Robinson, V

    2008-01-01

    BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.

  16. Involvement of SPI-2-encoded SpiC in flagellum synthesis in Salmonella enterica serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Sugita Asami

    2009-08-01

    Full Text Available Abstract Background SpiC encoded within Salmonella pathogenicity island 2 on the Salmonella enterica serovar Typhimurium chromosome is required for survival within macrophages and systemic infection in mice. Additionally, SpiC contributes to Salmonella-induced activation of the signal transduction pathways in macrophages by affecting the expression of FliC, a component of flagella filaments. Here, we show the contribution of SpiC in flagellum synthesis. Results Quantitative RT-PCR shows that the expression levels of the class 3 fliD and motA genes that encode for the flagella cap and motor torque proteins, respectively, were lower for a spiC mutant strain than for the wild-type Salmonella. Further, this mutant had lower expression levels of the class 2 genes including the fliA gene encoding the flagellar-specific alternative sigma factor. We also found differences in flagella assembly between the wild-type strain and the spiC mutant. Many flagella filaments were observed on the bacterial surface of the wild-type strain, whereas the spiC mutant had only few flagella. The absence of spiC led to reduced expression of the FlhD protein, which functions as the master regulator in flagella gene expression, although no significant difference at the transcription level of the flhDC operon was observed between the wild-type strain and the spiC mutant. Conclusion The data show that SpiC is involved in flagella assembly by affecting the post-transcription expression of flhDC.

  17. Salmonella enterica Serovar Typhimurium and Escherichia coli Contamination of Root and Leaf Vegetables Grown in Soils with Incorporated Bovine Manure

    Science.gov (United States)

    Natvig, Erin E.; Ingham, Steven C.; Ingham, Barbara H.; Cooperband, Leslie R.; Roper, Teryl R.

    2002-01-01

    Bovine manure, with or without added Salmonella enterica serovar Typhimurium (three strains), was incorporated into silty clay loam (SCL) and loamy sand (LS) soil beds (53- by 114-cm surface area, 17.5 cm deep) and maintained in two controlled-environment chambers. The S. enterica serovar Typhimurium inoculum was 4 to 5 log CFU/g in manure-fertilized soil. The conditions in the two environmental chambers, each containing inoculated and uninoculated beds of manure-fertilized soil, simulated daily average Madison, Wis., weather conditions (hourly temperatures, rainfall, daylight, and humidity) for a 1 March or a 1 June manure application and subsequent vegetable growing seasons ending 9 August or 28 September, respectively. Core soil samples were taken biweekly from both inoculated and uninoculated soil beds in each chamber. Radishes, arugula, and carrots were planted in soil beds, thinned, and harvested. Soils, thinned vegetables, and harvested vegetables were analyzed for S. enterica serovar Typhimurium and Escherichia coli (indigenous in manure). After the 1 March manure application, S. enterica serovar Typhimurium was detected at low levels in both soils on 31 May, but not on vegetables planted 1 May and harvested 12 July from either soil. After the 1 June manure application, S. enterica serovar Typhimurium was detected in SCL soil on 7 September and on radishes and arugula planted in SCL soil on 15 August and harvested on 27 September. In LS soil, S. enterica serovar Typhimurium died at a similar rate (P ≥ 0.05) after the 1 June manure application and was less often detected on arugula and radishes harvested from this soil compared to the SCL soil. Pathogen levels on vegetables were decreased by washing. Manure application in cool (daily average maximum temperature of vegetables are not contaminated with S. enterica serovar Typhimurium. Manure application under warmer (daily average maximum temperature >20°C) summer conditions is not recommended when

  18. Salmonella enterica serovar Typhimurium exploits inflammation to modify swine intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Rosanna eDrumo

    2016-01-01

    Full Text Available Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  19. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms.

    LENUS (Irish Health Repository)

    Hamilton, Shea

    2009-12-11

    Abstract Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes) showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2), and that a functional SPI2 secretion system regulator (ssrA) was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp) biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect was restored by

  20. Salmonella enterica serovar Typhimurium ΔmsbB triggers exacerbated inflammation in Nod2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Claes

    Full Text Available The intracellular pathogen Salmonella enterica serovar Typhimurium causes intestinal inflammation characterized by edema, neutrophil influx and increased pro-inflammatory cytokine expression. A major bacterial factor inducing pro-inflammatory host responses is lipopolysaccharide (LPS. S. Typhimurium ΔmsbB possesses a modified lipid A, has reduced virulence in mice, and is being considered as a potential anti-cancer vaccine strain. The lack of a late myristoyl transferase, encoded by MsbB leads to attenuated TLR4 stimulation. However, whether other host receptor pathways are also altered remains unclear. Nod1 and Nod2 are cytosolic pattern recognition receptors recognizing bacterial peptidoglycan. They play important roles in the host's immune response to enteric pathogens and in immune homeostasis. Here, we investigated how deletion of msbB affects Salmonella's interaction with Nod1 and Nod2. S. Typhimurium Δ msbB-induced inflammation was significantly exacerbated in Nod2-/- mice compared to C57Bl/6 mice. In addition, S. Typhimurium ΔmsbB maintained robust intestinal colonization in Nod2-/- mice from day 2 to day 7 p.i., whereas colonization levels significantly decreased in C57Bl/6 mice during this time. Similarly, infection of Nod1-/- and Nod1/Nod2 double-knockout mice revealed that both Nod1 and Nod2 play a protective role in S. Typhimurium ΔmsbB-induced colitis. To elucidate why S. Typhimurium ΔmsbB, but not wild-type S. Typhimurium, induced an exacerbated inflammatory response in Nod2-/- mice, we used HEK293 cells which were transiently transfected with pathogen recognition receptors. Stimulation of TLR2-transfected cells with S. Typhimurium ΔmsbB resulted in increased IL-8 production compared to wild-type S. Typhimurium. Our results indicate that S. Typhimurium ΔmsbB triggers exacerbated colitis in the absence of Nod1 and/or Nod2, which is likely due to increased TLR2 stimulation. How bacteria with "genetically detoxified" LPS

  1. In Vitro Development of Ciprofloxacin Resistance of Salmonella enterica Serovars Typhimurium, Enteritidis, and Indiana Isolates from Food Animals.

    Science.gov (United States)

    Zhang, Wen-Hui; Zhang, Chuan-Zhen; Liu, Zhi-Jie; Gu, Xi-Xi; Li, Wan; Yang, Ling; Liu, Ya-Hong; Zeng, Zhen-Ling; Jiang, Hong-Xia

    2017-09-01

    Difference in the development of resistance may be associated with the epidemiological spread and drug resistance of different Salmonella enterica serovar strains. In the present study, three susceptible S. enterica serovars, Typhimurium (ST), Enteritidis (SE), and Indiana (SI) strains, were subjected to stepwise selection with increasing ciprofloxacin concentrations. The results indicated that the mutation frequencies of the SI group were 10 1 -10 4 higher and developed resistance to ciprofloxacin more rapidly compared with the ST and SE groups. Ciprofloxacin accumulation in the SI strain was also higher than the other two strains in the presence of an efflux pump inhibitor. The development of ciprofloxacin resistance was quite different among the three serovar strains. In SI, increasing AcrAB-TolC efflux pump expression and single or double mutations in gyrA with or without a single parC mutation (T57S) were found in the development of ciprofloxacin resistance. In SE, an increase in the AcrAB-TolC efflux pump regulatory gene ramA gradually decreased as resistant bacteria developed; then resistance resulted from gyrA D87G and gyrB E466D mutations and/or in other active efflux pumps besides AcrAB-TolC. For ST, ramA expression increased rapidly along with gyrA D87 N and/or gyrB S464F mutations. In conclusion, persistent use of ciprofloxacin may aggravate the resistance of different S. enterica serovars and prudent use of the fluoroquinolones is needed. The quicker resistance and higher mutation frequency of the SI isolates present a potential public health threat.

  2. Antimicrobial resistance in Salmonella enterica subsp. enterica serovar typhimurium from humans and production animals

    DEFF Research Database (Denmark)

    Seyfarth, Anne Mette; Wegener, Henrik Caspar; FrimodtMoller, N.

    1997-01-01

    : Poultry strains were usually resistant only to ampicillin, white pig and cattle isolates were most often resistant to sulphonamide, tetracycline and streptomycin. Typing of the strains showed that some animal strains and human strains were indistinguishable. In conclusion, while antimicrobial resistance......We have studied the frequency of antimicrobial resistance and epidemiological relatedness among 473 isolates of Salmonella enterica subsp, enterica serovar typhimurium (S. typhimurium) from human and veterinary sources. The human strains were clinical isolates from patients with diarrhoea sent...... to the State Serum Institute during August 1993 (228 isolates). The animal strains were isolated from clinical or subclinical infections in cattle (48 isolates), pigs (99 isolates) or poultry (98 isolates), all from 1993. All strains were tested against 22 different antimicrobial agents used in both human...

  3. ProP Is Required for the Survival of Desiccated Salmonella enterica Serovar Typhimurium Cells on a Stainless Steel Surface

    Science.gov (United States)

    Finn, Sarah; Händler, Kristian; Condell, Orla; Colgan, Aoife; Cooney, Shane; McClure, Peter; Amézquita, Aléjandro; Hinton, Jay C. D.

    2013-01-01

    Consumers trust commercial food production to be safe, and it is important to strive to improve food safety at every level. Several outbreaks of food-borne disease have been caused by Salmonella strains associated with dried food. Currently we do not know the mechanisms used by Salmonella enterica serovar Typhimurium to survive in desiccated environments. The aim of this study was to discover the responses of S. Typhimurium ST4/74 at the transcriptional level to desiccation on a stainless steel surface and to subsequent rehydration. Bacterial cells were dried onto the same steel surfaces used during the production of dry foods, and RNA was recovered for transcriptomic analysis. Subsequently, dried cells were rehydrated and were again used for transcriptomic analysis. A total of 266 genes were differentially expressed under desiccation stress compared with a static broth culture. The osmoprotectant transporters proP, proU, and osmU (STM1491 to STM1494) were highly upregulated by drying. Deletion of any one of these transport systems resulted in a reduction in the long-term viability of S. Typhimurium on a stainless steel food contact surface. The proP gene was critical for survival; proP deletion mutants could not survive desiccation for long periods and were undetectable after 4 weeks. Following rehydration, 138 genes were differentially expressed, with upregulation observed for genes such as proP, proU, and the phosphate transport genes (pstACS). In time, this knowledge should prove valuable for understanding the underlying mechanisms involved in pathogen survival and should lead to improved methods for control to ensure the safety of intermediate- and low-moisture foods. PMID:23666329

  4. Beneficial Effects of Sodium Phenylbutyrate Administration during Infection with Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Jellbauer, Stefan; Perez Lopez, Araceli; Behnsen, Judith; Gao, Nina; Nguyen, Thao; Murphy, Clodagh; Edwards, Robert A; Raffatellu, Manuela

    2016-09-01

    Sodium phenylbutyrate (PBA) is a derivative of the short-chain fatty acid butyrate and is approved for treatment of urea cycle disorders and progressive familial intrahepatic cholestasis type 2. Previously known functions include histone deacetylase inhibitor, endoplasmic reticulum stress inhibitor, ammonia sink, and chemical chaperone. Here, we show that PBA has a previously undiscovered protective role in host mucosal defense during infection. Administration of PBA to Taconic mice resulted in the increase of intestinal Lactobacillales and segmented filamentous bacteria (SFB), as well as an increase of interleukin 17 (IL-17) production by intestinal cells. This effect was not observed in Jackson Laboratory mice, which are not colonized with SFB. Because previous studies showed that IL-17 plays a protective role during infection with mucosal pathogens, we hypothesized that Taconic mice treated with PBA would be more resistant to infection with Salmonella enterica serovar Typhimurium (S Typhimurium). By using the streptomycin-treated mouse model, we found that Taconic mice treated with PBA exhibited significantly lower S Typhimurium intestinal colonization and dissemination to the reticuloendothelial system, as well as lower levels of inflammation. The lower levels of S Typhimurium gut colonization and intestinal inflammation were not observed in Jackson Laboratory mice. Although PBA had no direct effect on bacterial replication, its administration reduced S Typhimurium epithelial cell invasion and lowered the induction of the proinflammatory cytokine IL-23 in macrophage-like cells. These effects likely contributed to the better outcome of infection in PBA-treated mice. Overall, our results suggest that PBA induces changes in the microbiota and in the mucosal immune response that can be beneficial to the host during infection with S Typhimurium and possibly other enteric pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Elimination of Salmonella enterica serovar Typhimurium in artificially contaminated eggs through correct cooking and frying procedures

    Directory of Open Access Journals (Sweden)

    Geovana Dagostim Savi

    2011-06-01

    Full Text Available Salmonellosis is a serious foodborne disease associated with the presence of bacteria in eggs or foods containing raw eggs. However, the use of appropriate procedures of cooking and frying can eliminate this contamination. There are few studies on the elimination of contamination of Salmonella in hens' eggs through typical frying procedures, especially for Salmonella enterica serovar Typhimurium (or S. typhimurium. The aim of this study was to determine the appropriate conditions for cooking and frying hens' eggs artificially contaminated with S. typhimurium, making them free of bacterial contamination. Hens' eggs were artificially contaminated with S. typhimurium and subjected to various processes of cooking, frying and food preparation. It was observed that the minimum time necessary to eliminate contamination through cooking procedures is 5 minutes after the water starts boiling, and also that, cooking in the microwave oven complete eliminates the bacterial contamination. When the eggs were fried on both sides, keeping the yolk hard, a complete bacterial elimination was observed. Mayonnaise prepared with vinegar presented a decrease in bacterial colonies when compared mayonese prepared with lemon.

  6. Transcriptomic analysis of swarm motility phenotype of Salmonella enterica serovar Typhimurium mutant defective in periplasmic glucan synthesis

    Science.gov (United States)

    Movement of food-borne pathogens on moist surfaces enables them to migrate towards more favorable niches and facilitate their survival for extended periods of time. Salmonella enterica serovar Typhimurium mutants defective in OPG synthesis are unable to exhibit motility on moist surfaces (swarming) ...

  7. A rapid and specific detection of pathogenic serovar Salmonella typhimurium by loop-mediated isothermal amplification method (LAMP

    Directory of Open Access Journals (Sweden)

    Hadi Ravan

    2017-09-01

    Discussion and conclusion: As a result of a high sensitivity and specificity of the method as well as its low cost per assay, it could be concluded that the present LAMP assay is a powerful, accurate, and efficient method for detecting pathogenic serovar Salmonella typhimurium in food-processing industries and diagnostic laboratories.

  8. Specific Monoclonal Antibody Overcomes the Salmonella enterica Serovar Typhimurium's Adaptive Mechanisms of Intramacrophage Survival and Replication.

    Directory of Open Access Journals (Sweden)

    Swarmistha Devi Aribam

    Full Text Available Salmonella-specific antibodies play an important role in host immunity; however, the mechanisms of Salmonella clearance by pathogen-specific antibodies remain to be completely elucidated since previous studies on antibody-mediated protection have yielded inconsistent results. These inconsistencies are at least partially attributable to the use of polyclonal antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody (mAb-449 and identified its related immunogen that protected BALB/c mice from infection with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we also analyzed the mechanism by which mAb-449 conferred host protection. Notably, macrophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen uptake compared to counterparts infected with control IgG-treated bacteria. Moreover, these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of intracellular bacteria in mAb-449-activated macrophages decreased considerably, while the opposite was found in IgG-treated controls. Based on these findings, we suggest that, although S. Typhimurium has the potential to survive and replicate within macrophages, host production of a specific antibody can effectively mediate macrophage activation for clearance of intracellular bacteria.

  9. Resuscitation of the viable but non-culturable state of Salmonella enterica serovar Oranienburg by recombinant resuscitation-promoting factor derived from Salmonella Typhimurium strain LT2.

    Science.gov (United States)

    Panutdaporn, N; Kawamoto, K; Asakura, H; Makino, S-I

    2006-02-15

    A gene encoding the resuscitation-promoting factor (Rpf) from Salmonella Typhimurium LT2 was cloned and characterized. The amino acid sequence encoded by S. Typhimurium LT2 rpf gene shares 24.2% homology with Micrococcus luteus Rpf, which is secreted by growing cells, and required to resuscitate from viable but non-culturable (VNC) state. The S. Typhimurium LT2 rpf gene is 696 bp long, and shared a conserved segment with Salmonella enterica serovar Oranienburg (99.4%). Recombinant Rpf (rRpf) proteins of S. Typhimurium LT2 after expression in E. coli BL21 harboring the pET15-b plasmid was approximately 25 kDa. Since S. Oranienburg cells are relatively quick to enter the VNC state just after incubating in the presence of 7% NaCl at 37 degrees C for 3 days, we evaluated the biological effect of rRpf by using S. Oranienburg VNC cells. The rRpf not only promoted proliferation but also induced resuscitation of VNC cells to the culturable state in a dose-dependent manner. Therefore, rRpf may be useful for detection of bacterial contaminants present in the VNC form in food samples and the environment.

  10. Survival and transmission of Salmonella enterica serovar typhimurium in an outdoor organic pig farming environment

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Dalsgaard, Anders; Stockmarr, Anders

    2006-01-01

    It was investigated how organic rearing conditions influence the Salmonella enterica infection dynamics in pigs and whether Salmonella persists in the paddock environment. Pigs inoculated with S. enterica serovar Typhimurium were grouped with Salmonella-negative tracer pigs. Bacteriological...... the seroprevalence. Salmonella persisted in the paddock environment, as Salmonella was isolated from 46% of soil and water samples (n = 294). After removal of pigs, Salmonella was found in soil samples for up to. 5 weeks and in shelter huts during the entire test period (7 weeks). Subsequent introduction...... of Salmonella-negative pigs into four naturally Salmonella-contaminated paddocks caused Salmonella infections of pigs in two paddocks. In one of these paddocks, all tracer pigs (n = 10) became infected, coinciding with a previous high Salmonella infection rate and high Salmonella excretion level. Our results...

  11. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia

    Directory of Open Access Journals (Sweden)

    Tze Y. Thung

    2018-01-01

    Full Text Available The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60 were randomly collected. The multiplex polymerase chain reaction (mPCR in combination with the most probable number (MPN method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%. Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70% exhibited the highest multiple antibiotic resistance (MAR index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100% were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR Salmonella and various virulence genes are present among the isolated Salmonella serovars.

  12. Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1.

    Science.gov (United States)

    Wallrodt, Inke; Jelsbak, Lotte; Thomsen, Line E; Brix, Lena; Lemire, Sébastien; Gautier, Laurent; Nielsen, Dennis S; Jovanovic, Goran; Buck, Martin; Olsen, John E

    2014-06-01

    The phage-shock protein (Psp) system is believed to manage membrane stress in all Enterobacteriaceae and has recently emerged as being important for virulence in several pathogenic species of this phylum. The core of the Psp system consists of the pspA-D operon and the distantly located pspG gene. In Salmonella enterica serovar Typhimurium (S. Typhimurium), it has recently been reported that PspA is essential for systemic infection of mice, but only in NRAMP1(+) mice, signifying that attenuation is related to coping with divalent cation starvation in the intracellular environment. In the present study, we investigated the contribution of individual psp genes to virulence of S. Typhimurium. Interestingly, deletion of the whole pspA-D set of genes caused attenuation in both NRAMP1(+) and NRAMP1(-) mice, indicating that one or more of the psp genes contribute to virulence independently of NRAMP1 expression in the host. Investigations of single gene mutants showed that knock out of pspB reduced virulence in both types of mice, while deletion of pspA only caused attenuation in NRAMP1(+) mice, and deletion of pspD had a minor effect in NRAMP1(-) mice, while deletions of either pspC or pspG did not affect virulence. Experiments addressed at elucidating the role of PspB in virulence revealed that PspB is dispensable for uptake to and intracellular replication in cultured macrophages and resistance to complement-induced killing. Furthermore, the Psp system of S. Typhimurium was dispensable during pIV-induced secretin stress. In conclusion, our results demonstrate that removal of PspB reduces virulence in S. Typhimurium independently of host NRAMP1 expression, demonstrating that PspB has roles in intra-host survival distinct from the reported contributions of PspA. © 2014 The Authors.

  13. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Shao, Yujing; Guo, Yuming; Wang, Zhong

    2013-07-01

    This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P chickens challenged with Salmonella Typhimurium.

  14. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia.

    Science.gov (United States)

    Thung, Tze Y; Radu, Son; Mahyudin, Nor A; Rukayadi, Yaya; Zakaria, Zunita; Mazlan, Nurzafirah; Tan, Boon H; Lee, Epeng; Yeoh, Soo L; Chin, Yih Z; Tan, Chia W; Kuan, Chee H; Basri, Dayang F; Wan Mohamed Radzi, Che W J

    2017-01-01

    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S . Enteritidis and S . Typhimurium in the meat samples. The prevalence of Salmonella spp., S . Enteritidis and S . Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.

  15. Complete Genome Sequence of a Human-Invasive Salmonella enterica Serovar Typhimurium Strain of the Emerging Sequence Type 213 Harboring a Multidrug Resistance IncA/C Plasmid and a blaCMY-2-Carrying IncF Plasmid.

    Science.gov (United States)

    Silva, Claudia; Calva, Edmundo; Calva, Juan J; Wiesner, Magdalena; Fernández-Mora, Marcos; Puente, José L; Vinuesa, Pablo

    2015-11-12

    Salmonella enterica subsp. enterica serovar Typhimurium strain 33676 was isolated in Mexico City, Mexico, from a patient with a systemic infection, and its complete genome sequence was determined using PacBio single-molecule real-time technology. Strain 33676 harbors an IncF plasmid carrying the extended-spectrum cephalosporin gene blaCMY-2 and a multidrug resistance IncA/C plasmid. Copyright © 2015 Silva et al.

  16. Survival and Filamentation of Salmonella enterica Serovar Enteritidis PT4 and Salmonella enterica Serovar Typhimurium DT104 at Low Water Activity

    Science.gov (United States)

    Mattick, K. L.; Jørgensen, F.; Legan, J. D.; Cole, M. B.; Porter, J.; Lappin-Scott, H. M.; Humphrey, T. J.

    2000-01-01

    In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring. PMID:10742199

  17. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Bärbel Stecher

    2007-10-01

    Full Text Available Most mucosal surfaces of the mammalian body are colonized by microbial communities ("microbiota". A high density of commensal microbiota inhabits the intestine and shields from infection ("colonization resistance". The virulence strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm in a mouse colitis model: we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with wild-type S. Tm or in mice (IL10(-/-, VILLIN-HA(CL4-CD8 with inflammatory bowel disease. Thus, inflammation is necessary and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to current thinking, inflammation is not always detrimental for the pathogen. Triggering the host's immune defence can shift the balance between the protective microbiota and the pathogen in favour of the pathogen.

  18. Identification and Characterization of Outer Membrane Vesicle-Associated Proteins in Salmonella enterica Serovar Typhimurium

    Science.gov (United States)

    Bai, Jaewoo; Kim, Seul I; Ryu, Sangryeol

    2014-01-01

    Salmonella enterica serovar Typhimurium is a primary cause of enteric diseases and has acquired a variety of virulence factors during its evolution into a pathogen. Secreted virulence factors interact with commensal flora and host cells and enable Salmonella to survive and thrive in hostile environments. Outer membrane vesicles (OMVs) released from many Gram-negative bacteria function as a mechanism for the secretion of complex mixtures, including virulence factors. We performed a proteomic analysis of OMVs that were isolated under standard laboratory and acidic minimal medium conditions and identified 14 OMV-associated proteins that were observed in the OMV fraction isolated only under the acidic minimal medium conditions, which reproduced the nutrient-deficient intracellular milieu. The inferred roles of these 14 proteins were diverse, including transporter, enzyme, and transcriptional regulator. The absence of these proteins influenced Salmonella survival inside murine macrophages. Eleven of these proteins were predicted to possess secretion signal sequences at their N termini, and three (HupA, GlnH, and PhoN) of the proteins were found to be translocated into the cytoplasm of host cells. The comparative proteomic profiling of OMVs performed in this study revealed different protein compositions in the OMVs isolated under the two different conditions, which indicates that the OMV cargo depends on the growth conditions and provides a deeper insight into how Salmonella utilizes OMVs to adapt to environmental changes. PMID:24935973

  19. Comparative proteomic analysis of Salmonella enterica serovar Typhimurium ppGpp-deficient mutant to identify a novel virulence protein required for intracellular survival in macrophages

    Directory of Open Access Journals (Sweden)

    Kumagai Yoshinori

    2010-12-01

    Full Text Available Abstract Background The global ppGpp-mediated stringent response in pathogenic bacteria plays an important role in the pathogenesis of bacterial infections. In Salmonella enterica serovar Typhimurium (S. Typhimurium, several genes, including virulence genes, are regulated by ppGpp when bacteria are under the stringent response. To understand the control of virulence genes by ppGpp in S. Typhimurium, agarose 2-dimensional electrophoresis (2-DE combined with mass spectrometry was used and a comprehensive 2-DE reference map of amino acid-starved S. Typhimurium strain SH100, a derivative of ATCC 14028, was established. Results Of the 366 examined spots, 269 proteins were successfully identified. The comparative analysis of the wild-type and ppGpp0 mutant strains revealed 55 proteins, the expression patterns of which were affected by ppGpp. Using a mouse infection model, we further identified a novel virulence-associated factor, STM3169, from the ppGpp-regulated and Salmonella-specific proteins. In addition, Salmonella strains carrying mutations in the gene encoding STM3169 showed growth defects and impaired growth within macrophage-like RAW264.7 cells. Furthermore, we found that expression of stm3169 was controlled by ppGpp and SsrB, a response regulator of the two-component system located on Salmonella pathogenicity island 2. Conclusions A proteomic approach using a 2-DE reference map can prove a powerful tool for analyzing virulence factors and the regulatory network involved in Salmonella pathogenesis. Our results also provide evidence of a global response mediated by ppGpp in S. enterica.

  20. Effects of P22 bacteriophage on salmonella Enterica subsp. enterica serovar Typhimurium DMC4 strain biofilm formation and eradication

    Directory of Open Access Journals (Sweden)

    Karaca Basar

    2015-01-01

    Full Text Available Over the last decades, several antimicrobial agents have been made available. Due to increasing antimicrobial resistance, bacteriophages were rediscovered for their potential applications against bacterial infections. In the present study, biofilm inhibition and eradication of Salmonella enterica subsp. enterica serovar Typhimurium DMC4 strain (S. Typhimurium was evaluated with respect to different incubation periods at different P22 phage titrations. The efficacy of P22 phage on biofilm formation and eradication of S. Typhimurium DMC4 strain was screened in vitro on polystyrene and stainless steel surfaces. The biofilm forming capacity of S. Typhimurium was significantly reduced at higher phage titrations (106 pfu/mL ≤. All phage titers (104-108 pfu/mL were found to be effective at the end of the 24 h-incubation period whereas higher phage titrations were found to be effective at the end of the 48 h and 72 h of incubation. P22 phage has less efficacy on already formed, especially mature biofilms (72 h-old biofilm. Notable results of P22 phage treatment on S. Typhimurium biofilm suggest that P22 phage has potential uses in food systems.

  1. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot.

    Science.gov (United States)

    George, Andrée S; Cox, Clayton E; Desai, Prerak; Porwollik, Steffen; Chu, Weiping; de Moraes, Marcos H; McClelland, Michael; Brandl, Maria T; Teplitski, Max

    2018-03-01

    Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum ) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot. IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility

  2. Periplasmic Cu,Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species.

    Science.gov (United States)

    Pacello, Francesca; Ceci, Pierpaolo; Ammendola, Serena; Pasquali, Paolo; Chiancone, Emilia; Battistoni, Andrea

    2008-02-01

    Several bacteria possess periplasmic Cu,Zn superoxide dismutases which can confer protection from extracellular reactive oxygen species. Thus, deletion of the sodC1 gene reduces Salmonella enterica serovar Typhimurium ability to colonize the spleens of wild type mice, but enhances virulence in p47phox mutant mice. To look into the role of periplamic Cu,Zn superoxide dismutase and into possible additive effects of the ferritin-like Dps protein involved in hydrogen peroxide detoxification, we have analyzed bacterial survival in response to extracellular sources of superoxide and/or hydrogen peroxide. Exposure to extracellular superoxide of Salmonella Typhimurium mutant strains lacking the sodC1 and sodC2 genes and/or the dps gene does not cause direct killing of bacteria, indicating that extracellular superoxide is poorly bactericidal. In contrast, all mutant strains display a sharp hydrogen peroxide-dependent loss of viability, the dps,sodC1,sodC2 mutant being less resistant than the dps or the sodC1,sodC2 mutants. These findings suggest that the role of Cu,Zn superoxide dismutase in bacteria is to remove rapidly superoxide from the periplasm to prevent its reaction with other reactive molecules. Moreover, the nearly additive effect of the sodC and dps mutations suggests that localization of antioxidant enzymes in different cellular compartments is required for bacterial resistance to extracytoplasmic oxidative attack.

  3. Influence of rpoS mutations on the response of Salmonella enterica serovar Typhimurium to solar radiation.

    Science.gov (United States)

    Oppezzo, Oscar J; Costa, Cristina S; Pizarro, Ramón A

    2011-01-10

    Salmonella enterica serovar Typhimurium is an important pathogen, and exhibits considerable resistance to the lethal effects of solar radiation. To evaluate the involvement of the RpoS transcription factor in the defense mechanisms of this organism, the sunlight response of a wild type strain (ATCC14028) was compared with that of an rpoS mutant, which exhibited increased sensitivity. Kinetics of cell death was complex in both strains, probably due to the presence of a variety of targets for the radiation. When ultraviolet radiation was excluded from the incident sunlight, lethal effects were abolished independently of the allelic state of rpoS. Reduction of oxygen concentration in the irradiation medium provided moderate protection to ATCC14028, but notably improved survival of the mutant. Similar assays were developed with another S. enterica strain (DA1468), which is a derivative of strain LT2 and produces low levels of RpoS. In this strain the loss of viability reveals the dependence on solar ultraviolet and oxygen concentration found for ATCC14028, but radiation resistance was slightly reduced. Increased sensitivity was observed in an rpoS mutant derived from DA1468, indicating that RpoS functions related to photoprotection are conserved in this strain. In addition, notable differences in the shape of the survival curves obtained for mutants derived from ATCC14028 and DA1468 were found, suggesting that genes beyond RpoS control are relevant in the sunlight response of these mutants. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Characterization of Salmonella enterica Serovar Typhimurium DT104 Isolated from Denmark and Comparison with Isolates from Europe and the United States

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Sandvang, D.; Aarestrup, Frank Møller

    2000-01-01

    A total of 136 isolates of Salmonella enterica serovar Typhimurium DT104 from Denmark (n = 93), Germany (n = 10), Italy (n = 4), Spain (n = 5), and the United Kingdom (n = 9) were characterized by antimicrobial resistance analysis, plasmid profiling, pulsed-field gel electrophoresis (PFGE......) with the restriction enzymes XbaI and BlnI, and analysis for the presence of integrons and antibiotic resistance genes. The isolates from Denmark were from nine pig herds, while the isolates from other countries were both of animal and of human origin. All but 10 isolates were resistant to ampicillin, chloramphenicol......, spectinomycin, streptomycin, sulfonamides, and tetracycline. Five isolates from the United Kingdom and Spain were sensitive to all antibiotics examined, whereas four isolates from the United Kingdom and the United States were also resistant to one or more of the antibiotics, namely, gentamicin, neomycin...

  5. Regulation of the Two-Component Regulator CpxR on Aminoglycosides and β-lactams Resistance in Salmonella enterica Serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Hui eHuang

    2016-04-01

    RNA expression levels of the efflux pump acrD and mdtA genes, as compared to strain JS△cpxR. Our results indicate that the two-component regulator CpxR contributes to resistance of S. enterica serovar Typhimurium to aminoglycosides and β-lactams by influencing the expression level of the MDR-related genes.

  6. Higher Storage Temperature Causes Greater Salmonella enterica Serovar Typhimurium Internal Penetration of Artificially Contaminated, Commercially Available, Washed Free Range Eggs.

    Science.gov (United States)

    Whiley, Alice; Fallowfield, Howard; Ross, Kirstin; McEvoy, Vanessa; Whiley, Harriet

    2016-07-01

    Foodborne salmonellosis is a major public health concern, with contaminated eggs identified as a significant source of infection. In Australia, the most prevalent cause of salmonellosis from eggs is Salmonella enterica subsp. enterica serovar Typhimurium. This study explored the effect of temperature after 1, 7, 14, 21, and 28 days of storage on commercially available washed free range eggs, artificially contaminated with Salmonella Typhimurium on the external surface. At each time point, the external surface of the egg, the crushed eggshell, and the internal egg yolk and albumen were analyzed for Salmonella. After 28 days of storage, 25% of eggs stored at 4°C, 50% of eggs stored at 14°C, and 100% of eggs stored at 23 and 35°C were internally contaminated with Salmonella. After 1 day of storage, more than 50% of all eggs had Salmonella present in the crushed shell after the external surface had been disinfected with ethanol. This is the first study to demonstrate that refrigeration reduced the potential for Salmonella Typhimurium to penetrate the eggshell membrane and internally contaminate table eggs commercially available in Australia. It also suggests that the processes of cracking eggs may be a source of cross-contamination within the kitchen.

  7. Human isolates of Salmonella enterica serovar Typhimurium from Taiwan displayed significantly higher levels of antimicrobial resistance than those from Denmark.

    Science.gov (United States)

    Torpdahl, Mia; Lauderdale, Tsai-Ling; Liang, Shiu-Yun; Li, Ishien; Wei, Sung-Hsi; Chiou, Chien-Shun

    2013-02-01

    Salmonella enterica serovar Typhimurium is a major zoonotic pathogen with a high prevalence of antimicrobial resistance. This pathogen can disseminate across borders and spread far distances via the food trade and international travel. In this study, we compared the genotypes and antimicrobial resistance of 378 S. Typhimurium isolates collected in Taiwan and Denmark between 2009 and 2010. Genotyping revealed that many S. Typhimurium strains were concurrently circulating in Taiwan, Denmark and other countries in 2009 and 2010. When compared to the isolates collected from Denmark, the isolates from Taiwan displayed a significantly higher level of resistance to 11 of the 12 tested antimicrobials. Seven genetic clusters (A-G) were designated for the isolates. A high percentage of the isolates in genetic clusters C, F and G were multidrug-resistant. Of the isolates in cluster C, 79.2% were ASSuT-resistant, characterized by resistance to ampicillin, streptomycin, sulfamethoxazole, and tetracycline. In cluster F, 84.1% of the isolates were ACSSuT-resistant (resistant to ASSuT and chloramphenicol). Cluster G was unique to Taiwan and characterized in most isolates by the absence of three VNTRs (ST20, ST30 and STTR6) as well as a variety of multidrug resistance profiles. This cluster exhibited very high to extremely high levels of resistance to several first-line drugs, and among the seven clusters, it displayed the highest levels of resistance to cefotaxime and ceftazidime, ciprofloxacin and gentamicin. The high prevalence of antimicrobial resistance in S. Typhimurium from Taiwan highlights the necessity to strictly regulate the use of antimicrobials in the agriculture and human health care sectors. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica serovar Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyunjin; McDermott, Jason E.; Porwollik, Steffen; Mcclelland, Michael; Heffron, Fred

    2009-02-20

    Salmonella must respond to a myriad of environmental cues during infection of a mouse and express specific subsets of genes in a temporal and spatial manner to subvert the host defense mechanisms but these regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 84 regulators inferred to play a role in Salmonella typhimurium virulence and tested them in three virulence assays (intraperitoneal (i.p.), and intragastric (i.g.) infection in BALB/c mice, and persistence in SvJ129 mice). Overall 36 regulators were identified that were less virulent in at least one assay, and of those, 15 regulators were required for systemic mouse infection in an acute infection model. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint we focused on these 15 genes. Transcriptional profiles were obtained for each of these 15 regulators from strains grown under four different environmental conditions. These results as well as publicly available transcriptional profiles were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 15 regulators control a specific set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that, for these 7 genes, the response regulator SsrB and the marR type regulator SlyA co-regulate in a regulatory cascade by integrating multiple signals.

  9. Elucidation of the outer membrane proteome of Salmonella enterica serovar Typhimurium utilising a lipid-based protein immobilization technique

    Directory of Open Access Journals (Sweden)

    Appleton Hazel

    2010-02-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhimurium (S. Typhimurium is a major cause of human gastroenteritis worldwide. The outer membrane proteins expressed by S. Typhimurium mediate the process of adhesion and internalisation within the intestinal epithelium of the host thus influencing the progression of disease. Since the outer membrane proteins are surface-exposed, they provide attractive targets for the development of improved antimicrobial agents and vaccines. Various techniques have been developed for their characterisation, but issues such as carryover of cytosolic proteins still remain a problem. In this study we attempted to characterise the surface proteome of S. Typhimurium using Lipid-based Protein Immobilisation technology in the form of LPI™ FlowCells. No detergents are required and no sample clean up is needed prior to downstream analysis. The immobilised proteins can be digested with proteases in multiple steps to increase sequence coverage, and the peptides eluted can be characterised directly by liquid chromatography - tandem mass spectrometry (LC-MS/MS and identified from mass spectral database searches. Results In this study, 54 outer membrane proteins, were identified with two or more peptide hits using a multi-step digest approach. Out of these 28 were lipoproteins, nine were involved in transport and three with enzyme activity These included the transporters BtuB which is responsible for the uptake of vitamin B12, LamB which is involved in the uptake of maltose and maltodextrins and LolB which is involved in the incorporation of lipoproteins in the outer membrane. Other proteins identified included the enzymes MltC which may play a role in cell elongation and division and NlpD which is involved in catabolic processes in cell wall formation as well as proteins involved in virulence such as Lpp1, Lpp2 and OmpX. Conclusion Using a multi-step digest approach the LPI™ technique enables the incorporation of a

  10. Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Cartas Espinel, Irene; Guerra, Priscila Regina; Jelsbak, Lotte

    2016-01-01

    . Typhimurium virulence is the ability to survive and replicate inside macrophages and resisting the antimicrobial attacks in the form of oxidative and nitrosative stress elicited from these cells. In the present study, we have investigated the role of polyamines in intracellular survival and systemic...... infections of mice. Using a S. Typhimurium mutant defective for putrescine and spermidine biosynthesis, we show that polyamines are essential for coping with reactive nitrogen species, possibly linking polyamines to increased intracellular stress resistance. However, using a mouse model defective for nitric...

  11. Effects of leachate from crumb rubber and zinc in green roofs on the survival, growth, and resistance characteristics of Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Crampton, Mollee; Ryan, Allayna; Eckert, Cori; Baker, Katherine H; Herson, Diane S

    2014-05-01

    The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain.

  12. Use of a recombinant Salmonella enterica serovar Typhimurium strain expressing C-Raf for protection against C-Raf induced lung adenoma in mice

    International Nuclear Information System (INIS)

    Gentschev, Ivaylo; Fensterle, Joachim; Schmidt, Andreas; Potapenko, Tamara; Troppmair, Jakob; Goebel, Werner; Rapp, Ulf R

    2005-01-01

    Serine-threonine kinases of the Raf family (A-Raf, B-Raf, C-Raf) are central players in cellular signal transduction, and thus often causally involved in the development of cancer when mutated or over-expressed. Therefore these proteins are potential targets for immunotherapy and a possible basis for vaccine development against tumors. In this study we analyzed the functionality of a new live C-Raf vaccine based on an attenuated Salmonella enterica serovar Typhimurium aroA strain in two Raf dependent lung tumor mouse models. The antigen C-Raf has been fused to the C-terminal secretion signal of Escherichia coli α-hemolysin and expressed in secreted form by an attenuated aroA Salmonella enterica serovar Typhimurium strain via the α-hemolysin secretion pathway. The effect of the immunization with this recombinant C-Raf strain on wild-type C57BL/6 or lung tumor bearing transgenic BxB mice was analyzed using western blot and FACS analysis as well as specific tumor growth assays. C-Raf antigen was successfully expressed in secreted form by an attenuated Salmonella enterica serovar Typhimurium aroA strain using the E. coli hemolysin secretion system. Immunization of wild-type C57BL/6 or tumor bearing mice provoked specific C-Raf antibody and T-cell responses. Most importantly, the vaccine strain significantly reduced tumor growth in two transgenic mouse models of Raf oncogene-induced lung adenomas. The combination of the C-Raf antigen, hemolysin secretion system and Salmonella enterica serovar Typhimurium could form the basis for a new generation of live bacterial vaccines for the treatment of Raf dependent human malignancies

  13. pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Fayol-Messaoudi, Domitille; Berger, Cédric N; Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L

    2005-10-01

    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.

  14. Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice

    Directory of Open Access Journals (Sweden)

    Lahtinen Sampo

    2009-01-01

    Full Text Available Abstract Background Prebiotics are non-digestible food ingredients believed to beneficially affect host health by selectively stimulating the growth of the beneficial bacteria residing in the gut. Such beneficial bacteria have been reported to protect against pathogenic infections. However, contradicting results on prevention of Salmonella infections with prebiotics have been published. The aim of the present study was to examine whether S. Typhimurium SL1344 infection in mice could be prevented by administration of dietary carbohydrates with different structures and digestibility profiles. BALB/c mice were fed a diet containing 10% of either of the following carbohydrates: inulin, fructo-oligosaccharide, xylo-oligosaccharide, galacto-oligosaccharide, apple pectin, polydextrose or beta-glucan for three weeks prior to oral Salmonella challenge (107 CFU and compared to mice fed a cornstarch-based control diet. Results The mice fed with diets containing fructo-oligosaccharide (FOS or xylo-oligosaccharide (XOS had significantly higher (P < 0.01 and P < 0.05 numbers of S. Typhimurium SL1344 in liver, spleen and mesenteric lymph nodes when compared to the mice fed with the cornstarch-based control diet. Significantly increased amounts (P < 0.01 of Salmonella were detected in ileal and fecal contents of mice fed with diets supplemented with apple pectin, however these mice did not show significantly higher numbers of S. Typhimyrium in liver, spleen and lymph nodes than animals from the control group (P < 0.20. The acute-phase protein haptoglobin was a good marker for translocation of S. Typhimurium in mice. In accordance with the increased counts of Salmonella in the organs, serum concentrations of haptoglobin were significantly increased in the mice fed with FOS or XOS (P < 0.001. Caecum weight was increased in the mice fed with FOS (P < 0.01, XOS (P < 0.01, or polydextrose (P < 0.001, and caecal pH was reduced in the mice fed with polydextrose (P < 0

  15. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Shao, Yu-Xin; Lei, Zhao; Wolf, Patricia G; Gao, Yan; Guo, Yu-Ming; Zhang, Bing-Kun

    2017-07-01

    Background: Zinc has been shown to improve intestinal barrier function against Salmonella enterica serovar Typhimurium ( S. typhimurium ) infection, but the mechanisms involved in this process remain undefined. Objective: We aimed to explore the roles of G protein-coupled receptor (GPR)39 and protein kinase Cζ (PKCζ) in the regulation by zinc of intestinal barrier function. Methods: A Transwell Caco-2 monolayer was pretreated with 0, 50, or 100 μM Zn and then incubated with S. typhimurium for 0-6 h. Afterward, cells silenced by the small interfering RNA for GPR39 or PKCζ were pretreated with 100 μM Zn and incubated with S. typhimurium for 3 h. Finally, transepithelial electrical resistance (TEER), permeability, tight junction (TJ) proteins, and signaling molecules GPR39 and PKCζ were measured. Results: Compared with controls, S. typhimurium decreased TEER by 62.3-96.2% at 4-6 h ( P 0.1). Silencing GPR39 decreased ( P zinc-activated PKCζ and blocked ( P zinc on epithelial integrity. Furthermore, silencing PKCζ counteracted the protective effect of zinc on epithelial integrity but did not inhibit GPR39 ( P = 0.138). Conclusion: We demonstrated that zinc upregulates PKCζ by activating GPR39 to enhance the abundance of ZO-1, thereby improving epithelial integrity in S. typhimurium- infected Caco-2 cells. © 2017 American Society for Nutrition.

  16. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures.

    Science.gov (United States)

    Oliver, Christy E; Beier, Ross C; Hume, Michael E; Horrocks, Shane M; Casey, Thomas A; Caton, Joel S; Nisbet, David J; Smith, David J; Krueger, Nathan A; Anderson, Robin C

    2010-04-01

    Experiments were conducted to determine factors that affect sensitivity of Salmonella enterica serovar Typhimurium to sodium chlorate (5mM). In our first experiment, cultures grown without chlorate grew more rapidly than those with chlorate. An extended lag before logarithmic growth was observed in anaerobic but not aerobic cultures containing chlorate. Chlorate inhibition of growth during aerobic culture began later than that observed in anaerobic cultures but persisted once inhibition was apparent. Conversely, anaerobic cultures appeared to adapt to chlorate after approximately 10h of incubation, exhibiting rapid compensatory growth. In anaerobic chlorate-containing cultures, 20% of total viable counts were resistant to chlorate by 6h and had propagated to 100% resistance (>10(9)CFU mL(-1)) by 24h. In the aerobic chlorate-containing cultures, 12.9% of colonies had detectable resistance to chlorate by 6h, but only 1% retained detectable resistance at 24h, likely because these cultures had opportunity to respire on oxygen and were thus not enriched via the selective pressure of chlorate. In another study, treatment with shikimic acid (0.34 mM), molybdate (1mM) or their combination had little effect on aerobic or anaerobic growth of Salmonella in the absence of added chlorate. As observed in our earlier study, chlorate resistance was not detected in any cultures without added chlorate. Chlorate resistant Salmonella were recovered at equivalent numbers regardless of treatment after 8h of aerobic or anaerobic culture with added chlorate; however, by 24h incubation chlorate sensitivity was completely restored to aerobic but not anaerobic cultures treated with shikimic acid or molybdate but not their combination. Results indicate that anaerobic adaptation of S. Typhimurium to sodium chlorate during pure culture is likely due to the selective propagation of low numbers of cells exhibiting spontaneous resistance to chlorate and this resistance is not reversible by

  17. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha.

    Directory of Open Access Journals (Sweden)

    Sara Leschner

    Full Text Available BACKGROUND: Several facultative anaerobic bacteria with potential therapeutic abilities are known to preferentially colonize solid tumors after systemic administration. How they efficiently find and invade the tumors is still unclear. However, this is an important issue to be clarified when bacteria should be tailored for application in cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS: We describe the initial events of colonization of an ectopic transplantable tumor by Salmonella enterica serovar Typhimurium. Initially, after intravenous administration, bacteria were found in blood, spleen, and liver. Low numbers were also detected in tumors associated with blood vessels as could be observed by immunohistochemistry. A rapid increase of TNF-alpha in blood was observed at that time, in addition to other pro-inflammatory cytokines. This induced a tremendous influx of blood into the tumors by vascular disruption that could be visualized in H&E stainings and quantified by hemoglobin measurements of tumor homogenate. Most likely, together with the blood, bacteria were flushed into the tumor. In addition, blood influx was followed by necrosis formation, bacterial growth, and infiltration of neutrophilic granulocytes. Depletion of TNF-alpha retarded blood influx and delayed bacterial tumor-colonization. CONCLUSION: Our findings emphasize similarities between Gram-negative tumor-colonizing bacteria and tumor vascular disrupting agents and show the involvement of TNF-alpha in the initial phase of tumor-colonization by bacteria.

  18. Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, George; Brown, Roslyn N.; Gustin, Jean K.; Stufkens, Afke; Shaikh-Kidwai, Afshan S.; Li, Jie; McDermott, Jason E.; Brewer, Heather M.; Schepmoes, Athena A.; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2011-01-01

    The intracellular pathogen Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis in the world. This pathogen has two type-III secretion systems (TTSS) necessary for virulence that are encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) and are expressed during extracellular or intracellular infectious states, respectively, to deliver virulence factors (effectors) to the host cell cytoplasm. While many have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this mass spectrometry-based proteomics study, we identified effector proteins secreted under minimal acidic medium growth conditions that induced the SPI-2 TTSS and its effectors, and compared the secretome from the parent strain to the secretome from strains missing either essential (SsaK) or regulatory components (SsaL) of the SPI-2 secretion apparatus. We identified 75% of the known TTSS effector repertoire. Excluding translocon components, 95% of the known effectors were biased for identification in the ssaL mutant background, which demonstrated that SsaL regulates SPI-2 type III secretion. To confirm secretion to animal cells, we made translational fusions of several of the best candidates to the calmodulin-dependent adenylate cyclase of Bordetella pertussis and assayed cAMP levels of infected J774 macrophage-like cells. From these infected cells we identified six new TTSS effectors and two others that are secreted independent of TTSS. Our results substantiate reports of additional secretion systems encoded by Salmonella other than TTSS.

  19. General response of Salmonella enterica serovar Typhimurium to desiccation: A new role for the virulence factors sopD and sseD in survival.

    Directory of Open Access Journals (Sweden)

    Alice Maserati

    Full Text Available Salmonella can survive for long periods under extreme desiccation conditions. This stress tolerance poses a risk for food safety, but relatively little is known about the molecular and cellular regulation of this adaptation mechanism. To determine the genetic components involved in Salmonella's cellular response to desiccation, we performed a global transcriptomic analysis comparing S. enterica serovar Typhimurium cells equilibrated to low water activity (aw 0.11 and cells equilibrated to high water activity (aw 1.0. The analysis revealed that 719 genes were differentially regulated between the two conditions, of which 290 genes were up-regulated at aw 0.11. Most of these genes were involved in metabolic pathways, transporter regulation, DNA replication/repair, transcription and translation, and, more importantly, virulence genes. Among these, we decided to focus on the role of sopD and sseD. Deletion mutants were created and their ability to survive desiccation and exposure to aw 0.11 was compared to the wild-type strain and to an E. coli O157:H7 strain. The sopD and sseD mutants exhibited significant cell viability reductions of 2.5 and 1.3 Log (CFU/g, respectively, compared to the wild-type after desiccation for 4 days on glass beads. Additional viability differences of the mutants were observed after exposure to aw 0.11 for 7 days. E. coli O157:H7 lost viability similarly to the mutants. Scanning electron microscopy showed that both mutants displayed a different morphology compared to the wild-type and differences in production of the extracellular matrix under the same conditions. These findings suggested that sopD and sseD are required for Salmonella's survival during desiccation.

  20. The architecture and ppGpp-dependent expression of the primary transcriptome of Salmonella Typhimurium during invasion gene expression

    Directory of Open Access Journals (Sweden)

    Ramachandran Vinoy K

    2012-01-01

    Full Text Available Abstract Background Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium (S. Typhimurium requires expression of the extracellular virulence gene expression programme (STEX, activation of which is dependent on the signalling molecule guanosine tetraphosphate (ppGpp. Recently, next-generation transcriptomics (RNA-seq has revealed the unexpected complexity of bacterial transcriptomes and in this report we use differential RNA sequencing (dRNA-seq to define the high-resolution transcriptomic architecture of wild-type S. Typhimurium and a ppGpp null strain under growth conditions which model STEX. In doing so we show that ppGpp plays a much wider role in regulating the S. Typhimurium STEX primary transcriptome than previously recognised. Results Here we report the precise mapping of transcriptional start sites (TSSs for 78% of the S. Typhimurium open reading frames (ORFs. The TSS mapping enabled a genome-wide promoter analysis resulting in the prediction of 169 alternative sigma factor binding sites, and the prediction of the structure of 625 operons. We also report the discovery of 55 new candidate small RNAs (sRNAs and 302 candidate antisense RNAs (asRNAs. We discovered 32 ppGpp-dependent alternative TSSs and determined the extent and level of ppGpp-dependent coding and non-coding transcription. We found that 34% and 20% of coding and non-coding RNA transcription respectively was ppGpp-dependent under these growth conditions, adding a further dimension to the role of this remarkable small regulatory molecule in enabling rapid adaptation to the infective environment. Conclusions The transcriptional architecture of S. Typhimurium and finer definition of the key role ppGpp plays in regulating Salmonella coding and non-coding transcription should promote the understanding of gene regulation in this important food borne pathogen and act as a resource for future research.

  1. Isolation of OmpA gene from Salmonella typhimurium and ...

    African Journals Online (AJOL)

    Isolation of OmpA gene from Salmonella typhimurium and transformation into alfalfa in order to develop an edible plant based vaccine. ... The recombinant OmpA was expressed in Escherichia coli TG1. The new construct was used to transform the Agrobacterium tumefaciens Strain LBA4404 before plant transformation.

  2. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky.

    Directory of Open Access Journals (Sweden)

    Timothy J Johnson

    Full Text Available Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%, Typhimurium (15.0% and Heidelberg (1.7%. We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard.

  3. Ascertaining the relationship between Salmonella Typhimurium and Salmonella 4,[5],12:i:- by MLVA and inferring the sources of human salmonellosis due to the two serovars in Italy

    DEFF Research Database (Denmark)

    Barco, Lisa; Barrucci, Federica; Cortini, Enzo

    2015-01-01

    The current picture of human salmonellosis shows Salmonella Typhimurium and S. 4,[5],12:i:- as the most common serovars in Italy. The aims of this study were to investigate the genetic relationship between these serovars, as well as to test the possibility of inferring sources of human...... salmonellosis due to S. Typhimurium and S. 4,[5],12:i:- by using multilocus variable-number tandem repeat analysis (MLVA) subtyping data. Single isolates from 268 human sporadic cases and 325 veterinary isolates (from pig, cattle, chicken, and turkey) collected over the period 2009-2011 were typed by MLVA......, and the similarities of MLVA profiles were investigated using different analytical approaches. Results showed that isolates of S. 4,[5],12:i:- were more clonal compared to S. Typhimurium and that clones of both serovars from different non-human sources were very close to those which were responsible for human...

  4. Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Rowley, Gary; Hensen, Daniela; Felgate, Heather; Arkenberg, Anke; Appia-Ayme, Corinne; Prior, Karen; Harrington, Carl; Field, Sarah J; Butt, Julea N; Baggs, Elizabeth; Richardson, David J

    2012-01-15

    The production of cytotoxic nitric oxide (NO) and conversion into the neuropharmacological agent and potent greenhouse gas nitrous oxide (N₂O) is linked with anoxic nitrate catabolism by Salmonella enterica serovar Typhimurium. Salmonella can synthesize two types of nitrate reductase: a membrane-bound form (Nar) and a periplasmic form (Nap). Nitrate catabolism was studied under nitrate-rich and nitrate-limited conditions in chemostat cultures following transition from oxic to anoxic conditions. Intracellular NO production was reported qualitatively by assessing transcription of the NO-regulated genes encoding flavohaemoglobin (Hmp), flavorubredoxin (NorV) and hybrid cluster protein (Hcp). A more quantitative analysis of the extent of NO formation was gained by measuring production of N₂O, the end-product of anoxic NO-detoxification. Under nitrate-rich conditions, the nar, nap, hmp, norV and hcp genes were all induced following transition from the oxic to anoxic state, and 20% of nitrate consumed in steady-state was released as N₂O when nitrite had accumulated to millimolar levels. The kinetics of nitrate consumption, nitrite accumulation and N₂O production were similar to those of wild-type in nitrate-sufficient cultures of a nap mutant. In contrast, in a narG mutant, the steady-state rate of N₂O production was ~30-fold lower than that of the wild-type. Under nitrate-limited conditions, nap, but not nar, was up-regulated following transition from oxic to anoxic metabolism and very little N₂O production was observed. Thus a combination of nitrate-sufficiency, nitrite accumulation and an active Nar-type nitrate reductase leads to NO and thence N₂O production, and this can account for up to 20% of the nitrate catabolized.

  5. The Role of the st313-td Gene in Virulence of Salmonella Typhimurium ST313

    DEFF Research Database (Denmark)

    Herrero-Fresno, Ana; Wallrodt, Inke; Leekitcharoenphon, Pimlapas

    2014-01-01

    Multidrug-resistant Salmonella enterica serovar Typhimurium ST313 has emerged in sub-Saharan Africa causing severe infections in humans. Therefore, it has been speculated that this specific sequence type, ST313, carries factors associated with increased pathogenicity. We assessed the role in viru...

  6. Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection.

    Directory of Open Access Journals (Sweden)

    Flaviano S Martins

    Full Text Available BACKGROUND: Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-kappaB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we reported that S. boulardii (Sb protected mice from Salmonella enterica serovar Typhimurium (ST-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-kappaB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. CONCLUSIONS: Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella.

  7. Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection

    Science.gov (United States)

    Martins, Flaviano S.; Dalmasso, Guillaume; Arantes, Rosa M. E.; Doye, Anne; Lemichez, Emmanuel; Lagadec, Patricia; Imbert, Veronique; Peyron, Jean-François; Rampal, Patrick; Nicoli, Jacques R.; Czerucka, Dorota

    2010-01-01

    Background Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-κB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. Methodology/Principal Findings In this study, we reported that S. boulardii (Sb) protected mice from Salmonella enterica serovar Typhimurium (ST)-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-κB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. Conclusions Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella. PMID:20111723

  8. Igg Subclasses Targeting the Flagella of Salmonella enterica Serovar Typhimurium Can Mediate Phagocytosis and Bacterial Killing

    Science.gov (United States)

    Goh, Yun Shan; Armour, Kathryn L; Clark, Michael R; Grant, Andrew J; Mastroeni, Pietro

    2016-01-01

    Invasive non-typhoidal Salmonella are a common cause of invasive disease in immuno-compromised individuals and in children. Multi-drug resistance poses challenges to disease control, with a critical need for effective vaccines. Flagellin is an attractive vaccine candidate due to surface exposure and high epitope copy number, but its potential as a target for opsonophacytic antibodies is unclear. We examined the effect of targeting flagella with different classes of IgG on the interaction between Salmonella Typhimurium and a human phagocyte-like cell line, THP-1. We tagged the FliC flagellar protein with a foreign CD52 mimotope (TSSPSAD) and bacteria were opsonized with a panel of humanised CD52 antibodies with the same antigen-binding V-region, but different constant regions. We found that IgG binding to flagella increases bacterial phagocytosis and reduces viable intracellular bacterial numbers. Opsonisation with IgG3, followed by IgG1, IgG4, and IgG2, resulted in the highest level of bacterial uptake and in the highest reduction in the intracellular load of viable bacteria. Taken together, our data provide proof-of-principle evidence that targeting flagella with antibodies can increase the antibacterial function of host cells, with IgG3 being the most potent subclass. These data will assist the rational design of urgently needed, optimised vaccines against iNTS disease. PMID:27366588

  9. β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells.

    Science.gov (United States)

    Badia, Roger; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz; Brufau, Joaquim

    2012-03-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.

  10. Expression and crystallization of SeDsbA, SeDsbL and SeSrgA from Salmonella enterica serovar Typhimurium

    International Nuclear Information System (INIS)

    Jarrott, R.; Shouldice, S. R.; Gunčar, G.; Totsika, M.; Schembri, M. A.; Heras, B.

