WorldWideScience

Sample records for serotonin receptor affinity

  1. Glioblastoma chemotherapy adjunct via potent serotonin receptor-7 inhibition using currently marketed high-affinity antipsychotic medicines

    Science.gov (United States)

    Kast, RE

    2010-01-01

    Glioblastoma treatment as now constituted offers increased survival measured in months over untreated patients. Because glioblastomas are active in synthesizing a bewildering variety of growth factors, a systematic approach to inhibiting these is being undertaken as treatment adjunct. The serotonin 7 receptor is commonly overexpressed in glioblastoma. Research documentation showing agonists at serotonin receptor 7 cause increased extracellular regulated kinase 1/2 activation, increased interleukin-6 synthesis, increased signal transducer and activator of transcription-3 activation, increased resistance to apoptosis and other growth enhancing changes in glioblastoma is reviewed in this paper. Because three drugs in wide use to treat thought disorders – paliperidone, pimozide and risperidone – are also potent and well-tolerated inhibitors at serotonin receptor 7, these drugs should be studied for growth factor deprivation in an adjunctive role in glioblastoma treatment. PMID:20880389

  2. Serotonin Receptors in Hippocampus

    Science.gov (United States)

    Berumen, Laura Cristina; Rodríguez, Angelina; Miledi, Ricardo; García-Alcocer, Guadalupe

    2012-01-01

    Serotonin is an ancient molecular signal and a recognized neurotransmitter brainwide distributed with particular presence in hippocampus. Almost all serotonin receptor subtypes are expressed in hippocampus, which implicates an intricate modulating system, considering that they can be localized as autosynaptic, presynaptic, and postsynaptic receptors, even colocalized within the same cell and being target of homo- and heterodimerization. Neurons and glia, including immune cells, integrate a functional network that uses several serotonin receptors to regulate their roles in this particular part of the limbic system. PMID:22629209

  3. Fluoxetine, a selective inhibitor of serotonin uptake, potentiates morphine analgesia without altering its discriminative stimulus properties or affinity for opioid receptors

    International Nuclear Information System (INIS)

    Hynes, M.D.; Lochner, M.A.; Bemis, K.G.; Hymson, D.L.

    1985-01-01

    The analgesic effect of morphine in the rat tail jerk assay was enhanced by the serotonin uptake inhibitor, fluoxetine. Tail jerk latency was not affected by fluoxetine alone. Morphine's affinity for opioid receptors labeled in vitro with 3 H-naloxone or 3 H-D-Ala 2 -D-Leu 5 -enkephalin was not altered by fluoxetine, which has no affinity for these sites at concentrations as high as 1000 nM. In rats trained to discriminate morphine from saline, fluoxetine at doses of 5 or 10 mg/kg were recognized as saline. Increasing the fluoxetine dose to 20 mg/kg did not result in generalization to either saline or morphine. The dose response curve for morphine generalization was not significantly altered by fluoxetine doses of 5 or 10 mg/kg. Those rats treated with the combination of morphine and 20 mg/kg of fluoxetine did not exhibit saline or morphine appropriate responding. Fluoxetine potentiates the analgesic properties of morphine without enhancing its affinity for opioid receptors or its discriminative stimulus properties. 30 references, 2 figures, 2 tables

  4. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  5. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Cortes, R.; Palacios, J.M.

    1985-01-01

    The distribution of serotonin-2 (5-HT 2 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with four ligands: [ 3 H]ketanserin, [ 3 H]mesulergine, [ 3 H]LSD and [ 3 H]spiperone, which are reported to show high affinity for 5-HT 2 receptors. Very high concentrations were localized in the claustrum, olfactory tubercle and layer IV of the neocortex. The anterior olfactory nucleus, piriform cortex and layer I of neocortex were also rich in 5-HT 2 receptors. The specificity of the different ligands used is discussed in terms of the other populations of sites recognized by them. The distribution of 5-HT 2 receptors here reported is discussed in correlation with (a) the known distribution of serotoninergic terminals, (b) the specific anatomical systems and (c) the central effects reported to be mediated by 5-HT 2 -selective drugs. (Auth.)

  6. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  7. Serotonin 2A receptor antagonists for treatment of schizophrenia

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn Hylsebeck; Rasmussen, Hans; Arnt, Jørn

    2011-01-01

    Introduction: All approved antipsychotic drugs share an affinity for the dopamine 2 (D2) receptor; however, these drugs only partially ameliorate the symptoms of schizophrenia. It is, therefore, of paramount importance to identify new treatment strategies for schizophrenia. Areas covered......: Preclinical, clinical and post-mortem studies of the serotonin 5-HT2A system in schizophrenia are reviewed. The implications of a combined D2 and 5-HT2A receptor blockade, which is obtained by several current antipsychotic drugs, are discussed, and the rationale for the development of more selective 5-HT2A...... receptor antagonists is evaluated. Moreover, the investigational pipeline of major pharmaceutical companies is examined and an Internet search conducted to identify other pharmaceutical companies investigating 5-HT2A receptor antagonists for the treatment of schizophrenia. Expert opinion: 5-HT2A receptor...

  8. Multiple serotonin receptors: regional distribution and effect of raphe lesions

    International Nuclear Information System (INIS)

    Blackshear, M.A.; Sanders-Bush, E.; Steranka, L.R.

    1981-01-01

    These studies confirm and extend the recent work suggesting that [ 3 H]lysergic acid diethylamide (LSD) labels two distinct binding sites in rat brain resembling serotonin (5HT) receptors. Although Scatchard analyses of [ 3 H]LSD binding to membranes prepared from cortex/hippocampus were linear, the heterogeneity of the [ 3 H]LSD binding sites was clearly demonstrated in displacement studies. The displacement curves for both 5HT and spiperone were bisigmoidal with the concentration required to saturate the high affinity components nearly 3 orders of magnitude lower than the concentrations necessary to saturate the low affinity components. Additivity studies suggested that the sites with high affinity for 5HT and spiperone are different, independent sites. These sites are referred to as 5HT 1 and 5HT 2 respectively. Regional analyses showed, that in the frontal cortex, the density of the 5HT 2 site was slightly greater than the 5HT 1 site whereas the 5HT 1 site was predominant in all other brain areas, including the spinal cord. The pharmacological properties of the two sites have features in common with 5HT receptors; however, electrolytic lesions of the midbrain raphe nuclei did not change the densities or binding constants of the two apparent 5HT receptor subtypes, even though the number of high affinity 5HT uptake sites was markedly reduced. (Auth.)

  9. Development of a high specific activity radioligand, 125I-LSD, and its application to the study of serotonin receptors

    International Nuclear Information System (INIS)

    Kadan, M.J.

    1987-01-01

    125 I-Labeled receptor ligands can be synthesized with specific activities exceeding 2000 Ci/mmol, making them nearly 70-fold more sensitive in receptor site assays than (mono) tritiated ligands. We have synthesized and characterized 125 I-lysergic acid diethylamide ( 125 I-LSD), the first radioiodinated ligand for serotonin receptor studies. The introduction of 125 I at the 2 position of LSD increased both the affinity and selectivity of this compound for serotonin 5-HT 2 receptors in rat cortex. The high specific activity of 125 I-LSD and its high ratio of specific to nonspecific binding make this ligand especially useful for autoradiographic studies of serotonin receptor distribution. We have found that 125 I-LSD binds with high affinity to a class of serotonin receptors in the CNS of the marine mollusk Aplysia californica

  10. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    Science.gov (United States)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  11. Compositions and methods related to serotonin 5-HT1A receptors

    Science.gov (United States)

    Mukherjee, Jogeshwar [Irvine, CA; Saigal, Neil [Fresno, CA; Saigal, legal representative, Harsh

    2012-09-25

    Contemplated substituted arylpiperazinyl compounds, and most preferably .sup.18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with .sup.18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  12. The rat frontal cortex serotonin receptors. Influence of supraletal irradiation

    International Nuclear Information System (INIS)

    Chanez, P.O.; Timmermans, R.; Gerber, G.B.

    1984-01-01

    The density of the frontal cortex serotonin-2 receptors was determined after a supralethal irradiation (20 Gy) in Wistar rat. Using spiperone as ligand, we observed an important decrease in the density of serotonin-2 receptor and an increase in the dissociation constant receptor-ligand, 3 days after exposure [fr

  13. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  14. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors

    International Nuclear Information System (INIS)

    Pazos, A.; Palacios, M.

    1985-01-01

    The distribution of serotonin-1 (5-HT 1 ) receptors in the rat brain was studied by light microscopic quantitative autoradiography. Receptors were labeled with [ 3 H]serotonin (5-[ 3 H]HT), 8-hydroxy-2-[N-dipropylamino- 3 H]tetralin (8-OH-[ 3 H]DPAT), [ 3 H]LSD and [ 3 H]mesulergine, and the densities quantified by microdensitometry with the aid of a computer-assisted image-analysis system. Competition experiments for 5-[ 3 H]HT binding by several serotonin-1 agonists led to the identification of brain areas enriched in each one of the three subtypes of 5-HT 1 recognition sites already described. The existence of these 'selective' areas allowed a detailed pharmacological characterization of these sites to be made in a more precise manner than has been attained in membrane-binding studies. Very high concentrations of 5-HT 1 receptors were localized in the choroid plexus, lateroseptal nucleus, globus pallidus and ventral pallidum, dentate gyrus, dorsal subiculum, olivary pretectal nucleus, substantia nigra, reticular and external layer of the entorhinal cortex. The distribution of 5-HT 1 receptors reported here is discussed in correlation with the distribution of serotoninergic neurons and fibers, the related anatomical pathways and the effects which appear to be mediated by these sites. (Auth.)

  15. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB. 20

    Energy Technology Data Exchange (ETDEWEB)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT{sub 1C} receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing ({sup 3}H)serotonin, ({sup 3}H)lysergic acid diethylamide or ({sup 3}H)dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor.

  16. Characterization of a novel serotonin receptor coupled to adenylate cyclase in the hybrid neuroblastoma cell line NCB.20

    International Nuclear Information System (INIS)

    Conner, D.A.

    1988-01-01

    Pharmacological characterization of the serotonin activation of adenylate cyclase in membrane preparation using over 40 serotonergic and non-serotonergic compounds demonstrated that the receptor mediating the response was distinct from previously described mammalian serotonin receptors. Agonist activity was only observed with tryptamine and ergoline derivatives. Potent antagonism was observed with several ergoline derivatives and with compounds such as mianserin and methiothepine. A comparison of the rank order of potency of a variety of compounds for the NCB.20 cell receptor with well characterized mammalian and non-mammalian serotonin receptors showed a pharmacological similarity, but not identity, with the mammalian 5-HT 1C receptor, which modulates phosphatidylinositol metabolism, and with serotonin receptors in the parasitic trematodes Fasciola hepatica and Schistosoma mansoni, which are coupled to adenylate cyclase. Equilibrium binding analysis utilizing [ 3 H]serotonin, [ 3 H]lysergic acid diethylamide or [ 3 H]dihydroergotamine demonstrated that there are no abundant high affinity serotonergic sites, which implies that the serotonin activation of adenylate cyclase is mediated by receptors present in low abundance. Incubation of intact NCB.20 cells with serotinin resulted in a time and concentration dependent desensitization of the serotonin receptor

  17. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Science.gov (United States)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  18. Positive regulation of raphe serotonin neurons by serotonin 2B receptors.

    Science.gov (United States)

    Belmer, Arnauld; Quentin, Emily; Diaz, Silvina L; Guiard, Bruno P; Fernandez, Sebastian P; Doly, Stéphane; Banas, Sophie M; Pitychoutis, Pothitos M; Moutkine, Imane; Muzerelle, Aude; Tchenio, Anna; Roumier, Anne; Mameli, Manuel; Maroteaux, Luc

    2018-06-01

    Serotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT 2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT 2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT 2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT 2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT 2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT 2B -receptor stimulation by BW723C86 counteracted 5-HT 1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT 2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT 2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT 1A -autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT 2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT 2B receptor acts as a direct positive modulator of serotonin Pet1

  19. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT₄ receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  20. An approach for serotonin depletion in pigs: effects on serotonin receptor binding

    DEFF Research Database (Denmark)

    Ettrup, Anders; Kornum, Birgitte R; Weikop, Pia

    2011-01-01

    Depletion of central serotonin (5-HT) levels and dysfunction in serotonergic transmission are implicated in a variety of human CNS disorders. The mechanisms behind these serotonergic deficits have been widely studied using rodent models, but only to a limited extent in larger animal models. The pig...... is increasingly used as an experimental animal model especially in neuroscience research. Here, we present an approach for serotonin depletion in the pig brain. Central serotonin depletion in Danish Landrace pigs was achieved following 4 days treatment with para-chlorophenylalanine (pCPA). On day 5, tissue...... average decreases in 5-HT concentrations of 61% ± 14% and 66% ± 16%, respectively, and a substantial loss of 5-HT immunostaining was seen throughout the brain. The serotonin depletion significantly increased 5-HT4 receptor binding in nucleus accumbens, but did not alter 5-HT(1A) and 5-HT(2A) receptor...

  1. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    Science.gov (United States)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  2. No link of serotonin 2C receptor editing to serotonin transporter genotype

    NARCIS (Netherlands)

    Lyddon, R.; Cuppen, E.; Haroutunian, V.; Siever, L.J.; Dracheva, S.

    2010-01-01

    RNA editing is a post-transcriptional process, which has the potential to alter the function of encoded proteins. In particular, serotonin 2C receptor (5-HT2cR) mRNA editing can produce 24 protein isoforms of varying functionality. Rodent studies have shown that 5-HT2cR editing is dynamically

  3. 3H-spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus

    International Nuclear Information System (INIS)

    Creese, I.; Snyder, S.H.

    1978-01-01

    It is found that in the cerebral cortex, butaclamol displaceable 3 H-spiroperidol binding labels both dopamine and serotonin receptors. In the hippocampus it is probable that 3 H-spiroperidol binding involves serotonin receptors exclusively. (Auth.)

  4. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonists......, the D2 ligands displayed intrinsic activities ranging from full agonism to partial agonism with low intrinsic activity. These structures could potentially be interesting for treatment of neurological diseases such as schizophrenia, Parkinson’s disease, and cognitive deficits....

  5. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Directory of Open Access Journals (Sweden)

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  6. Differences in serotonin transporter binding affinity in patients with major depressive disorder and night eating syndrome.

    Science.gov (United States)

    Lundgren, J D; Amsterdam, J; Newberg, A; Allison, K C; Wintering, N; Stunkard, A J

    2009-03-01

    We examined serotonin transporter (SERT) binding affinity using single photon emission computed tomography (SPECT) in patients with major depressive disorder (MDD) and night eating syndrome (NES). There are similarities between MDD and NES in affective symptoms, appetite disturbance, nighttime awakenings, and, particularly, response to selective serotonin reuptake inhibitors (SSRIs). Six non-depressed patients with NES and seven patients with MDD underwent SPECT brain imaging with 123I-ADAM, a radiopharmaceutical agent selective for SERT sites. Uptake ratios of 123I-ADAM SERT binding were obtained for the midbrain, basal ganglia, and temporal lobe regions compared to the cerebellum reference region. Patients with NES had significantly greater SERT uptake ratios (effect size range 0.64-0.84) in the midbrain, right temporal lobe, and left temporal lobe regions than those with MDD whom we had previously studied. Pathophysiological differences in SERT uptake between patients with NES and MDD suggest these are distinct clinical syndromes.

  7. Transitional states of central serotonin receptors in Parkinson's disease

    International Nuclear Information System (INIS)

    Kienzl, E.; Riederer, P.; Jellinger, K.; Wesemann, W.; Marburg Univ.

    1981-01-01

    Crude membrane preparations from the frontal cortex of controls and pakinsonian patients were used to demonstrate affinity changes of the specific 3 H-5-hydroxytryptamine (5-HT) binding sites. Two such sites were noteable in controls, a finding consistent with earlier observations. In Parkinson's disease, both high- and low-affinity sites are significantly decreased. Additional experiments either with prolonged incubation times or pre-incubation with N-ethylmaleimide change the two affinities to a single high-affinity or low-affinity constant. The concept of transitional states of 5-HT receptors is discussed and seems to have important implications in the treatment of parkinsonism. (author)

  8. Transitional states of central serotonin receptors in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Kienzl, E; Riederer, P; Jellinger, K; Wesemann, W [Krankenhaus der Stadt Wien-Lainz (Austria). Ludwig Boltzmann Inst. fuer Neurobiologie; Marburg Univ. (Germany, F.R.). Inst. fuer Physiologie II, Abt. fuer Neurochemie)

    1981-01-01

    Crude membrane preparations from the frontal cortex of controls and pakinsonian patients were used to demonstrate affinity changes of the specific /sup 3/H-5-hydroxytryptamine (5-HT) binding sites. Two such sites were noteable in controls, a finding consistent with earlier observations. In Parkinson's disease, both high- and low-affinity sites are significantly decreased. Additional experiments either with prolonged incubation times or pre-incubation with N-ethylmaleimide change the two affinities to a single high-affinity or low-affinity constant. The concept of transitional states of 5-HT receptors is discussed and seems to have important implications in the treatment of parkinsonism.

  9. Tall Fescue Alkaloids Bind Serotonin Receptors in Cattle

    Science.gov (United States)

    The serotonin (5HT) receptor 5HT2A is involved in the tall fescue alkaloid-induced vascular contraction in the bovine periphery. This was determined by evaluating the contractile responses of lateral saphenous veins biopsied from cattle grazing different tall fescue/endophyte combinations. The contr...

  10. A new Drosophila octopamine receptor responds to serotonin.

    Science.gov (United States)

    Qi, Yi-Xiang; Xu, Gang; Gu, Gui-Xiang; Mao, Fen; Ye, Gong-Yin; Liu, Weiwei; Huang, Jia

    2017-11-01

    As the counterparts of the vertebrate adrenergic transmitters, octopamine and tyramine are important physiological regulators in invertebrates. They control and modulate many physiological and behavioral functions in insects. In this study, we reported the pharmacological properties of a new α2-adrenergic-like octopamine receptor (CG18208) from Drosophila melanogaster, named DmOctα2R. This new receptor gene encodes two transcripts by alternative splicing. The long isoform DmOctα2R-L differs from the short isoform DmOctα2R-S by the presence of an additional 29 amino acids within the third intracellular loop. When heterologously expressed in mammalian cell lines, both receptors were activated by octopamine, tyramine, epinephrine and norepinephrine, resulting in the inhibition of cAMP production in a dose-dependent manner. The long form is more sensitive to the above ligands than the short form. The adrenergic agonists naphazoline, tolazoline and clonidine can stimulate DmOctα2R as full agonists. Surprisingly, serotonin and serotoninergic agonists can also activate DmOctα2R. Several tested adrenergic antagonists and serotonin antagonists blocked the action of octopamine or serotonin on DmOctα2R. The data presented here reported an adrenergic-like G protein-coupled receptor activated by serotonin, suggesting that the neurotransmission and neuromodulation in the nervous system could be more complex than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Novel and high affinity fluorescent ligands for the serotonin transporter based on (s)-citalopram

    DEFF Research Database (Denmark)

    Kumar, Vivek; Rahbek-Clemmensen, Troels; Billesbølle, Christian B

    2014-01-01

    Novel rhodamine-labeled ligands, based on (S)-citalopram, were synthesized and evaluated for uptake inhibition at the human serotonin, dopamine, and norepinephrine transporters (hSERT, hDAT, and hNET, respectively) and for binding at SERT, in transiently transfected COS7 cells. Compound 14 demons...... demonstrated high affinity binding and selectivity for SERT (K i = 3 nM). Visualization of SERT, using confocal laser scanning microscopy, validated compound 14 as a novel tool for studying SERT expression and distribution in living cells....

  12. Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT7 receptor agonists and antagonists.

    Science.gov (United States)

    Holmberg, Pär; Sohn, Daniel; Leideborg, Robert; Caldirola, Patrizia; Zlatoidsky, Pavel; Hanson, Sverker; Mohell, Nina; Rosqvist, Susanne; Nordvall, Gunnar; Johansson, Anette M; Johansson, Rolf

    2004-07-29

    The understanding of the physiological role of the G-protein coupled serotonin 5-HT(7) receptor is largely rudimentary. Therefore, selective and potent pharmacological tools will add to the understanding of serotonergic effects mediated through this receptor. In this report, we describe two compound classes, chromans and tetralins, encompassing compounds with nanomolar affinity for the 5-HT(7) receptor and with good selectivity. Within theses classes, we have discovered both agonists and antagonists that can be used for further understanding of the pharmacology of the 5-HT(7) receptor.

  13. Ontogeny of serotonin and serotonin2A receptors in rat auditory cortex.

    Science.gov (United States)

    Basura, Gregory J; Abbas, Atheir I; O'Donohue, Heather; Lauder, Jean M; Roth, Bryan L; Walker, Paul D; Manis, Paul B

    2008-10-01

    Maturation of the mammalian cerebral cortex is, in part, dependent upon multiple coordinated afferent neurotransmitter systems and receptor-mediated cellular linkages during early postnatal development. Given that serotonin (5-HT) is one such system, the present study was designed to specifically evaluate 5-HT tissue content as well as 5-HT(2A) receptor protein levels within the developing auditory cortex (AC). Using high performance liquid chromatography (HPLC), 5-HT and the metabolite, 5-hydroxyindoleacetic acid (5-HIAA), was measured in isolated AC, which demonstrated a developmental dynamic, reaching young adult levels early during the second week of postnatal development. Radioligand binding of 5-HT(2A) receptors with the 5-HT(2A/2C) receptor agonist, (125)I-DOI ((+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl; in the presence of SB206553, a selective 5-HT(2C) receptor antagonist, also demonstrated a developmental trend, whereby receptor protein levels reached young adult levels at the end of the first postnatal week (P8), significantly increased at P10 and at P17, and decreased back to levels not significantly different from P8 thereafter. Immunocytochemical labeling of 5-HT(2A) receptors and confocal microscopy revealed that 5-HT(2A) receptors are largely localized on layer II/III pyramidal cell bodies and apical dendrites within AC. When considered together, the results of the present study suggest that 5-HT, likely through 5-HT(2A) receptors, may play an important role in early postnatal AC development.

  14. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system

    International Nuclear Information System (INIS)

    Passchier, J.; Waarde, A. van

    2001-01-01

    The 5-HT 1A subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT 1A receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl- 11 C] WAY-100635 (WAY), [carbonyl- 11 C]desmethyl-WAY-100635 (DWAY), p-[ 18 F]MPPF and [ 11 C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT 1A receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  15. A dualistic conformational response to substrate binding in the human serotonin transporter reveals a high affinity state for serotonin

    DEFF Research Database (Denmark)

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across...... the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes...

  16. Crystal Structure of an LSD-Bound Human Serotonin Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D.; Betz, Robin M.; Venkatakrishnan, A.J.; Levit, Anat; Lansu, Katherine; Schools, Zachary L.; Che, Tao; Nichols, David E.; Shoichet, Brian K.; Dror, Ron O.; Roth, Bryan L. (UNCSM); (UNC); (Stanford); (Stanford-MED); (UCSF)

    2017-01-01

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT2B. The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD’s key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT2BR and 5-HT2AR—a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD’s slow binding kinetics may be due to a “lid” formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD’s binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD’s actions at human serotonin receptors.

  17. Crystal Structure of an LSD-Bound Human Serotonin Receptor.

    Science.gov (United States)

    Wacker, Daniel; Wang, Sheng; McCorvy, John D; Betz, Robin M; Venkatakrishnan, A J; Levit, Anat; Lansu, Katherine; Schools, Zachary L; Che, Tao; Nichols, David E; Shoichet, Brian K; Dror, Ron O; Roth, Bryan L

    2017-01-26

    The prototypical hallucinogen LSD acts via serotonin receptors, and here we describe the crystal structure of LSD in complex with the human serotonin receptor 5-HT 2B . The complex reveals conformational rearrangements to accommodate LSD, providing a structural explanation for the conformational selectivity of LSD's key diethylamide moiety. LSD dissociates exceptionally slow from both 5-HT 2B R and 5-HT 2A R-a major target for its psychoactivity. Molecular dynamics (MD) simulations suggest that LSD's slow binding kinetics may be due to a "lid" formed by extracellular loop 2 (EL2) at the entrance to the binding pocket. A mutation predicted to increase the mobility of this lid greatly accelerates LSD's binding kinetics and selectively dampens LSD-mediated β-arrestin2 recruitment. This study thus reveals an unexpected binding mode of LSD; illuminates key features of its kinetics, stereochemistry, and signaling; and provides a molecular explanation for LSD's actions at human serotonin receptors. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Serotonin receptors influencing cell proliferation in the jejunal crypt epithelium and in colonic adenocarcinomas.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1986-01-01

    Serotonin has previously been shown to stimulate cell proliferation in the jejunal crypt epithelium and in colonic tumours. The original classification of serotonin receptors into D and M groups was not conductive to the understanding of these observations. The more recent classification of serotonin receptors into 5HT1 and 5HT2 groups is considered in this report. On the balance of evidence it appears that similar receptors mediate the response to serotonin in the two tissues under consideration and that these receptors resemble those of the 5HT1 group. Such receptors are usually positively linked to adenylate cyclase.

  19. Decreased frontal serotonin 5-HT2a receptor binding index in deliberate self-harm patients

    International Nuclear Information System (INIS)

    Audenaert, K.; Laere, K. van; Dierckx, R.A.; Dumont, F.; Slegers, G.; Mertens, J.; Heeringen, C. van

    2001-01-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT 2a receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT 2a receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl] -5-iodo-2-methox ybenzamide or 123 I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq 123 I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT 2a binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P 2a serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT 2a receptor, indicating a decrease in the number and/or in the binding affinity of 5-HT 2a receptors. (orig.)

  20. Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures

    International Nuclear Information System (INIS)

    Katz, D.M.; Kimelberg, H.K.

    1985-01-01

    Primary astrocyte cultures prepared from the cerebral cortices of neonatal rats showed significant accumulation of serotonin (5-hydroxytryptamine; [ 3 H]-5-HT). At concentrations in the range of 0.01 to 0.7 microM [ 3 H]-5-HT, this uptake was 50 to 85% Na+ dependent and gave a Km of 0.40 +/- 0.11 microM [ 3 H]-5-HT and a Vmax of 6.42 +/- 0.85 (+/- SEM) pmol of [ 3 H]-5-HT/mg of protein/4 min for the Na+-dependent component. In the absence of Na+ the uptake was nonsaturable. Omission of the monoamine oxidase inhibitor pargyline markedly reduced the Na+-dependent component of [ 3 H]-5-HT uptake but had a negligible effect on the Na+-independent component. This suggest significant oxidative deamination of serotonin after it has been taken up by the high affinity system, followed by release of its metabolite. The authors estimated that this system enabled the cells to concentrate [ 3 H]-5-HT up to 44-fold at an external [ 3 H]-5-HT concentration of 10(-7) M. Inhibition of [ 3 H]-5-HT uptake by a number of clinically effective antidepressants was also consistent with a specific high affinity uptake mechanism for 5-HT, the order of effectiveness of inhibition being chlorimipramine greater than fluoxetine greater than imipramine = amitriptyline greater than desmethylimipramine greater than iprindole greater than mianserin. Uptake of [ 3 H]-5-HT was dependent on the presence of Cl- as well as Na+ in the medium, and the effect of omission of both ions was nonadditive. Varying the concentration of K+ in the media from 1 to 50 mM had a limited effect on [ 3 H]-5-HT uptake

  1. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Cheng, A V; Ferrier, I N; Morris, C M; Jabeen, S; Sahgal, A; McKeith, I G; Edwardson, J A; Perry, R H; Perry, E K

    1991-11-01

    The binding of the selective 5-HT2 antagonist [3H]ketanserin has been investigated in the temporal cortex of patients with Alzheimer's disease (SDAT), Parkinson's disease (PD), senile dementia of Lewy body type (SDLT) and neuropathologically normal subjects (control). 5-HT2 binding was reduced in SDAT, PD with dementia and SDLT. SDAT showed a 5-HT2 receptor deficit across most of the cortical layers. A significant decrease in 5-HT2 binding in the deep cortical layers was found in those SDLT cases without hallucinations. SDLT cases with hallucinations only showed a deficit in one upper layer. There was a significant difference in cortical layers III and V between SDLT without hallucinations and SDLT with hallucinations. The results confirm an abnormality of serotonin binding in various forms of dementia and suggest that preservation of 5-HT2 receptor in the temporal cortex may differentiate hallucinating from non-hallucinating cases of SDLT.

  2. In vivo imaging of cerebral serotonin transporter and serotonin(2A) receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and hallucinogen users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frøkjær, Vibe; Holst, Klaus K

    2011-01-01

    Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.......Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin....

  3. In vivo regulation of the serotonin-2 receptor in rat brain

    International Nuclear Information System (INIS)

    Stockmeier, C.A.; Kellar, K.J.

    1986-01-01

    Serotonin-2 (5-HT-2) receptors in brain were measured using ( 3 H)ketanserin. The authors examined the effects of amitriptyline, an anti-depressant drug, of electroconvulsive shock (ECS) and of drug-induced alterations in presynaptic 5-HT function on ( 3 H)ketanserin binding to 5-HT-2 receptors in rat brain. The importance of intact 5-HT axons to the up-regulation of 5-HT-2 receptors by ECS was also investigated, and an attempt was made to relate the ECS-induced increase in this receptor to changes in 5-HT presynaptic mechanisms. Twelve days of ECS increased the number of 5-HT-2 receptors in frontal cortex. Neither the IC 50 nor the Hill coefficient of 5-HT in competing for ( 3 H)ketanserin binding sites was altered by ECS. Repeated injections of amitriptyline reduced the number of 5-HT-2 receptors in frontal cortex. Reserpine, administered daily for 12 days, caused a significant increase in 5-HT-2 receptors, but neither daily injections of p-chlorophenylalanine (PCPA) nor lesions of 5-HT axons with 5,7-dihydroxytryptamine (5,7-DHT) affected 5-HT-2 receptors. However, regulation of 5-HT-2 receptors by ECS was dependent on intact 5-HT axons since ECS could not increase the number of 5-HT-2 receptors in rats previously lesioned with 5,7-DHT. Repeated ECS, however, does not appear to affect either the high-affinity uptake of ( 3 H)5-HT or ( 3 H)imipramine binding, two presynaptic markers of 5-HT neuronal function. 5-HT-2 receptors appear to be under complex control. ECS or drug treatments such as reserpine or amitriptyline, which affect several monoamine neurotransmission systems including 5-HT, can alter 5-HT-2 receptors. 28 references, 1 figure, 7 tables

  4. Serotonin 6 receptor controls Alzheimer's disease and depression.

    Science.gov (United States)

    Yun, Hyung-Mun; Park, Kyung-Ran; Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-09-29

    Alzheimer's disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of Aβ via the inhibition of γ-secretase activity and the inactivation of astrocytes and microglia in the AD mouse model. It was found that the reduction of serotonin level was significantly recovered by SB271036, which was mediated by an indirect regulation of serotonergic neurons via GABA. Selective serotonin reuptake inhibitor (SSRI), fluoxetine significantly improved cognitive impairment and behavioral changes. In human brain of depression patients, we then identified the potential genes, amyloid beta (A4) precursor protein-binding, family A, member 2 (APBA2), well known AD modulators by integrating datasets from neuropathology, microarray, and RNA seq. studies with correlation analysis tools. And also, it was demonstrated in mouse models and patients of AD. These data indicate functional network of 5-HT6R between AD and depression.

  5. Serotonin 6 receptor controls alzheimer?s disease and depression

    OpenAIRE

    Yun, Hyung-Mun; Park, Kyung-Ran; Kim, Eun-Cheol; Kim, Sanghyeon; Hong, Jin Tae

    2015-01-01

    Alzheimer?s disease (AD) and depression in late life are one of the most severe health problems in the world disorders. Serotonin 6 receptor (5-HT6R) has caused much interest for potential roles in AD and depression. However, a causative role of perturbed 5-HT6R function between two diseases was poorly defined. In the present study, we found that a 5-HT6R antagonist, SB271036 rescued memory impairment by attenuating the generation of A? via the inhibition of ?-secretase activity and the inact...

  6. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    Science.gov (United States)

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  7. Serotonin and brain function: a tale of two receptors.

    Science.gov (United States)

    Carhart-Harris, R L; Nutt, D J

    2017-09-01

    Previous attempts to identify a unified theory of brain serotonin function have largely failed to achieve consensus. In this present synthesis, we integrate previous perspectives with new and older data to create a novel bipartite model centred on the view that serotonin neurotransmission enhances two distinct adaptive responses to adversity, mediated in large part by its two most prevalent and researched brain receptors: the 5-HT1A and 5-HT2A receptors. We propose that passive coping (i.e. tolerating a source of stress) is mediated by postsynaptic 5-HT1AR signalling and characterised by stress moderation. Conversely, we argue that active coping (i.e. actively addressing a source of stress) is mediated by 5-HT2AR signalling and characterised by enhanced plasticity (defined as capacity for change). We propose that 5-HT1AR-mediated stress moderation may be the brain's default response to adversity but that an improved ability to change one's situation and/or relationship to it via 5-HT2AR-mediated plasticity may also be important - and increasingly so as the level of adversity reaches a critical point. We propose that the 5-HT1AR pathway is enhanced by conventional 5-HT reuptake blocking antidepressants such as the selective serotonin reuptake inhibitors (SSRIs), whereas the 5-HT2AR pathway is enhanced by 5-HT2AR-agonist psychedelics. This bipartite model purports to explain how different drugs (SSRIs and psychedelics) that modulate the serotonergic system in different ways, can achieve complementary adaptive and potentially therapeutic outcomes.

  8. Design of a serotonin 4 receptor radiotracer with decreased lipophilicity for single photon emission computed tomography.

    Science.gov (United States)

    Fresneau, Nathalie; Dumas, Noé; Tournier, Benjamin B; Fossey, Christine; Ballandonne, Céline; Lesnard, Aurélien; Millet, Philippe; Charnay, Yves; Cailly, Thomas; Bouillon, Jean-Philippe; Fabis, Frédéric

    2015-04-13

    With the aim to develop a suitable radiotracer for the brain imaging of the serotonin 4 receptor subtype (5-HT4R) using single photon emission computed tomography (SPECT), we synthesized and evaluated a library of di- and triazaphenanthridines with lipophilicity values which were in the range expected to favour brain penetration, and which demonstrated specific binding to the target of interest. Adding additional nitrogen atoms to previously described phenanthridine ligands exhibiting a high unspecific binding, we were able to design a radioiodinated compound [(125)I]14. This compound exhibited a binding affinity value of 0.094 nM toward human 5-HT4R and a high selectivity over other serotonin receptor subtypes (5-HTR). In vivo SPECT imaging studies and competition experiments demonstrated that the decreased lipophilicity (in comparison with our previously reported compounds 4 and 5) allowed a more specific labelling of the 5-HT4R brain-containing regions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Serotonin 2a Receptor and serotonin 1a receptor interact within the medial prefrontal cortex during recognition memory in mice

    Directory of Open Access Journals (Sweden)

    Juan Facundo Morici

    2015-12-01

    Full Text Available Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a -/- with wild type (htr2a+/+ littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.

  10. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior

    DEFF Research Database (Denmark)

    Butini, Stefania; Gemma, Sandra; Campiani, Giuseppe

    2009-01-01

    with a low affinity for dopamine D(2) receptors (to minimize extrapyramidal side effects), serotonin 5-HT(2C) receptors (to reduce the risk of obesity under chronic treatment), and for hERG channels (to reduce incidence of torsade des pointes). Pharmacological and biochemical data, including specific c...

  11. Structure-activity relationships for serotonin transporter and dopamine receptor selectivity.

    Science.gov (United States)

    Agatonovic-Kustrin, Snezana; Davies, Paul; Turner, Joseph V

    2009-05-01

    Antipsychotic medications have a diverse pharmacology with affinity for serotonergic, dopaminergic, adrenergic, histaminergic and cholinergic receptors. Their clinical use now also includes the treatment of mood disorders, thought to be mediated by serotonergic receptor activity. The aim of our study was to characterise the molecular properties of antipsychotic agents, and to develop a model that would indicate molecular specificity for the dopamine (D(2)) receptor and the serotonin (5-HT) transporter. Back-propagation artificial neural networks (ANNs) were trained on a dataset of 47 ligands categorically assigned antidepressant or antipsychotic utility. The structure of each compound was encoded with 63 calculated molecular descriptors. ANN parameters including hidden neurons and input descriptors were optimised based on sensitivity analyses, with optimum models containing between four and 14 descriptors. Predicted binding preferences were in excellent agreement with clinical antipsychotic or antidepressant utility. Validated models were further tested by use of an external prediction set of five drugs with unknown mechanism of action. The SAR models developed revealed the importance of simple molecular characteristics for differential binding to the D(2) receptor and the 5-HT transporter. These included molecular size and shape, solubility parameters, hydrogen donating potential, electrostatic parameters, stereochemistry and presence of nitrogen. The developed models and techniques employed are expected to be useful in the rational design of future therapeutic agents.

  12. Striatal dopamine release and genetic variation of the serotonin 2C receptor in humans

    OpenAIRE

    Mickey, Brian J; Sanford, Benjamin J; Love, Tiffany M; Shen, Pei-Hong; Hodgkinson, Colin; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2012-01-01

    Mesoaccumbal and nigrostriatal projections are sensitive to stress, and heightened stress sensitivity is thought to confer risk for neuropsychiatric disorders. Serotonin 2C (5-HT2C) receptors mediate the inhibitory effects of serotonin on dopaminergic circuitry in experimental animals, and preclinical findings have implicated 5-HT2C receptors in motivated behaviors and psychotropic drug mechanisms. In humans, a common missense single-nucleotide change (rs6318, Cys23Ser) in the 5-HT2C receptor...

  13. [3H]WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    International Nuclear Information System (INIS)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-01-01

    In the presence of a 30 nM prazosin mask, [ 3 H]-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ([ 3 H]WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for [ 3 H] WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at [ 3 H]WB4101-binding sites in the presence of 30 nM prazosin and [ 3 H] lysergic acid diethylamide ([ 3 H]LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5 mM MgSO4, the Bmax of [ 3 H]WB4101 is significantly lower than the Bmax of [ 3 H]LSD in various brain regions. WB4101 competition for [ 3 H] LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of [ 3 H]WB4101 binding derived from saturation experiments. This suggests that [ 3 H]WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by [ 3 H]LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for [ 3 H]WB4101 but compete for multiple [ 3 H]LSD 5-HT1 binding sites. These data indicate that [ 3 H]WB4101 selectively labels the 5-HT1A serotonin receptor, whereas [ 3 H] LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of [ 3 H]WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of [ 3 H]WB4101 binding

  14. Methods for quantifying T cell receptor binding affinities and thermodynamics

    Science.gov (United States)

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  15. Affinity Labeling of Membrane Receptors Using Tissue-Penetrating Radiations

    Directory of Open Access Journals (Sweden)

    Franklin C. Wong

    2013-01-01

    Full Text Available Photoaffinity labeling, a useful in vivo biochemical tool, is limited when applied in vivo because of the poor tissue penetration by ultraviolet (UV photons. This study investigates affinity labeling using tissue-penetrating radiation to overcome the tissue attenuation and irreversibly label membrane receptor proteins. Using X-ray (115 kVp at low doses (<50 cGy or Rad, specific and irreversible binding was found on striatal dopamine transporters with 3 photoaffinity ligands for dopamine transporters, to different extents. Upon X-ray exposure (115 kVp, RTI-38 and RTI-78 ligands showed irreversible and specific binding to the dopamine transporter similar to those seen with UV exposure under other conditions. Similarly, gamma rays at higher energy (662 keV also affect irreversible binding of photoreactive ligands to peripheral benzodiazepine receptors (by PK14105 and to the dopamine (D2 membrane receptors (by azidoclebopride, respectively. This study reports that X-ray and gamma rays induced affinity labeling of membrane receptors in a manner similar to UV with photoreactive ligands of the dopamine transporter, D2 dopamine receptor (D2R, and peripheral benzodiazepine receptor (PBDZR. It may provide specific noninvasive irreversible block or stimulation of a receptor using tissue-penetrating radiation targeting selected anatomic sites.

  16. Molecular basis of a high affinity murine interleukin-5 receptor.

    OpenAIRE

    Devos, R; Plaetinck, G; Van der Heyden, J; Cornelis, S; Vandekerckhove, J; Fiers, W; Tavernier, J

    1991-01-01

    The mouse interleukin-5 receptor (mIL-5R) consists of two components one of which, the mIL-5R alpha-chain, binds mIL-5 with low affinity. Recently we demonstrated that monoclonal antibodies (Mabs) recognizing the second mIL-5R beta-chain, immunoprecipitate a p130-140 protein doublet which corresponds to the mIL-3R and the mIL-3R-like protein, the latter chain for which so far no ligand has been identified. In this study we show that a high affinity mIL-5R can be reconstituted on COS1 cells by...

  17. In Vivo Imaging of Cerebral Serotonin Transporter and Serotonin(2A) Receptor Binding in 3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and Hallucinogen Users

    DEFF Research Database (Denmark)

    Erritzoe, David; Frokjaer, Vibe G.; Holst, Klaus K.

    2011-01-01

    Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.Objective: ......Context: Both hallucinogens and 3,4-methylenedioxy-methamphetamine( MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin...

  18. A rhodamine-labeled citalopram analogue as a high-affinity fluorescent probe for the serotonin transporter

    DEFF Research Database (Denmark)

    Zhang, Peng; Jørgensen, Trine Nygaard; Løland, Claus Juul

    2013-01-01

    A novel fluorescent ligand was synthesized as a high-affinity, high specificity probe for visualizing the serotonin transporter (SERT). The rhodamine fluorophore was extended from an aniline substitution on the 5-position of the dihydroisobenzofuran ring of citalopram (2, 1-(3-(dimethylamino......)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), using an ethylamino linker. The resulting rhodamine-labeled ligand 8 inhibited [3H]5-HT uptake in COS-7 cells (Ki = 225 nM) with similar potency to the tropane-based JHC 1-064 (1), but with higher specificity towards the SERT relative...

  19. Positron emission tomography quantification of serotonin(1A) receptor binding in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Sullivan, Gregory M; Oquendo, Maria A; Milak, Matthew; Miller, Jeffrey M; Burke, Ainsley; Ogden, R Todd; Parsey, Ramin V; Mann, J John

    2015-02-01

    Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin(1A) autoreceptor in the brainstem raphe of individuals who die by suicide. To determine the relationships between brain serotonin(1A) binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin(1A) antagonist radiotracer carbon C 11 [11C]-labeled WAY-100635. Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin(1A) binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin(1A) BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin(1A) BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin(1A )BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in participants with

  20. Positron Emission Tomography Quantification of Serotonin1A Receptor Binding in Suicide Attempters With Major Depressive Disorder

    Science.gov (United States)

    Sullivan, Gregory M.; Oquendo, Maria A.; Milak, Matthew; Miller, Jeffrey M.; Burke, Ainsley; Ogden, R. Todd; Parsey, Ramin V.; Mann, J. John

    2015-01-01

    IMPORTANCE Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin1A autoreceptor in the brainstem raphe of individuals who die by suicide. OBJECTIVES To determine the relationships between brain serotonin1A binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin1A antagonist radiotracer carbon C 11 [11C]–labeled WAY-100635. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin1A binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. MAIN OUTCOMES AND MEASURES The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. RESULTS Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin1A BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin1A BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin1A BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in

  1. Visualisation of serotonin-1A (5-HT{sub 1A}) receptors in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Passchier, J.; Waarde, A. van [PET Center, University Hospital Groningen (Netherlands)

    2001-01-01

    The 5-HT{sub 1A} subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT{sub 1A} receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-{sup 11}C] WAY-100635 (WAY), [carbonyl-{sup 11}C]desmethyl-WAY-100635 (DWAY), p-[{sup 18}F]MPPF and [{sup 11}C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT{sub 1A} receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  2. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  3. Serotonin receptor activity is necessary for olfactory learning and memory in Drosophila melanogaster.