    2010-01-01

    The cloning, purification, crystallization and preliminary crystallographic studies of three DsbA-like proteins present in S. enterica serovar Typhimurium, SeDsbA, SeDsbL and SeSrgA, are reported. Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P2 1 , P2 1 2 1 2 and C2, respectively

  11. rpoS-Regulated core genes involved in the competitive fitness of Salmonella enterica Serovar Kentucky in the intestines of chickens.

    Science.gov (United States)

    Cheng, Ying; Pedroso, Adriana Ayres; Porwollik, Steffen; McClelland, Michael; Lee, Margie D; Kwan, Tiffany; Zamperini, Katherine; Soni, Vivek; Sellers, Holly S; Russell, Scott M; Maurer, John J

    2015-01-01

    Salmonella enterica serovar Kentucky has become the most frequently isolated serovar from poultry in the United States over the past decade. Despite its prevalence in poultry, it causes few human illnesses in the United States. The dominance of S. Kentucky in poultry does not appear to be due to single introduction of a clonal strain, and its reduced virulence appears to correlate with the absence of virulence genes grvA, sseI, sopE, and sodC1. S. Kentucky's prevalence in poultry is possibly attributable to its metabolic adaptation to the chicken cecum. While there were no difference in the growth rate of S. Kentucky and S. Typhimurium grown microaerophilically in cecal contents, S. Kentucky persisted longer when chickens were coinfected with S. Typhimurium. The in vivo advantage that S. Kentucky has over S. Typhimurium appears to be due to differential regulation of core Salmonella genes via the stationary-phase sigma factor rpoS. Microarray analysis of Salmonella grown in cecal contents in vitro identified several metabolic genes and motility and adherence genes that are differentially activated in S. Kentucky. The contributions of four of these operons (mgl, prp, nar, and csg) to Salmonella colonization in chickens were assessed. Deletion of mgl and csg reduced S. Kentucky persistence in competition studies in chickens infected with wild-type or mutant strains. Subtle mutations affecting differential regulation of core Salmonella genes appear to be important in Salmonella's adaptation to its animal host and especially for S. Kentucky's emergence as the dominant serovar in poultry. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and salmonella enterica serovar typhimurium in manure, manure-amended soil, and lettuce

    NARCIS (Netherlands)

    Franz, Eelco; van Diepeningen, Anne D; de Vos, Oscar J; van Bruggen, Ariena H C

    2005-01-01

    Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize

  13. Effects of cattle feeding regimen and soil management type on the fate of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure, manure-amended soil, and lettuce

    NARCIS (Netherlands)

    Franz, E.; Diepeningen, van A.D.; Vos, de O.J.; Bruggen, van A.H.C.

    2005-01-01

    Survival of the green fluorescent protein-transformed human pathogens Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium was studied in a laboratory-simulated lettuce production chain. Dairy cows were fed three different roughage types: high-digestible grass silage plus maize

  14. Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Julia Andrea Deditius

    Full Text Available Salmonella enterica utilizes flagellar motility to swim through liquid environments and on surfaces. The biosynthesis of the flagellum is regulated on various levels, including transcriptional and posttranscriptional mechanisms. Here, we investigated the motility phenotype of 24 selected single gene deletions that were previously described to display swimming and swarming motility effects. Mutations in flgE, fliH, ydiV, rfaG, yjcC, STM1267 and STM3363 showed an altered motility phenotype. Deletions of flgE and fliH displayed a non-motile phenotype in both swimming and swarming motility assays as expected. The deletions of STM1267, STM3363, ydiV, rfaG and yjcC were further analyzed in detail for flagellar and fimbrial gene expression and filament formation. A ΔydiV mutant showed increased swimming motility, but a decrease in swarming motility, which coincided with derepression of curli fimbriae. A deletion of yjcC, encoding for an EAL domain-containing protein, increased swimming motility independent on flagellar gene expression. A ΔSTM1267 mutant displayed a hypermotile phenotype on swarm agar plates and was found to have increased numbers of flagella. In contrast, a knockout of STM3363 did also display an increase in swarming motility, but did not alter flagella numbers. Finally, a deletion of the LPS biosynthesis-related protein RfaG reduced swimming and swarming motility, associated with a decrease in transcription from flagellar class II and class III promoters and a lack of flagellar filaments.

  15. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Xuan Wang-Kan

    2017-07-01

    Full Text Available AcrAB-TolC is the paradigm resistance-nodulation-division (RND multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro. A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ. Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.

  16. Genome Sequences of Three Highly Copper-Resistant Salmonella enterica subsp. I Serovar Typhimurium Strains Isolated from Pigs in Denmark

    DEFF Research Database (Denmark)

    Qin, Yanan; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    Salmonella typhimurium is the causative agent of typhoid fever, which causes nearly 21.7 million illnesses and 217,000 deaths around the world each year. Here, we describe the draft genome sequences of the Salmonella typhimurium strains S7, S15, and S23, isolated from copper-fed pigs in Denmark...

  17. Curcumin Reduces the Motility of Salmonella enterica Serovar Typhimurium by Binding to the Flagella, Thereby Leading to Flagellar Fragility and Shedding

    Science.gov (United States)

    Balakrishnan, Arjun; Negi, Vidya Devi; Sakorey, Deepika; Chandra, Nagasuma

    2016-01-01

    ABSTRACT One of the important virulence properties of the pathogen is its ability to travel to a favorable environment, cross the viscous mucus barrier (intestinal barrier for enteric pathogens), and reach the epithelia to initiate pathogenesis with the help of an appendage, like flagella. Nonetheless, flagella can act as an “Achilles heel,” revealing the pathogen's presence to the host through the stimulation of innate and adaptive immune responses. We assessed whether curcumin, a dietary polyphenol, could alter the motility of Salmonella, a foodborne pathogen. It reduced the motility of Salmonella enterica serovar Typhimurium by shortening the length of the flagellar filament (from ∼8 μm to ∼5 μm) and decreasing its density (4 or 5 flagella/bacterium instead of 8 or 9 flagella/bacterium). Upon curcumin treatment, the percentage of flagellated bacteria declined from ∼84% to 59%. However, no change was detected in the expression of the flagellin gene and protein. A fluorescence binding assay demonstrated binding of curcumin to the flagellar filament. This might make the filament fragile, breaking it into smaller fragments. Computational analysis predicted the binding of curcumin, its analogues, and its degraded products to a flagellin molecule at an interface between domains D1 and D2. Site-directed mutagenesis and a fluorescence binding assay confirmed the binding of curcumin to flagellin at residues ASN120, ASP123, ASN163, SER164, ASN173, and GLN175. IMPORTANCE This work, to our knowledge the first report of its kind, examines how curcumin targets flagellar density and affects the pathogenesis of bacteria. We found that curcumin does not affect any of the flagellar synthesis genes. Instead, it binds to the flagellum and makes it fragile. It increases the torsional stress on the flagellar filament that then breaks, leaving fewer flagella around the bacteria. Flagella, which are crucial ligands for Toll-like receptor 5, are some of the most important

  18. Fluorescence-based thermal shift data on multidrug regulator AcrR from Salmonella enterica subsp. entrica serovar Typhimurium str. LT2

    Directory of Open Access Journals (Sweden)

    Babu A. Manjasetty

    2016-06-01

    Full Text Available The fluorescence-based thermal shift (FTS data presented here include Table S1 and Fig. S1, and are supplemental to our original research article describing detailed structural, FTS, and fluorescence polarization analyses of the Salmonella enterica subsp. entrica serovar Typhimurium str. LT2 multidrug transcriptional regulator AcrR (StAcrR (doi:10.1016/j.jsb.2016.01.008 (Manjasetty et al., 2015 [1]. Table S1 contains chemical formulas, a Chemical Abstracts Service (CAS Registry Number (CAS no., FTS rank (a ligand with the highest rank has the largest difference in the melting temperature (ΔTm, and uses as drug molecules against various pathological conditions of sixteen small-molecule ligands that increase thermal stability of StAcrR. Thermal stability of human enolase 1, a negative control protein, was not affected in the presence of various concentrations of the top six StAcrR binders (Fig. S1.

  19. Fluorescence-based thermal shift data on multidrug regulator AcrR from Salmonella enterica subsp. entrica serovar Typhimurium str. LT2.

    Science.gov (United States)

    Manjasetty, Babu A; Halavaty, Andrei S; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F; Joachimiak, Andrzej

    2016-06-01

    The fluorescence-based thermal shift (FTS) data presented here include Table S1 and Fig. S1, and are supplemental to our original research article describing detailed structural, FTS, and fluorescence polarization analyses of the Salmonella enterica subsp. entrica serovar Typhimurium str. LT2 multidrug transcriptional regulator AcrR (StAcrR) (doi:10.1016/j.jsb.2016.01.008) (Manjasetty et al., 2015 [1]). Table S1 contains chemical formulas, a Chemical Abstracts Service (CAS) Registry Number (CAS no.), FTS rank (a ligand with the highest rank) has the largest difference in the melting temperature (ΔT m), and uses as drug molecules against various pathological conditions of sixteen small-molecule ligands that increase thermal stability of StAcrR. Thermal stability of human enolase 1, a negative control protein, was not affected in the presence of various concentrations of the top six StAcrR binders (Fig. S1).

  20. Persistence of a Salmonella enterica serovar typhimurium DT12 clone in a piggery and in agricultural soil amended with Salmonella-contaminated slurry

    DEFF Research Database (Denmark)

    Baloda, Suraj B.; Christensen, Lise; Trajcevska, Silvija

    2001-01-01

    Prevalence of Salmonella enterica on a Danish pig farm presenting recurrent infections was investigated. A comparison of the pulsed-held gel electrophoresis patterns of fecal isolates from piggeries, waste slurry, and agricultural soil amended with Salmonella-contaminated animal waste (slurry......) and subclinical isolates from the same farm (collected in 1996 and later) showed identical patterns, indicating long-term persistence of the Salmonella enterica serovar Typhimurium DT12 clone in the herd environment. Furthermore, when Salmonella-contaminated slurry was disposed of on the agricultural soil (a...... common waste disposal practice), the pathogen was isolated up to 14 days after the spread, indicating potentially high risks of transmission of the pathogen in the environment, animals, and humans....

  1. Evaluation of near-infrared pasteurization in controlling Escherichia coli O157:H7, Salmonella enterica serovar typhimurium, and Listeria monocytogenes in ready-to-eat sliced ham.

    Science.gov (United States)

    Ha, Jae-Won; Ryu, Sang-Ryeol; Kang, Dong-Hyun

    2012-09-01

    This study was conducted to investigate the efficacy of near-infrared (NIR) heating to reduce Salmonella enterica serovar Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes in ready-to-eat (RTE) sliced ham compared to conventional convective heating, and the effect of NIR heating on quality was determined by measuring the color and texture change. A cocktail of three pathogens was inoculated on the exposed or protected surfaces of ham slices, followed by NIR or conventional heating at 1.8 kW. NIR heating for 50 s achieved 4.1-, 4.19-, and 3.38-log reductions in surface-inoculated S. Typhimurium, E. coli O157:H7, and L. monocytogenes, respectively, whereas convective heating needed 180 s to attain comparable reductions for each pathogen. There were no statistically significant (P > 0.05) differences in reduction between surface- and internally inoculated pathogens at the end of NIR treatment (50 s). However, when treated with conventional convective heating, significant (P 0.05) different from those of nontreated samples. These results suggest that NIR heating can be applied to control internalized pathogens as well as surface-adhering pathogens in RTE sliced meats without affecting product quality.

  2. Immunogenicity of a Live Recombinant Salmonella enterica Serovar Typhimurium Vaccine Expressing pspA in Neonates and Infant Mice Born from Naïve and Immunized Mothers▿ †

    OpenAIRE

    Shi, Huoying; Wang, Shifeng; Roland, Kenneth L.; Gunn, Bronwyn M.; Curtiss, Roy

    2010-01-01

    We are developing a Salmonella vectored vaccine to prevent infant pneumonia and other diseases caused by Streptococcus pneumoniae. One prerequisite for achieving this goal is to construct and evaluate new recombinant attenuated Salmonella vaccine (RASV) strains suitable for use in neonates and infants. Salmonella enterica serovar Typhimurium strain χ9558(pYA4088) specifies delivery of the pneumococcal protective antigen PspA and can protect adult mice from challenge with S. pneumoniae. This s...

  3. Genomics of an emerging clone of Salmonella serovar Typhimurium ST313 from Nigeria and the Democratic Republic of Congo

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Rundsten, Carsten Friis; Zankari, Ea

    2013-01-01

    We showed in a limited number of isolates that S. Typhimurium ST313 is a prevalent sequence-type causing gastrointestinal diseases and septicemia in patients from Nigeria and DRC. We found three distinct phylogenetic clusters based on the origin of isolation suggesting some spatial evolution. Com...

  4. Phage types of Salmonella enterica ssp. enterica serovar Typhimurium isolated from production animals and humans in Denmark

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Wegener, Henrik Caspar

    1994-01-01

    S. Typhimurium is one of the 2 most common salmonella serotypes causing human salmonellosis in Denmark. In order to illustrate the significance of different production animals as a source of infection, 1461 isolates were characterized by phage typing. The isolates originated from human patients a...

  5. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Michelle M C Buckner

    Full Text Available 15-deoxy-Δ(12,14-prostaglandin J2 (15d-PGJ2 is an anti-inflammatory downstream product of the cyclooxygenase enzymes. It has been implicated to play a protective role in a variety of inflammatory mediated diseases, including rheumatoid arthritis, neural damage, and myocardial infarctions. Here we show that 15d-PGJ2 also plays a role in Salmonella infection. Salmonella enterica Typhimurium is a Gram-negative facultative intracellular pathogen that is able to survive and replicate inside phagocytic immune cells, allowing for bacterial dissemination to systemic sites. Salmonella species cause a wide range of morbidity and mortality due to gastroenteritis and typhoid fever. Previously we have shown that in mouse models of typhoid fever, Salmonella infection causes a major perturbation in the prostaglandin pathway. Specifically, we saw that 15d-PGJ2 production was significantly increased in both liver and feces. In this work we show that 15d-PGJ2 production is also significantly increased in macrophages infected with Salmonella. Furthermore, we show that the addition of 15d-PGJ2 to Salmonella infected RAW264.7, J774, and bone marrow derived macrophages is sufficient to significantly reduce bacterial colonization. We also show evidence that 15d-PGJ2 is reducing bacterial uptake by macrophages. 15d-PGJ2 reduces the inflammatory response of these infected macrophages, as evidenced by a reduction in the production of cytokines and reactive nitrogen species. The inflammatory response of the macrophage is important for full Salmonella virulence, as it can give the bacteria cues for virulence. The reduction in bacterial colonization is independent of the expression of Salmonella virulence genes SPI1 and SPI2, and is independent of the 15d-PGJ2 ligand PPAR-γ. 15d-PGJ2 also causes an increase in ERK1/2 phosphorylation in infected macrophages. In conclusion, we show here that 15d-PGJ2 mediates the outcome of bacterial infection, a previously unidentified

  6. Identification of Leptospira serovars by RFLP of the RNA polymerase beta subunit gene (rpoB).

    Science.gov (United States)

    Jung, Lenice Roteia Cardoso; Bomfim, Maria Rosa Quaresma; Kroon, Erna Geessien; Nunes, Álvaro Cantini

    2015-06-01

    Leptospires are usually classified by methods based on DNA-DNA hybridization and the conventional cross-agglutination absorption test, which uses polyclonal antibodies against lipopolysaccharides. In this study, the amplification of the rpoB gene, which encodes the beta-subunit of RNA polymerase, was used as an alternative tool to identify Leptospira. DNA extracts from sixty-eight serovars were obtained, and the hypervariable region located between 1990 and 2500-bp in the rpoB gene was amplified by polymerase chain reaction (PCR). The 600-bp amplicons of the rpoB gene were digested with the restriction endonucleases TaqI, Tru1I, Sau3AI and MslI, and the restriction fragments were separated by 6% polyacrylamide gel electrophoresis. Thirty-five fragment patters were obtained from the combined data of restriction fragment length polymorphism (PCR-RFLP) analysis and used to infer the phylogenetic relationships among the Leptospira species and serovars. The species assignments obtained were in full agreement with the established taxonomic classifications. Twenty-two serovars were effectively identified based on differences in their molecular profiles. However, the other 46 serovars remained clustered in groups that included more than one serovar of different species. This study demonstrates the value of RFLP analysis of PCR-amplified rpoB as an initial method for identifying Leptospira species and serovars.

  7. Identification of Leptospira serovars by RFLP of the RNA polymerase beta subunit gene (rpoB

    Directory of Open Access Journals (Sweden)

    Lenice Roteia Cardoso Jung

    2015-06-01

    Full Text Available Leptospires are usually classified by methods based on DNA-DNA hybridization and the conventional cross-agglutination absorption test, which uses polyclonal antibodies against lipopolysaccharides. In this study, the amplification of the rpoB gene, which encodes the beta-subunit of RNA polymerase, was used as an alternative tool to identify Leptospira. DNA extracts from sixty-eight serovars were obtained, and the hypervariable region located between 1990 and 2500-bp in the rpoB gene was amplified by polymerase chain reaction (PCR. The 600-bp amplicons of the rpoB gene were digested with the restriction endonucleases TaqI, Tru1I, Sau3AI and MslI, and the restriction fragments were separated by 6% polyacrylamide gel electrophoresis. Thirty-five fragment patters were obtained from the combined data of restriction fragment length polymorphism (PCR-RFLP analysis and used to infer the phylogenetic relationships among the Leptospira species and serovars. The species assignments obtained were in full agreement with the established taxonomic classifications. Twenty-two serovars were effectively identified based on differences in their molecular profiles. However, the other 46 serovars remained clustered in groups that included more than one serovar of different species. This study demonstrates the value of RFLP analysis of PCR-amplified rpoB as an initial method for identifying Leptospira species and serovars.

  8. Development of a novel in-water vaccination protocol for DNA adenine methylase deficient Salmonella enterica serovar Typhimurium vaccine in adult sheep.

    Science.gov (United States)

    Mohler, V L; Heithoff, D M; Mahan, M J; Hornitzky, M A; Thomson, P C; House, J K

    2012-02-14

    Intensive livestock production is associated with an increased incidence of salmonellosis. The risk of infection and the subsequent public health concern is attributed to increased pathogen exposure and disease susceptibility due to multiple stressors experienced by livestock from farm to feedlot. Traditional parenteral vaccine methods can further stress susceptible populations and cause carcass damage, adverse reactions, and resultant increased production costs. As a potential means to address these issues, in-water delivery of live attenuated vaccines affords a low cost, low-stress method for immunization of livestock populations that is not associated with the adverse handling stressors and injection reactions associated with parenteral administration. We have previously established that in-water administration of a Salmonella enterica serovar Typhimurium dam vaccine conferred significant protection in livestock. While these experimental trials hold significant promise, the ultimate measure of the vaccine will not be established until it has undergone clinical testing in the field wherein environmental and sanitary conditions are variable. Here we show that in-water administration of a S. Typhimurium dam attenuated vaccine was safe, stable, and well-tolerated in adult sheep. The dam vaccine did not alter water consumption or vaccine dosing; remained viable under a wide range of temperatures (21-37°C); did not proliferate within fecal-contaminated trough water; and was associated with minimal fecal shedding and clinical disease as a consequence of vaccination. The capacity of Salmonella dam attenuated vaccines to be delivered in drinking water to protect livestock from virulent Salmonella challenge offers an effective, economical, stressor-free Salmonella prophylaxis for intensive livestock production systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Investigation of the role of genes encoding zinc exporters zntA, zitB, and fieF during Salmonella typhimurium infection

    DEFF Research Database (Denmark)

    Huang, Kaisong; Wang, Dan; Frederiksen, Rikki F.

    2018-01-01

    The transition metal zinc is involved in crucial biological processes in all living organisms and is essential for survival of Salmonella in the host. However, little is known about the role of genes encoding zinc efflux transporters during Salmonella infection. In this study, we constructed...... deletion mutants for genes encoding zinc exporters (zntA, zitB, and fieF) in the wild-type (WT) strain Salmonella enterica serovar Typhimurium (S. Typhimurium) 4/74. The mutants 4/74ΔzntA and 4/74ΔzntA/zitB exhibited a dramatic growth delay and abrogated growth ability, respectively, in Luria Bertani...... medium supplemented with 0.25 mM ZnCl2 or 1.5 mM CuSO4 compared to the WT strain. In order to investigate the role of genes encoding zinc exporters on survival of S. Typhimurium inside cells, amoeba and macrophage infection models were used. No significant differences in uptake or survival were detected...

  10. Internalisation potential of Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica subsp. enterica serovar Typhimurium and Staphylococcus aureus in lettuce seedlings and mature plants.

    Science.gov (United States)

    Standing, Taryn-Ann; du Plessis, Erika; Duvenage, Stacey; Korsten, Lise

    2013-06-01

    The internalisation potential of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7 and Salmonella enterica subsp. enterica serovar Typhimurium in lettuce was evaluated using seedlings grown in vermiculite in seedling trays as well as hydroponically grown lettuce. Sterile distilled water was spiked with one of the four human pathogenic bacteria (10(5) CFU/mL) and used to irrigate the plants. The potential for pathogen internalisation was investigated over time using light microscopy, transmission electron microscopy and viable plate counts. Additionally, the identities of the pathogens isolated from internal lettuce plant tissues were confirmed using polymerase chain reaction with pathogen-specific oligonucleotides. Internalisation of each of the human pathogens was evident in both lettuce seedlings and hydroponically grown mature lettuce plants. To our knowledge, this is the first report of S. aureus internalisation in lettuce plants. In addition, the levels of background microflora in the lettuce plants were determined by plate counting and the isolates identified using matrix-assisted laser ionisation-time of flight (MALDI-TOF). Background microflora assessments confirmed the absence of the four pathogens evaluated in this study. A low titre of previously described endophytes and soil inhabitants, i.e., Enterobacter cloacae, Enterococcus faecalis, Lysinibacillus fusiformis, Rhodococcus rhodochrous, Staphylococcus epidermidis and Staphylococcus hominis were identified.

  11. SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection.

    Science.gov (United States)

    Raghunathan, Dhaarini; Wells, Timothy J; Morris, Faye C; Shaw, Robert K; Bobat, Saeeda; Peters, Sarah E; Paterson, Gavin K; Jensen, Karina Tveen; Leyton, Denisse L; Blair, Jessica M A; Browning, Douglas F; Pravin, John; Flores-Langarica, Adriana; Hitchcock, Jessica R; Moraes, Claudia T P; Piazza, Roxane M F; Maskell, Duncan J; Webber, Mark A; May, Robin C; MacLennan, Calman A; Piddock, Laura J; Cunningham, Adam F; Henderson, Ian R

    2011-11-01

    Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella.

  12. SadA, a Trimeric Autotransporter from Salmonella enterica Serovar Typhimurium, Can Promote Biofilm Formation and Provides Limited Protection against Infection ▿ †

    Science.gov (United States)

    Raghunathan, Dhaarini; Wells, Timothy J.; Morris, Faye C.; Shaw, Robert K.; Bobat, Saeeda; Peters, Sarah E.; Paterson, Gavin K.; Jensen, Karina Tveen; Leyton, Denisse L.; Blair, Jessica M. A.; Browning, Douglas F.; Pravin, John; Flores-Langarica, Adriana; Hitchcock, Jessica R.; Moraes, Claudia T. P.; Piazza, Roxane M. F.; Maskell, Duncan J.; Webber, Mark A.; May, Robin C.; MacLennan, Calman A.; Piddock, Laura J.; Cunningham, Adam F.; Henderson, Ian R.

    2011-01-01

    Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella. PMID:21859856

  13. Effect of frequency and waveform on inactivation of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in salsa by ohmic heating.

    Science.gov (United States)

    Lee, Su-Yeon; Ryu, Sangryeol; Kang, Dong-Hyun

    2013-01-01

    The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.

  14. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce.

    Directory of Open Access Journals (Sweden)

    Joelle K Salazar

    Full Text Available Salmonella enterica is a frequent contaminant of minimally-processed fresh produce linked to major foodborne disease outbreaks. The molecular mechanisms underlying the association of this enteric pathogen with fresh produce remain largely unexplored. In our recent study, we showed that the expression of a putative stress regulatory gene, ycfR, was significantly induced in S. enterica upon exposure to chlorine treatment, a common industrial practice for washing and decontaminating fresh produce during minimal processing. Two additional genes, sirA involved in S. enterica biofilm formation and yigG of unknown function, were also found to be differentially regulated under chlorine stress. To further characterize the roles of ycfR, sirA, and yigG in S. enterica attachment and survival on fresh produce, we constructed in-frame deletions of all three genes in two different S. enterica serovars, Typhimurium and Saintpaul, which have been implicated in previous disease outbreaks linked to fresh produce. Bacterial attachment to glass and polystyrene microtiter plates, cell aggregation and hydrophobicity, chlorine resistance, and surface attachment to intact spinach leaf and grape tomato were compared among wild-type strains, single-gene deletion mutants, and their respective complementation mutants. The results showed that deletions of ycfR, sirA, and yigG reduced bacterial attachment to glass and polystyrene as well as fresh produce surface with or without chlorine treatment in both Typhimurium and Saintpaul. Deletion of ycfR in Typhimurium significantly reduced bacterial chlorine resistance and the attachment to the plant surfaces after chlorinated water washes. Deletions of ycfR in Typhimurium and yigG in Saintpaul resulted in significant increase in cell aggregation. Our findings suggest that ycfR, sirA, and yigG collectively contribute to S. enterica surface attachment and survival during post-harvest minimal processing of fresh produce.

  15. The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken.

    Directory of Open Access Journals (Sweden)

    David Pezoa

    Full Text Available The role of the Salmonella Pathogenicity Islands (SPIs in pathogenesis of Salmonella enterica Typhimurium infection in the chicken is poorly studied, while many studies have been completed in murine models. The Type VI Secretion System (T6SS is a recently described protein secretion system in Gram-negative bacteria. The genus Salmonella contains five phylogenetically distinct T6SS encoded in differentially distributed genomic islands. S. Typhimurium harbors a T6SS encoded in SPI-6 (T6SSSPI-6, which contributes to the ability of Salmonella to colonize mice. On the other hand, serotype Gallinarum harbors a T6SS encoded in SPI-19 (T6SSSPI-19 that is required for colonization of chicks. In this work, we investigated the role of T6SSSPI-6 in infection of chicks by S. Typhimurium. Oral infection of White Leghorn chicks showed that a ΔT6SSSPI-6 mutant had reduced colonization of the gut and internal organs, compared with the wild-type strain. Transfer of the intact T6SSSPI-6 gene cluster into the T6SS mutant restored bacterial colonization. In addition, our results showed that transfer of T6SSSPI-19 from S. Gallinarum to the ΔT6SSSPI-6 mutant of S. Typhimurium not only complemented the colonization defect but also resulted in a transient increase in the colonization of the cecum and ileum of chicks at days 1 and 3 post-infection. Our data indicates that T6SSSPI-6 contributes to chicken colonization and suggests that both T6SSSPI-6 and T6SSSPI-19 perform similar functions in vivo despite belonging to different phylogenetic families.

  16. Fine-tuning synthesis of Yersinia pestis LcrV from runaway-like replication balanced-lethal plasmid in a Salmonella enterica serovar typhimurium vaccine induces protection against a lethal Y. pestis challenge in mice.

    Science.gov (United States)

    Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M; Branger, Christine G; Tinge, Steven A; Curtiss, Roy

    2010-06-01

    A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal DeltaasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/P(cro)) (P(R)), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC P(BAD) c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of beta-lactamase, and cloned into pYA4534 under the control of the P(trc) promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain chi9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.

  17. Fine-Tuning Synthesis of Yersinia pestis LcrV from Runaway-Like Replication Balanced-Lethal Plasmid in a Salmonella enterica Serovar Typhimurium Vaccine Induces Protection against a Lethal Y. pestis Challenge in Mice▿

    Science.gov (United States)

    Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M.; Branger, Christine G.; Tinge, Steven A.; Curtiss, Roy

    2010-01-01

    A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal ΔasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain χ9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/Pcro) (PR), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC PBAD c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of β-lactamase, and cloned into pYA4534 under the control of the Ptrc promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain χ9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route. PMID:20308296

  18. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids From Whole Genome Sequences of Salmonella enterica Serovars From Humans in Ghana

    Directory of Open Access Journals (Sweden)

    Egle Kudirkiene

    2018-05-01

    Full Text Available In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either blaTEM52−B or blaCTX−M15 were present in two cephalosporin resistant isolates of S. Virchow and S. Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S. Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S. Typhimurium on plasmids of IncFII(S/IncFIB(S/IncQ1 type. In S. Virchow and in S. Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.

  19. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  20. Lack of specific hybridization between the lep genes of Salmonella typhimurium and Bacillus licheniformis

    NARCIS (Netherlands)

    van Dijl, J M; Jong, de Anne; Smith, H; Bron, Sierd; Venema, G

    1991-01-01

    This paper describes an attempt to clone the Bacillus licheniformis lep gene, encoding signal peptidase, using the Salmonella typhimurium lep gene as a hybridization probe. Although a hybridizing fragment was obtained, DNA sequence analysis indicated that it did not contain the lep gene. Instead,

  1. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.

    Science.gov (United States)

    Hannemann, Sebastian; Galán, Jorge E

    2017-07-01

    Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.

  2. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Hannemann

    2017-07-01

    Full Text Available Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.

  3. Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1

    DEFF Research Database (Denmark)

    Wallrodt, Inke; Jelsbak, Lotte; Thomsen, Line E.

    2014-01-01

    The phage-shock protein (Psp) system is believed to manage membrane stress in all Enterobacteriaceae and has recently emerged as being important for virulence in several pathogenic species of this phylum. The core of the Psp system consists of the pspA-D operon and the distantly located pspG gene......IV-induced secretin stress. In conclusion, our results demonstrate that removal of PspB reduces virulence in S. Typhimurium independently of host NRAMP1 expression, demonstrating that PspB has roles in intra-host survival distinct from the reported contributions of PspA....

  4. A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type III effector proteins

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Niemann, George; Baker, Erin Shammel; Belov, Mikhail E.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.; McDermott, Jason E.

    2010-11-08

    Many pathogenic Gram-negative bacteria use a type III secretion system (T3SS) to deliver effector proteins into the host cell where they reprogram host defenses and facilitate pathogenesis. While it has been determined that the first 20 - 30 N-terminal residues usually contain the ‘secretion signal’ that targets effector proteins for translocation, the molecular basis for recognition of this signal is not understood. Recent machine-learning approaches, such as SVM-based Identification and Evaluation of Virulence Effectors (SIEVE), have improved the ability to identify effector proteins from genomics sequence information. While these methods all suggest that the T3SS secretion signal has a characteristic amino acid composition bias, it is still unclear if the amino acid pattern is important and if there are any unifying structural properties that direct recognition. To address these issues a peptide corresponding to the secretion signal for Salmonella enterica serovar Typhimurium effector SseJ was synthesized (residues 1-30, SseJ) along with scrambled peptides of the same amino acid composition that produced high (SseJ-H) and low (SseJ-L) SIEVE scores. The secretion properties of these three peptides were tested using a secretion signal-CyaA fusion assay and their structures systematically probed using circular dichroism, nuclear magnetic resonance, and ion mobility spectrometry-mass spectrometry. The signal-CyaA fusion assay showed that the native and SseJ-H fusion constructs were secreted into J774 macrophage at similar levels via the SPI-2 secretion pathway while secretion of the SseJ-L fusion construct was substantially retarded, suggesting that the SseJ secretion signal was sequence order dependent. The structural studies showed that the SseJ, SseJ-H, and SseJ-L peptides were intrinsically disordered in aqueous solution with only a small predisposition to adopt nascent helical structure in the presence of the powerful structure stabilizing agent, 1

  5. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks.

    Science.gov (United States)

    Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon

    2017-09-01

    Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.

  6. Cloning and Sequencing of Gene Encoding Outer Membrane Lipoprotein LipL41 of Leptospira Interrogans Serovar Grippotyphosa

    Directory of Open Access Journals (Sweden)

    M.S. Soltani

    2014-12-01

    Full Text Available Background: Leptospirosis is an infectious bacterial disease caused by pathogenic serovars of Leptospira. Development of reliable and applicable diagnostic test and also recombinant vaccine for this disease require specific antigens that are highly conserved among diverse pathogenic leptospiral serovars. Outer membrane proteins(OMPs of leptospira are effective antigens which can stimulate remarkable immune responses during infection, among them LipL41 is an immunogenic lipoprotein which is present only in pathogenic serovars so it could be regarded as a good candidate for vaccine development and diagnostic method. In order to identify genetic conservation of the lipL41 gene, we cloned and sequenced this gen from Leptospira interrogans serovar vaccinal and field of Grippotyphosa. Materials and Methods: Leptospira interrogans serovar vaccinal Grippotyphosa (RTCC2808 and serovar field Grippotyphosa (RTCC2825were used to inoculate into the selective culture medium(EMJH. The genomic DNA was extracted by standard phenol-chloroform method. The lipL41 gene were amplified by specific primers and cloned into pTZ57R/T vector and transformed into the competent E. coli (Top10 cells. the extracted recombinant plasmid were sequenced. And the related sequences were subjected to homology analysis by comparing them to sequences in the Genbank database. Results: PCR amplification of the lipL41 gene resulted in the 1065 bp PCR product. DNA sequence analysis revealed that lipL41 gene between serovar vaccinal Grippotyphosa (RTCC2808and serovar field Grippotyphosa (RTCC2825 in Iran was 100%. It was also showed that the lipL41 gene had high identity (96%-100% with other pathogenic serovars submitted in Genbank database. Conclusion: The results of this study showed that the lipL41 gene was highly conserved among various pathogenic Leptospira serovars( >95.9 % identity. Hence the cloned gene could be further used for expression of recombinant protein for serodiagnosis

  7. Pediatric Epidemic of Salmonella enterica Serovar Typhimurium in the Area of L’Aquila, Italy, Four Years after a Catastrophic Earthquake

    Directory of Open Access Journals (Sweden)

    Giovanni Nigro

    2016-05-01

    Full Text Available Background: A Salmonella enterica epidemic occurred in children of the area of L’Aquila (Central Italy, Abruzzo region between June 2013 and October 2014, four years after the catastrophic earthquake of 6 April 2009. Methods: Clinical and laboratory data were collected from hospitalized and ambulatory children. Routine investigations for Salmonella infection were carried out on numerous alimentary matrices of animal origin and sampling sources for drinking water of the L’Aquila district, including pickup points of the two main aqueducts. Results: Salmonella infection occurred in 155 children (83 females: 53%, aged 1 to 15 years (mean 2.10. Of these, 44 children (28.4% were hospitalized because of severe dehydration, electrolyte abnormalities, and fever resistant to oral antipyretic and antibiotic drugs. Three children (1.9% were reinfected within four months after primary infection by the same Salmonella strain. Four children (2.6%, aged one to two years, were coinfected by rotavirus. A seven-year old child had a concomitant right hip joint arthritis. The isolated strains, as confirmed in about the half of cases or probable/possible in the remaining ones, were identified as S. enterica serovar Typhimurium [4,5:i:-], monophasic variant. Aterno river, bordering the L’Aquila district, was recognized as the main responsible source for the contamination of local crops and vegetables derived from polluted crops. Conclusions: The high rate of hospitalized children underlines the emergence of a highly pathogenic S. enterica strain probably subsequent to the contamination of the spring water sources after geological changes occurred during the catastrophic earthquake.

  8. Pediatric Epidemic of Salmonella enterica Serovar Typhimurium in the Area of L'Aquila, Italy, Four Years after a Catastrophic Earthquake.

    Science.gov (United States)

    Nigro, Giovanni; Bottone, Gabriella; Maiorani, Daniela; Trombatore, Fabiana; Falasca, Silvana; Bruno, Gianfranco

    2016-05-06

    A Salmonella enterica epidemic occurred in children of the area of L'Aquila (Central Italy, Abruzzo region) between June 2013 and October 2014, four years after the catastrophic earthquake of 6 April 2009. Clinical and laboratory data were collected from hospitalized and ambulatory children. Routine investigations for Salmonella infection were carried out on numerous alimentary matrices of animal origin and sampling sources for drinking water of the L'Aquila district, including pickup points of the two main aqueducts. Salmonella infection occurred in 155 children (83 females: 53%), aged 1 to 15 years (mean 2.10). Of these, 44 children (28.4%) were hospitalized because of severe dehydration, electrolyte abnormalities, and fever resistant to oral antipyretic and antibiotic drugs. Three children (1.9%) were reinfected within four months after primary infection by the same Salmonella strain. Four children (2.6%), aged one to two years, were coinfected by rotavirus. A seven-year old child had a concomitant right hip joint arthritis. The isolated strains, as confirmed in about the half of cases or probable/possible in the remaining ones, were identified as S. enterica serovar Typhimurium [4,5:i:-], monophasic variant. Aterno river, bordering the L'Aquila district, was recognized as the main responsible source for the contamination of local crops and vegetables derived from polluted crops. The high rate of hospitalized children underlines the emergence of a highly pathogenic S. enterica strain probably subsequent to the contamination of the spring water sources after geological changes occurred during the catastrophic earthquake.

  9. Modification of Enrofloxacin Treatment Regimens for Poultry Experimentally Infected with Salmonella enterica Serovar Typhimurium DT104 To Minimize Selection of Resistance▿

    Science.gov (United States)

    Randall, Luke P.; Cooles, Sue W.; Coldham, Nick C.; Stapleton, Ken S.; Piddock, Laura J. V.; Woodward, Martin J.

    2006-01-01

    We hypothesized that higher doses of fluoroquinolones for a shorter duration could maintain efficacy (as measured by reduction in bacterial count) while reducing selection in chickens of bacteria with reduced susceptibility. Chicks were infected with Salmonella enterica serovar Typhimurium DT104 and treated 1 week later with enrofloxacin at the recommended dose for 5 days (water dose adjusted to give 10 mg/kg of body weight of birds or equivalence, i.e., water at 50 ppm) or at 2.5 or 5 times the recommended dose for 2 days or 1 day, respectively. The dose was delivered continuously (ppm) or pulsed in the water (mg/kg) or by gavage (mg/kg). In vitro in sera, increasing concentrations of 0.5 to 8 μg/ml enrofloxacin correlated with increased activity. In vivo, the efficacy of the 1-day treatment was significantly less than that of the 2- and 5-day treatments. The 2-day treatments showed efficacy similar to that of the 5-day treatment in all but one repeat treatment group and significantly (P < 0.01) reduced the Salmonella counts. Dosing at 2.5× the recommended dose and pulsed dosing both increased the peak antibiotic concentrations in cecal contents, liver, lung, and sera as determined by high-pressure liquid chromatography. There was limited evidence that shorter treatment regimens (in particular the 1-day regimen) selected for fewer strains with reduced susceptibility. In conclusion, the 2-day treatment would overall require a shorter withholding time than the 5-day treatment and, in view of the increased peak antibiotic concentrations, may give rise to improved efficacy, in particular for treating respiratory and systemic infections. However, it would be necessary to validate the 2-day regimen in a field situation and in particular against respiratory and systemic infections to validate or refute this hypothesis. PMID:17030564

  10. Immunogenicity of Recombinant Proteins Consisting of Plasmodium vivax Circumsporozoite Protein Allelic Variant-Derived Epitopes Fused with Salmonella enterica Serovar Typhimurium Flagellin

    Science.gov (United States)

    Leal, Monica Teixeira Andrade; Camacho, Ariane Guglielmi Ariza; Teixeira, Laís Helena; Bargieri, Daniel Youssef; Soares, Irene Silva; Tararam, Cibele Aparecida

    2013-01-01

    A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax. PMID:23863502

  11. Pronounced susceptibility to infection by Salmonella enterica serovar Typhimurium in mice chronically exposed to lead correlates with a shift to Th2-type immune responses

    International Nuclear Information System (INIS)

    Fernandez-Cabezudo, Maria J.; Ali, Sumaya A.E.; Ullah, Azim; Hasan, Mohammed Y.; Kosanovic, Melita; Fahim, Mohamed A.; Adem, Abdu; Al-Ramadi, Basel K.

    2007-01-01

    Persistent exposure to inorganic lead (Pb) is known to adversely affect the immune system. In the present study, we assessed the effect of chronic Pb exposure on susceptibility to infection by the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. Mice were exposed to 10 mM Pb-acetate in drinking water for ∼ 16 weeks, resulting in a significant level of Pb in the blood (106.2 ± 8.9 μg/dl). Pb exposure rendered mice susceptible to Salmonella infection, manifested by increased bacterial burden in target organs and heightened mortality. Flow cytometric analysis of the splenic cellular composition in normal and Pb-exposed mice revealed no gross alteration in the ratios of B and T lymphocytes or myeloid cells. Similarly, the capacity of B and T cells to upregulate the expression of activation antigens in response to mitogenic or inflammatory stimuli was not hindered by Pb exposure. Analysis of the ability of ex vivo-cultured splenocytes to secrete cytokines demonstrated a marked reduction in IFN-γ and IL-12p40 production associated with Pb exposure. In contrast, secretion of IL-4 by splenocytes of Pb-treated mice was 3- to 3.6-fold higher than in normal mice. The increased capacity to produce IL-4 correlated with a shift in the in vivo anti-Salmonella antibody response from the protective IgG2a isotype to the Th2-induced IgG1 isotype. We conclude that chronic exposure to high levels of Pb results in a state of immunodeficiency which is not due to an overt cytotoxic or immunosuppressive mechanism, but rather is largely caused by a shift in immune responsiveness to Th2-type reactions

  12. Protective effect of Lactobacillus casei strain Shirota against lethal infection with multi-drug resistant Salmonella enterica serovar Typhimurium DT104 in mice.

    Science.gov (United States)

    Asahara, T; Shimizu, K; Takada, T; Kado, S; Yuki, N; Morotomi, M; Tanaka, R; Nomoto, K

    2011-01-01

    The anti-infectious activity of lactobacilli against multi-drug resistant Salmonella enterica serovar Typhimurium DT104 (DT104) was examined in a murine model of an opportunistic antibiotic-induced infection. Explosive intestinal growth and subsequent lethal extra-intestinal translocation after oral infection with DT104 during fosfomycin (FOM) administration was significantly inhibited by continuous oral administration of Lactobacillus casei strain Shirota (LcS), which is naturally resistant to FOM, at a dose of 10(8) colony-forming units per mouse daily to mice. Comparison of the anti-Salmonella activity of several Lactobacillus type strains with natural resistance to FOM revealed that Lactobacillus brevis ATCC 14869(T) , Lactobacillus plantarum ATCC 14917(T) , Lactobacillus reuteri JCM 1112(T) , Lactobacillus rhamnosus ATCC 7469(T) and Lactobacillus salivarius ATCC 11741(T) conferred no activity even when they obtained the high population levels almost similar to those of the effective strains such as LcS, Lact. casei ATCC 334(T) and Lactobacillus zeae ATCC 15820(T) . The increase in concentration of organic acids and maintenance of the lower pH in the intestine because of Lactobacillus colonization were correlated with the anti-infectious activity. Moreover, heat-killed LcS was not protective against the infection, suggesting that the metabolic activity of lactobacilli is important for the anti-infectious activity. These results suggest that certain lactobacilli in combination with antibiotics may be useful for prophylaxis against opportunistic intestinal infections by multi-drug resistant pathogens, such as DT104. Antibiotics such as FOM disrupt the metabolic activity of the intestinal microbiota that produce organic acids, and that only probiotic strains that are metabolically active in vivo should be selected to prevent intestinal infection when used clinically in combination with certain antibiotics. © 2010 The Authors. Journal of Applied Microbiology

  13. Position on mouse chromosome 1 of a gene that controls resistance to Salmonella typhimurium.

    Science.gov (United States)

    Taylor, B A; O'Brien, A D

    1982-06-01

    Ity is a gene which regulates the magnitude of Salmonella typhimurium growth in murine tissues and, hence, the innate salmonella resistance of mice. The results of a five-point backcross clearly showed that the correct gene order on chromosome 1 is fz-Idh-1-Ity-ln-Pep-3.

  14. Molecular identification of the ompL1 gene within Leptospira interrogans standard serovars.

    Science.gov (United States)

    Dezhbord, Mehrangiz; Esmaelizad, Majid; Khaki, Pejvak; Fotohi, Fariba; Zarehparvar Moghaddam, Athena

    2014-06-11

    Leptospirosis, caused by infection with pathogenic Leptospira species, is one of the most prevalent zoonotic diseases in the world. Current leptospiral vaccines are mainly multivalent dead whole-cell mixtures made of several local dominant serovars. Therefore, design and construction of an efficient recombinant vaccine for leptospirosis control is very important. OmpL1 is an immunogenic porin protein that could be of special significance in vaccination and serodiagnosis for leptospirosis. Three strains belonging to pathogenic L. interrogans were analyzed. The specific primers for proliferation of the ompL1 gene were designed. The amplified gene was cloned. In order to investigate the ompL1 nucleotide sequence and homological analysis of this gene, ompL1 genes cloned from standard vaccinal Leptospira serovars prevalent in Iran were sequenced and cloned. PCR amplification of the ompL1 gene using the designed primers resulted in a 963 bp ompL1 gene product. The PCR based on the ompL1 gene detected all pathogenic reference serovars of Leptospira spp. tested. Based on alignment and phylogenetic analysis, although the ompL1 nucleotide sequence was slightly different within three vaccinal serovars (100%-85% identity), amino acid alignment of the OmpL1 proteins revealed that there would be inconsiderable difference among them. The ompL1 gene of the three isolates was well conserved, differing only by a total of 6 bp and the proteins by 2 amino acids. The cloned gene could be further used for expression and recombinant OmpL1 as an efficient and conserved antigen, and may be a useful vaccine candidate against leptospirosis in our region.

  15. Improving resolution of public health surveillance for human Salmonella enterica serovar Typhimurium infection: 3 years of prospective multiple-locus variable-number tandem-repeat analysis (MLVA

    Directory of Open Access Journals (Sweden)

    Sintchenko Vitali

    2012-03-01

    Full Text Available Abstract Background Prospective typing of Salmonella enterica serovar Typhimurium (STM by multiple-locus variable-number tandem-repeat analysis (MLVA can assist in identifying clusters of STM cases that might otherwise have gone unrecognised, as well as sources of sporadic and outbreak cases. This paper describes the dynamics of human STM infection in a prospective study of STM MLVA typing for public health surveillance. Methods During a three-year period between August 2007 and September 2010 all confirmed STM isolates were fingerprinted using MLVA as part of the New South Wales (NSW state public health surveillance program. Results A total of 4,920 STM isolates were typed and a subset of 4,377 human isolates was included in the analysis. The STM spectrum was dominated by a small number of phage types, including DT170 (44.6% of all isolates, DT135 (13.9%, DT9 (10.8%, DT44 (4.5% and DT126 (4.5%. There was a difference in the discriminatory power of MLVA types within endemic phage types: Simpson's index of diversity ranged from 0.109 and 0.113 for DTs 9 and 135 to 0.172 and 0.269 for DTs 170 and 44, respectively. 66 distinct STM clusters were observed ranging in size from 5 to 180 cases and in duration from 4 weeks to 25 weeks. 43 clusters had novel MLVA types and 23 represented recurrences of previously recorded MLVA types. The diversity of the STM population remained relatively constant over time. The gradual increase in the number of STM cases during the study was not related to significant changes in the number of clusters or their size. 667 different MLVA types or patterns were observed. Conclusions Prospective MLVA typing of STM allows the detection of community outbreaks and demonstrates the sustained level of STM diversity that accompanies the increasing incidence of human STM infections. The monitoring of novel and persistent MLVA types offers a new benchmark for STM surveillance. A part of this study was presented at the MEEGID

  16. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Tamding Wangdi

    2014-08-01

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a and C5a receptor (C5aR. Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.

  17. Evidence of metabolic switching and implications for food safety from the phenome(s) of Salmonella enterica serovar Typhimurium DT104 cultured at selected points across the pork production food chain.

    Science.gov (United States)

    Martins, Marta; McCusker, Matthew P; McCabe, Evonne M; O'Leary, Denis; Duffy, Geraldine; Fanning, Séamus

    2013-09-01

    Salmonella enterica serovar Typhimurium DT104 is a recognized food-borne pathogen that displays a multidrug-resistant phenotype and that is associated with systemic infections. At one extreme of the food chain, this bacterium can infect humans, limiting the treatment options available and thereby contributing to increased morbidity and mortality. Although the antibiotic resistance profile is well defined, little is known about other phenotypes that may be expressed by this pathogen at key points across the pork production food chain. In this study, 172 Salmonella enterica serovar Typhimurium DT104/DT104b isolated from an extensive "farm-to-fork" surveillance study, focusing on the pork food chain, were characterized in detail. Isolates were cultured from environmental, processing, retail, and clinical sources, and the study focused on phenotypes that may have contributed to persistence/survival in these different niches. Molecular subtypes, along with antibiotic resistance profiles, tolerance to biocides, motility, and biofilm formation, were determined. As a basis for human infection, acid survival and the ability to utilize a range of energy sources and to adhere to and/or invade Caco-2 cells were also studied. Comparative alterations to biocide tolerance were observed in isolates from retail. l-Tartaric acid and d-mannose-1-phosphate induced the formation of biofilms in a preselected subset of strains, independent of their origin. All clinical isolates were motile and demonstrated an enhanced ability to survive in acidic conditions. Our data report on a diverse phenotype, expressed by S. Typhimurium isolates cultured from the pork production food chain. Extending our understanding of the means by which this pathogen adapts to environmental niches along the "farm-to-fork" continuum will facilitate the protection of vulnerable consumers through targeted improvements in food safety measures.

  18. Camel as a transboundary vector for emerging exotic Salmonella serovars.

    Science.gov (United States)

    Ghoneim, Nahed H; Abdel-Moein, Khaled A; Zaher, Hala

    2017-05-01

    The current study was conducted to shed light on the role of imported camels as a transboundary vector for emerging exotic Salmonella serovars. Fecal samples were collected from 206 camels directly after slaughtering including 25 local camels and 181 imported ones as well as stool specimens were obtained from 50 slaughterhouse workers at the same abattoir. The obtained samples were cultured while Salmonella serovars were identified through Gram's stain films, biochemical tests and serotyping with antisera kit. Moreover, the obtained Salmonella serovars were examined by PCR for the presence of invA and stn genes. The overall prevalence of Salmonella serovars among the examined camels was 8.3%. Stn gene was detected in the vast majority of exotic strains (11/14) 78.6% including emerging serovars such as Salmonella Saintpaul, S. Chester, S. Typhimurium whereas only one isolate from local camels carried stn gene (1/3) 33.3%. On the other hand, none of the examined humans yielded positive result. Our findings highlight the potential role of imported camels as a transboundary vector for exotic emerging Salomenella serovars.

  19. Identification of CsrC and Characterization of Its Role in Epithelial Cell Invasion in Salmonella enterica Serovar Typhimurium

    OpenAIRE

    Fortune, Doreen R.; Suyemoto, Mitsu; Altier, Craig

    2006-01-01

    The csr regulatory system of Salmonella regulates the expression of the genes of Salmonella pathogenicity island 1 (SPI1) required for the invasion of epithelial cells. This system consists of the posttranscriptional regulator CsrA and an untranslated regulatory RNA, CsrB, that opposes the action of CsrA. Here we identify and characterize the role of a second regulatory RNA, CsrC, whose ortholog was discovered previously in Escherichia coli. We show that a mutant of csrC has only mild defects...

  20. Effects of bacterial dose and fly sex on persistence and excretion of Salmonella enterica serovar Typhimurium from adult house flies (Diptera: Muscidae)

    Science.gov (United States)

    Salmonella Typhimurium is a pathogen that causes gastroenteritis in humans and can be harbored by house flies. Factors influencing excretion of S. Typhimurium from infected flies have not been elucidated, but are essential for assessing transmission potential. We determined the persistence and excre...

  1. Leptospira interrogans serovar copenhageni harbors two lexA genes involved in SOS response.

    Directory of Open Access Journals (Sweden)

    Luciane S Fonseca

    Full Text Available Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2 one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.

  2. Effect of dietary addition of nitrate on growth, salivary and gastric function, immune response, and excretion of Salmonella enterica serovar Typhimurium, in weaning pigs challenged with this microbe strain

    Directory of Open Access Journals (Sweden)

    M. Mazzoni

    2010-04-01

    Full Text Available Two dietary additions of nitrate (15 mg/kg or 150 mg/kg, supplied by potassium salt were tested in a total 96 weaning pigs challenged or not with Salmonella enterica serovar typhimurium (ST. The oral challenge was done on d 5 and pigs were sacrificed on d 7 or d 25. The effect of challenge never interacted significantly with the dietary treatment. Feed intake, growth, body temperature, salivary excretion, and faecal excretion of ST and gastric function were not affected by the nitrate supplementation. With nitrate additions, total IgA in blood serum tended to be higher before and after the challenge (P<0.10. Nitrite in saliva – but not nitrate – increased with the increasing supplementation at d 5, but not at d 19. The nitrate additions did not negatively affect the weaning performance, but also did not contrast the effect of ST infection.

  3. Primary structure and mapping of the hupA gene of Salmonella typhimurium.

    Science.gov (United States)

    Higgins, N P; Hillyard, D

    1988-01-01

    In bacteria, the complex nucleoid structure is folded and maintained by negative superhelical tension and a set of type II DNA-binding proteins, also called histonelike proteins. The most abundant type II DNA-binding protein is HU. Southern blot analysis showed that Salmonella typhimurium contained two HU genes that corresponded to Escherichia coli genes hupA (encoding HU-2 protein) and hupB (encoding HU-1). Salmonella hupA was cloned, and the nucleotide sequence of the gene was determined. Comparison of hupA of E. coli and S. typhimurium revealed that the HU-2 proteins were identical and that there was high conservation of nucleotide sequences outside the coding frames of the genes. A 300-member genomic library of S. typhimurium was constructed by using random transposition of MudP, a specialized chimeric P22-Mu phage that packages chromosomal DNA unidirectionally from its insertion point. Oligonucleotide hybridization against the library identified one MudP insertion that lies within 28 kilobases of hupA; the MudP was 12% linked to purH at 90.5 min on the standard map. Plasmids expressing HU-2 had a surprising phenotype; they caused growth arrest when they were introduced into E. coli strains bearing a himA or hip mutation. These results suggest that IHF and HU have interactive roles in bacteria. Images PMID:3056912

  4. Primary structure and mapping of the hupA gene of Salmonella typhimurium.

    OpenAIRE

    Higgins, N P; Hillyard, D

    1988-01-01

    In bacteria, the complex nucleoid structure is folded and maintained by negative superhelical tension and a set of type II DNA-binding proteins, also called histonelike proteins. The most abundant type II DNA-binding protein is HU. Southern blot analysis showed that Salmonella typhimurium contained two HU genes that corresponded to Escherichia coli genes hupA (encoding HU-2 protein) and hupB (encoding HU-1). Salmonella hupA was cloned, and the nucleotide sequence of the gene was determined. C...

  5. A low-pH medium in vitro or the environment within a macrophage decreases the transcriptional levels of fimA, fimZ and lrp in Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Wang, Ke-Chuan; Hsu, Yuan-Hsun; Huang, Yi-Ning; Chen, Ter-Hsin; Lin, Jiunn-Horng; Hsuan, Shih-Ling; Chien, Maw-Sheng; Lee, Wei-Cheng; Yeh, Kuang-Sheng

    2013-09-01

    Many Salmonella Typhimurium isolates produce type 1 fimbriae and exhibit fimbrial phase variation in vitro. Static broth culture favours the production of fimbriae, while solid agar medium inhibits the generation of these appendages. Little information is available regarding whether S. Typhimurium continues to produce type 1 fimbriae during in vivo growth. We used a type 1 fimbrial phase-variable strain S. Typhimurium LB5010 and its derivatives to infect RAW 264.7 macrophages. Following entry into macrophages, S. Typhimurium LB5010 gradually decreased the transcript levels of fimbrial subunit gene fimA, positive regulatory gene fimZ, and global regulatory gene lrp. A similar decrease in transcript levels was detected by RT-PCRwhen the pH of static brothmediumwas shifted frompH 7 to amore acidic pH 4. A fimA-deleted strain continued to multiply within macrophages as did the parental strain. An lrp deletion strain was unimpaired for in vitro growth at pH 7 or pH 4, while a strain harboring an lrp-containing plasmid exhibited impaired in vitro growth at pH 4. We propose that acidic medium, which resembles one aspect of the intracellular environment in a macrophage, inhibits type 1 fimbrial production by down-regulation of the expression of lrp, fimZ and fimA.

  6. Two alanine racemase genes in Salmonella typhimurium that differ in structure and function.

    OpenAIRE

    Wasserman, S A; Walsh, C T; Botstein, D

    1983-01-01

    Mutations were isolated in a previously undescribed Salmonella typhimurium gene encoding an alanine racemase essential for utilization of L-alanine as a source of carbon, energy, and nitrogen. This new locus, designated dadB, lies within one kilobase of the D-alanine dehydrogenase locus (dadA), which is also required for alanine catabolism. The dadA and dadB genes are coregulated. Mutants (including insertions) lacking the dadB alanine racemase do not require D-alanine for growth unless a mut...

  7. Plasmid fingerprinting and virulence gene detection among indigenous strains of salmonella enterica serovar enteritidis

    International Nuclear Information System (INIS)

    Sajid, S.U.; Schwarz, S.

    2009-01-01

    Salmonella enterica serovar Enteritidis is an important frequently reported zoonotic pathogen and a common cause of human gastroenteritis worldwide. The highly conserved Serospecific plasmids (SSPs) and Salmonella plasmid virulence (Spv) genes have been shown to mediate extra-intestinal colonization and systemic infection. The objective of current study was to document the presence of SSPs and SpvB/SpvC genes prevailing in the indigenous population of serovar Enteritidis. A total of 48 epidemiologically unrelated strains of Salmonella enteritidis were included in the study. Preparation of plasmids DNA suitable for endonuclease digestion and separation of respective fragments by agarose gel electrophoresis followed previously described protocols. The plasmids of Escherichia coli V517, 1-kbp ladder, and lambda DNA HindIII fragments served as DNA size standards. Transfer of DNA fragments from agarose gels to nitrocellulose membranes was achieved by capillary blot procedure. An ECL labeled 3.6 kbp HindIII fragment of plasmid PRQ 51 was used as probe for SpvB/SpvC gene detection. Plasmid DNA fingerprinting revealed the presence of two different profiles of approximately 55 kbp and 90 kbp and were identified as virulence plasmids by DNA hybridization. The SpvB/SpvC genes were located on HindIII fragments of 3.6 kbp in each of the two types of virulence plasmids. The study confirms the presence of SSPs and SpvB/SpvC genes in indigenous strains of S. enteritidis isolated from Northern Punjab area of Pakistan and substantiate the previous data on such findings from other parts of the world. (author)

  8. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1998-01-01

    electrophoresis (PFGE) using the restriction enzyme Xba I, Overall, 66 per cent of the 670 isolates were sensitive to all the antimicrobial agents tested. Eleven isolates of S typhimurium were resistant to ampicillin, streptomycin and tetracycline and also resistant to other antibiotics in different resistance...... patterns. Seven different multiresistant clones were identified, The most common clones were four isolates of DT104 and three isolates of DT193, TWO Of the three S typhimurium DT104 from 1994 and 1995 were sensitive to all the antimicrobials tested whereas the remaining isolate from 1994 was resistant......A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S...

  9. Tackling the issue of environmental survival of live Salmonella Typhimurium vaccines: deletion of the lon gene.

    Science.gov (United States)

    Leyman, Bregje; Boyen, Filip; Van Parys, Alexander; Verbrugghe, Elin; Haesebrouck, Freddy; Pasmans, Frank

    2012-12-01

    Vaccination is an important measure to control Salmonella contamination in the meat production chain. A previous study showed that both the ΔrfaJ and ΔrfaL strains are suitable markers and allow serological differentiation of infected and vaccinated animals. The aim of this study was to verify whether deletion of the lon gene in a Salmonella Typhimurium ΔrfaJ marker strain resulted in decreased environmental survival. Our results indicate that deletion of the lon gene in the ΔrfaJ strain did not affect invasiveness in IPEC-J2 cells and resulted in an increased susceptibility to UV, disinfectants (such as hydrogen peroxide and tosylchloramide sodium) and citric acid. Immunization of pigs with inactivated ΔrfaJ or ΔlonΔrfaJ vaccines allowed differentiation of infected and vaccinated pigs. Furthermore, deletion of the lon gene did not reduce the protection conferred by live wild type or ΔrfaJ vaccines against subsequent challenge with a virulent Salmonella Typhimurium strain in BALB/c mice. Based on our results in mice, we conclude that deletion of lon in ΔrfaJ contributes to environmental safety of the ΔrfaJ DIVA strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Influence of moisture content on inactivation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating.

    Science.gov (United States)

    Jeong, Seul-Gi; Kang, Dong-Hyun

    2014-04-17

    The influence of moisture content during radio-frequency (RF) heating on heating rate, dielectric properties, and inactivation of foodborne pathogens was investigated. The effect of RF heating on the quality of powdered red and black pepper spices with different moisture ranges was also investigated. Red pepper (12.6%, 15.2%, 19.1%, and 23.3% dry basis, db) and black pepper (10.1%, 17.2%, 23.7%, and 30.5% db) inoculated with Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium were treated in a RF heating system with 27.12 MHz. The heating rate of the sample was dependent on moisture content up to 19.1% (db) of red pepper and 17.2% (db) of black pepper, but there was a significant decrease in the heating rate when the moisture content was increased beyond these levels. The dielectric properties of both samples increased with a rise in moisture content. As the moisture content increased, treatment time required to reduce E. coli O157:H7 and S. Typhimurium by more than 7 log CFU/g (below the detection limit, 1 log CFU/g) decreased and then increased again without affecting product quality when the moisture content exceeded a level corresponding to the peak heating rate. RF treatment significantly (Pspices. These results suggest that RF heating can be effectively used to not only control pathogens but also reduce moisture levels in spices and that the effect of inactivation is dependent on moisture content. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi gene and characterization of its protein

    Directory of Open Access Journals (Sweden)

    Wan-Fang Zhong

    2005-12-01

    Full Text Available Chitinase plays a positive role in the pathogenicity of Bacillus thuringiensis to insect pests. We used touchdown PCR to clone the chitinase (Schi gene from Bacillus thuringiensis serovar sotto (Bt sotto chromosomal DNA. Our DNA sequencing analysis revealed that the Bt sotto Schi gene consists of an open reading frame (ORF of 2067 nucleotides with codes for the chitinase precursor. We also found that the putative promoter consensus sequences (the -35 and -10 regions of the Bt soto Schi gene are identical to those of the chiA71 gene from Bt Pakistani, the chiA74 gene from Bt kenyae and the ichi gene from Bt israelensis. The Schi chitinase precursor is 688 amino acids long with an estimated molecular mass of 75.75 kDa and a theoretical isoelectric point of 5.74, and contains four domains, which are, in sequence, a signal peptide, an N-terminal catalytic domain, a fibronectin type III like domain and a C-terminal chitin-binding domain. Sequence comparison and the evolutionary relationship of the Bt sotto Schi chitinase to other chitinase and chitinase-like proteins are also discussed.

  12. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    Science.gov (United States)

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-03

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104

    DEFF Research Database (Denmark)

    Sandvang, Dorthe; Aarestrup, Frank Møller; Jensen, Lars Bogø

    1997-01-01

    The presence and genetic content of integrons was investigated in eight Salmonella enterica Typhimurium DT104 isolates from different pig herds in Denmark. Two different integrons were identified using PCR and sequencing. Each of the integrons carried a single resistance cassette in addition...... to the sul1 and qacE Delta 1 genes characteristic of integrons. The first integron encoded the ant (3 ")-Ia gene that specified resistance to spectinomycin and streptomycin. The second contained the pse-l beta-lactamase gene. All the multiresistant strains contained both integrons. The presence of these two...... integrons did not account for the total phenotypic resistance of all the isolates and does not exclude the presence of other mobile DNA elements....

  14. Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104

    DEFF Research Database (Denmark)

    Sandvang, Dorthe; Aarestrup, Frank Møller; Jensen, Lars Bogø

    1998-01-01

    The presence and genetic content of integrons was investigated in eight Salmonella enteritica Typhimurium DT104 isolates from different pig herds in Denmark. Two different integrons were identified using PCR and sequencing. Each of the integrons carried a single resistance cassette in addition...... to the sul1 and qacE Delta 1 genes characteristic of integrons. The first integron encoded the ant (3")-Ia gene that specified resistance to spectinomycin and streptomycin. The second contained the pse-1 beta-lactamase gene. All the multiresistant strains contained both integrons. The presence of these two...... integrons did not account for the total phenotypic resistance of all the isolates and does not exclude the presence of other mobile DNA elements....

  15. Inactivation kinetics of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes in ready-to-eat sliced ham by near-infrared heating at different radiation intensities.

    Science.gov (United States)

    Ha, Jae-Won; Kang, Dong-Hyun

    2014-07-01

    The aim of this study was to investigate the inactivation kinetics of Salmonella enterica serovar Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes on ready-to-eat sliced ham by near-infrared (NIR) heating as a function of the processing parameter, radiation intensity. Precooked ham slices inoculated with the three pathogens were treated at different NIR intensities (ca. 100, 150, and 200 μW/cm(2)/nm). An increase in the applied radiation intensity resulted in a gradual increase of inactivation of all pathogens. The survival curves of the three pathogens exhibited both shoulder and tailing behavior at all light intensities. Among nonlinear models, the Weibull distribution and log-logistic model were used to describe the experimental data, and the statistical results (mean square error and R(2) values) indicated the suitability of the model for prediction. The log-logistic model more accurately described survival curves of the three pathogens than did the Weibull distribution at all radiation intensities. The output of this study and the proposed kinetics model would be beneficial to the deli meat industry for selecting the optimum processing conditions of NIR heating to meet the target pathogen inactivation on ready-to-eat sliced ham.

  16. Modified intracellular-associated phenotypes in a recombinant Salmonella Typhi expressing S. Typhimurium SPI-3 sequences.

    Directory of Open Access Journals (Sweden)

    Patricio Retamal

    Full Text Available A bioinformatics comparison of Salmonella Pathogenicity Island 3 sequences from S. Typhi and S. Typhimurium serovars showed that ten genes are highly conserved. However three of them are pseudogenes in S. Typhi. Our aim was to understand what functions are lost in S. Typhi due to pseudogenes by constructing a S. Typhi genetic hybrid carrying the SPI-3 region of S. Typhimurium instead of its own SPI-3. We observed that under stressful conditions the hybrid strain showed a clear impairment in resistance to hydrogen peroxide and decreased survival within U937 culture monocytes. We hypothesized that the marT-fidL operon, encoded in SPI-3, was responsible for the new phenotypes because marT is a pseudogen in S. Typhi and has a demonstrated role as a transcriptional regulator in S. Typhimurium. Therefore we cloned and transferred the S. Typhimurium marT-fidL operon into S. Typhi and confirmed that invasion of monocytes was dramatically decreased. Finally, our findings suggest that the genomic and functional differences between SPI-3 sequences have implications in the host specificity of Typhi and Typhimurium serovars.

  17. Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene

    NARCIS (Netherlands)

    Pesce, A; Battistoni, A; Stroppolo, ME; Polizio, F; Nardini, M; Kroll, JS; Langford, PR; O'Neill, P; Sette, M; Desideri, A; Bolognesi, M

    2000-01-01

    The functional and three-dimensional structural features of Cu,Zn superoxide dismutase coded by the Salmonella typhimurium sodCI gene, have been characterized. Measurements of the catalytic rate indicate that this enzyme is the most efficient superoxide dismutase analyzed so far, a feature that may

  18. Dam methylation participates in the regulation of PmrA/PmrB and RcsC/RcsD/RcsB two component regulatory systems in Salmonella enterica serovar Enteritidis.

    Directory of Open Access Journals (Sweden)

    Sebastián Hernán Sarnacki

    Full Text Available The absence of Dam in Salmonella enterica serovar Enteritidis causes a defect in lipopolysaccharide (LPS pattern associated to a reduced expression of wzz gene. Wzz is the chain length regulator of the LPS O-antigen. Here we investigated whether Dam regulates wzz gene expression through its two known regulators, PmrA and RcsB. Thus, the expression of rcsB and pmrA was monitored by quantitative real-time RT-PCR and Western blotting using fusions with 3×FLAG tag in wild type (wt and dam strains of S. Enteritidis. Dam regulated the expression of both rcsB and pmrA genes; nevertheless, the defect in LPS pattern was only related to a diminished expression of RcsB. Interestingly, regulation of wzz in serovar Enteritidis differed from that reported earlier for serovar Typhimurium; RcsB induces wzz expression in both serovars, whereas PmrA induces wzz in S. Typhimurium but represses it in serovar Enteritidis. Moreover, we found that in S. Enteritidis there is an interaction between both wzz regulators: RcsB stimulates the expression of pmrA and PmrA represses the expression of rcsB. Our results would be an example of differential regulation of orthologous genes expression, providing differences in phenotypic traits between closely related bacterial serovars.

  19. Salmonella Typhimurium and multidirectional communication in the gut

    Directory of Open Access Journals (Sweden)

    Elena V. Gart

    2016-11-01

    Full Text Available The mammalian digestive tract is home to trillions of microbes, including bacteria, archaea, protozoa, fungi and viruses. In monogastric mammals the stomach and small intestine harbor diverse bacterial populations but are typically less populated than the colon. The gut bacterial community (microbiota hereafter varies widely among different host species and individuals within a species. It is influenced by season of the year, age of the host, stress and disease. Ideally, the host and microbiota benefit each other. The host provides nutrients to the microbiota and the microbiota assists the host with digestion and nutrient metabolism. The resident microbiota competes with pathogens for space and nutrients and, through this competition, protects the host in a phenomenon called colonization resistance. The microbiota participates in development of the host immune system, particularly regulation of autoimmunity and mucosal immune response. The microbiota also shapes gut-brain communication and host responses to stress; and, indeed, the microbiota is a newly recognized endocrine organ within mammalian hosts.Salmonella enterica serovar Typhimurium (S. Typhimurium hereafter is a food-borne pathogen which adapts to and alters the gastrointestinal (GI environment. In the GI tract, S. Typhimurium competes with the microbiota for nutrients and overcomes colonization resistance to establish infection. To do this, S. Typhimurium uses multiple defense mechanisms to resist environmental stressors, like the acidic pH of the stomach, and virulence mechanisms which allow it to invade the intestinal epithelium and disseminate throughout the host. To coordinate gene expression and disrupt signaling within the microbiota and between host and microbiota, S. Typhimurium employs its own chemical signaling and may regulate host hormone metabolism.This review will discuss the multidirectional interaction between S. Typhimurium, host and microbiota as well as mechanisms

  20. Functional Analysis of the Chaperone-Usher Fimbrial Gene Clusters of Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Dufresne, Karine; Saulnier-Bellemare, Julie; Daigle, France

    2018-01-01

    The human-specific pathogen Salmonella enterica serovar Typhi causes typhoid, a major public health issue in developing countries. Several aspects of its pathogenesis are still poorly understood. S . Typhi possesses 14 fimbrial gene clusters including 12 chaperone-usher fimbriae ( stg, sth, bcf , fim, saf , sef , sta, stb, stc, std, ste , and tcf ). These fimbriae are weakly expressed in laboratory conditions and only a few are actually characterized. In this study, expression of all S . Typhi chaperone-usher fimbriae and their potential roles in pathogenesis such as interaction with host cells, motility, or biofilm formation were assessed. All S . Typhi fimbriae were better expressed in minimal broth. Each system was overexpressed and only the fimbrial gene clusters without pseudogenes demonstrated a putative major subunits of about 17 kDa on SDS-PAGE. Six of these (Fim, Saf, Sta, Stb, Std, and Tcf) also show extracellular structure by electron microscopy. The impact of fimbrial deletion in a wild-type strain or addition of each individual fimbrial system to an S . Typhi afimbrial strain were tested for interactions with host cells, biofilm formation and motility. Several fimbriae modified bacterial interactions with human cells (THP-1 and INT-407) and biofilm formation. However, only Fim fimbriae had a deleterious effect on motility when overexpressed. Overall, chaperone-usher fimbriae seem to be an important part of the balance between the different steps (motility, adhesion, host invasion and persistence) of S . Typhi pathogenesis.

  1. Use of caprylic acid to control pathogens (Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium) in apple juice at mild heat temperature.

    Science.gov (United States)

    Kim, S A; Rhee, M S

    2015-11-01

    The aim of this study was to examine the effects of caprylic acid (CA) on pathogens in apple juice having intrinsic organic acids, and to determine any synergistic effects. Bactericidal effects of CA were examined against Escherichia coli O157:H7 and Salmonella Typhimurium present in apple juice at mild heating temperatures. Apple juice containing each of the pathogens was treated with CA (0·1, 0·2, 0·4, 0·6 or 0·8 mmol l(-1)) at 50 or 55°C. Treatment with 0·8 mmol l(-1) (0·013%) CA at 50°C for 5 min or with 0·6 mmol l(-1) (0·010%) CA at 55°C for 5 min resulted in the complete eradication of E. coli O157:H7 (initial population: 7·25-7·34 log CFU ml(-1)). Salmonella Typhimurium were more sensitive than E. coli O157:H7: all bacteria (7·81-7·55 log CFU ml(-1)) were eradicated by treatment with 0·2 mmol l(-1) (0·0032%) CA at 55°C for 5 min or with 0·6 mmol l(-1) CA at 50°C for 5 min. By contrast, when pH-adjusted apple juice (pH 7·0) was treated with 0·8 mmol l(-1) CA, there was no significant difference in bactericidal effects between CA-treated samples and controls (heat treatment alone or heat + 0·1% ethanol treatment). This result suggested that acidic pH in the apple juice boost the antibacterial effects of CA. CA treatment did not affect (P > 0·05) the pH, colour or °Brix of the apple juice. This study highlights the utility of CA as a natural antibacterial agent that can eliminate micro-organisms from apple juice at very low concentrations (≤0·013%) and temperatures (≤55°C) within a short time (≤10 min). The results of our study may contribute to the development of an efficient method for improving the microbiological safety of apple juice. © 2015 The Society for Applied Microbiology.

  2. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen.

    Directory of Open Access Journals (Sweden)

    Kristin L Rosche

    Full Text Available Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella causes systemic inflammatory disease and enlargement of the spleen (splenomegaly. Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP, marginal zone (MZ, and red pulp (RP is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM, we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.

  3. Interaction of the carbon monoxide-releasing molecule Ru(CO)3Cl(glycinate) (CORM-3) with Salmonella enterica serovar Typhimurium: in situ measurements of carbon monoxide binding by integrating cavity dual-beam spectrophotometry.

    Science.gov (United States)

    Rana, Namrata; McLean, Samantha; Mann, Brian E; Poole, Robert K

    2014-12-01

    Carbon monoxide (CO) is a toxic gas that binds to haems, but also plays critical signalling and cytoprotective roles in mammalian systems; despite problems associated with systemic delivery by inhalation of the gas, it may be employed therapeutically. CO delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas; CO-RMs are also attractive candidates as novel antimicrobial agents. Salmonella enterica serovar Typhimurium is an enteropathogen causing gastroenteritis in humans. Recent studies have implicated haem oxygenase-1 (HO-1), the protein that catalyses the degradation of haem into biliverdin, free iron and CO, in the host immune response to Salmonella infection. In several studies, CO administration via CO-RMs elicited many of the protective roles of HO-1 induction and so we investigated the effects of a well-characterized water-soluble CO-RM, Ru(CO)3Cl(glycinate) (CORM-3), on Salmonella. CORM-3 exhibits toxic effects at concentrations significantly lower than those reported to cause toxicity to RAW 264.7 macrophages. We demonstrated here, through oxyhaemoglobin assays, that CORM-3 did not release CO spontaneously in phosphate buffer, buffered minimal medium or very rich medium. CORM-3 was, however, accumulated to high levels intracellularly (as shown by inductively coupled plasma MS) and released CO inside cells. Using growing Salmonella cultures without prior concentration, we showed for the first time that sensitive dual-beam integrating cavity absorption spectrophotometry can detect directly the CO released from CORM-3 binding in real-time to haems of the bacterial electron transport chain. The toxic effects of CO-RMs suggested potential applications as adjuvants to antibiotics in antimicrobial therapy. © 2014 The Authors.

  4. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen.

    Science.gov (United States)

    Rosche, Kristin L; Aljasham, Alanoud T; Kipfer, James N; Piatkowski, Bryan T; Konjufca, Vjollca

    2015-01-01

    Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.

  5. Effect of electropermeabilization by ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water and apple juice.

    Science.gov (United States)

    Park, Il-Kyu; Kang, Dong-Hyun

    2013-12-01

    The effect of electric field-induced ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in buffered peptone water (BPW) (pH 7.2) and apple juice (pH 3.5; 11.8 °Brix) was investigated in this study. BPW and apple juice were treated at different temperatures (55°C, 58°C, and 60°C) and for different times (0, 10, 20, 25, and 30 s) by ohmic heating compared with conventional heating. The electric field strength was fixed at 30 V/cm and 60 V/cm for BPW and apple juice, respectively. Bacterial reduction resulting from ohmic heating was significantly different (Pheating at 58°C and 60°C in BPW and at 55°C, 58°C, and 60°C in apple juice for intervals of 0, 10, 20, 25, and 30 s. These results show that electric field-induced ohmic heating led to additional bacterial inactivation at sublethal temperatures. Transmission electron microscopy (TEM) observations and the propidium iodide (PI) uptake test were conducted after treatment at 60°C for 0, 10, 20, 25 and 30 s in BPW to observe the effects on cell permeability due to electroporation-caused cell damage. PI values when ohmic and conventional heating were compared were significantly different (Pheating can more effectively reduce bacterial populations at reduced temperatures and shorter time intervals, especially in acidic fruit juices such as apple juice. Therefore, loss of quality can be minimized in a pasteurization process incorporating ohmic heating.

  6. Expression of hilA in response to mild acid stress in Salmonella enterica is serovar and strain dependent.

    Science.gov (United States)

    González-Gil, Francisco; Le Bolloch, Alexandre; Pendleton, Sean; Zhang, Nan; Wallis, Audra; Hanning, Irene

    2012-05-01

    Salmonella enterica is the leading cause of foodborne illness with poultry and poultry products being primary sources of infection. The 2 most common S. enterica serovars associated with human infection are Typhimurium and Enteritidis. However, Kentucky and Heidelburg and the 2 most prevalent serovars isolated from poultry environments. Given the prevalence of other serovars in poultry products and environments, research is needed to understand virulence modulation in response to stress in serovars other than Typhimurium and Enteritidis. Thus, the objective of this research was to compare hilA gene expression (a master regulator of the virulence pathogenicity island) in response to acid stress among different strains and serovars of Salmonella. A total of 11 serovars consisting of 15 strains of S. enterica were utilized for these experiments. Cultures were suspended in tryptic soy broth (TSB) adjusted to pH 7.2, 6.2, or 5.5 with HCl or acetic acid. Total RNA was extracted from cultures at specific time points (0, 2, 4, and 24 h). Gene expression of hilA was measured with quantitative reverse transcriptase real time PCR (qRT-PCR). Growth and pH were measured throughout the 24 h time frame. Regulation of hilA in response to acid stress varied by serovar and strain and type of acid. The results of these experiments indicate that hilA regulation may have some impact on virulence and colonization of S. enterica. However, these results warrant further research to more fully understand the significance of hilA regulation in response to mild acid stress in S. enterica. © 2012 Institute of Food Technologists®

  7. Differential gene expression by RamA in ciprofloxacin-resistant Salmonella Typhimurium.

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    Full Text Available Overexpression of ramA has been implicated in resistance to multiple drugs in several enterobacterial pathogens. In the present study, Salmonella Typhimurium strain LTL with constitutive expression of ramA was compared to its ramA-deletion mutant by employing both DNA microarrays and phenotype microarrays (PM. The mutant strain with the disruption of ramA showed differential expression of at least 33 genes involved in 11 functional groups. The study confirmed at the transcriptional level that the constitutive expression of ramA was directly associated with increased expression of multidrug efflux pump AcrAB-TolC and decreased expression of porin protein OmpF, thereby conferring multiple drug resistance phenotype. Compared to the parent strain constitutively expressing ramA, the ramA mutant had increased susceptibility to over 70 antimicrobials and toxic compounds. The PM analysis also uncovered that the ramA mutant was better in utilization of 10 carbon sources and 5 phosphorus sources. This study suggested that the constitutive expression of ramA locus regulate not only multidrug efflux pump and accessory genes but also genes involved in carbon metabolic pathways.

  8. Effect of milk fat content on the performance of ohmic heating for inactivation of Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium and Listeria monocytogenes.

    Science.gov (United States)

    Kim, S-S; Kang, D-H

    2015-08-01

    The effect of milk fat content on ohmic heating compared to conventional heating for inactivation of food-borne pathogens was investigated. Sterile cream was mixed with sterile buffered peptone water and adjusted to 0, 3, 7, 10% (w/v) milk fat content. These samples with varying fat content were subjected to ohmic and conventional heating. The effect of milk fat on temperature increase and electrical conductivity were investigated. Also, the protective effect of milk fat on the inactivation of foodborne pathogens was studied. For conventional heating, temperatures of samples increased with time and were not significantly (P > 0.05) different regardless of fat content. Although the inactivation rate of Escherichia coli O157:H7, Salmonella Typhimurium and L. monocytogens decreased in samples of 10% fat content, a protective effect was not observed for conventional heating. In contrast with conventional heating, ohmic heating was significantly affected by milk fat content. Temperature increased more rapidly with lower fat content for ohmic heating due to higher electrical conductivity. Nonuniform heat generation of nonhomogeneous fat-containing samples was verified using a thermal infrared camera. Also, the protective effect of milk fat on E. coli O157:H7 and Listeria monocytogenes was observed in samples subjected to ohmic heating. These results indicate that food-borne pathogens can survive in nonhomogeneous fat-containing foods subjected to ohmic heating. Therefore, more attention is needed regarding ohmic heating than conventional heating for pasteurizing fat-containing foods. The importance of adequate pasteurization for high milk fat containing foods was identified. © 2015 The Society for Applied Microbiology.

  9. Investigation of optimum ohmic heating conditions for inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in apple juice.

    Science.gov (United States)

    Park, Il-Kyu; Ha, Jae-Won; Kang, Dong-Hyun

    2017-05-19

    Control of foodborne pathogens is an important issue for the fruit juice industry and ohmic heating treatment has been considered as one of the promising antimicrobial interventions. However, to date, evaluation of the relationship between inactivation of foodborne pathogens and system performance efficiency based on differing soluble solids content of apple juice during ohmic heating treatment has not been well studied. This study aims to investigate effective voltage gradients of an ohmic heating system and corresponding sugar concentrations (°Brix) of apple juice for inactivating major foodborne pathogens (E. coli O157:H7, S. Typhimurium, and L. monocytogenes) while maintaining higher system performance efficiency. Voltage gradients of 30, 40, 50, and 60 V/cm were applied to 72, 48, 36, 24, and 18 °Brix apple juices. At all voltage levels, the lowest heating rate was observed in 72 °Brix apple juice and a similar pattern of temperature increase was shown in18-48 °Brix juice samples. System performance coefficients (SPC) under two treatment conditions (30 V/cm in 36 °Brix or 60 V/cm in 48 °Brix juice) were relatively greater than for other combinations. Meanwhile, 5-log reductions of the three foodborne pathogens were achieved after treatment for 60 s in 36 °Brix at 30 V/cm, but this same reduction was observed in 48 °Brix juice at 60 V/cm within 20 s without affecting product quality. With respect to both bactericidal efficiency and SPC values, 60 V/cm in 48 °Brix was the most effective ohmic heating treatment combination for decontaminating apple juice concentrates.

  10. The in vitro redundant enzymes PurN and PurT are both essential for systemic infection of mice in Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Mortensen, Mie Ina Bjerregaard; Kilstrup, Mogens

    2016-01-01

    the third step in the purine synthesis. Surprisingly the results of the current study demonstrated that single gene deletions of each of the genes encoding these enzymes caused attenuation (competitive infection index fast as the wild type...

  11. Identification of Salmonella typhimurium Genes Required for Colonization of the Chicken Alimentary Tract and for Virulence in Newly Hatched Chicks

    Science.gov (United States)

    Turner, Arthur K.; Lovell, Margaret A.; Hulme, Scott D.; Zhang-Barber, Li; Barrow, Paul A.

    1998-01-01

    From a collection of 2,800 Tn5-TC1 transposon mutants of Salmonella typhimurium F98, 18 that showed reduced intestinal colonization of 3-week-old chicks were identified. The sites of transposon insertion were determined for most of the mutants and included insertions in the lipopolysaccharide biosynthesis genes rfaK, rfaY, rfbK, and rfbB and the genes dksA, clpB, hupA, and sipC. In addition, identification was made of an insertion into a novel gene that encodes a protein showing similarity to the IIC component of the mannose class of phosphoenolpyruvate-carbohydrate phosphotransferase systems, which we putatively called ptsC. Transduction of most of the transposon mutations to a fresh S. typhimurium F98 genetic background and construction of defined mutations in the rfbK, dksA, hupA, sipC, and ptsC genes of S. typhimurium F98 supported the role in colonization of all but the pts locus. The virulence of the rfbK, dksA, hupA, sipC, and ptsC defined mutants and clpB and rfaY transductants in 1-day-old chicks was tested. All but the ptsC and rfaY mutants were attenuated for virulence. A number of other phenotypes associated with some of the mutations are described. PMID:9573095

  12. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1.

    Directory of Open Access Journals (Sweden)

    Yingqin Luo

    Full Text Available Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1 is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.

  13. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    Science.gov (United States)

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  14. Sublethal exposure to commercial formulations of the herbicides dicamba, 2,4-dichlorophenoxyacetic acid, and glyphosate cause changes in antibiotic susceptibility in Escherichia coli and Salmonella enterica serovar Typhimurium.

    Science.gov (United States)

    Kurenbach, Brigitta; Marjoshi, Delphine; Amábile-Cuevas, Carlos F; Ferguson, Gayle C; Godsoe, William; Gibson, Paddy; Heinemann, Jack A

    2015-03-24

    Biocides, such as herbicides, are routinely tested for toxicity but not for sublethal effects on microbes. Many biocides are known to induce an adaptive multiple-antibiotic resistance phenotype. This can be due to either an increase in the expression of efflux pumps, a reduced synthesis of outer membrane porins, or both. Exposures of Escherichia coli and Salmonella enterica serovar Typhimurium to commercial formulations of three herbicides-dicamba (Kamba), 2,4-dichlorophenoxyacetic acid (2,4-D), and glyphosate (Roundup)-were found to induce a changed response to antibiotics. Killing curves in the presence and absence of sublethal herbicide concentrations showed that the directions and the magnitudes of responses varied by herbicide, antibiotic, and species. When induced, MICs of antibiotics of five different classes changed up to 6-fold. In some cases the MIC increased, and in others it decreased. Herbicide concentrations needed to invoke the maximal response were above current food maximum residue levels but within application levels for all herbicides. Compounds that could cause induction had additive effects in combination. The role of soxS, an inducer of the AcrAB efflux pump, was tested in β-galactosidase assays with soxS-lacZ fusion strains of E. coli. Dicamba was a moderate inducer of the sox regulon. Growth assays with Phe-Arg β-naphtylamide (PAβN), an efflux pump inhibitor, confirmed a significant role of efflux in the increased tolerance of E. coli to chloramphenicol in the presence of dicamba and to kanamycin in the presence of glyphosate. Pathways of exposure with relevance to the health of humans, domestic animals, and critical insects are discussed. Increasingly common chemicals used in agriculture, domestic gardens, and public places can induce a multiple-antibiotic resistance phenotype in potential pathogens. The effect occurs upon simultaneous exposure to antibiotics and is faster than the lethal effect of antibiotics. The magnitude of the

  15. InvS Coordinates Expression of PrgH and FimZ and Is Required for Invasion of Epithelial Cells by Salmonella enterica serovar Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Cai, Xia; Wu, Shuyan; Bomjan, Rajdeep; Nakayasu, Ernesto S.; Händler, Kristian; Hinton, Jay C. D.; Zhou, Daoguo; DiRita, Victor J.

    2017-04-24

    ABSTRACT

    Deep sequencing has revolutionized our understanding of the bacterial RNA world and has facilitated the identification of 280 small RNAs (sRNAs) inSalmonella. Despite the suspicions that sRNAs may play important roles inSalmonellapathogenesis, the functions of most sRNAs remain unknown. To advance our understanding of RNA biology inSalmonellavirulence, we searched for sRNAs required for bacterial invasion into nonphagocytic cells. After screening 75 sRNAs, we discovered that the ablation of InvS caused a significant decrease ofSalmonellainvasion into epithelial cells. A proteomic analysis showed that InvS modulated the levels of several type III secretedSalmonellaproteins. The level of PrgH, a type III secretion apparatus protein, was significantly lower in the absence of InvS, consistent with the known roles of PrgH in effector secretion and bacterial invasion. We discovered that InvS modulatesfimZexpression and hence flagellar gene expression and motility. We propose that InvS coordinates the increase of PrgH and decrease in FimZ that promote efficientSalmonellainvasion into nonphagocytic cells.

    IMPORTANCESalmonellosis continues to be the most common foodborne infection reported by the CDC in the United States. Central toSalmonellapathogenesis is the ability to invade nonphagocytic cells and to replicate inside host cells. Invasion genes are known to be regulated by protein transcriptional networks, but little is known

  16. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    Science.gov (United States)

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  17. 2D proteome analysis initiates new Insights on the Salmonella Typhimurium LuxS protein

    Directory of Open Access Journals (Sweden)

    Vanderleyden Jos

    2009-09-01

    Full Text Available Abstract Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium, we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As

  18. Unique Helicase Determinants in the Essential Conjugative TraI Factor from Salmonella enterica Serovar Typhimurium Plasmid pCU1

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, Krystle J.; Nash, Rebekah P.; Redinbo, Mathew R. (UNC)

    2014-06-16

    The widespread development of multidrug-resistant bacteria is a major health emergency. Conjugative DNA plasmids, which harbor a wide range of antibiotic resistance genes, also encode the protein factors necessary to orchestrate the propagation of plasmid DNA between bacterial cells through conjugative transfer. Successful conjugative DNA transfer depends on key catalytic components to nick one strand of the duplex DNA plasmid and separate the DNA strands while cell-to-cell transfer occurs. The TraI protein from the conjugative Salmonella plasmid pCU1 fulfills these key catalytic roles, as it contains both single-stranded DNA-nicking relaxase and ATP-dependent helicase domains within a single, 1,078-residue polypeptide. In this work, we unraveled the helicase determinants of Salmonella pCU1 TraI through DNA binding, ATPase, and DNA strand separation assays. TraI binds DNA substrates with high affinity in a manner influenced by nucleic acid length and the presence of a DNA hairpin structure adjacent to the nick site. TraI selectively hydrolyzes ATP, and mutations in conserved helicase motifs eliminate ATPase activity. Surprisingly, the absence of a relatively short (144-residue) domain at the extreme C terminus of the protein severely diminishes ATP-dependent strand separation. Collectively, these data define the helicase motifs of the conjugative factor TraI from Salmonella pCU1 and reveal a previously uncharacterized C-terminal functional domain that uncouples ATP hydrolysis from strand separation activity.

  19. msbB deletion confers acute sensitivity to CO2 in Salmonella enterica serovar Typhimurium that can be suppressed by a loss-of-function mutation in zwf

    Directory of Open Access Journals (Sweden)

    Troy Kimberly

    2009-08-01

    Full Text Available Abstract Background Pathogens tolerate stress conditions that include low pH, oxidative stress, high salt and high temperature in order to survive inside and outside their hosts. Lipopolysaccharide (LPS, which forms the outer-leaflet of the outer membrane in Gram-negative bacteria, acts as a permeability barrier. The lipid A moiety of LPS anchors it to the outer membrane bilayer. The MsbB enzyme myristoylates the lipid A precursor and loss of this enzyme, in Salmonella, is correlated with reduced virulence and severe growth defects that can both be compensated with extragenic suppressor mutations. Results We report here that msbB (or msbB somA Salmonella are highly sensitive to physiological CO2 (5%, resulting in a 3-log reduction in plating efficiency. Under these conditions, msbB Salmonella form long filaments, bulge and lyse. These bacteria are also sensitive to acidic pH and high osmolarity. Although CO2 acidifies LB broth media, buffering LB to pH 7.5 did not restore growth of msbB mutants in CO2, indicating that the CO2-induced growth defects are not due to the effect of CO2 on the pH of the media. A transposon insertion in the glucose metabolism gene zwf compensates for the CO2 sensitivity of msbB Salmonella. The msbB zwf mutants grow on agar, or in broth, in the presence of 5% CO2. In addition, msbB zwf strains show improved growth in low pH or high osmolarity media compared to the single msbB mutant. Conclusion These results demonstrate that msbB confers acute sensitivity to CO2, acidic pH, and high osmolarity. Disruption of zwf in msbB mutants restores growth in 5% CO2 and results in improved growth in acidic media or in media with high osmolarity. These results add to a growing list of phenotypes caused by msbB and mutations that suppress specific growth defects.

  20. Characterization and Antimicrobial Resistance of Salmonella Typhimurium Isolates from Clinically Diseased Pigs in Korea.

    Science.gov (United States)

    Oh, Sang-Ik; Kim, Jong Wan; Chae, Myeongju; Jung, Ji-A; So, Byungjae; Kim, Bumseok; Kim, Ha-Young

    2016-11-01

    This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:- (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes bla TEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.

  1. A multiplex real-time PCR assay targeting virulence and resistance genes in Salmonella enterica serotype Typhimurium

    Directory of Open Access Journals (Sweden)

    Brisabois Anne

    2011-06-01

    Full Text Available Abstract Background Typhimurium is the main serotype of Salmonella enterica subsp. enterica implicated in food-borne diseases worldwide. This study aimed to detect the prevalence of ten markers combined in a macro-array based on multiplex real-time PCR. We targeted characteristic determinants located on pathogenicity islands (SPI-2 to -5, virulence plasmid pSLT and Salmonella genomic island 1 (SGI1 as well as a specific 16S-23S rRNA intergenic spacer sequence of definitive type 104 (DT104. To investigate antimicrobial resistance, the study also targeted the presence of genes involved in sulfonamide (sul1 and beta-lactam (blaTEM resistance. Finally, the intI1 determinant encoding integrase from class 1 integron was also investigated. Results A total of 538 unrelated S. Typhimurium strains isolated between 1999 and 2009 from various sources, including food animals, food products, human and environmental samples were studied. Based on the combined presence or absence of these markers, we distinguished 34 different genotypes, including three major genotypes encountered in 75% of the studied strains, Although SPI determinants were almost always detected, SGI1, intI1, sul1 and blaTEM determinants were found 47%, 52%, 54% and 12% of the time respectively, varying according to isolation source. Low-marker patterns were most often detected in poultry sources whereas full-marker patterns were observed in pig, cattle and human sources. Conclusion The GeneDisc® assay developed in this study madeit easier to explore variability within serotype Typhimurium by analyzing ten relevant gene determinants in a large collection of strains. This real-time multiplex method constitutes a valuable tool for strains characterization on epidemiological purposes.

  2. Salmonella enterica Typhimurium fljBA operon stability: implications regarding the origin of Salmonella enterica I 4,[5],12:i:.

    Science.gov (United States)

    Tomiyama, M P O; Werle, C H; Milanez, G P; Nóbrega, D B; Pereira, J P; Calarga, A P; Flores, F; Brocchi, M

    2015-12-29

    Salmonella enterica subsp enterica serovar 4,5,12:i:- has been responsible for many recent Salmonella outbreaks worldwide. Several studies indicate that this serovar originated from S. enterica subsp enterica serovar Typhimurium, by the loss of the flagellar phase II gene (fljB) and adjacent sequences. However, at least two different clones of S. enterica 4,5,12:i:- exist that differs in the molecular events responsible for fljB deletion. The aim of this study was to test the stability of the fljBA operon responsible for the flagellar phase variation under different growth conditions in order to verify if its deletion is a frequent event that could explain the origin and dissemination of this serovar. In fact, coding sequences for transposons are present near this operon and in some strains, such as S. enterica Typhimurium LT2, the Fels-2 prophage gene is inserted near this operon. The presence of mobile DNA could confer instability to this region. In order to examine this, the cat (chloramphenicol acetyltransferase) gene was inserted adjacent to the fljBA operon so that deletions involving this genomic region could be identified. After growing S. enterica chloramphenicol-resistant strains under different conditions, more than 104 colonies were tested for the loss of chloramphenicol resistance. However, none of the colonies were sensitive to chloramphenicol. These data suggest that the origin of S. enterica serovar 4,5,12:i:- from Typhimurium by fljBA deletion is not a frequent event. The origin and dissemination of 4,5,12:i:- raise several questions about the role of flagellar phase variation in virulence.

  3. Structure of the gene encoding phosphoribosylpyrophosphate synthetase (prsA) in Salmonella typhimurium

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Hove-Jensen, Bjarne; Switzer, Robert L.

    1988-01-01

    in a 416-base-pair 5' untranslated leader in the prsA transcript, which was shown by deletion to be necessary for maximal synthesis of phosphoribosylpyrophosphate synthetase. The S. typhimurium leader contains a 115-base-pair insert relative to the E. coli leader. The insert appears to have no functional...

  4. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium

    Directory of Open Access Journals (Sweden)

    Porwollik Steffen

    2011-03-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhimurium (S. Typhimurium is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium. Results We compared the transcriptional profiles of the virulent wild-type (WT strain (ATCC 14028s and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome; of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV, Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784. In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr. Conclusion(s We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella

  5. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  6. Polyamines are essential for virulence in Salmonella enterica serovar Gallinarum despite evolutionary decay of polyamine biosynthesis genes.

    Science.gov (United States)

    Schroll, Casper; Christensen, Jens P; Christensen, Henrik; Pors, Susanne E; Thorndahl, Lotte; Jensen, Peter R; Olsen, John E; Jelsbak, Lotte

    2014-05-14

    Serovars of Salmonella enterica exhibit different host-specificities where some have broad host-ranges and others, like S. Gallinarum and S. Typhi, are host-specific for poultry and humans, respectively. With the recent availability of whole genome sequences it has been reported that host-specificity coincides with accumulation of pseudogenes, indicating adaptation of host-restricted serovars to their narrow niches. Polyamines are small cationic amines and in Salmonella they can be synthesized through two alternative pathways directly from l-ornithine to putrescine and from l-arginine via agmatine to putrescine. The first pathway is not active in S. Gallinarum and S. Typhi, and this prompted us to investigate the importance of polyamines for virulence in S. Gallinarum. Bioinformatic analysis of all sequenced genomes of Salmonella revealed that pseudogene formation of the speC gene was exclusive for S. Typhi and S. Gallinarum and happened through independent events. The remaining polyamine biosynthesis pathway was found to be essential for oral infection with S. Gallinarum since single and double mutants in speB and speE, encoding the pathways from agmatine to putrescine and from putrescine to spermidine, were attenuated. In contrast, speB was dispensable after intraperitoneal challenge, suggesting that putrescine was less important for the systemic phase of the disease. In support of this hypothesis, a ΔspeE;ΔpotCD mutant, unable to synthesize and import spermidine, but with retained ability to import and synthesize putrescine, was attenuated after intraperitoneal infection. We therefore conclude that polyamines are essential for virulence of S. Gallinarum. Furthermore, our results point to distinct roles for putrescine and spermidine during systemic infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The effect of γ radiation on the expression of the virulence genes of Salmonella typhimurium and Vibrio spp

    International Nuclear Information System (INIS)

    Lim, Sangyong; Jung, Jinwoo; Kim, Dongho

    2007-01-01

    The principle benefit of food irradiation is the reduction of food-borne bacteria in food products. However, the microbiological safety with respect to increased virulence of surviving pathogens after irradiation remains an important issue with regard to the effectiveness of food irradiation. In this study, the transcriptional changes of virulence genes of Salmonella and Vibrio spp. after γ radiation were investigated by real-time PCR (RT-PCR). Samonella typhimurium is dependent upon the products of a large number of genes located within Salmonella pathogenicity islands (SPI) on the chromosome. The expressions of seven genes including four SPI genes, hilD, ssrB, pipB, and sopD, were measured at 1 h after 1 kGy irradiation. Compared with non-irradiated controls, the expression of hilD encoded within SPI1 and sopD encoding SPI1-related effector proteins was reduced about 4- and 16-fold, respectively. The expressions of Vibrio toxin genes, vvhA, ctxA, and tdh, were also monitored during the course of a growth cycle after re-inoculation of irradiated Vibrio spp. (0.5 and 1.0 kGy). The expressions of Vibrio toxin genes tested did not increase compared with non-irradiated counterparts. Results from this study indicate that γ radiation is much more likely to reduce the virulence gene expression of surviving pathogens

  8. The effect of {gamma} radiation on the expression of the virulence genes of Salmonella typhimurium and Vibrio spp

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sangyong; Jung, Jinwoo [Radiation Food Science and Biotechnology Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 580-185 (Korea, Republic of); Kim, Dongho [Radiation Food Science and Biotechnology Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongup 580-185 (Korea, Republic of)], E-mail: fungikim@kaeri.re.kr

    2007-11-15

    The principle benefit of food irradiation is the reduction of food-borne bacteria in food products. However, the microbiological safety with respect to increased virulence of surviving pathogens after irradiation remains an important issue with regard to the effectiveness of food irradiation. In this study, the transcriptional changes of virulence genes of Salmonella and Vibrio spp. after {gamma} radiation were investigated by real-time PCR (RT-PCR). Samonella typhimurium is dependent upon the products of a large number of genes located within Salmonella pathogenicity islands (SPI) on the chromosome. The expressions of seven genes including four SPI genes, hilD, ssrB, pipB, and sopD, were measured at 1 h after 1 kGy irradiation. Compared with non-irradiated controls, the expression of hilD encoded within SPI1 and sopD encoding SPI1-related effector proteins was reduced about 4- and 16-fold, respectively. The expressions of Vibrio toxin genes, vvhA, ctxA, and tdh, were also monitored during the course of a growth cycle after re-inoculation of irradiated Vibrio spp. (0.5 and 1.0 kGy). The expressions of Vibrio toxin genes tested did not increase compared with non-irradiated counterparts. Results from this study indicate that {gamma} radiation is much more likely to reduce the virulence gene expression of surviving pathogens.

  9. Inorganic Polyphosphate Is Essential for Salmonella Typhimurium Virulence and Survival in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Macarena A. Varas

    2018-01-01

    Full Text Available Inorganic polyphosphate (polyP deficiency in enteric bacterial pathogens reduces their ability to invade and establish systemic infections in different hosts. For instance, inactivation of the polyP kinase gene (ppk encoding the enzyme responsible for polyP biosynthesis reduces invasiveness and intracellular survival of Salmonella enterica serovar Typhimurium (S. Typhimurium in epithelial cells and macrophages in vitro. In addition, the virulence in vivo of a S. Typhimurium Δppk mutant is significantly reduced in a murine infection model. In spite of these observations, the role played by polyP during the Salmonella-host interaction is not well understood. The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In fact, many intracellular pathogens can survive within D. discoideum cells using molecular mechanisms also required to survive within macrophages. Recently, we established that S. Typhimurium is able to survive intracellularly in D. discoideum and identified relevant genes linked to virulence that are crucial for this process. The aim of this study was to determine the effect of a polyP deficiency in S. Typhimurium during its interaction with D. discoideum. To do this, we evaluated the intracellular survival of wild-type and Δppk strains of S. Typhimurium in D. discoideum and the ability of these strains to delay the social development of the amoeba. In contrast to the wild-type strain, the Δppk mutant was unable to survive intracellularly in D. discoideum and enabled the social development of the amoeba. Both phenotypes were complemented using a plasmid carrying a copy of the ppk gene. Next, we simultaneously evaluated the proteomic response of both S. Typhimurium and D. discoideum during host-pathogen interaction via global proteomic profiling. The analysis of our results allowed the identification of novel molecular signatures that give insight into

  10. Transfer and internalisation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cabbage cultivated on contaminated manure-amended soil under tropical field conditions in Sub-Saharan Africa.

    Science.gov (United States)

    Ongeng, D; Vasquez, G A; Muyanja, C; Ryckeboer, J; Geeraerd, A H; Springael, D

    2011-01-31

    Surface contamination and internalisation of Escherichia coli O157:H7 and Salmonella Typhimurium in cabbage leaf tissues at harvest (120 days post-transplantation) following amendment of contaminated bovine manure to soil at different times during crop cultivation were investigated under tropical field conditions in the Central Agro-Ecological Zone of Uganda. Fresh bovine manure inoculated with rifampicin-resistant derivatives of non-virulent strains of E. coli O157:H7 and S. Typhimurium was incorporated into the soil to achieve inoculum concentrations of 4 and 7 log CFU/g at the point of transplantation, 56 or 105 days post-transplantation of cabbage seedlings. Frequent sampling of the soil enabled the accurate identification of the survival kinetics in soil, which could be described by the Double Weibull model in all but one of the cases. The persistence of 4 log CFU/g E. coli O157:H7 and S. Typhimurium in the soil was limited, i.e. only inocula applied 105 days post-transplantation were still present at harvest. Moreover, no internalisation in cabbage leaf tissues was observed. In contrast, at the 7 log CFU/g inoculum level, E. coli O157:H7 and S. Typhimurium survived in the soil throughout the cultivation period. All plants (18/18) examined for leaf contamination were positive for E. coli O157:H7 at harvest irrespective of the time of manure application. A similar incidence of leaf contamination was found for S. Typhimurium. On the other hand, only plants (18/18) cultivated on soil amended with contaminated manure at the point of transplantation showed internalised E. coli O157:H7 and S. Typhimurium at harvest. These results demonstrate that under tropical field conditions, the risk of surface contamination and internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues at harvest depend on the inoculum concentration and the time of manure application. Moreover, the internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues

  11. Changes in the prevalence of Salmonella serovars associated swine production and correlations of avian, bovine and swine-associated serovars with human-associated serovars in the United States (1997-2015).

    Science.gov (United States)

    Yuan, C; Krull, A; Wang, C; Erdman, M; Fedorka-Cray, P J; Logue, C M; O'Connor, A M

    2018-04-23

    As Salmonella enterica is an important pathogen of food animals, surveillance programmes for S. enterica serovars have existed for many years in the United States. Surveillance programmes serve many purposes, one of which is to evaluate alterations in the prevalence of serovars that may signal changes in the ecology of the target organism. The primary aim of this study was to evaluate changes in the proportion of S. enterica serovars isolated from swine over a near 20-year observation period (1997-2015) using four longitudinal data sets from different food animal species. The secondary aim was to evaluate correlations between changes in S. enterica serovars frequently recovered from food animals and changes in S. enterica serovars associated with disease in humans. We found decreasing proportions of S. enterica serovar Typhimurium, serovar Derby and serovar Heidelberg and increasing proportions of S. enterica serovar 4,[5],12:i:-, serovar Infantis and serovar Johannesburg in swine over time. We also found positive correlations for the yearly changes in S. enterica serovar 4,[5],12:i:-, serovar Anatum and serovar Johannesburg between swine and human data; in S. enterica Worthington between avian and human data; and in S. enterica serovar 4,[5],12:i:- between bovine and human data. We found negative correlations for the yearly changes in S. enterica serovar 4,[5],12:i:- and serovar Johannesburg between avian and human data. © 2018 Blackwell Verlag GmbH.

  12. SOS gene induction and possible mutagenic effects of freeze-drying in Escherichia coli and Salmonella typhimurium.

    Science.gov (United States)

    Rosen, Rachel; Buchinger, Sebastian; Pfänder, Ramona; Pedhazur, Rami; Reifferscheid, Georg; Belkin, Shimshon

    2016-11-01

    We report the results of a study of the potential negative effects of the freeze-drying process, normally considered a benign means for long-term conservation of living cells and the golden standard in bacterial preservation. By monitoring gene induction using a whole-cell Escherichia coli bioreporter panel, in which diverse stress-responsive gene promoters are fused to luminescent or fluorescent reporting systems, we have demonstrated that DNA repair genes belonging to the SOS operon (recA, sulA, uvrA, umuD, and lexA) were induced upon resuscitation from the freeze-dried state, whereas other stress-responsive promoters such as grpE, katG, phoA, soxS, and sodA were not affected. This observation was confirmed by the UMU-chromotest (activation of the umuD gene promoter) in Salmonella typhimurium, as well as by real-time PCR analyses of selected E. coli SOS genes. We further show that a functional SOS operon is important in viability maintenance following resuscitation, but that at the same time, this repair system may introduce significantly higher mutation rates, comparable to those induced by high concentrations of a known mutagen. Our results also indicate that the entire freeze-drying process, rather than either freezing or drying separately, is instrumental in the induction of DNA damage.

  13. Serovars of Salmonella from captive reptiles

    DEFF Research Database (Denmark)

    Pedersen, Karl; Lassen-Nielsen, Anne Marie; Nordentoft, Steen

    2009-01-01

    The distribution on serovars of 60 Salmonella isolates from reptiles kept in captivity in Denmark during the period 1995–2006 was investigated. The isolates were all recovered from clinical specimens submitted to the National Veterinary Institute. A majority of the samples were from reptiles...... in zoological gardens or similar, while a minor number was from reptiles kept in private homes. A total of 43 serovars were detected, most of them being what is usually called exotic serotypes, and many not having a trivial name, while a few isolates belonged to well-known human pathogenic serovars, such as S....... Enteritidis, S. Typhimurium, S. Bovismorbificans. One isolate was rough and two were non-typeable. Isolates from turtles belonged to the subspecies enterica, while many isolates from both sauria and snakes belonged to other subspecies. The findings underline the potential zoonotic risk by handling reptiles...

  14. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression.

    Science.gov (United States)

    Bajaj, V; Lucas, R L; Hwang, C; Lee, C A

    1996-11-01

    During infection of their hosts, salmonellae enter intestinal epithelial cells. It has been proposed that when Salmonella typhimurium is present in the intestinal lumen, several environmental and regulatory conditions modulate the expression of invasion factors required for bacterial entry into host cells. We report here that the expression of six different S. typhimurium invasion genes encoded on SPI1 (Salmonella pathogenicity island 1) is co-ordinately regulated by oxygen, osmolarity, pH, PhoPQ, and HilA. HilA is a transcriptional activator of the OmpR/ToxR family that is also encoded on SPI1. We have found that HilA plays a central role in the co-ordinated regulation of invasion genes by environmental and regulatory conditions. HilA can activate the expression of two invasion gene-lacZY fusions on reporter plasmids in Escherichia coll, suggesting that HilA acts directly at invasion-gene promoters in S. typhimurium. We have found that the regulation of invasion genes by oxygen, osmolarity, pH, and PhoPQ is indirect and is mediated by regulation of hilA expression by these environmental and regulatory factors. We hypothesize that the complex and co-ordinate regulation of Invasion genes by HilA is an important feature of salmonella pathogenesis and allows salmonellae to enter intestinal epithelial cells.

  15. Virulence Characterization of Salmonella enterica by a New Microarray: Detection and Evaluation of the Cytolethal Distending Toxin Gene Activity in the Unusual Host S. Typhimurium.

    Directory of Open Access Journals (Sweden)

    Rui Figueiredo

    Full Text Available Salmonella enterica is a zoonotic foodborne pathogen that causes acute gastroenteritis in humans. We assessed the virulence potential of one-hundred and six Salmonella strains isolated from food animals and products. A high through-put virulence genes microarray demonstrated Salmonella Pathogenicity Islands (SPI and adherence genes were highly conserved, while prophages and virulence plasmid genes were variably present. Isolates were grouped by serotype, and virulence plasmids separated S. Typhimurium in two clusters. Atypical microarray results lead to whole genome sequencing (WGS of S. Infantis Sal147, which identified deletion of thirty-eight SPI-1 genes. Sal147 was unable to invade HeLa cells and showed reduced mortality in Galleria mellonella infection model, in comparison to a SPI-1 harbouring S. Infantis. Microarray and WGS of S. Typhimurium Sal199, established for the first time in S. Typhimurium presence of cdtB and other Typhi-related genes. Characterization of Sal199 showed cdtB genes were upstream of transposase IS911, and co-expressed with other Typhi-related genes. Cell cycle arrest, cytoplasmic distension, and nuclear enlargement were detected in HeLa cells infected by Sal199, but not with S. Typhimurium LT2. Increased mortality of Galleria was detected on infection with Sal199 compared to LT2. Thus, Salmonella isolates were rapidly characterized using a high through-put microarray; helping to identify unusual virulence features which were corroborated by further characterisation. This work demonstrates that the use of suitable screening methods for Salmonella virulence can help assess the potential risk associated with certain Salmonella to humans. Incorporation of such methodology into surveillance could help reduce the risk of emergence of epidemic Salmonella strains.

  16. Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays.

    Science.gov (United States)

    Lo, Miranda; Bulach, Dieter M; Powell, David R; Haake, David A; Matsunaga, James; Paustian, Michael L; Zuerner, Richard L; Adler, Ben

    2006-10-01

    Leptospirosis is an important zoonosis of worldwide distribution. Humans become infected via exposure to pathogenic Leptospira spp. from infected animals or contaminated water or soil. The availability of genome sequences for Leptospira interrogans, serovars Lai and Copenhageni, has opened up opportunities to examine global transcription profiles using microarray technology. Temperature is a key environmental factor known to affect leptospiral protein expression. Leptospira spp. can grow in artificial media at a range of temperatures reflecting conditions found in the environment and the mammalian host. Therefore, transcriptional changes were compared between cultures grown at 20 degrees C, 30 degrees C, 37 degrees C, and 39 degrees C to represent ambient temperatures in the environment, growth under laboratory conditions, and temperatures in healthy and febrile hosts. Data from direct pairwise comparisons of the four temperatures were consolidated to examine transcriptional changes at two generalized biological conditions representing mammalian physiological temperatures (37 degrees C and 39 degrees C) versus environmental temperatures (20 degrees C and 30 degrees C). Additionally, cultures grown at 30 degrees C then shifted overnight to 37 degrees C were compared with those grown long-term at 30 degrees C and 37 degrees C to identify genes potentially expressed in the early stages of infection. Comparison of data sets from physiological versus environmental experiments with upshift experiments provided novel insights into possible transcriptional changes at different stages of infection. Changes included differential expression of chemotaxis and motility genes, signal transduction systems, and genes encoding proteins involved in alteration of the outer membrane. These findings indicate that temperature is an important factor regulating expression of proteins that facilitate invasion and establishment of disease.

  17. Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Lertworapreecha, M.; Evans, M.C.

    2003-01-01

    and gentamicin. All nine ampicillin-resistant isolates contained a sequence similar to the bla(TEM-1b) gene, one of the eight chloramphenicol-resistant isolates a sequence similar to the catA1 gene, all three neomycin-resistant isolates a sequence similar to the aphA-2 gene, 16 (73%) of the 22 streptomycin...... isolates were examined for susceptibility to antimicrobial agents, and resistant isolates were examined for the presence of selected resistance genes by PCR. Results: Only 48 (9.5%) of the isolates were resistant to one or more of the antimicrobial agents tested. A low frequency of resistance was found...

  18. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    Science.gov (United States)

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  19. Use of multiple-locus variable-number of tandem repeats analysis (MLVA) to investigate genetic diversity of Salmonella enterica subsp. enterica serovar Typhimurium isolates from human, food, and veterinary sources

    DEFF Research Database (Denmark)

    Mateva, Gergana; Pedersen, Karl; Sørensen, Gitte

    2017-01-01

    -locus variable-number of tandem repeats analysis (MLVA) and compared results with antimicrobial resistance (AMR) determinations for 100 S. Typhimurium strains isolated in Bulgaria during 2008-2012 (50 veterinary/food and 50 human isolates). Results showed that isolates were divided into 80 and 34 groups using......). No clustering of isolates related to susceptibility/resistance to antimicrobials, source of isolation, or year of isolation was observed. Some MLVA types were found in both human and veterinary/food isolates, indicating a possible route of transmission. A majority (83%) of the isolates were found...

  20. Role of the supX gene in sensitizing Salmonella typhimurium cells to respiration shutoff induced by far ultraviolet irradiation

    International Nuclear Information System (INIS)

    Swenson, P.A.; Riester, L.; Palmer, T.V.

    1983-01-01

    Salmonella typhimurium strains with supX mutations are known to be sensitive to UV (254 nm) irradiation and to be protected by plasmid pKM101. Wild type (supX + ) cells shut off their respiration after UV and are protected against their shutoff by pKM101. Respiration and survival studies were carried out on several supX strains. The supX strains shut off their respiration after low fluences of UV. Plasmid pKM101 protected a supX83 (nonsense mutation) strain against respiration shutoff and killing but did not protect a supX35 (deletion mutation) strain. When each of the two supX genes were in the genetic backgrounds of the other, however, full protection was provided by pKM101. The supX35 strain not protected by pKM101 may have accumulated a modifying mutation. The supX locus is identical with one specifying topoisomerase I which removes negative superhelical turns from DNA. In the absence of this enzyme, transcription of the DNA is increased. It is proposed that the exaggerated shutoff of respiration and increased killing of supX cells occurs because of the greater ease of transcription of an operon involved in UV-induced respiration shutoff. (author)

  1. Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Rosenkrantz, Jesper T.; Aarts, Henk; Abee, Tjakko

    2013-01-01

    B proved unsuccessful. No difference between mutants and the wild type strain was observed during growth at unfavorable temperatures, pH values, NaCl concentrations and in the presence of H2O2. Eight mutants were evaluated for virulence in C57/BL6 mice and none differed from the wild type strain. Notably...