    Science.gov (United States)

    Johnson, O; Becnel, J; Nichols, C D

    2011-09-29

    Learning and memory in the fruit fly, Drosophila melanogaster, is a complex behavior with many parallels to mammalian learning and memory. Although many neurotransmitters including acetylcholine, dopamine, glutamate, and GABA have previously been demonstrated to be involved in aversive olfactory learning and memory, the role of serotonin has not been well defined. Here, we present the first evidence of the involvement of individual serotonin receptors in olfactory learning and memory in the fly. We initially followed a pharmacological approach, utilizing serotonin receptor agonists and antagonists to demonstrate that all serotonin receptor families present in the fly are necessary for short-term learning and memory. Isobolographic analysis utilizing combinations of drugs revealed functional interactions are occurring between 5-HT(1A)-like and 5-HT(2), and 5-HT(2) and 5-HT(7) receptor circuits in mediating short-term learning and memory. Examination of long-term memory suggests that 5-HT(1A)-like receptors are necessary for consolidation and important for recall, 5-HT(2) receptors are important for consolidation and recall, and 5-HT(7) receptors are involved in all three phases. Importantly, we have validated our pharmacological results with genetic experiments and showed that hypomorph strains for 5-HT(2)Dro and 5-HT(1B)Dro receptors, as well as knockdown of 5-HT(7)Dro mRNA, significantly impair performance in short-term memory. Our data highlight the importance of the serotonin system and individual serotonin receptors to influence olfactory learning and memory in the fly, and position the fly as a model system to study the role of serotonin in cognitive processes relevant to mammalian CNS function. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Presynaptic selectivity of a ligand for serotonin 1A receptors revealed by in vivo PET assays of rat brain.

    Directory of Open Access Journals (Sweden)

    Takeaki Saijo

    Full Text Available A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A receptor, called Wf-516 (structural formula: (2S-1-[4-(3,4-dichlorophenylpiperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-ylbenzo[b]furan-4-yloxy]propan-2-ol monohydrochloride, has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A receptors. In addition, [(35S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.

  5. Presynaptic selectivity of a ligand for serotonin 1A receptors revealed by in vivo PET assays of rat brain.

    Science.gov (United States)

    Saijo, Takeaki; Maeda, Jun; Okauchi, Takashi; Maeda, Jun-ichi; Morio, Yasunori; Kuwahara, Yasuhiro; Suzuki, Masayuki; Goto, Nobuharu; Fukumura, Toshimitsu; Suhara, Tetsuya; Higuchi, Makoto

    2012-01-01

    A novel investigational antidepressant with high affinity for the serotonin transporter and the serotonin 1A (5-HT(1A)) receptor, called Wf-516 (structural formula: (2S)-1-[4-(3,4-dichlorophenyl)piperidin-1-yl]-3-[2-(5-methyl-1,3,4-oxadiazol-2-yl)benzo[b]furan-4-yloxy]propan-2-ol monohydrochloride), has been found to exert a rapid therapeutic effect, although the mechanistic basis for this potential advantage remains undetermined. We comparatively investigated the pharmacokinetics and pharmacodynamics of Wf-516 and pindolol by positron emission tomographic (PET) and autoradiographic assays of rat brains in order to elucidate their molecular interactions with presynaptic and postsynaptic 5-HT(1A) receptors. In contrast to the full receptor occupancy by pindolol in PET measurements, the binding of Wf-516 to 5-HT(1A) receptors displayed limited capacity, with relatively high receptor occupancy being achieved in regions predominantly containing presynaptic receptors. This selectivity was further proven by PET scans of neurotoxicant-treated rats deficient in presynaptic 5-HT(1A) receptors. In addition, [(35)S]guanosine 5'-O-[γ-thio]triphosphate autoradiography indicated a partial agonistic ability of Wf-516 for 5-HT(1A) receptors. This finding has lent support to reports that diverse partial agonists for 5-HT(1A) receptors exert high sensitivity for presynaptic components. Thus, the present PET data suggest a relatively high capacity of presynaptic binding sites for partial agonists. Since our in vitro and ex vivo autoradiographies failed to illustrate these distinct features of Wf-516, in vivo PET imaging is considered to be, thus far, the sole method capable of pharmacokinetically demonstrating the unique actions of Wf-516 and similar new-generation antidepressants.

  6. Neuroticism and serotonin 5-HT1A receptors in healthy subjects

    DEFF Research Database (Denmark)

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell

    2015-01-01

    subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples...... and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals...... with low neuroticism. This finding was confirmed with an independent voxel-based whole-brain analysis. Other personality traits did not correlate with 5-HT1A receptor BPP. Previous observations have reported lower serotonin 5-HT1A receptor density in major depression. This neurobiological finding may...

  7. Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter.

    Science.gov (United States)

    Neumeister, Alexander; Young, Theresa; Stastny, Juergen

    2004-08-01

    Serotonin systems appear to play a key role in the pathophysiology of major depressive disorder. Consequently, ongoing research determines whether serotonin related genes account for the very robust differential behavioral and neural mechanisms that discriminate patients with depression from healthy controls. Serotonin type 1(A) receptors and the serotonin transporters are reduced in depression, and recent genetic research in animals and humans has implicated both in depression. Preclinical studies have utilized a variety of animal models that have been used to explain pathophysiological mechanisms in humans, although it is not clear at all whether these models constitute relevant models for depression in humans. However, data from preclinical studies can generate hypotheses that are tested in humans by combining genetic data with behavioral and physiological challenge paradigms and neuroimaging. These studies will enhance our understanding about combined influences from multiple interacting genes, as well as from environmental factors on brain circuits and their function, and about how these mechanisms may contribute to the pathophysiology of neuropsychiatric disorders.

  8. [3H]-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and [3H] ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    International Nuclear Information System (INIS)

    Branchek, T.; Adham, N.; Macchi, M.; Kao, H.T.; Hartig, P.R.

    1990-01-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to [3H]ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding the serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both [3H]DOB and [3H]ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate [Gpp(NH)p] to this system caused a rightward shift and steepening of agonist competition curves for [3H] ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity [3H]DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that [3H]DOB and [3H]ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein

  9. Genetics of premenstrual syndrome: investigation of specific serotonin receptor polymorphisms

    OpenAIRE

    Dhingra, Vandana

    2014-01-01

    Premenstrual dysphoric disorder (PMDD) is a distressing and disabling syndrome causing a significant degree of impairment on daily functioning and interpersonal relationships in 3-8% of the women. With the convincing evidence that PMS is inheritable and that serotonin is important in the pathogenesis of PMS, and failure of initial studies to demonstrate significant associations between key genes controlling the synthesis, reuptake and catabolism of serotonin and PMDD, the main aim of this the...

  10. Enhanced prefrontal serotonin 2A receptor signaling in the subchronic phencyclidine mouse model of schizophrenia

    DEFF Research Database (Denmark)

    Santini, Martin A; Ratner, Cecilia Friis; Aznar, Susana

    2013-01-01

    Prefrontal serotonin 2A receptors (5-HT2A Rs) have been linked to the pathogenesis and treatment of schizophrenia. Many antipsychotics fully occupy 5-HT2A R at clinical relevant doses, and activation of 5-HT2A receptors by lysergic acid diethylamide (LSD) and LSD-like drugs induces a schizophrenia...

  11. Larvae of small white butterfly, Pieris rapae, express a novel serotonin receptor

    Science.gov (United States)

    The biogenic amine serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter in vertebrates and invertebrates. It acts in regulation and modulation of many physiological and behavioral processes through G protein-coupled receptors. Insects express five 5-HT receptor subtypes that share high simila...

  12. Liraglutide, a GLP-1 Receptor Agonist, Which Decreases Hypothalamic 5-HT2A Receptor Expression, Reduces Appetite and Body Weight Independently of Serotonin Synthesis in Mice

    Directory of Open Access Journals (Sweden)

    Katsunori Nonogaki

    2018-01-01

    Full Text Available A recent report suggested that brain-derived serotonin (5-HT is critical for maintaining weight loss induced by glucagon-like peptide-1 (GLP-1 receptor activation in rats and that 5-HT2A receptors mediate the feeding suppression and weight loss induced by GLP-1 receptor activation. Here, we show that changes in daily food intake and body weight induced by intraperitoneal administration of liraglutide, a GLP-1 receptor agonist, over 4 days did not differ between mice treated with the tryptophan hydroxylase (Tph inhibitor p-chlorophenylalanine (PCPA for 3 days and mice without PCPA treatment. Treatment with PCPA did not affect hypothalamic 5-HT2A receptor expression. Despite the anorexic effect of liraglutide disappearing after the first day of treatment, the body weight loss induced by liraglutide persisted for 4 days in mice treated with or without PCPA. Intraperitoneal administration of liraglutide significantly decreased the gene expression of hypothalamic 5-HT2A receptors 1 h after injection. Moreover, the acute anorexic effects of liraglutide were blunted in mice treated with the high-affinity 5-HT2A agonist (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl methylamine hydrobromide 14 h or 24 h before liraglutide injection. These findings suggest that liraglutide reduces appetite and body weight independently of 5-HT synthesis in mice, whereas GLP-1 receptor activation downregulates the gene expression of hypothalamic 5-HT2A receptors.

  13. Serotonin 5HT1A receptor availability and pathological crying after stroke

    DEFF Research Database (Denmark)

    Møller, Mette; Andersen, G; Gjedde, A

    2007-01-01

    OBJECTIVES: Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible...... by selective serotonin re-uptake inhibitor (SSRI) treatment. MATERIALS AND METHODS: We PET scanned patients with acute stroke and PC and age-matched control subjects. Maps of receptor availability were generated from the images of eight cortical regions and raphe nuclei. RESULTS: The maps showed highest...

  14. Serotonin 1B Receptors Regulate Prefrontal Function by Gating Callosal and Hippocampal Inputs

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Athilingam, Jegath; Robinson, Sarah E

    2016-01-01

    Both medial prefrontal cortex (mPFC) and serotonin play key roles in anxiety; however, specific mechanisms through which serotonin might act on the mPFC to modulate anxiety-related behavior remain unknown. Here, we use a combination of optogenetics and synaptic physiology to show that serotonin...... acts presynaptically via 5-HT1B receptors to selectively suppress inputs from the contralateral mPFC and ventral hippocampus (vHPC), while sparing those from mediodorsal thalamus. To elucidate how these actions could potentially regulate prefrontal circuit function, we infused a 5-HT1B agonist...... into the mPFC of freely behaving mice. Consistent with previous studies that have optogenetically inhibited vHPC-mPFC projections, activating prefrontal 5-HT1B receptors suppressed theta-frequency mPFC activity (4-12 Hz), and reduced avoidance of anxiogenic regions in the elevated plus maze. These findings...

  15. Interrogating the Molecular Basis for Substrate Recognition in Serotonin and Dopamine Transporters with High-Affinity Substrate-Based Bivalent Ligands

    DEFF Research Database (Denmark)

    Andersen, Jacob; Ladefoged, Lucy Kate; Kristensen, Trine N. Bjerre

    2016-01-01

    insight into substrate recognition in SERT and DAT. An optimized bivalent ligand comprising two serotonin moieties binds SERT with 3,800-fold increased affinity compared to that of serotonin, suggesting that the human transporters have two distinct substrate binding sites. We show that the bivalent...... ligands are inhibitors of SERT and an experimentally validated docking model suggests that the bivalent compounds bind with one substrate moiety in the central binding site (the S1 site), whereas the other substrate moiety binds in a distinct binding site (the S2 site). A systematic study of nonconserved...

  16. Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression

    NARCIS (Netherlands)

    van der Vegt, BJ; de Boer, SF; Buwalda, B; de Ruiter, AJH; de Jong, JG; Koolhaas, JM

    2001-01-01

    Individual differences in aggressive behaviour have been linked to variability in central serotonergic activity, both in humans and animals. A previous experiment in mice, selectively bred for high or low levels of aggression, showed an up-regulation of postsynaptic serotonin-1A (5-HT1A) receptors,

  17. Pharmacologic assessment of bovine ruminal and mesenteric vascular serotonin receptor populations

    Science.gov (United States)

    Prior work using a contractility bioassay determined that the serotonin (5-HT) receptor subtype 5-HT2A is present in bovine lateral saphenous veins and plays a role in ergot alkaloid-induced vascular contraction in steers grazing endophyte-infected (Epichloë coenophiala) tall fescue (Lolium arundina...

  18. Serotonergic Projections and Serotonin Receptor Expression in the Reticular Nucleus of the Thalamus in the Rat

    Czech Academy of Sciences Publication Activity Database

    Rodríguez Arellano, Jose Julio; Noristani, H. N.; Hoover, W. B.; Linley, S. B.; Vertes, R. P.

    2011-01-01

    Roč. 65, č. 9 (2011), s. 919-928 ISSN 0887-4476 R&D Projects: GA ČR GA309/09/1696 Institutional research plan: CEZ:AV0Z50390703 Keywords : reticular nucleus * thalamus * serotonin receptors Subject RIV: FH - Neurology Impact factor: 2.945, year: 2011

  19. Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

    Science.gov (United States)

    Goldberg, Jeremy; Anderson, George M.; Zwaigenbaum, Lonnie; Hall, Geoffrey B. C.; Nahmias, Claude; Thompson, Ann; Szatmari, Peter

    2009-01-01

    Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [[superscript 18]F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [[superscript 18]F]setoperone intensity in regions of…

  20. Effect of grazing seedhead-suppressed tall fescue pasture on the vasoactivity of serotonin receptors

    Science.gov (United States)

    Previous research has demonstrated that exposure to ergot alkaloids reduces vasoactivity of serotonin (5HT) receptors. Chemical suppression of tall fescue seedhead production is a tool to reduce the level of exposure to ergot alkaloids by a grazing animal. Therefore, the objective was to evaluate co...

  1. Mammal-like striatal functions in Anolis. I. Distribution of serotonin receptor subtypes, and absence of striosome and matrix organization.

    Science.gov (United States)

    Clark, E C; Baxter, L R

    2000-11-01

    Serotonin (5-HT) 5-HT(2A) and 5-HT(2C) receptors are thought to play important roles in the mammalian striatum. As basal ganglia functions in general are thought highly conserved among amniotes, we decided to use in situ autoradiographic methods to determine the occurrence and distribution of pharmacologically mammal-like 5-HT(2A) and 5-HT(2C) receptors in the lizard, Anolis carolinensis, with particular attention to the striatum. We also determined the distributions of 5-HT(1A), 5-HT(1B/D), 5 HT(3), and 5-HT(uptake) receptors for comparison. All 5-HT receptors examined showed pharmacological binding specificity, and forebrain binding density distributions that resembled those reported for mammals. Anolis 5 HT(2A/C) and 5-HT(1A) site distributions were similar in both in vivo and ex vivo binding experiments. 5-HT(2A & C) receptors occur in both high and low affinity states, the former having preferential affinity for (125)I-(+/-)-2,5-dimethoxy-4-iodo-amphetamine hydrochloride ((125)I-DOI). In mammals (125)I-DOI binding shows a patchy density distribution in the striatum, being more dense in striosomes than in surrounding matrix. There was no evidence of any such patchy density of (125)I-DOI binding in the anole striatum, however. As a further indication that anoles do not possess a striosome and matrix striatal organization, neither (3)H-naloxone binding nor histochemical staining for acetylcholinesterase activity (AChE) were patchy. AChE did show a band-like striatal distribution, however, similar to that seen in birds. Copyright 2001 S. Karger AG, Basel

  2. Interaction between serotonin transporter and serotonin receptor 1 B genes polymorphisms may be associated with antisocial alcoholism.

    Science.gov (United States)

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Huang, San-Yuan; Tzeng, Nian-Sheng; Wang, Chen-Lin; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang; Lu, Ru-Band

    2012-07-11

    Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR) and serotonin 1 B receptor (5-HT1B), may be associated with alcoholism, but their results are contradictory because of alcoholism's heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD) [antisocial alcoholism (AS-ALC) group (n=120) and antisocial non-alcoholism (AS-N-ALC) group (n=153)] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan's Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism.

  3. Interaction between Serotonin Transporter and Serotonin Receptor 1 B genes polymorphisms may be associated with antisocial alcoholism

    Directory of Open Access Journals (Sweden)

    Wang Tzu-Yun

    2012-07-01

    Full Text Available Abstract Background Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR and serotonin 1 B receptor (5-HT1B, may be associated with alcoholism, but their results are contradictory because of alcoholism’s heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. Methods We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD [antisocial alcoholism (AS-ALC group (n = 120 and antisocial non-alcoholism (AS-N-ALC group (n = 153] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. Results There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Conclusion Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan’s Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism.

  4. Activation of adenosine low-affinity A3 receptors inhibits the enteric short interplexus neural circuit triggered by histamine.

    Science.gov (United States)

    Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L

    2009-12-01

    eADO acts at low-affinity A3 receptors in addition to high-affinity A1 receptors to suppress coordinated responses triggered by immune-histamine H2 receptor activation. The short interplexus circuit activated by histamine involves adenosine, acetylcholine, substance P, and serotonin. We postulate that A3 receptor modulation may occur in gut inflammatory diseases or allergic responses involving mast cell and histamine release.

  5. Decreased frontal serotonin 5-HT{sub 2a} receptor binding index in deliberate self-harm patients

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, K. [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium); Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Laere, K. van; Dierckx, R.A. [Dept. of Nuclear Medicine, Ghent University Hospital (Belgium); Dumont, F.; Slegers, G. [Dept. of Radiopharmacy, Ghent Univ. (Belgium); Mertens, J. [VUB-Cyclotron, Brussels (Belgium); Heeringen, C. van [Dept. of Psychiatry and Medical Psychology, Ghent University Hospital (Belgium)

    2001-02-01

    Studies of serotonin metabolites in body fluids in attempted suicide patients and of post-mortem brain tissue of suicide victims have demonstrated the involvement of the serotonergic neurotransmission system in the pathogenesis of suicidal behaviour. Recently developed neuroimaging techniques offer the unique possibility of investigating in vivo the functional characteristics of this system. In this study the 5-HT{sub 2a} receptor population of patients who had recently attempted suicide was studied by means of the highly specific radio-iodinated 5-HT{sub 2a} receptor antagonist 4-amino-N-[1-[3-(4-fluorophenoxy)propyl]-4-methyl-4-piperidinyl]-5-iodo-2-methoxybenzamide or {sup 123}I-5-I-R91150. Nine patients who had recently (1-7 days) attempted suicide and 12 age-matched healthy controls received an intravenous injection of 185 MBq {sup 123}I-5-I-R91150 and were scanned with high-resolution brain single-photon emission tomography (SPET). Stereotactic realigned images were analysed semi-quantitatively using predefined volumes of interest. Serotonin binding capacity was expressed as the ratio of specific to non-specific activity. The cerebellum was used as a measure of non-specific activity. An age-dependent 5-HT{sub 2a} binding index was found, in agreement with previous literature. Deliberate self-harm patients had a significantly reduced mean frontal binding index after correction for age (P=0.002) when compared with controls. The reduction was more pronounced among deliberate self-injury patients (DSI) (P<0.001) than among deliberate self-poisoning patients (DSP). Frontal binding index was significantly lower in DSI patients than in DSP suicide attempters (P<0.001). It is concluded that brain SPET of the 5-HT{sub 2a} serotonin receptor system in attempted suicide patients who are free of drugs influencing the serotonergic system shows in vivo evidence of a decreased frontal binding index of the 5-HT{sub 2a} receptor, indicating a decrease in the number and/or in

  6. Affinity of Iresine herbstii and Brugmansia arborea extracts on different cerebral receptors.

    Science.gov (United States)

    Nencini, Cristina; Cavallo, Federica; Bruni, Giancarlo; Capasso, Anna; De Feo, Vincenzo; De Martino, Laura; Giorgi, Giorgio; Micheli, Lucia

    2006-05-24

    Iresine herbstii Hook. (Amaranthaceae) and Brugmansia arborea (L.) Lagerheim (Solanaceae) are used in the northern Peruvian Andes for magic-therapeutical purposes. The traditional healers use Iresine herbstii with the ritual aim to expel bad spirits from the body. Furthermore, Iresine herbstii was used in association with other plants, such as Trichocereus pachanoi Britt. et Rose, for divination, to diagnose diseases, and to take possession of another identity. Also, species of Brugmansia have been reported to be used during ritual practices for magical and curative purposes. Given the above evidence, the aim of the present study is to evaluate if the central effects of Iresine herbstii and Brugmansia arborea could be associated with interaction with SNC receptors. Two Iresine herbstii extracts (methanolic and aqueous) and one Brugmansia arborea aqueous extract were tested for in vitro affinity on 5-HT(1A), 5-HT(2A), 5-HT(2C), D1, D2, alpha(1), and alpha(2) receptors by radioligand binding assays. The biological materials for binding assay (cerebral cortex) were taken from male Sprague-Dawley rats. The extracts affinity for receptors is definite as inhibition percentage of radioligand/receptor binding and measured as the radioactivity of remaining complex radioligand/receptor. The data obtained for Iresine extracts have shown a low affinity for the 5-HT(1A) receptor and no affinity for 5-HT(2A) receptor. Otherwise the methanolic extract showed affinity for 5-HT(2C) receptor (IC(50): 34.78 microg/ml) and for D1 receptor (IC(50): 19.63 microg/ml), instead the Iresine aqueous extract displayed a lower affinity for D1 (48.3% at the maximum concentration tested) and a higher value of affinity for D2 receptors (IC(50): 32.08 microg/ml). The Brugmansia aqueous extract displayed affinity for D1 receptors (IC(50): 17.68 microg/ml), D2 receptors (IC(50): 15.95 microg/ml) and weak affinity for the serotoninergic receptors. None of the three extracts showed relevant affinity

  7. Differential regulation of serotonin-1A receptor-stimulated [35S]GTP gamma S binding in the dorsal raphe nucleus by citalopram and escitalopram.

    Science.gov (United States)

    Rossi, Dania V; Burke, Teresa F; Hensler, Julie G

    2008-03-31

    The effect of chronic citalopram or escitalopram administration on 5-HT1A receptor function in the dorsal raphe nucleus was determined by measuring [35S]GTP gamma S binding stimulated by the 5-HT1A receptor agonist (R)-(+)-8-OH-DPAT (1nM-10 microM). Although chronic administration of citalopram or escitalopram has been shown to desensitize somatodendritic 5-HT1A autoreceptors, we found that escitalopram treatment decreased the efficacy of 5-HT1A receptors to activate G proteins, whereas citalopram treatment did not. The binding of [3H]8-OH-DPAT to the coupled, high affinity agonist state of the receptor was not altered by either treatment. Interestingly, escitalopram administration resulted in greater occupancy of serotonin transporter sites as measured by the inhibition of [3H]cyanoimipramine binding. As the binding and action of escitalopram is limited by the inactive enantiomer R-citalopram present in racemic citalopram, we propose that the regulation of 5-HT1A receptor function in the dorsal raphe nucleus at the level of receptor-G protein interaction may be a result of greater inhibition of the serotonin transporter by escitalopram.

  8. Differential regulation of serotonin-1A receptor stimulated [35S]GTPγS binding in the dorsal raphe nucleus by citalopram and escitalopram

    Science.gov (United States)

    Rossi, Dania V.; Burke, Teresa F.; Hensler, Julie G.

    2008-01-01

    The effect of chronic citalopram or escitalopram administration on 5-HT1A receptor function in the dorsal raphe nucleus was determined by measuring [35S]GTPγS binding stimulated by the 5-HT1A receptor agonist (R)-(+)-8-OH-DPAT (1nM-10μM). Although chronic administration of citalopram or escitalopram has been shown to desensitize somatodendritic 5-HT1A autoreceptors, we found that escitalopram treatment decreased the efficacy of 5-HT1A receptors to activate G-proteins, whereas citalopram treatment did not. The binding of [3H]8-OH-DPAT to the coupled, high affinity agonist state of the receptor was not altered by either treatment. Interestingly, escitalopram administration resulted in greater occupancy of serotonin transporter sites as measured by the inhibition of [3H]cyanoimipramine binding. As the binding and action of escitalopram is limited by the inactive enantiomer R-citalopram present in racemic citalopram, we propose that the regulation of 5-HT1A receptor function in the dorsal raphe nucleus at the level of receptor-G protein interaction may be a result of greater inhibition of the serotonin transporter by escitalopram. PMID:18289523

  9. Selective serotonin reuptake inhibitors potentiate the rapid antidepressant-like effects of serotonin4 receptor agonists in the rat.

    Directory of Open Access Journals (Sweden)

    Guillaume Lucas

    2010-02-01

    Full Text Available We have recently reported that serotonin(4 (5-HT(4 receptor agonists have a promising potential as fast-acting antidepressants. Here, we assess the extent to which this property may be optimized by the concomitant use of conventional antidepressants.We found that, in acute conditions, the 5-HT(4 agonist prucalopride was able to counteract the inhibitory effect of the selective serotonin reuptake inhibitors (SSRI fluvoxamine and citalopram on 5-HT neuron impulse flow, in Dorsal Raphé Nucleus (DRN cells selected for their high (>1.8 Hz basal discharge. The co-administration of both prucalopride and RS 67333 with citalopram for 3 days elicited an enhancement of DRN 5-HT neuron average firing rate, very similar to what was observed with either 5-HT(4 agonist alone. At the postsynaptic level, this translated into the manifestation of a tonus on hippocampal postsynaptic 5-HT(1A receptors, that was two to three times stronger when the 5-HT(4 agonist was combined with citalopram. Similarly, co-administration of citalopram synergistically potentiated the enhancing effect of RS 67333 on CREB protein phosphorylation within the hippocampus. Finally, in the Forced Swimming Test, the combination of RS 67333 with various SSRIs (fluvoxamine, citalopram and fluoxetine was more effective to reduce time of immobility than the separate administration of each compound.These findings strongly suggest that the adjunction of an SSRI to a 5-HT(4 agonist may help to optimize the fast-acting antidepressant efficacy of the latter.

  10. Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells.

    NARCIS (Netherlands)

    Neijt, H.C.; Plomp, J.J.; Vijverberg, H.P.M.

    1989-01-01

    1. Ionic currents mediated by serotonin 5-HT3 receptors were studied in the mouse neuroblastoma cell line N1E-115, using suction pipettes for intracellular perfusion and voltage clamp recording. The dependence of the kinetics of the membrane current on serotonin concentration was investigated. 2. At

  11. Serotonin/dopamine interactions in a hyperactive mouse: reduced serotonin receptor 1B activity reverses effects of dopamine transporter knockout.

    Directory of Open Access Journals (Sweden)

    Frank Scott Hall

    Full Text Available Knockout (KO mice that lack the dopamine transporter (SL6A3; DAT display increased locomotion that can be attenuated, under some circumstances, by administration of drugs that normally produce psychostimulant-like effects, such as amphetamine and methylphenidate. These results have led to suggestions that DAT KO mice may model features of attention deficit hyperactivity disorder (ADHD and that these drugs may act upon serotonin (5-HT systems to produce these unusual locomotor decreasing effects. Evidence from patterns of brain expression and initial pharmacologic studies led us to use genetic and pharmacologic approaches to examine the influence of altered 5-HT1B receptor activity on hyperactivity in DAT KO mice. Heterozygous 5-HT1B KO and pharmacologic 5-HT1B antagonism both attenuated locomotor hyperactivity in DAT KO mice. Furthermore, DAT KO mice with reduced, but not eliminated, 5-HT1B receptor expression regained cocaine-stimulated locomotion, which was absent in DAT KO mice with normal levels of 5-HT1B receptor expression. Further experiments demonstrated that the degree of habituation to the testing apparatus determined whether cocaine had no effect on locomotion in DAT KO or reduced locomotion, helping to resolve differences among prior reports. These findings of complementation of the locomotor effects of DAT KO by reducing 5-HT1B receptor activity underscore roles for interactions between specific 5-HT receptors and dopamine (DA systems in basal and cocaine-stimulated locomotion and support evaluation of 5-HT1B antagonists as potential, non-stimulant ADHD therapeutics.

  12. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster.

    Science.gov (United States)

    Blenau, Wolfgang; Daniel, Stöppler; Balfanz, Sabine; Thamm, Markus; Baumann, Arnd

    2017-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects) and deuterostomes (e.g., mammals). In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster , a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT 1A , Dm5-HT 1B , and Dm5-HT 7 couple to cAMP signaling cascades, the Dm5-HT 2A receptor leads to Ca 2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT 2B receptor. Knowledge about this receptor's pharmacological properties is very limited. This is quite surprising because Dm5-HT 2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT 2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT 2B 's pharmacology, we evaluated the receptor's response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT 2B signaling in vitro and in vivo .

  13. Serotonin 2A receptors contribute to the regulation of risk-averse decisions

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Rowe, James B; Hornboll, Bettina

    2013-01-01

    Pharmacological studies point to a role of the neurotransmitter serotonin (5-HT) in regulating the preference for risky decisions, yet the functional contribution of specific 5-HT receptors remains to be clarified. We used pharmacological fMRI to investigate the role of the 5-HT2A receptors...... in processing negative outcomes and regulating risk-averse behavior. During fMRI, twenty healthy volunteers performed a gambling task under two conditions: with or without blocking the 5-HT2A receptors. The volunteers repeatedly chose between small, likely rewards and large, unlikely rewards. Choices were...

  14. Serotonin type-1A receptor imaging in depression

    International Nuclear Information System (INIS)

    Drevets, Wayne C.; Frank, Ellen; Price, Julie C.; Kupfer, David J.; Greer, Phil J.; Mathis, Chester

    2000-01-01

    Regional 5-hydroxytryptamine 1A (5-HT 1A ) receptor binding potential (BP) of depressed subjects with primary, recurrent, familial mood disorders was compared to that of healthy controls by using positron emission tomography and [carbonyl- 11 C]WAY-100635 {[ 11 C]N-(2-(4-(2-methoxyphenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide}. The mean 5-HT 1A receptor BP was reduced 42% in the midbrain raphe and 25-33% in limbic and neocortical areas in the mesiotemporal, occipital, and parietal cortex. The magnitude of these abnormalities was most prominent in bipolar depressives and unipolar depressives who had bipolar relatives. These abnormal reductions in 5-HT 1A receptor BP are consistent with in vivo evidence that 5-HT 1A receptor sensitivity is reduced in major depressive disorder and postmortem data showing a widespread deficit of 5-HT 1A receptor expression in primary mood disorders

  15. Serotonin Signaling in Schistosoma mansoni: A Serotonin–Activated G Protein-Coupled Receptor Controls Parasite Movement

    Science.gov (United States)

    Rashid, Mohammed; Ribeiro, Paula

    2014-01-01

    Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni. PMID:24453972

  16. 5-HT2A Serotonin Receptor Density in Adult Male Rats’ Hippocampus after Morphine-based Conditioned Place Preference

    Directory of Open Access Journals (Sweden)

    Rabie Mohammadi

    2016-07-01

    Conclusion: We concluded that the phenomenon of conditioned place preference induced by morphine can cause a significant increase in the number of serotonin 5-HT2A receptors in neurons of all areas of hippocampus.

  17. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor.

    Directory of Open Access Journals (Sweden)

    Bryan L Roth

    Full Text Available In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as 'designer drugs' and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS-2-(ethylamino-2-(3-methoxyphenylcyclohexanone and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenylcyclohexanamine and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenylcyclohexyl]piperidine and 1-[1-(4-methoxyphenylcyclohexyl]piperidine, were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects.

  18. Biaryls as potent, tunable dual neurokinin 1 receptor antagonists and serotonin transporter inhibitors.

    Science.gov (United States)

    Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E

    2015-08-01

    Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Wolfgang Blenau

    2017-05-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects and deuterostomes (e.g., mammals. In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo.

  20. Serotonin receptor, SERT mRNA and correlations with symptoms in males with alcohol dependence and suicide.

    Science.gov (United States)

    Thompson, P M; Cruz, D A; Olukotun, D Y; Delgado, P L

    2012-09-01

    This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels. © 2011 John Wiley & Sons A/S.

  1. Microchemical synthesis of the serotonin receptor ligand, 125I-LSD

    International Nuclear Information System (INIS)

    Hartig, P.R.; Krohn, A.M.; Hirschman, S.A.

    1985-01-01

    The synthesis and properties of 2-[ 125 I]-lysergic acid diethylamide, the first 125 I-labeled serotonin receptor ligand, are described. A novel microsynthesis apparatus was developed for this synthesis. The apparatus employs a micromanipulator and glass micro tools to handle microliter to nanoliter volumes on a microscope stage. This apparatus should be generally useful for the synthesis of radioligands and other compounds when limited amounts of material must be handled in small volumes

  2. Serotonin type-1A receptor imaging in depression

    Energy Technology Data Exchange (ETDEWEB)

    Drevets, Wayne C. E-mail: drevets@pet.upmc.edu; Frank, Ellen; Price, Julie C.; Kupfer, David J.; Greer, Phil J.; Mathis, Chester

    2000-07-01

    Regional 5-hydroxytryptamine{sub 1A} (5-HT{sub 1A}) receptor binding potential (BP) of depressed subjects with primary, recurrent, familial mood disorders was compared to that of healthy controls by using positron emission tomography and [carbonyl-{sup 11}C]WAY-100635 {l_brace}[{sup 11}C]N-(2-(4-(2-methoxyphenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide{r_brace}. The mean 5-HT{sub 1A} receptor BP was reduced 42% in the midbrain raphe and 25-33% in limbic and neocortical areas in the mesiotemporal, occipital, and parietal cortex. The magnitude of these abnormalities was most prominent in bipolar depressives and unipolar depressives who had bipolar relatives. These abnormal reductions in 5-HT{sub 1A} receptor BP are consistent with in vivo evidence that 5-HT{sub 1A} receptor sensitivity is reduced in major depressive disorder and postmortem data showing a widespread deficit of 5-HT{sub 1A} receptor expression in primary mood disorders.

  3. Carbon-11 and radioiodinated derivatives of lysergic acid diethylamide: Ligands for the study of serotonin S2 receptors in vivo

    International Nuclear Information System (INIS)

    Lever, J.R.; Hartig, P.R.; Wong, D.F.

    1985-01-01

    2-[ 125 1]-LSD binds selectively and with high affinity to serotonin S2 receptors in vitro. In the present study, the authors prepared 2-[ 123 1]-LSD as well as a carbon-11 labeled analog. They also characterized the in vivo binding of these tracers to receptor sites in mouse brain to assess their potential for tomographic imaging of S2 receptors in man. The temporal distribution of 2-[ 125 1]-LSD paralleled the density of S2 receptors. Regional selectivity was maximal after 15 minutes when tissue to cerebellum ratios were: frontal cortex (2.6), olfactory tubercles (2.4), striatum (2.3), and cortex (2.0). Preinjection of ketanserin, a potent S2 antagonist, inhibited binding. 2-[ 123 1]-LSD, prepared in 20% yield from LSD and electrophilic I-123, gave similar results in vivo and may be useful for SPECT studies. The authors then synthesized N1-([ 11 C]-Me)-2-Br-LSD ( 11 C-MBL) from [ 11 C]-methyl iodide and 2-Br-LSD for PET imaging trials. 11 C-MBL was isolated by HPLC in high chemical and radiochemical purity within 30 minutes from E.O.B. The average radiochemical yield was 20% and the specific activity was determined by U.V. spectroscopy to be up to 1300Ci/mMol (E.O.S.). 11C-MBL showed greater regional selectivity in vivo in mouse brain than 2-[ 125 1]-LSD. After 30 minutes, peak tissue to cerebellum ratios were: frontal cortex (5.4), olfactory tubercles (4.2), striatum (3.0), and cortex (2.8). Preinjection of ketanserin markedly inhibited 11 C-MBL binding. 11 C-MBL is a promising candidate for PET studies of S2 receptors

  4. Common selective serotonin reuptake inhibitor side effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: data from a randomized controlled trial.

    Science.gov (United States)

    Garfield, Lauren D; Dixon, David; Nowotny, Petra; Lotrich, Francis E; Pollock, Bruce G; Kristjansson, Sean D; Doré, Peter M; Lenze, Eric J

    2014-10-01

    Antidepressant side effects are a significant public health issue, associated with poor adherence, premature treatment discontinuation, and, rarely, significant harm. Older adults assume the largest and most serious burden of medication side effects. We investigated the association between antidepressant side effects and genetic variation in the serotonin system in anxious, older adults participating in a randomized, placebo-controlled trial of the selective serotonin reuptake inhibitor (SSRI) escitalopram. Adults (N = 177) aged ≥ 60 years were randomized to active treatment or placebo for 12 weeks. Side effects were assessed using the Udvalg fur Kliniske Undersøgelser side-effect rating scale. Genetic polymorphisms were putative functional variants in the promoters of the serotonin transporter and 1A and 2A receptors (5-HTTLPR [L/S + rs25531], HTR1A rs6295, HTR2A rs6311, respectively). Four significant drug-placebo side-effect differences were found: increased duration of sleep, dry mouth, diarrhea, and diminished sexual desire. Analyses using putative high- versus low-transcription genotype groupings revealed six pharmacogenetic effects: greater dry mouth and decreased sexual desire for the low- and high-expressing serotonin transporter genotypes, respectively, and greater diarrhea with the 1A receptor low-transcription genotype. Diminished sexual desire was experienced significantly more by high-expressing genotypes in the serotonin transporter, 1A, or 2A receptors. There was not a significant relationship between drug concentration and side effects nor a mean difference in drug concentration between low- and high-expressing genotypes. Genetic variation in the serotonin system may predict who develops common SSRI side effects and why. More work is needed to further characterize this genetic modulation and to translate research findings into strategies useful for more personalized patient care. Published by Elsevier Inc.

  5. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent

    Directory of Open Access Journals (Sweden)

    Eun Ju Oh

    2016-04-01

    Full Text Available BW723C86, a serotonin receptor 2B agonist, has been investigated as a potential therapeutic for various conditions such as anxiety, hyperphagia and hypertension. However, the functional role of BW723C86 against melanogenesis remains unclear. In this study, we investigate the effect of serotonin receptor 2B (5-HTR2B agonist on melanogenesis and elucidate the mechanism involved. BW723C86 reduced melanin synthesis and intracellular tyrosinase activity in melan-A cells and normal human melanocytes. The expression of melanogenesis-related proteins (tyrosinase, TRP-1 and TRP-2 and microphthalmia-associated transcription factor (MITF in melan-A cells decreased after BW723C86 treatment. The promoter activity of MITF was also reduced by BW723C86 treatment. The reduced level of MITF was associated with inhibition of protein kinase A (PKA and cAMP response element-binding protein (CREB activation by BW723C86 treatment. These results suggest that the serotonin agonist BW723C86 could be a potential therapeutic agent for skin hyperpigmentation disorders.

  6. No evidence for a role of the serotonin 4 receptor in five-factor personality traits

    DEFF Research Database (Denmark)

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick MacDonald

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo...... serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone...... in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated...

  7. Testosterone levels in healthy men correlate negatively with serotonin 4 receptor binding

    DEFF Research Database (Denmark)

    Perfalk, Erik; Cunha-Bang, Sofi da; Holst, Klaus K.

    2017-01-01

    The serotonergic system integrates sex steroid information and plays a central role in mood and stress regulation, cognition, appetite and sleep. This interplay may be critical for likelihood of developing depressive episodes, at least in a subgroup of sensitive individuals. The serotonin 4...... receptor (5-HT4R) indexes central serotonergic tonus, which may be related to endogenous sex-steroid levels in the mentally healthy state even though this remains elusive. Here we evaluate if peripheral levels of estradiol and testosterone are associated with 5-HT4R binding as imaged by [11C]SB207145...... findings corroborate the link between sex hormone levels and serotonin signalling. Future longitudinal studies in clinical relevant populations are needed to elucidate the potential importance of testosterone in the pathophysiology of e.g. major depression and its treatment....

  8. Anterior cingulate serotonin 1B receptor binding is associated with emotional response inhibition

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sofi; Hjordt, Liv Vadskjær; Dam, Vibeke Høyrup

    2017-01-01

    -offender controls, completed an emotional Go/NoGo task requiring inhibition of prepotent motor responses to emotional facial expressions. We also measured cerebral serotonin 1B receptor (5-HT1BR) binding with [11C]AZ10419369 positron emission tomography within regions of the frontal cortex. We hypothesized that 5......-HT1BR would be positively associated with false alarms (failures to inhibit nogo responses) in the context of aversive (angry and fearful) facial expressions. Across groups, we found that frontal cortex 5-HT1BR binding was positively correlated with false alarms when angry faces were go stimuli......Serotonin has a well-established role in emotional processing and is a key neurotransmitter in impulsive aggression, presumably by facilitating response inhibition and regulating subcortical reactivity to aversive stimuli. In this study 44 men, of whom 19 were violent offenders and 25 were non...

  9. Pharmacological manipulation of serotonin receptors during brain embryogenesis favours stress resiliency in female rats

    Directory of Open Access Journals (Sweden)

    Gianluca Lavanco

    2018-02-01

    Full Text Available Manipulations of the serotonin transmission during early development induce long-lasting changes in the serotonergic circuitry throughout the brain. However, little is known on the developmental consequences in the female progeny. Therefore, this study aimed at exploring the behavioural effects of pre- and postnatal stimulation of the serotonergic system by 5-methoxytryptamine in adolescent female rats on behavioural reactivity and anxiety- like phenotype. Our results show that perinatal 5- methoxythyptamine decreased total distance travelled and rearing frequency in the novel enviroment, and increased the preference for the centre of the arena in the open field test. Moreover, perinatal 5-methoxytryptamine increased the percentages of entries and time spent on the open arms of the elevated plus maze, with respect to perinatally vehicle-exposed rats. Thus, perinatal stimulation of serotonin receptors does not impair the functional response to the emotional challenges in female rats, favouring the occurrence of a stress-resilient phenotype.

  10. Am5-HT7: molecular and pharmacological characterization of the first serotonin receptor of the honeybee (Apis mellifera).

    Science.gov (United States)

    Schlenstedt, Jana; Balfanz, Sabine; Baumann, Arnd; Blenau, Wolfgang

    2006-09-01

    The biogenic amine serotonin (5-HT) plays a key role in the regulation and modulation of many physiological and behavioural processes in both vertebrates and invertebrates. These functions are mediated through the binding of serotonin to its receptors, of which 13 subtypes have been characterized in vertebrates. We have isolated a cDNA from the honeybee Apis mellifera (Am5-ht7) sharing high similarity to members of the 5-HT(7) receptor family. Expression of the Am5-HT(7) receptor in HEK293 cells results in an increase in basal cAMP levels, suggesting that Am5-HT(7) is expressed as a constitutively active receptor. Serotonin application to Am5-ht7-transfected cells elevates cyclic adenosine 3',5'-monophosphate (cAMP) levels in a dose-dependent manner (EC(50) = 1.1-1.8 nm). The Am5-HT(7) receptor is also activated by 5-carboxamidotryptamine, whereas methiothepin acts as an inverse agonist. Receptor expression has been investigated by RT-PCR, in situ hybridization, and western blotting experiments. Receptor mRNA is expressed in the perikarya of various brain neuropils, including intrinsic mushroom body neurons, and in peripheral organs. This study marks the first comprehensive characterization of a serotonin receptor in the honeybee and should facilitate further analysis of the role(s) of the receptor in mediating the various central and peripheral effects of 5-HT.