  2. Persistence of Salmonella Typhimurium LT2 in Soil Enhanced after Growth in Lettuce Medium

    Directory of Open Access Journals (Sweden)

    Kornelia Smalla

    2017-04-01

    Full Text Available The persistence of Salmonella in the environment is influenced by a multitude of biotic and abiotic factors. In addition, its persistence can be influenced by preadaptation before the introduction into the environment. In order to study how preadaptation changes the survival of Salmonella in soil and therefore its potential to colonize the phytosphere, we developed a new medium based on lettuce material [lettuce medium (LM]. Salmonella enterica serovar Typhimurium strain LT2 was used as a model for Salmonella in this study. LT2 was inoculated into soil microcosms after pregrowth in Luria Bertani (LB broth or in LM. Survival of LT2 in soil was monitored over 56 days by plate counts and quantification of the Typhimurium-specific gene STM4497 using qPCR in total community DNA for which primers and TaqMan probe were designed in this study. Significantly enhanced persistence was observed for LT2 pregrown in LM compared to LT2 pregrown in LB, indicating a preadaptation effect. Surprisingly, no improved survival could be observed for S. Typhimurium strain 14028s and S. enterica serovar Senftenberg after pregrowth on LM. This indicates a high strain specificity of preadaptation. Results from previous studies suggested that biofilm formation could enhance the survival of human pathogens in various environments and might contribute to enhanced survival on plants. In vitro biofilm assays with several Salmonella strains revealed a strain-specific effect of LM on the biofilm formation. While LM significantly improved the biofilm formation of S. Senftenberg, the biofilm formation of LT2 was better in LB. This indicates that the better survival of LM-pregrown LT2 in soil was not linked to an improved ability to form biofilms but was likely due to other factors. Most importantly, this study showed that the medium used to pregrow Salmonella can influence its survival in soil and its biofilm formation which might influence the fate of Salmonella in soil.

  3. Evaluation of the use of selective PCR amplification of LPS biosynthesis genes for molecular typing of leptospira at the serovar level

    NARCIS (Netherlands)

    Bezerra da Silva, Josefa; Carvalho, Eneas; Hartskeerl, Rudy A.; Ho, Paulo L.

    2011-01-01

    Leptospirosis is an important epidemic zoonosis worldwide. Currently, there are more than 250 Leptospira pathogenic serovars known that can potentially infect humans. Conventional classification of leptospires with the serovar as the basic taxon, based on serological recognition of

  4. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses.

    Directory of Open Access Journals (Sweden)

    Rizwana Tasmin

    Full Text Available Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B and Kentucky (SK222_32B recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP analysis identified 2,432 (ST19 SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152 SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was

  5. A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium

    Directory of Open Access Journals (Sweden)

    Wang Ke-Chuan

    2012-06-01

    Full Text Available Abstract Background Salmonella enterica serotype Typhimurium produces surface-associated fimbriae that facilitate adherence of the bacteria to a variety of cells and tissues. Type 1 fimbriae with binding specificity to mannose residues are the most commonly found fimbrial type. In vitro, static-broth culture favors the growth of S. Typhimurium with type 1 fimbriae, whereas non-type 1 fimbriate bacteria are obtained by culture on solid-agar media. Previous studies demonstrated that the phenotypic expression of type 1 fimbriae is the result of the interaction and cooperation of the regulatory genes fimZ, fimY, fimW, and fimU within the fim gene cluster. Genome sequencing revealed a novel gene, stm0551, located between fimY and fimW that encodes an 11.4-kDa putative phosphodiesterase specific for the bacterial second messenger cyclic-diguanylate monophosphate (c-di-GMP. The role of stm0551 in the regulation of type 1 fimbriae in S. Typhimurium remains unclear. Results A stm0551-deleted stain constructed by allelic exchange constitutively produced type 1 fimbriae in both static-broth and solid-agar medium conditions. Quantative RT-PCR revealed that expression of the fimbrial major subunit gene, fimA, and one of the regulatory genes, fimZ, were comparably increased in the stm0551-deleted strain compared with those of the parental strain when grown on the solid-agar medium, a condition that normally inhibits expression of type 1 fimbriae. Following transformation with a plasmid possessing the coding sequence of stm0551, expression of fimA and fimZ decreased in the stm0551 mutant strain in both culture conditions, whereas transformation with the control vector pACYC184 relieved this repression. A purified STM0551 protein exhibited a phosphodiesterase activity in vitro while a point mutation in the putative EAL domain, substituting glutamic acid (E with alanine (A, of STM0551 or a FimY protein abolished this activity. Conclusions The finding that the

  6. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  7. Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars

    Science.gov (United States)

    Andino, A.; Hanning, I.

    2015-01-01

    Data indicate that prevalence of specific serovars of Salmonella enterica in human foodborne illness is not correlated with their prevalence in feed. Given that feed is a suboptimal environment for S. enterica, it appears that survival in poultry feed may be an independent factor unrelated to virulence of specific serovars of Salmonella. Additionally, S. enterica serovars appear to have different host specificity and the ability to cause disease in those hosts is also serovar dependent. These differences among the serovars may be related to gene presence or absence and expression levels of those genes. With a better understanding of serovar specificity, mitigation methods can be implemented to control Salmonella at preharvest and postharvest levels. PMID:25664339

  8. Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars

    Directory of Open Access Journals (Sweden)

    A. Andino

    2015-01-01

    Full Text Available Data indicate that prevalence of specific serovars of Salmonella enterica in human foodborne illness is not correlated with their prevalence in feed. Given that feed is a suboptimal environment for S. enterica, it appears that survival in poultry feed may be an independent factor unrelated to virulence of specific serovars of Salmonella. Additionally, S. enterica serovars appear to have different host specificity and the ability to cause disease in those hosts is also serovar dependent. These differences among the serovars may be related to gene presence or absence and expression levels of those genes. With a better understanding of serovar specificity, mitigation methods can be implemented to control Salmonella at preharvest and postharvest levels.

  9. Independent inactivation of arginine decarboxylase genes by nonsense and missense mutations led to pseudogene formation in Chlamydia trachomatis serovar L2 and D strains

    Directory of Open Access Journals (Sweden)

    Graham David E

    2009-07-01

    Full Text Available Abstract Background Chlamydia have reduced genomes that reflect their obligately parasitic lifestyle. Despite their different tissue tropisms, chlamydial strains share a large number of common genes and have few recognized pseudogenes, indicating genomic stability. All of the Chlamydiaceae have homologs of the aaxABC gene cluster that encodes a functional arginine:agmatine exchange system in Chlamydia (Chlamydophilapneumoniae. However, Chlamydia trachomatis serovar L2 strains have a nonsense mutation in their aaxB genes, and C. trachomatis serovar A and B strains have frameshift mutations in their aaxC homologs, suggesting that relaxed selection may have enabled the evolution of aax pseudogenes. Biochemical experiments were performed to determine whether the aaxABC genes from C. trachomatis strains were transcribed, and mutagenesis was used to identify nucleotide substitutions that prevent protein maturation and activity. Molecular evolution techniques were applied to determine the relaxation of selection and the scope of aax gene inactivation in the Chlamydiales. Results The aaxABC genes were co-transcribed in C. trachomatis L2/434, during the mid-late stage of cellular infection. However, a stop codon in the aaxB gene from this strain prevented the heterologous production of an active pyruvoyl-dependent arginine decarboxylase. Replacing that ochre codon with its ancestral tryptophan codon rescued the activity of this self-cleaving enzyme. The aaxB gene from C. trachomatis D/UW-3 was heterologously expressed as a proenzyme that failed to cleave and form the catalytic pyruvoyl cofactor. This inactive protein could be rescued by replacing the arginine-115 codon with an ancestral glycine codon. The aaxC gene from the D/UW-3 strain encoded an active arginine:agmatine antiporter protein, while the L2/434 homolog was unexpectedly inactive. Yet the frequencies of nonsynonymous versus synonymous nucleotide substitutions show no signs of relaxed

  10. Virulence-associated genes, antimicrobial resistance and molecular typing of Salmonella Typhimurium strains isolated from swine from 2000 to 2012 in Brazil.

    Science.gov (United States)

    Almeida, F; Medeiros, M I C; Kich, J D; Falcão, J P

    2016-06-01

    The aims of this study were to assess the pathogenic potential, antimicrobial resistance and genotypic diversity of Salmonella Typhimurium strains isolated in Brazil from swine (22) and the surrounding swine environment (5) from 2000 to 2012 and compare them to the profiles of 43 human strains isolated from 1983 to 2010, which had been previously studied. The presence of 12 SPI-1, SPI-2 and plasmid genes was assessed by PCR, the antimicrobial susceptibility to 13 antimicrobials was determined by the disc diffusion assay and genotyping was performed using pulsed-field gel electrophoresis (PFGE), multiple-locus variable-number of tandem repeats analysis (MLVA) and ERIC-PCR. More than 77·8% of the swine strains carried 10 or more of the virulence markers. Ten (37%) strains isolated from swine were multi-drug resistant (MDR). All the molecular typing techniques grouped the strains in two main clusters. Some strains isolated from swine and humans were allocated together in the PFGE-B2, MLVA-A1, MLVA-B and ERIC-A1 clusters. The genotyping results suggest that some strains isolated from swine and humans may descend from a common subtype and may indicate a possible risk of MDR S. Typhimurium with high frequency of virulence genes isolated from swine to contaminate humans in Brazil. This study provided new information about the pathogenic potential, antimicrobial resistance and genotypic diversity of S. Typhimurium isolates from swine origin in Brazil, the fourth largest producer of pigs worldwide. © 2016 The Society for Applied Microbiology.

  11. Antimicrobial susceptibility and serovars of Salmonella from chickens and humans in Ibadan, Nigeria

    DEFF Research Database (Denmark)

    Fashae, K; Ogunsola, F; Aarestrup, Frank Møller

    2010-01-01

    BACKGROUND: This study determines the prevalence and antibiotic resistance of Salmonella serovars from humans and chickens in Ibadan, Nigeria, in 2004-2007. METHODOLOGY: A total of 991 blood samples were collected from patients in 2004 to 2005 and 641 fecal samples were collected from poultry farms......% were (S. Typhi). The majority of serovars from humans were S. Enteritidis (33%), S. Dublin (18%), and S. Typhimurium (18%). Resistance to chloramphenicol, sulfamethoxazole, trimethoprim, and ampicillin ranged from 36% to 59% for the human isolates. Eight different serovars were obtained from chickens...

  12. Salmonella Typhimurium undergoes distinct genetic adaption during chronic infections of mice

    DEFF Research Database (Denmark)

    Søndberg, Emilie; Jelsbak, Lotte

    2016-01-01

    Background Typhoid fever caused by Salmonella enterica serovar Typhi (S. Typhi) is a severe systemic human disease and endemic in regions of the world with poor drinking water quality and sewage treatment facilities. A significant number of patients become asymptomatic life-long carriers of S....... Typhi and serve as the reservoir for the disease. The specific mechanisms and adaptive strategies enabling S. Typhi to survive inside the host for extended periods are incompletely understood. Yet, elucidation of these processes is of major importance for improvement of therapeutic strategies...... been transmitted to the other two mice. Re-infection with this clone confirmed that it is superior to the wild type for intestinal colonisation. Conclusions During 4 to 6 weeks of chronic infections, S. Typhimurium acquired distinct SNPs in known regulators of metabolic and virulence genes. One SNP...

  13. Colicinogeny in Salmonella serovars isolated in Brazil

    Directory of Open Access Journals (Sweden)

    Leila Carvalho Campos

    1988-06-01

    Full Text Available A study of colicinogeny was made in 748 strains of Salmonella (97 serovars isolated from different sources; human (291, animal (119, environmental (141, food (102 and animal feed (95. Colicin production was detected in 64 strains (8.6%, particularly isolated from foods (30.4%. Col. E1 (53 and Ia (44 were the most frequently observed, especially in S. agona for environment and food sources. Col V production was identified in 5 strains of S. typhimurium within 8 producer cultures isolated from humans. Its relationship with the sources and serovars of Salmonella are discussed.Investigou-se a produção de colicina em 748 amostras de Salmonella (97 sorovares advindas de díferentes fontes: humana (291, animal (119, ambiental (141, de alimentos (102 e rações (95. Detectaram-se 64 amostras (8,6% colicinogênicas, particularmente isoladas de alimentos (30,4%. ColE1 (53 e Ia (44 foram as mais freqüentes, especialmente no sorovar S, agona, de origem ambiental e de alimentos. Identificou-se também a produção de col V em 5 amostras de S. typhimurium dentre 8 culturas produtoras de origem humana. Discute-se a relação entre a capacidade colicinogênica e as fontes e sorovares de Salmonella.

  14. [Construction and expression of recombinant Mycobacterium bovis BCG with the ompA-like membrane protein gene Loa22 of Leptospira interrogans serovar].

    Science.gov (United States)

    Li, Dao-kun; Bao, Lang; Zhang, Ying; Sun, Zhan

    2010-03-01

    To study the immunity of Loa22 from Leptospira interrogans serovar Lai strain 56601 by expressing its protein in BCG. Amplified the mature peptide of Loa22 gene from the genome of of Leptospira interrogans serovar Lai strain 56601 and constructed recombinant plasmid rpMV36l-1oa22 with the E. coli-BCG integrating shuttle plasmid pMV361 and the Loa22 mature peptide gene. The rpMV36l-1oa22 plasmid was transformed into BCG by electroporation. The rBCG bearing rpMV36l-1oa22 was induced by high temperature of 45 degrees C and expressed protein was identified by SDS-PAGE and Western Blotting. Fifth 6-week-old BALB/c mice were randomly divided into five groups, which were inoculated intraperitoneally two times at 0-day and 21-day with BCG, rBCG-pMV361, rI3CG-1oa22, Loa22 and killed whole-leptospires respectively. All animals were dislocated from cervical vertebra on the 14Ih day after the last immunization. The proliferative reaction of splenic lymphocyte in tuitro were tested by XTT. The rpMV36l-1oa22 plasmid was constructed successfully and transformed into BCG. The rBCG expressed a 19 X io specifical protein identified by SDS-PAGE and Western Blotting. The splenic lymphocyte proliferate activity (SI) in rBCG-ioa22 group in intro was significantly higher than those in BCG group and rBCG-pMV361 group. We explored the expressing feasibility of Loa22 in Mycobacterium bovis BCG. may therefore make further researches on the induction of protective immunity against human and animal leptospirosis.

  15. Genomic characterisation of invasive non-typhoidal Salmonella enterica Subspecies enterica Serovar Bovismorbificans isolates from Malawi.

    Directory of Open Access Journals (Sweden)

    Christina Bronowski

    2013-11-01

    Full Text Available Invasive Non-typhoidal Salmonella (iNTS are an important cause of bacteraemia in children and HIV-infected adults in sub-Saharan Africa. Previous research has shown that iNTS strains exhibit a pattern of gene loss that resembles that of host adapted serovars such as Salmonella Typhi and Paratyphi A. Salmonella enterica serovar Bovismorbificans was a common serovar in Malawi between 1997 and 2004.We sequenced the genomes of 14 Malawian bacteraemia and four veterinary isolates from the UK, to identify genomic variations and signs of host adaptation in the Malawian strains.Whole genome phylogeny of invasive and veterinary S. Bovismorbificans isolates showed that the isolates are highly related, belonging to the most common international S. Bovismorbificans Sequence Type, ST142, in contrast to the findings for S. Typhimurium, where a distinct Sequence Type, ST313, is associated with invasive disease in sub-Saharan Africa. Although genome degradation through pseudogene formation was observed in ST142 isolates, there were no clear overlaps with the patterns of gene loss seen in iNTS ST313 isolates previously described from Malawi, and no clear distinction between S. Bovismorbificans isolates from Malawi and the UK. The only defining differences between S. Bovismorbificans bacteraemia and veterinary isolates were prophage-related regions and the carriage of a S. Bovismorbificans virulence plasmid (pVIRBov.iNTS S. Bovismorbificans isolates, unlike iNTS S. Typhiumrium isolates, are only distinguished from those circulating elsewhere by differences in the mobile genome. It is likely that these strains have entered a susceptible population and are able to take advantage of this niche. There are tentative signs of convergent evolution to a more human adapted iNTS variant. Considering its importance in causing disease in this region, S. Bovismorbificans may be at the beginning of this process, providing a reference against which to compare changes that may

  16. Serovars of Salmonella isolated from Danish turkeys between 1995 and 2000 and their antimicrobial resistance

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hansen, H.C.; Jørgensen, J.C.

    2002-01-01

    , florfenicol, or amoxycillin with clavulanic acid, only 24 isolates were resistant to two or more compounds in various combinations of up to six compounds; one Salmonella Havana isolate was resistant to six compounds. Six isolates were serovar Typhimurium, but none of them belonged to phage type DT104....

  17. Genome-Scale Co-Expression Network Comparison across Escherichia coli and Salmonella enterica Serovar Typhimurium Reveals Significant Conservation at the Regulon Level of Local Regulators Despite Their Dissimilar Lifestyles

    Science.gov (United States)

    Zarrineh, Peyman; Sánchez-Rodríguez, Aminael; Hosseinkhan, Nazanin; Narimani, Zahra; Marchal, Kathleen; Masoudi-Nejad, Ali

    2014-01-01

    Availability of genome-wide gene expression datasets provides the opportunity to study gene expression across different organisms under a plethora of experimental conditions. In our previous work, we developed an algorithm called COMODO (COnserved MODules across Organisms) that identifies conserved expression modules between two species. In the present study, we expanded COMODO to detect the co-expression conservation across three organisms by adapting the statistics behind it. We applied COMODO to study expression conservation/divergence between Escherichia coli, Salmonella enterica, and Bacillus subtilis. We observed that some parts of the regulatory interaction networks were conserved between E. coli and S. enterica especially in the regulon of local regulators. However, such conservation was not observed between the regulatory interaction networks of B. subtilis and the two other species. We found co-expression conservation on a number of genes involved in quorum sensing, but almost no conservation for genes involved in pathogenicity across E. coli and S. enterica which could partially explain their different lifestyles. We concluded that despite their different lifestyles, no significant rewiring have occurred at the level of local regulons involved for instance, and notable conservation can be detected in signaling pathways and stress sensing in the phylogenetically close species S. enterica and E. coli. Moreover, conservation of local regulons seems to depend on the evolutionary time of divergence across species disappearing at larger distances as shown by the comparison with B. subtilis. Global regulons follow a different trend and show major rewiring even at the limited evolutionary distance that separates E. coli and S. enterica. PMID:25101984

  18. Genome-wide screen for salmonella genes required for long-term systemic infection of the mouse.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available A microarray-based negative selection screen was performed to identify Salmonella enterica serovar Typhimurium (serovar Typhimurium genes that contribute to long-term systemic infection in 129X1/SvJ (Nramp1(r mice. A high-complexity transposon-mutagenized library was used to infect mice intraperitoneally, and the selective disappearance of mutants was monitored after 7, 14, 21, and 28 d postinfection. One hundred and eighteen genes were identified to contribute to serovar Typhimurium infection of the spleens of mice by 28 d postinfection. The negatively selected mutants represent many known aspects of Salmonella physiology and pathogenesis, although the majority of the identified genes are of putative or unknown function. Approximately 30% of the negatively selected genes correspond to horizontally acquired regions such as those within Salmonella pathogenicity islands (SPI 1-5, prophages (Gifsy-1 and -2 and remnant, and the pSLT virulence plasmid. In addition, mutations in genes responsible for outer membrane structure and remodeling, such as LPS- and PhoP-regulated and fimbrial genes, were also selected against. Competitive index experiments demonstrated that the secreted SPI2 effectors SseK2 and SseJ as well as the SPI4 locus are attenuated relative to wild-type bacteria during systemic infection. Interestingly, several SPI1-encoded type III secretion system effectors/translocases are required by serovar Typhimurium to establish and, unexpectedly, to persist systemically, challenging the present description of Salmonella pathogenesis. Moreover, we observed a progressive selection against serovar Typhimurium mutants based upon the duration of the infection, suggesting that different classes of genes may be required at distinct stages of infection. Overall, these data indicate that Salmonella long-term systemic infection in the mouse requires a diverse repertoire of virulence factors. This diversity of genes presumably reflects the fact that

  19. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007.

    Science.gov (United States)

    Hendriksen, Rene S; Vieira, Antonio R; Karlsmose, Susanne; Lo Fo Wong, Danilo M A; Jensen, Arne B; Wegener, Henrik C; Aarestrup, Frank M

    2011-08-01

    Salmonella enterica is commonly acquired from contaminated food and is an important cause of illness worldwide. Interventions are needed to control Salmonella; subtyping Salmonella by serotyping is useful for targeting such interventions. We, therefore, analyzed the global distribution of the 15 most frequently identified serovars of Salmonella isolated from humans from 2001 to 2007 in laboratories from 37 countries that participated in World Health Organization Global Foodborne Infections Network and demonstrated serotyping proficiency in the Global Foodborne Infections Network External Quality Assurance System. In all regions throughout the study period, with the exception of the Oceania and North American regions, Salmonella serovars Enteritidis and Typhimurium ranked as the most common and second most common serovar, respectively. In the North American and Oceania (Australia and New Zealand) regions, Salmonella serovar Typhimurium was the most common serovar reported, and Salmonella serovar Enteritidis was the second most common serovar. During the study period, the proportion of Salmonella isolates reported from humans that were Salmonella serovar Enteritidis was 43.5% (range: 40.6% [2007] to 44.9% [2003]), and Salmonella serovar Typhimurium was 17.1% (range: 15% [2007] to 18.9% [2001]). Salmonella serovars Newport (mainly observed in Latin and North American and European countries), Infantis (dominating in all regions), Virchow (mainly observed in Asian, European, and Oceanic countries), Hadar (profound in European countries), and Agona (intense in Latin and North American and European countries) were also frequently isolated with an overall proportion of 3.5%, 1.8%, 1.5%, 1.5%, and 0.8%, respectively. There were large differences in the most commonly isolated serovars between regions, but lesser differences between countries within the same region. The results also highlight the complexity of the global epidemiology of Salmonella and the need and importance

  20. Identification of a novel prophage-like gene cluster actively expressed in both virulent and avirulent strains of Leptospira interrogans serovar Lai.

    Science.gov (United States)

    Qin, Jin-Hong; Zhang, Qing; Zhang, Zhi-Ming; Zhong, Yi; Yang, Yang; Hu, Bao-Yu; Zhao, Guo-Ping; Guo, Xiao-Kui

    2008-06-01

    DNA microarray analysis was used to compare the differential gene expression profiles between Leptospira interrogans serovar Lai type strain 56601 and its corresponding attenuated strain IPAV. A 22-kb genomic island covering a cluster of 34 genes (i.e., genes LA0186 to LA0219) was actively expressed in both strains but concomitantly upregulated in strain 56601 in contrast to that of IPAV. Reverse transcription-PCR assays proved that the gene cluster comprised five transcripts. Gene annotation of this cluster revealed characteristics of a putative prophage-like remnant with at least 8 of 34 sequences encoding prophage-like proteins, of which the LA0195 protein is probably a putative prophage CI-like regulator. The transcription initiation activities of putative promoter-regulatory sequences of transcripts I, II, and III, all proximal to the LA0195 gene, were further analyzed in the Escherichia coli promoter probe vector pKK232-8 by assaying the reporter chloramphenicol acetyltransferase (CAT) activities. The strong promoter activities of both transcripts I and II indicated by the E. coli CAT assay were well correlated with the in vitro sequence-specific binding of the recombinant LA0195 protein to the corresponding promoter probes detected by the electrophoresis mobility shift assay. On the other hand, the promoter activity of transcript III was very low in E. coli and failed to show active binding to the LA0195 protein in vitro. These results suggested that the LA0195 protein is likely involved in the transcription of transcripts I and II. However, the identical complete DNA sequences of this prophage remnant from these two strains strongly suggests that possible regulatory factors or signal transduction systems residing outside of this region within the genome may be responsible for the differential expression profiling in these two strains.

  1. Multidrug-Resistant Salmonella enterica Serovar Muenchen from Pigs and Humans and Potential Interserovar Transfer of Antimicrobial Resistance

    OpenAIRE

    Gebreyes, Wondwossen A.; Thakur, Siddhartha

    2005-01-01

    Salmonella serovars are important reservoirs of antimicrobial resistance. Recently, we reported on multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium strains among pigs with resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (resistance [R] type AKSSuT) and resistance to amoxicillin-clavulanic acid, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (R type AxACSSuT). In the present study, 67 isolates (39 from humans...

  2. Identification by PCR of non-typhoidal Salmonella enterica serovars associated with invasive infections among febrile patients in Mali.

    Directory of Open Access Journals (Sweden)

    Sharon M Tennant

    2010-03-01

    Full Text Available In sub-Saharan Africa, non-typhoidal Salmonella (NTS are emerging as a prominent cause of invasive disease (bacteremia and focal infections such as meningitis in infants and young children. Importantly, including data from Mali, three serovars, Salmonella enterica serovar Typhimurium, Salmonella Enteritidis and Salmonella Dublin, account for the majority of non-typhoidal Salmonella isolated from these patients.We have extended a previously developed series of polymerase chain reactions (PCRs based on O serogrouping and H typing to identify Salmonella Typhimurium and variants (mostly I 4,[5],12:i:-, Salmonella Enteritidis and Salmonella Dublin. We also designed primers to detect Salmonella Stanleyville, a serovar found in West Africa. Another PCR was used to differentiate diphasic Salmonella Typhimurium and monophasic Salmonella Typhimurium from other O serogroup B, H:i serovars. We used these PCRs to blind-test 327 Salmonella serogroup B and D isolates that were obtained from the blood cultures of febrile patients in Bamako, Mali.We have shown that when used in conjunction with our previously described O-serogrouping PCR, our PCRs are 100% sensitive and specific in identifying Salmonella Typhimurium and variants, Salmonella Enteritidis, Salmonella Dublin and Salmonella Stanleyville. When we attempted to differentiate 171 Salmonella Typhimurium (I 4,[ 5],12:i:1,2 strains from 52 monophasic Salmonella Typhimurium (I 4,[5],12:i:- strains, we were able to correctly identify 170 of the Salmonella Typhimurium and 51 of the Salmonella I 4,[5],12:i:- strains.We have described a simple yet effective PCR method to support surveillance of the incidence of invasive disease caused by NTS in developing countries.

  3. Phage typing or CRISPR typing for epidemiological surveillance of Salmonella Typhimurium?

    Science.gov (United States)

    Mohammed, Manal

    2017-11-07

    Salmonella Typhimurium is the most dominant Salmonella serovar around the world. It is associated with foodborne gastroenteritis outbreaks but has recently been associated with invasive illness and deaths. Characterization of S. Typhimurium is therefore very crucial for epidemiological surveillance. Phage typing has been used for decades for subtyping of S. Typhimurium to determine the epidemiological relation among isolates. Recent studies however have suggested that high throughput clustered regular interspaced short palindromic repeats (CRISPR) typing has the potential to replace phage typing. This study aimed to determine the efficacy of high-throughput CRISPR typing over conventional phage typing in epidemiological surveillance and outbreak investigation of S. Typhimurium. In silico analysis of whole genome sequences (WGS) of well-documented phage types of S. Typhimurium reveals the presence of different CRISPR type among strains belong to the same phage type. Furthermore, different phage types of S. Typhimurium share identical CRISPR type. Interestingly, identical spacers were detected among outbreak and non-outbreak associated DT8 strains of S. Typhimurium. Therefore, CRISPR typing is not useful for the epidemiological surveillance and outbreak investigation of S. Typhimurium and phage typing, until it is replaced by WGS, is still the gold standard method for epidemiological surveillance of S. Typhimurium.

  4. Count of splenic stromal precursor cells in mice and expression of cytokine genes in these cells in primary cultures during different periods after immunization of animals with S. typhimurium antigens.

    Science.gov (United States)

    Gorskaya, Yu F; Danilova, T A; Mezentseva, M V; Shapoval, I M; Narovlyanskii, A N; Nesterenko, V G

    2011-06-01

    Injection of S. typhimurium antigens significantly (9-fold) increased cloning efficiency and, hence, the content of stromal precursor cells in the spleen as soon as after 24 h. These parameters returned to normal by days 6-15 after immunization. Cultured splenocytes collected from immune (but not intact) animals expressed the genes of proinflammatory cytokines IL-1β (on days 1, 6, 15) and IL-6 (on days 1 and 6), TNF-α (on days 6 and 15), and of IFN-α and IL-18 (on days 6 and 15). The expression of IL-4 gene was suppressed on day 6 after immunization, of IL-10 gene on days 1 and 6, of IL-6 gene on day 15. Hence, no signs of immune response suppression by stromal cells were found in this system. The spectrum and dynamics of the expression of pro- and anti-inflammatory cytokine genes in stromal cell cultures from the spleen of immunized mice seemed to correspond to those needed for support of the immune response to S. typhimurium antigens, observed in immunized animals. The results indicate possible involvement of stromal cells in the realization of immune response in vivo. The increase of stromal precursor cells cloning efficiency in response to antigen injection could not be reproduced in vitro: the presence of S. typhimurium antigens in primary cultures of intact mouse bone marrow and spleen throughout the entire period of culturing ≈ 20-fold reduced cloning efficiency in cultures.

  5. Subtyping Salmonella enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs).

    Science.gov (United States)

    Liu, Fenyun; Kariyawasam, Subhashinie; Jayarao, Bhushan M; Barrangou, Rodolphe; Gerner-Smidt, Peter; Ribot, Efrain M; Knabel, Stephen J; Dudley, Edward G

    2011-07-01

    Salmonella enterica subsp. enterica serovar Enteritidis is a major cause of food-borne salmonellosis in the United States. Two major food vehicles for S. Enteritidis are contaminated eggs and chicken meat. Improved subtyping methods are needed to accurately track specific strains of S. Enteritidis related to human salmonellosis throughout the chicken and egg food system. A sequence typing scheme based on virulence genes (fimH and sseL) and clustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-including multi-virulence-locus sequence typing (designated CRISPR-MVLST)-was used to characterize 35 human clinical isolates, 46 chicken isolates, 24 egg isolates, and 63 hen house environment isolates of S. Enteritidis. A total of 27 sequence types (STs) were identified among the 167 isolates. CRISPR-MVLST identified three persistent and predominate STs circulating among U.S. human clinical isolates and chicken, egg, and hen house environmental isolates in Pennsylvania, and an ST that was found only in eggs and humans. It also identified a potential environment-specific sequence type. Moreover, cluster analysis based on fimH and sseL identified a number of clusters, of which several were found in more than one outbreak, as well as 11 singletons. Further research is needed to determine if CRISPR-MVLST might help identify the ecological origins of S. Enteritidis strains that contaminate chickens and eggs.

  6. Simultaneous oral administration of Salmonella Infantis and S. Typhimurium in chicks.

    Science.gov (United States)

    Murakami, Koichi; Maeda-Mitani, Eriko; Onozuka, Daisuke; Noda, Tamie; Sera, Nobuyuki; Kimura, Hirokazu; Fujimoto, Shuji; Murakami, Satoshi

    2017-01-01

    To confirm the hypothesis that Salmonella enterica subspecies enterica serovar ( S. ) Infantis has higher basic reproductive rates in chicks compared with other Salmonella serovars, 1-day-old specific-pathogen-free chicks ( n  = 8) were challenged simultaneously with S. Infantis and S. Typhimurium per os . Challenged chicks (Group A) were then housed with non-infected chicks (Group B, n  = 4) for 6 days (from 2 to 8 days of age). Group B birds were then housed with other non-infected birds (Group C, n  = 4), which were then transferred to cages containing a further group of untreated chicks (Group D, n  = 2). A control group consisting of four non-infected chicks was used for comparison. All chickens were humanely sacrificed at 18 days of age, and Salmonella from bowel and liver samples were enumerated. Both serovars were isolated from all groups except the control group. S. Typhimurium was isolated at a greater frequency than S. Infantis from the bowel samples of chicks from Groups B, C and D, while no differences in colonisation rates were observed between the two serovars in liver samples from Groups B, C and D. S. Typhimurium, but not S. Infantis, was immunohistochemically detected in the lamina propria of the cecum and rectum in five birds of Group A. Despite the competitive administration, neither of the two serovars completely excluded the other, and no differences were observed in basic reproductive rates between the two serovars. These findings, together with data from previous studies, suggest that the initial quantitative domination of S. Infantis in chicken flocks may explain why this serovar is predominant in broiler chickens.

  7. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei Attenuate Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium Colonization and Virulence Gene Expression In Vitro.

    Science.gov (United States)

    Muyyarikkandy, Muhammed Shafeekh; Amalaradjou, Mary Anne

    2017-11-09

    Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), and Salmonella Heidelberg (SH) have been responsible for numerous outbreaks associated with the consumption of poultry meat and eggs. Salmonella colonization in chicken is characterized by initial attachment to the cecal epithelial cells (CEC) followed by dissemination to the liver, spleen, and oviduct. Since cecal colonization is critical to Salmonella transmission along the food chain continuum, reducing this intestinal association could potentially decrease poultry meat and egg contamination. Hence, this study investigated the efficacy of Lactobacillus delbreuckii sub species bulgaricus (NRRL B548; LD), Lactobacillus paracasei (DUP-13076; LP), and Lactobacillus rhamnosus (NRRL B442; LR) in reducing SE, ST, and SH colonization in CEC and survival in chicken macrophages. Additionally, their effect on expression of Salmonella virulence genes essential for cecal colonization and survival in macrophages was evaluated. All three probiotics significantly reduced Salmonella adhesion and invasion in CEC and survival in chicken macrophages ( p < 0.05). Further, the probiotic treatment led to a significant reduction in Salmonella virulence gene expression ( p < 0.05). Results of the study indicate that LD, LP, and LR could potentially be used to control SE, ST, and SH colonization in chicken. However, these observations warrant further in vivo validation.

  8. Lactobacillus bulgaricus, Lactobacillus rhamnosus and Lactobacillus paracasei Attenuate Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium Colonization and Virulence Gene Expression In Vitro

    Directory of Open Access Journals (Sweden)

    Muhammed Shafeekh Muyyarikkandy

    2017-11-01

    Full Text Available Salmonella Enteritidis (SE, Salmonella Typhimurium (ST, and Salmonella Heidelberg (SH have been responsible for numerous outbreaks associated with the consumption of poultry meat and eggs. Salmonella colonization in chicken is characterized by initial attachment to the cecal epithelial cells (CEC followed by dissemination to the liver, spleen, and oviduct. Since cecal colonization is critical to Salmonella transmission along the food chain continuum, reducing this intestinal association could potentially decrease poultry meat and egg contamination. Hence, this study investigated the efficacy of Lactobacillus delbreuckii sub species bulgaricus (NRRL B548; LD, Lactobacillus paracasei (DUP-13076; LP, and Lactobacillus rhamnosus (NRRL B442; LR in reducing SE, ST, and SH colonization in CEC and survival in chicken macrophages. Additionally, their effect on expression of Salmonella virulence genes essential for cecal colonization and survival in macrophages was evaluated. All three probiotics significantly reduced Salmonella adhesion and invasion in CEC and survival in chicken macrophages (p < 0.05. Further, the probiotic treatment led to a significant reduction in Salmonella virulence gene expression (p < 0.05. Results of the study indicate that LD, LP, and LR could potentially be used to control SE, ST, and SH colonization in chicken. However, these observations warrant further in vivo validation.

  9. Isolation and characterization of Salmonella typhimurium glyoxylate shunt mutants.

    OpenAIRE

    Wilson, R B; Maloy, S R

    1987-01-01

    Growth of Salmonella typhimurium on acetate as a sole carbon source requires expression of the glyoxylate shunt; however, the genes for the glyoxylate shunt enzymes have not been previously identified in S. typhimurium. In this study, we isolated transposon insertions in the genes for the two unique enzymes of this pathway, aceA (isocitrate lyase) and aceB (malate synthase). The aceA and aceB genes were located at 89.5 min on the S. typhimurium genetic map. Genetic linkage to nearby loci indi...

  10. Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses

    Directory of Open Access Journals (Sweden)

    Bao-Hong Liu

    2017-01-01

    Full Text Available Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA and differential coexpression analysis (DCEA to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs and 2,856 differentially coexpressed genes (DCGs were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection.

  11. Effects of propolis from Brazil and Bulgaria on Salmonella serovars

    Directory of Open Access Journals (Sweden)

    R. O. Orsi

    2007-01-01

    Full Text Available Propolis shows biological properties such as antibacterial action. This bee product has a complex chemical composition, which depends on the local flora where it is produced. Salmonella serovars are responsible for human diseases that range from localized gastroenteritis to systemic infections. The aim of the present study was to investigate the susceptibility of Salmonella strains, isolated from food and infectious processes, to the antibacterial action of Brazilian and Bulgarian propolis, as well as to determine the behavior of these bacteria, according to the incubation period, in medium plus propolis. Dilution of ethanolic extract of propolis in agar was the used method. Brazilian and Bulgarian propolis showed an antibacterial action against all Salmonella serovars. The minimal inhibitory concentrations (MIC of propolis were similar, although they were collected in different geographic regions. Salmonella typhimurium, isolated from human infection, was more resistant to propolis than Salmonella enteritidis.

  12. Listeria monocytogenes serovar 4a is a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua.

    Science.gov (United States)

    Chen, Jianshun; Jiang, Lingli; Chen, Xueyan; Luo, Xiaokai; Chen, Yang; Yu, Ying; Tian, Guoming; Liu, Dongyou; Fang, Weihuan

    2009-03-01

    The genus Listeria consists of six closely related species and forms three phylogenetic groups: L. monocytogenes- L. innocua, L. ivanovii-L. seeligeri-L. welshimeri, and L. grayi. In this report, we attempted to examine the evolutionary relationship in the L. monocytogenes-L. innocua group by probing the nucleotide sequences of 23S rRNA and 16S rRNA, and the gene clusters lmo0029-lmo0042, ascBdapE, rplS-infC, and prs-ldh in L. monocytogenes serovars 1/2a, 4a, and 4b, and L. innocua. Additionally, we assessed the status of L. monocytogenes-specific inlA and inlB genes and 10 L. innocua-specific genes in these species/serovars, together with phenotypic characterization by using in vivo and in vitro procedures. The results indicate that L. monocytogenes serovar 4a strains are genetically similar to L. innocua in the lmo0035-lmo0042, ascB-dapE, and rplS-infC regions and also possess L. innocua-specific genes lin0372 and lin1073. Furthermore, both L. monocytogenes serovar 4a and L. innocua exhibit impaired intercellular spread ability and negligible pathogenicity in mouse model. On the other hand, despite resembling L. monocytogenes serovars 1/2a and 4b in having a nearly identical virulence gene cluster, and inlA and inlB genes, these serovar 4a strains differ from serovars 1/2a and 4b by harboring notably altered actA and plcB genes, displaying strong phospholipase activity and subdued in vivo and in vitro virulence. Thus, by possessing many genes common to L. monocytogenes serovars 1/2a and 4b, and sharing many similar gene deletions with L. innocua, L. monocytogenes serovar 4a represents a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua.

  13. Identification of Metabolic Pathways Essential for Fitness of Salmonella Typhimurium In Vivo

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Hartman, Hassan; Schroll, Casper

    2014-01-01

    Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut s...

  14. Biological effect of plutonium 239 on Salmonella typhimurium

    International Nuclear Information System (INIS)

    Gafieva, Z.A.; Chudin, V.A.

    1988-01-01

    Salmonella typhimurium cells were exposed in a 239 Pu citrate solution. Cell death and induction of gene mutations were an exponential fucntion of γ-radiation dose. LD 37 was 34.8 Gy; mutation doubling dose, 19 Gy

  15. Influence of Environmental Factors and Human Activity on the Presence of Salmonella Serovars in a Marine Environment

    Science.gov (United States)

    Martinez-Urtaza, Jaime; Saco, Montserrat; de Novoa, Jacobo; Perez-Piñeiro, Pelayo; Peiteado, Jesus; Lozano-Leon, Antonio; Garcia-Martin, Oscar

    2004-01-01

    The temporal and spatial distribution of Salmonella contamination in the coastal waters of Galicia (northwestern Spain) relative to contamination events with different environmental factors (temperature, wind, hours of sunlight, rainfall, and river flow) were investigated over a 4-year period. Salmonellae were isolated from 127 of 5,384 samples of molluscs and seawater (2.4%), and no significant differences (P < 0.05) between isolates obtained in different years were observed. The incidence of salmonellae was significantly higher in water column samples (2.9%) than in those taken from the marine benthos (0.7%). Of the 127 strains of Salmonella isolated, 20 different serovars were identified. Salmonella enterica serovar Senftenberg was the predominant serovar, being represented by 54 isolates (42.5%), followed by serovar Typhimurium (19 isolates [15%]) and serovar Agona (12 isolates [9.4%]). Serovar Senftenberg was detected at specific points on the coast and could not be related to any of the environmental parameters analyzed. All serovars except Salmonella serovar Senftenberg were found principally in the southern coastal areas close to the mouths of rivers, and their incidence was associated with high southwestern wind and rainfall. Using multiple logistic regression analysis models, the prevalence of salmonellae was best explained by environmental parameters on the day prior to sampling. Understanding this relationship may be useful for the control of molluscan shellfish harvests, with wind and rainfall serving as triggers for closure. PMID:15066800

  16. Salmonella Typhimurium ST213 is associated with two types of IncA/C plasmids carrying multiple resistance determinants.

    Science.gov (United States)

    Wiesner, Magdalena; Calva, Edmundo; Fernández-Mora, Marcos; Cevallos, Miguel A; Campos, Freddy; Zaidi, Mussaret B; Silva, Claudia

    2011-01-11

    Salmonella Typhimurium ST213 was first detected in the Mexican Typhimurium population in 2001. It is associated with a multi-drug resistance phenotype and a plasmid-borne blaCMY-2 gene conferring resistance to extended-spectrum cephalosporins. The objective of the current study was to examine the association between the ST213 genotype and blaCMY-2 plasmids. The blaCMY-2 gene was carried by an IncA/C plasmid. ST213 strains lacking the blaCMY-2 gene carried a different IncA/C plasmid. PCR analysis of seven DNA regions distributed throughout the plasmids showed that these IncA/C plasmids were related, but the presence and absence of DNA stretches produced two divergent types I and II. A class 1 integron (dfrA12, orfF and aadA2) was detected in most of the type I plasmids. Type I contained all the plasmids carrying the blaCMY-2 gene and a subset of plasmids lacking blaCMY-2. Type II included all of the remaining blaCMY-2-negative plasmids. A sequence comparison of the seven DNA regions showed that both types were closely related to IncA/C plasmids found in Escherichia, Salmonella, Yersinia, Photobacterium, Vibrio and Aeromonas. Analysis of our Typhimurium strains showed that the region containing the blaCMY-2 gene is inserted between traA and traC as a single copy, like in the E. coli plasmid pAR060302. The floR allele was identical to that of Newport pSN254, suggesting a mosaic pattern of ancestry with plasmids from other Salmonella serovars and E. coli. Only one of the tested strains was able to conjugate the IncA/C plasmid at very low frequencies (10-7 to 10-9). The lack of conjugation ability of our IncA/C plasmids agrees with the clonal dissemination trend suggested by the chromosomal backgrounds and plasmid pattern associations. The ecological success of the newly emerging Typhimurium ST213 genotype in Mexico may be related to the carriage of IncA/C plasmids. We conclude that types I and II of IncA/C plasmids originated from a common ancestor and that the

  17. Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes

    Science.gov (United States)

    Aims: Salmonella enterica serovar Enteritidis (S. Enteritidis) can encounter mild ethanol stress during its life cycle. However, adaptation to a stressful condition may affect bacterial resistance to subsequent stresses. Hence, this work was undertaken to investigate the influences of ethanol adapta...

  18. Polyamines are essential for virulence in Salmonella enterica serovar Gallinarum despite evolutionary decay of polyamine biosynthesis genes

    DEFF Research Database (Denmark)

    Schroll, Casper; Christensen, Jens P.; Christensen, Henrik

    2014-01-01

    . Typhi and S. Gallinarum and happened through independent events. The remaining polyamine biosynthesis pathway was found to be essential for oral infection with S. Gallinarum since single and double mutants in speB and speE, encoding the pathways from agmatine to putrescine and from putrescine...... to putrescine. The first pathway is not active in S. Gallinarum and S. Typhi, and this prompted us to investigate the importance of polyamines for virulence in S. Gallinarum. Bioinformatic analysis of all sequenced genomes of Salmonella revealed that pseudogene formation of the speC gene was exclusive for S...

  19. Salmonella Typhimurium metabolism affects virulence in the host – A mini-review

    DEFF Research Database (Denmark)

    Herrero-fresno, Ana; Olsen, John Elmerdhahl

    2018-01-01

    Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S....... Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly...

  20. Phenotypic and genotypic antimicrobial resistance and virulence genes of Salmonella enterica isolated from pet dogs and cats

    Science.gov (United States)

    Srisanga, Songsak; Angkititrakul, Sunpetch; Sringam, Patcharee; Le Ho, Phuong T.; Vo, An T. T.

    2017-01-01

    Salmonella enterica isolates (n = 122), including 32 serotypes from 113 dogs and 9 cats, were obtained from household dogs (n = 250) and cats (n = 50) during 2012–2015. The isolates were characterized by serotyping, antimicrobial resistance phenotyping and genotyping, and virulence gene screening. Serovars Weltevreden (15.6%) and Typhimurium (13.9%) were the most common. The majority (43%) of the isolates were multidrug resistant. The dog isolates (12.3%) harbored class 1 integrons, of which the dfrA12-aadA2 cassette was most frequent (66.7%). The only class integron in serovar Albany was located on a conjugative plasmid. Two ESBL-producing isolates (i.e., a serovar Krefeld and a serovar Enteritridis) carried blaTEM and blaCTX-M, and the blaTEM gene in both was horizontally transferred. Of the plasmid-mediated quinolone resistance genes tested, only qnrS (4.9%) was detected. Most Salmonella isolates harbored invA (100%), prgH (91.8%), and sipB (91%). Positive associations between resistance and virulence genes were observed for blaPSE-1/orgA, cmlA/spaN, tolC, and sul1/tolC (p resistance and virulence genes and that antimicrobial use in companion animals may select for the examined Salmonella virulence factors. PMID:27586467

  1. Identification of a repressor gene involved in the regulation of NAD de novo biosynthesis in Salmonella typhimurium.

    OpenAIRE

    Zhu, N; Olivera, B M; Roth, J R

    1988-01-01

    Mutations at the nadI locus affect expression of the first two genes of NAD synthesis, nadA and nadB, which are unlinked. Genetic data imply that the regulatory effects of nadI mutations are not due to indirect consequences of physiological alterations. Two types of mutations map in the nadI region. Common null mutations (nadI) show constitutive high-level expression of the nadB and nadA genes. Rare nadIs mutations cause constitutive low-level expression of nadB and nadA. Some nadIs mutations...

  2. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    Science.gov (United States)

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  3. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  4. The putative thiosulfate sulfurtransferases PspE and GlpE contribute to virulence of Salmonella Typhimurium in the mouse model of systemic disease.

    Directory of Open Access Journals (Sweden)

    Inke Wallrodt

    Full Text Available The phage-shock protein PspE and GlpE of the glycerol 3-phosphate regulon of Salmonella enterica serovar Typhimurium are predicted to belong to the class of thiosulfate sulfurtransferases, enzymes that traffic sulfur between molecules. In the present study we demonstrated that the two genes contribute to S. Typhimurium virulence, as a glpE and pspE double deletion strain showed significantly decreased virulence in a mouse model of systemic infection. However, challenge of cultured epithelial cells and macrophages did not reveal any virulence-associated phenotypes. We hypothesized that their contribution to virulence could be in sulfur metabolism or by contributing to resistance to nitric oxide, oxidative stress, or cyanide detoxification. In vitro studies demonstrated that glpE but not pspE was important for resistance to H2O2. Since the double mutant, which was the one affected in virulence, was not affected in this assay, we concluded that resistance to oxidative stress and the virulence phenotype was most likely not linked. The two genes did not contribute to nitric oxid stress, to synthesis of essential sulfur containing amino acids, nor to detoxification of cyanide. Currently, the precise mechanism by which they contribute to virulence remains elusive.

  5. Identification of metabolic pathways essential for fitness of Salmonella Typhimurium in vivo.

    Directory of Open Access Journals (Sweden)

    Lotte Jelsbak

    Full Text Available Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut sets predicted to be required for growth in vivo. We termed such cut sets synthetic auxotrophic pairs. We tested whether these would reveal possible combined targets for new antibiotics by analyzing the performance of selected single and double mutants in systemic mouse infections. One hundred and two cut sets were identified. Sixty-three of these included only pathways encoded by fully annotated genes, and from this sub-set we selected five cut sets involved in amino acid or polyamine biosynthesis. One cut set (asnA/asnB demonstrated redundancy in vitro and in vivo and showed that asparagine is essential for S. Typhimurium during infection. trpB/trpA as well as single mutants were attenuated for growth in vitro, while only the double mutant was a cut set in vivo, underlining previous observations that tryptophan is essential for successful outcome of infection. speB/speF,speC was not affected in vitro but was attenuated during infection showing that polyamines are essential for virulence apparently in a growth independent manner. The serA/glyA cut-set was found to be growth attenuated as predicted by the model. However, not only the double mutant, but also the glyA mutant, were found to be attenuated for virulence. This adds glycine production or conversion of glycine to THF to the list of essential reactions during infection. One pair (thrC/kbl showed true redundancy in vitro but not in vivo demonstrating that threonine is available to the bacterium during infection. These data add to the existing knowledge of available nutrients in the intra-host environment, and have identified possible new targets for antibiotics.

  6. Molecular characterization of Salmonella enterica serovar 4,[5],12:i:- DT193 ASSuT strains from two outbreaks in Italy

    DEFF Research Database (Denmark)

    Barco, Lisa; Ramon, Elena; Cortini, Enzo

    2014-01-01

    Abstract Salmonella enterica subsp. enterica serovar 4,[5],12:i:- DT193 is recognized as an emerging monophasic variant of Salmonella Typhimurium in many European countries. Resistance to ampicillin, streptomycin, sulphonamides, and tetracycline (R-type ASSuT) is described as one of the most comm...

  7. Identification of a umuDC locus in Salmonella typhimurium LT2

    International Nuclear Information System (INIS)

    Smith, C.M.; Eisenstadt, E.

    1989-01-01

    The umuDC operon of Escherichia coli is required for efficient mutagenesis by UV light and many other DNA-damaging agents. The existence of a umuDC analog in Salmonella typhimurium has been questioned. With DNA probes to the E. coli umuD and umuC genes, we detected, by Southern blot hybridization, sequences similar to both of these genes in S. typhimurium LT2. We also confirmed that the presence of cloned E. coli umuD enhances the UV mutability and resistance of S. typhimurium. Our data strongly suggest that S. typhimurium contains a functional umuDC operon

  8. Change in attachment of Salmonella Typhimurium, Yersinia enterocolitica, and Listeria monocytogenes to pork skin and muscle after hot water and lactic acid decontamination

    DEFF Research Database (Denmark)

    Morild, Rikke K.; Olsen, John E.; Aabo, Søren

    2011-01-01

    The attachment of Salmonella enterica subsp. enterica serovar Typhimurium, Yersinia enterocolitica, and Listeria monocytogenes to pig skin and muscle tissue decontaminated with 80°C water or 55°C, 1% lactic acid for 5 and 15s was investigated. Attachment properties differed between skin and muscle...

  9. Nucleotide sequence of the hexA gene for DNA mismatch repair in Streptococcus pneumoniae and homology of hexA to mutS of Escherichia coli and Salmonella typhimurium

    International Nuclear Information System (INIS)

    Priebe, S.D.; Hadi, S.M.; Greenberg, B.; Lacks, S.A.

    1988-01-01

    The Hex system of heteroduplex DNA base mismatch repair operates in Streptococcus pneumoniae after transformation and replication to correct donor and nascent DNA strands, respectively. A functionally similar system, called Mut, operates in Escherichia coli and Salmonella typhimurium. The nucleotide sequence of a 3.8-kilobase segment from the S. pneumoniae chromosome that includes the 2.7-kilobase hexA gene was determined. Chromosomal DNA used as donor to measure Hex phenotype was irradiated with UV light. An open reading frame that could encode a 17-kilodalton polypeptide (OrfC) was located just upstream of the gene encoding a polypeptide of 95 kilodaltons corresponding to HexA. Shine-Dalgarno sequences and putative promoters were identified upstream of each protein start site. Insertion mutations showed that only HexA functioned in mismatch repair and that the promoter for hexA transcription was located within the OrfC-coding region. The HexA polypeptide contains a consensus sequence for ATP- or GTP-binding sites in proteins. Comparison of the entire HexA protein sequence to that of MutS of S. typhimurium, showed the proteins to be homologous, inasmuch as 36% of their amino acid residues were identical. This homology indicates that the Hex and Mut systems of mismatch repair evolved from an ancestor common to the gram-positive streptococci and the gram-negative enterobacteria. It is the first direct evidence linking the two systems

  10. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    Science.gov (United States)

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  11. Antioxidant oils and Salmonella enterica Typhimurium reduce tumor in an experimental model of hepatic metastasis

    Directory of Open Access Journals (Sweden)

    Sorenson BS

    2011-05-01

    Full Text Available Brent S Sorenson, Kaysie L Banton, Lance B Augustin, Arnold S Leonard, Daniel A SaltzmanDepartment of Surgery, University of Minnesota Medical School, Minneapolis, MN, USAAbstract: Fruit seeds high in antioxidants have been shown to have anticancer properties and enhance host protection against microbial infection. Recently we showed that a single oral dose of Salmonella enterica serovar Typhimurium expressing a truncated human interleukin-2 gene (SalpIL2 is avirulent, immunogenic, and reduces hepatic metastases through increased natural killer cell populations in mice. To determine whether antioxidant compounds enhance the antitumor effect seen in SalpIL2-treated animals, we assayed black cumin (BC, black raspberry (BR, and milk thistle (MT seed oils for the ability to reduce experimental hepatic metastases in mice. In animals without tumor, BC and BR oil diets altered the kinetics of the splenic lymphocyte response to SalpIL2. Consistent with previous reports, BR and BC seed oils demonstrated independent antitumor properties and moderate adjuvant potential with SalpIL2. MT oil, however, inhibited the efficacy of SalpIL2 in our model. Based on these data, we conclude that a diet high in antioxidant oils promoted a more robust immune response to SalpIL2, thus enhancing its antitumor efficacy.Keywords: antioxidants, colorectal cancer, tumor models, metastasis

  12. Highly expressed amino acid biosynthesis genes revealed by global gene expression analysis of Salmonella enterica serovar Enteritidis during growth in whole egg are not essential for this growth

    DEFF Research Database (Denmark)

    Jakočiūnė, Dzuiga; Herrero-Fresno, Ana; Jelsbak, Lotte

    2016-01-01

    , di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino...

  13. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Van Parys Alexander

    2012-06-01

    Full Text Available Abstract Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  14. Antimicrobial Resistance Profiles of the Two Porcine Salmonella Typhimurium Isolates

    Directory of Open Access Journals (Sweden)

    Kemal METİNER

    2016-07-01

    Full Text Available The aim of the study is to detect the presence of the Salmonella species in swine with diarrhea, and to investigate their antimicrobial resistance and extended spectrum beta lactamase (ESBL and/or AmpC β-lactamase production. For this purpose, stool samples from three commercial pig farms in Istanbul and Tekirdag were collected and processed for Salmonella isolation by culture and isolates were identified by biochemical activity tests. Salmonella isolates were confirmed by PCR then serotyped. Antimicrobial resistance and ESBL and AmpC production of the isolates were determined according to the Clinical and Laboratory Standards Institute (CLSI standard. In the study, two hundred and thirty eight stool samples were examined. Salmonella spp. were obtained from 2 samples, and the isolation rate was determined as 0.8%. Both of the isolates were defined as Salmonella enterica subsp. enterica serovar Typhimurium (serotype 1, 4, [5], 12: I: 1, 2 by serotyping. Both of them were resistant to cefaclor, cloxacillin and lincomycin (100%. Multidrug resistance (resistance ≥3 antimicrobials observed in all isolates. ESBL and AmpC production were not detected in any of the isolates. To our knowledge, this is the first report of the isolation of S. Typhimurium in pigs with diarrhea in Turkey. This study also represents the first report of multi-drug resistant S. Typhimurium isolates from pig stools in Turkey.

  15. Molecular typing of Salmonella enterica serovar typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats.

    Science.gov (United States)

    Liu, Yichun; Lee, May-Ann; Ooi, Eng-Eong; Mavis, Yeo; Tan, Ai-Ling; Quek, Hung-Hiang

    2003-09-01

    A multiplex PCR method incorporating primers flanking three variable-number tandem repeat (VNTR) loci (arbitrarily labeled TR1, TR2, and TR3) in the CT18 strain of Salmonella enterica serovar Typhi has been developed for molecular typing of S. enterica serovar Typhi clinical isolates from several Asian countries, including Singapore, Indonesia, India, Bangladesh, Malaysia, and Nepal. We have demonstrated that the multiplex PCR could be performed on crude cell lysates and that the VNTR banding profiles produced could be easily analyzed by visual inspection after conventional agarose gel electrophoresis. The assay was highly discriminative in identifying 49 distinct VNTR profiles among 59 individual isolates. A high level of VNTR profile heterogeneity was observed in isolates from within the same country and among countries. These VNTR profiles remained stable after the strains were passaged extensively under routine laboratory culture conditions. In contrast to the S. enterica serovar Typhi isolates, an absence of TR3 amplicons and a lack of length polymorphisms in TR1 and TR2 amplicons were observed for other S. enterica serovars, such as Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Paratyphi A, B, and C. DNA sequencing of the amplified VNTR regions substantiated these results, suggesting the high stability of the multiplex PCR assay. The multiplex-PCR-based VNTR profiling developed in this study provides a simple, rapid, reproducible, and high-resolution molecular tool for the epidemiological analysis of S. enterica serovar Typhi strains.

  16. Structural characterization of the Salmonella typhimurium LT2 umu operon

    International Nuclear Information System (INIS)

    Thomas, S.M.; Crowne, H.M.; Pidsley, S.C.; Sedgwick, S.G.

    1990-01-01

    The umuDC operon of Escherichia coli encodes functions required for mutagenesis induced by radiation and a wide variety of chemicals. The closely related organism Salmonella typhimurium is markedly less mutable than E. coli, but a umu homolog has recently been identified and cloned from the LT2 subline. In this study the nucleotide sequence and structure of the S. typhimurium LT2 umu operon have been determined and its gene products have been identified so that the molecular basis of umu activity might be understood more fully. S. typhimurium LT2 umu consists of a smaller 417-base-pair (bp) umuD gene ending 2 bp upstream of a larger 1,266-bp umuC gene. The only apparent structural difference between the two operons is the lack of gene overlap. An SOS box identical to that found in E. coli is present in the promoter region upstream of umuD. The calculated molecular masses of the umuD and umuC gene products were 15.3 and 47.8 kilodaltons, respectively, which agree with figures determined by transpositional disruption and maxicell analysis. The S. typhimurium and E. coli umuD sequences were 68% homologous and encoded products with 71% amino acid identity; the umuC sequences were 71% homologous and encoded products with 83% amino acid identity. Furthermore, the potential UmuD cleavage site and associated catalytic sites could be identified. Thus the very different mutagenic responses of S. typhimurium LT2 and E. coli cannot be accounted for by gross differences in operon structure or gene products. Rather, the ability of the cloned S. typhimurium umuD gene to give stronger complementation of E. coli umuD77 mutants in the absence of a functional umuC gene suggests that Salmonella UmuC protein normally constrains UmuD protein activity

  17. New sub-family of lysozyme-like proteins shows no catalytic activity: crystallographic and biochemical study of STM3605 protein from Salmonella Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Michalska, Karolina; Brown, Roslyn N.; Li, Hui; Jedrzejczak, Robert; Niemann, George; Heffron, Fred; Cort, John R.; Adkins, Joshua N.; Babnigg, Gyorgy; Joachimiak, Andrzej

    2013-03-01

    Phage viruses that infect prokaryotes integrate their genome into the host chromosome; thus, microbial genomes typically contain genetic remnants of both recent and ancient phage infections. Often phage genes occur in clusters of atypical G+C content that reflect integration of the foreign DNA. However, some phage genes occur in isolation without other phage gene neighbors, probably resulting from horizontal gene transfer. In these cases, the phage gene product is unlikely to function as a component of a mature phage particle, and instead may have been co-opted by the host for its own benefit. The product of one such gene from Salmonella enterica serovar Typhimurium, STM3605, encodes a protein with modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close homologs in other bacteria share this characteristic. The structure of the STM3605 protein was characterized by X-ray crystallography, and functional assays showed that it is a stable, folded protein whose structure closely resembles lysozyme. However, this protein is unlikely to hydrolyze peptidoglycan. Instead, STM3605 is presumed to have evolved an alternative function because it shows some lytic activity and partitions to micelles.

  18. Insights into PG-binding, conformational change, and dimerization of the OmpA C-terminal domains from Salmonella enterica serovar Typhimurium and Borrelia burgdorferi: Characterization of OmpA C-Terminal Domain

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kemin [Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue Chicago Illinois 60637; Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne Illinois 60439; Deatherage Kaiser, Brooke L. [National Security Directorate, Pacific Northwest National Laboratory, Richland Washington 99352; Wu, Ruiying [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Cuff, Marianne [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Fan, Yao [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Bigelow, Lance [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Jedrzejczak, Robert P. [Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue Chicago Illinois 60637; Adkins, Joshua N. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington 99352; Cort, John R. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington 99352; Babnigg, Gyorgy [Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue Chicago Illinois 60637; Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue Chicago Illinois 60637; Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne Illinois 60439

    2017-06-19

    S. Typhimurium can induce both humoral and cell-mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins. OmpA is one of these major OM proteins. It comprises a N-terminal eight-stranded b-barrel trans membrane domain and a C-terminal domain (OmpACTD). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the OM. Here we present the first crystal structures of the OmpACTD from two pathogens: S. Typhimurium (STOmpACTD) in open and closed forms and causative agent of Lyme Disease Borrelia burgdorferi (BbOmpACTD), in closed form. In the open form of STOmpACTD, an aspartic acid residue from a long b2-a3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD, a sulfate group from the crystallization buffer is tightly bound at the binding site. The differences between the closed and open forms of STOmpACTD, suggest a large conformational change that includes an extension of a3 helix by ordering a part of b2-a3 loop. We propose that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD suggesting PG-anchoring mechanism. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD, or possibly that of full length STOmpA.

  19. Insights into PG-binding, conformational change, and dimerization of the OmpA C-terminal domains from Salmonella enterica serovar Typhimurium and Borrelia burgdorferi: Characterization of OmpA C-Terminal Domain

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kemin [Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue Chicago Illinois 60637; Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne Illinois 60439; Deatherage Kaiser, Brooke L. [National Security Directorate, Pacific Northwest National Laboratory, Richland Washington 99352; Wu, Ruiying [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Cuff, Marianne [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Fan, Yao [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Bigelow, Lance [Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Jedrzejczak, Robert P. [Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue Chicago Illinois 60637; Adkins, Joshua N. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington 99352; Cort, John R. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington 99352; Babnigg, Gyorgy [Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue Chicago Illinois 60637; Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Joachimiak, Andrzej [Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue Chicago Illinois 60637; Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne Illinois 60439; Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne Illinois 60439

    2017-06-19

    S. Typhimurium can induce both humoral and cell-mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins of the bacterium. OmpA is one of these major OM proteins. It comprises a N-terminal eight-stranded -barrel membrane domain and a C-terminal so-called OmpA C-terminal domain (OmpACTD). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the outer membrane. Here we present the structures of two forms of the OmpACTD of S. Typhimurium (STOmpACTD) and one structure of the less-studied OmpACTD of Borrelia burgdorferi (BbOmpACTD). In the open form of STOmpACTD, an aspartic acid residue from a long 2-3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD, a sulfate group from the crystallization buffer is tightly bound at the equivalent site. The differences between the closed and open forms of STOmpACTD, suggest a large conformational change that includes an extension of 3 helix by ordering a part of 2-3 loop. We suggest that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD, or possibly that of full length STOmpA.

  20. Prevalence, serovars, phage types, and antibiotic susceptibilities of Salmonella strains isolated from animals in the United Arab Emirates from 1996 to 2009.

    Science.gov (United States)

    Münch, Sebastian; Braun, Peggy; Wernery, Ulrich; Kinne, Jörg; Pees, Michael; Flieger, Antje; Tietze, Erhard; Rabsch, Wolfgang

    2012-10-01

    The aim of this study was to give some insights into the prevalence, serovars, phage types, and antibiotic resistances of Salmonella from animal origin in the United Arab Emirates. Data on diagnostic samples from animals (n = 20,871) examined for Salmonella between 1996 and 2009 were extracted from the databases of the Central Veterinary Research Laboratory in Dubai and from typed strains (n = 1052) from the Robert Koch Institute, Wernigerode Branch in Germany and analyzed for general and animal-specific trends. Salmonella was isolated from 1,928 (9 %) of the 20,871 samples examined. Among the 1,052 typed strains, most were from camels (n = 232), falcons (n = 166), bustards (n = 101), antelopes (n = 66), and horses (n = 63). The predominant serovars were Salmonella Typhimurium (25 %), Salmonella Kentucky (8 %), followed by Salmonella Frintrop (7 %), and Salmonella Hindmarsh (5 %). When analyzed by animal species, the most frequent serovars in camels were Salmonella Frintrop (28 %) and Salmonella Hindmarsh (21 %), in falcons Salmonella Typhimurium (32 %), in bustards Salmonella Kentucky (19 %), in antelopes Salmonella Typhimurium (9 %), and in horses Salmonella Typhimurium (17 %) and S. Kentucky (16 %). Resistance of all typed Salmonella strains (n = 1052) was most often seen to tetracycline (23 %), streptomycin (22 %), nalidixic acid (18 %), and ampicillin (15 %). These data show trends in the epidemiology of Salmonella in different animal species which can be used as a base for future prevention, control, and therapy strategies.

  1. Immunochromatographic strip assay for the rapid and sensitive detection of Salmonella Typhimurium in artificially contaminated tomato samples.

    Science.gov (United States)

    Shukla, Shruti; Leem, Hyerim; Lee, Jong-Suk; Kim, Myunghee

    2014-06-01

    This study was designed to confirm the applicability of a liposome-based immunochromatographic assay for the rapid detection of Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) in artificially contaminated tomato samples. To determine the detection limit and pre-enrichment incubation time (10, 12, and 18 h pre-enrichment in 1% buffered peptone water), the tests were performed with different cell numbers of Salmonella Typhimurium (3 × 10(0), 3 × 10(1), 3 × 10(2), and 3 × 10(3) CFU·mL(-1)) inoculated into 25 g of crushed tomato samples. The assay was able to detect as few as 30 Salmonella Typhimurium cells per 25 g of tomato samples (1.2 cells·g(-1)) after 12 h pre-enrichment incubation. Moreover, when the developed assay was compared with traditional morphological and biochemical culture-based methods as well as colloidal gold nanoparticle-based commercial test strips, the developed assay yielded positive results for the detection of Salmonella Typhimurium within a shorter period time. These findings confirm that the developed assay may have practical application for the sensitive detection of Salmonella Typhimurium in various food samples, including raw vegetables, with a relatively low detection limit and shorter analysis time.

  2. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available Salmonella enterica serovar Typhimurium (ST is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux in the GIT of mice pretreated with streptomycin. Photonic emission (PE was measured in GIT extracts (stomach, small intestine, cecum and colon at various time periods post-infection (PI. PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1 the faster elimination of ST-lux in the feces, and (2 reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1 increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2 elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  3. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Munro, Patrick; Boyer, Laurent; Anty, Rodolphe; Imbert, Véronique; Terciolo, Chloé; André, Fréderic; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean-François; Czerucka, Dorota

    2014-01-01

    Salmonella enterica serovar Typhimurium (ST) is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT) and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI) was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux) in the GIT of mice pretreated with streptomycin. Photonic emission (PE) was measured in GIT extracts (stomach, small intestine, cecum and colon) at various time periods post-infection (PI). PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1) the faster elimination of ST-lux in the feces, and (2) reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1) increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2) elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  4. Buffer capacity of food components influences the acid tolerance response in Salmonella Typhimurium during simulated gastric passage

    DEFF Research Database (Denmark)

    Aabo, Søren; Buschhardt, Tasja; Hansen, Tina Beck

    2014-01-01

    Food composition, buffer capacity, and fat and protein content have been shown to effect the gastric acid survival of pathogens (Waterman & Small 1998). In this study, simple food-model substances with different buffer capacities were investigated for their ability to support survival of stationary...... Heart Infusion Broth having a higher buffer capacity. We suggest this to be associated with a varying ability of Salmonella Typhimurium to mount a stationary phase acid tolerance response (ATR) depending on the buffer capacity of the food vehicle....... phase Salmonella Typhimurium during simulated gastric acid passage. We used a computer-controlled fermentor to employ pH changes in synthetic gastric fluid, mimicking the dynamic pH during gastric passage. In order to minimise variation, Salmonella enterica serovar Typhimurium was contained in dialysis...

  5. Horizontal Transfer of the Salmonella enterica Serovar Infantis Resistance and Virulence Plasmid pESI to the Gut Microbiota of Warm-Blooded Hosts

    Directory of Open Access Journals (Sweden)

    Gili Aviv

    2016-09-01

    Full Text Available Salmonella enterica serovar Infantis is one of the prevalent salmonellae worldwide. Recently, we showed that the emergence of S. Infantis in Israel was facilitated by the acquisition of a unique megaplasmid (pESI conferring multidrug resistance and increased virulence phenotypes. Here we elucidate the ecology, transmission properties, and regulation of pESI. We show that despite its large size (~280 kb, pESI does not impose a significant metabolic burden in vitro and that it has been recently fixed in the domestic S. Infantis population. pESI conjugation and the transcription of its pilus (pil genes are inhibited at the ambient temperature (27°C and by ≥1% bile but increased under temperatures of 37 to 41°C, oxidative stress, moderate osmolarity, and the microaerobic conditions characterizing the intestinal environment of warm-blooded animals. The pESI-encoded protein TraB and the oxygen homeostasis regulator Fnr were identified as transcriptional regulators of pESI conjugation. Using the mouse model, we show that following S. Infantis infection, pESI can be horizontally transferred to the gut microbiota, including to commensal Escherichia coli strains. Possible transfer, but not persistence, of pESI was also observed into Gram-positive mouse microbiota species, especially Lactobacillus reuteri. Moreover, pESI was demonstrated to further disseminate from gut microbiota to S. enterica serovar Typhimurium, in the context of gastrointestinal infection. These findings exhibit the ability of a selfish clinically relevant megaplasmid to distribute to and from the microbiota and suggest an overlooked role of the microbiota as a reservoir of mobile genetic elements and intermediator in the spread of resistance and virulence genes between commensals and pathogenic bacteria.

  6. Human migration is important in the international spread of exotic Salmonella serovars in animal and human populations.

    Science.gov (United States)

    Iveson, J B; Bradshaw, S D; How, R A; Smith, D W

    2014-11-01

    The exposure of indigenous humans and native fauna in Australia and the Wallacea zoogeographical region of Indonesia to exotic Salmonella serovars commenced during the colonial period and has accelerated with urbanization and international travel. In this study, the distribution and prevalence of exotic Salmonella serovars are mapped to assess the extent to which introduced infections are invading native wildlife in areas of high natural biodiversity under threat from expanding human activity. The major exotic Salmonella serovars, Bovismorbificans, Derby, Javiana, Newport, Panama, Saintpaul and Typhimurium, isolated from wildlife on populated coastal islands in southern temperate areas of Western Australia, were mostly absent from reptiles and native mammals in less populated tropical areas of the state. They were also not recorded on the uninhabited Mitchell Plateau or islands of the Bonaparte Archipelago, adjacent to south-eastern Indonesia. Exotic serovars were, however, isolated in wildlife on 14/17 islands sampled in the Wallacea region of Indonesia and several islands off the west coast of Perth. Increases in international tourism, involving islands such as Bali, have resulted in the isolation of a high proportion of exotic serovar infections suggesting that densely populated island resorts in the Asian region are acting as staging posts for the interchange of Salmonella infections between tropical and temperate regions.

  7. Application of the Random Forest method to analyse epidemiological and phenotypic characteristics of Salmonella 4,[5],12:i:- and Salmonella Typhimurium strains

    DEFF Research Database (Denmark)

    Barco, L.; Mancin, M.; Ruffa, M.

    2012-01-01

    in Italy, particularly as far as veterinary isolates are concerned. For this reason, a data set of 877 strains isolated in the north-east of Italy from foodstuffs, animals and environment was analysed during 2005-2010. The Random Forests (RF) method was used to identify the most important epidemiological...... and phenotypic variables to show the difference between the two serovars. Both descriptive analysis and RF revealed that S. 4,[5],12:i:- is less heterogeneous than S. Typhimurium. RF highlighted that phage type was the most important variable to differentiate the two serovars. The most common phage types...

  8. Inducible pathway is required for mutagenesis in Salmonella typhimurium LT2

    International Nuclear Information System (INIS)

    Orrego, C.; Eisenstadt, E.

    1987-01-01

    UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA + gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate. Mitomycin C induction of the Phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead the authors deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability

  9. Salmonella Typhimurium undergoes distinct genetic adaption during chronic infections of mice

    DEFF Research Database (Denmark)

    Søndberg, Emilie; Jelsbak, Lotte

    2016-01-01

    Background Typhoid fever caused by Salmonella enterica serovar Typhi (S. Typhi) is a severe systemic human disease and endemic in regions of the world with poor drinking water quality and sewage treatment facilities. A significant number of patients become asymptomatic life-long carriers of S....... In the current study genetic adaptation during experimental chronic S. Typhimurium infections of mice, an established model of chronic typhoid fever, was probed as an approach for studying the molecular mechanisms of host-adaptation during long-term host-association. Results Individually sequence-tagged wild...

  10. High-level fluoroquinolone resistant Salmonella enterica serovar Kentucky ST198 epidemic clone with IncA/C conjugative plasmid carrying bla(CTX-M-25) gene.

    Science.gov (United States)

    Wasyl, Dariusz; Kern-Zdanowicz, Izabela; Domańska-Blicharz, Katarzyna; Zając, Magdalena; Hoszowski, Andrzej

    2015-01-30

    Multidrug resistant Salmonella Kentucky strains have been isolated from turkeys in Poland since 2009. Multiple mutations within chromosomal genes gyrA and parC were responsible for high-level ciprofloxacin resistance. One of the isolates was extended spectrum β-lactamase- (ESBL) positive: the strain 1643/2010 carried a conjugative 167,779 bps plasmid of IncA/C family. The sequence analysis revealed that it carried a blaCTX-M-25 gene and an integron with another β-lactamase encoding gene-blaOXA-21. This is the first known report of a CTX-M-25 encoding gene both in Poland and in Salmonella Kentucky world-wide, as well as in the IncA/C plasmid. Analysis of the integron showed a novel arrangement of gene cassettes-aacA4, aacC-A1 and blaOXA-21 where the latter might result from an intergeneric gene transfer. The study confirmed Salmonella Kentucky population isolated in Poland belongs to global epidemics of high level fluoroquinolone resistant clone ST198 that can carry rare β-lactamase genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Radiovaccine of S. typhimurium cells

    Energy Technology Data Exchange (ETDEWEB)

    Nerkar, D P; Govekar, L G; Kumta, U S; Sreenivasan, A [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1977-04-01

    Gamma-irradiation of S.typhimurium cells up to a dose of 500 krad significantly reduced their toxicity. However, the antigenicity of these cells was not altered, which suggests that these cells could be used as vaccine. The protection offered by the irradiated cells was comparable to that of formalin-treated cells. The radio-vaccine, however, offered an additional advantage of significant detoxification of the endotoxin, thereby minimizing side effects. The lipopolysaccharide extracted from the irradiated S.typhimurium cells offered cross-protection against other Salmonella species tested.

  12. Modeling the survival of Salmonella Enteritidis and Salmonella Typhimurium during the fermentation of yogurt.

    Science.gov (United States)

    Savran, Derya; Pérez-Rodríguez, Fernando; Halkman, A Kadir

    2018-03-01

    The objective of this study was to evaluate the behavior of Salmonella Enteritidis and Salmonella Typhimurium, the two most important serovars of salmonellosis , during the fermentation of yogurt. The microorganisms were enumerated in milk throughout the fermentation process at three initial inoculum levels (3, 5 and 7 log CFU/mL). DMFit software was used in the fitting procedure of the data (IFR, Norwich, UK, Version 3.5). The data provided sigmoidal curves that were successfully displayed with the Baranyi model. The results showed that the initial inoculum level did not affect the growth for both pathogens; thus, the µ max values (maximum specific growth rate) did not significantly differ across all the contamination levels, ranging from 0.26 to 0.38 for S. Enteritidis and from 0.50 to 0.56 log CFU/g/h for S. Typhimurium ( P > 0.05). However, the µ max values significantly differed between the two serovars ( P fermentation process of milk even at a low contamination level. In addition, the models presented in this study can be used in quantitative risk assessment studies to estimate the threat to consumers.

  13. Identification of Salmonella serovars isolated from live molluscan shellfish and their significance in the marine environment.

    Science.gov (United States)

    Martinez-Urtaza, Jaime; Saco, Montserrat; Hernandez-Cordova, Gustavo; Lozano, Antonio; Garcia-Martin, Oscar; Espinosa, Joaquin

    2003-02-01

    A study on the presence of Salmonella spp. in live molluscs was performed, which included a description of the different serovars isolated and their relationship to the marine environment. A total of 2,980 samples of shellfish from Galicia (N.W. Spain) were tested for the presence of Salmonella spp. between September 1998 and August 2001. The overall incidence of Salmonella was 1.8% and showed a slight rise during the 3 years of the study. Mussels and oysters presented a higher incidence than clams and cockles, possibly because of their distinct growing habitat. A seasonal pattern was noted for the isolation of Salmonella spp.: 54% of the isolations were detected from September to November. That nearly 67% of the total Salmonella was isolated from shellfish with fecal coliform levels fecal coliforms do not necessarily indicate the absence of Salmonella. A total of nine serovars were found in the 54 Salmonella isolated. Salmonella Senftenberg was the most frequent (50%), followed by Salmonella Typhimurium (18%) and Salmonella Agona (17%). Salmonella Senftenberg was detected frequently during the year, whereas the remaining serovars were detected only on occasional contamination events.

  14. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Directory of Open Access Journals (Sweden)

    Peter J Hart

    Full Text Available Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  15. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Science.gov (United States)

    Hart, Peter J; O'Shaughnessy, Colette M; Siggins, Matthew K; Bobat, Saeeda; Kingsley, Robert A; Goulding, David A; Crump, John A; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F; MacLennan, Calman A

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  16. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    Science.gov (United States)

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  17. Model-driven discovery of synergistic inhibitors against E. coli and S. enterica serovar Typhimurium targeting a novel synthetic lethal pair, aldA and prpC

    DEFF Research Database (Denmark)

    Aziz, Ramy K.; Khaw, Valerie L.; Monk, Jonathan M.

    2015-01-01

    Mathematical models of biochemical networks form a cornerstone of bacterial systems biology. Inconsistencies between simulation output and experimental data point to gaps in knowledge about the fundamental biology of the organism. One such inconsistency centers on the gene aldA in Escherichia col...

  18. Sewage sludge amendment and inoculation with plant-parasitic nematodes do not facilitate the internalization of Salmonella Typhimurium LT2 in lettuce plants.

    Science.gov (United States)

    Fornefeld, Eva; Baklawa, Mohamed; Hallmann, Johannes; Schikora, Adam; Smalla, Kornelia

    2018-05-01

    Contamination of fruits and vegetables with Salmonella is a serious threat to human health. In order to prevent possible contaminations of fresh produce it is necessary to identify the contributing ecological factors. In this study we investigated whether the addition of sewage sludge or the presence of plant-parasitic nematodes foster the internalization of Salmonella enterica serovar Typhimurium LT2 into lettuce plants, posing a potential threat for human health. Greenhouse experiments were conducted to investigate whether the amendment of sewage sludge to soil or the presence of plant-parasitic nematodes Meloidogyne hapla or Pratylenchus crenatus promote the internalization of S. Typhimurium LT2 from soil into the edible part of lettuce plants. Unexpectedly, numbers of cultivable S. Typhimurium LT2 decreased faster in soil with sewage sludge than in control soil but not in root samples. Denaturing gradient gel electrophoresis analysis revealed shifts of the soil bacterial communities in response to sewage sludge amendment and time. Infection and proliferation of nematodes inside plant roots were observed but did not influence the number of cultivable S. Typhimurium LT2 in the root samples or in soil. S. Typhimurium LT2 was not detected in the leaf samples 21 and 49 days after inoculation. The results indicate that addition of sewage sludge, M. hapla or P. crenatus to soil inoculated with S. Typhimurium LT2 did not result in an improved survival in soil or internalization of lettuce plants. Copyright © 2017. Published by Elsevier Ltd.

  19. Effect of Challenge Temperature and Solute Type on Heat Tolerance of Salmonella Serovars at Low Water Activity

    Science.gov (United States)

    Mattick, K. L.; Jørgensen, F.; Wang, P.; Pound, J.; Vandeven, M. H.; Ward, L. R.; Legan, J. D.; Lappin-Scott, H. M.; Humphrey, T. J.

    2001-01-01

    Salmonella spp. are reported to have an increased heat tolerance at low water activity (aw; measured by relative vapor pressure [rvp]), achieved either by drying or by incorporating solutes. Much of the published data, however, cover only a narrow treatment range and have been analyzed by assuming first-order death kinetics. In this study, the death of Salmonella enterica serovar Typhimurium DT104 when exposed to 54 combinations of temperature (55 to 80°C) and aw (rvp 0.65 to 0.90, reduced using glucose-fructose) was investigated. The Weibull model (LogS = −btn) was used to describe microbial inactivation, and surface response models were developed to predict death rates for serovar Typhimurium at all points within the design surface. The models were evaluated with data generated by using six different Salmonella strains in place of serovar Typhimurium DT104 strain 30, two different solutes in place of glucose-fructose to reduce aw, or six low-aw foods artificially contaminated with Salmonella in place of the sugar broths. The data demonstrate that, at temperatures of ≥70°C, Salmonella cells at low aw were more heat tolerant than those at a higher aw but below 65°C the reverse was true. The same patterns were generated when sucrose (rvp 0.80 compared with 0.90) or NaCl (0.75 compared with 0.90) was used to reduce aw, but the extent of the protection afforded varied with solute type. The predictions of thermal death rates in the low-aw foods were usually fail-safe, but the few exceptions highlight the importance of validating models with specific foods that may have additional factors affecting survival. PMID:11526015

  20. Utilization of a novel autologous killed tri-vaccine (serogroups B [Typhimurium], C [Mbandaka] and E [Orion]) for Salmonella control in commercial poultry breeders.

    Science.gov (United States)

    Pavic, Anthony; Groves, Peter J; Cox, Julian M

    2010-02-01

    An autologous killed trivalent vaccine (3x10(8) colony-forming units [CFU]), based on three Salmonella serovars (Typhimurium - serogroup B, Mbandaka - serogroup C, and Orion - serogroup E) prevalent in the flocks of Australian poultry companies, was developed using Salenvac techniques. At 20 weeks, hens vaccinated at 12 and 17 weeks as well as non-vaccinated hens were challenged (250 microl of 10(7) CFU) with autologous and heterologous serovars belonging to serogroup B (Typhimurium and Agona), serogroup C (Mbandaka and Infantis) and serogroup E (Orion and Zanzibar). Overall, vaccination resulted in a significant difference in carriage of Salmonella between non-vaccinated and vaccinated commercial Cobb hens (P 0.05) could be determined for serogroup E. All vaccinated flocks produced a significant antibody response (P<0.001) to the S. Typhimurium vaccine strain, measured using a S. Typhimurium enzyme-linked immunosorbent assay (Guildhay), which peaked at 20 weeks of age, with 39% of the hens positive. Maternal antibodies were detected in 16% of the yolks from eggs produced by these flocks. There was a significant difference after challenge with Salmonella (P <0.05) among 1-day-old chicks from vaccinated versus non-vaccinated parents, when challenged using 10(4) CFU but not when challenged with 10(8) CFU. The success of this trial resulted in the incorporation of this vaccine into a Salmonella control system in commercial broiler breeder production.

  1. Effects of L-arabinose efflux on λ Red recombination-mediated gene knockout in multiple-antimicrobial-resistant Salmonella enterica serovar Choleraesuis.

    Science.gov (United States)

    Liao, Shi-Wei; Lee, Jen-Jie; Ptak, Christopher P; Wu, Ying-Chen; Hsuan, Shih-Ling; Kuo, Chih-Jung; Chen, Ter-Hsin

    2018-03-01

    In this study, six swine-derived multiple-antimicrobial-resistant (MAR) strains of Salmonella Choleraesuis (S. Choleraesuis) were demonstrated to possess higher efflux pump activity than the wild-type (WT). L-Arabinose, a common inducer for gene expression, modulated S. Choleraesuis efflux pump activity in a dose-dependent manner. At low L-arabinose concentrations, increasing L-arabinose led to a corresponding increase in fluorophore efflux, while at higher L-arabinose concentrations, increasing L-arabinose decreased fluorophore efflux activity. The WT S. Choleraesuis that lacks TolC (ΔtolC), an efflux protein associated with bacterial antibiotic resistance and virulence, was demonstrated to possess a significantly reduced ability to extrude L-arabinose. Further, due to the rapid export of L-arabinose, an efficient method for recombination-mediated gene knockout, the L-arabinose-inducible bacteriophage λ Red recombinase system, has a reduced recombination frequency (~ 12.5%) in clinically isolated MAR Salmonella strains. An increased recombination frequency (up to 60%) can be achieved using a higher concentration of L-arabinose (fivefold) for genetic manipulation and functional analysis for MAR Salmonella using the λ Red system. The study suggests that L-arabinose serves not only as an inducer of the TolC-dependent efflux system but also acts as a competitive substrate of the efflux system. In addition, understanding the TolC-dependent efflux of L-arabinose should facilitate the optimization of L-arabinose induction in strains with high efflux activity.

  2. Characterization of Isolates of Salmonella enterica Serovar Stanley, a Serovar Endemic to Asia and Associated with Travel

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Le Hello, Simon; Bortolaia, Valeria

    2012-01-01

    Salmonella enterica serovar Stanley (S. Stanley) is a common serovar in Southeast Asia and was the second most common serovar implicated in human salmonellosis in Thailand in the years 2002 to 2007. In contrast, this serovar is relatively uncommon in Europe. The objective of this study was to cha...

  3. A novel imageable therapeutic probe for cancer; cytolysin a expressing attenuated salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Piao, Hong Hua; Hong, Yeoung Jin; Choy, Hyon E.; Bom, Hee Seung; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    Oncolytic strategy using bacteria has a long history. With the discovery of fluorescent and luminescent reporter genes, bacteria can be easily monitored continuously in treatment process. Salmonella typhimurium ppGpp mutant, one of the prominent attenuated bacteria, has just reported recently, Therefore, in this study, we established strain Cytolysin A (Cly A) expressing light-emitting S. typhimurium ppGpp mutant. S. typhimurium ppGpp mutant was transducted by lux gene for in vivo imaging (S. typhimurium ppGpp/lux) and then, plasmid containing ClyA gene, which is encoded for a pore-forming protein toxin, was transformed to create the strain expressing haemolytic activity (S. typhimurium ppGpp/lux/ClyA). The toxicity of ClyA was evaluated in vitro by inoculating the bacteria with various cultured cancer cell lines. On the other hand, to test the therapeutic effect, the bacteria were injected intermittently, intraperitoneal y or intravenously into CT26-bearing Balb/c mice. The sizes of tumors were measured and in vivo imaging was taken everyday by IVIS machine (Xenogen). The in vitro result showed the number of death cells were significantly higher in the samples containing S. typhimurium ppGpp/lux/ClyA compared with the samples containing S. typhimurium ppGpp/lux. After two days injection, the growth of tumors were repressed in mice injected with either S. typhimurium ppGpp/lux/ClyA or S. typhimurium ppGpp/lux, while tumors in control group still grew fast. In day 3, the tumors inoculated with S. typhimurium ppGpp/lux/ClyA became necrosis and regressed in the following days but not in other groups. In addition, in vivo imaging data showed that the Salmonella strains selectively located in the tumor. By in vivo imaging technique, the light-emitting bacteria can be easily monitored and quantified non-invasively and repeatedly. And ClyA expressing light-emitting S. typhimurium ppGpp mutant can become an effective and safely candidate for cancer treatment.

  4. Positive selection of mutants with cell envelope defects of a Salmonella typhimurium strain hypersensitive to the products of genes hisF and hisH

    International Nuclear Information System (INIS)

    Anton, D.N.

    1979-01-01

    Strain SB564 and its derivative DA78 are hypersensitive to the inhibitory action of the proteins coded for by genes hisF and hisH on cell division. Transduction of hisO1242, a regulatory mutation that elicits a very high level of expression of the histidine operon, into these strains resulted in the production of long filamentous cells carrying large balloons and in growth failure. Forty-one hisO1242 derivatives that escaped inhibition were isolated. These strains showed a large variety of alterations, many of which were related to the cell envelope. The more-frequent alterations included: changes in cell shape, increased sensitivity to one or more of several drugs (deoxycholate, cycloserine, penicillin, novobiocin, acridine orange), increased autolytic activity in alkaline buffer, anomalous fermentation of maltose on eosin--methylene blue plates, and temperature-conditional cell division. The alterations are produced, in some of the strains, by pleiotropic mutations in gene envB. Strains affected in divC, divD, and rodA loci have also been identified. Genetic analaysis has shown that several strains carry more than one envelope mutation. It is assumed that envelope mutations are positively selected because they somehow alleviate the particularly severe inhibition of cell division caused, in strains SB564 and DA78, by the excessive synthesis of hisF and hisH gene products

  5. Characterization of multidrug-resistant Salmonella enterica serovars Indiana and Enteritidis from chickens in Eastern China.

    Directory of Open Access Journals (Sweden)

    Yan Lu

    Full Text Available A total of 310 Salmonella isolates were isolated from 6 broiler farms in Eastern China, serotyped according to the Kauffmann-White classification. All isolates were examined for susceptibility to 17 commonly used antimicrobial agents, representative isolates were examined for resistance genes and class I integrons using PCR technology. Clonality was determined by pulsed-field gel electrophoresis (PFGE. There were two serotypes detected in the 310 Salmonella strains, which included 133 Salmonella enterica serovar Indiana isolates and 177 Salmonella enterica serovar Enteritidis isolates. Antimicrobial sensitivity results showed that the isolates were generally resistant to sulfamethoxazole, ampicillin, tetracycline, doxycycline and trimethoprim, and 95% of the isolates sensitive to amikacin and polymyxin. Among all Salmonella enterica serovar Indiana isolates, 108 (81.2% possessed the blaTEM, floR, tetA, strA and aac (6'-Ib-cr resistance genes. The detected carriage rate of class 1 integrons was 66.5% (206/310, with 6 strains carrying gene integron cassette dfr17-aadA5. The increasing frequency of multidrug resistance rate in Salmonella was associated with increasing prevalence of int1 genes (rs = 0.938, P = 0.00039. The int1, blaTEM, floR, tetA, strA and aac (6'-Ib-cr positive Salmonella enterica serovar Indiana isolates showed five major patterns as determined by PFGE. Most isolates exhibited the common PFGE patterns found from the chicken farms, suggesting that many multidrug-resistant isolates of Salmonella enterica serovar Indiana prevailed in these sources. Some isolates with similar antimicrobial resistance patterns represented a variety of Salmonella enterica serovar Indiana genotypes, and were derived from a different clone.

  6. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi

    Directory of Open Access Journals (Sweden)

    White Brian

    2009-01-01

    important mechanisms of genetic convergence between Paratyphi A and Typhi, with most pseudogenes arising independently after extensive recombination between the serovars. The recombination events, along with divergence of and within each serovar, provide a relative time scale for pseudogene-forming mutations, affording rare insights into the progression of functional gene loss associated with host adaptation in Salmonella.

  7. Characterization of Isolates of Salmonella enterica Serovar Stanley, a Serovar Endemic to Asia and Associated with Travel

    Science.gov (United States)

    Le Hello, Simon; Bortolaia, Valeria; Pulsrikarn, Chaiwat; Nielsen, Eva Møller; Pornruangmong, Srirat; Chaichana, Phattharaporn; Svendsen, Christina Aaby; Weill, François-Xavier; Aarestrup, Frank M.

    2012-01-01

    Salmonella enterica serovar Stanley (S. Stanley) is a common serovar in Southeast Asia and was the second most common serovar implicated in human salmonellosis in Thailand in the years 2002 to 2007. In contrast, this serovar is relatively uncommon in Europe. The objective of this study was to characterize a collection of S. Stanley strains isolated from Thai (n = 62), Danish (n = 39), and French (n = 24) patients to gain a broader understanding of the genetic diversity, population dynamics, and susceptibility to antimicrobials. All isolates were characterized by pulsed-field gel electrophoresis and antimicrobial susceptibility testing. The molecular mechanisms of resistance to extended-spectrum cephalosporins and plasmid-mediated resistance to quinolones were characterized by PCR and sequencing. Plasmid profiling, replicon typing, and microarray analysis were used to characterize the genetic mechanisms of antimicrobial resistance in 10 extended-spectrum cephalosporinase-producing isolates. Considerable genetic diversity was observed among the isolates characterized with 91 unique XbaI pulsed-field gel electrophoresis (PFGE) patterns, including 17 distinct clusters consisting of two to seven indistinguishable isolates. We found some of the S. Stanley isolates isolated from patients in Europe were acquired during travel to Southeast Asia, including Thailand. The presence of multiple plasmid lineages carrying the extended-spectrum cephalosporinase-encoding blaCMY-2 gene in S. Stanley isolates from the central part of Thailand was confirmed. Our results emphasize that Thai authorities, as well as authorities in other countries lacking prudent use of antimicrobials, should improve the ongoing efforts to regulate antimicrobial use in agriculture and in clinical settings to limit the spread of multidrug-resistant Salmonella isolates and plasmids among humans and pigs in Thailand and abroad. PMID:22205822

  8. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2

    Directory of Open Access Journals (Sweden)

    Shin Sook-Il

    2011-01-01

    Full Text Available Abstract Background Metabolic reconstructions (MRs are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem. Results Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i development and implementation of a community-based workflow for MR annotation and reconciliation; ii incorporation of thermodynamic information; and iii use of the consensus MR to identify potential multi-target drug therapy approaches. Conclusion Taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.

  9. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2.

    Science.gov (United States)

    Thiele, Ines; Hyduke, Daniel R; Steeb, Benjamin; Fankam, Guy; Allen, Douglas K; Bazzani, Susanna; Charusanti, Pep; Chen, Feng-Chi; Fleming, Ronan M T; Hsiung, Chao A; De Keersmaecker, Sigrid C J; Liao, Yu-Chieh; Marchal, Kathleen; Mo, Monica L; Özdemir, Emre; Raghunathan, Anu; Reed, Jennifer L; Shin, Sook-il; Sigurbjörnsdóttir, Sara; Steinmann, Jonas; Sudarsan, Suresh; Swainston, Neil; Thijs, Inge M; Zengler, Karsten; Palsson, Bernhard O; Adkins, Joshua N; Bumann, Dirk

    2011-01-18

    Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem. Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches. Taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.

  10. A community effort towards a knowledge-base and mathematical model of the human pathogen Salmonella Typhimurium LT2

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Ines; Hyduke, Daniel R.; Steeb, Benjamin; Fankam, Guy; Allen, Douglas K.; Bazzani, Susanna; Charusanti, Pep; Chen, Feng-Chi; Fleming, Ronan MT; Hsiung, Chao A.; De Keersmaecker, Sigrid CJ; Liao, Yu-Chieh; Marchal, Kathleen; Mo, Monica L.; Özdemir, Emre; Raghunathan, Anu; Reed, Jennifer L.; Shin, Sook-Il; Sigurbjörnsdóttir, Sara; Steinmann, Jonas; Sudarsan, Suresh; Swainston, Neil; Thijs, Inge M.; Zengler, Karsten; Palsson, Bernhard O.; Adkins, Joshua N.; Bumann, Dirk

    2011-01-01

    Metabolic reconstructions (MRs) are common denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) knowledge-bases for target organisms by capturing currently available information in a consistent, structured manner. Salmonella enterica subspecies I serovar Typhimurium is a human pathogen, causes various diseases and its increasing antibiotic resistance poses a public health problem. Here, we describe a community-driven effort, in which more than 20 experts in S. Typhimurium biology and systems biology collaborated to reconcile and expand the S. Typhimurium BiGG knowledge-base. The consensus MR was obtained starting from two independently developed MRs for S. Typhimurium. Key results of this reconstruction jamboree include i) development and implementation of a community-based workflow for MR annotation and reconciliation; ii) incorporation of thermodynamic information; and iii) use of the consensus MR to identify potential multi-target drug therapy approaches. Finally, taken together, with the growing number of parallel MRs a structured, community-driven approach will be necessary to maximize quality while increasing adoption of MRs in experimental design and interpretation.

  11. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  12. Proteome of Salmonella Enterica SerotypeTyphimurium Grown in a Low Mg2+/pH Medium

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Ansong, Charles; Smallwood, Heather S.; Rommereim, Leah M.; McDermott, Jason E.; Brewer, Heather M.; Norbeck, Angela D.; Taylor, Ronald C.; Gustin, Jean K.; Heffron, Fred; Smith, Richard D.; Adkins, Joshua N.

    2009-09-01

    The facultative intracellular pathogen Salmonella enterica serovar Typhimurium (STM) must replicate within host macrophages in order to establish systemic infection in susceptible mice. In an effort to identify new STM proteins that help the bacterium colonize macrophages, we have cultured STM cells with a low pH/low magnesium medium (MgM) under two different conditions termed MgM-Shock and MgM-Dilution and investigated the impacts of these culturing conditions on the STM proteome by using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics. LC-MS/MS results showed that alteration of culturing conditions affected a group of STM proteins differently. Compared to MgM-Shock, MgM-Dilution induced more proteins of the Salmonella-pathogenecity island 2-type III secretion system (SPI2-T3SS). The abundances of the proteins used for cobalamin biosynthesis increased under MgM-Shock condition but decreased under MgM-Dilution condition, while those proteins used for thiamine or biotin biosynthesis were not affected under the former condition but increased under the latter condition. Western-blot (WB) analysis confirmed the LC-MS/MS results. Because cobalamin, thiamine and biotin play different roles in STM metabolism, differential induction of the proteins involved in their biosyntheses suggests that the metabolic states of STM cells under these conditions differ considerably. WB analysis also showed that the abundances of SPI2-T3SS proteins SsaQ and SseE and biotin biosynthesis proteins BioB and BioD increased after STM infection of RAW 264.7 macrophages. Deletion of the gene encoding BioB reduced the ability of STM to replicate inside the macrophages, demonstrating for the first time the involvement of a biotin synthesis protein in STM colonization of macrophages.

  13. Genome-wide methylation patterns in Salmonella enterica Subsp. enterica Serovars.

    Directory of Open Access Journals (Sweden)

    Cary Pirone-Davies

    Full Text Available The methylation of DNA bases plays an important role in numerous biological processes including development, gene expression, and DNA replication. Salmonella is an important foodborne pathogen, and methylation in Salmonella is implicated in virulence. Using single molecule real-time (SMRT DNA-sequencing, we sequenced and assembled the complete genomes of eleven Salmonella enterica isolates from nine different serovars, and analysed the whole-genome methylation patterns of each genome. We describe 16 distinct N6-methyladenine (m6A methylated motifs, one N4-methylcytosine (m4C motif, and one combined m6A-m4C motif. Eight of these motifs are novel, i.e., they have not been previously described. We also identified the methyltransferases (MTases associated with 13 of the motifs. Some motifs are conserved across all Salmonella serovars tested, while others were found only in a subset of serovars. Eight of the nine serovars contained a unique methylated motif that was not found in any other serovar (most of these motifs were part of Type I restriction modification systems, indicating the high diversity of methylation patterns present in Salmonella.

  14. Salmonella serovar-specific interaction with jejunal epithelial cells.

    Science.gov (United States)

    Razzuoli, Elisabetta; Amadori, Massimo; Lazzara, Fabrizio; Bilato, Dania; Ferraris, Monica; Vito, Guendalina; Ferrari, Angelo

    2017-08-01

    Gut is often a receptacle for many different pathogens in feed and/or the environment, such as Salmonella spp. The current knowledge about pathogenicity of Salmonella is restricted to few serotypes, whereas other important ones like S. Coeln, S. Thompson, S. Veneziana, have not been investigated yet in human and animal models. Therefore, the aim of our work was to verify the ability of widespread environmental Salmonella strains to penetrate and modulate innate immunity in pig intestinal IPEC-J2 cells. Our results outline the different ability of Salmonella strains to modulate innate immunity; the expression of the IFN-β gene was increased by S. Typhimurium, S. Ablogame and S. Diarizonae 2, that also caused an inflammatory response in terms of Interleukin (IL)-1β and/or IL-8 gene espression. In particular, IL-8 gene expression and protein release were significantly modulated by 5 Salmonella strains out of 7. Interestingly, S. Typhimurium, S. Coeln and S. Thompson strains, characterized by a peculiar ability to penetrate into IPEC-J2 cells, up-regulated both IL-8 and TNF-α gene expression. Accordingly, blocking IL-8 was shown to decrease the penetration of S. Typhimurium. On the contrary, S. Diarizonae strain 1, showing lesser invasion of IPEC-J2 cells, down-regulated the p38-MAPK pathway, and it did not induce an inflammatory response. Our results confirm that IPEC-J2 cells are a useful model to evaluate host-gut pathogen interaction and indicate IL-8 and TNF-α as possible predictive markers of invasiveness of Salmonella strains in enterocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Analysis of Genes expression regulation controlled by luxS/AI-2 in Salmonella enterica serovar Typhi%LuxS/AI-2对伤寒沙门菌基因表达的调节

    Institute of Scientific and Technical Information of China (English)

    罗哲; 王敏; 杜鸿; 王菲; 孟彦辰; 倪斌; 徐顺高; 黄新祥

    2011-01-01

    Objective : To elucidate the influence of LuxS on gene expression regulation of Salmonella enterica serovar Typhi (S. Typhi) at mid-log phase in the presence of glucose . Methods: The luxS deleted mutant of S. Typhi was prepared by the homologous recombination mediatecl by suicide plasmid ; the differences of growth and motility between wild -type ( WT) and mutant were compared ; luminescence assays were performed in WT and mutant at different growth phases in the presence and absence of glucose with reporter strain Vibrio harveyi BB170; the difference of gene expression profiles between the WT and the luxS mutant at mid-log phage in the presence of glucose was investigated by genomic microarray assay ; qRT-PCR was performed to validate the results of microarray assay . Results : The luxS deleted mutant of S. Typhi was constructed successfully ; luxS gene had effect on the bacterial motility but not on the bacterial growth ; the luminescence of WT was higher at any growth phases in the presence of glucose than in its absence and reached the maximum at mid -log phase in the presence of glucose , while the mutant did not produce luminescence in both the presence and absence of glucose at any growth phases ; gene expression profiles analysis revealed that expression of 47 and 27 genes were induced and decreased , respectively , in the luxS mutant at mid-log phases in the presence of glucose . The results of qRT-PCR are similar with that of genomic assay. Conclusion: The luxS gene of S. Typhi was involved in the synthesis of AI -2 and played a vital role in genes expression regulation at mid -log phase.%目的:探讨伤寒沙门菌luxS基因在葡萄糖存在下对细菌对数生长中期基因表达调控的影响.方法:应用自杀质粒介导的同源重组方法制备伤寒沙门菌luxS基因缺陷变异株;比较野生株与缺陷株的生长情况及动力差异;用哈氏弧菌BB170作为报告菌株检测不同时期野生株与缺陷株的生物发光;利用

  16. 9 CFR 113.120 - Salmonella Typhimurium Bacterin.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Salmonella Typhimurium Bacterin. 113... REQUIREMENTS Inactivated Bacterial Products § 113.120 Salmonella Typhimurium Bacterin. Salmonella Typhimurium Bacterin shall be prepared from a culture of Salmonella typhimurium which has been inactivated and is...

  17. TRACKING A SALMONELLA SEROVAR TYPHIMURIUM OUTBREAK IN GIDEON, MISSOURI: ROLE OF CONTAMINANT PROPAGATION MODELLING

    Science.gov (United States)

    In early 12/93, a waterborne disease outbreak was identified in Gideon, MO. Initially 6-9 cases of diarrhoea were identified at a local nursing home. By 1/8/94, 31 cases with lbarotory confirmed salmonellosis had been identified. Seven nursing home residents exhibiting diarrhoeal...

  18. Attenuated aroA Salmonella enterica serovar Typhimurium does not induce inflammatory

    Czech Academy of Sciences Publication Activity Database

    Trebichavský, Ilja; Šplíchalová, Alla; Rychlík, I.; Hojná, Hana; Muneta, Y.; Mori, Y.; Šplíchal, Igor

    2006-01-01

    Roč. 24, - (2006), s. 4285-4289 ISSN 0264-410X R&D Projects: GA ČR GA524/05/2248 Institutional research plan: CEZ:AV0Z50200510 Keywords : gnotobiotic pig * aroa * cytokine Subject RIV: EE - Microbiology, Virology Impact factor: 3.159, year: 2006

  19. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a tomato soft rot

    Science.gov (United States)

    The human pathogen Salmonella has shown a remarkable adaptability which allows these bacteria to thrive in a variety of environments and hosts. The manner in which these pathogens establish within a niche amidst the native microbiota remains poorly understood. Here, we aimed to uncover the mechanism...

  20. Salmonella enterica Serovar Typhimurium in Mauritius Linked to Consumption of Marlin Mousse

    DEFF Research Database (Denmark)

    Issack, M. I.; Hendriksen, Rene S.; Lun, P. L. K.

    2009-01-01

    . A laboratory investigation of one sample of marlin mousse manufactured 3 days later, and the individual ingredients sampled a week after production of the contaminated batch were all negative for Salmonella. Serotyping and minimum inhibitory concentration determination were performed on 12 patient isolates......We report the first outbreak of salmonellosis caused by consumption of contaminated marlin mousse. Between 29 October and 5 November 2008, at least 53 persons developed diarrheal illness, all with a history of eating marlin mousse. Salmonella spp. that did not produce gas from glucose was isolated...... from stools of 26 affected patients and blood culture from one patient. Salmonella sp. isolates with the same phenotype were isolated in three samples of marlin mousse manufactured on 27 October 2008. The constituents of the mousse were smoked marlin, raw eggs, bovine gelatin, oil, and cream...

  1. Nitric oxide metabolites in gnotobiotic piglets orally infected with Salmonella enterica serovar Typhimurium

    Czech Academy of Sciences Publication Activity Database

    Trebichavský, Ilja; Zídek, Zdeněk; Franková, Daniela; Zahradníčková, Marie; Šplíchal, Igor

    2001-01-01

    Roč. 46, č. 4 (2001), s. 353-358 ISSN 0015-5632 R&D Projects: GA ČR GA524/01/0917 Institutional research plan: CEZ:AV0Z5020903 Keywords : nitric oxide metabolites Subject RIV: EC - Immunology Impact factor: 0.776, year: 2001

  2. Dissemination of clonal Salmonella enterica serovar Typhimurium isolates causing salmonellosis in Mauritius

    DEFF Research Database (Denmark)

    Issack, M. I.; Migura, Lourdes Garcia; Ramsamy, Veemala D.

    2013-01-01

    from foodborne illness outbreaks and sporadic gastroenteritis cases, four blood isolates, one postmortem colon isolate, 14 food isolates, and five poultry isolates. All isolates were pansusceptible to the 16 antibiotics tested, except for two isolates that were resistant to sulfamethoxazole...

  3. Susceptibility of germ-free pigs to challenge with protease mutants of Salmonella enterica serovar Typhimurium

    Czech Academy of Sciences Publication Activity Database

    Šplíchal, Igor; Rychlík, I.; Gregorová, D.; Šebková, A.; Trebichavský, Ilja; Šplíchalová, Alla; Muneta, Y.; Mori, Y.

    2007-01-01

    Roč. 212, - (2007), s. 577-582 ISSN 0171-2985 R&D Projects: GA ČR GA524/05/2248 Grant - others:CZ(CZ) 1B4400020 Institutional research plan: CEZ:AV0Z50200510 Source of funding: V - iné verejné zdroje Keywords : salmonella * protease mutants * pig Subject RIV: EE - Microbiology, Virology Impact factor: 2.886, year: 2007

  4. Thioridazine protects the mouse from a virulent infection by Salmonella enterica serovar Typhimurium 74

    DEFF Research Database (Denmark)

    Dasgupta, Asish; Mukherjee, Sayanti; Chaki, Shaswati

    2010-01-01

    hypothesised that the reduction in the 55kDa virulence factor renders the organism susceptible to the action of hydrolytic enzymes of the neutrophil phagolysosome, whereas in the absence of exposure to TDZ intracellular ingestion and localisation of the phagocytosed bacterium does not result in killing owing...

  5. Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice

    DEFF Research Database (Denmark)

    Petersen, Anne; Heegaard, Peter M. H.; Pedersen, Anna Lovmand

    2009-01-01

    containing 10% of either of the following carbohydrates: inulin, fructo-oligosaccharide, xylo-oligosaccharide, galacto-oligosaccharide, apple pectin, polydextrose or beta-glucan for three weeks prior to oral Salmonella challenge (107 CFU) and compared to mice fed a cornstarch-based control diet. RESULTS...

  6. Molecular characterization of the Na+/H+-antiporter NhaA from Salmonella Typhimurium.

    Science.gov (United States)

    Lentes, Christopher J; Mir, Syed H; Boehm, Marc; Ganea, Constanta; Fendler, Klaus; Hunte, Carola

    2014-01-01

    Na+/H+ antiporters are integral membrane proteins that are present in almost every cell and in every kingdom of life. They are essential for the regulation of intracellular pH-value, Na+-concentration and cell volume. These secondary active transporters exchange sodium ions against protons via an alternating access mechanism, which is not understood in full detail. Na+/H+ antiporters show distinct species-specific transport characteristics and regulatory properties that correlate with respective physiological functions. Here we present the characterization of the Na+/H+ antiporter NhaA from Salmonella enterica serovar Thyphimurium LT2, the causing agent of food-born human gastroenteritis and typhoid like infections. The recombinant antiporter was functional in vivo and in vitro. Expression of its gene complemented the Na+-sensitive phenotype of an E. coli strain that lacks the main Na+/H+ antiporters. Purified to homogeneity, the antiporter was a dimer in solution as accurately determined by size-exclusion chromatography combined with multi-angle laser-light scattering and refractive index monitoring. The purified antiporter was fully capable of electrogenic Na+(Li+)/H+-antiport when reconstituted in proteoliposomes and assayed by solid-supported membrane-based electrophysiological measurements. Transport activity was inhibited by 2-aminoperimidine. The recorded negative currents were in agreement with a 1Na+(Li+)/2H+ stoichiometry. Transport activity was low at pH 7 and up-regulation above this pH value was accompanied by a nearly 10-fold decrease of KmNa (16 mM at pH 8.5) supporting a competitive substrate binding mechanism. K+ does not affect Na+ affinity or transport of substrate cations, indicating that selectivity of the antiport arises from the substrate binding step. In contrast to homologous E. coli NhaA, transport activity remains high at pH values above 8.5. The antiporter from S. Typhimurium is a promising candidate for combined structural and

  7. Chlamydia trachomatis serovar G infection in a bisexual male with urethritis.

    Science.gov (United States)

    Rawre, Jyoti; Dhawan, Benu; Saigal, Karnika; Khanna, Neena

    2016-01-01

    We report a case of Chlamydia trachomatis serovar G urogenital tract infection in a 33-year-old human immunodeficiency virus-1 (HIV-1) seropositive Indian bisexual male. This case highlights the emergence of a new serovar in India. The patient was tested positive for C. trachomatis by both cryptic plasmid and omp A gene polymerase chain reaction (PCR). On further characterization using polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) and omp A gene sequencing, the strain was found to be C. trachomatis serovar G. His spouse was also found to be infected with C. trachomatis serovar G. Phylogenetic analysis was performed on the clinical isolates obtained from both partners and were found to be identical to the isolates available in GenBank. The sexual network could not be traced further. Detection of a new genotype suggests importation of a new strain into the population probably by sexual contact with a person from a geographical area where the strain is common. Identifying circulating genotypes in the community can assist in developing strategies for improved sexually transmitted disease control.

  8. Detection of cell surface hydrophobicity, biofilm and fimbirae genes in salmonella isolated from tunisian clinical and poultry meat.

    Science.gov (United States)

    Ben Abdallah, Fethi; Lagha, Rihab; Said, Khaled; Kallel, Héla; Gharbi, Jawhar

    2014-04-01

    The aim of this study was to evaluate the ability of 15 serotypes of Salmonella to form biofilm on polystyrene, polyvinyl chloride (PVC) and glass surfaces. . Initially slime production was assessed on CRA agar and hydrophobicity of 20 Salmonella strains isolated from poultry and human and two Salmonella enterica serovar Typhimurium references strains was achieved by microbial adhesion to n-hexadecane. In addition, biofilm formation on polystyrene, PVC and glass surfaces was also investigated by using MTT and XTT colorimetric assay. Further, distribution of Salmonella enterotoxin (stn), Salmonella Enteritidis fimbrial (sef) and plasmid encoded fimbrial (pef) genes among tested strains was achieved by PCR. Salmonella strains developed red and white colonies on CRA and they are considered as hydrophilic with affinity values to n-hexadecane ranged between 0.29% and 29.55%. Quantitative biofilm assays showed that bacteria are able to form biofilm on polystyrene with different degrees and 54.54% of strains produce a strong biofilm on glass. In addition, all the strains form only a moderate (54.54%) and weak (40.91%) biofilm on PVC. PCR detection showed that only S. Enteritidis harbour Sef gene, whereas Pef and stn genes were detected in S. Kentucky, S. Amsterdam, S. Hadar, S. Enteritidis and S. Typhimurium. Salmonella serotypes are able to form biofilm on hydrophobic and hydrophilic industrial surfaces. Biofilm formation of Salmonella on these surfaces has an increased potential to compromise food safety and potentiate public health risk.

  9. Serovars of Mycobacterium avium Complex isolated from patients in Denmark

    DEFF Research Database (Denmark)

    Askgaard, D. S.; Giese, Steen Bjørck; Thybo, S.

    1994-01-01

    Danish isolates of Mycobacterium avium complex were serotyped by the use of seroagglutination. The most prevalent serovars among patients with AIDS (n = 89) were 4 and 6, while among non-AIDS patients the most prevalent serovars were 1, 6, and 4, with no major differences between those in patients...... with pulmonary disease (n = 65) and those in patients with lymph node infection (n = 58). The results suggest a Scandinavian distribution of serovars with a predominance of serovar 6 and fail to demonstrate any selective protection against different serovars by Mycobacterium bovis ECG vaccination....

  10. ramR Mutations Affecting Fluoroquinolone Susceptibility in Epidemic Multidrug-Resistant Salmonella enterica Serovar Kentucky ST198

    Directory of Open Access Journals (Sweden)

    Axel eCloeckaert

    2013-07-01

    Full Text Available A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n=30, covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations.

  11. Gene Discovery through Genomic Sequencing of Brucella abortus

    Science.gov (United States)

    Sánchez, Daniel O.; Zandomeni, Ruben O.; Cravero, Silvio; Verdún, Ramiro E.; Pierrou, Ester; Faccio, Paula; Diaz, Gabriela; Lanzavecchia, Silvia; Agüero, Fernán; Frasch, Alberto C. C.; Andersson, Siv G. E.; Rossetti, Osvaldo L.; Grau, Oscar; Ugalde, Rodolfo A.