  11. Gastrin receptor characterization: affinity cross-linking of the gastrin receptor on canine gastric parietal cells

    International Nuclear Information System (INIS)

    Matsumoto, M.; Park, J.; Yamada, T.

    1987-01-01

    The authors applied affinity cross-linking methods to label the gastrin receptor on isolated canine gastric parietal cells in order to elucidate the nature of its chemical structure. 125 I-labeled Leu 15 -gastrin and 125 I-labeled gastrin/sub 2-17/ bound to intact parietal cells and their membranes with equal affinity, and half-maximal inhibition of binding was obtained at an incubation concentration of 3.2 x 10 -10 M unlabeled gastrin. 125 I-gastrin/sub 2-17/ was cross-linked to plasma membranes or intact parietal cells by incubation in disuccinimidyl suberate. The membrane pellets were solubilized with or without dithiothreitol and applied to electrophoresis on 7.5% sodium dodecyl sulfate polyacrylamide gels. Autoradiograms revealed a band of labeling at M/sub r/ 76,000 and labeling of this band was inhibited in a dose-dependent fashion by addition of unlabeled gastrin to the incubation mixture. Dithiothreitol in concentrations as high as 100 mM did not later the electrophoretic mobility of the labeled band. After taking into account the molecular weight of 125 I-gastrin/sub 2-17/, the results suggest that the gastrin receptor on parietal cells is a single protein of M/sub r/ 74,000 without disulfide-linked subunits

  12. Role of the T cell receptor ligand affinity in T cell activation by bacterial superantigens

    DEFF Research Database (Denmark)

    Andersen, P S; Geisler, C; Buus, S

    2001-01-01

    Similar to native peptide/MHC ligands, bacterial superantigens have been found to bind with low affinity to the T cell receptor (TCR). It has been hypothesized that low ligand affinity is required to allow optimal TCR signaling. To test this, we generated variants of Staphylococcus enterotoxin C3...... (SEC3) with up to a 150-fold increase in TCR affinity. By stimulating T cells with SEC3 molecules immobilized onto plastic surfaces, we demonstrate that increasing the affinity of the SEC3/TCR interaction caused a proportional increase in the ability of SEC3 to activate T cells. Thus, the potency...... correlation between ligand affinity and ligand potency indicating that it is the density of receptor-ligand complexes in the T cell contact area that determines TCR signaling strength....

  13. Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression

    Science.gov (United States)

    Nugent, Allison C.; Bain, Earle E.; Carlson, Paul J.; Neumeister, Alexander; Bonne, Omer; Carson, Richard E.; Eckelman, William; Herscovitch, Peter; Zarate, Carlos A.; Charney, Dennis S.; Drevets, Wayne C.

    2013-01-01

    Multiple lines of evidence suggest that serotonin type 1A (5-HT1A) receptor dysfunction is involved in the pathophysiology of mood disorders, and that alterations in 5-HT1A receptor function play a role in the mechanisms of antidepressant and mood stabilizer treatment. The literature is in disagreement, however, as to whether 5-HT1A receptor binding abnormalities exist in bipolar disorder (BD). We acquired PET images of 5-HT1A receptor binding in 26 unmedicated BD subjects and 37 healthy controls using [18F]FCWAY, a highly selective 5-HT1A receptor radio-ligand. The mean 5-HT1A receptor binding potential (BPP) was significantly lower in BD subjects compared to controls in cortical regions where 5-HT1A receptors are expressed post-synaptically, most prominently in the mesiotemporal cortex. Post-hoc assessments involving other receptor specific binding parameters suggested that this difference particularly affected the females with BD. The mean BPP did not differ between groups in the raphe nucleus, however, where 5-HT1A receptors are predominantly expressed pre-synaptically. Across subjects the BPP in the mesiotemporal cortex was inversely correlated with trough plasma cortisol levels, consistent with preclinical literature indicating that hippocampal 5-HT1A receptor expression is inhibited by glucocorticoid receptor stimulation. These findings suggest that 5-HT1A receptor binding is abnormally reduced in BD, and this abnormality may particularly involve the postsynaptic 5-HT1A receptor system of individuals with a tendency toward cortisol hypersecretion. PMID:23434290

  14. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Drevets, Wayne C. [Mood and Anxiety Disorders Program, MINH Molecular Imaging Branch, Bethesda, MD 20892 (United States); Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)], E-mail: drevetsw@mail.nih.gov; Thase, Michael E. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Psychiatry, University of Pennsylvania, School of Medicine and Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104 (United States); Moses-Kolko, Eydie L. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Price, Julie [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Frank, Ellen; Kupfer, David J. [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Mathis, Chester [Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 19213 (United States); Department of Radiology, University of Pittsburgh, Pittsburgh, PA 19213 (United States)

    2007-10-15

    Introduction: Serotonin-1A receptor (5-HT{sub 1A}R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT{sub 1A}R agonists in vivo and to 5-HT{sub 1A}R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT{sub 1A}R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl-{sup 11}C]WAY-100635, and we have demonstrated reduced 5-HT{sub 1A}R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl-{sup 11}C]WAY-100635, 5-HT{sub 1A}R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT{sub 1A}R BP was reduced by 26% in the MTC (P < .005) and by 43% in the raphe (P < .001) in depressives versus controls. Conclusions: These data replicate our original findings, which showed that BP was reduced by 27% in the MTC (P < .025) and by 42% in the raphe (P < .02) in depression. The magnitudes of these reductions in 5-HT{sub 1A}R binding were similar to those found postmortem in 5-HT{sub 1A}R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT{sub 1A

  15. Serotonin-1A receptor imaging in recurrent depression: replication and literature review

    International Nuclear Information System (INIS)

    Drevets, Wayne C.; Thase, Michael E.; Moses-Kolko, Eydie L.; Price, Julie; Frank, Ellen; Kupfer, David J.; Mathis, Chester

    2007-01-01

    Introduction: Serotonin-1A receptor (5-HT 1A R) function appears to be decreased in major depressive disorder (MDD) based on physiological responses to 5-HT 1A R agonists in vivo and to 5-HT 1A R binding in brain tissues postmortem or antemortem. We have previously assessed 5-HT 1A R binding potential (BP) in depression using positron emission tomography (PET) and [carbonyl- 11 C]WAY-100635, and we have demonstrated reduced 5-HT 1A R BP in the mesiotemporal cortex (MTC) and raphe in depressives with primary recurrent familial mood disorders (n=12) versus controls (n=8) [Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999;46(10):1375-87]. These findings were replicated by some, but not other, studies performed in depressed samples that were more generally selected using criteria for MDD. In the current study, we attempted to replicate our previous findings in an independent sample of subjects selected according to the criteria for primary recurrent depression applied in our prior study. Methods: Using PET and [carbonyl- 11 C]WAY-100635, 5-HT 1A R BP was assessed in 16 depressed subjects and 8 healthy controls. Results: Mean 5-HT 1A R BP was reduced by 26% in the MTC (P 1A R binding were similar to those found postmortem in 5-HT 1A R mRNA concentrations in the hippocampus in MDD [Lopez JF, Chalmers DT, Little KY, Watson SJ. Regulation of serotonin 1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for neurobiology of depression. Biol Psychiatry 1998;43:547-73] and in 5-HT 1A R-binding capacity in the raphe in depressed suicide victims [Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S, Chen JJ, Mann JJ. Serotonin 1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 2001;25(6):892-903]. There

  16. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes

    NARCIS (Netherlands)

    Filip, Malgorzata; Spampinato, Umberto; McCreary, Andrew C.; Przegalinski, Edmund

    2012-01-01

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT2C receptors on the effects of different classes of addictive drugs, illustrated by reference to data using

  17. Synthetic Receptors for the High-Affinity Recognition of O-GlcNAc Derivatives

    NARCIS (Netherlands)

    Rios, Pablo; Carter, Tom S; Mooibroek, Tiddo J; Crump, Matthew P; Lisbjerg, Micke; Pittelkow, Michael; Supekar, Nitin T; Boons, Geert-Jan|info:eu-repo/dai/nl/088245489; Davis, Anthony P

    2016-01-01

    The combination of a pyrenyl tetraamine with an isophthaloyl spacer has led to two new water-soluble carbohydrate receptors ("synthetic lectins"). Both systems show outstanding affinities for derivatives of N-acetylglucosamine (GlcNAc) in aqueous solution. One receptor binds the methyl glycoside

  18. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Gillings, Nic; Madsen, Karine

    2010-01-01

    Pharmacological stimulation of the serotonin 4 (5-HT(4)) receptor has shown promise for treatment of Alzheimer's disease and major depression. A new selective radioligand, [(11)C]SB207145, for positron emission tomography (PET) was used to quantify brain 5-HT(4) receptors in sixteen healthy......(max) was in accordance with post-mortem brain studies (Spearman's r=0.83, p=0.04), and the regional binding potentials, BP(ND), were on average 2.6 in striatum, 0.42 in prefrontal cortex, and 0.91 in hippocampus. We found no effect of sex but a decreased binding with age (p=0.046). A power analysis showed that, given......-HT(4) receptor binding in human brain can be reliably assessed with [(11)C]SB207145, which is encouraging for future PET studies of drug occupancy or patients with neuropsychiatric disorders....

  19. Serotonin 2A receptor agonist binding in the human brain with [C]Cimbi-36

    DEFF Research Database (Denmark)

    Ettrup, A.; da Cunha-Bang, S.; McMahon, Barry P.

    2014-01-01

    [C]Cimbi-36 was recently developed as a selective serotonin 2A (5-HT) receptor agonist radioligand for positron emission tomography (PET) brain imaging. Such an agonist PET radioligand may provide a novel, and more functional, measure of the serotonergic system and agonist binding is more likely ....... Thus, we here describe [C]Cimbi-36 as the first agonist PET radioligand to successfully image and quantify 5-HT receptors in the human brain.Journal of Cerebral Blood Flow & Metabolism advance online publication, 30 April 2014; doi:10.1038/jcbfm.2014.68....... than antagonist binding to reflect 5-HT levels in vivo. Here, we show data from a first-in-human clinical trial with [C]Cimbi-36. In 29 healthy volunteers, we found high brain uptake and distribution according to 5-HT receptors with [C]Cimbi-36 PET. The two-tissue compartment model using arterial input...

  20. 5-Hydroxytryptamine (serotonin 2A receptor gene polymorphism is associated with schizophrenia

    Directory of Open Access Journals (Sweden)

    Subash Padmajeya Sujitha

    2014-01-01

    Full Text Available Background & objectives: Schizophrenia, the debilitating neuropsychiatric disorder, is known to be heritable, involving complex genetic mechanisms. Several chromosomal regions associated with schizophrenia have been identified during the past; putative gene (s in question, to be called the global signature for the pathophysiology of the disease, however, seems to evade us. The results obtained from the several population-wise association-non association studies have been diverse. w0 e therefore, undertook the present study on Tamil speaking population in south India to examine the association between the single nucleotide polymorphisms (SNPs at the serotonin receptor gene (5HT2A and the occurrence of the disease. Methods: Blood samples collected from 266 cases and 272 controls were subjected to genotyping (PCR amplification of candidate SNPs, RFLP and sequencing. The data on the SNPs were subjected to statistical analysis for assessing the gene frequencies in both the cases and the controls. Results: The study revealed significant association between the genotypic frequencies of the serotonin receptor polymorphism and schizophrenia. SNP analysis revealed that the frequencies of GG (30%, rs6311 and CC genotypes (32%, rs6313, were higher in patients (P<0.05 than in controls. The study also showed presence of G and C alleles in patients. s0 ignificant levels of linkage disequilibrium (LD were found to exist between the genotype frequencies of rs6311 and rs6313. Interpretation & conclusions: This study indicated an association between the SNPs (rs6311 and rs6313 of the serotonin receptor 5HT2A and schizophrenia. HapMap analysis revealed that in its genotype distribution, the Tamil speaking population was different from several other populations across the world, signifying the importance of such ethnicity-based studies to improve our understanding of this complex disease.

  1. Involvement of spinal serotonin receptors in the regulation of intraspinal acetylcholine release.

    Science.gov (United States)

    Kommalage, Mahinda; Höglund, A Urban

    2005-02-21

    Stimulation of spinal serotonin (5-HT) receptors results in analgesia and release of acetylcholine. We investigated the involvement of 5-HT1, 5-HT2, and 5-HT3 receptor subtypes in the regulation of spinal acetylcholine release. A spinal microdialysis probe was placed dorsally at about the C5 level in anaesthetized rats. The selective serotonin reuptake inhibitor citalopram was found to increase acetylcholine release when infused via the microdialysis probe. Several doses of the 5-HT receptor agonists 8-hydroxy-2-(di-n-propylamino)tetraline (8-OH-DPAT, 5-HT1A), 1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl)-5H-pyrrolo[3,2-b]pyridin-5-one dihydrochloride (CP93129, 5-HT1B), alpha-methyl-5-hydroxytryptamine maleate (m5-HT, 5-HT2), 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI, 5-HT2C), and 1-(m-chlorophenyl)-biguanide (5-HT3) were subsequently infused via the microdialysis probe. Only 8-OH-DPAT, CP93129, and m5-HT increased acetylcholine release dose dependently. The 5-HT1A receptor selective antagonist (S)-N-tert-butyl-3-(4-(2-methoxyphenyl)piperazine-1-yl)-2-phenylpropanamide hydrochloride and the 5-HT2A receptor selective antagonist ketanserin tartrate inhibited the 8-OH-DPAT and the m5-HT induced acetylcholine release. The results suggest that 5-HT1A and the 5-HT2A receptors are involved in the regulation of acetylcholine release in the spinal cord.

  2. Changes in sensitivity of brain dopamine and serotonin receptors during long-term treatment with carbidine

    International Nuclear Information System (INIS)

    Zharkovskii, A.M.; Allikmets, L.K.; Chereshka, K.S.; Zharkovskaya, T.A.

    1986-01-01

    The authors study the state of the dopamine and serotonin receptors of the brain during chronic administration of carbidine to animals. Parts of the brain from two rats were pooled and binding of tritium-spiperone and tritium-LSD was determined. Statistical analysis of the data for apomorphine sterotypy was carried out and the Student's test was used for analysis of the remaining data. It is shown that after discontinuation of carbidine binding of tritium-spiperone and tritium-LSD in the cortex was reduced

  3. Different serotonin receptor types participate in 5-hydroxytryptophan-induced gonadotropins and prolactin release in the female infantile rat.

    Science.gov (United States)

    Lacau-Mengido, I M; Libertun, C; Becú-Villalobos, D

    1996-05-01

    Serotonin (5-HT) receptors can be classified into at least three, possibly up to seven, classes of receptors. They comprise the 5-HT1, 5-HT2, and 5-HT3 classes, the "uncloned' 5-HT4 receptor and the recombinant receptors 5-ht5, 5-ht6 and 5-ht7. We investigated the role of different serotonin receptor types in a neuroendocrine response to the activation of the serotonergic system. Female immature rats were chosen as an experimental model as it has been shown that during the 3rd week of life, and not at later developmental stages, 5-hydroxytryptophan (5-HTP, a serotonin precursor) induces gonadotropin release in females and not in males. Besides, at this age, serotonin releases prolactin in both sexes. 5-HTP (50 mg/kg) released prolactin, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) as expected. Ketanserin (5-HT2A antagonist) and methysergide (5-HT2C antagonist) blocked 5-HTP-induced prolactin release, but did not block the LH or FSH responses. Ondansetron (5-HT3 receptor antagonist) did not modify prolactin response to 5-HTP, whereas it blocked 5-HTP-induced LH and FSH release. Propranolol (5-HT1 and beta-adrenergic antagonist) blocked prolactin, LH and FSH release induced by 5-HTP. The 5-HT2C agonist 1-(3-chlorophenyl)piperazine dihydrochloride released prolactin, without modifying LH or FSH release. Methyl-quipazine and phenylbiguanide (5-HT3 agonists) increased both LH and FSH levels, without altering prolactin secretion. The present experiments indicate that serotonin acting at the 5-HT3 receptor mediates LH and FSH release in infantile female rats, whereas 5-HT2C or 2A receptor types participate in the release of prolactin at this age. 5-HT1 receptor type may be involved in the release of the three hormones, though a beta-adrenergic component of the response cannot be discarded.

  4. Modulation of the consolidation and reconsolidation of fear memory by three different serotonin receptors in hippocampus.

    Science.gov (United States)

    Schmidt, S D; Furini, C R G; Zinn, C G; Cavalcante, L E; Ferreira, F F; Behling, J A K; Myskiw, J C; Izquierdo, I

    2017-07-01

    The process of memory formation is complex and highly dynamic. During learning, the newly acquired information is found in a fragile and labile state. Through a process known as consolidation, which requires specific mechanisms such as protein synthesis, the memory trace is stored and stabilized. It is known that when a consolidated memory is recalled, it again becomes labile and sensitive to disruption. To be maintained, this memory must undergo an additional process of restabilization called reconsolidation, which requires another phase of protein synthesis. Memory consolidation has been studied for more than a century, while the molecular mechanisms underlying the memory reconsolidation are starting to be elucidated. For this, is essential compare the participation of important neurotransmitters and its receptors in both processes in brain regions that play a central role in the fear response learning. With focus on serotonin (5-HT), a well characterized neurotransmitter that has been strongly implicated in learning and memory, we investigated, in the CA1 region of the dorsal hippocampus, whether the latest discovered serotonergic receptors, 5-HT 5A , 5-HT 6 and 5-HT 7 , are involved in the consolidation and reconsolidation of contextual fear conditioning (CFC) memory. For this, male rats with cannulae implanted in the CA1 region received immediately after the training or reactivation session, or 3h post-reactivation of the CFC, infusions of agonists or antagonists of the 5-HT 5A , 5-HT 6 and 5-HT 7 receptors. After 24h, animals were subjected to a 3-min retention test. The results indicated that in the CA1 region of the hippocampus the 5-HT 5A , 5-HT 6 and 5-HT 7 serotonin receptors participate in the reconsolidation of the CFC memory 3h post-reactivation. Additionally, the results suggest that the 5-HT 6 and 5-HT 7 receptors also participate in the consolidation of the CFC memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA.

    Science.gov (United States)

    Hasler, F; Studerus, E; Lindner, K; Ludewig, S; Vollenweider, F X

    2009-11-01

    Serotonin (5-HT) release is the primary pharmacological mechanism of 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') action in the primate brain. Dopamine release and direct stimulation of dopamine D2 and serotonin 5-HT2A receptors also contributes to the overall action of MDMA. The role of 5-HT1A receptors in the human psychopharmacology of MDMA, however, has not yet been elucidated. In order to reveal the consequences of manipulation at the 5-HT1A receptor system on cognitive and subjective effects of MDMA, a receptor blocking study using the mixed beta-adrenoreceptor blocker/5-HT1A antagonist pindolol was performed. Using a double-blind, placebo-controlled within-subject design, 15 healthy male subjects were examined under placebo (PL), 20 mg pindolol (PIN), MDMA (1.6 mg/kg b.wt.), MDMA following pre-treatment with pindolol (PIN-MDMA). Tasks from the Cambridge Neuropsychological Test Automated Battery were used for the assessment of cognitive performance. Psychometric questionnaires were applied to measure effects of treatment on core dimensions of Altered States of Consciousness, mood and state anxiety. Compared with PL, MDMA significantly impaired sustained attention and visual-spatial memory, but did not affect executive functions. Pre-treatment with PIN did not significantly alter MDMA-induced impairment of cognitive performance and only exerted a minor modulating effect on two psychometric scales affected by MDMA treatment ('positive derealization' and 'dreaminess'). Our findings suggest that MDMA differentially affects higher cognitive functions, but does not support the hypothesis from animal studies, that some of the MDMA effects are causally mediated through action at the 5-HT1A receptor system.

  6. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    Directory of Open Access Journals (Sweden)

    Jim F White

    2010-09-01

    Full Text Available Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1.To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein.Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  7. The effect of partial agonist of serotonin-1A receptor on cognitive functions in animal model of schizophrenia

    OpenAIRE

    Antošová, Eliška

    2011-01-01

    Serotoin is a neurotransmitter participating in regulation of many physiologic fuctions. Main serotogenous neurons can be found in nukleus raphe of the brain stem. Nucleus raphe inervates many areas of the brain including the cerebal cortex and hipocampus. These structures are important for controling of higher cognitive functions. 5HT1A receptor is one of many subtypes of serotonin receptors and its activation inhibits iniciating of the action potencials. 5HT1A receptor is expressed presynap...

  8. Characterization of glucagon-like peptide-1 receptor beta-arrestin 2 interaction: a high-affinity receptor phenotype

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Martini, Lene; Schwartz, Thue W

    2005-01-01

    To dissect the interaction between beta-arrestin ((beta)arr) and family B G protein-coupled receptors, we constructed fusion proteins between the glucagon-like peptide 1 receptor and (beta)arr2. The fusion constructs had an increase in apparent affinity selectively for glucagon, suggesting...... that (beta)arr2 interaction locks the receptor in a high-affinity conformation, which can be explored by some, but not all, ligands. The fusion constructs adopted a signaling phenotype governed by the tethered (beta)arr2 with an attenuated G protein-mediated cAMP signal and a higher maximal internalization...... of that which has previously been characterized for family A G protein-coupled receptors, suggesting similarities in the effect of (beta)arr interaction between family A and B receptors also at the molecular level....

  9. GABAA receptors, but not dopamine, serotonin or NMDA receptors, are increased in the frontal cortex from schizophrenic subjects

    International Nuclear Information System (INIS)

    Daen, B.; Hussain, T.; Scarr, E.; Tomaskovic, E.; Kitsoulis, S.; Pavey, G.; Hill, C.; Keks, N.; Opeskin, K.; Copolov, D.L.

    1998-01-01

    Full text: Having shown changed 5HT 2A receptor density in the frontal cortex (FC) from schizophrenic subjects (1) we now report on further studies of the molecular neuroanatomy of the FC in schizophrenia. We used in situ radioligand binding and autoradiography to measure the density of [ 3 H]8OH-DPAT (1 nM) binding (5HT 1A receptors) and [ 3 H]GR113808 (2.4nM) binding (5HT 4 receptors) in Brodmann's areas (BA) 8, 9 and 10 from 10 schizophrenic and 10 controls subjects. In addition, [ 3 H]muscimol (100 nM) binding (GABA A receptors), [ 3 H]TCP (20nM) binding (NMDA receptors), [ 3 H]SCH 23390 (3nM) binding (DA D 1 like receptors) and [ 3 H]YM-09151-2 (4nM) binding (DA D 2 -like receptors) was measured in BA 9 from 17 schizophrenic and 17 control subjects. Subjects were matched for age and sex and the post-mortem interval for tissue collection did not differ. There was a significant increase (18%) in the density of GABA A receptors in BA 9 from subjects with schizophrenia (p<0.05) with no change in NMDA, dopamine or serotonin receptors. These data support the hypothesis that there are selective changes in neurotransmitter receptors in the FC of subjects with schizophrenia. It is not yet clear if such changes contribute to the pathology of the illness. Copyright (1998) Australian Neuroscience Society

  10. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  11. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides.

    Directory of Open Access Journals (Sweden)

    Sujatha P Koduvayur

    Full Text Available The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.

  12. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry

    DEFF Research Database (Denmark)

    Haahr, M. E.; Rasmussen, Peter Mondrup; Madsen, K.

    2012-01-01

    in food intake, and that pharmacological or genetic manipulation of the receptor in reward-related brain areas alters food intake.Here, we used positron emission tomography in humans to examine the association between cerebral 5-HT4Rs and common obesity.We found in humans a strong positive association......The neurobiology underlying obesity is not fully understood. The neurotransmitter serotonin (5-HT) is established as a satiety-generating signal, but its rewarding role in feeding is less well elucidated. From animal experiments there is now evidence that the 5-HT4 receptor (5-HT4R) is involved......'s food intake. They also suggest that pharmacological stimulation of the cerebral 5-HT4R may reduce reward-related overeating in humans....

  13. Effects of serotonin (5-HT)1B receptor ligands on amphetamine-seeking behavior in rats.

    Science.gov (United States)

    Miszkiel, Joanna; Przegaliński, Edmund

    2013-01-01

    Numerous studies have indicated that serotonin (5-HT)1B receptor ligands affect the behavioral effects of psychostimulants (cocaine, amphetamine), including the reinforcing activities of these drugs. To substantiate a role for those receptors in incentive motivation for amphetamine, we used the extinction/reinstatement model to examine the effects of the 5-HT1B receptor ligands on the reinstatement of extinguished amphetamine-seeking behavior. Rats trained to self-administer amphetamine (0.06 mg/kg/infusion) subsequently underwent the extinction procedure. These rats were then tested for the amphetamine-primed or amphetamine-associated cue-induced reinstatement of extinguished amphetamine-seeking behavior. The 5-HT1B receptor antagonist SB 216641 (5-7.5 mg/kg) attenuated the amphetamine (1.5 mg/kg)- and the amphetamine-associated cue combined with the threshold dose of amphetamine (0.5 mg/kg)-induced reinstatement of amphetamine-seeking behavior. The 5-HT1B receptor agonist CP 94253 (1.25-5 mg/kg) also inhibited the amphetamine-seeking behavior induced by amphetamine (1.5 mg/kg) but not by the cue combined with the threshold dose of amphetamine. The inhibitory effect of CP94253 on amphetamine-seeking behavior remained unaffected by the 5-HT1B receptor antagonist. Our results indicate that tonic activation of 5-HT1B receptors is involved in amphetamine- and cue-induced reinstatement of amphetamine-seeking behavior and that the inhibitory effects of 5-HT1B receptor antagonists on these phenomena are directly related to the motivational aspects of amphetamine abuse. The inhibitory effect of CP 94253 on amphetamine-seeking behavior seems to be unrelated to 5-HT1B receptor activation and may result from a general reduction of motivation.

  14. Striatal dopamine release and genetic variation of the serotonin 2C receptor in humans.

    Science.gov (United States)

    Mickey, Brian J; Sanford, Benjamin J; Love, Tiffany M; Shen, Pei-Hong; Hodgkinson, Colin A; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2012-07-04

    Mesoaccumbal and nigrostriatal projections are sensitive to stress, and heightened stress sensitivity is thought to confer risk for neuropsychiatric disorders. Serotonin 2C (5-HT(2C)) receptors mediate the inhibitory effects of serotonin on dopaminergic circuitry in experimental animals, and preclinical findings have implicated 5-HT(2C) receptors in motivated behaviors and psychotropic drug mechanisms. In humans, a common missense single-nucleotide change (rs6318, Cys23Ser) in the 5-HT(2C) receptor gene (HTR2C) has been associated with altered activity in vitro and with clinical mood disorders. We hypothesized that dopaminergic circuitry would be more sensitive to stress in humans carrying the Ser23 variant. To test this hypothesis, we studied 54 healthy humans using positron emission tomography and the displaceable D(2)/D(3) receptor radiotracer [(11)C]raclopride. Binding potential (BP(ND)) was quantified before and after a standardized stress challenge consisting of 20 min of moderate deep muscular pain, and reduction in BP(ND) served as an index of dopamine release. The Cys23Ser variant was genotyped on a custom array, and ancestry informative markers were used to control for population stratification. We found greater dopamine release in the nucleus accumbens, caudate nucleus, and putamen among Ser23 carriers, after controlling for sex, age, and ancestry. Genotype accounted for 12% of the variance in dopamine release in the nucleus accumbens. There was no association of Cys23Ser with baseline BP(ND). These findings indicate that a putatively functional HTR2C variant (Ser23) is associated with greater striatal dopamine release during pain in healthy humans. Mesoaccumbal stress sensitivity may mediate the effects of HTR2C variation on risk of neuropsychiatric disorders.

  15. Serotonin(2) receptors mediate respiratory recovery after cervical spinal cord hemisection in adult rats.

    Science.gov (United States)

    Zhou, S Y; Basura, G J; Goshgarian, H G

    2001-12-01

    The aim of the present study was to specifically investigate the involvement of serotonin [5-hydroxytryptamine (5-HT(2))] receptors in 5-HT-mediated respiratory recovery after cervical hemisection. Experiments were conducted on C(2) spinal cord-hemisected, anesthetized (chloral hydrate, 400 mg/kg ip), vagotomized, pancuronium- paralyzed, and artificially ventilated female Sprague-Dawley rats in which CO(2) levels were monitored and maintained. Twenty-four hours after spinal hemisection, the ipsilateral phrenic nerve displayed no respiratory-related activity indicative of a functionally complete hemisection. Intravenous administration of the 5-HT(2A/2C)-receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) induced respiratory-related activity in the phrenic nerve ipsilateral to hemisection under conditions in which CO(2) was maintained at constant levels and augmented the activity induced under conditions of hypercapnia. The effects of DOI were found to be dose dependent, and the recovery of activity could be maintained for up to 2 h after a single injection. DOI-induced recovery was attenuated by the 5-HT(2)-receptor antagonist ketanserin but not with the 5-HT(2C)-receptor antagonist RS-102221, suggesting that 5-HT(2A) and not necessarily 5-HT(2C) receptors may be involved in the induction of respiratory recovery after cervical spinal cord injury.

  16. Mood stabilizer treatment increases serotonin type 1A receptor binding in bipolar depression

    Science.gov (United States)

    Nugent, Allison C; Carlson, Paul J; Bain, Earle E; Eckelman, William; Herscovitch, Peter; Manji, Husseini; Zarate, Carlos A; Drevets, Wayne C

    2013-01-01

    Abnormal serotonin type 1A (5-HT1A) receptor function and binding have been implicated in the pathophysiology of mood disorders. Preclinical studies have consistently shown that stress decreases the gene expression of 5-HT1A receptors in experimental animals, and that the associated increase in hormone secretion plays a crucial role in mediating this effect. Chronic administration of the mood stabilizers lithium and divalproex (valproate semisodium) reduces glucocorticoid signaling and function in the hippocampus. Lithium has further been shown to enhance 5-HT1A receptor function. To assess whether these effects translate to human subject with bipolar disorder (BD), positron emission tomography (PET) and [18F]trans-4-fluoro-N-(2-[4-(2-methoxyphenyl) piperazino]-ethyl)-N-(2-pyridyl) cyclohexanecarboxamide ([18F]FCWAY) were used to acquire PET images of 5-HT1A receptor binding in 10 subjects with BD, before and after treatment with lithium or divalproex. Mean 5-HT1A binding potential (BPP) significantly increased following mood stabilizer treatment, most prominently in the mesiotemporal cortex (hippocampus plus amygdala). When mood state was also controlled for, treatment was associated with increases in BPP in widespread cortical areas. These preliminary findings are consistent with the hypothesis that these mood stabilizers enhance 5-HT1A receptor expression in BD, which may underscore an important component of these agents' mechanism of action. PMID:23926239

  17. Expression and function of serotonin 2A and 2B receptors in the mammalian respiratory network.

    Directory of Open Access Journals (Sweden)

    Marcus Niebert

    Full Text Available Neurons of the respiratory network in the lower brainstem express a variety of serotonin receptors (5-HTRs that act primarily through adenylyl cyclase. However, there is one receptor family including 5-HT(2A, 5-HT(2B, and 5-HT(2C receptors that are directed towards protein kinase C (PKC. In contrast to 5-HT(2ARs, expression and function of 5-HT(2BRs within the respiratory network are still unclear. 5-HT(2BR utilizes a Gq-mediated signaling cascade involving calcium and leading to activation of phospholipase C and IP3/DAG pathways. Based on previous studies, this signal pathway appears to mediate excitatory actions on respiration. In the present study, we analyzed receptor expression in pontine and medullary regions of the respiratory network both at the transcriptional and translational level using quantitative RT-PCR and self-made as well as commercially available antibodies, respectively. In addition we measured effects of selective agonists and antagonists for 5-HT(2ARs and 5-HT(2BRs given intra-arterially on phrenic nerve discharges in juvenile rats using the perfused brainstem preparation. The drugs caused significant changes in discharge activity. Co-administration of both agonists revealed a dominance of the 5-HT(2BR. Given the nature of the signaling pathways, we investigated whether intracellular calcium may explain effects observed in the respiratory network. Taken together, the results of this study suggest a significant role of both receptors in respiratory network modulation.

  18. Dreamlike effects of LSD on waking imagery in humans depend on serotonin 2A receptor activation.

    Science.gov (United States)

    Kraehenmann, Rainer; Pokorny, Dan; Vollenweider, Leonie; Preller, Katrin H; Pokorny, Thomas; Seifritz, Erich; Vollenweider, Franz X

    2017-07-01

    Accumulating evidence indicates that the mixed serotonin and dopamine receptor agonist lysergic acid diethylamide (LSD) induces an altered state of consciousness that resembles dreaming. This study aimed to test the hypotheses that LSD produces dreamlike waking imagery and that this imagery depends on 5-HT2A receptor activation and is related to subjective drug effects. Twenty-five healthy subjects performed an audiorecorded guided mental imagery task 7 h after drug administration during three drug conditions: placebo, LSD (100 mcg orally) and LSD together with the 5-HT2A receptor antagonist ketanserin (40 mg orally). Cognitive bizarreness of guided mental imagery reports was quantified as a standardised formal measure of dream mentation. State of consciousness was evaluated using the Altered State of Consciousness (5D-ASC) questionnaire. LSD, compared with placebo, significantly increased cognitive bizarreness (p < 0.001). The LSD-induced increase in cognitive bizarreness was positively correlated with the LSD-induced loss of self-boundaries and cognitive control (p < 0.05). Both LSD-induced increases in cognitive bizarreness and changes in state of consciousness were fully blocked by ketanserin. LSD produced mental imagery similar to dreaming, primarily via activation of the 5-HT2A receptor and in relation to loss of self-boundaries and cognitive control. Future psychopharmacological studies should assess the differential contribution of the D2/D1 and 5-HT1A receptors to cognitive bizarreness.

  19. Expression changes of serotonin receptor gene subtype 5HT3a in peripheral blood mononuclear cells from schizophrenic patients treated with haloperidol and Olanzapin.

    Science.gov (United States)

    Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza

    2009-09-01

    Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  20. Molecular analysis of the interaction between the intracellular loops of the human serotonin receptor type 6 (5-HT6) and the α subunit of GS protein

    International Nuclear Information System (INIS)

    Kang, Hatan; Lee, Won Kyu; Choi, Yun Hui; Vukoti, Krishna Moorthy; Bang, Won Gi; Yu, Yeon Gyu

    2005-01-01

    The serotonin type 6 (5-HT 6 ) receptor is a G-protein coupled receptor (GPCR) coupled to a stimulatory G-protein (G S ). To identify the structural basis for the interaction of the 5-HT 6 receptor with the G S protein, we have dissected the interaction between GST-fusion proteins containing the second intracellular loop (iL2), the third intracellular loop (iL3), or the C-terminal tail of the 5-HT 6 receptor and the α subunit of G S (Gα S ). The direct interaction of iL3 and Gα S was demonstrated by co-immunoprecipitation. Furthermore, the kinetic parameters of the interaction between iL3 and Gα S were measured by surface plasmon resonance, and the apparent dissociation constant was determined to be 0.9 x 10 -6 M. In contrast, the second intracellular loop and C-terminal tail regions showed negligible affinity to Gα S . The critical residues within the iL3 region for the interaction with Gα S were identified as conserved positively charged residues near the C-terminus of iL3 by measuring the cellular levels of cAMP produced in response to 5-HT stimulation of cells transfected with 5-HT 6 receptor mutants

  1. Mutagenesis Analysis Reveals Distinct Amino Acids of the Human Serotonin 5-HT2C Receptor Underlying the Pharmacology of Distinct Ligands.

    Science.gov (United States)

    Liu, Yue; Canal, Clinton E; Cordova-Sintjago, Tania C; Zhu, Wanying; Booth, Raymond G

    2017-01-18

    While exploring the structure-activity relationship of 4-phenyl-2-dimethylaminotetralins (PATs) at serotonin 5-HT 2C receptors, we discovered that relatively minor modification of PAT chemistry impacts function at 5-HT 2C receptors. In HEK293 cells expressing human 5-HT 2C-INI receptors, for example, (-)-trans-3'-Br-PAT and (-)-trans-3'-Cl-PAT are agonists regarding Gα q -inositol phosphate signaling, whereas (-)-trans-3'-CF 3 -PAT is an inverse agonist. To investigate the ligand-receptor interactions that govern this change in function, we performed site-directed mutagenesis of 14 amino acids of the 5-HT 2C receptor based on molecular modeling and reported G protein-coupled receptor crystal structures, followed by molecular pharmacology studies. We found that S3.36, T3.37, and F5.47 in the orthosteric binding pocket are critical for affinity (K i ) of all PATs tested, we also found that F6.44, M6.47, C7.45, and S7.46 are primarily involved in regulating EC/IC 50 functional potencies of PATs. We discovered that when residue S5.43, N6.55, or both are mutated to alanine, (-)-trans-3'-CF 3 -PAT switches from inverse agonist to agonist function, and when N6.55 is mutated to leucine, (-)-trans-3'-Br-PAT switches from agonist to inverse agonist function. Notably, most point-mutations that affected PAT pharmacology did not significantly alter affinity (K D ) of the antagonist radioligand [ 3 H]mesulergine, but every mutation tested negatively impacted serotonin binding. Also, amino acid mutations differentially affected the pharmacology of other commercially available 5-HT 2C ligands tested. Collectively, the data show that functional outcomes shared by different ligands are mediated by different amino acids and that some 5-HT 2C receptor residues important for pharmacology of one ligand are not necessarily important for another ligand.

  2. Frontolimbic serotonin 2A receptor binding in healthy subjects is associated with personality risk factors for affective disorder

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G.; Mortensen, Erik L.; Nielsen, Finn Årup

    2008-01-01

    Background: Serotonergic dysfunction has been associated with affective disorders. High trait neuroticism, as measured on personality inventories, is a risk factor for major depression. In this study we investigated whether neuroticism is associated with serotonin 2A receptor binding in brain...... regions of relevance for affective disorders. Methods: Eighty-three healthy volunteers completed the standardized personality questionnaire NEO-PI-R (Revised NEO Personality Inventory) and underwent [F-18]altanserin positron emission tomography imaging for assessment of serotonin 2A receptor binding...... remained significant after correction for multiple comparisons (r = .35, p = .009). Conclusions: In healthy subjects the personality dimension neuroticism and particularly its constituent trait, vulnerability, are positively associated with frontolimbic serotonin 2A binding. Our findings point...

  3. Serotonin Signaling Through the 5-HT1B Receptor and NADPH Oxidase 1 in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Hood, Katie Y; Mair, Kirsty M; Harvey, Adam P; Montezano, Augusto C; Touyz, Rhian M; MacLean, Margaret R

    2017-07-01

    Serotonin can induce human pulmonary artery smooth muscle cell (hPASMC) proliferation through reactive oxygen species (ROS), influencing the development of pulmonary arterial hypertension (PAH). We hypothesize that in PASMCs, serotonin induces oxidative stress through NADPH-oxidase-derived ROS generation and reduced Nrf-2 (nuclear factor [erythroid-derived 2]-like 2) antioxidant systems, promoting vascular injury. HPASMCs from controls and PAH patients, and PASMCs from Nox1 -/- mice, were stimulated with serotonin in the absence/presence of inhibitors of Src kinase, the 5-HT 1B receptor, and NADPH oxidase 1 (Nox1). Markers of fibrosis were also determined. The pathophysiological significance of our findings was examined in vivo in serotonin transporter overexpressing female mice, a model of pulmonary hypertension. We confirmed thatserotonin increased superoxide and hydrogen peroxide production in these cells. For the first time, we show that serotonin increased oxidized protein tyrosine phosphatases and hyperoxidized peroxiredoxin and decreased Nrf-2 and catalase activity in hPASMCs. ROS generation was exaggerated and dependent on cellular Src-related kinase, 5-HT 1B receptor, and the serotonin transporter in human pulmonary artery smooth muscle cells from PAH subjects. Proliferation and extracellular matrix remodeling were exaggerated in human pulmonary artery smooth muscle cells from PAH subjects and dependent on 5-HT 1B receptor signaling and Nox1, confirmed in PASMCs from Nox1 -/- mice. In serotonin transporter overexpressing mice, SB216641, a 5-HT 1B receptor antagonist, prevented development of pulmonary hypertension in a ROS-dependent manner. Serotonin can induce cellular Src-related kinase-regulated Nox1-induced ROS and Nrf-2 dysregulation, contributing to increased post-translational oxidative modification of proteins and activation of redox-sensitive signaling pathways in hPASMCs, associated with mitogenic responses. 5-HT 1B receptors contribute to

  4. The potential role of myocardial serotonin receptor 2B expression in canine dilated cardiomyopathy.

    Science.gov (United States)

    Fonfara, Sonja; Hetzel, Udo; Oyama, Mark A; Kipar, Anja

    2014-03-01

    Serotonin signalling in the heart is mediated by receptor subtype 2B (5-HTR2B). A contribution of serotonin to valvular disease has been reported, but myocardial expression of 5-HTR2B and its role in canine dilated cardiomyopathy (DCM) is not known. The aim of the present study was to investigate myocardial 5-HTR2B mRNA expression in dogs with DCM and to correlate results with expression of markers for inflammation and remodelling. Myocardial samples from eight healthy dogs, four dogs with DCM, five with cardiac diseases other than DCM and six with systemic non-cardiac diseases were investigated for 5-HTR2B mRNA expression using quantitative PCR (qPCR). The results were compared to mRNA expression of selected cytokines, matrix metalloproteinases (MMP) and tissue inhibitors of matrix metalloproteinase (TIMP). Laser microdissection with subsequent qPCR and immunohistochemistry were employed to identify the cells expressing 5-HTR2B. The myocardium of control dogs showed constitutive 5-HTR2B mRNA expression. In dogs with DCM, 5-HTR2B mRNA values were significantly greater than in all other groups, with highest levels of expression in the left ventricle and right atrium. Myocytes were identified as the source of 5-HTR2B mRNA and protein. A significant positive correlation of 5-HTR2B mRNA with expression of several cytokines, MMPs and TIMPs was observed. The findings suggest that serotonin might play a role in normal cardiac structure and function and could contribute to myocardial remodelling and functional impairment in dogs with DCM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Stone

    2013-08-01

    Full Text Available Over the last several years, there has been considerable progress in the treatment of cancer using gene modified adoptive T cell therapies. Two approaches have been used, one involving the introduction of a conventional alpha-beta T cell receptor (TCR against a pepMHC cancer antigen, and the second involving introduction of a chimeric antigen receptor (CAR consisting of a single-chain antibody as an Fv fragment (scFv linked to transmembrane and signaling domains. In this review, we focus on one aspect of TCR-mediated adoptive T cell therapies, the impact of the affinity of the alpha-beta TCR for the pepMHC cancer antigen on both efficacy and specificity. We discuss the advantages of higher affinity TCRs in mediating potent activity of CD4 T cells. This is balanced with the potential disadvantage of higher affinity TCRs in mediating greater self-reactivity against a wider range of structurally similar antigenic peptides, especially in synergy with the CD8 co-receptor. Both TCR affinity and target selection will influence potential safety issues. We suggest pre-clinical strategies that might be used to examine each TCR for possible on-target and off-target side effects due to self-reactivities, and to adjust TCR affinities accordingly.

  6. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    Science.gov (United States)

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT 2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT 2A , 5-HT 2B , and 5-HT 2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT 2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT 2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  7. The electrophysiological effects of the serotonin 1A receptor agonist buspirone in emotional face processing.

    Science.gov (United States)

    Bernasconi, Fosco; Kometer, Michael; Pokorny, Thomas; Seifritz, Erich; Vollenweider, Franz X

    2015-04-01

    Emotional face processing is critically modulated by the serotonergic system, and serotonin (5-HT) receptor agonists impair emotional face processing. However, the specific contribution of the 5-HT1A receptor remains poorly understood. Here we investigated the spatiotemporal brain mechanisms underpinning the modulation of emotional face processing induced by buspirone, a partial 5-HT1A receptor agonist. In a psychophysical discrimination of emotional faces task, we observed that the discrimination fearful versus neutral faces were reduced, but not happy versus neutral faces. Electrical neuroimaging analyses were applied to visual evoked potentials elicited by emotional face images, after placebo and buspirone administration. Buspirone modulated response strength (i.e., global field power) in the interval 230-248ms after stimulus onset. Distributed source estimation over this time interval revealed that buspirone decreased the neural activity in the right dorsolateral prefrontal cortex that was evoked by fearful faces. These results indicate temporal and valence-specific effects of buspirone on the neuronal correlates of emotional face processing. Furthermore, the reduced neural activity in the dorsolateral prefrontal cortex in response to fearful faces suggests a reduced attention to fearful faces. Collectively, these findings provide new insights into the role of 5-HT1A receptors in emotional face processing and have implications for affective disorders that are characterized by an increased attention to negative stimuli. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  8. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    Science.gov (United States)

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-05

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of ergot alkaloid exposure on serotonin receptor mRNA in the smooth muscle of the bovine gastrointestinal tract

    Science.gov (United States)

    Various serotonin (5HT) receptor subtypes have been located in the gastrointestinal tract and some are associated with gut motility. Cattle exposed to ergot alkaloids through consumption of contaminated feedstuffs have demonstrated signs (e.g. - increased rumen DM content and total content) that sug...

  10. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels

    Science.gov (United States)

    Serotonin 2C receptors (5-HT2CRs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis ,and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT2CRs have no...

  11. Experimental study of the role of blocking of 5-HT3 serotonin receptors and D2 dophamin receptors in the mechanism of early radiation vomiting in monkeys

    International Nuclear Information System (INIS)

    Martirosov, K.S.; Grigor'ev, Yu.G.; Zorin, V.V.; Andrianova, I.E.

    2000-01-01

    Specific activity of Latranum and Dimetphramidum is studied using experimental model of early radiation vomiting on 17 monkeys, mass 6-9 kg inherent on usual ration of vivarium. The experiments with M. fasciculata monkeys exposed to 137 Cs γ-radiation with a dose of 6.9 Gy showed that Latranum, a blocker of serotonin 5-HT 3 receptors, is a more efficient antimetric than Dimetphramidum, a D 2 dophamin lytic. This suggested by fewer animals with emetic reaction of by less severe vomiting in case they have any. The results agree well with a hypothesis that serotonin receptors are dominant in the chemoreceptor trigger zone of monkeys [ru

  12. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective

  13. Implication of 5-HT(2B) receptors in the serotonin syndrome.

    Science.gov (United States)

    Diaz, Silvina Laura; Maroteaux, Luc

    2011-09-01

    The serotonin (5-HT) syndrome occurs in humans after antidepressant overdose or combination of drugs inducing a massive increase in extracellular 5-HT. Several 5-HT receptors are known to participate in this syndrome in humans and animal models. The 5-HT(2B) receptor has been proposed as a positive modulator of serotonergic activity, but whether it is involved in 5-HT syndrome has not yet been studied. We analyzed here, a putative role of 5-HT(2B) receptors in this disorder by forced swimming test (FST) and behavioral assessment in the open field. In FST, genetic (5-HT(2B)(-/-) mice) or pharmacological (antagonist RS127445 at 0.5 mg/kg) ablation of 5-HT(2B) receptors facilitated selective 5-HT reuptake inhibitors (SSRI)-induced increase of immobility time as well as expression of other symptoms related to 5-HT syndrome like hind limb abduction and Straub tail. Increase in immobility was also developed in FST by both wild type (WT) and 5-HT(2B)(-/-) mice after the administration of 5-HT(1A), 5-HT(2A) or 5-HT(2C) receptor agonists, 8-OH-DPAT (5 mg/kg), DOI (1 mg/kg), or WAY161503 (5 mg/kg), respectively. In contrast, the 5-HT(2B) receptor agonist BW723C86 (3 mg/kg) or 5-HT(1B) receptor agonist CGS12066A (2 mg/kg) decreased immobility time in both genotypes. The 5-HT syndrome induced by fluoxetine at high doses was blocked in WT and 5-HT(2B)(-/-) mice by administration of 5-HT(1A) and 5-HT(2C) receptor antagonists (WAY100635 0.5 mg/kg and SB242084 0.5 mg/kg) but not by the 5-HT(2A) receptor antagonist MDL100907 (1 mg/kg). By behavioral assessment, we confirmed that 5-HT(2B)(-/-) mice were more prone to develop 5-HT syndrome symptoms after administration of high dose of SSRIs or the 5-HT precursor 5-Hydroxytryptophan, 5-HTP, even if increases in 5-HT plasma levels were similar in both genotypes. This evidence suggests that the presence of 5-HT(2B) receptors hinders acute 5-HT toxicity once high levels of 5-HT are attained. Therefore, differential agonism

  14. Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses.

    Science.gov (United States)

    Doly, Stéphane; Quentin, Emily; Eddine, Raphaël; Tolu, Stefania; Fernandez, Sebastian P; Bertran-Gonzalez, Jesus; Valjent, Emmanuel; Belmer, Arnauld; Viñals, Xavier; Callebert, Jacques; Faure, Philippe; Meye, Frank J; Hervé, Denis; Robledo, Patricia; Mameli, Manuel; Launay, Jean-Marie; Maldonado, Rafael; Maroteaux, Luc

    2017-10-25

    Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT 2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT 2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT 2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT 2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT 2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT 2B -receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT 2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse. SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT 2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT 2B receptors in a subpopulation of

  15. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    Science.gov (United States)

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Do serotonin(1-7) receptors modulate short and long-term memory?

    Science.gov (United States)

    Meneses, A

    2007-05-01

    Evidence from invertebrates to human studies indicates that serotonin (5-hydroxytryptamine; 5-HT) system modulates short- (STM) and long-term memory (LTM). This work is primarily focused on analyzing the contribution of 5-HT, cholinergic and glutamatergic receptors as well as protein synthesis to STM and LTM of an autoshaping learning task. It was observed that the inhibition of hippocampal protein synthesis or new mRNA did not produce a significant effect on autoshaping STM performance but it did impair LTM. Both non-contingent protein inhibition and 5-HT depletion showed no effects. It was basically the non-selective 5-HT receptor antagonist cyproheptadine, which facilitated STM. However, the blockade of glutamatergic and cholinergic transmission impaired STM. In contrast, the selective 5-HT(1B) receptor antagonist SB-224289 facilitated both STM and LTM. Selective receptor antagonists for the 5-HT(1A) (WAY100635), 5-HT(1D) (GR127935), 5-HT(2A) (MDL100907), 5-HT(2C/2B) (SB-200646), 5-HT(3) (ondansetron) or 5-HT(4) (GR125487), 5-HT(6) (Ro 04-6790, SB-399885 and SB-35713) or 5-HT(7) (SB-269970) did not impact STM. Nevertheless, WAY100635, MDL100907, SB-200646, GR125487, Ro 04-6790, SB-399885 or SB-357134 facilitated LTM. Notably, some of these changes shown to be independent of food-intake. Concomitantly, these data indicate that '5-HT tone via 5-HT(1B) receptors' might function in a serial manner from STM to LTM, whereas working in parallel using 5-HT(1A), 5-HT(2A), 5-HT(2B/2C), 5-HT(4), or 5-HT(6) receptors.

  17. Serotonin and dopamine receptors in cognitive and motivational disturbances of psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Tomiki eSumiyoshi

    2014-12-01

    Full Text Available Negative symptoms (e.g. decreased spontaneity, social withdrawal, blunt affect and disturbances of cognitive function (e.g. several types of memory, attention, processing speed, executive function, fluency provide a major determinant of long-term outcome in patients with schizophrenia. Specifically, motivation deficits, a type of negative symptoms, have been attracting interest as a moderator of cognitive performance in schizophrenia and related disorders, and also a modulating factor of cognitive enhancers/remediation. These considerations suggest the need to clarify neurobiological substrates regulating motivation. Genetic studies indicate a role for the monoamine systems in motivation and key cognitive domains. For example, polymorphism of genes encoding catecholamine-O-methyltransferase, an enzyme catabolizing dopamine (DA, affects performance on tests of working memory and executive function in a phenotype (schizophrenia vs. healthy controls-dependent fashion. On the other hand, motivation to maximize rewards has been shown to be influenced by other DA-related genes, such as DARPP-32 and DA-D2 receptors. Serotonin (5-HT receptors may also play a key role in cognitive and motivational disabilities in psychoses and mood disorders. For example, mutant mice over-expressing D2 receptors in the striatum, an animal model of schizophrenia, exhibit both decreased willingness to work for reward and up-regulation of 5-HT2C receptors. Taken together, genetic predisposition related to 5-HT receptors may mediate the diversity of incentive motivation that is impaired in patients receiving biological and/or psychosocial treatments. Taken together, research into genetic and neurobiological measures of motivation, in association with 5-HT receptors, is likely to facilitate intervention into patients seeking better social consequences.

  18. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    Science.gov (United States)

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Characterization of the 5-HT1A receptor of the honeybee (Apis mellifera) and involvement of serotonin in phototactic behavior.

    Science.gov (United States)

    Thamm, Markus; Balfanz, Sabine; Scheiner, Ricarda; Baumann, Arnd; Blenau, Wolfgang

    2010-07-01

    Serotonin plays a key role in modulating various physiological and behavioral processes in both protostomes and deuterostomes. The vast majority of serotonin receptors belong to the superfamily of G-protein-coupled receptors. We report the cloning of a cDNA from the honeybee (Am5-ht1A) sharing high similarity with members of the 5-HT(1) receptor class. Activation of Am5-HT(1A) by serotonin inhibited the production of cAMP in a dose-dependent manner (EC(50) = 16.9 nM). Am5-HT(1A) was highly expressed in brain regions known to be involved in visual information processing. Using in vivo pharmacology, we could demonstrate that Am5-HT(1A) receptor ligands had a strong impact on the phototactic behavior of individual bees. The data presented here mark the first comprehensive study-from gene to behavior-of a 5-HT(1A) receptor in the honeybee, paving the way for the eventual elucidation of additional roles of this receptor subtype in the physiology and behavior of this social insect.

  20. Brain serotonin 4 receptor binding is inversely associated with verbal memory recall

    DEFF Research Database (Denmark)

    Stenbæk, Dea S; Fisher, Patrick M; Ozenne, Brice

    2017-01-01

    the association between cerebral 5-HT 4R binding and affective verbal memory recall. METHODS: Twenty-four healthy volunteers were scanned with the 5-HT 4R radioligand [11C]SB207145 and positron emission tomography, and were tested with the Verbal Affective Memory Test-24. The association between 5-HT 4R binding...... and affective verbal memory was evaluated using a linear latent variable structural equation model. RESULTS: We observed a significant inverse association across all regions between 5-HT 4R binding and affective verbal memory performances for positive (p = 5.5 × 10-4) and neutral (p = .004) word recall......BACKGROUND: We have previously identified an inverse relationship between cerebral serotonin 4 receptor (5-HT 4R) binding and nonaffective episodic memory in healthy individuals. Here, we investigate in a novel sample if the association is related to affective components of memory, by examining...

  1. Low frontal serotonin 2A receptor binding is a state marker for schizophrenia?

    DEFF Research Database (Denmark)

    Rasmussen, Hans; Frokjaer, Vibe G; Hilker, Rikke W

    2016-01-01

    Here we imaged serotonin 2A receptor (5-HT2AR) binding in a very rare population of monozygotic twins discordant for schizophrenia to provide insight into trait and state components in brain 5-HT2AR patterns. In four twin pairs not medicated with drugs that target 5-HT2AR, frontal 5-HT2AR binding...... was consistently lower (33%) in schizophrenic- relative to their healthy co-twins. Our results strongly imply low frontal 5-HT2AR availability as a state feature of schizophrenia. If replicated, ideally in a larger sample also including dizygotic twin pairs and drug-naïve patients, this finding critically advance...... our understanding of the complex pathophysiology of schizophrenia....

  2. Contribution of non-genetic factors to dopamine and serotonin receptor availability in the adult human brain

    DEFF Research Database (Denmark)

    Borg, J; Cervenka, S; Kuja-Halkola, R

    2016-01-01

    The dopamine (DA) and serotonin (5-HT) neurotransmission systems are of fundamental importance for normal brain function and serve as targets for treatment of major neuropsychiatric disorders. Despite central interest for these neurotransmission systems in psychiatry research, little is known about...... and environmental factors, respectively, on dopaminergic and serotonergic markers in the living human brain. Eleven monozygotic and 10 dizygotic healthy male twin pairs were examined with PET and [(11)C]raclopride binding to the D2- and D3-dopamine receptor and [(11)C]WAY100635 binding to the serotonin 5-HT1A...

  3. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Di Paolo, T.; Falardeau, P.

    1987-08-31

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p < 0.001). Competition for (/sup 3/H)-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-(..beta..-..gamma..-imino)triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables.

  4. Guanine nucleotide regulation of dopamine receptor agonist affinity states in rat estradiol-induced pituitary tumors

    International Nuclear Information System (INIS)

    Di Paolo, T.; Falardeau, P.

    1987-01-01

    The authors have investigated dopamine (DA) receptor agonist high- and low-affinity states in female rate estradiol-induced prolactin (PRL)-secreting pituitary tumors and intact pituitary tissue. Estradiol treatment increased the anterior pituitary weight 9-fold and plasma prolactin levels 74-fold and these measures are correlated (R = 0.745, n = 73, p 3 H]-spiperone binding to the DA receptor by apomorphine was compared in normal and adenomatous pituitary tissue. The inhibition constants (Ki) and the proportions of the two apomorphine sites are unchanged in tumors compared to intact pituitary tissue. Guanosine 5'-[β-γ-imino]triphosphate (Gpp(NH)p) causes complete conversion of the high into low affinity dopaminergic agonist site in normal pituitary and in tumors. These results suggest that rats with primary estradiol-induced pituitary tumors have normal and functional DA receptors. 9 references, 2 tables

  5. LSD Increases Primary Process Thinking via Serotonin 2A Receptor Activation

    Science.gov (United States)

    Kraehenmann, Rainer; Pokorny, Dan; Aicher, Helena; Preller, Katrin H.; Pokorny, Thomas; Bosch, Oliver G.; Seifritz, Erich; Vollenweider, Franz X.

    2017-01-01

    Rationale: Stimulation of serotonin 2A (5-HT2A) receptors by lysergic acid diethylamide (LSD) and related compounds such as psilocybin has previously been shown to increase primary process thinking – an ontologically and evolutionary early, implicit, associative, and automatic mode of thinking which is typically occurring during altered states of consciousness such as dreaming. However, it is still largely unknown whether LSD induces primary process thinking under placebo-controlled, standardized experimental conditions and whether these effects are related to subjective experience and 5-HT2A receptor activation. Therefore, this study aimed to test the hypotheses that LSD increases primary process thinking and that primary process thinking depends on 5-HT2A receptor activation and is related to subjective drug effects. Methods: Twenty-five healthy subjects performed an audio-recorded mental imagery task 7 h after drug administration during three drug conditions: placebo, LSD (100 mcg orally) and LSD together with the 5-HT2A receptor antagonist ketanserin (40 mg orally). The main outcome variable in this study was primary index (PI), a formal measure of primary process thinking in the imagery reports. State of consciousness was evaluated using the Altered State of Consciousness (5D-ASC) rating scale. Results: LSD, compared with placebo, significantly increased primary index (p LSD-induced increase in primary index was positively correlated with LSD-induced disembodiment (p LSD-induced increases in primary index and changes in state of consciousness were fully blocked by ketanserin. Conclusion: LSD induces primary process thinking via activation of 5-HT2A receptors and in relation to disembodiment and blissful state. Primary process thinking appears to crucially organize inner experiences during both dreams and psychedelic states of consciousness. PMID:29167644

  6. LSD Increases Primary Process Thinking via Serotonin 2A Receptor Activation

    Directory of Open Access Journals (Sweden)

    Rainer Kraehenmann

    2017-11-01

    Full Text Available Rationale: Stimulation of serotonin 2A (5-HT2A receptors by lysergic acid diethylamide (LSD and related compounds such as psilocybin has previously been shown to increase primary process thinking – an ontologically and evolutionary early, implicit, associative, and automatic mode of thinking which is typically occurring during altered states of consciousness such as dreaming. However, it is still largely unknown whether LSD induces primary process thinking under placebo-controlled, standardized experimental conditions and whether these effects are related to subjective experience and 5-HT2A receptor activation. Therefore, this study aimed to test the hypotheses that LSD increases primary process thinking and that primary process thinking depends on 5-HT2A receptor activation and is related to subjective drug effects.Methods: Twenty-five healthy subjects performed an audio-recorded mental imagery task 7 h after drug administration during three drug conditions: placebo, LSD (100 mcg orally and LSD together with the 5-HT2A receptor antagonist ketanserin (40 mg orally. The main outcome variable in this study was primary index (PI, a formal measure of primary process thinking in the imagery reports. State of consciousness was evaluated using the Altered State of Consciousness (5D-ASC rating scale.Results: LSD, compared with placebo, significantly increased primary index (p < 0.001, Bonferroni-corrected. The LSD-induced increase in primary index was positively correlated with LSD-induced disembodiment (p < 0.05, Bonferroni-corrected, and blissful state (p < 0.05, Bonferroni-corrected on the 5D-ASC. Both LSD-induced increases in primary index and changes in state of consciousness were fully blocked by ketanserin.Conclusion: LSD induces primary process thinking via activation of 5-HT2A receptors and in relation to disembodiment and blissful state. Primary process thinking appears to crucially organize inner experiences during both dreams and

  7. Serotonin-1A receptors in major depression quantified using PET: controversies, confounds, and recommendations.

    Science.gov (United States)

    Shrestha, Saurav; Hirvonen, Jussi; Hines, Christina S; Henter, Ioline D; Svenningsson, Per; Pike, Victor W; Innis, Robert B

    2012-02-15

    The serotonin-1A (5-HT(1A)) receptor is of particular interest in human positron emission tomography (PET) studies of major depressive disorder (MDD). Of the eight studies investigating this issue in the brains of patients with MDD, four reported decreased 5-HT(1A) receptor density, two reported no change, and two reported increased 5-HT(1A) receptor density. While clinical heterogeneity may have contributed to these differing results, methodological factors by themselves could also explain the discrepancies. This review highlights several of these factors, including the use of the cerebellum as a reference region and the imprecision of measuring the concentration of parent radioligand in arterial plasma, the method otherwise considered to be the 'gold standard'. Other potential confounds also exist that could restrict or unexpectedly affect the interpretation of results. For example, the radioligand may be a substrate for an efflux transporter - like P-gp - at the blood-brain barrier; furthermore, the binding of the radioligand to the receptor in various stages of cellular trafficking is unknown. Efflux transport and cellular trafficking may also be differentially expressed in patients compared to healthy subjects. We believe that, taken together, the existing disparate findings do not reliably answer the question of whether 5-HT(1A) receptors are altered in MDD or in subgroups of patients with MDD. In addition, useful meta-analysis is precluded because only one of the imaging centers acquired all the data necessary to address these methodological concerns. We recommend that in the future, individual centers acquire more thorough data capable of addressing methodological concerns, and that multiple centers collaborate to meaningfully pool their data for meta-analysis. Published by Elsevier Inc.

  8. A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans

    DEFF Research Database (Denmark)

    Erritzoe, David; Holst, Klaus; Frokjaer, Vibe G.

    2010-01-01

    Serotonergic neurotransmission is involved in the regulation of physiological functions such as mood, sleep, memory, and appetite. Within the serotonin transmitter system, both the postsynaptically located serotonin 2A (5-HT2A) receptor and the presynaptic serotonin transporter (SERT) are sensitive...... tomography. Within each individual, a regional intercorrelation for the various brain regions was seen with both markers, most notably for 5-HT2A receptor binding. An inverted U-shaped relationship between the 5-HT2A receptor and the SERT binding was identified. The observed regional intercorrelation...

  9. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.

    Science.gov (United States)

    Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M

    2015-08-01

    We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.

  10. Contribution of Impulsivity and Serotonin Receptor Neuroadaptations to the Development of an MDMA ('Ecstasy') Substance Use Disorder.

    Science.gov (United States)

    Schenk, Susan; Aronsen, Dane

    As is the case with other drugs of abuse, a proportion of ecstasy users develop symptoms consistent with a substance use disorder (SUD). In this paper, we propose that the pharmacology of MDMA, the primary psychoactive component of ecstasy tablets, changes markedly with repeated exposure and that neuroadaptations in dopamine and serotonin brain systems underlie the shift from MDMA use to MDMA misuse in susceptible subjects. Data from both the human and laboratory animal literature are synthesized to support the idea that (1) MDMA becomes a less efficacious serotonin releaser and a more efficacious dopamine releaser with the development of behaviour consistent with an SUD and (2) that upregulated serotonin receptor mechanisms contribute to the development of the MDMA SUD via dysregulated inhibitory control associated with the trait of impulsivity.

  11. Pharmacogenetics of parkinsonism, rigidity, rest tremor, and bradykinesia in African-Caribbean inpatients : Differences in association with dopamine and serotonin receptors

    NARCIS (Netherlands)

    Al Hadithy, Asmar F.; Wilffert, Bob; Stewart, Roy E.; Looman, Nicole M.; Bruggeman, Richard; Brouwers, Jacobus R.; Matroos, Glenn E.; van Os, Jim; Hoek, Hans W.; van Harten, Peter N.

    2008-01-01

    We studied the association between polymorphisms of genes coding for dopamine D-2 (DRD2), dopamine D-3 (DRD3), serotonin 2(a) (HTR2A), and serotonin 2(c) (HTR2C) receptors and Antipsychotic-Induced Parkinsonism (AIP), rigidity, bradykinesia, and rest-tremor in African-Caribbeans treated with

  12. The Antidepressant 5-HT2A Receptor Antagonists Pizotifen and Cyproheptadine Inhibit Serotonin-Enhanced Platelet Function

    Science.gov (United States)

    Lin, Olivia A.; Karim, Zubair A.; Vemana, Hari Priya; Espinosa, Enma V. P.; Khasawneh, Fadi T.

    2014-01-01

    There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their

  13. Syntheses of 7-Substituted α-Cyperone Derivatives for Selective Sigma-1 Receptor over Cannabinoid-1 Receptor Binding Affinities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juyoung; Shin, Younggyun; Yoon, Sunghwa [Ajou Univ., Suwon (Korea, Republic of); Kim, Keewon; Kwon, Youngbae [ChonBuk National Univ., Jeonju (Korea, Republic of)

    2013-11-15

    We have successfully synthesized seven α-cyperone derivatives and found that the presence of a hydrogen bond donor/acceptor groups at the C7 position of α-cyperone significantly affects specificity and potency of CB{sub 1} receptor binding affinity over sigma-1 receptor binding affinity. In particular, the presence of the amino moiety at the C7 position of α-cyperone is beneficial for binding to sigmia-1 receptor. The molecular mechanism of compound 8 involved in the high binding affinity to sigma-1 receptor is under investigation. We first synthesized α-cyperone 1 by following the previously reported synthetic routes.15-19 In brief, azeotropic imination of (+)-dihydrocarvone and (R)-(+)-1-phenylethylamine followed by alkylation with a slight excess of ethyl vinyl ketone (EVK) in THF at 40 .deg. C produced the Micheal adduct. The resulting adduct was hydrolyzed and then treated with sodium methoxide at room temperature to give an easily separable mixture of α-cyperone 1 and its side product. Flash chromatography resulted in pure α-cyperone 1 in a 30% yield from (+)-dihydrocarvone.

  14. Medium-Throughput Screen of Microbially Produced Serotonin via a G-Protein-Coupled Receptor-Based Sensor.

    Science.gov (United States)

    Ehrenworth, Amy M; Claiborne, Tauris; Peralta-Yahya, Pamela

    2017-10-17

    Chemical biosensors, for which chemical detection triggers a fluorescent signal, have the potential to accelerate the screening of noncolorimetric chemicals produced by microbes, enabling the high-throughput engineering of enzymes and metabolic pathways. Here, we engineer a G-protein-coupled receptor (GPCR)-based sensor to detect serotonin produced by a producer microbe in the producer microbe's supernatant. Detecting a chemical in the producer microbe's supernatant is nontrivial because of the number of other metabolites and proteins present that could interfere with sensor performance. We validate the two-cell screening system for medium-throughput applications, opening the door to the rapid engineering of microbes for the increased production of serotonin. We focus on serotonin detection as serotonin levels limit the microbial production of hydroxystrictosidine, a modified alkaloid that could accelerate the semisynthesis of camptothecin-derived anticancer pharmaceuticals. This work shows the ease of generating GPCR-based chemical sensors and their ability to detect specific chemicals in complex aqueous solutions, such as microbial spent medium. In addition, this work sets the stage for the rapid engineering of serotonin-producing microbes.

  15. Drug Discovery Targeting Serotonin G Protein-Coupled Receptors in the Treatment of Neuropsychiatric Disorders

    Science.gov (United States)

    Felsing, Daniel E.

    Clinical data show that activation of 5-HT2C G protein-coupled receptors (GPCRs) can treat obesity (lorcaserin/BelviqRTM) and psychotic disorders (aripiprazole/Abilify.), including schizophrenia. 5-HT2C GPCRs are members of the 5-HT2 sub-family of 5-HT GPCRs, which include 5-HT2A, 5-HT2B, and 5-HT 2C GPCRs. 5-HT2C is structurally similar to 5-HT2A and 5-HT2B GPCRs, but activation of 5-HT2A and/or 5-HT 2B causes deleterious effects, including hallucinations and cardiac valvulopathy. Thus, there is a challenge to develop drugs that selectively activate only 5-HT2C. Prolonged activation of GPCRs by agonists reduces their function via a regulatory process called desensitization. This has clinical relevance, as 45% of drugs approved by the FDA target GPCRs, and agonist drugs (e.g., morphine) typically lose efficacy over time due to desensitization, which invites tolerance. Agonists that cause less desensitization may show extended clinical efficacy as well as a more acceptable clinical dose range. We hypothesized that structurally distinct agonists of the 5-HT2C receptor may cause varying degrees of desensitization by stabilizing unique 5-HT2C receptor conformations. Discovery of 5-HT2C agonists that exhibit minimal desensitization is therapeutically relevant for the pharmacotherapeutic treatment of chronic diseases such as obesity and psychotic disorders. The 5-HT7 receptor has recently been discovered as a druggable target, and selective activation of the 5-HT7 receptor has been shown to alleviate locomotor deficits in mouse models of Rett Syndrome. Additionally, buspirone has been shown to display therapeutically relevant affinity at 5-HT 1A and is currently in phase II clinical trials to treat stereotypy in children with autism. The 5-PAT chemical scaffold shows high affinity towards the 5-HT7 and 5-HT1A receptors. Modulations around the 5-phenyl moiety were able to improve selectivity in binding towards the 5-HT 7 receptor, whereas modulations of the alkyl chains

  16. Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    1999-08-05

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation. Copyright 1999 Elsevier Science B.V.

  17. Lysergic acid diethylamide (LSD) administration selectively downregulates serotonin2 receptors in rat brain.

    Science.gov (United States)

    Buckholtz, N S; Zhou, D F; Freedman, D X; Potter, W Z

    1990-04-01

    A dosage regimen of lysergic acid diethylamide (LSD) that reliably produces behavioral tolerance in rats was evaluated for effects on neurotransmitter receptor binding in rat brain using a variety of radioligands selective for amine receptor subtypes. Daily administration of LSD [130 micrograms/kg (0.27 mumol/kg) intraperitoneally (IP)] for 5 days produced a decrease in serotonin2 (5-hydroxytryptamine2, 5-HT2) binding in cortex (measured 24 hours after the last drug administration) but did not affect binding to other receptor systems (5-HT1A, 5-HT1B, beta-adrenergic, alpha 1- or alpha 2-adrenergic, D2-dopaminergic) or to a recognition site for 5-HT uptake. The decrease was evident within 3 days of LSD administration but was not demonstrable after the first LSD dose. Following 5 days of LSD administration the decrease was still present 48 hours, but not 96 hours, after the last administration. The indole hallucinogen psilocybin [1.0 mg/kg (3.5 mumol/kg) for 8 days] also produced a significant decrease in 5HT2 binding, but neither the nonhallucinogenic analog bromo-LSD [1.3 mg/kg (2.4 mumol/kg) for 5 days] nor mescaline [10 mg/kg (40.3 mumol/kg) for 5 or 10 days] affected 5-HT2 binding. These observations suggest that LSD and other indole hallucinogens may act as 5-HT2 agonists at postsynaptic 5-HT2 receptors. Decreased 5-HT2 binding strikingly parallels the development and loss of behavioral tolerance seen with repeated LSD administration, but the decreased binding per se cannot explain the gamut of behavioral tolerance and cross-tolerance phenomena among the indole and phenylethylamine hallucinogens.

  18. Identification of high- and low-affinity NGF receptors during development of the chicken central nervous system

    International Nuclear Information System (INIS)

    Escandon, E.; Chao, M.V.

    1990-01-01

    In order to study regulation of the nerve growth factor (NGF) receptor during embryogenesis in chick brain, we have used affinity crosslinking of tissues with 125 I-NGF. NGF interacts with high- and low-affinity receptors; high-affinity receptors are required for the majority of NGF's actions. Most measurements of receptor levels do not distinguish between high- and low-affinity forms of the receptor. We have used the lipophilic crosslinking agent HSAB to identify the high-affinity, functional receptor during development of the chicken central nervous system. A peak of expression during Embryonic Days 5-10 was detected in all regions of the chicken central nervous system, but, shortly after birth, only the cerebellar region displays significant levels of NGF receptor protein. The time course of expression confirms the dramatic regulation of the NGF receptor gene during defined embryonic periods. The detection of high-affinity NGF receptors in brain and neural retina provides strong evidence that NGF is involved in essential ontogenetic events in the development of the chicken central nervous system

  19. Serotonin-1A receptor polymorphism (rs6295 associated with thermal pain perception.

    Directory of Open Access Journals (Sweden)

    Fredrik Lindstedt

    Full Text Available BACKGROUND: Serotonin (5-HT is highly involved in pain regulation and serotonin-1A (5-HT1A receptors are important in determining central 5-HT tone. Accordingly, variation in the 5-HT1A receptor gene (HTR1A may contribute to inter-individual differences in human pain sensitivity. The minor G-allele of the HTR1A single nucleotide polymorphism (SNP rs6295 attenuates firing of serotonergic neurons and reduces postsynaptic expression of the receptor. Experiments in rodents suggest that 5-HT1A-agonism modulates pain in opposite directions at mild compared to high noxious intensities. Based upon this and several other similar observations, we hypothesized that G-carriers would exhibit a relative hypoalgesia at mild thermal stimuli but tend towards hyperalgesia at higher noxious intensities. METHODS: Fourty-nine healthy individuals were selectively genotyped for rs6295. Heat- and cold-pain thresholds were assessed along with VAS-ratings of a range of suprathreshold noxious heat intensities (45°C-49°C. Nociceptive-flexion reflex (NFR thresholds were also assessed. RESULTS: Volunteers did not deviate significantly from Hardy-Weinberg equilibrium. G-carriers were less sensitive to threshold-level thermal pain. This relative hypoalgesia was abolished at suprathreshold noxious intensities where G-carriers instead increased their ratings of heat-pain significantly more than C-homozygotes. No differences with regard to NFR-thresholds emerged. CONCLUSION/SIGNIFICANCE: To the best of our knowledge this is the first study of human pain perception on the basis of variation in HTR1A. The results illustrate the importance of including a range of stimulus intensities in assessments of pain sensitivity. In speculation, we propose that an attenuated serotonergic tone may be related to a 'hypo- to hyperalgesic' response-pattern. The involved mechanisms could be of clinical interest as variation in pain regulation is known to influence the risk of developing pain

  20. 5-(sulfonyl)oxy-tryptamines and ethylamino side chain restricted derivatives. Structure-affinity relationships for h5-HT1B and h5-HT1D receptors

    NARCIS (Netherlands)

    Barf, T; Wikstrom, H; Pauwels, PJ; Palmier, C; Tardif, S; Lundmark, M; Sundell, S

    A number of sulfonic acid ester derivatives of serotonin (5-hydroxytryptamine; 5-HT; 1) were prepared and their affinities are compared to that of the reference compound 5-[[(trifluoromethyl)sulfonyl]oxy]-tryptamine (8b). The structure-affinity relationship (SAFIR) is discussed in terms of in vitro

  1. Intestinal Serotonin Transporter Inhibition by Toll-Like Receptor 2 Activation. A Feedback Modulation.

    Directory of Open Access Journals (Sweden)

    Eva Latorre

    Full Text Available TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.

  2. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    Science.gov (United States)

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  3. Oppositional effects of serotonin receptors 5-HT1a, 2 and 2c in the regulation of adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Friederike Klempin

    2010-07-01

    Full Text Available Serotonin (5-HT appears to play a major role in controlling adult hippocampal neurogenesis and thereby it is relevant for theories linking failing adult neurogenesis to the pathogenesis of major depression and the mechanisms of action of antidepressants. Serotonergic drugs lack acute effects on adult neurogenesis in many studies, which suggests a surprising long latency phase. Here we report that the selective serotonin reuptake inhibitor fluoxetine, which has no acute effect on precursor cell proliferation, causes the well-described increase in net neurogenesis upon prolonged treatment partly by promoting the survival and maturation of new postmitotic neurons. We hypothesized that this result is the cumulative effect of several 5-HT-dependent events in the course of adult neurogenesis. Thus, we used specific agonists and antagonists to 5-HT1a, 2, and 2c receptor subtypes to analyze their impact on different developmental stages. We found that 5-HT exerts acute and opposing effects on proliferation and survival or differentiation of precursor cells by activating the diverse receptor subtypes on different stages within the neuronal lineage in vivo. This was confirmed in vitro by demonstrating that 5-HT1a receptors are involved in self-renewal of precursor cells, whereas 5-HT2 receptors effect both proliferation and promote neuronal differentiation. We propose that under acute conditions 5-HT2 effects counteract the positive proliferative effect of 5-HT1a receptor activation. However, prolonged 5-HT2c receptor activation fosters an increase in late stage progenitor cells and early postmitotic neurons, leading to a net increase in adult neurogenesis. Our data indicate that serotonin does not show effect latency in the adult dentate gyrus. Rather, the delayed response to serotonergic drugs with respect to endpoints downstream of the immediate receptor activity is largely due to the initially antagonistic and un-balanced action of different 5-HT

  4. GABAB Receptor Constituents Revealed by Tandem Affinity Purification from Transgenic Mice

    DEFF Research Database (Denmark)

    Bartoi, Tudor; Rigbolt, Kristoffer T G; Du, Dan

    2010-01-01

    lines that allow a straightforward biochemical isolation of GABA(B) receptors. The transgenic mice express GABA(B1) isoforms that contain sequences for a two-step affinity purification, in addition to their endogenous subunit repertoire. Comparative analyses of purified samples from the transgenic mice...... and wild-type control animals revealed two novel components of the GABA(B1) complex. One of the identified proteins, potassium channel tetramerization domain-containing protein 12, associates with heterodimeric GABA(B) receptors via the GABA(B2) subunit. In transfected hippocampal neurons, potassium...

  5. Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities.

    Science.gov (United States)

    Dolenc, Jožica; Riniker, Sereina; Gaspari, Roberto; Daura, Xavier; van Gunsteren, Wilfred F

    2011-08-01

    Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host-guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand-receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand-DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand-DNA interactions but also from changes in ligand-solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

  6. High affinity soluble ILT2 receptor: a potent inhibitor of CD8(+) T cell activation.

    Science.gov (United States)

    Moysey, Ruth K; Li, Yi; Paston, Samantha J; Baston, Emma E; Sami, Malkit S; Cameron, Brian J; Gavarret, Jessie; Todorov, Penio; Vuidepot, Annelise; Dunn, Steven M; Pumphrey, Nicholas J; Adams, Katherine J; Yuan, Fang; Dennis, Rebecca E; Sutton, Deborah H; Johnson, Andy D; Brewer, Joanna E; Ashfield, Rebecca; Lissin, Nikolai M; Jakobsen, Bent K

    2010-12-01

    Using directed mutagenesis and phage display on a soluble fragment of the human immunoglobulin super-family receptor ILT2 (synonyms: LIR1, MIR7, CD85j), we have selected a range of mutants with binding affinities enhanced by up to 168,000-fold towards the conserved region of major histocompatibility complex (MHC) class I molecules. Produced in a dimeric form, either by chemical cross-linking with bivalent polyethylene glycol (PEG) derivatives or as a genetic fusion with human IgG Fc-fragment, the mutants exhibited a further increase in ligand-binding strength due to the avidity effect, with resident half-times (t(1/2)) on the surface of MHC I-positive cells of many hours. The novel compounds antagonized the interaction of CD8 co-receptor with MHC I in vitro without affecting the peptide-specific binding of T-cell receptors (TCRs). In both cytokine-release assays and cell-killing experiments the engineered receptors inhibited the activation of CD8(+) cytotoxic T lymphocytes (CTLs) in the presence of their target cells, with subnanomolar potency and in a dose-dependent manner. As a selective inhibitor of CD8(+) CTL responses, the engineered high affinity ILT2 receptor presents a new tool for studying the activation mechanism of different subsets of CTLs and could have potential for the development of novel autoimmunity therapies.

  7. Agonist-induced affinity alterations of a central nervous system. cap alpha. -bungarotoxin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, R.J.; Bennett, E.L.

    1979-01-01

    The ability of cholinergic agonists to block the specific interaction of ..cap alpha..-bungarotoxin (..cap alpha..-Bgt) with membrane-bound sites derived from rat brain is enhanced when membranes are preincubated with agonist. Thus, pretreatment of ..cap alpha..-Bgt receptors with agonist (but not antagonist) causes transformation of sites to a high-affinity form toward agonist. This change in receptor state occurs with a half-time on the order of minutes, and is fully reversible on dilution of agonist. The results are consistent with the identity of ..cap alpha..-Bgt binding sites as true central nicotinic acetylcholine receptors. Furthermore, this agonist-induced alteration in receptor state may represent an in vitro correlate of physiological desensitization. As determined from the effects of agonist on toxin binding isotherms, and on the rate of toxin binding to specific sites, agonist inhibition of toxin binding to the high-affinity state is non-competitive. This result suggests that there may exist discrete toxin-binding and agonist-binding sites on central toxin receptors.

  8. Conformational destabilization of Immunoglobulin G increases the low pH-binding affinity with the Neonatal Fc Receptor

    DEFF Research Database (Denmark)

    Walters, Benjamin T; Jensen, Pernille Foged; Larraillet, Vincent

    2016-01-01

    Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the ......H-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors.......Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain...... the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and Fc...

  9. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.

    Directory of Open Access Journals (Sweden)

    Annina Huser

    Full Text Available The biogenic amine serotonin (5-HT is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.

  10. Characterization of prejunctional serotonin receptors modulating [3H]acetylcholine release in the human detrusor.

    Science.gov (United States)

    D'Agostino, Gianluigi; Condino, Anna M; Gallinari, Paola; Franceschetti, Gian P; Tonini, Marcello

    2006-01-01

    Bladder overactivity (OAB) is a chronic and debilitating lower urinary tract (LUT) disorder that affects millions of individuals worldwide. LUT symptoms associated with OAB, such as urgency and urinary incontinence, cause a hygienic and social concern to patients, but their current pharmacological treatment is largely inadequate due to the lack of uroselectivity. Although OAB etiology remains multifactorial and poorly understood, increasing evidence indicates that serotonin [5-hydroxytryptamine (5-HT)] is an endogenous substance involved in the control of micturition at central and peripheral sites. In this study, we demonstrated the presence of three distinct 5-HT receptors localized at parasympathetic nerve terminals of the human bladder by measuring electrically evoked tritiated acetylcholine release in isolated detrusor strips. These prejunctional receptors, involved in both positive and negative feedback mechanisms regulating cholinergic transmission, have been characterized by means of three highly selective 5-HT antagonists for 5-HT(4), 5-HT(7), and 5-HT(1A) receptors, namely GR113808A ([1-[2-[(-methylsulphonyl) amino] ethyl]4-piperinidyl]methyl1-methyl-1H-indole-3-carboxylate succinate), SB269970 [(R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl)phenol hydrochloride], and WAY100635 [N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridyl)-cyclohexane-carboxamide trichloride]. Under these conditions, we confirmed the facilitatory role of 5-HT(4) heteroreceptors on acetylcholine release and revealed for the first time the occurrence of 5-HT(7) and 5-HT(1A) heteroreceptors with a facilitatory and an inhibitory action, respectively. Our findings strengthen the novel concept for the use of recently patented selective 5-HT agonists and antagonists for the control of OAB dysfunctions associated with inflammatory conditions, although their therapeutic efficacy needs to be explored in the clinical setting.

  11. Serotonin receptor 3A polymorphism c.-42C > T is associated with severe dyspepsia

    Directory of Open Access Journals (Sweden)

    Grobbee Diederick E

    2011-10-01

    Full Text Available Abstract Background The association between anxiety and depression related traits and dyspepsia may reflect a common genetic predisposition. Furthermore, genetic factors may contribute to the risk of having increased visceral sensitivity, which has been implicated in dyspeptic symptom generation. Serotonin (5-HT modulates visceral sensitivity by its action on 5-HT3 receptors. Interestingly, a functional polymorphism in HTR3A, encoding the 5-HT3 receptor A subunit, has been reported to be associated with depression and anxiety related traits. A functional polymorphism in the serotonin transporter (5-HTT, which terminates serotonergic signalling, was also found associated with these psychiatric comorbidities and increased visceral sensitivity in irritable bowel syndrome, which coexistence is associated with higher dyspeptic symptom severity. We investigated the association between these functional polymorphisms and dyspeptic symptom severity. Methods Data from 592 unrelated, Caucasian, primary care patients with dyspepsia participating in a randomised clinical trial comparing step-up and step-down antacid drug treatment (The DIAMOND trial were analysed. Patients were genotyped for HTR3A c.-42C > T SNP and the 44 bp insertion/deletion polymorphism in the 5-HTT promoter (5-HTTLPR. Intensity of 8 dyspeptic symptoms at baseline was assessed using a validated questionnaire (0 = none; 6 = very severe. Sum score ≥20 was defined severe dyspepsia. Results HTR3A c.-42T allele carriers were more prevalent in patients with severe dyspepsia (OR 1.50, 95% CI 1.06-2.20. This association appeared to be stronger in females (OR 2.05, 95% CI 1.25-3.39 and patients homozygous for the long (L variant of the 5-HTTLPR genotype (OR 2.00, 95% CI 1.01-3.94. Females with 5-HTTLPR LL genotype showed the strongest association (OR = 3.50, 95% CI = 1.37-8.90. Conclusions The HTR3A c.-42T allele is associated with severe dyspeptic symptoms. The stronger association among

  12. Traumatic injury induces changes in the expression of the serotonin 1A receptor in the spinal cord of lampreys.

    Science.gov (United States)

    Cornide-Petronio, María Eugenia; Fernández-López, Blanca; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2014-02-01

    After spinal cord injury (SCI) in mammals, the loss of serotonin coming from the brainstem reduces the excitability of motor neurons and leads to a compensatory overexpression of serotonin receptors. Despite the key role of the serotonin receptor 1a in the control of locomotion, little attention has been put in the study of this receptor after SCI. In contrast to mammals, lampreys recover locomotion after a complete SCI, so, studies in this specie could help to understand events that lead to recovery of function. Here, we showed that in lampreys there is an acute increase in the expression of the serotonin 1A receptor transcript (5-ht1a) after SCI and a few weeks later expression levels go back to normal rostrally and caudally to the lesion. Overexpression of the 5-ht1a in rostral levels after SCI has not been reported in mammals, suggesting that this could be part of the plastic events that lead to the recovery of function in lampreys. The analysis of changes in 5-ht1a expression by zones (periventricular region and horizontally extended grey matter) showed that they followed the same pattern of changes detected in the spinal cord as a whole, with the exception of the caudal periventricular layer, where no significant differences were observed between control and experimental animals at any time post lesion. This suggests that different molecular signals act on the periventricular cells of the rostral and caudal regions to injury site and thus affecting their response to the injury in terms of expression of the 5-ht1a.