    2001-01-01

    Brucella abortus is the etiological agent of brucellosis, a disease that affects bovines and human. We generated DNA random sequences from the genome of B. abortus strain 2308 in order to characterize molecular targets that might be useful for developing immunological or chemotherapeutic strategies against this pathogen. The partial sequencing of 1,899 clones allowed the identification of 1,199 genomic sequence surveys (GSSs) with high homology (BLAST expect value < 10−5) to sequences deposited in the GenBank databases. Among them, 925 represent putative novel genes for the Brucella genus. Out of 925 nonredundant GSSs, 470 were classified in 15 categories based on cellular function. Seven hundred GSSs showed no significant database matches and remain available for further studies in order to identify their function. A high number of GSSs with homology to Agrobacterium tumefaciens and Rhizobium meliloti proteins were observed, thus confirming their close phylogenetic relationship. Among them, several GSSs showed high similarity with genes related to nodule nitrogen fixation, synthesis of nod factors, nodulation protein symbiotic plasmid, and nodule bacteroid differentiation. We have also identified several B. abortus homologs of virulence and pathogenesis genes from other pathogens, including a homolog to both the Shda gene from Salmonella enterica serovar Typhimurium and the AidA-1 gene from Escherichia coli. Other GSSs displayed significant homologies to genes encoding components of the type III and type IV secretion machineries, suggesting that Brucella might also have an active type III secretion machinery. PMID:11159979

  12. A Descriptive Study of Human Salmonella Serotype Typhimurium Infections Reported in Ontario from 1990 to 1997

    Directory of Open Access Journals (Sweden)

    Michael W Ford

    2003-01-01

    Full Text Available BACKGROUND: Salmonella infections cause gastrointestinal and systemic diseases worldwide and are the leading causes of food-borne illnesses in North America (1-4. Salmonella serotype typhimurium (ST, in particular, is increasingly becoming a major public health concern because of its ability to acquire multiple resistant genes (5,6.

  13. Diversity and antimicrobial susceptibility of Salmonella enterica serovars isolated from pig farms in Ibadan, Nigeria

    DEFF Research Database (Denmark)

    Fashae, Kayode; Hendriksen, Rene S.

    2014-01-01

    of plasmid-mediated quinolone resistance (PMQR) genes in pigs in Ibadan, Nigeria. Pooled fresh pen floor fecal samples of pigs collected from 31 pig farms were cultured; the Salmonella isolates were serotyped and their antimicrobial susceptibility was determined. PMQR genes were screened by polymerase chain...... Kingston (n = 13; 5.7 %). The most widely distributed serovars among the farms were Salmonella Give (six farms) and Salmonella Elisaberthville (six farms). Resistance to chloramphenicol, sulfonamides, nalidixic acid, streptomycin, and tetracycline ranged from 11.6 % (n = 26) to 22.8 % (n = 51). Resistance....... Other PMQR genes were not detected. Pigs constitute an important source of diverse Salmonella serovars in Ibadan. The isolates were more resistant to old antimicrobials with some multiple resistant. Control measures and regulation of antimicrobials are warranted....

  14. Genotypic homogeneity of multidrug resistant S. Typhimurium infecting distinct adult and childhood susceptibility groups in Blantyre, Malawi.

    Directory of Open Access Journals (Sweden)

    Chisomo L Msefula

    Full Text Available Nontyphoidal Salmonella (NTS serovars are a common cause of bacteraemia in young children and HIV-infected adults in Malawi and elsewhere in sub-Saharan Africa. These patient populations provide diverse host-immune environments that have the potential to drive bacterial adaptation and evolution. We therefore investigated the diversity of 27 multidrug resistant (MDR Salmonella Typhimurium strains isolated over 6 years (2002-2008 from HIV-infected adults and children and HIV-uninfected children. Sequence reads from whole-genome sequencing of these isolates using the Illumina GA platform were mapped to the genome of the laboratory strain S. Typhimurium SL1344 excluding homoplastic regions that contained prophage and insertion elements. A phylogenetic tree generated from single nucleotide polymorphisms showed that all 27 strains clustered with the prototypical MDR strain D23580. There was no clustering of strains based on host HIV status or age, suggesting that these susceptible populations acquire S. Typhimurium from common sources or that isolates are transmitted freely between these populations. However, 7/14 of the most recent isolates (2006/2008 formed a distinct clade that branched off 22 SNPs away from the cluster containing earlier isolates. These data suggest that the MDR bacterial population is not static, but is undergoing microevolution which might result in further epidemiology change.

  15. IDENTIFICATION OF SALMONELLA SEROVARS ISOLATED DURING 2009-2016 IN TERNOPIL REGION, UKRAINE

    Directory of Open Access Journals (Sweden)

    Pokryshko O.V.

    2017-06-01

    Full Text Available Introduction. Salmonellosis is registered in all regions of the world. Relevance of salmonellosis is due its global distribution, increasing incidence, even in developed countries, frequent outbreaks. The most reports in different countries demonstrated that one of the common Salmonella serotypes isolated from food and environmental samples had been serovars Salmonella Enterica, Typhimurium. In Ukraine 7.3% of all acute diarrheal infections have been cases of salmonellosis. Although large Salmonella outbreaks usually attract media attention, 60–80% of all salmonellosis cases are not recognized as part of a known outbreak and are classified as sporadic cases, or are not diagnosed as such at all. Material & methods. The samples from cultured stool, bile samples, food and environment were inoculated in the Tryptic Soya Broth (TSB for the enrichment and detection of the bacteria. After 24 hours incubation, microorganisms were cultured on the MacConkey agar plates. Then biochemical and serological tests were performed to identify the serovars of the isolated Salmonella in Ternopil regional laboratory center, Ukraine.Results & discussion. Over the past 8 years the incidence of salmonellosis has varied between 8.41 3.3 cases per 100 thousand of population (35 - 90 cases. During this period, the lowest rate recorded in 2015 (3.3 cases per 100 thousand of population, the highest – in 2014. Analysis of morbidity has been shown that elevated levels of infection were due to outbreaks registrated in 2011 (the number of infected people was 23, in 2013 (53 infected people, in 2014 (67 infected people and in 2016 (16 infected people. In Ternopil region the dominant serovar of Salmonella spp. isolated from patients are S. enteritidis (56.8 - 93.5% of all cases of diseases and S. typhimurium (7.8 - 43.8% in last 8 years. Among the carriers circulate S.enteritidis, S. typhimurium – mainly (64,8% and 35.2% respectively. Not typical for Ternopil region

  16. Curli Fibers Are Highly Conserved between Salmonella typhimurium and Escherichia coli with Respect to Operon Structure and Regulation

    Science.gov (United States)

    Römling, Ute; Bian, Zhao; Hammar, Mårten; Sierralta, Walter D.; Normark, Staffan

    1998-01-01

    Mouse-virulent Salmonella typhimurium strains SR-11 and ATCC 14028-1s express curli fibers, thin aggregative fibers, at ambient temperature on plates as judged by Western blot analysis and electron microscopy. Concomitantly with curli expression, cells develop a rough and dry colony morphology and bind the dye Congo red (called the rdar morphotype). Cloning and characterization of the two divergently transcribed operons required for curli biogenesis, csgBA(C) and csgDEFG, from S. typhimurium SR-11 revealed the same gene order and flanking genes as in Escherichia coli. The divergence of the curli region between S. typhimurium and E. coli at the nucleotide level is above average (22.4%). However, a high level of conservation at the protein level, which ranged from 86% amino acid homology for the fiber subunit CsgA to 99% homology for the lipoprotein CsgG, implies functional constraints on the gene products. Consequently, S. typhimurium genes on low-copy-number plasmids were able to complement respective E. coli mutants, although not always to wild-type levels. rpoS and ompR are required for transcriptional activation of (at least) the csgD promoter. The high degree of conservation at the protein level and the identical regulation patterns in E. coli and S. typhimurium suggest similar roles of curli fibers in the same ecological niche in the two species. PMID:9457880

  17. Molecular Characterisation of Salmonella enterica Serovar Typhi Isolated from Typhoidial Humans

    Directory of Open Access Journals (Sweden)

    Arunava Das

    2012-09-01

    Full Text Available Aims: Salmonella enterica serovar Typhi is the major causative agent for typhoidial fever around the globe among human population reported till date. Present research work was carried out for detection and molecular characterisation of Salmonella enterica serovar Typhi isolated from humans with Typhoidial fever by biochemical, phenotypical and virulence gene based polymerase chain reaction (PCR techniques. The isolated strains were also investigated for antibiotic susceptibility patterns as a control measure. Methodology and Results: A total of 16 clinical samples were collected from the same numbers of patients (7 males and 9 females from Coimbatore, Erode and Salem districts of Tamil Nadu and were processed via broth enrichment methods for isolation and identification of the causative agent S. enterica serovar Typhi. Microbiological and biochemical investigations revealed the presence of S. Typhi from 16 samples. The biotyping of the isolates showed that all the isolates belonged to biotype IV. The PCR analysis confirmed the presence of invA (Invasion gene, 244bp, tyv (Tyveloseepimerase gene, 615 bp, fliC-d (Phage-1 flagellin gene for d-antigen, 750 bp and viaB (Vi antigen gene, 439bp in all 16 clinical samples. The antibiotic susceptibility test that was carried out among the isolates against 12 antimicrobial agents, showed 100 % resistance to only ampicillin and 100 % sensitivity to carbenicillin, chloramphenicol, clindamycin, gentamycin, kanamycin and tetracycline.Conclusion, significance and impact of study: This study confirmed the association of virulent strains of S. enterica serovar Typhi from Typhoidial fever among human population and suggested that PCR based diagnostic could be very useful for the rapid detection of S. Typhi isolates. Present study emphasized the use of antibiotic like chloramphenicol or in combination with other antibiotics for the effective control of S. Typhi.

  18. Host-Nonspecific Iron Acquisition Systems and Virulence in the Zoonotic Serovar of Vibrio vulnificus

    Science.gov (United States)

    Pajuelo, David; Lee, Chung-Te; Roig, Francisco J.; Lemos, Manuel L.; Hor, Lien-I

    2014-01-01

    The zoonotic serovar of Vibrio vulnificus (known as biotype 2 serovar E) is the etiological agent of human and fish vibriosis. The aim of the present work was to discover the role of the vulnibactin- and hemin-dependent iron acquisition systems in the pathogenicity of this zoonotic serovar under the hypothesis that both are host-nonspecific virulence factors. To this end, we selected three genes for three outer membrane receptors (vuuA, a receptor for ferric vulnibactin, and hupA and hutR, two hemin receptors), obtained single and multiple mutants as well as complemented strains, and tested them in a series of in vitro and in vivo assays, using eels and mice as animal models. The overall results confirm that hupA and vuuA, but not hutR, are host-nonspecific virulence genes and suggest that a third undescribed host-specific plasmid-encoded system could also be used by the zoonotic serovar in fish. hupA and vuuA were expressed in the internal organs of the animals in the first 24 h of infection, suggesting that they may be needed to achieve the population size required to trigger fatal septicemia. vuuA and hupA were sequenced in strains representative of the genetic diversity of this species, and their phylogenies were reconstructed by multilocus sequence analysis of selected housekeeping and virulence genes as a reference. Given the overall results, we suggest that both genes might form part of the core genes essential not only for disease development but also for the survival of this species in its natural reservoir, the aquatic environment. PMID:24478087

  19. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  20. Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates.

    Science.gov (United States)

    Ault, Alida; Tennant, Sharon M; Gorres, J Patrick; Eckhaus, Michael; Sandler, Netanya G; Roque, Annelys; Livio, Sofie; Bao, Saran; Foulds, Kathryn E; Kao, Shing-Fen; Roederer, Mario; Schmidlein, Patrick; Boyd, Mary Adetinuke; Pasetti, Marcela F; Douek, Daniel C; Estes, Jacob D; Nabel, Gary J; Levine, Myron M; Rao, Srinivas S

    2013-12-02

    Nontyphoidal Salmonella (NTS) serovars are a common cause of acute food-borne gastroenteritis worldwide and can cause invasive systemic disease in young infants, the elderly, and immunocompromised hosts, accompanied by high case fatality. Vaccination against invasive NTS disease is warranted where the disease incidence and mortality are high and multidrug resistance is prevalent, as in sub-Saharan Africa. Live-attenuated vaccines that mimic natural infection constitute one strategy to elicit protection. However, they must particularly be shown to be adequately attenuated for consideration of immunocompromised subjects. Accordingly, we examined the safety and tolerability of an oral live attenuated Salmonella typhimurium vaccine candidate, CVD 1921, in an established chronic simian immunodeficiency virus (SIV)-infected rhesus macaque model. We evaluated clinical parameters, histopathology, and measured differences in mucosal permeability to wild-type and vaccine strains. Compared to the wild-type S. typhimurium strain I77 in both SIV-infected and SIV-uninfected nonhuman primate hosts, this live-attenuated vaccine shows reduced shedding and systemic spread, exhibits limited pathological disease manifestations in the digestive tract, and induces low levels of cellular infiltration in tissues. Furthermore, wild-type S. typhimurium induces increased intestinal epithelial damage and permeability, with infiltration of neutrophils and macrophages in both SIV-infected and SIV-uninfected nonhuman primates compared to the vaccine strain. Based on shedding, systemic spread, and histopathology, the live-attenuated S. typhimurium strain CVD 1921 appears to be safe and well-tolerated in the nonhuman primate model, including chronically SIV-infected rhesus macaques. Copyright © 2013. Published by Elsevier Ltd.

  1. Leptospira santorosai Serovar Shermani detergent extract induces an increase in fibronectin production through a Toll-like receptor 2-mediated pathway.

    Science.gov (United States)

    Tian, Ya-Chung; Hung, Cheng-Chieh; Li, Yi-Jung; Chen, Yung-Chang; Chang, Ming-Yang; Yen, Tzung-Hai; Hsu, Hsiang-Hao; Wu, Mai-Szu; Phillips, Aled; Yang, Chih-Wei

    2011-03-01

    Leptospirosis can activate inflammatory responses through Toll-like receptors (TLRs) and may cause renal tubulointerstitial fibrosis characterized by the accumulation of extracellular matrix (ECM). We have previously demonstrated that Leptospira santorosai serovar Shermani detergent extract stimulates ECM accumulation in vitro. The aim of this study was to examine the mechanistic basis of these previous observations and, in particular, to examine the potential involvement of TLRs. The addition of serovar Shermani detergent extract led to an increase in fibronectin gene expression and production. Inhibition of TLR2 but not TLR4 expression abrogated serovar Shermani detergent extract-mediated increases in fibronectin production. This response was also blocked by the knockdown of the gene expression of the TLR2 downstream transducers myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor-associated factor 6 (TRAF6). Serovar Shermani detergent extract also activated nuclear factor-κB, and its inhibition by curcumin-attenuated serovar Shermani detergent extract induced increases in fibronectin production. These effects were also mimicked by the specific TLR2 agonist, Pam(3)CsK(4), a response that was also abrogated by the knockdown of MyD88 and TRAF6. Similarly, the administration of live leptospires to cells also induced fibronectin production that was blocked by inhibition of TLR2 and MyD88 expression. In conclusion, serovar Shermani detergent extract can induce fibronectin production through the TLR2-associated cascade, providing evidence of an association between TLRs and leptospirosis-mediated ECM deposition.

  2. Alternate phase variation in expression of two major surface membrane proteins (MBA and UU376) of Ureaplasma parvum serovar 3.

    Science.gov (United States)

    Zimmerman, Carl-Ulrich R; Stiedl, Thomas; Rosengarten, Renate; Spergser, Joachim

    2009-03-01

    Ureaplasma urealyticum and Ureaplasma parvum are commensals and pathogens of the human urogenital tract and of newborn infants. There are four distinct U. parvum serovars and 10 distinct U. urealyticum serovars. Both species possess a distinct immunodominant variable surface protein, the multiple banded antigen (MBA), which shows size variability among isolates as a result of changes in the number of C-terminal repeating units. Adjacent to the MBA gene (UU375) lies UU376, which was annotated as 'Ureaplasma-specific conserved hypothetical gene'. In four different strains of U. parvum serovar 3, we demonstrated expression of UU376 by Western blot analysis and phase variation between UU376, here designated Upvmp376 (Ureaplasma phase-variable membrane protein 376), and MBA after application of selective pressure with hyperimmune antisera directed against either protein. By Southern blot analysis, we found that the switch between MBA and Upvmp376 expression is associated with a DNA inversion event in which the nonrepetitive region of the MBA gene and its putative promoter region are opposed to either the repetitive region of MBA or UU376. We propose that in U. parvum serovar 3, and presumably in all U. parvum and U. urealyticum, an inversion event at specific sites effects an alternate ON/OFF switching of the genes UU375 and UU376.

  3. Rapid Detection of Chlamydia trachomatis and Typing of the Lymphogranuloma venereum associated L-Serovars by TaqMan PCR

    Directory of Open Access Journals (Sweden)

    Henrich Birgit

    2008-04-01

    Full Text Available Abstract Background Infection due to Chlamydia trachomatis is the most common sexually transmitted bacterial disease of global health significance, and especially the L-serovars causing lymphogranuloma venereum are increasingly being found in Europe in men who have sex with men. Results The design and evaluation of a rapid, multiplex, real-time PCR targeting the major outer membrane protein (omp-1 -gene and a L-serovar-specific region of the polymorphic protein H (pmp-H -gene for the detection of Chlamydia trachomatis is reported here. The PCR takes place as a single reaction with an internal control. For L1-, L2- and L3-serovar differentiation a second set of real-time PCRs was evaluated based on the amplification of serovar-specific omp-1-regions. The detection limit of each real-time PCR, multiplexed or not, was 50 genome copies per reaction with an efficiency ranging from 90,5–95,2%. In a retrospective analysis of 50 ocular, rectal and urogenital specimens formerly tested to be positive for C. trachomatis we identified six L2-serovars in rectal specimens of HIV-positive men, one in a double-infection with L3, and one L2 in a urethral specimen of an HIV-negative male. Conclusion This unique real-time PCR is specific and convenient for the rapid routine-diagnostic detection of lymphogranuloma venereum-associated L-serovars and enables the subsequent differentiation of L1, L2 and L3 for epidemiologic studies.

  4. Rapid Detection of Chlamydia trachomatis and Typing of the Lymphogranuloma venereum associated L-Serovars by TaqMan PCR

    Science.gov (United States)

    Schaeffer, Anke; Henrich, Birgit

    2008-01-01

    Background Infection due to Chlamydia trachomatis is the most common sexually transmitted bacterial disease of global health significance, and especially the L-serovars causing lymphogranuloma venereum are increasingly being found in Europe in men who have sex with men. Results The design and evaluation of a rapid, multiplex, real-time PCR targeting the major outer membrane protein (omp-1) -gene and a L-serovar-specific region of the polymorphic protein H (pmp-H) -gene for the detection of Chlamydia trachomatis is reported here. The PCR takes place as a single reaction with an internal control. For L1-, L2- and L3-serovar differentiation a second set of real-time PCRs was evaluated based on the amplification of serovar-specific omp-1-regions. The detection limit of each real-time PCR, multiplexed or not, was 50 genome copies per reaction with an efficiency ranging from 90,5–95,2%. In a retrospective analysis of 50 ocular, rectal and urogenital specimens formerly tested to be positive for C. trachomatis we identified six L2-serovars in rectal specimens of HIV-positive men, one in a double-infection with L3, and one L2 in a urethral specimen of an HIV-negative male. Conclusion This unique real-time PCR is specific and convenient for the rapid routine-diagnostic detection of lymphogranuloma venereum-associated L-serovars and enables the subsequent differentiation of L1, L2 and L3 for epidemiologic studies. PMID:18447917

  5. An incomplete TCA cycle increases survival of Salmonella Typhimurium during infection of resting and activated murine macrophages.

    Science.gov (United States)

    Bowden, Steven D; Ramachandran, Vinoy K; Knudsen, Gitte M; Hinton, Jay C D; Thompson, Arthur

    2010-11-08

    In comparison to the comprehensive analyses performed on virulence gene expression, regulation and action, the intracellular metabolism of Salmonella during infection is a relatively under-studied area. We investigated the role of the tricarboxylic acid (TCA) cycle in the intracellular replication of Salmonella Typhimurium in resting and activated macrophages, epithelial cells, and during infection of mice. We constructed deletion mutations of 5 TCA cycle genes in S. Typhimurium including gltA, mdh, sdhCDAB, sucAB, and sucCD. We found that the mutants exhibited increased net intracellular replication in resting and activated murine macrophages compared to the wild-type. In contrast, an epithelial cell infection model showed that the S. Typhimurium ΔsucCD and ΔgltA strains had reduced net intracellular replication compared to the wild-type. The glyoxylate shunt was not responsible for the net increased replication of the TCA cycle mutants within resting macrophages. We also confirmed that, in a murine infection model, the S. Typhimurium ΔsucAB and ΔsucCD strains are attenuated for virulence. Our results suggest that disruption of the TCA cycle increases the ability of S. Typhimurium to survive within resting and activated murine macrophages. In contrast, epithelial cells are non-phagocytic cells and unlike macrophages cannot mount an oxidative and nitrosative defence response against pathogens; our results show that in HeLa cells the S. Typhimurium TCA cycle mutant strains show reduced or no change in intracellular levels compared to the wild-type. The attenuation of the S. Typhimurium ΔsucAB and ΔsucCD mutants in mice, compared to their increased net intracellular replication in resting and activated macrophages suggest that Salmonella may encounter environments within the host where a complete TCA cycle is advantageous.

  6. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta.

    Directory of Open Access Journals (Sweden)

    Hélène Bierne

    Full Text Available Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues.

  7. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    Science.gov (United States)

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Temperature and oxygen dependent metabolite utilization by Salmonella enterica serovars Derby and Mbandaka.

    Directory of Open Access Journals (Sweden)

    Matthew R Hayward

    Full Text Available Salmonella enterica is a zoonotic pathogen of clinical and veterinary significance, with over 2500 serovars. In previous work we compared two serovars displaying host associations inferred from isolation statistics. Here, to validate genome sequence data and to expand on the role of environmental metabolite constitution in host range determination we use a phenotypic microarray approach to assess the ability of these serovars to metabolise ~500 substrates at 25°C with oxygen (aerobic conditions to represent the ex vivo environment and at 37°C with and without oxygen (aerobic/anaerobic conditions to represent the in vivo environment. A total of 26 substrates elicited a significant difference in the rate of metabolism of which only one, D-galactonic acid-g-lactone, could be explained by the presence (S. Mbandaka or the absence (S. Derby of metabolic genes. We find that S. Mbandaka respires more efficiently at ambient temperatures and under aerobic conditions on 18 substrates including: glucosominic acid, saccharic acid, trehalose, fumaric acid, maltotriose, N-acetyl-D-glucosamine, N-acetyl-beta-D-mannosamine, fucose, L-serine and dihydroxy-acetone; whereas S. Derby is more metabolically competent anaerobically at 37°C for dipeptides, glutamine-glutamine, alanine-lysine, asparagine-glutamine and nitrogen sources glycine and nitrite. We conclude that the specific phenotype cannot be reliably predicted from the presence of metabolic genes directly relating to the metabolic pathways under study.

  9. Development of a multiplex polymerase chain reaction protocol for the simultaneous detection of Salmonella enterica serovar Typhi and Class 1 integron

    Directory of Open Access Journals (Sweden)

    Juthika Mandal

    2014-09-01

    Full Text Available Objective: To develop a multiplex polymerase chain reaction (PCR protocol for the simultaneous detection of Salmonella enterica serovar Typhi (S. Typhi and Class 1 integron, so as to aid rapid diagnosis of S. Typhi cases and help in the selection of treatment options based on the presence of the Class 1 integron that can carry resistance cassettes to a range of antibiotics. Methods: PCR for amplification of specific regions was done using fliC-d and intl primers and agarose gel electrophoresis was used for resolution of PCR products. Results: The fliC-d primer (S. Typhi specific amplified a 587 bp region and the intl primer (Class 1 integron specific amplified two bands approximately 500 and 550 bps. The developed method was specific for S. Typhi and did not amplify any products with Salmonella enterica serovar Typhimurium ATCC 14028, Salmonella enterica serovar Paratyphi and Escherichia coli O157:H7. Conclusions: The developed multiplex PCR protocol can be used for rapid diagnosis and aid in proper treatment strategies for patients infected with S. Typhi.

  10. Cloning and properties of the Salmonella typhimurium tricarboxylate transport operon in Escherichia coli

    International Nuclear Information System (INIS)

    Widenhorn, K.A.; Boos, W.; Somers, J.M.; Kay, W.W.

    1988-01-01

    The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in λgtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by λTn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C-protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar [ 14 C] fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to [ 14 C] fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis

  11. A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions.

    Directory of Open Access Journals (Sweden)

    Carine Makendi

    2016-02-01

    Full Text Available Salmonella enterica serovar Weltevreden (S. Weltevreden is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies.

  12. Influence of Natural Organic Matter on Attachment Kinetics of Salmonella Typhimurium

    Science.gov (United States)

    Chowdhury, I.; Zorlu, O.; Hill, J. E.; Walker, S. L.

    2011-12-01

    Salmonella enterica serovar Typhimurium is one of the most common and virulent bacterial pathogens, usually found in food and water. This waterborne pathogen has been attributed to causing gastroenteritis and typhoid fever, leading to 16 million cases and over half a million deaths worldwide each year. Natural organic matter (NOM) is ubiquitous in environment and previous work has shown NOM to enhance the stability and transport of bacteria cells; hence NOM will certainly interact with Salmonella and affect its transport in environment. The objective of this study was to investigate the influence of NOM (Suwannee River humic acid standard II, SRHA) on the attachment kinetics of a model Salmonella (Salmonella enterica serovar Typhimurium SA5983) to glass. The transport study was conducted in a parallel plate flow chamber using fluorescent microscope to visualize the bacterial cells, which were tagged with green fluorescent protein (GFP). The solution pH was unadjusted, and the flow rate through parallel plate channel was 0.1 mL/min to simulate groundwater conditions. Parameters varied in this study were NOM presence, ion valence (K+, Ca2+) as well as cell growth phase (mid-exponential and late-exponential growth phases). These parameters were chosen because ion valence may alter the NOM conformation and capacity for bridging, as well growth phase impacts the cellular surface chemistry. Extensive characterization of the bacterial cells was conducted including measurements of electrophoretic mobility, hydrophobicity, acidity, surface charge density and extracellular polymeric substance content. Additionally, electrokintic characterization was conducted for the glass. Preliminary results demonstrated the sensitivity of cell attachment to ionic valence and cell growth phase. Also the addition of NOM reduced the attachment of the Salmonella cells significantly under all of these conditions. Without NOM, attachment efficiencies (α) in KCl were similar at both growth

  13. Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19-mediated quinolone resistance marker in two novel serovars

    DEFF Research Database (Denmark)

    Karczmarczyk, M.; Martins, M.; McCusker, M.

    2010-01-01

    Ninety-three Salmonella isolates recovered from commercial foods and exotic animals in Colombia were studied. The serotypes, resistance profiles and where applicable the quinolone resistance genes were determined. Salmonella Anatum (n=14), Uganda (19), Braenderup (10) and Newport (10) were the most...... plasmids, two of which were completely sequenced. These exhibited 97% (serovar 6,7:d:- isolate) and 100% (serovar Infantis isolate) nucleotide sequence identity with previously identified ColE-like plasmids. This study demonstrates the occurrence of the qnrB19 gene associated with small ColE plasmids...

  14. Genetic Transfer of Salmonella typhimurium and Escherichia coli Lipopolysaccharide Antigens to Escherichia coli K-12

    Science.gov (United States)

    Jones, Randall T.; Koeltzow, Donald E.; Stocker, B. A. D.

    1972-01-01

    Escherichia coli K-12 ϰ971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv+ hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his+ (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F′ factor (FS400) carrying the rfb–his region of S. typhimurium to the same two ilv+ hybrids gave similar results. LPS extracted from two ilv+,his+, factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his+ hybrids obtained from ϰ971 itself by similar HfrK9 and F′FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli ϰ971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli ϰ971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli ϰ971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his+ recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Ω8. This suggests that, although the parental E. coli K-12 strain ϰ971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units. PMID:4559827

  15. Prevalence and epidemiology of Salmonella enterica serovar Gallinarum from poultry in some parts of Haryana, India

    Directory of Open Access Journals (Sweden)

    Devan Arora

    2015-11-01

    Full Text Available Aim: The present study was investigated to ascertain the epidemiological status of fowl typhoid (FT in broilers in some parts of Haryana during January 2011 to December 2013. Materials and Methods: To elucidate the epidemiological status of FT in broiler chickens for the 3 years (2011-2013 and to study the prevalence of various Salmonella serovars in poultry on the basis of culture characteristics, biochemical features, serotyping, and their antibiogram profile from some parts of Haryana (India. Results: A total of 309 outbreaks of FT were recorded in chickens during this period. Overall percent morbidity, mortality, case-fatality rate (CFR in broiler chicks due to FT during this period was 9.45, 6.77, and 71.55. The yearly observations were divided into quarters A (January-March, B (April-June, C (July-September and D (October-December. Maximum number of outbreaks - 106 (34.3% was recorded in quarter D followed by quarters B - 84 (27.3%, C - 64 (20.7%, and A - 55 (17.7%. Salmonella isolates (253 were recovered from disease outbreaks in broilers from different parts of Haryana. Typical morphology and colony characters on MacConkeys Lactose Agar and Brilliant Green agar, biochemical reactions, serotyping along with antibiogram profiles were able to group these isolates into 3 groups namely Salmonella Gallinarum (183, Salmonella Enteritidis (41 and Salmonella Typhimurium (29. The antibiogram pattern of 183 isolates of S. Gallinarum revealed that most of the isolates were sensitive to gentamicin (76% followed by amikacin (72%, kanamycin (71%. Conclusion: FT is prevalent in commercial broiler flocks in different parts of Haryana and is responsible for considerably high morbidity and mortality in affected flocks. Isolation of S. Gallinarum (9, 12:183 from FT cases suggest it to be the primary pathogen, however, isolation of S. Typhimurium and S. Enteritidis from these cases is a major concern. The detection of S. Enteritidis and S. Typhimurium from

  16. Salmonella Typhimurium infection in the porcine intestine

    DEFF Research Database (Denmark)

    Schauser, Kirsten; Olsen, John Elmerdahl; Larsson, Lars-Inge

    2005-01-01

    The normal intestinal epithelium is renewed with a turnover rate of 3-5 days. During Salmonella infection increased cell loss is observed, possibly as a result of programmed cell death (PCD). We have, therefore, studied the effects of Salmonella Typhimurium infection on three elements involved...... in scattered epithelial cells and the number of positive cells increased with increasing times of exposure to Salmonella (P

  17. Impact of relative humidity, inoculum carrier and size, and native microbiota on Salmonella ser. Typhimurium survival in baby lettuce.

    Science.gov (United States)

    López-Gálvez, Francisco; Gil, Maria Isabel; Allende, Ana

    2018-04-01

    The effects of relative humidity (RH), fluctuating climate conditions, inoculum size and carrier on the survival of Salmonella enterica serovar Typhimurium on baby lettuce in environmental test chambers were studied. Buffered peptone water (BPW), distilled water (DW), and irrigation water (IW) were compared as inoculum carriers. Additionally, survival of Salmonella in suspensions prepared using filtered and unfiltered IW was assessed. Salmonella Typhimurium survived better on baby lettuce plants at high RH independently of the inoculum size. When lettuce plants were grown under fluctuating environmental conditions, Salmonella survival was similar under both RH conditions. Regarding the inoculum carrier, the inoculated microorganism survived better on lettuce plants when BPW was used as carrier both at high and low RH. Survival rate of Salmonella in IW was affected by the presence of native microbiota. Native microbiota present in IW did not affect survival of Salmonella or the levels of mesophilic bacteria on the baby lettuce leaves. The information obtained in the present study contributes to the knowledge on the effect of environmental conditions on pathogenic bacteria survival on growing edible plants. These results are useful when selecting the methodology to carry out experimental studies on the survival of microbial pathogens under different pre-harvest conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts.

    Science.gov (United States)

    Veluz, G A; Pitchiah, S; Alvarado, C Z

    2012-08-01

    In poultry industry, cross-contamination due to processing equipment and contact surfaces is very common. This study examined the extent of bacterial attachment to 6 different types and design of conveyor belts: stainless steel-single loop, stainless steel-balance weave, polyurethane with mono-polyester fabric, acetal, polypropylene mesh top, and polypropylene. Clean conveyor belts were immersed separately in either a cocktail of Salmonella serovars (Salmonella Typhimurium and Salmonella Enteritidis) or Listeria monocytogenes strains (Scott A, Brie 1, ATCC 6744) for 1 h at room temperature. Soiled conveyor chips were dipped in poultry rinses contaminated with Salmonella or Listeria cocktail and incubated at 10°C for 48 h. The polyurethane with mono-polyester fabric conveyor belt and chip exhibited a higher (Pconveyor belt attached a lower (Pconveyor belts exhibited stronger bacterial adhesion compared with stainless steel. The result suggests the importance of selecting the design and finishes of conveyor belt materials that are most resistant to bacterial attachment.

  19. Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham.

    Science.gov (United States)

    Theinsathid, Pornpun; Visessanguan, Wonnop; Kruenate, Jittiporn; Kingcha, Yutthana; Keeratipibul, Suwimon

    2012-02-01

    A novel type of environmentally friendly packaging with antibacterial activity was developed from lauric arginate (LAE)-coating of polylactic acid (PLA) films after surface activation using a corona discharge. Scanning electron microscopy (SEM)-based analysis of the LAE/PLA films confirmed the successful coating of LAE on the PLA surface. The mechanical properties of the LAE/PLA films with different levels of LAE-coating (0% to 2.6%[w/w]) were essentially the same as those of the neat PLA film. The antibacterial activity of the LAE/PLA films against Listeria monocytogenes and Salmonella enterica Serovar Typhimurium (S. Typhimurium) was confirmed by a qualitative modified agar diffusion assay and quantitative JIS Z 2801:2000 method. Using the LAE/PLA film as a food-contact antimicrobial packaging for cooked cured ham, as a model system, suggested a potential application to inhibit L. monocytogenes and S. Typhimurium on ham with a 0.07% (w/w) LAE coating on the PLA when high transparency is required, as evidenced from the 2 to 3 log CFU/tested film lower pathogen growth after 7 d storage but even greater antibacterial activity is obtained with a LAE coating level of 2.6% (w/w) but at the cost of a reduced transparency of the finished product. This article shows how we can simply develop functional green packaging of PLA for food with effective and efficient antimicrobial activity by use of LAE coating on the surface via corona discharge. The effectiveness of an innovative antimicrobial LAE-coated PLA film against foodborne pathogens was demonstrated. Importantly, the application of the LAE to form the LAE-coated PLA film can be customized within current film manufacturing lines. © 2012 Institute of Food Technologists®

  20. Safety and immunogenicity of Salmonella typhimurium expressing C-terminal truncated human IL-2 in a murine model

    Directory of Open Access Journals (Sweden)

    Brent Sorenson

    2010-03-01

    Full Text Available Brent Sorenson, Kaysie Banton, Lance Augustin, Sean Barnett, Karen McCulloch, Joshua Dorn, Natalie Frykman, Arnold Leonard, Daniel SaltzmanDepartment of Surgery, University of Minnesota Medical School, Minneapolis, MN, USAAbstract: Salmonella enterica serovar Typhimurium preferentially colonizes tumors in vivo and has proven to be an effective biologic vector. The attenuated S. enterica Typhimurium strain χ4550 was engineered to express truncated human interleukin-2 and renamed SalpIL2. Previously, we observed that a single oral administration of SalpIL2 reduced tumor number and volume, while significantly increasing local and systemic natural killer (NK cell populations in an experimental metastasis model. Here we report that in nontumor-bearing mice, a single oral dose of SalpIL2 resulted in increased splenic cytotoxic T and NK cell populations that returned to control levels by 4 weeks post oral administration. Though SalpIL2 was detected in mouse tissues for up to 10 weeks, no prolonged alterations in peripheral blood serum chemistry or complete blood cell counts were observed. Similarly, comparative histopathological analysis of tissues revealed no significant increase in pyogranulomas in SalpIL2-treated animals with respect to saline controls. In Rag-1 knockout mice, which have severely impaired B and T cell function, SalpIL2 reduced growth of hepatic metastases. Furthermore, SalpIL2 altered expression of several proinflammatory cytokines and chemokines in the serum of mice with pulmonary osteosarcoma metastases. These data further suggest that SalpIL2 is avirulent and induces a cell-mediated antitumor response.Keywords: Salmonella Typhimurium, natural killer cells, interleukin-2

  1. Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated genes expression.

    Science.gov (United States)

    Das, Susmita; Ray, Shilpa; Ryan, Daniel; Sahu, Bikash; Suar, Mrutyunjay

    2018-01-01

    Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis), one of the causative agents for non-typhoidal gastrointestinal diseases in humans is an intracellular bacterium and mechanism for its invasion into host cells is critical to cause infection. The virulence of the pathogen is explained by the expression of genes located on its pathogenicity islands, mostly encoded under SPI-1 and SPI-2. However, S. Typhimurium SL1344, despite sharing ∼98% of its genome with S. Enteritidis P125109, lacks few regions of differences (ROD) that are hypothesized to impart virulence potential to S. Enteritidis. In this study, we created different mutants in the ROD9 island of S. Enteritidis, also referred as SPI-19 and identified a novel locus, SEN1005, encoding a hypothetical protein that is involved in its pathogenesis. ΔSEN1005 displayed significantly reduced entry into cultured epithelial cells as well as uptake by macrophages and failed to cause acute colitis in C57BL/6 mice at day 3 post-infection (p.i.). Additionally, the global transcriptome analysis revealed a highly repressed SPI-1 and other down-regulated genes responsible for flagellar assembly, chemotaxis and motility in the mutant which correlated with decreased invasion and abated inflammation as compared to the wild-type. Therefore, our findings revealed that ΔSEN1005 was attenuated in vitro as well as in vivo and we propose this hypothetical protein to play a role in altering the expression of genes involved in Salmonella virulence.

  2. Comparative susceptibility of Salmonella Typhimurium biofilms of different ages to disinfectants.

    Science.gov (United States)

    Wong, Hui San; Townsend, Kirsty M; Fenwick, Stan G; Maker, Garth; Trengove, Robert D; O'Handley, Ryan M

    2010-10-01

    There is a general consensus that with increasing age a biofilm shows increased resistance to antimicrobials. In this study the susceptibility of 3-, 5- and 7-day-old Salmonella enterica serovar Typhimurium biofilms to disinfectants was evaluated. It was hypothesized that 7-day-old biofilms would be more resistant to disinfectants compared to 3- and 5-day-old biofilms. Biofilms were formed using the MBEC™ system and treated with six chemical disinfectants for 1 and 5 min. Four disinfectants at the highest concentration available showed 100% reduction in viable cells from all ages of biofilms after exposure for 5 min, and ethanol at 70% v/v was the least effective against biofilms, followed by chlorhexidine gluconate (CG). At the recommended user concentrations, only sodium hypochlorite showed 100% reduction in viable cells from all ages of biofilms. Benzalkonium chloride and CG were the least effective against biofilms, followed by quaternary ammonium compound which only showed 100% reduction in viable cells from 5-day-old biofilms. Overall, the results from this study do not display enhanced resistance in 7-day-old biofilms compared to 3- and 5-day-old biofilms. It is concluded that under the conditions of this study, the age of biofilm did not contribute to resistance towards disinfectants. Rather, the concentration of disinfectant and an increased contact time were both shown to play a role in successful sanitization.

  3. Prevalence and antimicrobial profiles of Salmonella serovars from ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-01-21

    Jan 21, 2014 ... Presumptive Salmonella isolates were determined by using the conventional ... Salmonella represents a major contaminant of vegetables consumed in Maiduguri, North-eastern ... serovars in vegetables in Nigeria do not exist.

  4. Chlamydia trachomatis serovars of endemic trachoma had been ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... The serovars that we identified from Japanese infants and pregnant women ... Once Japan was thought to be belong to an endemic area of trachoma as other Asian countries.

  5. Serovariedades de Salmonella enterica subespecie enterica en porcinos de faena y su resistencia a los antimicrobianos Serovars of Salmonella enterica subspecies enterica and its antimicrobial resistance in slaughterhouse pigs

    Directory of Open Access Journals (Sweden)

    M. P. Ibar

    2009-09-01

    possible reservoir of resistance. From a total of 386 samples from four porcine slaughterhouses of Buenos Aires and Santa Fe Provinces (Argentina, 93 (24,1% Salmonella enterica subspecies enterica strains were identified, 52 (55,9% from cecal contents and 41 (44,1% from ileocecal lymph nodes. Thirteen serovars of S. enterica were found, the most prevalent were: S. Schwarzengrund, S. Heidelberg, S. subspecie I 6,8:e,h:-, S. Derby and S. Bredeney. Fifteen antimicrobials by the agar dilution method were tested: amikacin, gentamicin, ciprofloxacin, cephalotin, cefotaxime, enrofloxacin, fosfomycin, polimixin-B, tetracycline, chloramphenicol, streptomycin, trimethoprim-sulfamethoxazole, ampicillin, nitrofurantoin, and nalidixic acid. According to the CIM determination, 73% Salmonella enterica subspecies enterica strains were sensible to all the antimicrobials tested. Antimicrobial resistance was observed to tetracycline in 24 (25,8% of 93 strains, to chloramphenicol in 22 (23,7%, to streptomycin in 22 (23,7%, to trimethoprim-sulfamethoxazole in 20 (21,5%, to ampicillin in 18 (19,4%, to nitrofurantoin in 3 (3,2% and to nalidixic acid in 3 (3,2%. Some isolates of S. Typhimurium, S. Heidelberg, S. Derby, S. Orion showed multidrug resistance and carried the class 1 integrase gene. The highest percentage of resistance corresponded to the antimicrobials currently used in veterinary and porcine farms.

  6. Six new leptospiral serovars isolated from wild animals in Peru.

    OpenAIRE

    Liceras de Hidalgo, J L; Sulzer, K R

    1984-01-01

    Six new serovars of Leptospira interrogans were isolated from opossums (Didelphis marsupialis and Philander opossum) trapped in the Peruvian jungle. The proposed names, type strain designation, and serogroup of the serovars, respectively, were: huallaga, strain M-7, Djasiman serogroup; luis, strain M-6, Tarassovi serogroup; machiguenga, strain MMD-3, Icterohaemorrhagiae serogroup; rioja, strain MR-12, Bataviae serogroup; rupa rupa, strain M-3, Sejroe serogroup; and tingomaria, strain M-13, Cy...

  7. Prevalence and characterization of multi-drug resistant Salmonella Enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Parvej

    2016-01-01

    Full Text Available Aim: Salmonella is an important zoonotic pathogen responsible for animal and human diseases. The aim of the present study was to determine the prevalence and stereotyping of Salmonella isolates isolated from apparently healthy poultry. Furthermore, the clonal relatedness among the isolated Salmonella serovars was assessed. Materials and Methods: A total of 150 cloacal swab samples from apparently healthy chickens were collected, and were subjected for the isolation and identification of associated Salmonella organisms. The isolated colonies were identified and characterized on the basis of morphology, cultural characters, biochemical tests, slide agglutination test, polymerase chain reaction, and pulsed-field gel electrophoresis (PFGE. Antibiotic sensitivity patterns were also investigated using commonly used antibiotics. Results: Of the 150 samples, 11 (7.33% produced characteristics pink colony with black center on XLD agar medium, and all were culturally and biochemically confirmed to be Salmonella. All possessed serovar-specific gene SpeF and reacted uniformly with group D antisera, suggesting that all of the isolates were Salmonella Enterica serovar Gallinarum, biovar Pullorum and/or Gallinarum. Antimicrobial susceptibility testing revealed that 54.54% of the isolated Salmonella Enterica serovars were highly sensitive to ciprofloxacin, whereas the 81.81% isolates were resistant to amoxycillin, doxycycline, kanamycin, gentamycin, and tetracycline. Pulsed-field gel electrophoresis of the XbaI-digested genomic DNA exhibited identical banding patterns, suggesting that the multidrug resistant Salmonella Enterica serovars occurring in commercial layers are highly clonal in Bangladesh. Conclusion: The present study was conducted to find out the prevalence of poultry Salmonella in layer chicken and to find out the clonal relationship among them. The data in this study suggest the prevalence of Salmonella Enterica, which is multidrug resistant and

  8. A novel Salmonella serovar isolated from Peregrine Falcon (Falco peregrinus nestlings in Sweden: Salmonella enterica enterica serovar Pajala (Salmonella Pajala

    Directory of Open Access Journals (Sweden)

    Jorge Hernández

    2012-08-01

    Full Text Available A novel Salmonella serovar was isolated from Peregrine falcon (Falco peregrinus nestlings in northern Sweden in 2006. Three isolates of the same clone was retrieved from three falcon siblings and characterized as Salmonella enterica sub-species enterica: O-phase 13, 23:-: e, n, z 15 and the H-phase was not present. We propose the geographical name Salmonella enterica, sub-species enterica serovar Pajala to this novel Salmonella.

  9. An in silico Approach for Structural and Functional Annotation of Salmonella enterica serovar typhimurium Hypothetical Protein R_27

    Directory of Open Access Journals (Sweden)

    Arif Khan

    2016-03-01

    Full Text Available Typhoid fever is a major cause of illness in most developing countries, including Bangladesh. In quest of new potential drug against Typhoid fever, the current study was designed to elucidate structural and functional details of S. typhi hypothetical protein (HP R_27. HP R_27 has the primary amino acid sequences available only. The structural annotation was determined by ProtParam, SOPMA, and CELLO. The three-dimensional (3D structure of HP R_27 predicted through homology modeling by using Phyre2. The 3D structure then refined and verified by ModRefiner, PROCHECK, ERRAT, QMEAN. The functional annotation was also performed by InterProScan, SMART, Pfam, NCBI-CDD and found Phospholipase D-like and DNA repair activity. Multiple sequence alignment also supported the existence of PLD-like domain and DNA repair protein domain in the selected hypothetical protein sequences. Finally, the cavity of drug binding was also identified to assist further molecular docking study and potent inhibitor identification. This in silico approach can be further utilized in molecular drug design for other clinically significant pathogens.

  10. Multidrug-resistant Salmonella enterica serovar Typhimurium isolates are resistant to antibiotics that influence their swimming and swarming motility

    Science.gov (United States)

    Motile bacteria utilize one or more strategies for movement, such as darting, gliding, sliding, swarming, swimming, and twitching. The ability to move is considered a virulence factor in many pathogenic bacteria, including Salmonella. Multidrug-resistant (MDR) Salmonella encodes acquired factors t...

  11. The effect of antibiotics on swimming and swarming motility of multidrug-resistant Salmonella enterica serovar Typhimurium

    Science.gov (United States)

    Motile bacteria can employ one or more different strategies to move, including swimming, swarming, twitching, gliding, sliding, and darting. Swimming is considered the movement of individual bacteria through a liquid or semi-solid medium, while swarming is the concerted movement of a group of bacte...

  12. The Arf GTPase-activating protein family is exploited by Salmonella enterica serovar Typhimurium to invade nonphagocytic host cells.

    Science.gov (United States)

    Davidson, Anthony C; Humphreys, Daniel; Brooks, Andrew B E; Hume, Peter J; Koronakis, Vassilis

    2015-02-10

    To establish intracellular infections, Salmonella bacteria trigger host cell membrane ruffling and invasion by subverting cellular Arf guanine nucleotide exchange factors (GEFs) that activate Arf1 and Arf6 GTPases by promoting GTP binding. A family of cellular Arf GTPase-activating proteins (GAPs) can downregulate Arf signaling by stimulating GTP hydrolysis, but whether they do this during infection is unknown. Here, we uncovered a remarkable role for distinct Arf GAP family members in Salmonella invasion. The Arf6 GAPs ACAP1 and ADAP1 and the Arf1 GAP ASAP1 localized at Salmonella-induced ruffles, which was not the case for the plasma membrane-localized Arf6 GAPs ARAP3 and GIT1 or the Golgi-associated Arf1 GAP1. Surprisingly, we found that loss of ACAP1, ADAP1, or ASAP1 impaired Salmonella invasion, revealing that GAPs cannot be considered mere terminators of cytoskeleton remodeling. Salmonella invasion was restored in Arf GAP-depleted cells by expressing fast-cycling Arf derivatives, demonstrating that Arf GTP/GDP cycles facilitate Salmonella invasion. Consistent with this view, both constitutively active and dominant-negative Arf derivatives that cannot undergo GTP/GDP cycles inhibited invasion. Furthermore, we demonstrated that Arf GEFs and GAPs colocalize at invading Salmonella and collaborate to drive Arf1-dependent pathogen invasion. This study revealed that Salmonella bacteria exploit a remarkable interplay between Arf GEFs and GAPs to direct cycles of Arf GTPase activation and inactivation. These cycles drive Salmonella cytoskeleton remodeling and enable intracellular infections. To initiate infections, the Salmonella bacterial pathogen remodels the mammalian actin cytoskeleton and invades host cells by subverting host Arf GEFs that activate Arf1 and Arf6 GTPases. Cellular Arf GAPs deactivate Arf GTPases and negatively regulate cell processes, but whether they target Arfs during infection is unknown. Here, we uncovered an important role for the Arf GAP family in Salmonella invasion. Surprisingly, we found that Arf1 and Arf6 GAPs cooperate with their Arf GEF counterparts to facilitate cycles of Arf GTPase activation and inactivation, which direct pathogen invasion. This report illustrates that GAP proteins promote actin-dependent processes and are not necessarily restricted to negatively regulating cellular signaling. It uncovers a remarkable interplay between Arf GEFs and GAPs that is exploited by Salmonella to establish infection and expands our understanding of Arf GTPase-regulated cytoskeleton remodeling. Copyright © 2015 Davidson et al.

  13. SigE Is a Chaperone for the Salmonella enterica Serovar Typhimurium Invasion Protein SigD

    OpenAIRE

    Darwin, K. Heran; Robinson, Lloyd S.; Miller, Virginia L.

    2001-01-01

    SigD is translocated into eucaryotic cells by a type III secretion system. In this work, evidence that the putative chaperone SigE directly interacts with SigD is presented. A bacterial two-hybrid system demonstrated that SigE can interact with itself and SigD. In addition, SigD was specifically copurified with SigE-His6 on a nickel column.

  14. Mobilome differences between Salmonella enterica serovars Anatum and Typhimurium isolated from cattle and humans and potential impact on virulence

    Science.gov (United States)

    Salmonella enterica subsp. enterica is an important group of pathogens capable of inhabiting a range of niches and hosts with varying degrees of impact, from commensal colonization to invasive infection. Recent outbreaks of multi-drug resistant S. enterica, attributed to consumption of contaminated ...

  15. A phase I clinical study to evaluate safety of orally administered, genetically engineered Salmonella enterica serovar Typhimurium for canine osteosarcoma

    OpenAIRE

    Fritz, Sara; Henson, Michael; Greengard, Emily; Winter, Amber; Stuebner, Kathleen; Yoon, Una; Wilk, Vicki; Borgatti, Antonella; Augustin, Lance; Modiano, Jaime; Saltzman, Daniel

    2017-01-01

    Abstract We conducted a prospective phase I study to evaluate safety of an orally administered Salmonella encoding IL‐2 (SalpIL2) in combination with amputation and adjuvant doxorubicin for canine appendicular osteosarcoma. Efficacy was assessed as a secondary measure. The first dose of SalpIL2 was administered to 19 dogs on Day 0; amputation was done after 10 days with chemotherapy following 2 weeks later. SalpIL2 was administered concurrent with chemotherapy, for a total of five doses of do...

  16. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  17. Effects of transparent exopolymer particles and suspended particles on the survival of Salmonella enterica serovar Typhimurium in seawater.

    Science.gov (United States)

    Davidson, Marion C F; Berardi, Terra; Aguilar, Beatriz; Byrne, Barbara A; Shapiro, Karen

    2015-03-01

    The bacterium Salmonella enterica can infect marine mammals and has been increasingly implicated in seafood-borne disease outbreaks in humans. Despite the risk this zoonotic agent poses to animals and people, little is known regarding the environmental factors that affect its persistence in the sea. The goal of this study was to evaluate the impact of two constituents on the survival of Salmonella in the marine environment: transparent exopolymer particles (TEP) and suspended particles. A decay experiment was conducted by spiking Salmonella into bottles containing seawater, seawater with alginic acid as a source of TEP, filtered seawater or filtered seawater with alginic acid. Survival of Salmonella was monitored using culture followed by enrichment assays to evaluate if the bacteria entered a viable but non-cultivable (VBNC) state. Salmonella cell counts dropped significantly faster (P ≤ 0.05) in the unfiltered seawater samples with and without TEP. The slowest decay occurred in filtered seawater containing alginic acid, with VBNC Salmonella persisting for 17 months. These findings suggest that TEP may favor Salmonella survival while suspended particles facilitate its decay. Insight on the survival of allochthonous, zoonotic pathogens in seawater can guide monitoring, management and policy decisions relevant to wildlife and human public health. © FEMS 2015. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Determination of Leptospira borgpetersenii serovar Javanica and Leptospira interrogans serovar Bataviae as the persistent Leptospira serovars circulating in the urban rat populations in Peninsular Malaysia.

    Science.gov (United States)

    Benacer, Douadi; Mohd Zain, Siti Nursheena; Sim, Shin Zhu; Mohd Khalid, Mohd Khairul Nizam; Galloway, Renee L; Souris, Marc; Thong, Kwai Lin

    2016-03-01

    Leptospirosis is an emerging infectious disease of global significance, and is endemic in tropical countries, including Malaysia. Over the last decade, a dramatic increase of human cases was reported; however, information on the primary vector, the rat, and the Leptospira serovars circulating among the rat population is limited. Therefore, the present study was undertaken to isolate Leptospira and characterise the serovars circulating in the urban rat populations from selected main cities in Peninsular Malaysia. Rat trappings were carried out between October 2011 to February 2014 in five urban cities which were chosen as study sites to represent different geographical locations in Peninsular Malaysia. Microscopic agglutination test (MAT) and PCR were carried out to identify the Leptospiral serogroup and determine the pathogenic status of the isolates, respectively while pulsed-field gel electrophoresis (PFGE) and random amplified polymorphic DNA (RAPD)-PCR were used to characterize the isolates. Three rat species were identified from the three hundred and fifty seven rats captured with Rattus rattus, being the dominant rat species (285, 80 %) followed by Rattus norgevicus (53, 15 %) and Rattus exulans (19, 5 %). Only 39 samples (11.0 %) were positive by culture and further confirmed as pathogenic Leptospira by PCR. Significant associations were shown between host infection with locality, season, host-age and species. Based on MAT, two serogroups were identified in the population namely; L. borgpetersenii serogroup Javanica (n = 16) and L. interrogans serogroup Bataviae (n = 23). Pulsed-field gel electrophoresis (PFGE) distinguished the two serovars in the urban rat populations: L. borgpetersenii serovar Javanica (41 %), and L. interrogans serovar Bataviae (59 %). RAPD-PCR yielded 14 distinct patterns and was found to be more discriminative than PFGE. This study confirms two Leptospira serovars circulating among the urban rats population in Peninsular

  19. MARTX Toxin in the Zoonotic Serovar of Vibrio vulnificus Triggers an Early Cytokine Storm in Mice

    Directory of Open Access Journals (Sweden)

    Celia Murciano

    2017-07-01

    Full Text Available Vibrio vulnificus biotype 2-serovar E is a zoonotic clonal complex that can cause death by sepsis in humans and fish. Unlike other biotypes, Bt2 produces a unique type of MARTXVv (Multifunctional-Autoprocessive-Repeats-in-Toxin; RtxA13, which is encoded by a gene duplicated in the pVvBt2 plasmid and chromosome II. In this work, we analyzed the activity of this toxin and its role in human sepsis by performing in vitro, ex vivo, and in vivo assays. First, we demonstrated that the ACD domain, present exclusively in this toxin variant, effectively has an actin-cross-linking activity. Second, we determined that the whole toxin caused death of human endotheliocytes and monocytes by lysis and apoptosis, respectively. Finally, we tested the hypothesis that RtxA13 contributes to human death caused by this zoonotic serovar by triggering an early cytokine storm in blood. To this end, we used a Bt2-SerE strain (R99 together with its rtxA13 deficient mutant, and a Bt1 strain (YJ016 producing RtxA11 (the most studied MARTXVv together with its rtxA11 deficient mutant, as controls. Our results showed that RtxA13 was essential for virulence, as R99ΔΔrtxA13 was completely avirulent in our murine model of infection, and that R99, but not strain YJ016, induced an early, strong and dysregulated immune response involving the up-regulation of a high number of genes. This dysregulated immune response was directly linked to RtxA13. Based on these results and those obtained ex vivo (human blood, we propose a model of infection for the zoonotic serovar of V. vulnificus, in which RtxA13 would act as a sepsis-inducing toxin.

  20. Construction of physical and genetic maps of Chlamydia trachomatis serovar L2 by pulsed-field gel electrophoresis

    DEFF Research Database (Denmark)

    Birkelund, Svend; Stephens, RS

    1992-01-01

    We constructed the physical map of Chlamydia trachomatis serovar L2 by using three restriction endonucleases, NotI (GC[GGCCGC), SgrAI (C(A/G)[CCGG(T/G)G), and Sse8387I (CCTGCA[GG), and we analyzed the fragments by pulsed-field gel electrophoresis. A total of 25 restriction endonuclease sites and 13...... genes and/or operons were located on the map. The genome size was determined to be 1,045 kb. Neither highly transcribed chlamydia genes nor developmental cycle-specific genes were clustered on the genome....

  1. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium.

    Science.gov (United States)

    Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar

    2010-02-01

    Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.

  2. Complete genome sequence of Leptospira interrogans serovar Bratislava, strain PigK151

    Science.gov (United States)

    The genus Leptospira contains pathogens serologically classified into over 250 serovars, intermediate pathogens and saprophytes with genetic classification into 21 different species. Worldwide, leptospirosis is one of the most widespread zoonoses. L. interrogans serovar Bratislava has been isolated ...

  3. Complete genome sequence of Leptospira alstonii serovar room 22, strain GWTS#1

    Science.gov (United States)

    We report the complete genome sequence of Leptospira alstonii serovar room 22 strain GWTS#1. This is the first isolate of L. alstonii to be cultured from a mammal, in Western Europe, and represents a new serovar of pathogenic leptospires....

  4. Isolation of Salmonella enterica subsp. enterica (O:4,5:i and Salmonella enterica subsp. Typhimurium from free-living domestic pigeons (Columba livia

    Directory of Open Access Journals (Sweden)

    R.C. Rocha-e-Silva

    2014-10-01

    Full Text Available The present study reports the isolation of Salmonella enterica in organs of free-living domestic pigeons. In the clinic examination, the presence of feces in the peri-cloacal and abdominal regions were observed, as well as symptoms such as cachexy, incoordination and opisthotonos. Before any therapeutic protocol was applied the bird died and a necropsy was then performed for the removal of spleen, liver, kidney and intestine for bacteriological examination and antibiotic sensitivity test. Salmonella enterica subsp.enterica (O:4,5:i- and Salmonella enterica subsp. enterica serovar Typhimurium were isolated from the liver and intestine and the sensitivity test demonstrated that these strains are sensitive to several antibiotics.

  5. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    Directory of Open Access Journals (Sweden)

    Sylvie eBaucheron

    2014-01-01

    Full Text Available Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e. in gyrA, gyrB, or parC correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications.