  13. Design and Application of Synthetic Receptors for Recognition of Methylated Lysine and Supramolecular Affinity Labeling

    Science.gov (United States)

    Gober, Isaiah Nathaniel

    This dissertation involves the design and synthesis of new synthetic receptors and their application in the molecular recognition of methylated lysine and their use as tools for chemical biology. The dissertation is divided into four parts. The first section focuses on the development of a novel labeling method that is based on ligand-directed affinity labeling principles. In this labeling method, a synthetic receptor that binds to trimethyl lysine (Kme3) is attached through a linker to an electrophilic tag group that can react with a nucleophilic amine in a histone peptide. This affinity labeling probe, which we called CX4-ONBD, is equipped with an electrophilic tag that allows for turn-on fluorescence labeling of Kme3 histone peitdes. We show that the probe gives a pronounced turn-on fluorescence response when it is incubated with a histone peptide that contains Kme3 and a nearby reactive lysine. This probe also displays >5-fold selectivity in covalent labeling over an unmethylated lysine peptide. This represents the first time a synthetic receptor has been used for affinity labeling purposes, and it also expands on the chemical toolkit that is available for sensing PTMs like lysine methylation. In the second section, the supramolecular affinity labeling method that was optimized using CX4-ONBD was applied to the development of a real-time assay for measuring enzymatic activity. More specifically, the probe was used to create a turn-on fluorescence assay for histone deacetylase (HDAC) activity and for inhibitor screening and IC50 determination. Most commercial kits for HDAC activity have limited substrate scope, and other common methods used for characterizing enzymatic activity often require chromatographic separation and are therefore not high-throughput. This small molecule receptor-mediated affinity labeling strategy allowed for facile readout of HDAC activity and inhibition. Overall, this application of supramolecular affinity labeling expands on the

  14. Simulating the influence of plasma protein on measured receptor affinity in biochemical assays reveals the utility of Schild analysis for estimating compound affinity for plasma proteins.

    Science.gov (United States)

    Blakeley, D; Sykes, D A; Ensor, P; Bertran, E; Aston, P J; Charlton, S J

    2015-11-01

    Plasma protein binding (PPB) influences the free fraction of drug available to bind to its target and is therefore an important consideration in drug discovery. While traditional methods for assessing PPB (e.g. rapid equilibrium dialysis) are suitable for comparing compounds with relatively weak PPB, they are not able to accurately discriminate between highly bound compounds (typically >99.5%). The aim of the present work was to use mathematical modelling to explore the potential utility of receptor binding and cellular functional assays to estimate the affinity of compounds for plasma proteins. Plasma proteins are routinely added to in vitro assays, so a secondary goal was to investigate the effect of plasma proteins on observed ligand-receptor interactions. Using the principle of conservation of mass and the law of mass action, a cubic equation was derived describing the ligand-receptor complex [LR] in the presence of plasma protein at equilibrium. The model demonstrates the profound influence of PPB on in vitro assays and identifies the utility of Schild analysis, which is usually applied to determine receptor-antagonist affinities, for calculating affinity at plasma proteins (termed KP ). We have also extended this analysis to functional effects using operational modelling and demonstrate that these approaches can also be applied to cell-based assay systems. These mathematical models can potentially be used in conjunction with experimental data to estimate drug-plasma protein affinities in the earliest phases of drug discovery programmes. © 2015 The British Pharmacological Society.

  15. Investigations into the binding affinities of different human 5-HT4 receptor splice variants.

    Science.gov (United States)

    Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M

    2010-01-01

    This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.

  16. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    International Nuclear Information System (INIS)

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-01-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17β to the four rainbow trout ER isoforms with that of three known environmental estrogens 17α-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ERα subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17β, bisphenol A binds less strongly to all four receptors, 17α-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the α subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  17. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats

    International Nuclear Information System (INIS)

    Chi, Yan; Liu, Xin-Guang; Wang, Hua-Hong; Li, Jun-Xia; Li, Yi-Xuan

    2012-01-01

    Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT 4 receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT 4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT 4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg −1 ·day −1 , days 36-42), tegaserod (1 mg·kg −1 ·day −1 , day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT 4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT 4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level

  18. Serotonin receptors expressed in Drosophila mushroom bodies differentially modulate larval locomotion.

    Directory of Open Access Journals (Sweden)

    Bryon Silva

    Full Text Available Drosophila melanogaster has been successfully used as a simple model to study the cellular and molecular mechanisms underlying behaviors, including the generation of motor programs. Thus, it has been shown that, as in vertebrates, CNS biogenic amines (BA including serotonin (5HT participate in motor control in Drosophila. Several evidence show that BA systems innervate an important association area in the insect brain previously associated to the planning and/or execution of motor programs, the Mushroom Bodies (MB. The main objective of this work is to evaluate the contribution of 5HT and its receptors expressed in MB to motor behavior in fly larva. Locomotion was evaluated using an automated tracking system, in Drosophila larvae (3(rd-instar exposed to drugs that affect the serotonergic neuronal transmission: alpha-methyl-L-dopa, MDMA and fluoxetine. In addition, animals expressing mutations in the 5HT biosynthetic enzymes or in any of the previously identified receptors for this amine (5HT1AR, 5HT1BR, 5HT2R and 5HT7R were evaluated in their locomotion. Finally, RNAi directed to the Drosophila 5HT receptor transcripts were expressed in MB and the effect of this manipulation on motor behavior was assessed. Data obtained in the mutants and in animals exposed to the serotonergic drugs, suggest that 5HT systems are important regulators of motor programs in fly larvae. Studies carried out in animals pan-neuronally expressing the RNAi for each of the serotonergic receptors, support this idea and further suggest that CNS 5HT pathways play a role in motor control. Moreover, animals expressing an RNAi for 5HT1BR, 5HT2R and 5HT7R in MB show increased motor behavior, while no effect is observed when the RNAi for 5HT1AR is expressed in this region. Thus, our data suggest that CNS 5HT systems are involved in motor control, and that 5HT receptors expressed in MB differentially modulate motor programs in fly larvae.

  19. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats

    Directory of Open Access Journals (Sweden)

    Chi Yan

    2012-10-01

    Full Text Available Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT4 receptor and the serotonin transporter (SERT as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05 and increased 5-HT4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05. Treatment with fluoxetine (10 mg·kg-1·day-1, days 36-42, tegaserod (1 mg·kg-1·day-1, day 43, or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01 but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654. These results indicate that both the 5-HT4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level.

  20. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only.

    Science.gov (United States)

    Pagani, J H; Williams Avram, S K; Cui, Z; Song, J; Mezey, É; Senerth, J M; Baumann, M H; Young, W S

    2015-02-01

    Serotonin and oxytocin influence aggressive and anxiety-like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety-like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open-field, olfactory habituation/dishabituation or, surprisingly, anxiety-like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident-intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety-like behaviors or maternal care. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. Brain serotonin 4 receptor binding is inversely associated with verbal memory recall.

    Science.gov (United States)

    Stenbæk, Dea S; Fisher, Patrick M; Ozenne, Brice; Andersen, Emil; Hjordt, Liv V; McMahon, Brenda; Hasselbalch, Steen G; Frokjaer, Vibe G; Knudsen, Gitte M

    2017-04-01

    We have previously identified an inverse relationship between cerebral serotonin 4 receptor (5-HT 4 R) binding and nonaffective episodic memory in healthy individuals. Here, we investigate in a novel sample if the association is related to affective components of memory, by examining the association between cerebral 5-HT 4 R binding and affective verbal memory recall. Twenty-four healthy volunteers were scanned with the 5-HT 4 R radioligand [ 11 C]SB207145 and positron emission tomography, and were tested with the Verbal Affective Memory Test-24. The association between 5-HT 4 R binding and affective verbal memory was evaluated using a linear latent variable structural equation model. We observed a significant inverse association across all regions between 5-HT 4 R binding and affective verbal memory performances for positive ( p  = 5.5 × 10 -4 ) and neutral ( p  = .004) word recall, and an inverse but nonsignificant association for negative ( p  = .07) word recall. Differences in the associations with 5-HT 4 R binding between word categories (i.e., positive, negative, and neutral) did not reach statistical significance. Our findings replicate our previous observation of a negative association between 5-HT 4 R binding and memory performance in an independent cohort and provide novel evidence linking 5-HT 4 R binding, as a biomarker for synaptic 5-HT levels, to the mnestic processing of positive and neutral word stimuli in healthy humans.

  2. Serotonin receptor 2B signaling with interstitial cell activation and leaflet remodeling in degenerative mitral regurgitation.

    Science.gov (United States)

    Driesbaugh, Kathryn H; Branchetti, Emanuela; Grau, Juan B; Keeney, Samuel J; Glass, Kimberly; Oyama, Mark A; Rioux, Nancy; Ayoub, Salma; Sacks, Michael S; Quackenbush, John; Levy, Robert J; Ferrari, Giovanni

    2018-02-01

    Mitral valve interstitial cells (MVIC) play an important role in the pathogenesis of degenerative mitral regurgitation (MR) due to mitral valve prolapse (MVP). Numerous clinical studies have observed serotonin (5HT) dysregulation in cardiac valvulopathies; however, the impact of 5HT-mediated signaling on MVIC activation and leaflet remodeling in MVP have been investigated to a limited extent. Here we test the hypothesis that 5HT receptors (5HTRs) signaling contributes to MVP pathophysiology. Diseased human MV leaflets were obtained during cardiac surgery for MVP; normal MV leaflets were obtained from heart transplants. MV RNA was used for microarray analysis of MVP patients versus control, highlighting genes that indicate the involvement of 5HTR pathways and extracellular matrix remodeling in MVP. Human MV leaflets were also studied in vitro and ex vivo with biomechanical testing to assess remodeling in the presence of a 5HTR2B antagonist (LY272015). MVP leaflets from Cavalier King Charles Spaniels were used as a naturally acquired in vivo model of MVP. These canine MVP leaflets (N=5/group) showed 5HTR2B upregulation. This study also utilized CB57.1ML/6 mice in order to determine the effect of Angiotensin II infusion on MV remodeling. Histological analysis showed that MV thickening due to chronic Angiotensin II remodeling is mitigated by a 5HTR2B antagonist (LY272015) but not by 5HTR2A inhibitors. In humans, MVP is associated with an upregulation in 5HTR2B expression and increased 5HT receptor signaling in the leaflets. Antagonism of 5HTR2B mitigates MVIC activation in vitro and MV remodeling in vivo. These observations support the view that 5HTR signaling is involved not only in previously reported 5HT-related valvulopathies, but it is also involved in the pathological remodeling of MVP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Brain serotonin 4 receptor binding is associated with the cortisol awakening response

    DEFF Research Database (Denmark)

    Jakobsen, Gustav R; Fisher, Patrick M; Dyssegaard, Agnete

    2016-01-01

    Serotonin signalling is considered critical for an appropriate and dynamic adaptation to stress. Previously, we have shown that prefrontal serotonin transporter (SERT) binding is positively associated with the cortisol awakening response (CAR) (Frokjaer et al., 2013), which is an index of hypotha...

  4. Men with high serotonin 1B receptor binding respond to provocations with heightened amygdala reactivity

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sofi; Fisher, Patrick M; Hjordt, Liv V

    2018-01-01

    Serotonin signalling influences amygdala reactivity to threat-related emotional facial expressions in healthy adults, but in vivo serotonin signalling has never been investigated in the context of provocative stimuli in aggressive individuals. The aim of this study was to evaluate associations...

  5. Synthesis and evaluation of 99mTc serotonin for central nervous system (CNS) receptor imaging

    International Nuclear Information System (INIS)

    Geetha, R.; Ghodke, A.S.; Sachdev, S.S.; Sivaprasad, N.

    2001-01-01

    Serotonin was directly radiolabelled with 99m Tc. The complex was not very stable. Therefore, a conjugate of serotonin, cDTPAA (cyclic anhydride of diethylene triamine penta acetic acid) was prepared and characterised using IR. It was then radiolabelled with 99m Tc using stannous chloride as the reducing agent. The radiochemical purity as determined by paper chromatography was more than 80%. (author)

  6. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder.

    Science.gov (United States)

    Soloff, Paul H; Chiappetta, Laurel; Mason, Neale Scott; Becker, Carl; Price, Julie C

    2014-06-30

    Impulsivity and aggressiveness are personality traits associated with a vulnerability to suicidal behavior. Behavioral expression of these traits differs by gender and has been related to central serotonergic function. We assessed the relationships between serotonin-2A receptor function, gender, and personality traits in borderline personality disorder (BPD), a disorder characterized by impulsive-aggression and recurrent suicidal behavior. Participants, who included 33 BPD patients and 27 healthy controls (HC), were assessed for Axis I and II disorders with the Structured Clinical Interview for DSM-IV and the International Personality Disorders Examination, and with the Diagnostic Interview for Borderline Patients-Revised for BPD. Depressed mood, impulsivity, aggression, and temperament were assessed with standardized measures. Positron emission tomography with [(18)F]altanserin as ligand and arterial blood sampling was used to determine the binding potentials (BPND) of serotonin-2A receptors in 11 regions of interest. Data were analyzed using Logan graphical analysis, controlling for age and non-specific binding. Among BPD subjects, aggression, Cluster B co-morbidity, antisocial PD, and childhood abuse were each related to altanserin binding. BPND values predicted impulsivity and aggression in BPD females (but not BPD males), and in HC males (but not HC females.) Altanserin binding was greater in BPD females than males in every contrast, but it did not discriminate suicide attempters from non-attempters. Region-specific differences in serotonin-2A receptor binding related to diagnosis and gender predicted clinical expression of aggression and impulsivity. Vulnerability to suicidal behavior in BPD may be related to serotonin-2A binding through expression of personality risk factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-ht2 receptors

    DEFF Research Database (Denmark)

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine...... about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure...... but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure...

  8. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    International Nuclear Information System (INIS)

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-01-01

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 0 C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17β-[ 3 H]estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins

  9. Evidence that the angiotensin at 2-receptor agonist compound 21 is also a low affinity thromboxane TXA2-receptor antagonist

    DEFF Research Database (Denmark)

    Fredgart, M.; Leurgans, T.; Stenelo, M.

    2015-01-01

    Objective: The objective of this study was to test whether Compound 21 (C21), a high-affinity, non-peptide angiotensinAT2-receptor agonist, is also an antagonist of thromboxane A2 (TXA2) receptors thus reducing both vasoconstriction and platelet aggregation. Design and method: Binding of C21...... to the TXA2 receptor was determined by TBXA2R Arrestin Biosensor Assay. Mouse mesenteric arteries were mounted in wire myographs, and responses to increasing concentrations of C21 (1nM- 10muM) were recorded during submaximal contractions with 0.1muM U46619 (TXA2 analogue) or 1muMphenylephrine. To control for......AT2-receptor specificity, arteries were pre-incubated with the AT2-receptor antagonist PD123319 (10muM), or mesenteric arteries from AT2-receptor knock-out (AT2R-/y) mice were used. An inhibitory effect of C21 (100nM - 10muM) on U46619 (0,3muM) induced platelet aggregation was examined in whole human...

  10. Insight into pattern of codon biasness and nucleotide base usage in serotonin receptor gene family from different mammalian species.

    Science.gov (United States)

    Dass, J Febin Prabhu; Sudandiradoss, C

    2012-07-15

    5-HT (5-Hydroxy-tryptamine) or serotonin receptors are found both in central and peripheral nervous system as well as in non-neuronal tissues. In the animal and human nervous system, serotonin produces various functional effects through a variety of membrane bound receptors. In this study, we focus on 5-HT receptor family from different mammals and examined the factors that account for codon and nucleotide usage variation. A total of 110 homologous coding sequences from 11 different mammalian species were analyzed using relative synonymous codon usage (RSCU), correspondence analysis (COA) and hierarchical cluster analysis together with nucleotide base usage frequency of chemically similar amino acid codons. The mean effective number of codon (ENc) value of 37.06 for 5-HT(6) shows very high codon bias within the family and may be due to high selective translational efficiency. The COA and Spearman's rank correlation reveals that the nucleotide compositional mutation bias as the major factors influencing the codon usage in serotonin receptor genes. The hierarchical cluster analysis suggests that gene function is another dominant factor that affects the codon usage bias, while species is a minor factor. Nucleotide base usage was reported using Goldman, Engelman, Stietz (GES) scale reveals the presence of high uracil (>45%) content at functionally important hydrophobic regions. Our in silico approach will certainly help for further investigations on critical inference on evolution, structure, function and gene expression aspects of 5-HT receptors family which are potential antipsychotic drug targets. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  12. Synthesis, radiofluorination and first evaluation of [{sup 18}F]fluorophenylsulfonyl- and [{sup 18}F]fluorophenylsulfinyl-piperidines as serotonin 5-HT{sub 2A} receptor antagonists for PET

    Energy Technology Data Exchange (ETDEWEB)

    Muehlhausen, Ute; Sihver, Wiebke [Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Ermert, Johannes, E-mail: j.ermert@fz-juelich.d [Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany); Coenen, Heinz H. [Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Forschungszentrum Juelich GmbH, 52425 Juelich (Germany)

    2010-07-15

    In psychiatric disorders, 5-HT{sub 2A} receptors play an important role. In order to study these receptors in vivo by positron emission tomography (PET), there is an increasing interest for subtype selective and high affinity radioligands. Up to now, no optimal radiotracer is available. Thus, 1-(2,4-difluorophenethyl)-4-(4-fluorophenylsulfonyl)piperidine (9), possessing high affinity and sufficient subtype selectivity for 5-HT{sub 2A} receptors, and 1-(2,4-difluorophenethyl)-4-(4-fluorophenylsulfinyl)piperidine (15) have been {sup 18}F-labelled by a nucleophilic one-step reaction. Both radiotracers could be prepared and isolated within 45 min, [{sup 18}F]9 in a radiochemical yield (RCY) of 34.5{+-}8% and [{sup 18}F]15 of 9.5{+-}2.5%. The K{sub i} values of 9 and 15 at 5-HT{sub 2A} receptors towards [{sup 3}H]ketanserin were determined to be 1.9{+-}0.6 and 198{+-}8 nM, respectively. Autoradiography with [{sup 18}F]9 and [{sup 18}F]15 on rat brain sections showed a very high nonspecific binding of >80% for [{sup 18}F]9 and 30% to 40% nonspecific binding for [{sup 18}F]15; however, it is still too high in order to compensate for its lower affinity. Even though the affinity of 9 is more promising compared with 15, the high nonspecific binding of both radiofluorinated tracers in rat brain does not recommend those as an in vivo PET imaging agent for serotonin 5-HT{sub 2A} receptors in humans.

  13. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  14. High Affinity IgE-Fc Receptor alpha and gamma Subunit Interactions

    International Nuclear Information System (INIS)

    Rashid, A.; Housden, J. E. M.; Sabban, S.; Helm, B.

    2014-01-01

    Objective: To explore the relationships between the subunits (alpha, beta and gamma) of the high affinity IgE receptor (Fc and RI) and its ability to mediate transmembrane signaling. Study Design: Experimental study. Place and Duration of Study: Department of Molecular Biology and Biotechnology, University of Sheffield, UK, from 2008 to 2009. Methodology: The approach employed was to create a chimera (human alpha-gamma-gamma) using the extracellular (EC) domain of the human high affinity IgE receptor. The alpha subunit (huFc and RIalpha) of IgE receptor was spliced onto the rodent gamma TM and cytoplasmic domain (CD). This was transfected into the Rat Basophilic Leukemia cell line in order to assess the possibility of selectively activating cells transfected with this single pass construct for antigen induced mediator release. Results: The RBLs cell lines transfected with the huFc and RIalpha/gamma/gamma cDNA constructs were assessed for the cell surface expression of the huFc and RIalpha subunit and the response to the antigenic stimulus by looking for degranulation and intracellular Ca2+ mobilisation. The results obtained showed the absence of huFc and RIalpha subunit expression on the surface of transfected cells as seen by flowcytometric studies, beta-hexosaminidase assays and intracellular calcium mobilisation studies. Conclusion: In the present study the grounds for non-expression of huFc and RIalpha/gamma/gamma cDNA remains elusive but may be due to the fact that the human-rodent chimeric receptors are assembled differently than the endogenous rodent receptors as seen in study in which COS 7 cells were transfected with human/rat chimeric complexes. (author)

  15. Dopamine, Noradrenaline and Serotonin Receptor Densities in the Striatum of Hemiparkinsonian Rats following Botulinum Neurotoxin-A Injection.

    Science.gov (United States)

    Mann, T; Zilles, K; Dikow, H; Hellfritsch, A; Cremer, M; Piel, M; Rösch, F; Hawlitschka, A; Schmitt, O; Wree, A

    2018-03-15

    Parkinson's disease (PD) is characterized by a degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) that causes a dopamine (DA) deficit in the caudate-putamen (CPu) accompanied by compensatory changes in other neurotransmitter systems. These changes result in severe motor and non-motor symptoms. To disclose the role of various receptor binding sites for DA, noradrenaline, and serotonin in the hemiparkinsonian (hemi-PD) rat model induced by unilateral 6-hydroxydopamine (6-OHDA) injection, the densities of D 1 , D 2 /D 3 , α 1 , α 2 , and 5HT 2A receptors were longitudinally visualized and measured in the CPu of hemi-PD rats by quantitative in vitro receptor autoradiography. We found a moderate increase in D 1 receptor density 3 weeks post lesion that decreased during longer survival times, a significant increase of D 2 /D 3 receptor density, and 50% reduction in 5HT 2A receptor density. α 1 receptor density remained unaltered in hemi-PD and α 2 receptors demonstrated a slight right-left difference increasing with post lesion survival. In a second step, the possible role of receptors on the known reduction of apomorphine-induced rotations in hemi-PD rats by intrastriatally injected Botulinum neurotoxin-A (BoNT-A) was analyzed by measuring the receptor densities after BoNT-A injection. The application of this neurotoxin reduced D 2 /D 3 receptor density, whereas the other receptors mainly remained unaltered. Our results provide novel data for an understanding of the postlesional plasticity of dopaminergic, noradrenergic and serotonergic receptors in the hemi-PD rat model. The results further suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing the interhemispheric imbalance in D 2 /D 3 receptor density. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Serotonin mediation of early memory formation via 5HT2B receptor-induced glycogenolysis in the day-old chick

    Directory of Open Access Journals (Sweden)

    Marie Elizabeth Gibbs

    2014-04-01

    Full Text Available Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5HT receptor antagonist methiothepin and the selective 5HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least 2 different receptor subtypes. The 5HT2B/C and astrocyte-specific 5-HT receptor agonists, fluoxetine and paroxetine, enhanced memory and the effect was attributed to glycogenolysis. Inhibition of glycogenolysis with a low dose of DAB prevented both serotonin and fluoxetine from enhancing memory during short-term memory but not during intermediate memory. The role of serotonin on the 5HT2B/C receptor appears to involve glycogen breakdown in astrocytes during short-term memory, whereas other published evidence attributes the second period of glycogenolysis to noradrenaline.

  17. Marine Inspired 2-(5-Halo-1H-indol-3-yl)-N,N-dimethylethanamines as Modulators of Serotonin Receptors: An Example Illustrating the Power of Bromine as Part of the Uniquely Marine Chemical Space.

    Science.gov (United States)

    Ibrahim, Mohamed A; El-Alfy, Abir T; Ezel, Kelly; Radwan, Mohamed O; Shilabin, Abbas G; Kochanowska-Karamyan, Anna J; Abd-Alla, Howaida I; Otsuka, Masami; Hamann, Mark T

    2017-08-09

    In previous studies, we have isolated several marine indole alkaloids and evaluated them in the forced swim test (FST) and locomotor activity test, revealing their potential as antidepressant and sedative drug leads. Amongst the reported metabolites to display such activities was 5-bromo- N , N -dimethyltryptamine. Owing to the importance of the judicious introduction of halogens into drug candidates, we synthesized two series built on a 2-(1 H -indol-3-yl)- N , N -dimethylethanamine scaffold with different halogen substitutions. The synthesized compounds were evaluated for their in vitro and in vivo antidepressant and sedative activities using the mouse forced swim and locomotor activity tests. Receptor binding studies of these compounds to serotonin (5-HT) receptors were conducted. Amongst the prepared compounds, 2-(1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1a ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1d ), 2-(1 H -indol-3-yl)- N , N -dimethylethanamine ( 2a ), 2-(5-chloro-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2c ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2d ), and 2-(5-iodo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2e ) have been shown to possess significant antidepressant-like action, while compounds 2c , 2d , and 2e exhibited potent sedative activity. Compounds 2a , 2c , 2d , and 2e showed nanomolar affinities to serotonin receptors 5-HT 1A and 5-HT₇. The in vitro data indicates that the antidepressant action exerted by these compounds in vivo is mediated, at least in part, via interaction with serotonin receptors. The data presented here shows the valuable role that bromine plays in providing novel chemical space and electrostatic interactions. Bromine is ubiquitous in the marine environment and a common element of marine natural products.

  18. Serotonin syndrome

    Science.gov (United States)

    Hyperserotonemia; Serotonergic syndrome; Serotonin toxicity; SSRI - serotonin syndrome; MAO - serotonin syndrome ... brain area. For example, you can develop this syndrome if you take migraine medicines called triptans together ...

  19. In vivo binding of 125I-LSD to serotonin 5-HT2 receptors in mouse brain

    International Nuclear Information System (INIS)

    Hartig, P.R.; Scheffel, U.; Frost, J.J.; Wagner, H.N. Jr.

    1985-01-01

    The binding of 125 I-LSD (2-[ 125 I]-lysergic acid diethylamide) was studied in various mouse brain regions following intravenous injection of the radioligand. The high specific activity of 125 I-LSD enabled the injection of low mass doses (14ng/kg), which are well below the threshold for induction of any known physiological effect of the probe. The highest levels of 125 I-LSD binding were found in the frontal cortex, olfactory tubercles, extra-frontal cortex and striatum while the lowest level was found in the cerebellum. Binding was saturable in the frontal cortex but increased linearly in the cerebellum with increasing doses of 125 I-LSD. Serotonergic compounds potently inhibited 125 I-LSD binding in cortical regions, olfactory tubercles, and hypothalamus but had no effect in the cerebellum. Dopaminergic compounds caused partial inhibition of binding in the striatum while adrenergic compounds were inactive. From these studies the authors conclude that 125 I-LSD labels serotonin 5-HT 2 receptor sites in cortical regions with no indication that other receptor sites are labeled. In the olfactory tubercles and hypothalamus, 125 I-LSD labeling occurs predominantly or entirely at serotonic 5-HT 2 sites. In the striatum, 125 I-LSD labels approximately equal proportions of serotonergic and dopaminergic sites. These data indicate that 125 I-LSD labels serotonin receptors in vivo and suggests that appropriate derivatives of 2I-LSD may prove useful for tomographic imaging of serotonin 5-HT 2 receptors in the mammalian cortex

  20. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    Science.gov (United States)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  1. Molecular Affinity of Mabolo Extracts to an Octopamine Receptor of a Fruit Fly

    Directory of Open Access Journals (Sweden)

    Francoise Neil D. Dacanay

    2017-10-01

    Full Text Available Essential oils extracted from plants are composed of volatile organic compounds that can affect insect behavior. Identifying the active components of the essential oils to their biochemical target is necessary to design novel biopesticides. In this study, essential oils extracted from Diospyros discolor (Willd. were analyzed using gas chromatography mass spectroscopy (GC-MS to create an untargeted metabolite profile. Subsequently, a conformational ensemble of the Drosophila melanogaster octopamine receptor in mushroom bodies (OAMB was created from a molecular dynamics simulation to resemble a flexible receptor for docking studies. GC-MS analysis revealed the presence of several metabolites, i.e. mostly aromatic esters. Interestingly, these aromatic esters were found to exhibit relatively higher binding affinities to OAMB than the receptor’s natural agonist, octopamine. The molecular origin of this observed enhanced affinity is the π -stacking interaction between the aromatic moieties of the residues and ligands. This strategy, computational inspection in tandem with untargeted metabolomics, may provide insights in screening the essential oils as potential OAMB inhibitors.

  2. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.

    Science.gov (United States)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W

    2002-07-01

    Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.

  3. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    International Nuclear Information System (INIS)

    Burris, K.D.; Breeding, M.; Sanders-Bush, E.

    1991-01-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD

  4. Endogenous plasma estradiol in healthy men is positively correlated with cerebral cortical serotonin 2A receptor binding

    DEFF Research Database (Denmark)

    Frokjaer, Vibe G.; Erritzoe, David; Juul, Anders

    2010-01-01

    the effect of plasma sex hormone levels on neocortical 5-HT2A receptor binding as imaged with [18F]altanserin PET. The effect of endogenous sex-hormone levels was evaluated by multiple linear regression analysis. Results: Mean neocortical 5-HT2A receptor binding was positively correlated with estradiol (p......Background: Sex-hormones influence brain function and are likely to play a role in the gender predisposition to mood and anxiety disorders. Acute fluctuations of sex-hormone levels including hormonal replacement therapy appear to affect serotonergic neurotransmission, but it is unknown if baseline...... levels affect serotonergic neurotransmission. This study was undertaken to examine if baseline levels of endogenous sex hormones are associated with cerebral serotonin 2A (5-HT2A) receptor binding in men. Methods: In a group of 72 healthy men (mean age 37.5 years ±17.4 SD, range 19.6–81.7) we studied...

  5. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    International Nuclear Information System (INIS)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-01-01

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K d 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K d 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy

  6. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  7. Freud-2/CC2D1B mediates dual repression of the serotonin-1A receptor gene.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Galaraga, Kimberly; Albert, Paul R

    2011-01-01

    The serotonin-1A (5-HT1A) receptor functions as a pre-synaptic autoreceptor in serotonin neurons that regulates their activity, and is also widely expressed on non-serotonergic neurons as a post-synaptic heteroreceptor to mediate serotonin action. The 5-HT1A receptor gene is strongly repressed by a dual repressor element (DRE), which is recognized by two proteins: Freud-1/CC2D1A and another unknown protein. Here we identify mouse Freud-2/CC2D1B as the second repressor of the 5-HT1A-DRE. Freud-2 shares 50% amino acid identity with Freud-1, and contains conserved structural domains. Mouse Freud-2 bound specifically to the rat 5-HT1A-DRE adjacent to, and partially overlapping, the Freud-1 binding site. By supershift assay using nuclear extracts from L6 myoblasts, Freud-2-DRE complexes were distinguished from Freud-1-DRE complexes. Freud-2 mRNA and protein were detected throughout mouse brain and peripheral tissues. Freud-2 repressed 5-HT1A promoter-reporter constructs in a DRE-dependent manner in non-neuronal (L6) or 5-HT1A-expressing neuronal (NG108-15, RN46A) cell models. In NG108-15 cells, knockdown of Freud-2 using a specific short-interfering RNA reduced endogenous Freud-2 protein levels and decreased Freud-2 bound to the 5-HT1A-DRE as detected by chromatin immunoprecipitation assay, but increased 5-HT1A promoter activity and 5-HT1A protein levels. Taken together, these data show that Freud-2 is the second component that, with Freud-1, mediates dual repression of the 5-HT1A receptor gene at the DRE. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic heart failure

    DEFF Research Database (Denmark)

    Kjekshus, John K; Torp-Pedersen, Christian; Gullestad, Lars

    2009-01-01

    weeks up titration. The primary endpoint was LVEF measured by cardiac magnetic resonance imaging (MRI). Secondary endpoints were LV volumes, N-terminal pro-brain natriuretic peptide, norepinephrine, quality of life, and 6 min walk test. Piboserod significantly increased LVEF by 1.7% vs. placebo (CI 0.......3, 3.2, P = 0.020), primarily through reduced end-systolic volume from 165 to 158 mL (P = 0.060). There was a trend for greater increase in LVEF (2.7%, CI -1.1, 6.6, P = 0.15) in a small subset of patients not on chronic beta-blocker therapy. There was no significant effect on neurohormones, quality......AIMS: Myocardial 5-HT(4) serotonin (5-HT) receptors are increased and activated in heart failure (HF). Blockade of 5-HT(4) receptors reduced left ventricular (LV) remodelling in HF rats. We evaluated the effect of piboserod, a potent, selective, 5-HT(4) serotonin receptor antagonist, on LV function...

  9. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    Kendall, D.A.; Taylor, D.P.; Enna, S.J.

    1983-01-01

    High (17 nM) and low (603 nM) affinity binding sites for [ 3 ]tetrahydrotrazodone ([ 3 ] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [ 3 ]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [ 3 ] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [ 3 ]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  10. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    International Nuclear Information System (INIS)

    Gil, D.W.; Wolfe, B.B.

    1986-01-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands [ 3 H]quinuclidinyl benzilate or [ 3 H]PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of [ 3 H]quinuclidinyl benzilate in a biphasic manner

  11. Characterization of the somatogenic receptor in rat liver. Hydrodynamic properties and affinity cross-linking

    International Nuclear Information System (INIS)

    Husman, B.; Haldosen, L.A.; Andersson, G.; Gustafsson, J.A.

    1988-01-01

    Rat liver somatogenic receptors have been characterized by gel permeation chromatography, sucrose density gradients in H 2 O and D 2 O, and affinity cross-linking using 125 I-bovine growth hormone (bGH) as a specific somatogenic receptor ligand. Cross-linking of 125 I-bovine growth hormone to a Triton X-100-treated low density fraction isolated from livers of late pregnant rats followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis under reducing conditions showed three major binders with Mr 95,000, 86,000, and 43,000 and a minor binder of Mr 55,000, after correction for bound ligand assuming a 1:1 binding ratio of ligand-receptor. The Mr 86,000, 55,000, and 43,000 species were recovered in the detergent-soluble supernatant after high-speed centrifugation, whereas the Mr 95,000 species remained Triton X-100 insoluble. Detergent-soluble 125 I-bGH-receptor complexes were further analyzed by sedimentation into sucrose density gradients. The sedimentation coefficient was S20,w = 5.2 S and the partial specific volume v = 0.72 ml/g. Gel permeation chromatography on a Sepharose S-400 column indicated a Stokes radius of 61 A for the 125 I-bGH-receptor-Triton X-100 complex. Based on these figures, the molecular weight of the complex was calculated as 131,100. The molecular weight of the ligand-free receptor-Triton X-100 complex was calculated as Mr 109,100. Affinity cross-linking and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the 61 A peak from Sephacryl S-400 chromatography (cf. above) showed two binding entities, one major and one minor with Mr values 86,000 and 43,000, respectively, in the absence of reductant. When electrophoresis was run in the presence of reductant the Mr 43,000 species was the major binding entity

  12. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity.

    Science.gov (United States)

    Jin, Rongsheng; Rummel, Andreas; Binz, Thomas; Brunger, Axel T

    2006-12-21

    Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.

  13. Intermittent hypercapnia-induced phrenic long-term depression is revealed after serotonin receptor blockade with methysergide in anaesthetized rats.

    Science.gov (United States)

    Valic, Maja; Pecotic, Renata; Pavlinac Dodig, Ivana; Valic, Zoran; Stipica, Ivona; Dogas, Zoran

    2016-02-01

    What is the central question of this study? Intermittent hypercapnia is a concomitant feature of breathing disorders. Hypercapnic stimuli evoke a form of respiratory plasticity known as phrenic long-term depression in experimental animals. This study was performed to investigate the putative role of serotonin receptors in the initiation of phrenic long-term depression in anaesthetized rats. What is the main finding and its importance? Phrenic nerve long-term depression was revealed in animals pretreated with the serotonin broad-spectrum antagonist, methysergide. This study highlights that serotonin receptors modulate respiratory plasticity evoked by acute intermittent hypercapnia in anaesthetized rats. This study was performed to test the hypothesis that intermittent hypercapnia can evoke a form of respiratory plasticity known as long-term depression of the phrenic nerve (pLTD) and that 5-HT receptors play a role in the initiation of pLTD. Adult male urethane-anaesthetized, vagotomized, paralysed, mechanically ventilated Sprague-Dawley rats were exposed to an acute intermittent hypercapnia protocol. One group received i.v. injection of the non-selective 5-HT receptor antagonist methysergide and another group received i.v. injection of the selective 5-HT1A receptor antagonist WAY-100635 20 min before exposure to intermittent hypercapnia. A control group received i.v. injection of saline. Peak phrenic nerve activity and respiratory rhythm parameters were analysed at baseline (T0), during each of five hypercapnic episodes, and 15, 30 and 60 min (T60) after the last hypercapnia. Intravenous injection of methysergide before exposure to acute intermittent hypercapnia induced development of amplitude pLTD at T60 (decreased by 46.1 ± 6.9%, P = 0.003). Conversely, in control and WAY-100635-pretreated animals, exposure to acute intermittent hypercapnia did not evoke amplitude pLTD. However, a long-term decrease in phrenic nerve frequency was evoked both in control (42 ± 4

  14. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue.

    Science.gov (United States)

    Klotz, J L; Brown, K R; Xue, Y; Matthews, J C; Boling, J A; Burris, W R; Bush, L P; Strickland, J R

    2012-02-01

    As part of a 2-yr study documenting the physiologic impact of grazing endophyte-infected tall fescue on growing cattle, 2 experiments were conducted to characterize and evaluate effects of grazing 2 levels of toxic endophyte-infected tall fescue pastures on vascular contractility and serotonin receptors. Experiment 1 examined vasoconstrictive activities of 5-hydroxytryptamine (5HT), α-methylserotonin (ME5HT; a 5HT(2) receptor agonist), d-lysergic acid (LSA), and ergovaline (ERV) on lateral saphenous veins collected from steers immediately removed from a high-endophyte-infected tall fescue pasture (HE) or a low-endophyte-infected mixed-grass (LE) pasture. Using the same pastures, Exp. 2 evaluated effects of grazing 2 levels of toxic endophyte-infected tall fescue on vasoconstrictive activities of (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), BW 723C86 (BW7), CGS-12066A (CGS), and 5-carboxamidotryptamine hemiethanolate maleate (5CT), agonists for 5HT(2A),( 2B), 5HT(1B), and 5HT(7) receptors, respectively. One-half of the steers in Exp. 2 were slaughtered immediately after removal from pasture, and the other one-half were fed finishing diets for >91 d before slaughter. For Exp. 1, maximal contractile intensities were greater (P 91 d. Experiment 1 demonstrated that grazing of HE pastures for 89 to 105 d induces functional alterations in blood vessels, as evidenced by reduced contractile capacity and altered serotonergic receptor activity. Experiment 2 demonstrated that grazing HE pastures alters vascular responses, which may be mediated through altered serotonin receptor activities, and these alterations may be ameliorated by the removal of ergot alkaloid exposure as demonstrated by the absence of differences in finished steers.

  15. An assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning.

    Science.gov (United States)

    Lindner, Mark D; Hodges, Donald B; Hogan, John B; Orie, Anitra F; Corsa, Jason A; Barten, Donna M; Polson, Craig; Robertson, Barbara J; Guss, Valerie L; Gillman, Kevin W; Starrett, John E; Gribkoff, Valentin K

    2003-11-01

    Antagonists of serotonin 6 (5-HT6) receptors have been reported to enhance cognition in animal models of learning, although this finding has not been universal. We have assessed the therapeutic potential of the specific 5-HT6 receptor antagonists 4-amino-N-(2,6-bis-methylamino-pyrimidin-4-yl)-benzenesulfonamide (Ro 04-6790) and 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfonamide (SB-271046) in rodent models of cognitive function. Although mice express the 5-HT6 receptor and the function of this receptor has been investigated in mice, all reports of activity with 5-HT6 receptor antagonists have used rat models. In the present study, receptor binding revealed that the pharmacological properties of the mouse receptor are different from the rat and human receptor: Ro 04-6790 does not bind to the mouse 5-HT6 receptor, so all in vivo testing included in the present report was conducted in rats. We replicated previous reports that 5-HT6 receptor antagonists produce a stretching syndrome previously shown to be mediated through cholinergic mechanisms, but Ro 04-6790 and SB-271046 failed to attenuate scopolamine-induced deficits in a test of contextual fear conditioning. We also failed to replicate the significant effects reported previously in both an autoshaping task and in a version of the Morris water maze. The results of our experiments are not consistent with previous reports that suggested that 5-HT6 antagonists might have therapeutic potential for cognitive disorders.

  16. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    Science.gov (United States)

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  17. Association between serotonin 2A receptor genetic variations, stressful life events and suicide.

    Science.gov (United States)

    Ghasemi, Asghar; Seifi, Morteza; Baybordi, Fatemeh; Danaei, Nasim; Samadi Rad, Bahram

    2018-06-05

    Life events are series of events that disrupt a person's psychological equilibrium and may enhance the development of a disorder such as suicide. Several studies have assessed a relationship between 5-hydroxytryptamine (serotonin) 2A receptor (5-HTR2A) gene polymorphisms with an increased risk of suicide. However, there has been no study about the association between three 5-HTR2A gene polymorphisms, A1438G (rs6311), T102C (rs6313) and C1354T (rs6314), suicide, stressful life, and loss events in a same time. Relatives of 191 suicide victims were interviewed using a semi-structured questionnaire designed according to Iranian culture. Venous blood was taken from all subjects for DNA isolation. 5-HTR2A polymorphisms in a total of 191 suicide victims and 218 healthy controls were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Chi-squared and Fisher's exact tests were used to compare genotype and allele frequencies between suicide and control groups. Correction for multiple comparisons was calculated using Bonferroni correction. There was a significant association between the 102 C/C genotype of 5-HTR2A gene and suicide (к 2  = 8.700, P = 0.012). Furthermore, we found that suicide victims with a 102 C/C genotype had a significantly higher number of stressful life and loss events (P suicide victims and control participants and there was no association between genotype distribution and higher number of stressful life and loss events (P > 0.05). Our results suggest that C102T (rs6313) polymorphism of 5-HTR2A gene may be involved in the susceptibility to suicide, higher number of stressful life and loss events, but A1438G (rs6311) and C1354T (rs6314) polymorphisms of 5-HTR2A gene were not associated with suicide, higher number of stressful life and loss events. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Covalent affinity labeling, radioautography, and immunocytochemistry localize the glucocorticoid receptor in rat testicular Leydig cells

    International Nuclear Information System (INIS)

    Stalker, A.; Hermo, L.; Antakly, T.

    1989-01-01

    The presence and distribution of glucocorticoid receptors in the rat testis were examined by using 2 approaches: in vivo quantitative radioautography and immunocytochemistry. Radioautographic localization was made possible through the availability of a glucocorticoid receptor affinity label, dexamethasone 21-mesylate, which binds covalently to the glucocorticoid receptor, thereby preventing dissociation of the steroid-receptor complex. Adrenalectomized adult rats were injected with a tritiated (3H) form of this steroid into the testis and the tissue was processed for light-microscope radioautography. Silver grains were observed primarily over the Leydig cells of the interstitial space and to a lesser extent, over the cellular layers which make up the seminiferous epithelium, with no one cell type showing preferential labeling. To determine the specificity of the labeling, a 25- or 50-fold excess of unlabeled dexamethasone was injected simultaneously with the same dose of (3H)-dexamethasone 21-mesylate. In these control experiments, a marked reduction in label intensity was noted over the Leydig as well as tubular cells. Endocytic macrophages of the interstitium were non-specifically labeled, indicating uptake of the ligand possibly by fluid-phase endocytosis. A quantitative analysis of the label confirmed the presence of statistically significant numbers of specific binding sites for glucocorticoids in both Leydig cells and the cellular layers of the seminiferous epithelium; 86% of the label was found over Leydig cells, and only 14% over the cells of the seminiferous epithelium. These binding data were confirmed by light-microscope immunocytochemistry using a monoclonal antibody to the glucocorticoid receptor

  19. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells.

    Science.gov (United States)

    Pucadyil, Thomas J; Chattopadhyay, Amitabha

    2007-03-01

    Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin(1A) receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin(1A) receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin(1A) receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.

  20. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    International Nuclear Information System (INIS)

    Wong, D.T.; Threlkeld, P.G.; Lumeng, L.; Li, Ting-Kai

    1990-01-01

    Saturable [ 3 H]-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B max values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K D values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats

  1. Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR.

    Science.gov (United States)

    Sosnovcová, Jitka; Rucki, Marián; Bendová, Hana

    2016-09-01

    The presented work characterized components of food contact materials (FCM) with potential to bind to estrogen receptor (ER) and cause adverse effects in the human organism. The QSAR Toolbox, software application designed to identify and fill toxicological data gaps for chemical hazard assessment, was used. Estrogen receptors are much less of a lock-and-key interaction than highly specific ones. The ER is nonspecific enough to permit binding with a diverse array of chemical structures. There are three primary ER binding subpockets, each with different requirements for hydrogen bonding. More than 900 compounds approved as of FCM components were evaluated for their potential to bind on ER. All evaluated chemicals were subcategorized to five groups with respect to the binding potential to ER: very strong, strong, moderate, weak binder, and no binder to ER. In total 46 compounds were characterized as potential disturbers of estrogen receptor. Among the group of selected chemicals, compounds with high and even very high affinity to the ER binding subpockets were found. These compounds may act as gene activators and cause adverse effects in the organism, particularly during pregnancy and breast-feeding. It should be considered to carry out further in vitro or in vivo tests to confirm their potential to disturb the regulation of physiological processes in humans by abnormal ER signaling and subsequently remove these chemicals from the list of approved food contact materials. Copyright© by the National Institute of Public Health, Prague 2016

  2. Specific, high affinity receptors for insulin-like growth factor II in the rat kidney glomerulus

    International Nuclear Information System (INIS)

    Haskell, J.F.; Pillion, D.J.; Meezan, E.

    1988-01-01

    Rat renal glomeruli were isolated by a technique involving kidney perfusion with a solution containing magnetic iron oxide particles, followed by homogenization, sieving, and concentration over a strong magnet. Isolated glomeruli were treated with 1% Triton X-100 to solubilize plasma membrane components, while insoluble basement membrane components were removed by centrifugation. [ 125 I]Insulin-like growth factor II (IGF-II) binding to this preparation was competitively inhibited by increasing amounts of unlabeled IGF-II, with 50% inhibition at an IGF-II concentration of 1 ng/ml. [ 125 I]IGF-II was covalently cross-linked with disuccinimidyl suberate to its receptor in rat renal glomeruli and a specific high mol wt (255,000) band could be identified on autoradiograms of dodecyl sulfate-polyacrylamide gels. [ 125 I]IGF-II binding and cross-linking to this band was inhibited by a polyclonal antibody against the type II IGF receptor. These results demonstrate for the first time that the isolated rat renal glomerulus contains a high affinity receptor for IGF-II

  3. The Effects of Serotonin in Immune Cells

    OpenAIRE

    Herr, Nadine; Bode, Christoph; Duerschmied, Daniel

    2017-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] plays an important role in many organs as a peripheral hormone. Most of the body’s serotonin is circulating in the bloodstream, transported by blood platelets and is released upon activation. The functions of serotonin are mediated by members of the 7 known mammalian serotonin receptor subtype classes (15 known subtypes), the serotonin transporter (SERT), and by covalent binding of serotonin to different effector proteins. Almost all immune cells express...

  4. Gene structure and expression of serotonin receptor HTR2C in hypothalamic samples from infanticidal and control sows

    Directory of Open Access Journals (Sweden)

    Quilter Claire R

    2012-04-01

    Full Text Available Abstract Background The serotonin pathways have been implicated in behavioural phenotypes in a number of species, including human, rat, mouse, dog and chicken. Components of the pathways, including the receptors, are major targets for drugs used to treat a variety of physiological and psychiatric conditions in humans. In our previous studies we have identified genetic loci potentially contributing to maternal infanticide in pigs, which includes a locus on the porcine X chromosome long arm. The serotonin receptor HTR2C maps to this region, and is therefore an attractive candidate for further study based on its function and its position in the genome. Results In this paper we describe the structure of the major transcripts produced from the porcine HTR2C locus using cDNA prepared from porcine hypothalamic and pooled total brain samples. We have confirmed conservation of sites altered by RNA editing in other mammalian species, and identified polymorphisms in the gene sequence. Finally, we have analysed expression and editing of HTR2C in hypothalamus samples from infanticidal and control animals. Conclusions The results confirm that although the expression of the long transcriptional variant of HTR2C is raised in infanticidal animals, the overall patterns of editing in the hypothalamus are similar between the two states. Sequences associated with the cDNA and genomic structures of HTR2C reported in this paper are deposited in GenBank under accession numbers FR720593, FR720594 and FR744452.

  5. Evidence for the effect of serotonin receptor 1A gene (HTR1A) polymorphism on tractability in Thoroughbred horses.

    Science.gov (United States)

    Hori, Y; Tozaki, T; Nambo, Y; Sato, F; Ishimaru, M; Inoue-Murayama, M; Fujita, K

    2016-02-01

    Tractability, or how easily animals can be trained and controlled, is an important behavioural trait for the management and training of domestic animals, but its genetic basis remains unclear. Polymorphisms in the serotonin receptor 1A gene (HTR1A) have been associated with individual variability in anxiety-related traits in several species. In this study, we examined the association between HTR1A polymorphisms and tractability in Thoroughbred horses. We assessed the tractability of 167 one-year-old horses reared at a training centre for racehorses using a questionnaire consisting of 17 items. A principal components analysis of answers contracted the data to five principal component (PC) scores. We genotyped two non-synonymous single nucleotide polymorphisms (SNPs) in the horse HTR1A coding region. We found that one of the two SNPs, c.709G>A, which causes an amino acid change at the intracellular region of the receptor, was significantly associated with scores of four of five PCs in fillies (all Ps Horses carrying an A allele at c.709G>A showed lower tractability. This result provides the first evidence that a polymorphism in a serotonin-related gene may affect tractability in horses with the effect partially different depending on sex. © 2015 Stichting International Foundation for Animal Genetics.

  6. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  7. Enhancement of GABAergic transmission by zolpidem, an imidazopyridine with preferential affinity for type I benzodiazepine receptors.

    Science.gov (United States)

    Biggio, G; Concas, A; Corda, M G; Serra, M

    1989-02-28

    The effect of zolpidem, an imidazopyridine derivative with high affinity at the type I benzodiazepine recognition site, on the function of the GABAA/ionophore receptor complex was studied in vitro. Zolpidem, mimicking the action of diazepam, increased [3H]GABA binding, enhanced muscimol-stimulated 36Cl- uptake and reduced [35S]TBPS binding in rat cortical membrane preparations. Zolpidem was less effective than diazepam on the above parameters. Zolpidem induced a lower increase of [3H]GABA binding (23 vs. 35%) and muscimol-stimulated 36Cl- uptake (22 vs. 40%) and a smaller decrease of [35S]TBPS binding (47 vs. 77%) than diazepam. The finding that zolpidem enhanced the function of GABAergic synapses with an efficacy qualitatively and quantitatively different from that of diazepam suggests that this compound is a partial agonist at the benzodiazepine recognition site. Thus, our results are consistent with the view that the biochemical and pharmacological profile of a benzodiazepine recognition site ligand reflects its efficacy to enhance GABAergic transmission. Whether the preferential affinity of zolpidem at the type I site is involved in its atypical biochemical and pharmacological profile remains to be clarified.

  8. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation

    KAUST Repository

    Handberg-Thorsager, Mette

    2018-02-22

    Retinoic acid (RA) is an important intercellular signaling molecule in vertebrate development, with a well-established role in the regulation of hox genes during hindbrain patterning and in neurogenesis. However, the evolutionary origin of the RA signaling pathway remains elusive. To elucidate the evolution of the RA signaling system, we characterized RA metabolism and signaling in the marine annelid Platynereis dumerilii, a powerful model for evolution, development, and neurobiology. Binding assays and crystal structure analyses show that the annelid retinoic acid receptor (RAR) binds RA and activates transcription just as vertebrate RARs, yet with a different ligand-binding pocket and lower binding affinity, suggesting a permissive rather than instructive role of RA signaling. RAR knockdown and RA treatment of swimming annelid larvae further reveal that the RA signal is locally received in the medial neuroectoderm, where it controls neurogenesis and axon outgrowth, whereas the spatial colinear hox gene expression in the neuroectoderm remains unaffected. These findings suggest that one early role of the new RAR in bilaterian evolution was to control the spatially restricted onset of motor and interneuron differentiation in the developing ventral nerve cord and to indicate that the regulation of hox-controlled anterior-posterior patterning arose only at the base of the chordates, concomitant with a high-affinity RAR needed for the interpretation of a complex RA gradient.

  10. High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes

    International Nuclear Information System (INIS)

    Lach, E.; Trifilieff, A.; Landry, Y.; Gies, J.P.

    1991-01-01

    The binding of the radiolabeled bombesin analogue [ 125 I-Tyr 4 ]bombesin to guinea-pig lung membranes was investigated. Binding of [ 125 I-Tyr 4 ]bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B max = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K D = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as [ 125 I-Tyr 4 ]bombesin, neuromedin B and neuromedin C inhibited the binding of [ 125 I-Tyr 4 ]bombesin in an order of potencies as follows: [ 125 I-Tyr 4 ]bombesin > bombesin ≥ neuromedin C much-gt neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B

  11. The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation

    Science.gov (United States)

    Handberg-Thorsager, Mette; Gutierrez-Mazariegos, Juliana; Arold, Stefan T.; Kumar Nadendla, Eswar; Bertucci, Paola Y.; Germain, Pierre; Tomançak, Pavel; Pierzchalski, Keely; Jones, Jace W.; Albalat, Ricard; Kane, Maureen A.; Bourguet, William; Laudet, Vincent; Arendt, Detlev; Schubert, Michael

    2018-01-01

    Retinoic acid (RA) is an important intercellular signaling molecule in vertebrate development, with a well-established role in the regulation of hox genes during hindbrain patterning and in neurogenesis. However, the evolutionary origin of the RA signaling pathway remains elusive. To elucidate the evolution of the RA signaling system, we characterized RA metabolism and signaling in the marine annelid Platynereis dumerilii, a powerful model for evolution, development, and neurobiology. Binding assays and crystal structure analyses show that the annelid retinoic acid receptor (RAR) binds RA and activates transcription just as vertebrate RARs, yet with a different ligand-binding pocket and lower binding affinity, suggesting a permissive rather than instructive role of RA signaling. RAR knockdown and RA treatment of swimming annelid larvae further reveal that the RA signal is locally received in the medial neuroectoderm, where it controls neurogenesis and axon outgrowth, whereas the spatial colinear hox gene expression in the neuroectoderm remains unaffected. These findings suggest that one early role of the new RAR in bilaterian evolution was to control the spatially restricted onset of motor and interneuron differentiation in the developing ventral nerve cord and to indicate that the regulation of hox-controlled anterior-posterior patterning arose only at the base of the chordates, concomitant with a high-affinity RAR needed for the interpretation of a complex RA gradient. PMID:29492455

  12. Vasorelaxant potencies and receptor binding affinities of atrial natriuretic hormone (ANH) analogues

    International Nuclear Information System (INIS)

    Bush, E.N.; Green, E.M.; Artman, L.D.; Devine, E.M.; Sarin, V.; Rockway, T.W.; Connolly, P.J.; Kiso, Y.; Holleman, W.H.

    1986-01-01

    ANH (1-28) (α-rat ANP) produces hypotensive effects in vivo, presumably via interaction with specific receptors. Vasorelaxant potencies (pD 2 ) and intrinsic activities of ANH analogues were measured in histamine constricted rabbit aorta rings. Binding affinities (K/sub I/) of the compounds were studied in rabbit aorta renal cortex and adrenal, using the radio-ligand 125 I-Tyr 28 -ANH (1-28). Significant correlations (r 2 s in aorta, and the log D/sub I/s in each of the three tissues were observed for the following cyclic compounds, listed in order of potency: ANH (1-28) greater than or equal to ANH (6-28) greater than or equal to Met 12 -ANH (1-28) (α-human ANP) greater than or equal to cyclohexyl-Ala (Cha) 8 -ANH (5-28) > Lys 11 -ANH (5-28) = ANH (5-28) (atriopeptin III) = ANH (5-27) (atriopeptin II) = Cha 21 -ANH (5-28) greater than or equal to ANH (7-28) > Cha 15 -ANH (5-28) = Pro 10 -ANH (5-28) = ANH (5-25) (atriopeptin I) = Asn 13 -ANH (5-28) = Tyr 9 -ANH (5-28) > des-Gly 9 -ANH (5-28) > ANH (7-23) = Pro 10 -ANH (7-23) greater than or equal to (D)Ala 9 -ANH (7-23) > Pro 9 -ANH (7-13). In summary, the affinities of several ANH analogues for both vascular and nonvascular receptors agree with their vasorelaxant potencies

  13. Human motoneurone excitability is depressed by activation of serotonin 1A receptors with buspirone

    DEFF Research Database (Denmark)

    D'Amico, Jessica M; Butler, Annie A; Héroux, Martin E

    2017-01-01

    that activation of 5-HT1Areceptors depresses human motoneurone excitability. Such a depression could contribute to decreased motoneurone output during fatiguing exercise if there is high serotonergic drive to the motoneurones. ABSTRACT: Intense serotonergic drive in the turtle spinal cord results in serotonin...... motoneurone output. Such a mechanism could potentially contribute to fatigue with exercise....

  14. Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Frøkjær, Vibe; Kalbitzer, Jan

    2012-01-01

    and the serotonin transporter binding, the latter as a measure of serotonergic projections and neurons. Twelve patients with AD (average Mini Mental State Examination [MMSE]: 24) and 11 healthy age-matched subjects underwent positron emission tomography (PET) scanning with [(18)F]altanserin and [(11)C...

  15. Robust upregulation of serotonin 2A receptors after chronic spinal transection of rats: An immunohistochemical study

    DEFF Research Database (Denmark)

    Kong, Xiang-Yu; Wienecke, Jacob; Hultborn, Hans

    2010-01-01

    It is well known that spinal motoneurons below a spinal transection become supersensitive to a systemic administration of serotonin (5-HT) precursors, such as 5-hydroxytryptophan. This supersensitivity has been implicated in both the process of functional recovery following chronic lesions, and a...

  16. Development of 99mTc labelled somatostatin analogues with high affinity for somatostatin receptors

    International Nuclear Information System (INIS)

    Maina, T.; Nock, B.; Nicolopoulou, A.; Tsipra, C.; Poppe, M.; Chiotellis, E.

    2001-01-01

    A recent development in oncology involves the use of metabolically stabilized peptide hormone analogues labelled with metallic radionuclides for the diagnosis or therapy of malignant disease. This approach was successfully applied for the first time in the visualization of somatostatin positive tumours and their metastases with 111 In DTPA-octreotide. In an effort to obtain a 99m Tc somatostatin receptor affine radioligand we describe herein the synthesis, radiochemistry and preliminary biological evaluation of two novel 99m Tc labelled somatostatin analogues, N 4 -TOC and N 4 -RC-160. In these compounds a tetraamine bifunctional unit was covalently attached to the N-terminal (D)Phe 1 of the peptide chain using Boc-protection strategies. The peptide conjugates were purified by high performance liquid chromatography (HPLC) and characterized by UV/Vis and ES-MS spectroscopies. As revealed by HPLC, 99m Tc labelling was quantitative under mild conditions, leading to a single 99m Tc species in high specific activities. Affinity of 99m Tc N 4 -TOC for the somatostatin receptor, as determined by in vitro binding assays in rat brain cortex membranes, was found unaffected by the presence of the bulky metal chelate. The binding properties of 99m Tc N 4 -RC-160 could not be determined by this assay due to an extremely high non-specific binding of this radioligand, and will be shortly investigated by other methods. Tissue distribution in healthy mice revealed that 99m Tc N 4 -TOC is clearing mainly through the kidneys and the urinary tract whereas 99m Tc N 4 -RC-160 shows a high accumulation in the liver as a result of its lipophilicity. Analysis of urine samples by HPLC showed that 99m Tc N 4 -TOC is excreted integer from the body of mice, while 99m Tc N 4 -RC-160 is totally transformed to an unidentified hydrophilic metabolite in vivo. The location of this metabolism is currently investigated. In vivo blocking experiments using animals pre-treated with 50 μg octreotide

  17. Contributions of pocket depth and electrostatic interactions to affinity and selectivity of receptors for methylated lysine in water.

    Science.gov (United States)

    Beaver, Joshua E; Peacor, Brendan C; Bain, Julianne V; James, Lindsey I; Waters, Marcey L

    2015-03-21

    Dynamic combinatorial chemistry was used to generate a set of receptors for peptides containing methylated lysine (KMen, n = 0-3) and study the contribution of electrostatic effects and pocket depth to binding affinity and selectivity. We found that changing the location of a carboxylate resulted in an increase in preference for KMe2, presumably based on ability to form a salt bridge with KMe2. The number of charged groups on either the receptor or peptide guest systematically varied the binding affinities to all guests by approximately 1-1.5 kcal mol(-1), with little influence on selectivity. Lastly, formation of a deeper pocket led to both increased affinity and selectivity for KMe3 over the lower methylation states. From these studies, we identified that the tightest binder was a receptor with greater net charge, with a Kd of 0.2 μM, and the receptor with the highest selectivity was the one with the deepest pocket, providing 14-fold selectivity between KMe3 and KMe2 and a Kd for KMe3 of 0.3 μM. This work provides key insights into approaches to improve binding affinity and selectivity in water, while also demonstrating the versatility of dynamic combinatorial chemistry for rapidly exploring the impact of subtle changes in receptor functionality on molecular recognition in water.

  18. Specific labelling of serotonin 5-HT(1B) receptors in rat frontal cortex with the novel, phenylpiperazine derivative, [3H]GR125,743. A pharmacological characterization.

    Science.gov (United States)

    Millan, M J; Newman-Tancredi, A; Lochon, S; Touzard, M; Aubry, S; Audinot, V

    2002-04-01

    Although several tritiated agonists have been used for radiolabelling serotonin (5-hydroxytryptamine, 5-HT)(1B) receptors in rats, data with a selective, radiolabelled antagonist have not been presented. Inasmuch as [3H]GR125,743 specifically labels cloned, human and native guinea pig 5-HT(1B) receptors and has been employed for characterization of cerebral 5-HT(1B) receptor in the latter species [Eur. J. Pharmacol. 327 (1997) 247.], the present study evaluated its utility for characterization of native, cerebral 5-HT(1B) sites in the rat. In homogenates of frontal cortex, [3H]GR125,743 (0.8 nM) showed rapid association (t(1/2)=3.4 min), >90% specific binding and high affinity (K(d)=0.6 nM) for a homogeneous population of receptors with a density (B(max)) of 160 fmol/mg protein. In competition binding studies, affinities were determined for 15 chemically diverse 5-HT(1B) agonists, including 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indole-3-yl]ethylamine (L694,247; pK(i), 10.4), 5-carboxamidotryptamine (5-CT; 9.7), 3-[3-(2-dimethylamino-ethyl)-1H-indol-6-yl]-N-(4-methoxybenzyl)acrylamide (GR46,611; 9.6), 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU24,969; 9.5), dihydroergotamine (DHE; 8.6), 5-H-pyrrolo[3,2-b]pyridin-5-one,1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl (CP93,129; 8.4), anpirtoline (7.9), sumatriptan (7.4), 1-[2-(3-fluorophenyl)ethyl]-4-[3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl]piperazine (L775,606; 6.4) and (minus sign)-1(S)-[2-[4-(4-methoxyphenyl)piperazin-1-yl]ethyl]-N-methyl-3,4-dihydro-1H-2-benzopyran-6-carboxamide (PNU109,291; <5.0). Similarly, affinities were established for 13 chemically diverse antagonists, including N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(4-pyridyl)benzamide (GR125,743; pK(i), 9.1), (-)cyanopindolol (9.0), (-)-tertatolol (8.2), N-(4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiozol-3-yl)biphenyl-4-carboxamide (GR127,935; 8.2), N-[3

  19. The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line.

    Science.gov (United States)

    Bracha, Shay; Viall, Austin; Goodall, Cheri; Stang, Bernadette; Ruaux, Craig; Seguin, Bernard; Chappell, Patrick E

    2013-12-12

    The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists. 5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability. These findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular

  20. Affinity selection-mass spectrometry and its emerging application to the high throughput screening of G protein-coupled receptors.

    Science.gov (United States)

    Whitehurst, Charles E; Annis, D Allen

    2008-07-01

    Advances in combinatorial chemistry and genomics have inspired the development of novel affinity selection-based screening techniques that rely on mass spectrometry to identify compounds that preferentially bind to a protein target. Of the many affinity selection-mass spectrometry techniques so far documented, only a few solution-based implementations that separate target-ligand complexes away from unbound ligands persist today as routine high throughput screening platforms. Because affinity selection-mass spectrometry techniques do not rely on radioactive or fluorescent reporters or enzyme activities, they can complement traditional biochemical and cell-based screening assays and enable scientists to screen targets that may not be easily amenable to other methods. In addition, by employing mass spectrometry for ligand detection, these techniques enable high throughput screening of massive library collections of pooled compound mixtures, vastly increasing the chemical space that a target can encounter during screening. Of all drug targets, G protein coupled receptors yield the highest percentage of therapeutically effective drugs. In this manuscript, we present the emerging application of affinity selection-mass spectrometry to the high throughput screening of G protein coupled receptors. We also review how affinity selection-mass spectrometry can be used as an analytical tool to guide receptor purification, and further used after screening to characterize target-ligand binding interactions, enabling the classification of orthosteric and allosteric binders.

  1. Functional characterization of the high affinity IgG Receptor : making heads and tails of FcγRI

    NARCIS (Netherlands)

    van der Poel, C.E.

    2011-01-01

    This thesis focuses on human FcγRI, a high affinity receptor for antibodies of the IgG isotype. IgG is the most abundant antibody type in blood and all currently FDA approved therapeutic antibodies are of the IgG isotype. FcγRI, a member of the activating Fcγ receptors, exists as a complex of a

  2. Behavioral tolerance to lysergic acid diethylamide is associated with reduced serotonin-2A receptor signaling in rat cortex.

    Science.gov (United States)

    Gresch, Paul J; Smith, Randy L; Barrett, Robert J; Sanders-Bush, Elaine

    2005-09-01

    Tolerance is defined as a decrease in responsiveness to a drug after repeated administration. Tolerance to the behavioral effects of hallucinogens occurs in humans and animals. In this study, we used drug discrimination to establish a behavioral model of lysergic acid diethylamide (LSD) tolerance and examined whether tolerance to the stimulus properties of LSD is related to altered serotonin receptor signaling. Rats were trained to discriminate 60 microg/kg LSD from saline in a two-lever drug discrimination paradigm. Two groups of animals were assigned to either chronic saline treatment or chronic LSD treatment. For chronic treatment, rats from each group were injected once per day with either 130 microg/kg LSD or saline for 5 days. Rats were tested for their ability to discriminate either saline or 60 microg/kg LSD, 24 h after the last chronic injection. Rats receiving chronic LSD showed a 44% reduction in LSD lever selection, while rats receiving chronic vehicle showed no change in percent choice on the LSD lever. In another group of rats receiving the identical chronic LSD treatment, LSD-stimulated [35S]GTPgammaS binding, an index of G-protein coupling, was measured in the rat brain by autoradiography. After chronic LSD, a significant reduction in LSD-stimulated [35S]GTPgammaS binding was observed in the medial prefrontal cortex and anterior cingulate cortex. Furthermore, chronic LSD produced a significant reduction in 2,5-dimethoxy-4-iodoamphetamine-stimulated [35S]GTPgammaS binding in medial prefrontal cortex and anterior cingulate cortex, which was blocked by MDL 100907, a selective 5-HT2A receptor antagonist, but not SB206553, a 5-HT2C receptor antagonist, indicating a reduction in 5-HT2A receptor signaling. 125I-LSD binding to 5-HT2A receptors was reduced in cortical regions, demonstrating a reduction in 5-HT2A receptor density. Taken together, these results indicate that adaptive changes in LSD-stimulated serotonin receptor signaling may mediate tolerance

  3. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquèze-Pouey

    Full Text Available Signaling mediated by the epidermal growth factor (EGF is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer. In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  4. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Science.gov (United States)

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  5. Are basophil histamine release and high affinity IgE receptor expression involved in asymptomatic skin sensitization?

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Assing, K; Jensen, Lone Hummelshøj

    2006-01-01

    Immunoglobulin (Ig)E-sensitized persons with positive skin prick test, but no allergy symptoms, are classified as being asymptomatic skin sensitized (AS). The allergic type 1 disease is dependant on IgE binding to the high affinity IgE-receptor (FcepsilonRI) expressed on basophils and mast cells....

  6. Theophylline-induced respiratory recovery following cervical spinal cord hemisection is augmented by serotonin 2 receptor stimulation.

    Science.gov (United States)

    Basura, Gregory J; Nantwi, Kwaku D; Goshgarian, Harry G

    2002-11-22

    Cervical spinal cord hemisection leads to a disruption of bulbospinal innervation of phrenic motoneurons resulting in paralysis of the ipsilateral hemidiaphragm. We have previously demonstrated separate therapeutic roles for theophylline, and more recently serotonin (5-HT) as modulators to phrenic nerve motor recovery; mechanisms that likely occur via adenosine A1 and 5-HT2 receptors, respectively. The present study was designed to specifically determine if concurrent stimulation of 5-HT2 receptors may enhance motor recovery induced by theophylline alone. Adult female rats (250-350 g; n=7 per group) received a left cervical (C2) hemisection that resulted in paralysis of the ipsilateral hemidiaphragm. Twenty-four hours later rats were given systemic theophylline (15 mg/kg, i.v.), resulting in burst recovery in the ipsilateral phrenic nerve. Theophylline-induced recovery was enhanced with the 5-HT2A/2C receptor agonist, (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI; 1.0 mg/kg). DOI-evoked augmentation of theophylline-induced recovery was attenuated following subsequent injection of the 5-HT2 receptor antagonist, ketanserin (2.0 mg/kg). In a separate group, rats were pretreated with ketanserin, which did not prevent subsequent theophylline-induced respiratory recovery. However, pretreatment with ketanserin did prevent DOI-induced augmentation of the theophylline-evoked phrenic nerve burst recovery. Lastly, using immunocytochemistry and in situ hybridization, we showed for the first time a positive co-localization of adenosine A1 receptor mRNA and immunoreactivity with phrenic motoneurons of the cervical ventral horns. Taken together, the results of the present study suggest that theophylline may induce motor recovery likely at adenosine A1 receptors located at the level of the spinal cord, and the concurrent stimulation of converging 5-HT2 receptors may augment the response.

  7. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Directory of Open Access Journals (Sweden)

    Jiangnan Luo

    Full Text Available A set of 14 insulin-producing cells (IPCs in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5. Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  8. Drosophila insulin-producing cells are differentially modulated by serotonin and octopamine receptors and affect social behavior.

    Science.gov (United States)

    Luo, Jiangnan; Lushchak, Oleh V; Goergen, Philip; Williams, Michael J; Nässel, Dick R

    2014-01-01

    A set of 14 insulin-producing cells (IPCs) in the Drosophila brain produces three insulin-like peptides (DILP2, 3 and 5). Activity in IPCs and release of DILPs is nutrient dependent and controlled by multiple factors such as fat body-derived proteins, neurotransmitters, and neuropeptides. Two monoamine receptors, the octopamine receptor OAMB and the serotonin receptor 5-HT1A, are expressed by the IPCs. These receptors may act antagonistically on adenylate cyclase. Here we investigate the action of the two receptors on activity in and output from the IPCs. Knockdown of OAMB by targeted RNAi led to elevated Dilp3 transcript levels in the brain, whereas 5-HT1A knockdown resulted in increases of Dilp2 and 5. OAMB-RNAi in IPCs leads to extended survival of starved flies and increased food intake, whereas 5-HT1A-RNAi produces the opposite phenotypes. However, knockdown of either OAMB or 5-HT1A in IPCs both lead to increased resistance to oxidative stress. In assays of carbohydrate levels we found that 5-HT1A knockdown in IPCs resulted in elevated hemolymph glucose, body glycogen and body trehalose levels, while no effects were seen after OAMB knockdown. We also found that manipulations of the two receptors in IPCs affected male aggressive behavior in different ways and 5-HT1A-RNAi reduced courtship latency. Our observations suggest that activation of 5-HT1A and OAMB signaling in IPCs generates differential effects on Dilp transcription, fly physiology, metabolism and social interactions. However the findings do not support an antagonistic action of the two monoamines and their receptors in this particular system.

  9. 99mTc(CO)3-DTMA bombesin conjugates having high affinity for the GRP receptor

    International Nuclear Information System (INIS)

    Lane, Stephanie R.; Veerendra, Bhadrasetty; Rold, Tammy L.; Sieckman, Gary L.; Hoffman, Timothy J.; Jurisson, Silvia S.; Smith, Charles J.

    2008-01-01

    Introduction: Targeted diagnosis of specific human cancer types continues to be of significant interest in nuclear medicine. 99m Tc is ideally suited as a diagnostic radiometal for in vivo tumor targeting due to its ideal physical characteristics and diverse labeling chemistries in numerous oxidation states. Methods: In this study, we report a synthetic approach toward design of a new tridentate amine ligand for the organometallic aqua-ion [ 99m Tc(H 2 O) 3 (CO) 3 ] + . The new chelating ligand framework, 2-(N,N'-Bis(tert-butoxycarbonyl)diethylenetriamine) acetic acid (DTMA), was synthesized from a diethylenetriamine precursor and fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy ( 1 H and 13 C). DTMA was conjugated to H 2 N-(X)-BBN(7-14)NH 2 , where X=an amino acid or aliphatic pharmacokinetic modifier and BBN=bombesin peptide, by means of solid phase peptide synthesis. DTMA-(X)-BBN(7-14)NH 2 conjugates were purified by reversed-phase high-performance chromatography and characterized by electrospray-ionization mass spectrometry. Results: The new conjugates were radiolabeled with [ 99m Tc(H 2 O) 3 (CO) 3 ] + produced via Isolink radiolabeling kits to produce [ 99m Tc(CO) 3 -DTMA-(X)-BBN(7-14)NH 2 ]. Radiolabeled conjugates were purified by reversed-phase high-performance chromatography. Effective receptor binding behavior was evaluated in vitro and in vivo. Conclusions: [ 99m Tc(CO) 3 -DTMA-(X)-BBN(7-14)NH 2 ] conjugates displayed very high affinity for the gastrin releasing peptide receptor in vitro and in vivo. Therefore, these conjugates hold some propensity to be investigated as molecular imaging agents that specifically target human cancers uniquely expressing the gastrin releasing peptide receptor subtypes

  10. Serotonin 2A Receptor Signaling Underlies LSD-induced Alteration of the Neural Response to Dynamic Changes in Music.

    Science.gov (United States)

    Barrett, Frederick S; Preller, Katrin H; Herdener, Marcus; Janata, Petr; Vollenweider, Franz X

    2017-09-28

    Classic psychedelic drugs (serotonin 2A, or 5HT2A, receptor agonists) have notable effects on music listening. In the current report, blood oxygen level-dependent (BOLD) signal was collected during music listening in 25 healthy adults after administration of placebo, lysergic acid diethylamide (LSD), and LSD pretreated with the 5HT2A antagonist ketanserin, to investigate the role of 5HT2A receptor signaling in the neural response to the time-varying tonal structure of music. Tonality-tracking analysis of BOLD data revealed that 5HT2A receptor signaling alters the neural response to music in brain regions supporting basic and higher-level musical and auditory processing, and areas involved in memory, emotion, and self-referential processing. This suggests a critical role of 5HT2A receptor signaling in supporting the neural tracking of dynamic tonal structure in music, as well as in supporting the associated increases in emotionality, connectedness, and meaningfulness in response to music that are commonly observed after the administration of LSD and other psychedelics. Together, these findings inform the neuropsychopharmacology of music perception and cognition, meaningful music listening experiences, and altered perception of music during psychedelic experiences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Combined α7 nicotinic acetylcholine receptor agonism and partial serotonin transporter inhibition produce antidepressant-like effects in the mouse forced swim and tail suspension tests

    DEFF Research Database (Denmark)

    Andreasen, Jesper T; Redrobe, John P; Nielsen, Elsebet Ø

    2012-01-01

    Emerging evidence points to an involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. Nicotine improves symptoms of depression in humans and shows antidepressant-like effects in rodents. Monoamine release is facilitated by nAChR stimulation, and nicotine-evoked serotonin (5...

  12. CaMKII inhibition with KN93 attenuates endothelin and serotonin receptor-mediated vasoconstriction and prevents subarachnoid hemorrhage-induced deficits in sensorimotor function

    DEFF Research Database (Denmark)

    Edvinsson, Lars; Povlsen, Gro Klitgaard; Ahnstedt, Hilda

    2014-01-01

    tested the hypothesis that inhibition of calcium calmodulin-dependent protein kinase II (CaMKII) may reduce cerebral vasoconstriction mediated by endothelin and serotonin receptors and improve neurological outcome after experimental SAH. METHODS: SAH was induced in adult rats by injection of 250 μ...

  13. Serotonin Transporter (5-HTT) and gamma-Aminobutyric Acid Receptor Subunit beta3 (GABRB3) Gene Polymorphisms are not Associated with Autism in the IMGSA Families

    DEFF Research Database (Denmark)

    Maestrini, E.; Lai, C.; Marlow, A.

    1999-01-01

    Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study on...

  14. Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle

    International Nuclear Information System (INIS)

    Sherman, S.J.; Catterall, W.A.

    1982-01-01

    Specific binding of 3 H-saxitoxin (STX) was used to quantitate the density of voltage-sensitive sodium channels in developing rat skeletal muscle. In adult triceps surae, a single class of sites with a KD . 2.9 nM and a density of 21 fmol/mg wet wt was detected. The density of these high-affinity sites increased from 2.0 fmol/mg wet wt to the adult value in linear fashion during days 2-25 after birth. Denervation of the triceps surae at day 11 or 17 reduced final saxitoxin receptor site density to 10.4 or 9.2 fmol/mg wet wt, respectively, without changing KD. Denervation of the triceps surae at day 5 did not alter the subsequent development of saxitoxin receptor sites during days 5-9 and accelerated the increase of saxitoxin receptor sites during days 9-13. After day 13, saxitoxin receptor development abruptly ceased and the density of saxitoxin receptor sites declined to 11 fmol/wg wet wt. These results show that the regulation of high-affinity saxitoxin receptor site density by innervation is biphasic. During the first phase, which is independent of continuing innervation, the saxitoxin receptor density increases to 47-57% of the adult level. After day 11, the second phase of development, which is dependent on continuing innervation, gives rise to the adult density of saxitoxin receptors

  15. Development of an affinity-matured humanized anti-epidermal growth factor receptor antibody for cancer immunotherapy.

    Science.gov (United States)

    Nakanishi, Takeshi; Maru, Takamitsu; Tahara, Kazuhiro; Sanada, Hideaki; Umetsu, Mitsuo; Asano, Ryutaro; Kumagai, Izumi

    2013-02-01

    We showed previously that humanization of 528, a murine anti-epidermal growth factor receptor (EGFR) antibody, causes reduced affinity for its target. Here, to improve the affinity of the humanized antibody for use in cancer immunotherapy, we constructed phage display libraries focused on the complementarity-determining regions (CDRs) of the antibody and carried out affinity selection. Two-step selections using libraries constructed in a stepwise manner enabled a 32-fold affinity enhancement of humanized 528 (h528). Thermodynamic analysis of the interactions between the variable domain fragment of h528 (h528Fv) mutants and the soluble extracellular domain of EGFR indicated that the h528Fv mutants obtained from the first selection showed a large increase in negative enthalpy change due to binding, resulting in affinity enhancement. Furthermore, mutants from the second selection showed a decrease in entropy loss, which led to further affinity maturation. These results suggest that a single mutation in the heavy chain variable domain (i.e. Tyr(52) to Trp) enthalpically contributed for overcoming the energetic barrier to the antigen-antibody interaction, which was a major hurdle for the in vitro affinity maturation of h528. We reported previously that the humanized bispecific diabody hEx3 Db, which targets EGFR and CD3, shows strong anti-tumor activity. hEx3 Db mutants, in which the variable domains of h528 were replaced with those of the affinity-enhanced mutants, were prepared and characterized. In a growth inhibition assay of tumor cells, the hEx3 Db mutants showed stronger anti-tumor activity than that of hEx3 Db, suggesting that affinity enhancement of h528Fv enhances the anti-tumor activity of the bispecific diabody.

  16. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    International Nuclear Information System (INIS)

    Chiba, S.; Shibuya, K.; Miyazono, K.; Tojo, A.; Oka, Y.; Miyagawa, K.; Takaku, F.

    1990-01-01

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of 125 I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB- 125 I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein

  17. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures.

    Science.gov (United States)

    Rosenthaler, Sarah; Pöhn, Birgit; Kolmanz, Caroline; Huu, Chi Nguyen; Krewenka, Christopher; Huber, Alexandra; Kranner, Barbara; Rausch, Wolf-Dieter; Moldzio, Rudolf

    2014-01-01

    Phytocannabinoids are potential candidates for neurodegenerative disease treatment. Nonetheless, the exact mode of action of major phytocannabinoids has to be elucidated, but both, receptor and non-receptor mediated effects are discussed. Focusing on the often presumed structure-affinity-relationship, Ki values of phytocannabinoids cannabidiol (CBD), cannabidivarin (CBDV), cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), THC acid (THCA) and THC to human CB1 and CB2 receptors were detected by using competitive inhibition between radioligand [(3)H]CP-55,940 and the phytocannabinoids. The resulting Ki values to CB1 range from 23.5 nM (THCA) to 14711 nM (CBDV), whereas Ki values to CB2 range from 8.5 nM (THC) to 574.2 nM (CBDV). To study the relationship between binding affinity and effects on neurons, we investigated possible CB1 related cytotoxic properties in murine mesencephalic primary cell cultures and N18TG2 neuroblastoma cell line. Most of the phytocannabinoids did not affect the number of dopaminergic neurons in primary cultures, whereas propidium iodide and resazurin formation assays revealed cytotoxic properties of CBN, CBDV and CBG. However, THC showed positive effects on N18TG2 cell viability at a concentration of 10 μM, whereas CBC and THCA also displayed slightly positive activities. These findings are not linked to the receptor binding affinity therewith pointing to another mechanism than a receptor mediated one. [Corrected] Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D2 receptor

    International Nuclear Information System (INIS)

    Borgundvaag, B.; George, S.R.

    1985-01-01

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [ 3 H]-ATP to [ 3 H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC 50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC 50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D 2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table

  19. DOTA-derivatives of octreotide dicarba-analogues with high affinity for somatostatin sst2,5 receptors

    Science.gov (United States)

    Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M.; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso

    2017-02-01

    In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumours and their metastases. In fact, peptide ligands of somatostatin receptors (sst’s) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogues, which show interesting binding profiles at sst’s. In this context, it was mandatory to explore the possibility that our analogues could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogues of octreotide. Interestingly, two conjugated analogues exhibited nanomolar affinities on sst2 and sst5 somatostatin receptor subtypes.

  20. Human Freud-2/CC2D1B: a novel repressor of postsynaptic serotonin-1A receptor expression.

    Science.gov (United States)

    Hadjighassem, Mahmoud R; Austin, Mark C; Szewczyk, Bernadeta; Daigle, Mireille; Stockmeier, Craig A; Albert, Paul R

    2009-08-01

    Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.

  1. Global decrease of serotonin-1A receptor binding after electroconvulsive therapy in major depression measured by PET

    Science.gov (United States)

    Lanzenberger, R; Baldinger, P; Hahn, A; Ungersboeck, J; Mitterhauser, M; Winkler, D; Micskei, Z; Stein, P; Karanikas, G; Wadsak, W; Kasper, S; Frey, R

    2013-01-01

    Electroconvulsive therapy (ECT) is a potent therapy in severe treatment-refractory depression. Although commonly applied in psychiatric clinical routine since decades, the exact neurobiological mechanism regarding its efficacy remains unclear. Results from preclinical and clinical studies emphasize a crucial involvement of the serotonin-1A receptor (5-HT1A) in the mode of action of antidepressant treatment. This includes associations between treatment response and changes in 5-HT1A function and density by antidepressants. Further, alterations of the 5-HT1A receptor are consistently reported in depression. To elucidate the effect of ECT on 5-HT1A receptor binding, 12 subjects with severe treatment-resistant major depression underwent three positron emission tomography (PET) measurements using the highly selective radioligand [carbonyl-11C]WAY100635, twice before (test–retest variability) and once after 10.08±2.35 ECT sessions. Ten patients (∼83%) were responders to ECT. The voxel-wise comparison of the 5-HT1A receptor binding (BPND) before and after ECT revealed a widespread reduction in cortical and subcortical regions (P<0.05 corrected), except for the occipital cortex and the cerebellum. Strongest reductions were found in regions consistently reported to be altered in major depression and involved in emotion regulation, such as the subgenual part of the anterior cingulate cortex (−27.5%), the orbitofrontal cortex (−30.1%), the amygdala (−31.8%), the hippocampus (−30.6%) and the insula (−28.9%). No significant change was found in the raphe nuclei. There was no significant difference in receptor binding in any region comparing the first two PET scans conducted before ECT. This PET study proposes a global involvement of the postsynaptic 5-HT1A receptor binding in the effect of ECT. PMID:22751491

  2. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36

    DEFF Research Database (Denmark)

    Ettrup, Anders; Svarer, Claus; McMahon, Brenda

    2016-01-01

    INTRODUCTION: [(11)C]Cimbi-36 is a recently developed serotonin 2A (5-HT2A) receptor agonist positron emission tomography (PET) radioligand that has been successfully applied for human neuroimaging. Here, we investigate the test-retest variability of cerebral [(11)C]Cimbi-36 PET and compare [(11)C...... test-retest variability in [(11)C]Cimbi-36 binding measures, and another eight were scanned after a bolus plus constant infusion with [(18)F]altanserin. Regional differences in the brain distribution of [(11)C]Cimbi-36 and [(18)F]altanserin were assessed with a correlation of regional binding measures...... and with voxel-based analysis. RESULTS: Test-retest variability of [(11)C]Cimbi-36 non-displaceable binding potential (BPND) was consistently correlation between regional...