  6. Genetic Relatedness of Salmonella Serovars Isolated from Catfish (Clarias gariepinus) and Tilapia (Tilapia mossambica) Obtained from Wet Markets and Ponds in Penang, Malaysia.

    Science.gov (United States)

    Budiati, Titik; Rusul, Gulam; Wan-Abdullah, Wan Nadiah; Chuah, Li-Oon; Ahmad, Rosma; Thong, Kwai Lin

    2016-04-01

    A total of 43 Salmonella enterica isolates belonging to different serovars (Salmonella Albany, Salmonella Agona, Salmonella Corvallis, Salmonella Stanley, Salmonella Typhimurium, Salmonella Mikawasima, and Salmonella Bovismorbificans) were isolated from catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from nine wet markets and eight ponds in Penang, Malaysia. Thirteen, 19, and 11 isolates were isolated from 9 of 32 catfish, 14 of 32 tilapia, and 11 of 44 water samples, respectively. Fish reared in ponds were fed chicken offal, spoiled eggs, and commercial fish feed. The genetic relatedness of these Salmonella isolates was determined by random amplified polymorphic DNA PCR (RAPD-PCR) using primer OPC2, repetitive extragenic palindromic PCR (REP-PCR), and pulsed-field gel electrophoresis (PFGE). Composite analysis of the RAPD-PCR, REP-PCR, and PFGE results showed that the Salmonella serovars could be differentiated into six clusters and 15 singletons. RAPD-PCR differentiated the Salmonella isolates into 11 clusters and 10 singletons, while REP-PCR differentiated them into 4 clusters and 1 singleton. PFGE differentiated the Salmonella isolates into seven clusters and seven singletons. The close genetic relationship of Salmonella isolates from catfish or tilapia obtained from different ponds, irrespective of the type of feed given, may be caused by several factors, such as the quality of the water, density of fish, and size of ponds.

  7. The classification of Sejroe group serovars of Leptospira interrogans with monoclonal antibodies

    NARCIS (Netherlands)

    Terpstra, W. J.; Korver, H.; van Leeuwen, J.; Klatser, P. R.; Kolk, A. H.

    1985-01-01

    Using the hybridoma technique we produced monoclonal antibodies to serovars of Leptospira interrogans. We focussed on serovar hardjo which is an important pathogen for humans and animals, and on other serovars of the Sejroe group. With combinations of monoclonals, characteristic patterns of

  8. Comparison of SNP-based subtyping workflows for bacterial isolates using WGS data, applied to Salmonella enterica serotype Typhimurium and serotype 1,4,[5],12:i:-

    Science.gov (United States)

    Saltykova, Assia; Wuyts, Véronique; Mattheus, Wesley; Bertrand, Sophie; Roosens, Nancy H. C.; Marchal, Kathleen

    2018-01-01

    Whole genome sequencing represents a promising new technology for subtyping of bacterial pathogens. Besides the technological advances which have pushed the approach forward, the last years have been marked by considerable evolution of the whole genome sequencing data analysis methods. Prior to application of the technology as a routine epidemiological typing tool, however, reliable and efficient data analysis strategies need to be identified among the wide variety of the emerged methodologies. In this work, we have compared three existing SNP-based subtyping workflows using a benchmark dataset of 32 Salmonella enterica subsp. enterica serovar Typhimurium and serovar 1,4,[5],12:i:- isolates including five isolates from a confirmed outbreak and three isolates obtained from the same patient at different time points. The analysis was carried out using the original (high-coverage) and a down-sampled (low-coverage) datasets and two different reference genomes. All three tested workflows, namely CSI Phylogeny-based workflow, CFSAN-based workflow and PHEnix-based workflow, were able to correctly group the confirmed outbreak isolates and isolates from the same patient with all combinations of reference genomes and datasets. However, the workflows differed strongly with respect to the SNP distances between isolates and sensitivity towards sequencing coverage, which could be linked to the specific data analysis strategies used therein. To demonstrate the effect of particular data analysis steps, several modifications of the existing workflows were also tested. This allowed us to propose data analysis schemes most suitable for routine SNP-based subtyping applied to S. Typhimurium and S. 1,4,[5],12:i:-. Results presented in this study illustrate the importance of using correct data analysis strategies and to define benchmark and fine-tune parameters applied within routine data analysis pipelines to obtain optimal results. PMID:29408896

  9. Experimental Salmonella typhimurium infections in rats. I

    DEFF Research Database (Denmark)

    Hougen, H P; Jensen, E T; Klausen, B

    1989-01-01

    The course of experimentally induced Salmonella typhimurium infection was studied in three groups of inbred LEW rats: homozygous +/+, athymic rnu/rnu and isogeneic thymus-grafted rnu/rnu rats. In the first experiment the animals were inoculated intraperitoneally with 10(8) bacteria and all animals...... became severely septicemic and died within a week of inoculation, irrespective of presence or absence of thymus. In the second experiment the animals were inoculated with 10(6) bacteria, and both euthymic and thymus-grafted animals responded with high titres of anti bacterial antibodies while these were...... very low in the athymic nude animals. Polyclonal antibody production was only observed in the euthymic animals and only regarding IgG. Athymic rats were not able to clear the infection, while the thymus-grafted animals reacted like euthymic rats: Very few animals housed the bacteria four weeks after...

  10. Psoralen photomutagenic specificity in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Koch, W.H.

    1986-01-01

    The cytotoxic and mutagenic specificity of two therapeutically employed psoralens was examined in several Ames Salmonella typhimurium strains with near ultraviolet light activation. Photomutagenic activity of 8-methoxypsoralen (8MOP) and 4,5',8-trimethylpsoralen (TMP) was found to be sequence-specific, and additionally was dependent on the level of DNA-repair proficiency. Phototoxicity was essentially identical in hisC3076, hisD3052 and hisG46 strains; uvrB - excision-repair-deficient bacteria were considerably more susceptible to lethal effects than wild-type parental strains. Finally, the data show that psoralens are potent frameshift photomutagens in Salmonella hisC3076 strains and demonstrate the potential utility of these strains in evaluating photomutagenic and phototoxic activity of new furocoumarin derivatives. (Auth.)

  11. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium.

    Science.gov (United States)

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S; Han, Zhong

    2016-08-22

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0-4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms.

  12. Diversity of pulsed-field gel electrophoresis pulsotypes, serovars, and antibiotic resistance among Salmonella isolates from wild amphibians and reptiles in the California Central Coast.

    Science.gov (United States)

    Gorski, Lisa; Jay-Russell, Michele T; Liang, Anita S; Walker, Samarpita; Bengson, Yingjia; Govoni, Jessica; Mandrell, Robert E

    2013-06-01

    A survey of cold-blooded vertebrates and associated surface waters in a produce-growing region on the Central California Coast was done between May and September 2011 to determine the diversity of Salmonella. Samples from 460 amphibians and reptiles and 119 water samples were collected and cultured for Salmonella. Animals sampled were frogs (n=331), lizards (n=59), newts (n=5), salamanders (n=6), snakes (n=39), and toads (n=20). Salmonella was isolated from 37 individual animals, including frogs, lizards, snakes, and toads. Snakes were the most likely to contain Salmonella, with 59% testing positive followed by 15.3% of lizards, 5% of toads, and 1.2% of frogs. Fifteen water samples (12.6%) were positive. Twenty-two different serovars were identified, and the majority of isolates were S. enterica subsp. IIIb, with subsp. I, II, and IIIa also found. The serovar isolated most frequently was S. enterica subsp. IIIb 16:z₁₀:e,n,x,z₁₅, from snakes and frogs in five different locations. S. enterica subsp. I serovar Typhimurium and the monophasic I 6,8:d:- were isolated from water, and subspecies I Duisburg and its variants were found in animals and water. Some samples contained more than one type of Salmonella. Analysis of pulsed-field gel electrophoresis pulsotypes indicated that some strains persisted in animals and water collected from the same location. Sixty-six isolates displayed antibiotic resistance, with 27 isolates resistant to more than one antibiotic, including a subspecies IIIb isolate from snake having resistance to five different antibiotics. Twenty-three isolates were resistant to more than one class of antibiotic, and six isolates were resistant to three classes. While these subspecies of IIIa and IIIb cause fewer instances of human illness, they may serve as reservoirs of antibiotic resistance, determinants in the environment, and be sources of contamination of leafy greens associated with product recalls.

  13. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    Science.gov (United States)

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  14. Study of Salmonella typhimurium mutagenicity assay of (E ...

    African Journals Online (AJOL)

    Study of Salmonella typhimurium mutagenicity assay of (E)-piplartine by the Ames test. AA Morandim-Giannetti, F Cotinguiba, LO Regasini, MC Frigieri, EA Varanda, A Coqueiro, MJ Kato, VS Bolzani, M Furlan ...

  15. Study of Salmonella Typhimurium infection in laying hens

    Directory of Open Access Journals (Sweden)

    Kapil eChousalkar

    2016-02-01

    Full Text Available Members of Salmonella enterica are frequently involved in egg and egg product related human food poisoning outbreaks worldwide. In Australia, Salmonella Typhimurium is frequently involved in egg and egg product related foodborne illness and Salmonella Mbandaka has also been found to be a contaminant of the layer farm environment. The ability possessed by Salmonella Enteritidis to colonise reproductive organs and contaminate developing eggs has been well described. However, there are few studies investigating this ability for Salmonella Typhimurium. The hypothesis of this study was that the Salmonella Typhimurium can colonise the gut for a prolonged period of time and that horizontal infection through feces is the main route of egg contamination. At 14 weeks of age hens were orally infected with either S. Typhimurium PT 9 or S. Typhimurium PT 9 and Salmonella Mbandaka. Salmonella shedding in feces and eggs was monitored for 15 weeks post infection. Egg shell surface and internal contents of eggs laid by infected hens were cultured independently for detection of Salmonella spp. The mean Salmonella load in feces ranged from 1.54 to 63.35 and 0.31 to 98.38 most probable number/g (MPN/g in the S. Typhimurium and S. Typhimurium + S. Mbandaka group respectively. No correlation was found between mean fecal Salmonella load and frequency of egg shell contamination. Egg shell contamination was higher in S. Typhimurium + S. Mbandaka infected group (7.2% Typhimurium, 14.1% Mbandaka compared to birds infected with S. Typhimurium (5.66% however, co-infection had no significant impact on egg contamination by S. Typhimurium. Throughout the study Salmonella was not recovered from internal contents of eggs laid by hens. Salmonella was isolated from different segments of oviduct of hens from both the groups, however pathology was not observed on microscopic examination. This study investigated Salmonella shedding for up to 15 weeks p.i which is a longer period of

  16. Prevalência e perfil de resistência a antimicrobianos de sorovares de Salmonella isolados de lingüiças suínas tipo frescal em Lages, SC Prevalence and profile of resistance to antimicrobials of Salmonella serovars isolated from raw pork sausage in Lages, SC

    Directory of Open Access Journals (Sweden)

    D.A. Spricigo

    2008-04-01

    Full Text Available The prevalence and profile of resistance to antimicrobials of Salmonella serovars isolated from raw pork sausage were studied in Lages county, Santa Catarina, Brazil. A total of 125 samples of 12 trademarks were collected in different commercial establishments. Salmonella sp. was present in 12.8% (16/125 of the samples and Typhimurium serovar was the most prevalent. Fourteen different antimicrobials were tested and most of the samples showed resistance to sulfonamide and tetracycline (81.2%. Eight positive samples (50% were resistant at least to four antimicrobials, being considered as multi-resistant Salmonella. Seven (58.3% trademarks were disagreement with the Brazilian law, representing a risk to the public health. The high level of resistance to the antimicrobials should produce a concern by the pig industry and veterinarians in order to prevent the transmission of resistant strains through the food chain.

  17. Thermal inactivation of Salmonella Typhimurium in chicken shawirma (gyro).

    Science.gov (United States)

    Osaili, Tareq M; Al-Nabulsi, Anas A; Shaker, Reyad R; Olaimat, Amin N; Jaradat, Ziad W; Holley, Richard A

    2013-08-16

    This study explored the thermal characteristics (D- and z-values) of Salmonella Typhimurium in raw chicken shawirma. Marinated and non-marinated chicken breasts with skin were inoculated with S. Typhimurium 112 or S. Typhimurium 144. Inoculated samples were ground, packed in sterile bags and submerged in a water bath at 54, 56, 58 and 60°C for 2.5 to 72min. The mean D-values of S. Typhimurium strains in inoculated, non-marinated, ground raw chicken breast, as well as those of S. Typhimurium 15h after exposure to the marinade (inoculated before marinating, IBM) or after brief exposure (30min) to the marinade (inoculated after marinating, IAM) ranged from 9.15 to 12.44, 2.89 to 3.92, 1.06 to 1.30 and 0.32 to 0.52min at 54, 56, 58 and 60°C, respectively. Generally, no significant differences (P>0.05) were found among the D-values of S. Typhimurium in all chicken samples. However, the D-values of S. Typhimurium in raw ground chicken shawirma IBM were the lowest. The z-values of S. Typhimurium in all products ranged from 3.78 to 4.58°C. It was concluded that thorough cooking of the outside of the shawirma meat cylinder or cone before removal of slices at foodservice counters can enhance the safety of the product. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. ClpP deletion causes attenuation of Salmonella Typhimurium virulence through mis-regulation of RpoS and indirect control of CsrA and the SPI genes

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Olsen, John E.; Aabo, Søren

    2013-01-01

    , suggesting the repression of invasion was directed through RpoS. The expression of the csrA virulence regulator was increased in the ΔclpP mutant and decreased in the rpoS : : amp and ΔclpP/rpoS : : amp mutants, indicating that ClpP affects the csrA expression level as well. Thus, this study suggests...... the proteolytic component ClpP, the stationary phase regulator RpoS and the carbon-storage regulator CsrA. However, the mechanism behind the ClpP regulation is not fully understood. To elucidate this we examined differentially expressed genes in a ΔclpP mutant compared with WT using global transcriptomic analysis...... that ClpP affects SPI1 expression and thereby virulence indirectly through its regulation of both RpoS and CsrA....

  19. First isolation of Salmonella enterica serovar Napoli from wild birds in Italy

    Directory of Open Access Journals (Sweden)

    Laura Mancini

    2014-03-01

    Full Text Available Salmonella enterica serovar Napoli (S. Napoli is an emerging serovar in Italy. It accounts for 2-4% of all serovars isolated from human infections. The zoonotic origin of this serovar is still unknown and this makes difficult to apply any control intervention. We report here the isolation of S. Napoli from a river nightingale (Cettia cetti, Temminck 1820 which represents the first description of this serovar from wild birds. This finding adds knowledge to the ecology of S. Napoli and addresses further studies aimed to assess the epidemiologic link between S. Napoli isolated from wild birds, food, environmental sources and human infections.

  20. Effect of Holarrhena antidysentrica (Ha) and Andrographis paniculata (Ap) on the biofilm formation and cell membrane integrity of opportunistic pathogen Salmonella typhimurium.

    Science.gov (United States)

    Tanwar, Ankit; Chawla, Raman; Chakotiya, Ankita Singh; Thakur, Pallavi; Goel, Rajeev; Basu, Mitra; Arora, Rajesh; Khan, Haider Ali

    2016-12-01

    Increasing occurrence of gastroenteritis outbreaks caused by food borne opportunistic microorganisms has become a major problem in food industry as well as in immunocompromised host. Antimicrobial agents are losing their efficacy due to increase in the microbial resistance. For such reasons, conventional treatment has become limited to manage the infections state. Need of the hour is to instigate the search for safer holistic alternatives. The present study was hence conducted to assess the antibiofilm effect and mode of action of aquo alcoholic extracts of Holarrhena antidysentrica (Ha) and Andrographis paniculata (Ap) against the Salmonella enterica serovar typhimurium. Both the extracts were screened for the presence of phytocompounds followed by the characterization using Attenuated Total Reflection (ATR) infrared spectroscopy and bioactivity finger print analysis. Anti-biofilm assays were determined to test the potential of both extracts to inhibit the biofilm formation, while Propidium Iodide (PI) uptake analysis revealed that cell membrane was damaged by the exposure of nutraceuticals for 1 h. This study has demonstrated that both nutraceuticals have anti-biofilm and antimicrobial activity perturbing the membrane integrity of food-borne S. typhimurium and could be used as curative remedy to control the food borne microbial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai.

    Science.gov (United States)

    Asuthkar, Swapna; Velineni, Sridhar; Stadlmann, Johannes; Altmann, Friedrich; Sritharan, Manjula

    2007-09-01

    In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.

  2. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Foster, J W; Kinney, D M; Moat, A G

    1979-03-01

    Mutants of Salmonella typhimurium LT-2 deficient in nicotinamidase activity (pncA) or nicotinic acid phosphoribosyltransferase activity (pncB) were isolated as resistant to analogs of nicotinic acid and nicotinamide. Information obtained from interrupted mating experiments placed the pncA gene at 27 units and the pncB gene at 25 units on the S. typhimurium LT-2 linkage map. A major difference in the location of the pncA gene was found between the S. typhimurium and Escherichia coli linkage maps. The pncA gene is located in a region in which there is a major inversion of the gene order in S. typhimurium as compared to that in E. coli. Growth experiments using double mutants blocked in the de novo pathway to nicotinamide adenine dinucleotide (NAD) (nad) and in the pyridine nucleotide cycle (pnc) at either the pncA or pncB locus, or both, have provided evidence for the existence of an alternate recycling pathway in this organism. Mutants lacking this alternate cycle, pncC, have been isolated and mapped via cotransduction at 0 units. Utilization of exogenous NAD was examined through the use of [14C]carbonyl-labeled NAD and [14C]adenine-labeled NAD. The results of these experiments suggest that NAD is degraded to nicotinamide mononucleotide at the cell surface. A portion of this extracellular nicotinamide mononucleotide is then transported across the cell membrane by nicotinamide mononucleotide glycohydrolase and degraded to nicotinamide in the process. The remaining nicotinamide mononucleotide accumulates extracellularly and will support the growth of nadA pncB mutants which cannot utilize the nicotinamide resulting from the major pathway of NAD degradation. A model is presented for the utilization of exogenous NAD by S. typhimurium LT-2.

  3. Method for the detection of Salmonella enterica serovar Enteritidis

    Science.gov (United States)

    Agron, Peter G.; Andersen, Gary L.; Walker, Richard L.

    2008-10-28

    Described herein is the identification of a novel Salmonella enterica serovar Enteritidis locus that serves as a marker for DNA-based identification of this bacterium. In addition, three primer pairs derived from this locus that may be used in a nucleotide detection method to detect the presence of the bacterium are also disclosed herein.

  4. The two umuDC-like operons, samAB and umuDCST, in Salmonella typhimurium: The umuDCST operon may reduce UV-mutagenesis-promoting ability of the samAB operon

    International Nuclear Information System (INIS)

    Nohmi, Takehiko; Hakura, Atsushi; Watanabe, Masahiko; Yamada, Masami; Sofuni, Toshio; Nakai, Yasuharu; Murayama, Somay Y.

    1993-01-01

    Salmonella typhimurium, especially its derivatives containing pKM101 plasmid, has been widely used in the Ames test for the detection of environmental mutagens and carcinogens. It is known, however, that if the pKM101 plasmid is eliminated, S. typhimurium itself shows a much weaker mutagenic response to UV and some chemical mutagens than does Escherichia coli. In fact, certain potent base-change type mutagens, such as furylfuramide and aflatoxin B 1 , are nonmutagenic to S. typhimurium in the absence of pKM101, whereas they are strongly mutagenic to S. typhimurium in the presence of pKM101 plasmid as well as to E. coli. The low mutability can be restored to levels comparable to E. coli by introducing the plasmid carrying the E. coli umuDC operon or the pKM101 plasmid carrying mucAB operon. Salmonella typhimurium has an SOS regulatory system which resembles that of E. coli. Thus, it was suggested that S. typhimurium is deficient in the function of umuDC operon, which plays an essential role in UV and most chemical mutagenesis in E. coli. In order to clarify the implications of umuDC genes in mutagenesis and antimutagenesis in typhimurium, we have independently screened the umuDC-like genes of S. typhimurium TA1538. Consequently, we have cloned another umuDC-like operon which is 40% diverged from the aforementioned umuDC operon of S. typhimurium LT2 at the nucleotide level (16). We have termed the cloned DNA the samAB (Salmonella; mutagenesis) operon, and tentatively referred to the umuDC operon cloned from S. typhimurium LT2 (27,31) as the umuDC ST operon. Based on the results of the Southern hybridization experiment, we concluded that the two sets of umuDC-like operons reside in the same cells of S. typhimurium LT2 and TA1538. Our results also suggested that the umuDC ST operon reduces the UV-mutagenesis promoting ability of the samAB operon when the two operons are present on the same multi-copy number plasmid

  5. Structure Prediction of Outer Membrane Protease Protein of Salmonella typhimurium Using Computational Techniques

    Directory of Open Access Journals (Sweden)

    Rozina Tabassum

    2016-03-01

    Full Text Available Salmonella typhimurium, a facultative gram-negative intracellular pathogen belonging to family Enterobacteriaceae, is the most frequent cause of human gastroenteritis worldwide. PgtE gene product, outer membrane protease emerges important in the intracellular phases of salmonellosis. The pgtE gene product of S. typhimurium was predicted to be capable of proteolyzing T7 RNA polymerase and localize in the outer membrane of these gram negative bacteria. PgtE product of S. enterica and OmpT of E. coli, having high sequence similarity have been revealed to degrade macrophages, causing salmonellosis and other diseases. The three-dimensional structure of the protein was not available through Protein Data Bank (PDB creating lack of structural information about E protein. In our study, by performing Comparative model building, the three dimensional structure of outer membrane protease protein was generated using the backbone of the crystal structure of Pla of Yersinia pestis, retrieved from PDB, with MODELLER (9v8. Quality of the model was assessed by validation tool PROCHECK, web servers like ERRAT and ProSA are used to certify the reliability of the predicted model. This information might offer clues for better understanding of E protein and consequently for developmet of better therapeutic treatment against pathogenic role of this protein in salmonellosis and other diseases.

  6. A Network Inference Workflow Applied to Virulence-Related Processes in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Weller, Jennifer B.; Khoshnevis, Saeed; Shi, Liang; McDermott, Jason E.

    2009-04-20

    Inference of the structure of mRNA transcriptional regulatory networks, protein regulatory or interaction networks, and protein activation/inactivation-based signal transduction networks are critical tasks in systems biology. In this article we discuss a workflow for the reconstruction of parts of the transcriptional regulatory network of the pathogenic bacterium Salmonella typhimurium based on the information contained in sets of microarray gene expression data now available for that organism, and describe our results obtained by following this workflow. The primary tool is one of the network inference algorithms deployed in the Software Environment for BIological Network Inference (SEBINI). Specifically, we selected the algorithm called Context Likelihood of Relatedness (CLR), which uses the mutual information contained in the gene expression data to infer regulatory connections. The associated analysis pipeline automatically stores the inferred edges from the CLR runs within SEBINI and, upon request, transfers the inferred edges into either Cytoscape or the plug-in Collective Analysis of Biological of Biological Interaction Networks (CABIN) tool for further post-analysis of the inferred regulatory edges. The following article presents the outcome of this workflow, as well as the protocols followed for microarray data collection, data cleansing, and network inference. Our analysis revealed several interesting interactions, functional groups, metabolic pathways, and regulons in S. typhimurium.

  7. Validation of Baking To Control Salmonella Serovars in Hamburger Bun Manufacturing, and Evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as Nonpathogenic Surrogate Indicators.

    Science.gov (United States)

    Channaiah, Lakshmikantha H; Holmgren, Elizabeth S; Michael, Minto; Sevart, Nicholas J; Milke, Donka; Schwan, Carla L; Krug, Matthew; Wilder, Amanda; Phebus, Randall K; Thippareddi, Harshavardhan; Milliken, George

    2016-04-01

    This study was conducted to validate a simulated commercial baking process for hamburger buns to destroy Salmonella serovars and to determine the appropriateness of using nonpathogenic surrogates (Enterococcus faecium ATCC 8459 or Saccharomyces cerevisiae) for in-plant process validation studies. Wheat flour was inoculated (∼6 log CFU/g) with three Salmonella serovars (Typhimurium, Newport, or Senftenberg 775W) or with E. faecium. Dough was formed, proofed, and baked to mimic commercial manufacturing conditions. Buns were baked for up to 13 min in a conventional oven (218.3°C), with internal crumb temperature increasing to ∼100°C during the first 8 min of baking and remaining at this temperature until removal from the oven. Salmonella and E. faecium populations were undetectable by enrichment (>6-log CFU/g reductions) after 9.0 and 11.5 min of baking, respectively, and ≥5-log-cycle reductions were achieved by 6.0 and 7.75 min, respectively. D-values of Salmonella (three-serovar cocktail) and E. faecium 8459 in dough were 28.64 and 133.33, 7.61 and 55.67, and 3.14 and 14.72 min at 55, 58, and 61°C, respectively, whereas D-values of S. cerevisiae were 18.73, 5.67, and 1.03 min at 52, 55, and 58°C, respectivly. The z-values of Salmonella, E. faecium, and S. cerevisiae were 6.58, 6.25, and 4.74°C, respectively. A high level of thermal lethality was observed for baking of typical hamburger bun dough, resulting in rapid elimination of high levels of the three-strain Salmonella cocktail; however, the lethality and microbial destruction kinetics should not be extrapolated to other bakery products without further research. E. faecium demonstrated greater thermal resistance compared with Salmonella during bun baking and could serve as a conservative surrogate to validate thermal process lethality in commercial bun baking operations. Low thermal tolerance of S. cerevisiae relative to Salmonella serovars limits its usefulness as a surrogate for process validations.

  8. Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration.

    Science.gov (United States)

    Moraes, Juliana O; Cruz, Ellen A; Souza, Enio G F; Oliveira, Tereza C M; Alvarenga, Verônica O; Peña, Wilmer E L; Sant'Ana, Anderson S; Magnani, Marciane

    2018-05-26

    This study aimed to assess the capability of 97 epidemic S. enterica strains belonging to 18 serovars to form biofilm. Five strains characterized as strong biofilm-producers, belonging to distinct serovars (S. Enteritidis 132, S. Infantis 176, S. Typhimurium 177, S. Heidelberg 281 and S. Corvallis 297) were assayed for adhesion/biofilm formation on stainless steel surfaces. The experiments were conducted in different combinations of NaCl (0, 2, 4, 5, 6, 8 and 10% w/v), pH (4, 5, 6 and 7) and temperatures (8 °C, 12 °C, 20 °C and 35 °C). Only adhesion was assumed to occur when S. enterica counts were ≥3 and biofilm formation was defined as when the counts were ≥5 log CFU/cm 2 . The binary responses were used to develop models to predict the probability of adhesion/biofilm formation on stainless steel surfaces by five strains belonging to different S. enterica serovars. A total of 99% (96/97) of the tested S. enterica strains were characterized as biofilm-producers in the microtiter plate assays. The ability to form biofilm varied (P biofilm-producers, 21% (20/96), 45% (43/96), and 35% (34/96) were weak, moderate and strong biofilm-producers, respectively. The capability for adhesion/biofilm formation on stainless steel surfaces under the experimental conditions studied varied among the strains studied, and distinct secondary models were obtained to describe the behavior of the five S. enterica tested. All strains showed adhesion at pH 4 up to 4% of NaCl and at 20 °C and 35 °C. The probability of adhesion decreased when NaCl concentrations were >8% and at 8 °C, as well as in pH values ≤ 5 and NaCl concentrations > 6%, for all tested strains. At pH 7 and 6, biofilm formation for S. Enteritidis, S. Infantis, S. Typhimurium, S. Heidelberg was observed up to 6% of NaCl at 35 °C and 20 °C. The predicted boundaries for adhesion were pH values biofilm formation, the predicted boundaries were pH values biofilm formation

  9. Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity.

    Science.gov (United States)

    Borges, Karen Apellanis; Furian, Thales Quedi; de Souza, Sara Neves; Menezes, Rafaela; de Lima, Diane Alves; Fortes, Flávia Bornancini Borges; Salle, Carlos Tadeu Pippi; Moraes, Hamilton Luiz Souza; Nascimento, Vladimir Pinheiro

    2018-03-22

    Salmonella Enteritidis and Salmonella Typhimurium are among the most prevalent serotypes isolated from salmonellosis outbreaks and poultry. Salmonella spp. have the capacity to form biofilms on several surfaces, which can favour survival in hostile environments, such as slaughterhouses. Salmonella strains present differences in pathogenicity. However, there is little information regarding the pathogenicity of S. Enteritidis and S. Typhimurium isolated from avian sources and their relationship to biofilm production. The aim of this study was to use a novel pathogenicity index and a biofilm production assay to evaluate their relationships within these serotypes. In addition, we detected the presence of the spiA and agfA genes in these strains. Biofilm formation was investigated at two temperatures (37 °C and 28 °C) using microtiter plate assay, and the results were compared with the individual pathogenicity index of each strain. PCR was used to detect spiA and agfA, virulence genes associated with biofilm production. S. Enteritidis and S. Typhimurium strains were capable of producing biofilm at 37 °C and 28 °C. Sixty-two percent and 59.5% of S. Enteritidis and 73.8% and 46.2% of S. Typhimurium produced biofilm at 37 °C and 28 °C, respectively. Biofilm production at 37 °C was significantly higher in both serotypes. Only S. Enteritidis was capable of adhering strongly at both temperatures. Biofilm production was related to pathogenicity index only at 28 °C for S. Enteritidis. spiA and agfA were found in almost all strains and were not statistically associated with biofilm production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    International Nuclear Information System (INIS)

    Thomas, S.M.; Sedgwick, S.G.

    1989-01-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli

  11. In vitro selection of RNA aptamer specific to Salmonella typhimurium.

    Science.gov (United States)

    Han, Seung Ryul; Lee, Seong-Wook

    2013-06-28

    Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity (Kd ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.

  12. The inhibitory effect of bovine rumen fluid on Salmonella typhimurium.

    Science.gov (United States)

    Chambers, P G; Lysons, R J

    1979-05-01

    The possible fate of Salmonella typhimurium in the rumen was investigated by monitoring rumen volatile fatty acids (VFA), lactate concentrations and pH over periods which included regular feeding and 48 h starvation. Preparations were made containing 50 per cent rumen fluid from the cow or VFA solutions, and then inoculated with S typhimurium. Viable counts before and after incubation for 24 h at 37 degrees C were compared. Incubation in broths with high concentrations of VFA and low pH resulted in a marked decrease in salmonella numbers, while lower VFA concentrations had little or no inhibitory effect on growth.

  13. Serovar 4b complex predominates among Listeria monocytogenes isolates from imported aquatic products in China.

    Science.gov (United States)

    Chen, Jianshun; Chen, Qiaomiao; Jiang, Jianjun; Hu, Hongxia; Ye, Jiangbo; Fang, Weihuan

    2010-01-01

    Listeria monocytogenes, the causative organism of listeriosis, is primarily transmitted to humans through contaminated food. In this study, we examined 1275 batches of aquatic products imported from 29 countries and found that 36 batches from 8 countries were contaminated by Listeria (2.8%), with L. monocytogenes accounting for 2.6% (33/1275) and L. innocua for 0.2% (3/1275). Of the 23 selected L. monocytogenes isolates (from the 33 identified), 15 (65.2%) were of serovar 4b complex (4b, 4d, or 4e), three (13.0%) of 1/2a or 3a, four (17.4%) of 1/2b or 3b, and one (4.4%) of 1/2c or 3c. Notably, four of the 23 isolates belonged to epidemic clone I (ECI) and another four were associated with epidemic clone II (ECII), two highly clonal 4b clusters responsible for most of the documented listeriosis outbreaks. In the multilocus sequence typing scheme based on the concatenated genes gyrB-dapE-hisJ-sigB-ribC-purM-betL-gap-tuf, serovar 4b complex isolates from imported aquatic products exhibited significant genetic diversity. While the four ECI isolates were genetically related to those from Chinese diseased animals, both lacking one proline-rich repeat of ActA, the four ECII isolates were located between 1/2b or 3b strains. As the L. monocytogenes isolates from imported aquatic products possessed a nearly complete set of major infection-related genes, they demonstrated virulence potential in mouse model.

  14. Neutral genomic microevolution of a recently emerged pathogen, Salmonella enterica serovar Agona.

    Directory of Open Access Journals (Sweden)

    Zhemin Zhou

    2013-04-01

    Full Text Available Salmonella enterica serovar Agona has caused multiple food-borne outbreaks of gastroenteritis since it was first isolated in 1952. We analyzed the genomes of 73 isolates from global sources, comparing five distinct outbreaks with sporadic infections as well as food contamination and the environment. Agona consists of three lineages with minimal mutational diversity: only 846 single nucleotide polymorphisms (SNPs have accumulated in the non-repetitive, core genome since Agona evolved in 1932 and subsequently underwent a major population expansion in the 1960s. Homologous recombination with other serovars of S. enterica imported 42 recombinational tracts (360 kb in 5/143 nodes within the genealogy, which resulted in 3,164 additional SNPs. In contrast to this paucity of genetic diversity, Agona is highly diverse according to pulsed-field gel electrophoresis (PFGE, which is used to assign isolates to outbreaks. PFGE diversity reflects a highly dynamic accessory genome associated with the gain or loss (indels of 51 bacteriophages, 10 plasmids, and 6 integrative conjugational elements (ICE/IMEs, but did not correlate uniquely with outbreaks. Unlike the core genome, indels occurred repeatedly in independent nodes (homoplasies, resulting in inaccurate PFGE genealogies. The accessory genome contained only few cargo genes relevant to infection, other than antibiotic resistance. Thus, most of the genetic diversity within this recently emerged pathogen reflects changes in the accessory genome, or is due to recombination, but these changes seemed to reflect neutral processes rather than Darwinian selection. Each outbreak was caused by an independent clade, without universal, outbreak-associated genomic features, and none of the variable genes in the pan-genome seemed to be associated with an ability to cause outbreaks.

  15. Lymphogranuloma Venereum-Serovar L2b Presenting With Painful Genital Ulceration: An Emerging Clinical Presentation?

    Science.gov (United States)

    Haber, Roger; Maatouk, Ismaël; de Barbeyrac, Bertille; Bagot, Martine; Janier, Michel; Fouéré, Sébastien

    2017-05-01

    These 5 cases of atypical inflammatory lymphogranula venereum (LGV) serovar L2b presenting initially with edema and persistent painful ulceration illustrate that clinical manifestations of LGV in the current outbreak in men who have sex with men reflect the influence of both the serovars virulence and the host immune system and are not confined to proctitis. L2b serovar could have a particular high virulence profile, and the need for awareness of LGV as a cause of genital ulceration is crucial.

  16. Comparative genomics of pathogenic Leptospira interrogans serovar Canicola isolated from swine and human in Brazil

    Directory of Open Access Journals (Sweden)

    Luisa Z Moreno

    Full Text Available Leptospira interrogans serovar Canicola is one of the most important pathogenic serovars for the maintenance of urban leptospirosis. Even though it is considered highly adapted to dogs, serovar Canicola infection has already been described in other animals and even a few human cases. Here, we present the genomic characterisation of two Brazilian L. interrogans serovar Canicola strains isolated from slaughtered sows (L0-3 and L0-4 and their comparison with human strain Fiocruz LV133. It was observed that the porcine serovar Canicola strains present the genetic machinery to cause human infection and, therefore, represent a higher risk to public health. Both human and porcine serovar Canicola isolates also presented sequences with high identity to the Chinese serovar Canicola published plasmids pGui1 and pGui2. The plasmids identification in the Brazilian and Chinese serovar Canicola strains suggest that extra-chromosomal elements are one more feature of this serovar that was previously unnoticed.

  17. Differential myelopoietic responsiveness of BALB/c (Itys) and C.D2 (Ityr) mice to lipopolysaccharide administration and Salmonella typhimurium infection.

    Science.gov (United States)

    Peterson, V M; Madonna, G S; Vogel, S N

    1992-04-01

    Inheritance of the Ityr or the Itys allele of the Ity murine gene confers resistance or increased susceptibility, respectively, to Salmonella typhimurium infection. Recent studies have documented that Ity gene expression may determine net intracellular replication of S. typhimurium by modulating macrophage function. The purpose of this study was to determine if Ity gene expression modulated macrophage stem cell proliferation as well. To detect possible Ity-associated alterations in macrophage stem cell proliferation during endotoxin challenge or S. typhimurium infection, the congenic strain pair BALB/c (Itys) and C.D2-Idh-1, Pep-3 N20F8 (Ityr) were injected intraperitoneally with 25 micrograms of bacterial lipopolysaccharide (LPS) or approximately 10(3) S. typhimurium, and myelopoiesis was evaluated. At 72 h after LPS injection, both BALB/c and C.D2 mice developed comparable degrees of bone marrow hypocellularity and splenomegaly, and cell sizing profiles indicated a normal response to a single injection of LPS in both strains of mice. Although an inhibitor to colony-stimulating factor activity was detected in the sera and plasma of C.D2 mice, the number of myeloid stem cells cultured from the bone marrow and spleen of each mouse strain were comparable. S. typhimurium infection resulted in earlier symptoms, a larger bacterial load, a higher mortality rate, and a greater bone marrow hypocellularity and splenomegaly in BALB/c mice compared with those in C.D2 mice. Despite a dramatic increase in bacterial load, a decrease in both bone marrow and splenic myeloid stem cell numbers was noted in BALB/c mice, while stem cell numbers remained constant in C.D2 mice between days 3 and 5 and increased dramatically at day 7 after infection. These data suggest that BALB/c and C.D2 mice may exhibit a divergent myelopoietic response to S. typhimurium infection. It appears that a paradoxical failure of myelopoiesis in Itys mice during S. typhimurium infection may contribute to the

  18. Role of nitric oxide in Salmonella typhimurium-mediated cancer cell killing

    International Nuclear Information System (INIS)

    Barak, Yoram; Schreiber, Frank; Thorne, Steve H; Contag, Christopher H; DeBeer, Dirk; Matin, A

    2010-01-01

    Bacterial targeting of tumours is an important anti-cancer strategy. We previously showed that strain SL7838 of Salmonella typhimurium targets and kills cancer cells. Whether NO generation by the bacteria has a role in SL7838 lethality to cancer cells is explored. This bacterium has the mechanism for generating NO, but also for decomposing it. Mechanism underlying Salmonella typhimurium tumour therapy was investigated through in vitro and in vivo studies. NO measurements were conducted either by chemical assays (in vitro) or using Biosensors (in vivo). Cancer cells cytotoxic assay were done by using MTS. Bacterial cell survival and tumour burden were determined using molecular imaging techniques. SL7838 generated nitric oxide (NO) in anaerobic cell suspensions, inside infected cancer cells in vitro and in implanted 4T1 tumours in live mice, the last, as measured using microsensors. Thus, under these conditions, the NO generating pathway is more active than the decomposition pathway. The latter was eliminated, in strain SL7842, by the deletion of hmp- and norV genes, making SL7842 more proficient at generating NO than SL7838. SL7842 killed cancer cells more effectively than SL7838 in vitro, and this was dependent on nitrate availability. This strain was also ca. 100% more effective in treating implanted 4T1 mouse tumours than SL7838. NO generation capability is important in the killing of cancer cells by Salmonella strains

  19. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle.

    Science.gov (United States)

    Abdul-Wahid, Aws; Faubert, Gaétan

    2007-12-05

    In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.

  20. Large outbreaks of Salmonella Typhimurium infection in Denmark in 2008

    DEFF Research Database (Denmark)

    Ethelberg, S.; Wingstrand, Anne; Jensen, T.

    2008-01-01

    An outbreak of Salmonella Typhimurium phage type U292 has been ongoing in Denmark since 1 April, with 1,054 cases registered until 23 October 2008. Extensive investigations including hypothesis-generating interviews, matched case-control studies, cohort studies in embedded outbreaks, shopping list...

  1. Radiation induced alterations in the endotoxin of S. typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Nerkar, D P; Govekar, L G; Kumta, U S; Sreenivasan, A [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1977-09-01

    The lipopolysaccharide (LPS) of S. typhimurium has been shown to be significantly detoxified after in vivo irradiation at 500 krad. Radiation is thus a useful method for converting endotoxin into toxoid. The structural alterations in the detoxified LPS were shown to be mainly in the lipid A molecule, resulting in the loss of ..beta..-hydroxymyristic acid.

  2. Salmonella Typhimurium pneumonia in a patient with multiple myeloma.

    Science.gov (United States)

    Khan, Sadia; Kumar, V Anil; Sidharthan, Neeraj; Mehta, Asmita; Backer, Binita; Dinesh, Kavitha R

    2015-04-01

    Pneumonia due to non-typhoidal Salmonella is a rarely reported entity. A fatal case of Salmonella pneumonia is reported here where Salmonella Typhimurium was isolated from the endotracheal aspirate and blood culture. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Chasing Salmonella Typhimurium in free range egg production system.

    Science.gov (United States)

    Chousalkar, Kapil; Gole, Vaibhav; Caraguel, Charles; Rault, Jean-Loup

    2016-08-30

    Free range production systems are becoming a major source of egg production in Australia and worldwide. This study investigated shedding and ecology of Salmonella Typhimurium and Salmonella species in a free range layer flock, wild birds and foxes in the vicinity of the free range farm in different seasons. Shedding of Salmonella was significantly higher in summer. Within the shed, overall, Salmonella prevalence was highest in dust. Corticosterone level in faeces was highest in spring and lowest in winter. There was no direct association between the Salmonella shedding (MPN/gm) and corticosterone levels in faeces. Salmonella Typhimurium MLVA types isolated from fox and wild birds were similar to MLVA types isolated from layer flock and reported during human food borne illness. Wild birds and foxes appear to play an important role in S. Typhimurium ecology and food safety. Environmental factors could play a role in evolution of S. Typhimurium in free range environment. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  4. Salmonella Typhimurium gastroenteritis leading to chronic prosthetic vascular graft infection.

    Science.gov (United States)

    Cullinan, Milo; Clarke, Michael; Dallman, Tim; Peart, Steven; Wilson, Deborah; Weiand, Daniel

    2017-08-01

    Introduction. It is estimated up to 6 % of prosthetic vascular grafts become infected. Staphylococcus aureus is predominant in early infection and coagulase-negative staphylococci are predominant in late infections. Enterobacteriaceae cause 14-40 % of prosthetic vascular graft infections. This is, to our knowledge the first reported case of Salmonella gastroenteritis causing chronic prosthetic vascular graft infection (PVGI). Case presentation. A 57 years old lady presented with signs and symptoms of prosthetic vascular graft infection. Three years earlier, she had undergone a prosthetic axillo-femoral bypass graft for critical limb ischaemia. The infected prosthetic vascular graft was removed and Salmonella Typhimurium was isolated on culture. In the intervening period, Salmonella Typhimurium was isolated from a faecal specimen, collected during an episode of acute gastroenteritis. Whole-genome sequencing (WGS) showed that the respective Salmonella Typhimurium isolates differed by only a single nucleotide polymorphism (SNP). Salmonella Typhimurium was not isolated on culture of a faecal specimen collected five days following cessation of antimicrobial therapy. Six months after removal of the prosthetic graft, the patient remains under follow-up for her peripheral vascular disease, which currently requires no further surgical intervention. Conclusion. This case has clear implications for the management of chronic PVGI. It is vital to collect high-quality surgical specimens for microbiological analysis and empirical choices of antibiotics are unlikely to cover all potential pathogens. It may also be prudent to enquire about a history of acute gastroenteritis when assessing patients presenting with chronic PVGI.

  5. Detoxification of Salmonella typhimurium lipopolysaccharide by ionizing radiation.

    Science.gov (United States)

    Previte, J J; Chang, Y; el-Bisi, H M

    1967-05-01

    The efficiency of ionizing radiation in detoxifying the lethal determinant(s) of the lipopolysaccharide (LPS) of Salmonella typhimurium, S. enteritidis, and Escherichia coli in aqueous solution and associated with heat-killed S. typhimurium cells in suspension decreased with doses above 1 Mrad. The 50% end point of inactivation was more than 7.0 Mrad for heat-killed salmonellae and 4.8, 4.5, and 1.0 Mrad for the LPS of S. typhimurium, S. enteritidis, and E. coli, respectively. After exposure to 20 Mrad, S. typhimurium LPS retained a small portion of its lethal properties although the ld(50) was much greater than 9.5 mg per 20-g mouse. However, at -184 C, no inactivation of the lethal determinant(s) occurred after exposure to as much as 20 Mrad. This demonstrated the significance of the indirect effect and the mobility and formation of free radicals. At 22 C, the optical density at 400 mmu increased and the pH decreased with increasing radiation dose, but no qualitative changes were observed in the infrared spectrum. No change was observed in the pyrogenicity of S. typhimurium LPS; a slight decrease in antigenicity was revealed when 6 days, but not when 1 day, elapsed between vaccination and challenge in the mouse protection test. The results were interpreted as evidence of the existence of two or more lethal and antigenic determinants. The differential effect of radiation on these properties and on the pyrogenic component(s) probably are indicative of separate functional sites for lethal, antigenic, and pyrogenic activities.

  6. A Unique Capsule Locus in the Newly Designated Actinobacillus pleuropneumoniae Serovar 16 and Development of a Diagnostic PCR Assay.

    Science.gov (United States)

    Bossé, Janine T; Li, Yanwen; Sárközi, Rita; Gottschalk, Marcelo; Angen, Øystein; Nedbalcova, Katerina; Rycroft, Andrew N; Fodor, László; Langford, Paul R

    2017-03-01

    Actinobacillus pleuropneumoniae causes pleuropneumonia, an economically significant lung disease of pigs. Recently, isolates of A. pleuropneumoniae that were serologically distinct from the previously characterized 15 serovars were described, and a proposal was put forward that they comprised a new serovar, serovar 16. Here we used whole-genome sequencing of the proposed serovar 16 reference strain A-85/14 to confirm the presence of a unique capsular polysaccharide biosynthetic locus. For molecular diagnostics, primers were designed from the capsule locus of strain A-85/14, and a PCR was formulated that differentiated serovar 16 isolates from all 15 known serovars and other common respiratory pathogenic/commensal bacteria of pigs. Analysis of the capsule locus of strain A-85/14 combined with the previous serological data show the existence of a sixteenth serovar-designated serovar 16-of A. pleuropneumoniae . Copyright © 2017 Bossé et al.

  7. Sorovares de Salmonella em carne de eqüídeos abatidos no nordeste do Brasil Salmonella serovars in meat of horses slaughtered in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Ernesto Hofer

    2000-06-01

    Full Text Available Nas décadas de 60 e 70, houve um extraordinário incremento da exportação de produtos cárneos de eqüídeos dos países da América do Sul para a Europa e Japão. Este acontecimento favoreceu o aumento de risco da veiculação de Salmonella através desses produtos, para as populações humana e animal, consumidoras. Assim, num estabelecimento industrial e exportador de carne de eqüídeos localizado no nordeste do Brasil (Pernambuco, foram analisados bacteriologicamente, 19.238 fragmentos de músculos mais externos, que revelaram 666 exames positivos referentes a 433 animais (eqüinos e asininos e resultando no isolamento de 745 cepas de Salmonella. Na amostragem foram caracterizados do ponto de vista antigênico 98 sorovares, predominantemente classificados na subespécie I (98,9% e tendo como os mais freqüentes S. Anatum, S. Carrau, S. Saintpaul, S. Agona e S. Typhimurium. Pelas análises efetuadas admite-se que as causas primordiais da presença de Salmonella nas carnes, provavelmente decorreu do contato com os excretas dos animais abatidos, bem como pela possível contaminação ambiental resultante, tendo em vista a ausência de portadores humanos, pesquisados numa parcela do pessoal.In the sixties and seventies there was an extraordinary increase in export of horse meat products to Europe and Japan. This favored an increase in risk of Salmonella outspread through those products to human and animal consumer populations. Thus, from an exporting company dealing with horse meat located in northeastern Brazil (state of Pernambuco, 19,238 fragments of more external muscles, Salmonella was isolated from 666 samples colleted from 433 animals (horses and donkeys. The serotyping of 745 isolates showed 98 serovars pertaining to 14 serogroups, predominantly classified into subspecies I (98.9%. S. Anatum, S. Carrau, S. Saintpaul, S. Agona, and S. Typhimurium were the most frequent serovars isolated. Preliminary data indicate that the primary

  8. Expression of Bacillus thuringiensis serovar. israelensis toxins in Asticcacaulis excentricus to control dipteran larvae of vectors of diseases

    Directory of Open Access Journals (Sweden)

    Óscar Enrique Guevara

    2004-01-01

    Full Text Available Bacillus thuringiensis cry genes encode for a diverse group of crystal-forming proteins that exhibit insecticidal activity towards dipteran, lepidopteran and coleopteran larvae. The effectiveness of insecticides based on mosquito larvicidal B. thuringiensis strains can be enhanced by using aquatic prosthecated bacteria as alternative hosts, since they do not sink, cytoplasmic located toxins are protected f rom UV radiation and, most importantly, mosquito larvae feed on them. An Asticcacaulis excentricus reference strain was transformed with the cry1 1Aa gene from Bacillus thuringiensis serovar. israelensis. Western blot and electrophoresis were used to test recombinant protein expression; Western blot revealed a 72 kDa protein corresponding to B. thuringiensis serovar. israelensis Cry1 1 Aa. These aquatic bacte­rias toxicity achieved 50% mortality at 23 ng/mL concentration in f irst instar Culex quinquefasciatus larvae. Other bioassays indicated that recombinant A. excentricus is toxic against Aedes aegyptiand Anopheles albimanus first instar larvae. Buoyancy tests demonstrated the advantage of A. excentricus over B. thuringiensis. Key words: Asticcacaulis excentricus, Bacillus thuringiensis, prosthecated bacteria, dengue, malaria.

  9. Cloning, expression, and homology modeling of GroEL protein from Leptospira interrogans serovar autumnalis strain N2.

    Science.gov (United States)

    Natarajaseenivasan, Kalimuthusamy; Shanmughapriya, Santhanam; Velineni, Sridhar; Artiushin, Sergey C; Timoney, John F

    2011-10-01

    Leptospirosis is an infectious bacterial disease caused by Leptospira species. In this study, we cloned and sequenced the gene encoding the immunodominant protein GroEL from L. interrogans serovar Autumnalis strain N2, which was isolated from the urine of a patient during an outbreak of leptospirosis in Chennai, India. This groEL gene encodes a protein of 60 kDa with a high degree of homology (99% similarity) to those of other leptospiral serovars. Recombinant GroEL was overexpressed in Escherichia coli. Immunoblot analysis indicated that the sera from confirmed leptospirosis patients showed strong reactivity with the recombinant GroEL while no reactivity was observed with the sera from seronegative control patient. In addition, the 3D structure of GroEL was constructed using chaperonin complex cpn60 from Thermus thermophilus as template and validated. The results indicated a Z-score of -8.35, which is in good agreement with the expected value for a protein. The superposition of the Ca traces of cpn60 structure and predicted structure of leptospiral GroEL indicates good agreement of secondary structure elements with an RMSD value of 1.5 Å. Further study is necessary to evaluate GroEL for serological diagnosis of leptospirosis and for its potential as a vaccine component. Copyright © 2011 Beijing Genomics Institute. Published by Elsevier Ltd. All rights reserved.

  10. Invasive Non-typhoidal Salmonella Infections in Asia: Clinical Observations, Disease Outcome and Dominant Serovars from an Infectious Disease Hospital in Vietnam.

    Directory of Open Access Journals (Sweden)

    Nguyen Phu Huong Lan

    2016-08-01

    Full Text Available Invasive non-typhoidal Salmonella (iNTS infections are now a well-described cause of morbidity and mortality in children and HIV-infected adults in sub-Saharan Africa. In contrast, the epidemiology and clinical manifestations of iNTS disease in Asia are not well documented. We retrospectively identified >100 cases of iNTS infections in an infectious disease hospital in Southern Vietnam between 2008 and 2013. Clinical records were accessed to evaluate demographic and clinical factors associated with iNTS infection and to identify risk factors associated with death. Multi-locus sequence typing and antimicrobial susceptibility testing was performed on all organisms. Of 102 iNTS patients, 71% were HIV-infected, >90% were adults, 71% were male and 33% reported intravenous drug use. Twenty-six/92 (28% patients with a known outcome died; HIV infection was significantly associated with death (p = 0.039. S. Enteritidis (Sequence Types (ST11 (48%, 43/89 and S. Typhimurium (ST19, 34 and 1544 (26%, 23/89 were the most commonly identified serovars; S. Typhimurium was significantly more common in HIV-infected individuals (p = 0.003. Isolates from HIV-infected patients were more likely to exhibit reduced susceptibility against trimethoprim-sulfamethoxazole than HIV-negative patients (p = 0.037. We conclude that iNTS disease is a severe infection in Vietnam with a high mortality rate. As in sub-Saharan Africa, HIV infection was a risk factor for death, with the majority of the burden in this population found in HIV-infected adult men.

  11. Draft Genome Sequence of Leptospira interrogans Serovar Bataviae Strain LepIMR 22 Isolated from a Rodent in Johor, Malaysia

    NARCIS (Netherlands)

    Amran, Fairuz; Mohd Khalid, Mohd Khairul Nizam; Mohamad, Saharuddin; Mat Ripen, Adiratna; Ahmad, Norazah; Goris, Marga G. A.; Muhammad, Ayu Haslin; Noor Halim, Nurul Atiqah

    2016-01-01

    Leptospira interrogans serovar Bataviae was recently identified as one of the persistent Leptospira serovars in Malaysia. Here, we report the draft genome sequence of the L. interrogans serovar Bataviae strain LepIMR 22 isolated from kidney of a rodent in Johor, Malaysia

  12. Draft Genome Sequence of Leptospira interrogans Serovar Bataviae Strain LepIMR 22 Isolated from a Rodent in Johor, Malaysia.

    Science.gov (United States)

    Amran, Fairuz; Mohd Khalid, Mohd Khairul Nizam; Mohamad, Saharuddin; Mat Ripen, Adiratna; Ahmad, Norazah; Goris, Marga G A; Muhammad, Ayu Haslin; Noor Halim, Nurul Atiqah

    2016-09-08

    Leptospira interrogans serovar Bataviae was recently identified as one of the persistent Leptospira serovars in Malaysia. Here, we report the draft genome sequence of the L. interrogans serovar Bataviae strain LepIMR 22 isolated from kidney of a rodent in Johor, Malaysia. Copyright © 2016 Amran et al.

  13. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18

    DEFF Research Database (Denmark)

    Parkhill, J.; Dougan, G.; James, K.D.

    2001-01-01

    Salmonella enterica serovar Typhi (S. typhi) is the aetiological agent of typhoid fever, a serious invasive bacterial disease of humans with an annual global burden of approximately 16 million cases, leading to 600,000 fatalities(1). Many S. enterica serovars actively invade the mucosal surface...

  14. Repeated isolation of Salmonella enterica Goverdhan, a very rare serovar, from Danish poultry surveillance samples

    DEFF Research Database (Denmark)

    Pedersen, Karl; Sørensen, Gitte; Szabo, Istvan

    2014-01-01

    We report here the appearance of a very rare serovar of Salmonella, S. enterica subsp. enterica serovar Goverdhan, in routine Salmonella surveillance samples from Danish poultry production. S. Goverdhan was found on nine occasions: in one broiler breeder farm in October 2010, four broiler farms a...

  15. Development of Hamster Models for Acute and Chronic Infections with Leptospira borgpetersenii serovar Hardjo

    Science.gov (United States)

    The Golden Syrian hamster is frequently used as a small animal model to study acute leptospirosis. However, use of this small animal model to study Leptospira borgpetersenii serovar Hardjo infections has not been well documented. Cattle are the normal maintenance hosts of L. borgpetersenii serovar...

  16. Characterization of Leptospira interrogans serovar Pomona isolated from swine in Brazil

    NARCIS (Netherlands)

    Miraglia, Fabiana; Moreno, Luisa Z.; Morais, Zenaide M.; Langoni, Helio; Shimabukuro, Fabio H.; Dellagostin, Odir A.; Hartskeerl, Rudy; Vasconcellos, Silvio A.; Moreno, Andrea Micke

    2015-01-01

    Leptospira interrogans swine infection is a cause of serious economic loss and a potential human health hazard. In Brazil, the most common serovars associated with swine infections are Pomona, Icterohaemorrhagie and Tarassovi. Cross-reactions among serovars and the failure of infected animals to

  17. Arbitrarily primed PCR- A rapid and simple method for typing of leptospiral serovars

    Directory of Open Access Journals (Sweden)

    Ramadass P

    2002-01-01

    Full Text Available PURPOSE: To investigate the use of arbitrarily primed polymerase chain reaction (AP-PCR for typing of leptospiral serovars. METHODS: AP-PCR was adopted for identification of laboratory strains of leptospires and leptospiral cultures at serovar level. A primer of 12 bp was used for amplifying DNA of 13 laboratory strains of leptospires as well as culture pellets of leptospires. RESULTS: Each serovar produced distinct DNA fingerprint which was characteristic for each serovar. These patterns were used for typing of 81 serum culture samples obtained from human leptospiral cases. Of these samples, 39 could be typed based on AP-PCR fingerprints belonging to serovars autumnalis, pomona, canicola, javanica, icterohaemorrhagiae, patoc and pyrogenes. These results were confirmed by RAPD fingerprinting of the DNA samples of the respective leptospiral serovars after culturing -FNx01them in EMJH media. One of the important findings of this work was that straight culture sample could be used for AP-PCR assay, without purification of DNA. By having more number of AP-PCR reference fingerprints, more serovars could be typed. CONCLUSIONS: AP-PCR technique provides great potential for simple and rapid identification of leptospires at serovar level, which could be useful in molecular epidemiological studies of leptospirosis.

  18. Fifteen years of successful spread of Salmonella enterica serovar Mbandaka clone ST413 in Poland and its public health consequences

    Directory of Open Access Journals (Sweden)

    Andrzej Hoszowski

    2016-06-01

    Full Text Available In the 1990s, [i]Salmonella enterica[/i] serovar (S. Mbandaka occurred in feed and poultry in Poland. In the following years, the serovar also gained epidemiological importance in other EU countries. The objectives of current study were to evaluate the genetic relationship of contemporary S. Mbandaka with isolates originating from the beginning of the epidemics, and to assess the contribution of poultry as the source of infections in humans. Seventy S. Mbandaka isolated mainly in 2009 – 2010 from humans, poultry, food, and feed were typed with API ID32 [sup]®[/sup], MIC, plasmid profiling, PFGE, and MLST. PCR and sequencing were used to identify plasmid mediated quinolone and cephalosporin resistance mechanisms. Six biochemical profiles were identified and 59 of S. Mbandaka proved to be susceptible to the applied antimicrobials. Eight strains carried plasmids and a few of them were positive for [i]bla[/i][sub]CMY-2[/sub] and [i]qnr[/i]S1 genes. Two clusters of 15 [i]XbaI[/i]-PFGE profiles with similarity of 77.5% were found. The first cluster, gathered 7 profiles involving historical isolates and several contemporary non-human S. Mbandaka. The predominant profile in the second cluster consisted of 28 human and 1 broiler isolate. MLST analysis showed sequence type ST413 occurring among all tested isolates. The identification of close genetic relationships between S. Mbandaka of human and poultry origin indicates animals as a primal human infection route. Despite [i]Salmonella [/i]control programmes, the S. Mbandaka ST413 clone has been circulating for several years in Poland. [i]Salmonella[/i] control polices in food production chain should be continuously updated to target serovars of major epidemiological importance. Resistance noted in S. Mbandaka to such antimicrobials as fluoroquinolones and cephalosporins may hinder public health.