  3. Influence of the 5-HT3A Receptor Gene Polymorphism and Childhood Sexual Trauma on Central Serotonin Activity.

    Directory of Open Access Journals (Sweden)

    Kuk-In Jang

    Full Text Available Gene-environment interactions are important for understanding alterations in human brain function. The loudness dependence of auditory evoked potential (LDAEP is known to reflect central serotonergic activity. Single nucleotide polymorphisms (SNPs in the 5-HT3A serotonin receptor gene are associated with psychiatric disorders. This study aimed to investigate the effect between 5-HT3A receptor gene polymorphisms and childhood sexual trauma on the LDAEP as an electrophysiological marker in healthy subjects.A total of 206 healthy subjects were recruited and evaluated using the childhood trauma questionnaire (CTQ and hospital anxiety and depression scale (HADS. Peak-to-peak N1/P2 was measured at five stimulus intensities, and the LDAEP was calculated as the linear-regression slope. In addition, the rs1062613 SNPs of 5-HT3A (CC, CT, and TT were analyzed in healthy subjects.There was a significant interaction between scores on the CTQ-sexual abuse subscale and 5-HT3A genotype on the LDAEP. Subjects with the CC polymorphism had a significantly higher LDEAP than T carriers in the sexually abused group. In addition, CC genotype subjects in the sexually abused group showed a significantly higher LDAEP compared with CC genotype subjects in the non-sexually abused group.Our findings suggest that people with the CC polymorphism of the 5-HT3A gene have a greater risk of developing mental health problems if they have experienced childhood sexual abuse, possibly due to low central serotonin activity. Conversely, the T polymorphism may be protective against any central serotonergic changes following childhood sexual trauma.

  4. Human fear acquisition deficits in relation to genetic variants of the corticotropin releasing hormone receptor 1 and the serotonin transporter.

    Directory of Open Access Journals (Sweden)

    Ivo Heitland

    Full Text Available The ability to identify predictors of aversive events allows organisms to appropriately respond to these events, and failure to acquire these fear contingencies can lead to maladaptive contextual anxiety. Recently, preclinical studies demonstrated that the corticotropin-releasing factor and serotonin systems are interactively involved in adaptive fear acquisition. Here, 150 healthy medication-free human subjects completed a cue and context fear conditioning procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex (FPS was measured to assess both uninstructed fear acquisition and instructed fear expression. All participants were genotyped for polymorphisms located within regulatory regions of the corticotropin releasing hormone receptor 1 (CRHR1 - rs878886 and the serotonin transporter (5HTTLPR. These polymorphisms have previously been linked to panic disorder and anxious symptomology and personality, respectively. G-allele carriers of CRHR1 (rs878886 showed no acquisition of fear conditioned responses (FPS to the threat cue in the uninstructed phase, whereas fear acquisition was present in C/C homozygotes. Moreover, carrying the risk alleles of both rs878886 (G-allele and 5HTTLPR (short allele was associated with increased FPS to the threat context during this phase. After explicit instructions regarding the threat contingency were given, the cue FPS and context FPS normalized in all genotype groups. The present results indicate that genetic variability in the corticotropin-releasing hormone receptor 1, especially in interaction with the 5HTTLPR, is involved in the acquisition of fear in humans. This translates prior animal findings to the human realm.

  5. 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Eriksson, Therese M; Holst, Sarah; Stan, Tiberiu L; Hager, Torben; Sjögren, Benita; Ogren, Sven Öve; Svenningsson, Per; Stiedl, Oliver

    2012-11-01

    This study utilized pharmacological manipulations to analyze the role of direct and indirect activation of 5-HT(7) receptors (5-HT(7)Rs) in passive avoidance learning by assessing emotional memory in male C57BL/6J mice. Additionally, 5-HT(7)R binding affinity and 5-HT(7)R-mediated protein phosphorylation of downstream signaling targets were determined. Elevation of 5-HT by the selective serotonin reuptake inhibitor (SSRI) fluoxetine had no effect by itself, but facilitated emotional memory performance when combined with the 5-HT(1A)R antagonist NAD-299. This facilitation was blocked by the selective 5-HT(7)R antagonist SB269970, revealing excitatory effects of the SSRI via 5-HT(7)Rs. The enhanced memory retention by NAD-299 was blocked by SB269970, indicating that reduced activation of 5-HT(1A)Rs results in enhanced 5-HT stimulation of 5-HT(7)Rs. The putative 5-HT(7)R agonists LP-44 when administered systemically and AS19 when administered both systemically and into the dorsal hippocampus failed to facilitate memory. This finding is consistent with the low efficacy of LP-44 and AS19 to stimulate protein phosphorylation of 5-HT(7)R-activated signaling cascades. In contrast, increasing doses of the dual 5-HT(1A)R/5-HT(7)R agonist 8-OH-DPAT impaired memory, while co-administration with NAD-299 facilitated of emotional memory in a dose-dependent manner. This facilitation was blocked by SB269970 indicating 5-HT(7)R activation by 8-OH-DPAT. Dorsohippocampal infusion of 8-OH-DPAT impaired passive avoidance retention through hippocampal 5-HT(1A)R activation, while 5-HT(7)Rs appear to facilitate memory processes in a broader cortico-limbic network and not the hippocampus alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Adaptations in pre- and postsynaptic 5-HT(1A) receptor function and cocaine supersensitivity in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Homberg, Judith R; De Boer, Sietse F; Raasø, Halfdan S; Olivier, Jocelien D A; Verheul, Mark; Ronken, Eric; Cools, Alexander R; Ellenbroek, Bart A; Schoffelmeer, Anton N M; Vanderschuren, Louk J M J; De Vries, Taco J; Cuppen, Edwin

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  7. The serotonin receptor mediates changes in autonomic neurotransmission and gastrointestinal transit induced by heat-killed Lactobacillus brevis SBC8803.

    Science.gov (United States)

    Horii, Y; Nakakita, Y; Misonou, Y; Nakamura, T; Nagai, K

    2015-01-01

    Lactobacilli exhibit several health benefits in mammals, including humans. Our previous reports established that heat-killed Lactobacillus brevis SBC8803 (SBC8803) increased both efferent gastric vagal nerve activity and afferent intestinal vagal nerve activity in rats. We speculated that this strain could be useful for the treatment of gastrointestinal (GI) disorders. In this study, we examined the effects of SBC8803 on peristalsis and the activity of the efferent celiac vagal nerve innervating the intestine in rats. First, we examined the effects of intraduodenal (ID) administration of SBC8803 on efferent celiac vagal nerve activity (efferent CVNA) in urethane-anesthetised rats using electrophysiological studies. The effects of intravenous injection of the serotonin 5-HT3 receptor antagonist granisetron on changes in efferent CVNA due to ID administration of SBC8803 were also investigated. Finally, the effects of oral gavage of SBC8803 on GI transit were analysed using the charcoal propulsion method in conscious rats treated with or without granisetron. ID administration of SBC8803 increased efferent CVNA. Pretreatment with granisetron eliminated SBC8803-dependent changes in efferent CVNA. Furthermore, oral gavage of SBC8803 significantly accelerated GI transit, while pretreatment with granisetron inhibited GI transit. Our findings suggested that SBC8803 increased efferent CVNA and GI transit of charcoal meal via 5-HT3 receptors. Moreover, SBC8803 enhanced the activity of efferent vagal nerve innervating the intestine and promoted peristalsis via 5-HT3 receptors.

  8. Binding of Serotonin to Lipid Membranes

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Wang, Chunhua; Cruys-Bagger, Nicolaj

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a prevalent neurotransmitter throughout the animal kingdom. It exerts its effect through the specific binding to the serotonin receptor, but recent research has suggested that neural transmission may also be affected by its nonspecific interactions...... with the lipid matrix of the synaptic membrane. However, membrane–5-HT interactions remain controversial and superficially investigated. Fundamental knowledge of this interaction appears vital in discussions of putative roles of 5-HT, and we have addressed this by thermodynamic measurements and molecular...... dynamics (MD) simulations. 5-HT was found to interact strongly with lipid bilayers (partitioning coefficient ∼1200 in mole fraction units), and this is highly unusual for a hydrophilic solute like 5-HT which has a bulk, oil–water partitioning coefficient well below unity. It follows that membrane affinity...

  9. Early signs of pathological cognitive aging in mice lacking high-affinity nicotinic receptors.

    Directory of Open Access Journals (Sweden)

    Eleni eKonsolaki

    2016-04-01

    Full Text Available In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. Α deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-, which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioural signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviours, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm and extend the hypothesis that β2-/- animals exhibit age-related cognitive impairments, manifested in both spatial learning and recognition memory tasks. In addition, we reveal deficits in spontaneous behaviour and habituation processes earlier in life. To our knowledge, this is the first study to perform an extensive behavioural examination of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioural changes to global dementia due to the combined effect of the neuropathology and aging.

  10. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta 9 tetrahydrocannabinol (delta 9 THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta 8 THC (TMA) is a positively charged analog of delta- 8 THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [ 3 H]-5'-trimethylammonium-delta- 8 THC ([ 3 H]TMA) to rat neuronal membranes. [ 3 H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [ 3 H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  11. Polymorphisms of the serotonin transporter and receptor genes: susceptibility to substance abuse

    Directory of Open Access Journals (Sweden)

    Herman AI

    2012-06-01

    Full Text Available Aryeh I Herman, Kornelia N BaloghDepartment of Psychiatry, VA Connecticut Healthcare/Yale University School of Medicine, West Haven, CT, USAAbstract: Serotonin (5-hydroxytryptamine [5-HT] is an important neurotransmitter implicated in regulating substance-use disorder (SUD acquisition, maintenance, and recovery. During the past several years, an abundance of research has begun discovering and describing specific 5-HT genetic polymorphisms associated with SUDs. Genetic variations in the 5-HT system, such as SLC6A4, HTR1B, HTR2A, HTR2C, HTR3 (HTR3A, HTR3B, HTR3C, HTR3D, and HTR3E, likely play a role contributing to SUD patient heterogeneity. The 5-HT transporter-linked polymorphic region S allele, located in SLC6A4, has now been modestly associated with alcohol dependence in two large meta-analyses. Additional 5-HT genes may also play a role but have not been extensively investigated. A limited number of SUD treatment studies have included 5-HT gene variation as moderating treatment outcomes, but the results have been equivocal. Future research on 5-HT addiction genetics should adopt whole-genome sequencing technology, utilize large study samples, and collect data from multiple ethnic groups. Together, these methods will build on the work already conducted with the aim of utilizing 5-HT genetics in SUD treatment settings.Keywords: serotonin, genetic, substance dependence, addiction, alcohol, drug

  12. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding....

  13. Similar serotonin-2A receptor binding in rats with different coping styles or levels of aggression

    DEFF Research Database (Denmark)

    Visser, Anniek Kd; Ettrup, Anders; Klein, Anders Bue

    2015-01-01

    is not an important molecular marker for coping style. Since neither an antagonist nor an agonist tracer showed any binding differences, it is unlikely that the affinity state of the 5-HT2A R is co-varying with levels of aggression or active avoidance in WTG, RHA and RLA. This article is protected by copyright. All...

  14. MS-377, a novel selective sigma(1) receptor ligand, reverses phencyclidine-induced release of dopamine and serotonin in rat brain.

    Science.gov (United States)

    Takahashi, S; Horikomi, K; Kato, T

    2001-09-21

    A novel selective sigma(1) receptor ligand, (R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377), inhibits phencyclidine (1-(1-phenylcyclohexyl)piperidine; PCP)-induced behaviors in animal models. In this study, we measured extracellular dopamine and serotonin levels in the rat brain after treatment with MS-377 alone, using in vivo microdialysis. We also examined the effects of MS-377 on extracellular dopamine and serotonin levels in the rat medial prefrontal cortex after treatment with PCP. MS-377 itself had no significant effects on dopamine release in the striatum (10 mg/kg, p.o.) nor on dopamine or serotonin release in the medial prefrontal cortex (1 and 10 mg/kg, p.o.). PCP (3 mg/kg, i.p.) markedly increased dopamine and serotonin release in the medial prefrontal cortex. MS-377 (1 mg/kg, p.o.), when administered 60 min prior to PCP, significantly attenuated this effect of PCP. These results suggest that the inhibitory effects of MS-377 on PCP-induced behaviors are partly mediated by inhibition of the increase in dopamine and serotonin release in the rat medial prefrontal cortex caused by PCP.

  15. Chronic effects of fluoxetine, a selective inhibitor of serotonin uptake, on neurotransmitter receptors

    International Nuclear Information System (INIS)

    Wong, D.T.; Reid, L.R.; Bymaster, F.P.; Threlkeld, P.G.

    1985-01-01

    Fluoxetine administration to rats dose of 10mg/kg i.p. daily up to 12 or 24 days failed to change the concentration-dependent binding of [ 3 H]WB4101, [ 3 H]clonidine and [ 3 H]dihydroalprenolol to α 1 -, α 2 - and β-adrenergic receptors, respectively; [ 3 H]quinuclidinyl benzilate to muscarinic receptors; [ 3 H]pyrilamine to histamine H 1 receptors and [ 3 H]naloxone to opiate receptors. Persistent and significant decreases in receptor number (Bsub(max) value) without changes in the dissociation constant (Ksub(D) value) of [ 3 H]5-HT binding in cortical membranes were observed upon chronic treatment with fluoxetine administered either by intraperitoneal injection or incorporation in the diet. A detectable reduction of 5-HT 1 receptor number occured after once-daily injections of fluoxetine at 10mg/kg i.p. within 49 hours. After pretreatment for 3 days with p-chlorophenylalanine, an inhibitor of 5-HT synthesis, followed by repeated administration of fluoxetine, 5-HT 1 receptor numbers were higher than those of normal rats, suggesting a dependence on synaptic concentration of 5-HT for fluoxetine to affect a receptor down-regulation. These studies provide further evidence for the selectivity of fluoxetine as an inhibitor of 5-HT reuptake, resulting in a selective down-regulation of 5-HT 1 receptors in the cerebal cortex of rat brain. (Author)

  16. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    Science.gov (United States)

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their

  17. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Science.gov (United States)

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  18. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Directory of Open Access Journals (Sweden)

    Person Alexandra M

    2011-11-01

    Full Text Available Abstract Background Along with high affinity binding of epibatidine (Kd1≈10 pM to α4β2 nicotinic acetylcholine receptor (nAChR, low affinity binding of epibatidine (Kd2≈1-10 nM to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after

  19. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    Directory of Open Access Journals (Sweden)

    Maria Martí-Solano

    Full Text Available Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity.

  20. Testosterone levels in healthy men correlate negatively with serotonin 4 receptor binding

    DEFF Research Database (Denmark)

    Perfalk, Erik; Cunha-Bang, Sofi da; Holst, Klaus K

    2017-01-01

    The serotonergic system integrates sex steroid information and plays a central role in mood and stress regulation, cognition, appetite and sleep. This interplay may be critical for likelihood of developing depressive episodes, at least in a subgroup of sensitive individuals. The serotonin 4...... positron emission tomography in a group of 41 healthy men. We estimated global 5-HT4R binding using a latent variable model framework, which models shared correlation between 5-HT4R across multiple brain regions (hippocampus, amygdala, posterior and anterior cingulate, thalamus, pallidostriatum...... and neocortex). We tested whether testosterone and estradiol predict global 5-HT4R, adjusting for age. We found that testosterone, but not estradiol, correlated negatively with global 5-HT4R levels (p=0.02) suggesting that men with high levels of testosterone have higher cerebral serotonergic tonus. Our...

  1. No evidence for a role of the serotonin 4 receptor in five-factor personality traits

    DEFF Research Database (Denmark)

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick Mac Donald

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo...... in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated...... using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits...

  2. Effects of local anesthetics on cholinergic agonist binding affinity of central nervous system. cap alpha. -bungarotoxin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, R.L.; Bennett, E.L.

    1979-12-01

    In general, pharmacological effects of local anesthetics may be attributed to their ability to reversibly block the propagation of nerve and muscle action potentials. At physiologically potent concentrations, local anesthetics (LA) also act as noncompetitive antagonists of the physiological response of post-synaptic nicotinic acetylcholine receptors (nAChR) to cholinergic agonists, and increase agonist binding affinities of nAChR from electric organ. It is postulated that the primary site of LA action on nAChR function is at the receptor-coupled ionophore. Furthermore, LA-nAChR ionophore interactions are thought to accelerate physiological desensitization of nAChR, manifest biochemically as increased affinity of nAChR for agonist. Specific receptors for ..cap alpha..-bungarotoxin (..cap alpha..-Bgt), a potent competitive antagonist at nAChR sites in the periphery, have been detected in rat central nervous system membrane preparations. The affinity of these central ..cap alpha..-Bgt receptors (..cap alpha..-BgtR) for cholinergic agonists is found to increase on exposure to agonist. Nevertheless, on the basis of inconsistent pharmacological and physiological results, uncertainty remains regarding the relationship between ..cap alpha..-BgtR and authentic nAChR in the CNS, despite a wide body of biochemical and histological evidence consistent with their identity. Reasoning that if CNS ..cap alpha..-BgtR are true in nAChR, coupled to functional ion channels, LA might be expected to cause biochemically measurable increases in ..cap alpha..-BgtR affinity for cholinergic agonists, we have undertaken a study of the effects of LA on the ability of acetylcholine (ACh) to inhibit interaction of ..cap alpha..-BgtR with /sup 3/H-labeled ..cap alpha..-Bgt.

  3. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors.

    Science.gov (United States)

    Carter, Olivia L; Burr, David C; Pettigrew, John D; Wallis, Guy M; Hasler, Felix; Vollenweider, Franz X

    2005-10-01

    Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were tested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 microg/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggesting a primary involvement of the 5-HT1A receptor in the observed deficit. Based on physiological and pharmacological data, we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.

  4. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor dependent manner

    Science.gov (United States)

    Garcia-Garcia, Alvaro L.; Canetta, Sarah; Stujenske, Joseph M.; Burghardt, Nesha S.; Ansorge, Mark S.; Dranovsky, Alex; Leonardo, E. David

    2017-01-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT1A antagonist. Finally, we demonstrate that activation of 5-HT1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT1A receptors under naturalistic conditions. PMID:28761080

  5. Serotonin Signaling through Prefrontal Cortex 5-HT1A Receptors during Adolescence Can Determine Baseline Mood-Related Behaviors.

    Science.gov (United States)

    Garcia-Garcia, Alvaro L; Meng, Qingyuan; Canetta, Sarah; Gardier, Alain M; Guiard, Bruno P; Kellendonk, Christoph; Dranovsky, Alex; Leonardo, E David

    2017-01-31

    Lifelong homeostatic setpoints for mood-related behaviors emerge during adolescence. Serotonin (5-HT) plays an important role in refining the formation of brain circuits during sensitive developmental periods. In rodents, the role of 5-HT 1A receptors in general and autoreceptors in particular has been characterized in anxiety. However, less is known about the role of 5-HT 1A receptors in depression-related behavior. Here, we show that whole-life suppression of heteroreceptor expression results in a broad depression-like behavioral phenotype accompanied by physiological and cellular changes within medial prefrontal cortex-dorsal raphe proper (mPFC-DRN) circuitry. These changes include increased basal 5-HT in a mPFC that is hyporesponsive to stress and decreased basal 5-HT levels and firing rates in a DRN hyperactivated by the same stressor. Remarkably, loss of heteroreceptors in the PFC at adolescence is sufficient to recapitulate this depression-like behavioral syndrome. Our results suggest that targeting mPFC 5-HT 1A heteroreceptors during adolescence in humans may have lifelong ramifications for depression and its treatment. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Serotonin Signaling through Prefrontal Cortex 5-HT1A Receptors during Adolescence Can Determine Baseline Mood-Related Behaviors

    Directory of Open Access Journals (Sweden)

    Alvaro L. Garcia-Garcia

    2017-01-01

    Full Text Available Lifelong homeostatic setpoints for mood-related behaviors emerge during adolescence. Serotonin (5-HT plays an important role in refining the formation of brain circuits during sensitive developmental periods. In rodents, the role of 5-HT1A receptors in general and autoreceptors in particular has been characterized in anxiety. However, less is known about the role of 5-HT1A receptors in depression-related behavior. Here, we show that whole-life suppression of heteroreceptor expression results in a broad depression-like behavioral phenotype accompanied by physiological and cellular changes within medial prefrontal cortex-dorsal raphe proper (mPFC-DRN circuitry. These changes include increased basal 5-HT in a mPFC that is hyporesponsive to stress and decreased basal 5-HT levels and firing rates in a DRN hyperactivated by the same stressor. Remarkably, loss of heteroreceptors in the PFC at adolescence is sufficient to recapitulate this depression-like behavioral syndrome. Our results suggest that targeting mPFC 5-HT1A heteroreceptors during adolescence in humans may have lifelong ramifications for depression and its treatment.

  7. Serotonin inputs to the dorsal BNST modulate anxiety in a 5-HT1A receptor-dependent manner.

    Science.gov (United States)

    Garcia-Garcia, A L; Canetta, S; Stujenske, J M; Burghardt, N S; Ansorge, M S; Dranovsky, A; Leonardo, E D

    2017-08-01

    Serotonin (5-HT) neurons project from the raphe nuclei throughout the brain where they act to maintain homeostasis. Here, we study 5-HT inputs into the bed nucleus of the stria terminalis (BNST), a major subdivision of the extended amygdala that has been proposed to regulate responses to anxiogenic environments in humans and rodents. While the dorsal part of the BNST (dBNST) receives dense 5-HT innervation, whether and how 5-HT in the dBNST normally modulates anxiety remains unclear. Using optogenetics, we demonstrate that activation of 5-HT terminals in the dBNST reduces anxiety in a highly anxiogenic environment. Further analysis revealed that optogenetic inhibition of 5-HT inputs into the dBNST increases anxiety in a less anxiogenic environment. We found that 5-HT predominantly hyperpolarizes dBNST neurons, reducing their activity in a manner that can be blocked by a 5-HT 1A antagonist. Finally, we demonstrate that activation of 5-HT 1A receptors in the dBNST is necessary for the anxiolytic effect observed following optogenetic stimulation of 5-HT inputs into the dBNST. These data reveal that 5-HT release in the dBNST modulates anxiety-like behavior via 5-HT 1A receptors under naturalistic conditions.Molecular Psychiatry advance online publication, 1 August 2017; doi:10.1038/mp.2017.165.

  8. Affinity column for purification of the human platelet thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor

    International Nuclear Information System (INIS)

    Venton, D.L.; Arora, S.K.; Kim, S.O.; Lim, C.T.; Le Breton, G.C.

    1987-01-01

    The TXA 2 /PGH 2 receptor antagonist, 13-azaprostanoic acid (13-APA), was synthesized and used as the immobilized ligand in the affinity column purification of the 13-APA/U46619 binding component in human platelets. Diazo coupling of the ligand to the phenol of this tyr-gly-gly-NH-(CO)-O-Sepharose gave the affinity column material. Isolated platelet membranes were solubilized with detergent, applied directly to the affinity column and the eluate collected as 6 x 70 ml fractions. For each fraction, protein concentration and specific 3 H-13-APA/numberH-U46619 binding were determined. The majority of the applied protein (>98%) eluted in fraction number1. However, the specific 13-APA/U46619 binding per mg of protein was localized in fractions number4 and number5, representing approximately a 500-fold purification of this binding component. These results suggest that the platelet TXA 2 /PGH 2 receptor protein is retarded by this column, and that starting from crude, solubilized platelet membranes, a single pass through the column provides a 500-fold purification of the receptor

  9. Occupation of low-affinity cholecystokinin (CCK) receptors by CCK activates signal transduction and stimulates amylase secretion in pancreatic acinar cells.

    Science.gov (United States)

    Vinayek, R; Patto, R J; Menozzi, D; Gregory, J; Mrozinski, J E; Jensen, R T; Gardner, J D

    1993-03-10

    Based on the effects of monensin on binding of 125I-CCK-8 and its lack of effect on CCK-8-stimulated amylase secretion we previously proposed that pancreatic acinar cells possess three classes of CCK receptors: high-affinity receptors, low-affinity receptors and very low-affinity receptors [1]. In the present study we treated pancreatic acini with carbachol to induce a complete loss of high-affinity CCK receptors and then examined the action of CCK-8 on inositol trisphosphate IP3(1,4,5), cytosolic calcium and amylase secretion in an effort to confirm and extend our previous hypothesis. We found that first incubating pancreatic acini with 10 mM carbachol decreased binding of 125I-CCK-8 measured during a second incubation by causing a complete loss of high-affinity CCK receptors with no change in the low-affinity CCK receptors. Carbachol treatment of acini, however, did not alter the action of CCK-8 on IP3(1,4,5), cytosolic calcium or amylase secretion or the action of CCK-JMV-180 on amylase secretion or on the supramaximal inhibition of amylase secretion caused by CCK-8. The present findings support our previous hypothesis that pancreatic acinar cells possess three classes of CCK receptors and suggest that high-affinity CCK receptors do not mediate the action of CCK-8 on enzyme secretion, that low-affinity CCK receptors may mediate the action of CCK on cytosolic calcium that does not involve IP3(1,4,5) and produce the upstroke of the dose-response curve for CCK-8-stimulated amylase secretion and that very low-affinity CCK receptors mediate the actions of CCK on IP3(1,4,5) and cytosolic calcium and produce the downstroke of the dose-response curve for CCK-8-stimulated amylase secretion. Moreover, CCK-JMV-180 is a full agonist for stimulating amylase secretion by acting at low-affinity CCK receptors and is an antagonist at very low-affinity CCK receptors.

  10. Development of a Fluorescent Bodipy Probe for Visualization of the Serotonin 5-HT1A Receptor in Native Cells of the Immune System.

    Science.gov (United States)

    Hernández-Torres, Gloria; Enríquez-Palacios, Ernesto; Mecha, Miriam; Feliú, Ana; Rueda-Zubiaurre, Ainoa; Angelina, Alba; Martín-Cruz, Leticia; Martín-Fontecha, Mar; Palomares, Oscar; Guaza, Carmen; Peña-Cabrera, Eduardo; López-Rodríguez, María L; Ortega-Gutiérrez, Silvia

    2018-05-14

    Serotonin (5-HT) modulates key aspects of the immune system. However, its precise function and the receptors involved in the observed effects have remained elusive. Among the different serotonin receptors, 5-HT 1A plays an important role in the immune system given its presence in cells involved in both the innate and adaptive immune responses, but its actual levels of expression under different conditions have not been comprehensively studied due to the lack of suitable tools. To further clarify the role of 5-HT 1A receptor in the immune system, we have developed a fluorescent small molecule probe that enables the direct study of the receptor levels in native cells. This probe allows direct profiling of the receptor expression in immune cells using flow cytometry. Our results show that important subsets of immune cells including human monocytes and dendritic cells express functional 5-HT 1A and that its activation is associated with anti-inflammatory signaling. Furthermore, application of the probe to the experimental autoimmune encephalomyelitis model of multiple sclerosis demonstrates its potential to detect the specific overexpression of the 5-HT 1A receptor in CD4+ T cells. Accordingly, the probe reported herein represents a useful tool whose use can be extended to study the levels of 5-HT 1A receptor in ex vivo samples of different immune system conditions.

  11. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity

    Directory of Open Access Journals (Sweden)

    Marcela V Maus

    2016-01-01

    Full Text Available Chimeric antigen receptors (CARs are synthetic receptors that usually redirect T cells to surface antigens independent of human leukocyte antigen (HLA. Here, we investigated a T cell receptor-like CAR based on an antibody that recognizes HLA-A*0201 presenting a peptide epitope derived from the cancer-testis antigen NY-ESO-1. We hypothesized that this CAR would efficiently redirect transduced T cells in an HLA-restricted, antigen-specific manner. However, we found that despite the specificity of the soluble Fab, the same antibody in the form of a CAR caused moderate lysis of HLA-A2 expressing targets independent of antigen owing to T cell avidity. We hypothesized that lowering the affinity of the CAR for HLA-A2 would improve its specificity. We undertook a rational approach of mutating residues that, in the crystal structure, were predicted to stabilize binding to HLA-A2. We found that one mutation (DN lowered the affinity of the Fab to T cell receptor-range and restored the epitope specificity of the CAR. DN CAR T cells lysed native tumor targets in vitro, and, in a xenogeneic mouse model implanted with two human melanoma lines (A2+/NYESO+ and A2+/NYESO−, DN CAR T cells specifically migrated to, and delayed progression of, only the HLA-A2+/NY-ESO-1+ melanoma. Thus, although maintaining MHC-restricted antigen specificity required T cell receptor-like affinity that decreased potency, there is exciting potential for CARs to expand their repertoire to include a broad range of intracellular antigens.

  12. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action

    DEFF Research Database (Denmark)

    Lucas, Guillaume; Rymar, Vladimir V; Du, Jenny

    2007-01-01

    parameters considered to be key markers of antidepressant action, but that are observed only after 2-3 week treatments with classical molecules: desensitization of 5-HT(1A) autoreceptors, increased tonus on hippocampal postsynaptic 5-HT(1A) receptors, and enhanced phosphorylation of the CREB protein...... intake consecutive to a chronic mild stress. These findings point out 5-HT(4) receptor agonists as a putative class of antidepressants with a rapid onset of action. Udgivelsesdato: 2007-Sep-6...

  13. Studies on the role of serotonin receptor subtypes in the effect of sibutramine in various feeding paradigms in rats

    Science.gov (United States)

    Grignaschi, G; Fanelli, E; Scagnol, I; Samanin, R

    1999-01-01

    The effect of the 5-hydroxytryptamine (5-HT) and noradrenaline (NA) reuptake inhibitor sibutramine was studied in food deprived, neuropeptide Y (NPY)- or muscimol-injected rats. Sibutramine dose-dependently reduced feeding caused by food-deprivation (ED50=5.1±0.8 mg kg−1) or by NPY injection into the paraventricular nucleus of the hypothalamus (ED50=6.0±0.5 mg kg−1). The increase in food intake caused by muscimol injected into the dorsal raphe was not modified by sibutramine (1–10 mg kg−1). The hypophagic effect of 5.1 mg kg−1 sibutramine in food-deprived rats was studied in rats pretreated with different serotonin receptor antagonists. Metergoline (non-selective, 0.3 and 1.0 mg kg−1), ritanserin (5-HT2A/2C, 0.5 and 1.0 mg kg−1) and GR127935 (5-HT1B/1D, 0.5 and 1.0 mg kg−1) did not modify the hypophagic effect of sibutramine, while SB206553 (5-HT2B/2C, 5 and 10 mg kg−1) slightly but significantly reduced it (Fint(2.53)=3.4; Psibutramine in NPY-injected rats was not modified by GR127935 (1.0 mg kg−1). The results suggest that, with the possible exception of a partial involvement of 5-HT2B/2C receptors in sibutramine's hypophagia in food-deprived rats, 5-HT1 and 5-HT2 receptor subtypes do not play an important role in the hypophagic effect of sibutramine, at least in the first 2 h after injection. PMID:10455265

  14. Discovery of Indazoles as Potent, Orally Active Dual Neurokinin 1 Receptor Antagonists and Serotonin Transporter Inhibitors for the Treatment of Depression.

    Science.gov (United States)

    Degnan, Andrew P; Tora, George O; Huang, Hong; Conlon, David A; Davis, Carl D; Hanumegowda, Umesh M; Hou, Xiaoping; Hsiao, Yi; Hu, Joanna; Krause, Rudolph; Li, Yu-Wen; Newton, Amy E; Pieschl, Rick L; Raybon, Joseph; Rosner, Thorsten; Sun, Jung-Hui; Taber, Matthew T; Taylor, Sarah J; Wong, Michael K; Zhang, Huiping; Lodge, Nicholas J; Bronson, Joanne J; Macor, John E; Gillman, Kevin W

    2016-12-21

    Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.

  15. 14-O-Methylmorphine: A Novel Selective Mu-Opioid Receptor Agonist with High Efficacy and Affinity.

    Science.gov (United States)

    Zádor, Ferenc; Balogh, Mihály; Váradi, András; Zádori, Zoltán S; Király, Kornél; Szűcs, Edina; Varga, Bence; Lázár, Bernadette; Hosztafi, Sándor; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-11-05

    14-O-methyl (14-O-Me) group in morphine-6-O-sulfate (M6SU) or oxymorphone has been reported to be essential for enhanced affinity, potency and antinociceptive effect of these opioids. Herein we report on the pharmacological properties (potency, affinity and efficacy) of the new compound, 14-O-methylmorphine (14-O-MeM) in in vitro. Additionally, we also investigated the antinociceptive effect of the novel compound, as well as its inhibitory action on gastrointestinal transit in in vivo. The potency and efficacy of test compound were measured by [ 35 S]GTPγS binding, isolated mouse vas deferens (MVD) and rat vas deferens (RVD) assays. The affinity of 14-O-MeM for opioid receptors was assessed by radioligand binding and MVD assays. The antinociceptive and gastrointestinal effects of the novel compound were evaluated in the rat tail-flick test and charcoal meal test, respectively. Morphine, DAMGO, Ile 5,6 deltorphin II, deltorphin II and U-69593 were used as reference compounds. 14-O-MeM showed higher efficacy (E max ) and potency (EC 50 ) than morphine in MVD, RVD or [ 35 S]GTPγS binding. In addition, 14-O-MeM compared to morphine showed higher affinity for μ-opioid receptor (MOR). In vivo, in rat tail-flick test 14-O-MeM proved to be stronger antinociceptive agent than morphine after peripheral or central administration. Additionally, both compounds inhibited the gastrointestinal peristalsis. However, when the antinociceptive and antitransit doses for each test compound are compared, 14-O-MeM proved to have slightly more favorable pharmacological profile. Our results affirm that 14-O-MeM, an opioid of high efficacy and affinity for MOR can be considered as a novel analgesic agent of potential clinical value. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin

    Directory of Open Access Journals (Sweden)

    Giniatullin Rashid

    2006-03-01

    Full Text Available Abstract Background Cultured sensory neurons are a common experimental model to elucidate the molecular mechanisms of pain transduction typically involving activation of ATP-sensitive P2X or capsaicin-sensitive TRPV1 receptors. This applies also to trigeminal ganglion neurons that convey pain inputs from head tissues. Little is, however, known about the plasticity of these receptors on trigeminal neurons in culture, grown without adding the neurotrophin NGF which per se is a powerful algogen. The characteristics of such receptors after short-term culture were compared with those of ganglia. Furthermore, their modulation by chronically-applied serotonin or NGF was investigated. Results Rat or mouse neurons in culture mainly belonged to small and medium diameter neurons as observed in sections of trigeminal ganglia. Real time RT-PCR, Western blot analysis and immunocytochemistry showed upregulation of P2X3 and TRPV1 receptors after 1–4 days in culture (together with their more frequent co-localization, while P2X2 ones were unchanged. TRPV1 immunoreactivity was, however, lower in mouse ganglia and cultures. Intracellular Ca2+ imaging and whole-cell patch clamping showed functional P2X and TRPV1 receptors. Neurons exhibited a range of responses to the P2X agonist α, β-methylene-adenosine-5'-triphosphate indicating the presence of homomeric P2X3 receptors (selectively antagonized by A-317491 and heteromeric P2X2/3 receptors. The latter were observed in 16 % mouse neurons only. Despite upregulation of receptors in culture, neurons retained the potential for further enhancement of P2X3 receptors by 24 h NGF treatment. At this time point TRPV1 receptors had lost the facilitation observed after acute NGF application. Conversely, chronically-applied serotonin selectively upregulated TRPV1 receptors rather than P2X3 receptors. Conclusion Comparing ganglia and cultures offered the advantage of understanding early adaptive changes of nociception

  17. Affinity of the enantiomers of. alpha. - and. beta. -cyclazocine for binding to the phencyclidine and. mu. opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, S.L.; Balster, R.L.; Martin, B.R. (Virginia Commonwealth Univ., Richmond (USA))

    1990-01-01

    The enantiomers in the {alpha} and {beta} series of cyclazocine were evaluated for their ability to bind to phencyclidine (PCP) and {mu}-opioid receptors in order to determine their receptor selectivity. The affinity of (-)-{beta}-cyclazocine for the PCP receptor was 1.5 greater than PCP itself. In contrast, (-)-{alpha}-cyclazocine, (+)-{alpha}-cyclazocine, and (+)-{beta}-cyclazocine were 3-, 5- and 138-fold less potent than PCP, respectively. Scatchard analysis of saturable binding of ({sup 3}H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) also exhibited a homogeneous population of binding sites with an apparent K{sub D} of 1.9 nM and an estimated Bmax of 117 pM. (3H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) binding studies revealed that (-)-{alpha}-cyclazocine (K{sub D} = 0.48 nM) was 31-, 1020- and 12,600-fold more potent than (-)-{beta}-cyclazocine, (+)-{alpha}-cyclazocine and (+)-{beta}-cyclazocine, respectively, for binding to the {mu}-opioid receptor. These data show that, although (-)-{beta}-cyclazocine is a potent PCP receptor ligand consistent with its potent PCP-like discriminative stimulus effects, it shows little selectivity for PCP receptor since it also potently displaces {mu}-opioid binding. However, these cyclazocine isomers, due to their extraordinary degree of stereoselectivity, may be useful in characterizing the structural requirements for benzomorphans having activity at the PCP receptor.

  18. Susceptibility to endotoxin induced uveitis is not reduced in mice deficient in BLT1, the high affinity leukotriene B4 receptor

    OpenAIRE

    Smith, J R; Subbarao, K; Franc, D T; Haribabu, B; Rosenbaum, J T

    2004-01-01

    Aim: To investigate the role of arachidonic acid derived chemotactic factor, LTB4, in the development of endotoxin induced uveitis (EIU), using mice deficient in the BLT1 gene which encodes the high affinity LTB4 receptor.

  19. Regulating prefrontal cortex activation: an emerging role for the 5-HT₂A serotonin receptor in the modulation of emotion-based actions?

    Science.gov (United States)

    Aznar, Susana; Klein, Anders B

    2013-12-01

    The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.

  20. Effect of the 5-HT{sub 4} receptor and serotonin transporter on visceral hypersensitivity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yan; Liu, Xin-Guang; Wang, Hua-Hong; Li, Jun-Xia; Li, Yi-Xuan [Department of Gastroenterology, Peking University First Hospital, Beijing (China)

    2012-07-27

    Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT{sub 4} receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT{sub 4} receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT{sub 4} receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg{sup −1}·day{sup −1}, days 36-42), tegaserod (1 mg·kg{sup −1}·day{sup −1}, day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT{sub 4} receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT{sub 4} receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT

  1. Disturbance of serotonin 5HT2 receptors in remitted patients suffering from hereditary depressive disorder

    International Nuclear Information System (INIS)

    Larisch, R.; Vosberg, H.; Tosch, M.; Mueller-Gaertner, H.W.; Klimke, A.; Gaebel, W.; Mayoral, F.; Rivas, F.; Hamacher, K.; Coenen, H.H.; Herzog, H.R.

    2001-01-01

    Aim: The characteristics of 5HT 2 receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Methods: Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. Results: The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p 2 receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness. (orig.) [de

  2. Disturbance of serotonin 5HT2 receptors in remitted patients suffering from hereditary depressive disorder.

    Science.gov (United States)

    Larisch, R; Klimke, A; Mayoral, F; Hamacher, K; Herzog, H R; Vosberg, H; Tosch, M; Gaebel, W; Rivas, F; Coenen, H H; Müller-Gärtner, H W

    2001-08-01

    The characteristics of 5HT2 receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p depression rather than by medication. The data suggest that 5HT2 receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness.

  3. Brain serotonin 2A receptor binding: Relations to body mass index, tobacco and alcohol use

    DEFF Research Database (Denmark)

    Erritzoe, D.; Frokjaer, V. G.; Haugbol, S.

    2009-01-01

    receptor (5-HT(2A)) in humans, we tested in 136 healthy human subjects if body mass index (BMI), degree of alcohol consumption and tobacco smoking was associated to the cerebral in vivo 5-HT(2A) receptor binding as measured with (18)F-altanserin PET. The subjects' BMI's ranged from 18.4 to 42.8 (25.......2+/-4.3) kg/m(2). Cerebral cortex 5-HT(2A) binding was significantly positively correlated to BMI, whereas no association between cortical 5-HT(2A) receptor binding and alcohol or tobacco use was detected. We suggest that our observation is driven by a lower central 5-HT level in overweight people, leading...

  4. Affinities and densities of high-affinity [3H]muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

    International Nuclear Information System (INIS)

    Butterworth, R.F.; Lavoie, J.; Giguere, J.F.; Pomier-Layrargues, G.

    1988-01-01

    The integrity of GABA-A receptors and of central benzodiazepine receptors was evaluated in membrane preparations from prefrontal cortex and caudate nuclei obtained at autopsy from nine cirrhotic patients who died in hepatic coma and an equal number of age-matched control subjects. Histopathological studies revealed Alzheimer Type II astrocytosis in all cases in the cirrhotic group; controls were free from neurological, psychiatric or hepatic diseases. Binding to GABA-A receptors was studied using [ 3 H]muscimol as radioligand. The integrity of central benzodiazepine receptors was evaluated using [ 3 H]flunitrazepam and [ 3 H]Ro15-1788. Data from saturation binding assays was analyzed by Scatchard plot. No modifications of either affinities (Kd) or densities (Bmax) of [ 3 H]muscimol of central benzodiazepine binding sites were observed. These findings do not support recent suggestions that alterations of either high-affinity GABA or benzodiazepine receptors play a significant role in the pathogenesis of hepatic encephalopathy

  5. Whole transcriptome analysis for T cell receptor-affinity and IRF4-regulated clonal expansion of T cells

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2014-12-01

    Full Text Available Clonal population expansion of T cells during an immune response is dependent on the affinity of the T cell receptor (TCR for its antigen [1]. However, there is little understanding of how this process is controlled transcriptionally. We found that the transcription factor IRF4 was induced in a manner dependent on TCR-affinity and was critical for the clonal expansion and maintenance of effector function of antigen-specific CD8+ T cells. We performed a genome-wide expression profiling experiment using RNA sequencing technology (RNA-seq to interrogate global expression changes when IRF4 was deleted in CD8+ T cells activated with either a low or high affinity peptide ligand. This allowed us not only to determine IRF4-dependent transcriptional changes but also to identify transcripts dependent on TCR-affinity [2]. Here we describe in detail the analyses of the RNA-seq data, including quality control, read mapping, quantification, normalization and assessment of differential gene expression. The RNA-seq data can be accessed from Gene Expression Omnibus database (accession number GSE49929.

  6. Photoaffinity labeling of mammalian α1-adrenergic receptors: identification of the ligand binding subunit with a high affinity radioiodinated probe

    International Nuclear Information System (INIS)

    Leeb-Lundberg, L.M.F.; Dickinson, K.E.J.; Heald, S.L.

    1984-01-01

    A description is given of the synthesised and characterization of a novel high affinity radioiodinated α 1 -adrenergic receptor photoaffinity probe, 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[ 125 I]iodophenyl)pentanoyl]-1-piperazinyl] quinazoline. In the absence of light, this ligand binds with high affinity (K/sub d/ = 130 pm) in a reverisble and saturable manner to sites in rat hepatic plasma membranes. The binding is stereoselective and competitively inhibited by adrenergic agonists and antagonists with an α 1 -adrenergic specificity. Upon photolysis, this ligand incorporates irreversibly into plasma membranes prepared from several mammalian tissues including rat liver, rat, guinea pig, and rabbit spleen, rabbit lung, and rabbit aorta vascular smooth muscle cells, also with typical α 1 -adrenergic specificity. Autoradiograms of such membrane samples subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveal a major specifically labeled polypeptide at M/sub 4/ = 78,000-85,000, depending on the tissue used, in addition to some lower molecular weight peptides. Protease inhibitors, in particular EDTA, a metalloprotease inhibitor, dramatically increases the predominance of the M/sub r/ = 78,000-85,000 polypeptide while attenuating the labeling of the lower molecular weight bands. This new high affinity radioiodinated photoaffinity probe should be of great value for the molecular characterization of the α 1 -adrenergic receptor

  7. Activation of serotonin 2C receptors in dopamine neurons inhibits binge-like eating in mice

    Science.gov (United States)

    Neural networks that regulate binge eating remain to be identified, and effective treatments for binge eating are limited. We combined neuroanatomic, pharmacologic, electrophysiological, Cre-lox, and chemogenetic approaches to investigate the functions of 5-hydroxytryptamine (5-HT) 2C receptor (5-HT...