  19. Changes in transcriptional orientation are associated with increases in evolutionary rates of enterobacterial genes

    Directory of Open Access Journals (Sweden)

    Hsiung Chao

    2011-10-01

    Full Text Available Abstract Background Changes in transcriptional orientation (“CTOs” occur frequently in prokaryotic genomes. Such changes usually result from genomic inversions, which may cause a conflict between the directions of replication and transcription and an increase in mutation rate. However, CTOs do not always lead to the replication-transcription confrontation. Furthermore, CTOs may cause deleterious disruptions of operon structure and/or gene regulations. The currently existing CTOs may indicate relaxation of selection pressure. Therefore, it is of interest to investigate whether CTOs have an independent effect on the evolutionary rates of the affected genes, and whether these genes are subject to any type of selection pressure in prokaryotes. Methods Three closely related enterbacteria, Escherichia coli, Klebsiella pneumoniae and Salmonella enterica serovar Typhimurium, were selected for comparisons of synonymous (dS and nonsynonymous (dN substitution rate between the genes that have experienced changes in transcriptional orientation (changed-orientation genes, “COGs” and those that do not (same-orientation genes, “SOGs”. The dN/dS ratio was also derived to evaluate the selection pressure on the analyzed genes. Confounding factors in the estimation of evolutionary rates, such as gene essentiality, gene expression level, replication-transcription confrontation, and decreased dS at gene terminals were controlled in the COG-SOG comparisons. Results We demonstrate that COGs have significantly higher dN and dS than SOGs when a series of confounding factors are controlled. However, the dN/dS ratios are similar between the two gene groups, suggesting that the increase in dS can sufficiently explain the increase in dN in COGs. Therefore, the increases in evolutionary rates in COGs may be mainly mutation-driven. Conclusions Here we show that CTOs can increase the evolutionary rates of the affected genes. This effect is independent of the

  20. Construction of genetic markers for the study of Salmonella typhimurium infection of murine macrophages

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Olsen, John Elmerdahl

    in combination with available host markers it will be possible to estimate the time-point at which a specific gene is required for progression of SCV maturation. These developmentally regulated reporter fusions constitute a set of novel developmental markers for the study of Salmonella Typhimurium infection...... with the host cell, (2) Formation of early SCV, (3) Maturation into late SCV, (4) Initiation of bacterial replication, (5) Formation of Sifs. In this project, we have constructed a set of reporter fusions which are temporally and spatially regulated during the progression of SCV maturation. The reporter fusions...... were constructed using Red-mediated recombination (1) and the promoters were selected from the recently published expressional data of Salmonella infection of murine macrophages (2). As reporter proteins we both use a stable GFPmut3 variant as well as an unstable GFP variant (3). Using these fusions...

  1. Explicit hypoxia targeting with tumor suppression by creating an "obligate" anaerobic Salmonella Typhimurium strain.

    Science.gov (United States)

    Yu, Bin; Yang, Mei; Shi, Lei; Yao, Yandan; Jiang, Qinqin; Li, Xuefei; Tang, Lei-Han; Zheng, Bo-Jian; Yuen, Kwok-Yung; Smith, David K; Song, Erwei; Huang, Jian-Dong

    2012-01-01

    Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, SalmonellaTyphimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do.

  2. Explicit hypoxia targeting with tumor suppression by creating an “obligate” anaerobic Salmonella Typhimurium strain

    Science.gov (United States)

    Yu, Bin; Yang, Mei; Shi, Lei; Yao, Yandan; Jiang, Qinqin; Li, Xuefei; Tang, Lei-Han; Zheng, Bo-Jian; Yuen, Kwok-Yung; Smith, David K.; Song, Erwei; Huang, Jian-Dong

    2012-01-01

    Using bacteria as therapeutic agents against solid tumors is emerging as an area of great potential in the treatment of cancer. Obligate and facultative anaerobic bacteria have been shown to infiltrate the hypoxic regions of solid tumors, thereby reducing their growth rate or causing regression. However, a major challenge for bacterial therapy of cancer with facultative anaerobes is avoiding damage to normal tissues. Consequently the virulence of bacteria must be adequately attenuated for therapeutic use. By placing an essential gene under a hypoxia conditioned promoter, Salmonella Typhimurium strain SL7207 was engineered to survive only in anaerobic conditions (strain YB1) without otherwise affecting its functions. In breast tumor bearing nude mice, YB1 grew within the tumor, retarding its growth, while being rapidly eliminated from normal tissues. YB1 provides a safe bacterial vector for anti-tumor therapies without compromising the other functions or tumor fitness of the bacterium as attenuation methods normally do. PMID:22666539

  3. Buffer capacity of food components influences the acid tolerance response in Salmonella Typhimurium during simulated gastric passage

    DEFF Research Database (Denmark)

    Henriksen, Sidsel; Buschhardt, Tasja; Hansen, Tina Beck

    2014-01-01

    tubes, enabling simultaneous testing of biological triplicates under varying conditions. Surprisingly, we found that less buffered media provided higher protection of Salmonella, compared to media with high buffer capacity. By investigating the relative gene expression of rpoS and ompR encoding for two...... Heart Infusion Broth having a higher buffer capacity. We suggest this to be associated with a varying ability of Salmonella Typhimurium to mount a stationary phase acid tolerance response (ATR) depending on the buffer capacity of the food vehicle....

  4. Modification of Salmonella Typhimurium motility by the probiotic yeast strain Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available BACKGROUND: Motility is an important component of Salmonella enterica serovar Typhimurium (ST pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. METHODOLOGY/PRINCIPAL FINDINGS: Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software. This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT and increased by 22% the number of bacteria with rotator tract (RT. Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. CONCLUSIONS: This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification

  5. Modification of Salmonella Typhimurium Motility by the Probiotic Yeast Strain Saccharomyces boulardii

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Prodon, François; Munro, Patrick; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean François; Czerucka, Dorota

    2012-01-01

    Background Motility is an important component of Salmonella enterica serovar Typhimurium (ST) pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. Methodology/Principal Findings Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software). This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV) of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL) showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT) and increased by 22% the number of bacteria with rotator tract (RT). Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. Conclusions This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification of Salmonella

  6. Utilization of a ts-sacB selection system for the generation of a Mycobacterium avium serovar-8 specific glycopeptidolipid allelic exchange mutant

    Science.gov (United States)

    Irani, Vida R; Lee, Sun-Hwa; Eckstein, Torsten M; Inamine, Julia M; Belisle, John T; Maslow, Joel N

    2004-01-01

    Background Mycobacterium avium are ubiquitous environmental organisms and a cause of disseminated infection in patients with end-stage AIDS. The glycopeptidolipids (GPL) of M. avium are proposed to participate in the pathogenesis of this organism, however, establishment of a clear role for GPL in disease production has been limited by the inability to genetically manipulate M. avium. Methods To be able to study the role of the GPL in M. avium pathogenesis, a ts-sacB selection system, not previously used in M. avium, was employed as a means to achieve homologous recombination for the rhamnosyltransferase (rtfA) gene of a pathogenic serovar 8 strain of M. avium to prevent addition of serovar-specific sugars to rhamnose of the fatty acyl-peptide backbone of GPL. The genotype of the resultant rtfA mutant was confirmed by polymerase chain reaction and southern hybridization. Disruption in the proximal sugar of the haptenic oligosaccharide resulted in the loss of serovar specific GPL with no change in the pattern of non-serovar specific GPL moieties as shown by thin layer chromatography and gas chromatography/mass spectrometry. Complementation of wild type (wt) rtfA in trans through an integrative plasmid restored serovar-8 specific GPL expression identical to wt serovar 8 parent strain. Results In this study, we affirm our results that rtfA encodes an enzyme responsible for the transfer of Rha to 6d-Tal and provide evidence of a second allelic exchange mutagenesis system suitable for M. avium. Conclusion We report the second allelic exchange system for M. avium utilizing ts-sacB as double-negative and xylE as positive counter-selection markers, respectively. This system of allelic exchange would be especially useful for M. avium strains that demonstrate significant isoniazid (INH) resistance despite transformation with katG. Through the construction of mutants in GPL or other mycobacterial components, their roles in M. avium pathogenesis, biosynthesis, or drug

  7. Utilization of a ts-sacB selection system for the generation of a Mycobacterium avium serovar-8 specific glycopeptidolipid allelic exchange mutant

    Directory of Open Access Journals (Sweden)

    Belisle John T

    2004-09-01

    Full Text Available Abstract Background Mycobacterium avium are ubiquitous environmental organisms and a cause of disseminated infection in patients with end-stage AIDS. The glycopeptidolipids (GPL of M. avium are proposed to participate in the pathogenesis of this organism, however, establishment of a clear role for GPL in disease production has been limited by the inability to genetically manipulate M. avium. Methods To be able to study the role of the GPL in M. avium pathogenesis, a ts-sacB selection system, not previously used in M. avium, was employed as a means to achieve homologous recombination for the rhamnosyltransferase (rtfA gene of a pathogenic serovar 8 strain of M. avium to prevent addition of serovar-specific sugars to rhamnose of the fatty acyl-peptide backbone of GPL. The genotype of the resultant rtfA mutant was confirmed by polymerase chain reaction and southern hybridization. Disruption in the proximal sugar of the haptenic oligosaccharide resulted in the loss of serovar specific GPL with no change in the pattern of non-serovar specific GPL moieties as shown by thin layer chromatography and gas chromatography/mass spectrometry. Complementation of wild type (wt rtfA in trans through an integrative plasmid restored serovar-8 specific GPL expression identical to wt serovar 8 parent strain. Results In this study, we affirm our results that rtfA encodes an enzyme responsible for the transfer of Rha to 6d-Tal and provide evidence of a second allelic exchange mutagenesis system suitable for M. avium. Conclusion We report the second allelic exchange system for M. avium utilizing ts-sacB as double-negative and xylE as positive counter-selection markers, respectively. This system of allelic exchange would be especially useful for M. avium strains that demonstrate significant isoniazid (INH resistance despite transformation with katG. Through the construction of mutants in GPL or other mycobacterial components, their roles in M. avium pathogenesis

  8. Targeted deletion of the ara operon of Salmonella typhimurium enhances L-arabinose accumulation and drives PBAD-promoted expression of anti-cancer toxins and imaging agents.

    Science.gov (United States)

    Hong, Hyun; Lim, Daejin; Kim, Geun-Joong; Park, Seung-Hwan; Sik Kim, Hyeon; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2014-01-01

    Tumor-specific expression of antitumor drugs can be achieved using attenuated Salmonella typhimurium harboring the PBAD promoter, which is induced by L-arabinose. However, L-arabinose does not accumulate because it is metabolized to D-xylulose-5-P by enzymes encoded by the ara operon in Salmonellae. To address this problem, we developed an engineered strain of S. typhimurium in which the ara operon is deleted. Linear DNA transformation was performed using λ red recombinase to exchange the ara operon with linear DNA carrying an antibiotic-resistance gene with homology to regions adjacent to the ara operon. The ara operon-deleted strain and its parental strain were transformed with a plasmid encoding Renilla luciferase variant 8 (RLuc8) or cytolysin A (clyA) under the control of the PBAD promoter. Luciferase assays demonstrated that RLuc8 expression was 49-fold higher in the ara operon-deleted S. typhimurium than in the parental strain after the addition of L-arabinose. In vivo bioluminescence imaging showed that the tumor tissue targeted by the ara operon-deleted Salmonella had a stronger imaging signal (~30-fold) than that targeted by the parental strain. Mice with murine colon cancer (CT26) that had been injected with the ara operon-deleted S. typhimurium expressing clyA showed significant tumor suppression. The present report demonstrates that deletion of the ara operon of S. typhimurium enhances L-arabinose accumulation and thereby drives PBAD-promoted expression of cytotoxic agents and imaging agents. This is a promising approach for tumor therapy and imaging.

  9. Salmonella enterica Serovar Typhi: An Unusual Cause of Infective Endocarditis

    Directory of Open Access Journals (Sweden)

    Christopher Robson

    2018-03-01

    Full Text Available While typhoid fever is a common infection, Salmonella enterica serovar Typhi is a rare cause of endocarditis. We describe the case of a 20-year-old male who was treated for a primary episode of microbiologically-confirmed typhoid fever. He presented six weeks post-discharge with fever and lethargy. S. Typhi was again identified in blood cultures, and echocardiography identified a mitral valve lesion. Our case suggests that a relapse of typhoid should prompt further investigation for a deep-seated infection, including consideration of echocardiographic evaluation to rule out infective endocarditis.

  10. Effect of microwave irradiation on Salmonella typhimurium cells

    International Nuclear Information System (INIS)

    Danilenko, I.I.; Mirutenko, V.I.; Sopil', A.V.; Koval'chuk, V.K.; Lyakhovchuk, N.N.; Popovich, G.G.; Bondarenko, V.I.

    1985-01-01

    It is shown that effect of electromagnetic energy of SHF-frequency, 8 mm wavelength and integral output power of 1MWt during 5.20 and 30 min results in negligible variations of Salmonella typhimurium cell ultrastructure. Increase of lipid peroxide amount determined according to malonic dialdehyde is observed in treated cells; it constitutes 10.23x10 -9 nm of malonic dialdehyde as compared to 3.20x10 -9 nm in control (untreated) cells

  11. Resistance of Salmonella enteritidis variety typhimurium to gamma radiation

    International Nuclear Information System (INIS)

    Norberg, A.N.; Maliska, C.

    1988-01-01

    The use of ionizing radiations to kill microrganisms responsible for food deterioration, and toxinfections is an example of peaceful use of nuclear energy. Food toxinfections are, amongus, produced mostly by Salmonella enteritidis var. typhimurium. Due to the pauncity of information on the resistance to gamma radiation of Salmonella enteritidis var. typhimurium this paper has the aim to define the 60-Cobalt gamma radiation lethal dose to these bacteria, in experimentally contaminated milk by samples recovered from our geographycal area. One hundred nineteen samples of milk containing about 150.000 bacteria per ml were irradiated with doses ranging from 100 to 1.100 Gy. Two samples of surving bacteria were again irradiated by doses up to 2.500 Gy. The bacteria not previously irradiated were killed by doses of 1.100 Gy. It was concluded that the 60-Cobalt gamma radiation minimal lethal dose to Salmonella enteritidis var. typhimurium is 1.200 Gy. The surviving strains to smaller doses than 1.200 Gy when re-irradiated prompt the forthcoming of more radio-resistant germs. (author) [pt

  12. Changing trends in antimicrobial resistance of Salmonella enterica serovar typhi and salmonella enterica serovar paratyphi A in Chennai

    Directory of Open Access Journals (Sweden)

    Krishnan Padma

    2009-10-01

    Full Text Available Background and Objectives: Chloramphenicol was considered the anti-microbial gold standard for typhoid treatment but, following the increasing worldwide frequency of antibiotic resistance, ciprofloxacin has been the mainstay of therapy since 1980. Recent studies have shown a shifting of susceptibility to conventional drugs like chloramphenicol, ampicillin and cotrimoxazole. The primary objective of the study was to evaluate the in vitro activity of chloramphenicol and other first-line drugs in comparison with cephalosporins and quinolones. Materials and Methods: Fifty isolates of Salmonella obtained from blood culture were subjected to serotyping at the Central Research Institute, Kasauli. Phage typing and biotyping was performed at the National Phage Typing Centre, New Delhi. Antibiotic sensitivity testing was carried out for 10 drugs by the Kirby-Bauer disc diffusion method and minimum inhibitory concentration by broth microdilution for nalidixic acid, chloramphenicol, ciprofloxacin, ceftriaxone, cefixime and ofloxacin. Multi-drug-resistant (MDR strains were checked for plasmid. Results: In the present study, 70 and 30% of the isolates were Salmonella enterica serovar typhi and paratyphi A, respectively. They were highly sensitive to chloramphenicol (86%, ampicillin (84% and cotrimoxazole (88%. Highest sensitivity was seen for cephalosporins, followed by quinolones. Seventeen/21 (81% and 100% of the Salmonella enterica serovar typhi strains belonged to E1 phage type and biotype 1, respectively. Antibiogram showed 2% of the strains to be sensitive to all the drugs tested and 12% were MDR and showed the presence of plasmids. Conclusion: The study indicates reemergence of chloramphenicol-susceptible Salmonella enterica serovar typhi and paratyphi A isolates, a significant decline in MDR strains and high resistance to nalidixic acid. E1 phage type and biotype 1 are found to be most prevalent in Chennai, India.

  13. ANTIBACTERIAL ACTIVITY OF SILVER NANOPARTICLES: SENSITIVITY OF DIFFERENT SALMONELLA SEROVARS

    Directory of Open Access Journals (Sweden)

    Carmen eLosasso

    2014-05-01

    Full Text Available Salmonella spp. is one of the main causes of foodborne illnesses in humans worldwide. Consequently, great interest exists in reducing its impact on human health by lowering its prevalence in the food chain. Antimicrobial formulations in the form of nanoparticles exert bactericidal action due to their enhanced reactivity resultant from their high surface/volume ratio. Silver nanoparticles (AgNPs are known to be highly toxic to Gram-negative and Gram-positive microorganisms, including multidrug resistant bacteria. However, few data concerning their success against different Salmonella serovars are available. Aims of the present study were to test the antimicrobial effectiveness of AgNPs, against Salmonella Enteritidis, Hadar and Senftenberg, and to investigate the causes of their different survival abilities from a molecular point of view.Results showed an immediate, time-limited and serovar-dependent reduction of bacterial viability. In the case of S. Senftenberg, the reduction in numbers was observed for up to 4 h of incubation in the presence of 200 mg/L of AgNPs; on the contrary, S. Enteritidis and S. Hadar resulted to be inhibited for up to 48 h. RT-PCR experiments demonstrated the constitutive expression of the plasmidic silver resistance determinant (SilB by S. Senftenberg, thus suggesting the importance of a cautious use of AgNPs.

  14. DETERMINASI SEROVAR BAKTERI LEPTOSPIRA PADA RESERVOIR DI KABUPATEN BANYUMAS

    Directory of Open Access Journals (Sweden)

    Tri Ramadhani

    2016-05-01

    Full Text Available Leptospirosis is an infectious disease caused by pathogenic Leptospira. Leptospirosis transmitted to human through direct contact with body fluids of infected animals or indirectly through contaminated puddles . The prevalence of leptospirosis in Banyumas tends to increase for 3 years. The purpose of this study was to determine the leptospira serovar in reservoir to prove of a current infection. Surveys was conducted using single live traps for three consecutive days, determination of leptospira serovar was conducted using Microscopic Aglutination Test (MAT. Data analysis was performed by univariate and presented in tables and graphs. The results showed that the trapped animals consisted of Rattus tanezumi (70.6% and Suncus murinus (29.4% with 6.5% succsess trap. Rattus tanezumi were dominantly caught inside the house (51% than outside the house (49%. Female rats were dominantly caught (66.7% than male rats (33.3%. Suncus murinus and Rattus tanezumi shown a titer of 1/100 to be infected with L.icterohaemorrhagiae , L.javanica and L.cynopteri which are pathogenic Leptospira in humans. Efforts are needed to improve community participation in preventing tranmission of leptospirosis by avoiding contact with contaminated water and soil. For people who are risk of exposure to infected animal should wear protective clothes or footwear.

  15. The emergence of Leptospira borgpetersenii serovar Arborea in Queensland, Australia, 2001 to 2013.

    Science.gov (United States)

    Lau, Colleen L; Skelly, Chris; Dohnt, Michael; Smythe, Lee D

    2015-06-14

    Leptospirosis is an emerging infectious disease, with increasing frequency and severity of outbreaks, changing epidemiology of populations at risk, and the emergence of new serovars. Environmental drivers of disease transmission include flooding, urbanisation, poor sanitation, changes in land use and agricultural practices, and socioeconomic factors. In Queensland, human infection with Leptosira borgpetersenii serovar Arborea was first reported in 2001. This study aims to report the emergence of serovar Arborea in Queensland from 2001 to 2013, and investigate potential risk factors for infection and drivers of emergence. Data on laboratory-confirmed cases of human leptospirosis in Queensland were obtained from the enhanced surveillance system at the WHO/FAO/OIE Collaborating Centre for Reference and Research on Leptospirosis in Brisbane, Australia. The changing epidemiology of serovar Arborea from 2001 to 2003 was described with respect to case numbers, proportion of leptospirosis cases attributed to the serovar, and geographic distribution. Differences in risk factors for the most common serovars were compared. During this period, 1289 cases of leptospirosis were reported, including 233 cases attributed to serovar Arborea. Risk factors for infection include male gender (91 % of cases), occupation, and recreational exposure. Most common occupations recorded were banana workers (28.4 %), meat workers (7.2 %), dairy farmers (5.8 %), graziers/stockmen (5.5 %), 'other agricultural/rural workers' (16.4 %), and tourists or tourism operators (4.6 %). Time trend analysis showed that while non-Arborea cases decreased over the study period, Arborea cases increased by 3.4 cases per year. The proportion of annual cases attributed to Arborea peaked at 49 % in 2011 after unprecedented flooding in Queensland. Mapping of cases by residential location showed expansion of the geographic range of serovar Arborea, concentrating mostly around Brisbane, Cairns and Innisfail. Serovars

  16. Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Tolic, Nikola; Purvine, Samuel O.; Porwollik, Steffen; Jones, Marcus B.; Yoon, Hyunjin; Payne, Samuel H.; Martin, Jessica L.; Burnet, Meagan C.; Monroe, Matthew E.; Venepally, Pratap; Smith, Richard D.; Peterson, Scott; Heffron, Fred; Mcclelland, Michael; Adkins, Joshua N.

    2011-08-25

    Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. For example systems biology-oriented genome scale modeling efforts greatly benefit from accurate annotation of protein-coding genes to develop proper functioning models. However, determining protein-coding genes for most new genomes is almost completely performed by inference, using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. With the ability to directly measure peptides arising from expressed proteins, mass spectrometry-based proteomics approaches can be used to augment and verify coding regions of a genomic sequence and importantly detect post-translational processing events. In this study we utilized “shotgun” proteomics to guide accurate primary genome annotation of the bacterial pathogen Salmonella Typhimurium 14028 to facilitate a systems-level understanding of Salmonella biology. The data provides protein-level experimental confirmation for 44% of predicted protein-coding genes, suggests revisions to 48 genes assigned incorrect translational start sites, and uncovers 13 non-annotated genes missed by gene prediction programs. We also present a comprehensive analysis of post-translational processing events in Salmonella, revealing a wide range of complex chemical modifications (70 distinct modifications) and confirming more than 130 signal peptide and N-terminal methionine cleavage events in Salmonella. This study highlights several ways in which proteomics data applied during the primary stages of annotation can improve the quality of genome annotations, especially with regards to the annotation of mature protein products.

  17. Molecular characterization, serotyping, and antibiotic susceptibility profile of Leptospira interrogans serovar Copenhageni isolates from Brazil

    NARCIS (Netherlands)

    Miraglia, Fabiana; Matsuo, Minekazo; Morais, Zenaide Maria; Dellagostin, Odir Antonio; Seixas, Fabiana Kömmling; Freitas, Julio César; Hartskeerl, Rudy; Moreno, Luisa Zanolli; Costa, Bárbara Letícia; Souza, Gisele Oliveira; Vasconcellos, Silvio Arruda; Moreno, Andrea Micke

    2013-01-01

    Leptospira interrogans serogroup Icterohaemorrhagiae is the major serogroup infecting humans worldwide, and rodents and dogs are the most significant transmission sources in urban environments. Knowledge of the prevalent serovars and their maintenance hosts is essential to understand the

  18. Multiple‐locus variable‐number tandem repeat analysis of Salmonella enterica subsp. enterica serovar Dublin

    DEFF Research Database (Denmark)

    Kjeldsen, M. K.; Torpdahl, M.; Campos, J.

    2014-01-01

    Salmonella serovar Dublin causes disease in cattle and leads to considerable production losses. In humans, severe invasive disease and high mortality rates are reported. The presently available typing methods provide insufficient discrimination within Salm. Dublin for epidemiological investigatio...

  19. Epidemiological investigation of Salmonella enterica serovar Kedougou in Thailand.

    Science.gov (United States)

    Pornruangwong, Srirat; Hendriksen, Rene S; Pulsrikarn, Chaiwat; Bangstrakulnonth, Aroon; Mikoleit, Matthew; Davies, Rob H; Aarestrup, Frank M; Garcia-Migura, Lourdes

    2011-02-01

    Salmonella enterica serovar Kedougou is among the top 10 serovars reported in northern Thailand. The objective of this study was to identify risk factors associated with Salmonella Kedougou infection in Thailand and to compare the molecular types and antimicrobial resistance with Salmonella Kedougou isolates of human origin from United States and of animal origin from the United Kingdom. Data from 13,976 Salmonella infections of which 253 were Salmonella Kedougou collected in Thailand between 2002 and 2008 were analyzed by logistic regression. Antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE) were performed on selected Salmonella Kedougou strains causing infections in Thailand (n = 66), and compared to isolates from the United States (n = 5) and the United Kingdom (n = 20). Logistic analysis revealed season (hot/dry; p = 0.023), region (northern Thailand; p Thailand were resistant to third-generation cephalosporins: two harbored bla(CTX-M-63) and one bla(CMY-2). PFGE revealed 45 unique clusters. Isolates obtained from humans in Thailand and the United States presented identical PFGE profiles suggesting a travel association, whereas the majority of the animal isolates from United Kingdom clustered separately. This study reveals Salmonella Kedougou as a major cause of human infections in northern Thailand especially during the hot period and suggests a global spread probably due to travel. The clonal types causing infections in humans differed from those observed in animals in United Kingdom, which suggests the absence of an epidemiological link and could suggest differences in virulence. The high frequency of antimicrobial resistance, including emergence of resistance to fluoroquinolones and third-generation cephalosporins, might pose problems for treatment of infections.

  20. Chlamydia trachomatis Serovar Distribution and Neisseria gonorrhoeae Coinfection in Male Patients with Urethritis in Greece▿

    Science.gov (United States)

    Papadogeorgakis, Helen; Pittaras, Theodore E.; Papaparaskevas, Joseph; Pitiriga, Vassiliki; Katsambas, Andreas; Tsakris, Athanassios

    2010-01-01

    The distribution of Chlamydia trachomatis serovars and Neisseria gonorrhoeae coinfection was studied in a group of 100 C. trachomatis-positive males with urethritis in Greece. The serovar distribution revealed that apart from the predominant worldwide types E and F, the relatively uncommon type G is also prevalent. Gonococcal coinfection was frequent (30%) and was associated with genovariant Ja (75%, P = 0.008). PMID:20357220

  1. Characterization of a novel Salmonella typhimurium chitinase which hydrolyzes chitin, chitooligosaccharides and an N-acetyllactosamine conjugate

    DEFF Research Database (Denmark)

    Larsen, Tanja; Petersen, Bent O.; Storgaard, Birgit Groth

    2011-01-01

    Salmonella contain genes annotated as chitinases; however, their chitinolytic activities have never been verified. We now demonstrate such an activity for a chitinase assigned to glycoside hydrolase family 18 encoded by the SL0018 (chiA) gene in Salmonella enterica Typhimurium SL1344. A C......-terminal truncated form of chiA lacking a putative chitin-binding domain was amplified by PCR, cloned and expressed in Escherichia coli BL21 (DE3) with an N-terminal (His)(6) tag. The purified enzyme hydrolyzes 4-nitrophenyl N,N'-diacetyl-ß-D-chitobioside, 4-nitrophenyl ß...

  2. Expression and characterization of recombinant leptospiral outer membrane protein LipL32 from Leptospira interrogans serovar autumnalis.

    Science.gov (United States)

    Boonsathorn, Naphatsawan; Konghom, Ganokrot; Mongkolsiri, Kaveewan; Jirapongwattana, Chanin; Balachandra, Kruavon; Naigowit, Pimjai; Sawanpanyalert, Pathom

    2009-01-01

    Leptospira interrogans serovar autumnalis, a causative agent of leptospirosis in Thailand, was isolated from a patient for DNA extraction and amplification of LipL32 gene by polymerase chain reaction (PCR). The 782 bp PCR product was obtained, which was inserted into pAE plasmid with polyhistidine (His6 tag) to construct pAE-LipL32. This recombinant plasmid was transfected into E. coli BL21 (DE3). His6-LipL32 was purified by Ni-NTA affinity chromatography. The recombinant protein was used as antigen for testing with sera from leptospirosis and syphilis patients by dot-ELISA technique. It reacted positively with leptospirosis patient sera and negatively with syphilis and healthy sera.

  3. Presence of antibodies against Leptospira serovars in Chaetophractus villosus (Mammalia, Dasypodidae), La Pampa province, Argentina.

    Science.gov (United States)

    Kin, Marta S; Brihuega, Bibiana; Fort, Marcelo; Delgado, Fernando; Bedotti, Daniel; Casanave, Emma B

    2015-01-01

    Leptospirosis is a zoonosis of worldwide distribution. The aim of this study was to examine the presence of antibodies against 21 Leptospira reactive serovars in Chaetophractus villosus in La Pampa province, Argentina, using the microscopic agglutination test (MAT). Pathologic changes compatible with leptospirosis and in situ detection of the agent by immunohistochemistry were studied in 24 and 3 individuals respectively. Only 35/150 (23.3%) serum samples had antibodies against Leptospira sp. Six percent of the samples reacted with serovar Canicola, 4.7% with serovar Castellonis, 1.3% with serovar Icterohemorrhagieae and 0.7% with serovar Hardjo. Sixteen (10.6%) serum samples agglutinated with Castellonis-Icterohemorrhagiae and Canicola-Castellonis serovars, both with 4.7%, and Canicola-Hardjo and Castellonis-Canicola-Icterohemorrhagiae both with 0.6%. Fourteen animals had variable degrees of lesions, which were more severe in animals with higher serological titers (3200), and Leptospira sp. was detected in 3 animals by immunohistochemistry. These results represent the first record of the presence of Leptospira in C. villosus in La Pampa. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Cross neutralizing antibodies in hamsters vaccinated with leptospiral bacterins produced with three serovars of serogroup Sejroe

    Directory of Open Access Journals (Sweden)

    Rosana Tabata

    2002-09-01

    Full Text Available Three leptospiral bacterins, produced with different serovars of Serogroup Sejroe, namely the hardjo (bacterin A, wolffi (bacterin B and guaricura (bacterin C, were evaluated in male hamsters (Mesocricetus auratus by comparing the agglutinating and neutralizing antibodies titers using microscopic agglutination (MAT and in vitro growth inhibition (GIT tests. The immunization schedule was based on two 1.0 mL doses of non-diluted formalininactivated whole culture bacterin given through subcutaneous route with 10-day interval. The challenge was performed ten days after the second vaccine dose, when the animals were inoculated with 0.2 mL of non-inactivated cultures of each serovar through intraperitoneal route. On the 21st post-challenge day (PCD, all animals were bled and their sera were joined in pools (n=8 and tested by MAT and GIT. All vaccinated and control animals presented no clinical signs of leptospirosis after the challenge, but the serovar guaricura was isolated from the kidneys of control animals on the 21st PCD. The MAT results showed cross agglutinins between serovars hardjo and wolffi, and between wolffi and guaricura. The GIT results revealed the presence of cross neutralizing antibodies between serovars wolffi or guaricura against hardjo, wolffi and guaricura. It was found that the tested strain of serovar hardjo did not produce detectable levels of neutralizing antibodies, indicating its poor immunogenicity.

  5. Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food.

    Science.gov (United States)

    Fernández, Javier; Guerra, Beatriz; Rodicio, M Rosario

    2018-04-08

    Non-typhoidal serovars of Salmonella enterica (NTS) are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical "last resort" antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae , Escherichia coli , and Enterobacter , which are major nosocomial pathogens affecting debilitated and immunocompromised patients), carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance-namely KPC ( Klebsiella pneumoniae carbapenemase) (class A), IMP (imipenemase), NDM (New Delhi metallo-β-lactamase), VIM (Verona integron-encoded metallo-β-lactamase) (class B), and OXA-48 (oxacillinase, class D)-have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC β-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids), together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these "last resort" antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria.

  6. Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food

    Directory of Open Access Journals (Sweden)

    Javier Fernández

    2018-04-01

    Full Text Available Non-typhoidal serovars of Salmonella enterica (NTS are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical “last resort” antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli, and Enterobacter, which are major nosocomial pathogens affecting debilitated and immunocompromised patients, carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance—namely KPC (Klebsiella pneumoniae carbapenemase (class A, IMP (imipenemase, NDM (New Delhi metallo-β-lactamase, VIM (Verona integron-encoded metallo-β-lactamase (class B, and OXA-48 (oxacillinase, class D—have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC β-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids, together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these “last resort” antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria.

  7. Genomic Signature of Multidrug-Resistant Salmonella enterica Serovar Typhi Isolates Related to a Massive Outbreak in Zambia between 2010 and 2012

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Leekitcharoenphon, Pimlapas; Lukjancenko, Oksana

    2015-01-01

    ). The isolates belonged to MLST ST1 and a new variant of the haplotype, H58B. Most isolates contained a chromosomally translocated region containing seven antimicrobial resistance genes, catA1, blaTEM-1, dfrA7, sul1, sul2, strA, and strB, and fragments of the incompatibility group Q1 (IncQ1) plasmid replicon......Retrospectively, we investigated the epidemiology of a massive Salmonella enterica serovar Typhi outbreak in Zambia during 2010 to 2012. Ninety-four isolates were susceptibility tested by MIC determinations. Whole-genome sequence typing (WGST) of 33 isolates and bioinformatic analysis identified...

  8. Acquired homotypic and heterotypic immunity against oculogenital Chlamydia trachomatis serovars following female genital tract infection in mice

    Directory of Open Access Journals (Sweden)

    Peña A Salvador

    2005-11-01

    Full Text Available Abstract Background Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen causing female genital tract infection throughout the world. Reinfection with the same serovar, as well as multiple infections with different serovars, occurs in humans. Using a murine model of female C. trachomatis genital tract infection, we determined if homotypic and/or heterotypic protection against reinfection was induced following infection with human oculogenital strains of C. trachomatis belonging to two serovars (D and H that have been shown to vary significantly in the course of infection in the murine model. Methods Groups of outbred CF-1 mice were reinfected intravaginally with a strain of either serovar D or H, two months after initial infection with these strains. Cellular immune and serologic status, both quantitative and qualitative, was assessed following initial infection, and the course of infection was monitored by culturing vaginal samples collected every 2–7 days following reinfection. Results Serovar D was both more virulent (longer duration of infection and immunogenic (higher level of circulating and vaginal IgG and higher incidence of IgA in vaginal secretions in the mouse genital tract. Although both serovars induced cross-reacting antibodies during the course of primary infection, prior infection with serovar H resulted in only a slight reduction in the median duration of infection against homotypic reinfection (p ~ 0.10, while prior infection with serovar D resulted in significant reduction in the median duration of infection against both homotypic (p Conclusion Serovar D infection resulted in significant homotypic and heterotypic protection against reinfection, while primary infection with serovar H resulted in only slight homotypic protection. In addition to being the first demonstration of acquired heterotypic immunity between human oculogenital serovars, the differences in the level and extent of this immunity

  9. Characterization of Salmonella Typhimurium isolates associated with septicemia in swine

    Science.gov (United States)

    Bergeron, Nadia; Corriveau, Jonathan; Letellier, Ann; Daigle, France; Quessy, Sylvain

    2010-01-01

    Salmonella Typhimurium is frequently isolated from pigs and may also cause enteric disease in humans. In this study, 33 isolates of S. Typhimurium associated with septicemia in swine (CS) were compared to 33 isolates recovered from healthy animals at slaughter (WCS). The isolates were characterized using phenotyping and genotyping methods. For each isolate, the phage type, antimicrobial resistance, and pulsed-field gel electrophoresis (PFGE) DNA profiles were determined. In addition, the protein profiles of each isolate grown in different conditions were studied by Coomassie Blue-stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot. Various phage types were identified. The phage type PT 104 represented 36.4% of all isolates from septicemic pigs. Resistance to as many as 12 antimicrobial agents, including some natural resistances, was found in isolates from CS and WCS. Many genetic profiles were identified among the PT 104 phage types. Although it was not possible to associate one particular protein with septicemic isolates, several highly immunogenic proteins, present in all virulent isolates and in most isolates from clinically healthy animals, were identified. These results indicated that strains associated with septicemia belong to various genetic lineages that can also be recovered from asymptomatic animals at the time of slaughter. PMID:20357952

  10. Racemization of alanine by the alanine racemases from Salmonella typhimurium and Bacillus stearothermophilus: energetic reaction profiles

    International Nuclear Information System (INIS)

    Faraci, W.S.; Walsh, C.T.

    1988-01-01

    Alanine racemases are bacterial pyridoxal 5'-phosphate (PLP) dependent enzymes providing D-alanine as an essential building block for biosynthesis of the peptidoglycan layer of the cell wall. Two isozymic alanine racemases, encoded by the dadB gene and the alr gene, from the Gram-negative mesophilic Salmonella typhimurium and one from the Gram-positive thermophilic Bacillus stearothermophilus have been examined for the racemization mechanism. Substrate deuterium isotope effects and solvent deuterium isotope effects have been measured in both L → D and D→ L directions for all three enzymes to assess the degree to which abstraction of the α-proton or protonation of substrate PLP carbanion is limiting in catalysis. Additionally, experiments measuring internal return of α- 3 H from substrate to product and solvent exchange/substrate conversion experiments in 3 H 2 O have been used with each enzyme to examine the partitioning of substrate PLP carbanion intermediates and to obtain the relative heights of kinetically significant energy barriers in alanine racemase catalysis

  11. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1998-01-01

    A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S...

  12. The role of ClpP, RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Nielsen, Maj-Britt; Thomsen, Line Elnif

    2014-01-01

    that the phenotype of the csrA mutant was independent from RpoS. Conclusions: The cold sensitivity of clpP mutant was associated with increased levels of RpoS and probably caused by toxic levels of RpoS. Although a csrA mutant also accumulated high level of RpoS, growth impairment caused by lack of csr...

  13. Proteomic pleiotropy of OpgGH, an operon necessary for efficient growth of Salmonella enterica serovar Typhimurium under low-osmotic conditions

    Science.gov (United States)

    Salmonella enterica, a bacterial, food-borne pathogen of humans, can contaminate raw fruits and vegetables. Causing much public concern, the bacteria can survive in water used to wash produce. The ability to survive the low-osmolarity of the wash waters is attributed to the OpgGH operon that leads...

  14. pH-, Lactic Acid-, and Non-Lactic Acid-Dependent Activities of Probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium

    OpenAIRE

    Fayol-Messaoudi, Domitille; Berger, Cédric N.; Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L.

    2005-01-01

    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacill...

  15. A third mode of surface‐associated growth: immobilization of Salmonella enterica serovar Typhimurium modulates the RpoS‐directed transcriptional programme

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Nielsen, Maj‐Britt; Grassby, Terri

    2012-01-01

    environments in both food products and the GI tract. This immobilized mode of growth has not been widely studied. To develop our understanding of the effects of immobilization upon a food‐borne bacterial pathogen, we used the IFR Gel Cassette model. The transcriptional programme and metabolomic profile...

  16. Purification and characterization of RihC, a xanthosine-inosine-uridine-adenosine-preferring hydrolase from Salmonella enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Dandanell, Gert

    2005-01-01

    as the sole carbon and energy source. By functional complementation, we have isolated a nucleoside hydrolase (rihC) that can complement a xapA deletion in E. coli and we have overexpressed, purified and characterized this hydrolase. RihC is a heat stable homotetrameric enzyme with a molecular weight of 135 k...... the neutral form of xanthosine....

  17. The plasmid-encoded Ipf and Klf fimbriae display different expression and varying roles in the virulence of Salmonella enterica serovar Infantis in mouse vs. avian hosts.

    Directory of Open Access Journals (Sweden)

    Gili Aviv

    2017-08-01

    Full Text Available Salmonella enterica serovar Infantis is one of the prevalent Salmonella serovars worldwide. Different emergent clones of S. Infantis were shown to acquire the pESI virulence-resistance megaplasmid affecting its ecology and pathogenicity. Here, we studied two previously uncharacterized pESI-encoded chaperone-usher fimbriae, named Ipf and Klf. While Ipf homologs are rare and were found only in S. enterica subspecies diarizonae and subspecies VII, Klf is related to the known K88-Fae fimbria and klf clusters were identified in seven S. enterica subspecies I serovars, harboring interchanging alleles of the fimbria major subunit, KlfG. Regulation studies showed that the klf genes expression is negatively and positively controlled by the pESI-encoded regulators KlfL and KlfB, respectively, and are activated by the ancestral leucine-responsive regulator (Lrp. ipf genes are negatively regulated by Fur and activated by OmpR. Furthermore, induced expression of both klf and ipf clusters occurs under microaerobic conditions and at 41°C compared to 37°C, in-vitro. Consistent with these results, we demonstrate higher expression of ipf and klf in chicks compared to mice, characterized by physiological temperature of 41.2°C and 37°C, respectively. Interestingly, while Klf was dispensable for S. Infantis colonization in the mouse, Ipf was required for maximal colonization in the murine ileum. In contrast to these phenotypes in mice, both Klf and Ipf contributed to a restrained infection in chicks, where the absence of these fimbriae has led to moderately higher bacterial burden in the avian host. Taken together, these data suggest that physiological differences between host species, such as the body temperature, can confer differences in fimbriome expression, affecting Salmonella colonization and other host-pathogen interplays.

  18. A defective mutant of Salmonella enterica Serovar Gallinarum in cobalamin biosynthesis is avirulent in chickens Mutante de Salmonella enterica serovar Gallinarum duplo defectivo na biossíntese de cobalamina é avirulento para aves

    Directory of Open Access Journals (Sweden)

    Jacqueline Boldrin de Paiva

    2009-09-01

    Full Text Available Salmonella enterica serovar Gallinarum (SG is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain.Salmonella enterica serovar Gallinarum (SG é o agente do tifo aviário, doença severa que provoca mortalidade em até 80% do plantel de aves. SG encontra-se entre os poucos sorotipos de Salmonella que são agentes etiológicos de enfermidade específica, à semelhança de Salmonella Typhi em seres humanos podendo, portanto, servir

  19. Changes in transcription during recovery from heat injury in Salmonella typhimurium and effects of BCAA on recovery.

    Science.gov (United States)

    Hsu-Ming, Wen; Naito, Kimitaka; Kinoshita, Yoshimasa; Kobayashi, Hiroshi; Honjoh, Ken-ichi; Tashiro, Kousuke; Miyamoto, Takahisa

    2012-06-01

    Mechanisms of recovery from heat injury in Salmonella typhimurium were elucidated. Recovery of the heat-injured S. typhimurium cells in TSB resulted in full recovery after 3 h of incubation at 37°C. The DNA microarray analysis of 30- and 60-min recovering cells resulted in an increase in transcription of 89 and 141 genes, respectively. Among them, 15 genes, with known function, seemed to be somewhat involved in recovery. They encoded proteins involved in branched-chain amino acid (BCAA) transport (livJ, livH), cell envelope integrity (ddg), heat-shock response (cpxP, rrmJ), phage shock protein (pspA), ribosome modulation factor (rmf), virulence (sseB) transcriptional regulation (rpoE, rpoH, rseA, rseB, rseC) and ArcB signal transduction (sixA) and cytoplasmic membrane protein (fxsA). Among them, the effects of BCAA supplementation on recovery from heat injury were studied to confirm the importance of the BCAA transport liv genes during recovery. It was found that supplementation of TSB with 0.1% BCAA resulted in an enhanced recovery of injured cells in comparison to those recovered in TSB without BCAA. Supplementation of BCAA at 0.1% resulted in a cell count increase 4.4-fold greater than that of the control after 1 h incubation. It seems that BCAA promoted the recovery by promoting protein synthesis either directly through their use in translation or indirectly through stimulation of protein synthesis by activation of the Lrp protein.

  20. A comparative study of low pH stress in E. coli and S. typhimurium, and a comparative study of the inducibility of lysyl-tRNA synthetase in the enterobacteriaceae

    International Nuclear Information System (INIS)

    Hickey, E.W.

    1988-01-01

    Lysyl-tRNA synthetase (LRS) in Escherichia coli is coded by two genes, one constitutive, and the other inducible. The commonness of inducibility of this enzyme in prokaryotes was first tested in eight members of the Enterobacteriaceae using culture conditions known to induce it in E. coli. LRS was found to be inducible in Salmonella Typhimurium, Citrobacter freundii, Klebsiella pneumoniae and Enterobacter aerogenes, but not in Serratia marcescens, Proteus mirabilis, Proteus vulgaris or Morganella morganii. The results also indicated that LRS was not induced in E. coli grown in defined medium (SMM) at an external pH (pH 0 ) of 5.0, whereas, it was induced in S. typhimurium under this condition. Further investigation of low pH 0 induced behavior in E. coli and S. typhimurium by quantitation of H 2 35 SO 4 labeled proteins from two dimensional polyacrylamide gels of whole cell sonic extracts showed that at least twenty proteins were induced from 2- to 16-fold in S. typhimurium grown at pH 0 5.0 or shifted from growth at pH 0 7.0 to 5.0. Internal pH (pH i ) changes occurring during steady state growth at low pH 0 , and on shifting from pH 0 7.0 to 5.0, were measured using 14 C-benzoic acid uptake

  1. A comparative study of low pH stress in E. coli and S. typhimurium, and a comparative study of the inducibility of lysyl-tRNA synthetase in the enterobacteriaceae

    Energy Technology Data Exchange (ETDEWEB)

    Hickey, E.W.

    1988-01-01

    Lysyl-tRNA synthetase (LRS) in Escherichia coli is coded by two genes, one constitutive, and the other inducible. The commonness of inducibility of this enzyme in prokaryotes was first tested in eight members of the Enterobacteriaceae using culture conditions known to induce it in E. coli. LRS was found to be inducible in Salmonella Typhimurium, Citrobacter freundii, Klebsiella pneumoniae and Enterobacter aerogenes, but not in Serratia marcescens, Proteus mirabilis, Proteus vulgaris or Morganella morganii. The results also indicated that LRS was not induced in E. coli grown in defined medium (SMM) at an external pH (pH{sub 0}) of 5.0, whereas, it was induced in S. typhimurium under this condition. Further investigation of low pH{sub 0} induced behavior in E. coli and S. typhimurium by quantitation of H{sub 2} {sup 35}SO{sub 4} labeled proteins from two dimensional polyacrylamide gels of whole cell sonic extracts showed that at least twenty proteins were induced from 2- to 16-fold in S. typhimurium grown at pH{sub 0} 5.0 or shifted from growth at pH{sub 0} 7.0 to 5.0. Internal pH (pH{sub i}) changes occurring during steady state growth at low pH{sub 0}, and on shifting from pH{sub 0} 7.0 to 5.0, were measured using {sup 14}C-benzoic acid uptake.

  2. Production of monoclonal antibody against Salmonella typhimurium by hybridoma technique

    International Nuclear Information System (INIS)

    Hasibuan, Adria P M; Sadi, Suharni

    1998-01-01

    In this research S.typhimurium killed by irradiation was used as antigen was prepared by exposing the bacteria to gamma rays from 60 Cobalt source with the dose of 2.5 kGy, Specific lymphocyte cell were obtained by immunizing 3 months old Balb-C mice with the antigen. the immunizations were done by subcutan route with the interval of 2 weeks. The hybridoma cells were made by fussing the specific lymphocyte cells with the myeloma cells. It was found that the animals (immunization + irradiation with a low dose of I Gy ) yielded monoclonal antibody with higher value (5.15 mg/ml) than the control animals (3.25 mg/ml). (author)

  3. Radiation-induced mutagenicity and lethality in Salmonella typhimurium

    International Nuclear Information System (INIS)

    Isildar, M.; Bakale, G.

    1983-01-01

    The mutagenic and lethal effects of ionizing radiation on histidine-deficient auxotrophs of Salmonella typhimurium were studied to improve the understanding of radiation damage to DNA. The auxotrophs were divided into two groups - one which is sensitive to base-pair substitutions and another sensitive to frameshifts. These groups were composed of parent-daughter pairs in which the chemical mutagenicity enhancing plasmid, pKM101, is absent in the parent strain and present in the daughter. Co-60 #betta#-radiation and 250 kV x-rays were used to irradiate the bacteria. Irradiation of the frameshift - sensitive strains which carry the pKm101 plasmid doubled the absolute number of induced revertants whereas irradiation of the base-pair substitution sensitive strain which also carries the pKm101 plasmid produced nearly no change in the number of induced revertants. A nearly negligible effect on the mutation rate was observed for all parent strains

  4. High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) for the characterisation of pathogenic leptospires: intra-serovar divergence, inter-serovar convergence, and evidence of attenuation in Leptospira reference collections.

    Science.gov (United States)

    Tulsiani, S M; Craig, S B; Graham, G C; Cobbold, R C; Dohnt, M F; Burns, M-A; Jansen, C C; Leung, L K-P; Field, H E; Smythe, L D

    2010-07-01

    High-resolution melt-curve analysis of random amplified polymorphic DNA (RAPD-HRM) is a novel technology that has emerged as a possible method to characterise leptospires to serovar level. RAPD-HRM has recently been used to measure intra-serovar convergence between strains of the same serovar as well as inter-serovar divergence between strains of different serovars. The results indicate that intra-serovar heterogeneity and inter-serovar homogeneity may limit the application of RAPD-HRM in routine diagnostics. They also indicate that genetic attenuation of aged, high-passage-number isolates could undermine the use of RAPD-HRM or any other molecular technology. Such genetic attenuation may account for a general decrease seen in titres of rabbit hyperimmune antibodies over time. Before RAPD-HRM can be further advanced as a routine diagnostic tool, strains more representative of the wild-type serovars of a given region need to be identified. Further, RAPD-HRM analysis of reference strains indicates that the routine renewal of reference collections, with new isolates, may be needed to maintain the genetic integrity of the collections.

  5. Circulating serovars of Leptospira in cart horses of central and southern Ethiopia and associated risk factors.

    Science.gov (United States)

    Tsegay, K; Potts, A D; Aklilu, N; Lötter, C; Gummow, B

    2016-03-01

    Little work has been done on diseases of horses in Ethiopia or tropical regions of the world. Yet, Ethiopia has the largest horse population in Africa and their horses play a pivotal role in their economy as traction animals. A serological and questionnaire survey was therefore conducted to determine the circulating serovars of Leptospira and their association with potential risk factors in the cart horse population of Central and Southern Ethiopia. A total of 184 out of 418 cart horses from 13 districts had antibody titres of 1:100 or greater to at least one of 16 serovars of Leptospira species in Central and Southern Ethiopian horses. A significantly higher seropositivity (62.1%) was noted in horses from the highland agroecology followed by midland (44.4%) and lowland (39.8%). Serovar Bratislava (34.5%) was the predominant serovar followed by serovars Djasiman (9.8%), Topaz (5.98%) and Pomona (5.3%). Age and location proved to be associated with seropositive horses with older horses being more commonly affected and the districts of Ziway (Batu) (Apparent Prevalence (AP)=65.5%), Shashemene (AP=48.3%) and Sebeta (AP=41.4%) having the highest prevalence. Multivariable logistic regression found risk factors significantly associated with Leptospira seropositive horses were drinking river water (OR=2.8) and horses 7-12 years old (OR=5) and risk factors specifically associated with serovar Bratislava seropositive horses were drinking river water (OR=2.5), horses ≥13 years (OR=3.5) and the presence of dogs in adjacent neighbouring properties (OR=0.3). Dogs had a protective effect against seropositivity to serovars Bratislava and Djasiman, which may be due to their ability to control rodents. The high seroprevalence confirm that leptospirosis is endemic among horses of Central and Southern Ethiopia. The predominance of serovar Bratislava supports the idea that serovar Bratislava may be adapted to and maintained by the horse population of Central and Southern Ethiopia

  6. SALMONELLA ENTERICA SUBSPECIES ENTERICA SEROVAR ENTERITIDIS – ACTUALITIES AND IMPORTANCE

    Directory of Open Access Journals (Sweden)

    Predrag Stojanović

    2010-09-01

    Full Text Available Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis has been recently recognized as a prevalent cause of alimentary toxi-infection worldwide. Its widespread presence could be explained by intensification and globalization of traffic, global trade, and the rest of socioeconomic processes. However, no matter to global spreading of S. Enteritidis, there is unequal distribution of certain phage types (PT where PT 4 and 8 are predominant. Salmonella is considered as a cause of various diseases from acute enterocolitis to typhoid fever. All bacteria from this species have numerous virulence factors such as: adhesins, toxins, virulence plasmids, and cell wall lipopolysaccharides (LPS. Similar to other salmonella serotypes, S. Enteritidis has a virulence plasmid. It allows a bacterium to persist inside the reticuloendothelial cells, while strains without it are eliminated quickly. In the last few years several virulent S. Enteritidis strains of PT 4 were described and considered to be of the same origin. The domination of PT 4 is probably subjected to the resistance of certain strains to nitrofurantoin which is used in poultry rising. The increased significance of S. Enteritidis refers not only to its association with pandemic problems but to frequent reports about extraintestinal infectious processes caused by this bacterium. Taking into consideration that eggs are very important source of infection besides poultry meat, the advised efficient preventive measures, among others, should be some changes in poultry meat preparation, investigation of outbreak-related flocks and devastation of infected ones, as well as egg pasteurization.

  7. Chlamydia trachomatis ompA genotypes in male patients with urethritis in Greece: conservation of the serovar distribution and evidence for mixed infections with Chlamydophila abortus.

    Science.gov (United States)

    Psarrakos, Panagiotis; Papadogeorgakis, Eleni; Sachse, Konrad; Vretou, Evangelia

    2011-08-01

    PCR amplification and nucleotide sequencing of the ompA gene of Chlamydia trachomatis were used to determine the prevalence and distribution of genotypes in 51 urine and urethral specimens from Greek male patients with urethritis, that were positive by the COBAS Amplicor test. A single C. trachomatis serovar was identified in 43 of the 51 amplified samples. Serovars F and E were the most prevalent (both 12, 28%), followed by D (9, 21%), G (4, 9%), B and K (both 2, 5%) and H and J (both 1, 2%). Over one third of the samples bared a variant ompA genotype that had been previously identified in other areas worldwide. Two results in this study, both observed for the first time, were of particular interest. First, the emergence of the unique variant genotype D/Ep6 (X77364.2) identified in 3 urethral samples. Second, the ompA genotype OCLH196 of the animal pathogen Chlamydophila abortus as well as a 23S rRNA gene fragment of this species detected by the assay ArrayTube™ was found in 7 urethral samples. The implications resulting from this observation for the health of the general population are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Tetracycline consumption and occurrence of tetracycline resistance in Salmonella typhimurium phage types from Danish pigs

    DEFF Research Database (Denmark)

    Emborg, Hanne-Dorthe; Vigre, Håkan; Jensen, Vibeke Frøkjær

    2007-01-01

    more than doubled at the national level from 12,000-13,000 kg of active compound in 1996-1998 to 29,000 kg of active compound in 2004. Instead, tetracycline-resistant S. Typhimurium phage types became more prevalent. This suggests that the spread of already established or new resistant clones, rather......The aims of the present study were to investigate at the farm-owner level the effect of prescribed tetracycline consumption in pigs and different Salmonella Typhimurium phage types on the probability that the S. Typhimurium was resistant to tetracycline. In this study, 1,307 isolates were included......, originating from 877 farm owners, and data were analyzed using logistic regression. The analysis showed that both the S. Typhimurium phage type (p type...

  9. Affinity-Selected Filamentous Bacteriophage as a Probe for Acoustic Wave Biodetectors of Salmonella typhimurium

    National Research Council Canada - National Science Library

    Olsen, Eric V; Sorokulova, Iryna B; Petrenko, Valery A; Chen, I-Hsuan; Barbaree, James M; Vodyanoy, Vitaly J

    2005-01-01

    Proof-in-concept biosensors were prepared for the rapid detection of Salmonella typhimurium in solution, based on affinity-selected filamentous phage prepared as probes physically adsorbed to piezoelectric transducers...

  10. Salmonella typhimurium in the hip: look before a SLE patient leaps.

    Science.gov (United States)

    Kumar, V Anil; Krishna, Sushma; Thilak, Jai; Dinesh, Kavitha R; Karim, Shamsul

    2011-07-01

    Salmonellosis is a common infection in systemic lupus erythematosus patients. The present study reports on two such cases of Salmonella typhimurium septic arthritis among the 102 patients seen during a four-year period.

  11. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104

    DEFF Research Database (Denmark)

    Molbak, K.; Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1999-01-01

    Background Food-borne salmonella infections have become a major problem in industrialized countries. The strain of Salmonella enterica serotype typhimurium known as definitive phage type 104 (DT104) is usually resistant to five drugs: ampicillin, chloramphenicol, streptomycin, sulfonamides......, and tetracycline. An increasing proportion of DT104 isolates also have reduced susceptibility to fluoroquinolones. Methods The Danish salmonella surveillance program determines the phage types of all typhimurium strains from the food chain, and in the case of suspected outbreaks, five-drug-resistant strains...... are characterized by molecular methods. All patients infected with five-drug-resistant typhimurium are interviewed to obtain clinical and epidemiologic data. In 1998, an outbreak of salmonella occurred, in which the strain of typhimurium DT104 was new to Denmark. We investigated this outbreak and report our...

  12. Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms

    CSIR Research Space (South Africa)

    Schaefer, Lisa M

    2013-08-01

    Full Text Available biofilms in monoculture and the fate and persistence of Salmonella in a mixed aquatic biofilm was examined. In monoculture S. Typhimurium formed loosely structured biofilms. Salmonella colonized established multi-species drinking water biofilms within 24...

  13. Bottlenecks and Hubs in Inferred Networks Are Important for Virulence in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Jason E.; Taylor, Ronald C.; Yoon, Hyunjin; Heffron, Fred

    2009-02-01

    Recent advances in experimental methods have provided