  8. Cerebral serotonin 4 receptors and amyloid-β in early Alzheimer's disease

    DEFF Research Database (Denmark)

    Madsen, Karine; Neumann, Wolf-Julian; Holst, Klaus Kähler

    2011-01-01

    Alzheimer disease (AD) patients in relation to cortical Aß burden. Eleven newly diagnosed untreated AD patients (mean MMSE 24, range 19–27) and twelve age- and gender-matched healthy controls underwent a two-hour dynamic [11C]SB207145 PET scan to measure the binding potential of the 5-HT4 receptor. All AD...

  9. Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin.

    Science.gov (United States)

    Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X

    2014-12-01

    Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Serotonin 2A Receptor SNP rs7330461 Association with Treatment Response to Pomaglumetad Methionil in Patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Laura K. Nisenbaum

    2016-02-01

    Full Text Available This study aims to confirm the initial pharmacogenetic finding observed within the clinical proof-of-concept trial of an enhanced response to treatment with pomaglumetad methionil (LY2140023 monohydrate in Caucasian schizophrenia patients homozygous for T/T at single nucleotide polymorphism rs7330461 in the serotonin (5-hydroxytryptamine 2A receptor gene compared to A/A homozygous patients. The effect of the rs7330461 genotype on the response to pomaglumetad methionil treatment was assessed in three additional clinical trials and in an integrated analysis. Overall, this study includes data from 1115 Caucasian patients for whom genotyping information for rs7330461 was available, consisting of 513 A/A homozygous, 466 A/T heterozygous and 136 T/T homozygous patients. Caucasian T/T homozygous patients showed significantly (p ≤ 0.05 greater improvement in Positive and Negative Syndrome Scale (PANSS total scores during treatment with pomaglumetad methionil 40 mg twice daily compared to A/A homozygous patients. Additionally, T/T homozygous patients receiving pomaglumetad methionil had significantly (p ≤ 0.05 greater improvements in PANSS total scores compared to placebo and similar improvements as T/T homozygous patients receiving standard-of-care (SOC treatment. The findings reported here in conjunction with prior reports show that in Caucasian patients with schizophrenia, the T/T genotype at rs7330461 is consistently associated with an increased treatment response to pomaglumetad methionil compared to the A/A genotype.

  11. High- and low-affinity binding of S-citalopram to the human serotonin transporter mutated at 20 putatively important amino acid positions

    DEFF Research Database (Denmark)

    Plenge, Per; Wiborg, Ove

    2005-01-01

    of presumed importance. Binding of S-citalopram, both to the high-affinity-binding site and to the allosteric binding site, was measured in these mutants with the purpose of investigating the connection between the two binding sites. The amino acid substitutions did not introduce large changes in the two...

  12. Serotonin 5-HT4 receptors: A new strategy for developing fast acting antidepressants?

    Science.gov (United States)

    Vidal, Rebeca; Castro, Elena; Pilar-Cuéllar, Fuencisla; Pascual-Brazo, Jesús; Díaz, Alvaro; Rojo, María Luisa; Linge, Raquel; Martín, Alicia; Valdizán, Elsa M; Pazos, Angel

    2014-01-01

    The regulation of the activity of brain monoaminergic systems has been the focus of attention of many studies since the first antidepressant drug emerged 50 years ago. The search for novel antidepressants is deeply linked to the search for fast-acting strategies, taking into account that 2-4 weeks of treatment with classical antidepressant are required before clinical remission of the symptoms becomes evident. In the recent years several hypotheses have been proposed on the basis of the existence of alterations in brain synaptic plasticity in major depression. Recent evidences support a role for 5-HT4 receptors in the pathogenesis of depression as well as in the mechanism of action of antidepressant drugs. In fact, chronic treatment with antidepressant drugs appears to modulate, at different levels, the signaling pathway associated to 5-HT4 receptors, as well as their levels of expression in the brain. Moreover, several experimental studies have identified this receptor subtype as a promising new target for fast-acting antidepressant strategy: the administration of partial agonists of this receptor induces a number of responses similar to those observed after chronic treatment with classical antidepressants, but with a rapid onset of action. They include efficacy in behavioral models of depression, rapid desensitization of 5-HT1A autoreceptors, and modifications in the expression of several molecular markers of brain neuroplasticity. Although much work remains to be done in order to clarify the real therapeutic potential of these drugs, the evidences reviewed below support the hypothesis that 5-HT4 receptor partial agonists could behave as rapid and effective antidepressants.

  13. Serotonin-1A receptor gene polymorphism and the ability of antipsychotic drugs to improve attention in schizophrenia.

    Science.gov (United States)

    Sumiyoshi, Tomiki; Tsunoda, Masahiko; Higuchi, Yuko; Itoh, Toru; Seo, Tomonori; Itoh, Hiroko; Suzuki, Michio; Kurachi, Masayoshi

    2010-05-01

    The purpose of this study was to determine if the functional single nucleotide polymorphisms of rs6259 C(-1019)G in the promoter region, which regulates serotonin 5-HT(1A) receptor transcription, affects the ability of antipsychotic drugs to improve attention in patients with schizophrenia. Subjects were neuroleptic-free and meeting DSM-IV-TR criteria for schizophrenia. Psychopathology and attention were evaluated with the Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of Negative Symptoms (SANS) at baseline and 3 months after treatment with atypical antipsychotic drugs (AAPDs). DNA was extracted from peripheral blood following standard procedures. Genotyping was performed with HS-Taq assay (LaboPass). Data were available from 30 subjects (male/female=19/11), in which 17 had the CC genotype, three had the GG genotype, and 10 were heterozygous. The 3-month treatment with AAPDs was associated with significant improvements in positive and negative symptoms, but not attention as measured by SANS-Attention subscale in the entire subject group. There were no significant differences in the degree of improvements of SAPS and SANS scores between the CC genotype group and the (C/G plus G/G) combined group. On the other hand, improvement of attention was significantly greater for the former group compared to the latter group (P<0.016), suggesting a detrimental influence of the G-allele. These results provide additional support to the role of 5-HT(1A) receptors in some of the cognitive disturbances of schizophrenia. Further studies with a larger number of subjects are warranted.

  14. Facilitation of acetylcholine release in rat frontal cortex by indeloxazine hydrochloride: involvement of endogenous serotonin and 5-HT4 receptors.

    Science.gov (United States)

    Yamaguchi, T; Suzuki, M; Yamamoto, M

    1997-12-01

    Effects of indeloxazine hydrochloride, an inhibitor of serotonin (5-HT) and norepinephrine (NE) reuptake with a facilitatory effect on 5-HT release, on acetylcholine (ACh) output in frontal cortex of conscious rats were characterized using an in vivo microdialysis technique. Systemic administration of indeloxazine (3 and 10 mg/kg, i.p.) increased ACh and 5-HT output in a dose-dependent manner. Depletion of endogenous monoamines by reserpine and of 5-HT by p-chlorophenylalanine, but not that of catecholamines by alpha-methyl-p-tyrosine, significantly attenuated the facilitatory effect of indeloxazine on ACh release. When applied locally by reverse dialysis, indeloxazine (10 and 30 microM) and the selective 5-HT reuptake inhibitor citalopram (10 microM), but not the NE reuptake inhibitor maprotiline (30 microM), increased cortical ACh output. Indeloxazine (10 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (100 microM), 5-HT1A/1B/beta-adrenoceptor antagonist (-)propranolol (150 microM), 5-HT2A/2C antagonist ritanserin (10 microM) and 5-HT3 antagonist ondansetron (10 microM) failed to significantly modify this effect. Neither depletion of monoamines nor treatment with serotonergic antagonists significantly changed the basal ACh level, indicating that endogenous monoamines do not tonically activate ACh release. These results suggest that indeloxazine-induced facilitation of ACh release in rat frontal cortex is mediated by endogenous 5-HT and involves at least in part cortical 5-HT4 receptors.

  15. Lower cortical serotonin 2A receptors in major depressive disorder, suicide and in rats after administration of imipramine.

    Science.gov (United States)

    Dean, Brian; Tawadros, Nahed; Seo, Myoung Suk; Jeon, Won Je; Everall, Ian; Scarr, Elizabeth; Gibbons, Andrew

    2014-06-01

    We have attempted to replicate studies showing higher levels of serotonin 2A receptors (HTR2A) in the cortex of people with mood disorders and to determine the effects of treating rats with antidepressant drugs on levels of that receptor. In situ [3H]ketanserin binding and autoradiography was used to measure levels of HTR2A in Brodmann's area (BA) 46 and 24 from people with major depressive disorders (MDD, n = 16), bipolar disorders (BD, n = 14) and healthy controls (n = 14) as well as the central nervous system (CNS) of rats (20 per treatment arm) treated for 10 or 28 d with fluoxetine (10 mg/kg/d) or imipramine (20 mg/kg/d). Compared with controls, HTR2A were lower in BA 24, but not BA 46, from people with MDD (p = 0.005); HTR2A were not changed in BD. Levels of HTR2A were lower in BA 24 (p = 0.007), but not BA 46, from people who had died by suicide. Finally, levels of HTR2A were lower in the CNS of rats treated with imipramine, but not fluoxetine, for 28 d, but not 10 d. From our current and previous data we conclude cortical HTR2A are lower in schizophrenia, MDD, people with mood disorders who died by suicide, rats treated with some antipsychotic or some antidepressant drugs. As levels of cortical HTR2A can be affected by the aetiologies of different disorders and mechanisms of action of different drugs, a better understanding of how such changes can occur needs to be elucidated.

  16. Decreased frontal serotonin2A receptor binding in antipsychotic-naive patients with first-episode schizophrenia

    DEFF Research Database (Denmark)

    Rasmussen, Hans; Erritzoe, David; Andersen, Rune

    2010-01-01

    , in vivo studies of serotonin(2A) binding report conflicting results, presumably because sample sizes have been small or because schizophrenic patients who were not antipsychotic-naive were included. Furthermore, the relationships between serotonin(2A) binding, psychopathology, and central neurocognitive...

  17. Common SSRI side-effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: Data from a randomized controlled trial

    Science.gov (United States)

    Garfield, Lauren D.; Dixon, David; Nowotny, Petra; Lotrich, Francis E.; Pollock, Bruce G.; Kristjansson, Sean D.; Doré, Peter M.; Lenze, Eric J.

    2013-01-01

    Objective Antidepressant side-effects are a significant public health issue, associated with poor adherence, premature treatment discontinuation and in rare cases significant harm. This is especially relevant for older adults, who assume the largest and most serious burden of medication side-effects. We investigated the association between antidepressant side-effects and genetic variation in the serotonin system in anxious, older adults participating in a randomized, placebo-controlled trial of the SSRI escitalopram. Method Adults (n=177) aged ≥ 60 years were randomized to active treatment or placebo for 12-weeks. Side-effects were assessed using the UKU side effect rating scale. Genetic polymorphisms were putative functional variants in the promoters of the serotonin transporter and 1A and 2A receptors (5-HTTLPR (L/S + rs25531), HTR1A rs6295, HTR2A rs6311, respectively). Results Four significant drug-placebo side-effect differences were found, including increased duration of sleep, dry mouth, diarrhea and diminished sexual desire. Analyses using putative high- vs low-transcription genotype groupings revealed 6 pharmacogenetic effects: greater dry mouth and decreased sexual desire for the low- and high-expressing genotypes of the serotonin transporter, respectively, and greater diarrhea with the low-transcription genotype of the 1A receptor. Diminished sexual desire was experienced significantly more in those with high-expressing genotype and either the serotonin transporter, 1A or 2A receptors. There was not a significant relationship between drug concentration and side-effects nor a mean difference in drug concentration between low- and high-expressing genotypes. Conclusion Genetic variation in the 5HT system may predict who develops common SSRI side-effects and why. More work is needed to further characterize this genetic modulation and to translate research findings into strategies useful for more personalized patient care. PMID:24021217

  18. Characterization of a bombesin receptor on Swiss mouse 3T3 cells by affinity cross-linking

    International Nuclear Information System (INIS)

    Sinnett-Smith, J.; Zachary, I.; Rozengurt, E.

    1988-01-01

    We have previously identified by chemical cross-linking a cell surface protein in Swiss 3T3 cells of apparent Mr 75,000-85,000, which may represent a major component of the receptor for peptides of the bombesin family in these cells. Because bombesin-like peptides may interact with other cell surface molecules, it was important to establish the correlation between receptor binding and functions of this complex and further characterize the Mr 75,000-85,000 cross-linked protein. Detailed time courses carried out at different temperatures demonstrated that the Mr 75,000-85,000 affinity-labelled band was the earliest cross-linked complex detected in Swiss 3T3 cells incubated with 125I-labelled gastrin-releasing peptide (125I-GRP). Furthermore, the ability of various nonradioactive bombesin agonists and antagonists to block the formation of the Mr 75,000-85,000 cross-linked complex correlated extremely well (r = 0.994) with the relative capacity of these peptides to inhibit 125I-GRP specific binding. Pretreatment with unlabelled GRP for up to 6 h caused only a slight decrease in both specific 125I-GRP binding and the affinity labelling of the Mr 75,000-85,000 protein. We also show that the cross-linked complex is a glycoprotein. First, solubilized affinity labelled Mr 75,000-85,000 complex applied to wheat germ lectin-sepharose columns was eluted by addition of 0.3 M N-acetyl-D-glucosamine. Second, treatment with endo-beta-N-acetylglucosaminidase F reduced the apparent molecular weight of the affinity-labelled band from 75,000-85,000 to 43,000, indicating the presence of N-linked oligosaccharide groups

  19. Displacement of specific serotonin and lysergic acid diethylamide binding by Ergalgin, a new antiserotonin drug

    International Nuclear Information System (INIS)

    Oelszner, W.

    1980-01-01

    [ 3 H]-serotonin and [ 3 H]-lysergic acid diethylamide (LSD) bind with a high affinity, Ksub(D) = 12 nM and 6 nM, respectively, to distinct receptors of rat caudate membranes in vitro. Displacement experiments with unlabeled serotonin and LSD support the hypothesis of serotonin receptors existing in an agonist and antagonist state. Methysergide and Ergalgin display quite similar potenties in displacing [ 3 H]-serontonin and [ 3 H]-LSD from their specific binding sites (Ksub(i) = 46.7 and 53.4 nM; 22.3 and 36.5 nM, respectively). Contrary to pharmacological findings these binding results are in favour of mixed agonist/antagonist properties of these compounds. (author)

  20. Affinity purification and partial characterization of the zonulin/zonula occludens toxin (Zot) receptor from human brain.

    Science.gov (United States)

    Lu, R; Wang, W; Uzzau, S; Vigorito, R; Zielke, H R; Fasano, A

    2000-01-01

    The intercellular tight junctions (TJs) of endothelial cells represent the limiting structure for the permeability of the blood-brain barrier (BBB). Although the BBB has been recognized as being the interface between the bloodstream and the brain, little is known about its regulation. Zonulin and its prokaryotic analogue, zonula occludens toxin (Zot) elaborated by Vibrio cholerae, both modulate intercellular TJs by binding to a specific surface receptor with subsequent activation of an intracellular signaling pathway involving phospholipase C and protein kinase C activation and actin polymerization. Affinity column purification revealed that human brain plasma membrane preparations contain two Zot binding proteins of approximately 55 and approximately 45 kDa. Structural and kinetic studies, including saturation and competitive assays, identified the 55-kDa protein as tubulin, whereas the 45-kDa protein represents the zonulin/Zot receptor. Biochemical characterization provided evidence that this receptor is a glycoprotein containing multiple sialic acid residues. Comparison of the N-terminal sequence of the zonulin/Zot receptor with other protein sequences by BLAST analysis revealed a striking similarity with MRP-8, a 14-kDa member of the S-100 family of calcium binding proteins. The discovery and characterization of this receptor from human brain may significantly contribute to our knowledge on the pathophysiological regulation of the BBB.

  1. Modulatory effects of two novel agonists for serotonin receptor 7 on emotion, motivation and circadian rhythm profiles in mice.

    Science.gov (United States)

    Adriani, Walter; Travaglini, Domenica; Lacivita, Enza; Saso, Luciano; Leopoldo, Marcello; Laviola, Giovanni

    2012-02-01

    Serotonin receptor 7, i.e. 5-HT(7) protein coded by Htr7 gene, was discovered in supra-chiasmatic nucleus (SCN) of the hypothalamus but is widespread in the forebrain. Studies have shown that this receptor is involved in learning/memory, regulation of mood and circadian rhythms. The modulatory effects of two novel agonists, LP-211 and LP-378, were assessed in male adult CD-1 mice with a battery of behavioral tests. Exp. 1 (Black/White Boxes, BWB: Adriani et al., 2009) and Exp. 2 (Dark/Light, D/L; Novelty-seeking, N-S) show: a) that LP-211 administration (acutely, at a 0.25 mg/kg dose i.p.) increases locomotion and BWB exploration; b) that the time spent away from an aversive, lit chamber (i.e., stress-induced anxiety) and in a new environment (i.e., novelty-induced curiosity) are both reduced. Sub-chronic LP-211 (at a 2.5 mg/kg dose i.p.) reveals a sensitization of locomotor-stimulant properties over 4-5 days. In Exp. 3 (BWB), a three- to four-fold dosage (acutely, at 0.83 mg/kg i.p.) is needed with LP-378 to increase locomotion and BWB exploration. In Exp. 4, mice under constant-light conditions reveal the expected spontaneous lengthening (1.5 h per day) of circadian rhythms. A significant phase advance is induced by LP-211 (at a 0.25 mg/kg dose i.p., administered around activity offset), with onset of activity taking place 6 h earlier than in controls. In summary, LP-211 is able to act consistently onto exploratory motivation, anxiety-related profiles, and spontaneous circadian rhythm. In the next future, agonist modulation of 5-HT(7) receptors might turn out to be beneficial for sleep and/or anxiety disorders. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A pharmacological profile of the high-affinity GluK5 kainate receptor

    DEFF Research Database (Denmark)

    Møllerud, Stine; Kastrup, Jette Sandholm Jensen; Pickering, Darryl S

    2016-01-01

    -hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2 S,4 R)−4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar...

  3. Synthesis of new isoxazoline-based acidic amino acids and investigation of their affinity and selectivity profile at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Pinto, Andrea; Conti, Paola; Grazioso, Giovanni

    2011-01-01

    The synthesis of four new isoxazoline-based amino acids being analogues of previously described glutamate receptor ligands is reported and their affinity for ionotropic glutamate receptors is analyzed in comparison with that of selected model compounds. Molecular modelling investigations have been...

  4. Effect of the low-affinity, noncompetitive N-methyl-D-aspartate receptor antagonist dextromethorphan on visceral perception in healthy volunteers

    NARCIS (Netherlands)

    Kuiken, S. D.; Lei, A.; Tytgat, G. N. J.; Holman, R.; Boeckxstaens, G. E. E.

    2002-01-01

    Background: The use of N-methyl-d-aspartate (NMDA) receptor antagonists may hold promise for the treatment of pain of visceral origin, in particular in conditions characterized by visceral hypersensitivity. Aim: To study the effect of dextromethorphan, a low affinity, non-competitive NMDA receptor

  5. Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice.

    Science.gov (United States)

    Gillis, Caitlin M; Jönsson, Friederike; Mancardi, David A; Tu, Naxin; Beutier, Héloïse; Van Rooijen, Nico; Macdonald, Lynn E; Murphy, Andrew J; Bruhns, Pierre

    2017-04-01

    Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights

  6. Molecular cloning of a second subunit of the receptor for human granulocyte - macrophage colony-stimulating factor (GM-CSF): Reconstitution of a high-affinity GM-CSF receptor

    International Nuclear Information System (INIS)

    Hayashida, Kazuhiro; Kitamura, Toshio; Gorman, D.M.; Miyajima, Atsushi; Arai, Kenichi; Yokota, Takashi

    1990-01-01

    Using the mouse interleukin 3 (IL-3) receptor cDNA as a probe, the authors obtained a monologous cDNA (KH97) from a cDNA library of a human hemopoietic cell line, TF-1. The protein encoded by the KH97 cDNA has 56% amino acid sequence identity with the mouse IL-3 receptor and retains features common to the family of cytokine receptors. Fibroblasts transfected with the KH97 cDNA expressed a protein of 120 kDa but did not bind any human cytokines, including IL-3 and granulocyte - macrophage colony-stimulating factor (GM-CSF). Interestingly, cotransfection of cDNAs for KH97 and the low-affinity human GM-CSF receptor in fibroblasts resulted in formation of a high-affinity receptor for GM-CSF. The dissociation rate of GM-CSF from the reconstituted high-affinity receptor was slower than that from the low-affinity site, whereas the association rate was unchanged. Cross-linking of 125 I-labeled GM-CSF to fibroblasts cotransfected with both cDNAs revealed the same cross-linking patterns as in TF-1 cells - i.e., two major proteins of 80 and 120 kDa which correspond to the low-affinity GM-CSF receptor and the KH97 protein, respectively. These results indicate that the high-affinity GM-CSF receptor is composed of at least two components in a manner analogous to the IL-2 receptor. They therefore propose to designate the low-affinity GM-CSF receptor and the KH97 protein as the α and β subunits of the GM-CSF receptor, respectively

  7. IMPROVED TUMOR CELL KILLING BY TRAIL REQUIRES SELECTIVE AND HIGH AFFINITY RECEPTOR ACTIVATION

    NARCIS (Netherlands)

    Szegezdi, Eva; van der Sloot, Almer M.; Alessandro, Natoni; Mahalingam, Devalingam; Cool, Robbert H.; Munoz, Ines G.; Montoya, Guillermo; Quax, Wim J.; Luis Serrano, Steven de Jong; Samali, Afshin; Wallach, D; Kovalenko, A; Feldman, M

    2011-01-01

    Apoptosis can be activated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a wide range of tumor cells, but not in non-transformed cells. TRAIL interaction with receptors DR4 or DR5 induces apoptosis, whereas DcR1, DcR2 and osteoprotegerin are decoy receptors for TRAIL. TRAIL

  8. Structure and affinity of two bicyclic glutamate analogues at AMPA and kainate receptors

    DEFF Research Database (Denmark)

    Møllerud, Stine; Pinto, Andrea; Marconi, Laura

    2017-01-01

    Ionotropic glutamate receptors (iGluRs) are involved in most of the fast excitatory synaptic transmission in the central nervous system. These receptors are important for learning and memory formation, but are also involved in the development of diseases such as Alzheimer’s disease, epilepsy...

  9. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-01-01

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe -1 , Val 1 , Asn 2 , Gln 3 , His 4 , Ser 8 , His 9 , Glu 12 , Tyr 15 , Leu 16 ]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln 3 , Ala 4 ] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr 15 , Leu 16 ] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln 3 , Ala 4 , Tyr 15 ,Leu 16 ]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  10. Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2001-08-15

    Serotonin (5-HT) 2A receptor-mediated regulation of striatal preprotachykinin (PPT) and preproenkephalin (PPE) mRNAs was studied in adult rodents that had been subjected to near-total dopamine (DA) depletion as neonates. Two months following bilateral 6-hydroxydopamine (6-OHDA) lesion, PPT mRNA levels decreased 59-73% across dorsal subregions of the rostral and caudal striatum while PPE transcripts increased 61-94%. Four hours after a single injection of the serotonin 2A/2C receptor agonist, (+/-)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 1 mg/kg), PPT mRNA expression was significantly increased in DA-depleted rats across all dorsal subregions of the rostral and caudal striatum as compared to 6-OHDA-treated animals alone. In the intact rat, DOI did not influence PPT mRNA levels in the rostral striatum, but did raise expression in the caudal striatum where 5-HT2A receptors are prominent. DOI did not regulate PPE mRNA levels in any striatal sub-region of the intact or DA-depleted rat. Prior administration of the 5-HT2A/2C receptor antagonist, ritanserin (1 mg/kg) or the 5-HT2A receptor antagonist, ketanserin (1 mg/kg) completely blocked the DOI-induced increases in striatal PPT mRNA in both lesioned and intact animals. The ability of ketanserin to produce identical results as ritanserin suggests that 5-HT2A receptor-mediated regulation is selectively strengthened within tachykinin neurons of the rostral striatum which are suppressed by DA depletion. The selectivity suggests that 5-HT2A receptor upregulation following DA depletion is capable of regulating tachykinin biosynthesis without influencing enkephalin expression in striatal output neurons.

  11. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    Science.gov (United States)

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Preparation and evaluation of serotonin labelled with 125I

    International Nuclear Information System (INIS)

    Sivaprasad, N.; Geetha, R.; Ghodke, A.S.; Karmalkar, C.P.; Pilkhwal, N.S.; Sarnaik, J.S.; Borkute, S.D.; Nadkarni, G.D.

    1999-01-01

    Radiolabelled serotonin is an important tool for studying serotonin receptors and estimating serotonin levels in plants and animals. In this paper we report the synthesis of serotonin - 125 I. Tyrosine Methyl Ester (TME) was first labelled with 125 I using chloramine-T method. 125 I-TME was then conjugated with serotonin using carbodimide. The labelled conjugate was purified using gel filtration. Yield and radiochemical purity were estimated using electrophoresis and ITLC in different solvent systems. The binding of the purified tracer to serotonin receptors and serotonin antibodies was studied. (author)

  13. A soluble form of the high affinity IgE receptor, Fc-epsilon-RI, circulates in human serum.

    Directory of Open Access Journals (Sweden)

    Eleonora Dehlink

    Full Text Available Soluble IgE receptors are potential in vivo modulators of IgE-mediated immune responses and are thus important for our basic understanding of allergic responses. We here characterize a novel soluble version of the IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI, the high affinity receptor for IgE. sFcεRI immunoprecipitates as a protein of ∼40 kDa and contains an intact IgE-binding site. In human serum, sFcεRI is found as a soluble free IgE receptor as well as a complex with IgE. Using a newly established ELISA, we show that serum sFcεRI levels correlate with serum IgE in patients with elevated IgE. We also show that serum of individuals with normal IgE levels can be found to contain high levels of sFcεRI. After IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in the exosome-depleted, soluble fraction of cell culture supernatants. We further show that sFcεRI can block binding of IgE to FcεRI expressed at the cell surface. In summary, we here describe the alpha-chain of FcεRI as a circulating soluble IgE receptor isoform in human serum.

  14. Solubilization and cleavage of human neutrophil (N) affinity-labeled receptors for leukotriene B4 (LTB4)

    International Nuclear Information System (INIS)

    Marotti, T.; Young, R.N.; Gifford, L.A.; Goldman, D.W.; Goetzl, E.J.

    1986-01-01

    LTB 4 chemotactic receptors in purified N plasma membranes (PMs) have been affinity-labeled with [ 3 H]-C-1 aminopropylamide-LTB 4 ([ 3 H]APA-LTB 4 ) by disuccinimidyl suberate (DSS) cross-linking. Intact Ns were pretreated with diisopropylfluorophosphate, suspended at 10 7 /ml in Hanks' solution-10 mM HEPES (pH 7.4), incubated for 30 min at 4 0 C with 30 nM [ 3 H]APA-LTB 4 and 25 min with 1 mM bis[2-(succinimidooxycarbonyloxy)-ethyl] sulfone, an impermeant analog of DSS, and sonified for 30 sec at 4 0 C. The 10,000 g supernatant of the sonicate was centrifuged at 40,000 g for 30 min at 4 0 C on a discontinuous gradient of 10-50 g % sucrose, from which a mean of 78% of the radiolabel was recovered with PM markers. The extent and specificity of labeling of intact N receptors were similar to those of receptors in PMs. The radioactively-labeled receptors appeared as a single band of 35-40 kd in sodium dodecyl sulfate (SDS) 10 g % polyacrylamide gel electrophoresis. Cleavage of radiolabeled receptors with 1 mg/ml of cyanogen bromide in 70% formic acid for 18 hr at room temperature or with 30 mM HCl under N 2 for 4 hr at 105 0 C converted a mean of 18-32% of the radioactivity to a band of 14 kd in SDS-15 g % PAGE. N receptors for LTB 4 , thus, are localized in the PM and can be isolated for structural studies

  15. Serotonin transporter occupancy by escitalopram and citalopram in the non-human primate brain: a [(11)C]MADAM PET study.

    Science.gov (United States)

    Finnema, Sjoerd J; Halldin, Christer; Bang-Andersen, Benny; Bundgaard, Christoffer; Farde, Lars

    2015-11-01

    A number of serotonin receptor positron emission tomography (PET) radioligands have been shown to be sensitive to changes in extracellular serotonin concentration, in a generalization of the well-known dopamine competition model. High doses of selective serotonin reuptake inhibitors (SSRIs) decrease serotonin receptor availability in monkey brain, consistent with increased serotonin concentrations. However, two recent studies on healthy human subjects, using a single, lower and clinically relevant SSRI dose, showed increased cortical serotonin receptor radioligand binding, suggesting potential decreases in serotonin concentration in projection regions when initiating treatment. The cross-species differential SSRI effect may be partly explained by serotonin transporter (SERT) occupancy in monkey brain being higher than is clinically relevant. We here determine SERT occupancy after single doses of escitalopram or citalopram by conducting PET measurements with [(11)C]MADAM in monkeys. Relationships between dose, plasma concentration and SERT occupancy were estimated by one-site binding analyses. Binding affinity was expressed as dose (ID50) or plasma concentration (K i) where 50 % SERT occupancy was achieved. Estimated ID50 and K i values were 0.020 mg/kg and 9.6 nmol/L for escitalopram and 0.059 mg/kg and 9.7 nmol/L for citalopram, respectively. Obtained K i values are comparable to values reported in humans. Escitalopram or citalopram doses nearly saturated SERT in previous monkey studies which examined serotonin sensitivity of receptor radioligands. PET-measured cross-species differential effects of SSRI on cortical serotonin concentration may thus be related to SSRI dose. Future monkey studies using SSRI doses inducing clinically relevant SERT occupancy may further illuminate the delayed onset of SSRI therapeutic effects.

  16. Immunologic differentiation of two high-affinity neurotensin receptor isoforms in the developing rat brain.

    Science.gov (United States)

    Boudin, H; Lazaroff, B; Bachelet, C M; Pélaprat, D; Rostène, W; Beaudet, A

    2000-09-11

    Earlier studies have demonstrated overexpression of NT1 neurotensin receptors in rat brain during the first 2 weeks of life. To gain insight into this phenomenon, we investigated the identity and distribution of NT1 receptor proteins in the brain of 10-day-old rats by using two different NT1 antibodies: one (Abi3) directed against the third intracellular loop and the other (Abi4) against the C-terminus of the receptor. Immunoblot experiments that used Abi3 revealed the presence of two differentially glycosylated forms of the NT1 receptor in developing rat brain: one migrating at 54 and the other at 52 kDa. Whereas the 54-kDa form was expressed from birth to adulthood, the 52-kDa form was detected only at 10 and 15 days postnatal. Only the 52-kDa isoform was recognized by Abi4. By immunohistochemistry, both forms of the receptor were found to be predominantly expressed in cerebral cortex and dorsal hippocampus, in keeping with earlier radioligand binding and in situ hybridization data. However, whereas Abi4 immunoreactivity was mainly concentrated within nerve cell bodies and extensively colocalized with the Golgi marker alpha-mannosidase II, Abi3 immunoreactivity was predominantly located along neuronal processes. These results suggest that the transitorily expressed 52-kDa protein corresponds to an immature, incompletely glycosylated and largely intracellular form of the NT1 receptor and that the 54-kDa protein corresponds to a mature, fully glycosylated, and largely membrane-associated form. They also indicate that antibodies directed against different sequences of G-protein-coupled receptors may yield isoform-specific immunohistochemical labeling patterns in mammalian brain. Finally, the selective expression of the short form of the NT1 receptor early in development suggests that it may play a specific role in the establishment of neuronal circuitry. Copyright 2000 Wiley-Liss, Inc.

  17. Triptans, serotonin agonists, and serotonin syndrome (serotonin toxicity): a review.

    Science.gov (United States)

    Gillman, P Ken

    2010-02-01

    The US Food and Drug Administration (FDA) have suggested that fatal serotonin syndrome (SS) is possible with selective serotonin reuptake inhibitors (SSRIs) and triptans: this warning affects millions of patients as these drugs are frequently given simultaneously. SS is a complex topic about which there is much misinformation. The misconception that 5-HT1A receptors can cause serious SS is still widely perpetuated, despite quality evidence that it is activation of the 5-HT2A receptor that is required for serious SS. This review considers SS involving serotonin agonists: ergotamine, lysergic acid diethylamide, bromocriptine, and buspirone, as well as triptans, and reviews the experimental foundation underpinning the latest understanding of SS. It is concluded that there is neither significant clinical evidence, nor theoretical reason, to entertain speculation about serious SS from triptans and SSRIs. The misunderstandings about SS exhibited by the FDA, and shared by the UK Medicines and Healthcare products Regulatory Agency (in relation to methylene blue), are an important issue with wide ramifications.

  18. A single base-pair change in 2009 H1N1 hemagglutinin increases human receptor affinity and leads to efficient airborne viral transmission in ferrets.

    Directory of Open Access Journals (Sweden)

    Akila Jayaraman

    2011-03-01

    Full Text Available The 2009 H1N1 influenza A virus continues to circulate among the human population as the predominant H1N1 subtype. Epidemiological studies and airborne transmission studies using the ferret model have shown that the transmission efficiency of 2009 H1N1 viruses is lower than that of previous seasonal strains and the 1918 pandemic H1N1 strain. We recently correlated this reduced transmission efficiency to the lower binding affinity of the 2009 H1N1 hemagglutinin (HA to α2→6 sialylated glycan receptors (human receptors. Here we report that a single point mutation (Ile219→Lys; a base pair change in the glycan receptor-binding site (RBS of a representative 2009 H1N1 influenza A virus, A/California/04/09 or CA04/09, quantitatively increases its human receptor-binding affinity. The increased human receptor-affinity is in the same range as that of the HA from highly transmissible seasonal and 1918 pandemic H1N1 viruses. Moreover, a 2009 H1N1 virus carrying this mutation in the RBS (generated using reverse genetics transmits efficiently in ferrets by respiratory droplets thereby reestablishing our previously observed correlation between human receptor-binding affinity and transmission efficiency. These findings are significant in the context of monitoring the evolution of the currently circulating 2009 H1N1 viruses.

  19. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    Science.gov (United States)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  20. Structure-based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists.

    Science.gov (United States)

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...

  1. Searsia species with affinity to the N-methyl-d-aspartic acid (NMDA) receptor

    DEFF Research Database (Denmark)

    Jäger, Anna; Knap, D.M.; Nielsen, Birgitte

    2012-01-01

    Species of Searsia are used in traditional medicine to treat epilepsy. Previous studies on S. dentata and S. pyroides have shown that this is likely mediated via the N-methyl-d-aspartic acid (NMDA) receptor. Ethanolic extracts of leaves of six Searsia species were tested in a binding assay...

  2. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+

    Science.gov (United States)

    Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel

    2018-01-01

    Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.

  3. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.

    Science.gov (United States)

    Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel

    2018-01-01

    Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.

  4. Self-esteem in remitted patients with mood disorders is not associated with the dopamine receptor D4 and the serotonin transporter genes.

    Science.gov (United States)

    Serretti, A; Macciardi, F; Di Bella, D; Catalano, M; Smeraldi, E

    1998-08-17

    Disturbances of the dopaminergic and serotoninergic neurotransmitter systems have been implicated in the pathogenesis of depressive symptoms. Associations have been reported between markers of the two neurotransmitter systems and the presence of illness or severity of depressive episodes, but no attention has been focused on the periods of remission. The present report focuses on a possible association of self-esteem in remitted mood disorder patients with the functional polymorphism located in the upstream regulatory region of the serotonin transporter gene (5-HTTLPR) and the dopamine receptor D4 (DRD4). Inpatients (N=162) affected by bipolar (n=103) and unipolar (n=59) disorder (DSM III-R) were assessed by the Self-Esteem Scale (SES, Rosenberg, 1965) and were typed for DRD4 and 5-HTTLPR (n=58 subjects) variants at the third exon using polymerase chain reaction (PCR) techniques. Neither DRD4 nor 5-HTTLPR variants were associated with SES scores, and consideration of possible stratification effects such as sex and psychiatric diagnosis did not reveal any association either. The serotonin transporter and dopamine receptor D4 genes do not, therefore, influence self-esteem in remitted mood disorder subjects.

  5. Familial risk for mood disorder and the personality risk factor, neuroticism, interact in their association with frontolimbic serotonin 2A receptor binding

    DEFF Research Database (Denmark)

    Frøkjær, Vibe Gedsø; Vinberg, Maj; Erritzoe, David

    2010-01-01

    Life stress is a robust risk factor for later development of mood disorders, particularly for individuals at familial risk. Likewise, scoring high on the personality trait neuroticism is associated with an increased risk for mood disorders. Neuroticism partly reflects stress vulnerability...... stress reactivity in individuals at high familial risk for mood disorders might enhance the effect of neuroticism in shaping the impact of potential environmental stress and thereby influence serotonergic neurotransmission....... and is positively correlated to frontolimbic serotonin 2A (5-HT(2A)) receptor binding. Here, we investigate whether neuroticism interacts with familial risk in relation to frontolimbic 5-HT(2A) receptor binding. Twenty-one healthy twins with a co-twin history of mood disorder and 16 healthy twins without a co...

  6. MDMA-evoked changes in the binding of dopamine D(2) receptor ligands in striatum of rats with unilateral serotonin depletion

    DEFF Research Database (Denmark)

    Ostergaard, Søren Dinesen; Alstrup, Aage Kristian Olsen; Gramsbergen, Jan Bert

    2010-01-01

    We earlier reported an anomalous 50% decrease in [(11)C]N-methylspiperone ([(11)C]NMSP) binding to dopamine D(2)-like receptors in living pig striatum after challenge with 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), suggesting either (1) a species peculiarity in the vulnerability...... lesions, later verified by [(125)I]RTI-55 autoradiography. Baseline [(11)C]NMSP microPET recordings were followed by either saline or MDMA-HCl (4 mg/kg) injections (i.v.), and a second [(11)C]NMSP recording, culminating with injection of [(3)H]raclopride for autoradiography ex vivo. Neither MDMA......-challenge nor serotonin lesion had any detectable effect on [(11)C]NMSP binding. In contrast, MDMA challenge increased receptor occupancy by [(3)H]raclopride ex vivo (relative to the B(max) in vitro) from 8% to 12%, and doubled the free ligand concentration in cerebral cortex, apparently by blocking hepatic CYP...

  7. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Science.gov (United States)

    Röser, Claudia; Jordan, Nadine; Balfanz, Sabine; Baumann, Arnd; Walz, Bernd; Baumann, Otto; Blenau, Wolfgang

    2012-01-01

    Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT(2) and 5-HT(7) receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+)] in a dose-dependent manner (EC(50) = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC(50) = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α) or Cv5-HT(7) in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT(2α) receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT(7) receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT(7) in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+)- and cAMP-signalling cascades.

  8. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Directory of Open Access Journals (Sweden)

    Claudia Röser

    Full Text Available Secretion in blowfly (Calliphora vicina salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT, which activates both inositol 1,4,5-trisphosphate (InsP(3/Ca(2+ and cyclic adenosine 3',5'-monophosphate (cAMP signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7 that share high similarity with mammalian 5-HT(2 and 5-HT(7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+] in a dose-dependent manner (EC(50 = 24 nM. In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i (EC(50 = 4 nM. We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α or Cv5-HT(7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM activates only the Cv5-HT(2α receptor, 5-carboxamidotryptamine (300 nM activates only the Cv5-HT(7 receptor, and clozapine (1 µM antagonizes the effects of 5-HT via Cv5-HT(7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+- and cAMP-signalling cascades.

  9. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits : Reversal by blockade of CRF1 receptors

    NARCIS (Netherlands)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-01-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the

  10. Ex vivo evaluation of the serotonin 1A receptor partial agonist [³H]CUMI-101 in awake rats

    DEFF Research Database (Denmark)

    Palner, Mikael; Underwood, Mark D; Kumar, Dileep J S

    2011-01-01

    [³H]CUMI-101 is a 5-HT(1A) partial agonist, which has been evaluated for use as a positron emission tracer in baboon and humans. We sought to evaluate the properties of [³H]CUMI-101 ex vivo in awake rats and determine if [³H]CUMI-101 can measure changes in synaptic levels of serotonin after diffe...

  11. Multiple affinity forms of the calcitonin gene-related peptide receptor in rat cerebellum

    International Nuclear Information System (INIS)

    Chatterjee, T.K.; Fisher, R.A.

    1991-01-01

    Binding of 125I-calcitonin gene-related peptide (125I-CGRP) to rat cerebellum membranes and the sensitivity to guanine nucleotides of binding were investigated. Cerebellum binding sites labeled by 125I-CGRP appear to be highly specific, inasmuch as CGRP inhibited binding with an IC50 of 100 pM but other peptides were inactive or much less active in displacing 125I-CGRP from these sites. 125I-CGRP binding sites in cerebellum membranes were saturable and of high affinity. Scatchard analysis of the saturation binding data revealed a homogeneous population of binding sites, with a KD of 224 ± 28 pM and Bmax of 131 ± 15 fmol/mg of protein. In the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) (100 microM), a single population of binding sites, with a KD of 464 ± 77 pM and Bmax of 100 ± 14 fmol/mg of protein, was observed. The kinetics of association of 125I-CGRP with cerebellum membranes were monophasic at all ligand concentrations tested. However, the observed association rate constant (kobs) was not dependent on [125I-CGRP] in a linear fashion in either the absence or the presence of GTP gamma S (100 microM). The kinetics of dissociation of 125I-CGRP from cerebellum membranes were multiexponential, with fast and slow dissociating components having rate constants of 0.34 ± 0.01 and 0.025 ± 0.001 min-1, respectively. The fast dissociating component represented 60 ± 2% of the total specific binding sites. Dissociation of 125I-CGRP from cerebellum sites was much faster in the presence of GTP gamma S (100 microM) but still exhibited dissociation from two affinity components. The rate constants for these components of dissociation were 0.67 ± 0.03 and 0.077 ± 0.007 min-1, with the faster dissociating component representing 66 ± 1% of the total specific binding sites

  12. Rikkunshito, a Japanese Kampo Medicine, Ameliorates Decreased Feeding Behavior via Ghrelin and Serotonin 2B Receptor Signaling in a Novelty Stress Murine Model

    Directory of Open Access Journals (Sweden)

    Chihiro Yamada

    2013-01-01

    Full Text Available We investigated the effects of rikkunshito (RKT, a ghrelin signal enhancer, on the decrease in food intake after exposure to novelty stress in mice. RKT administration (500 mg/kg, per os improved the decrease in 6 h cumulative food intake. In control mice, the plasma acylated ghrelin levels significantly increased by 24 h fasting. In contrast, the acylated ghrelin levels did not increase by fasting in mice exposed to the novelty stress. RKT administration to the novelty stress mice showed a significant increase in the acylated ghrelin levels compared with that in the distilled-water-treated control mice. Food intake after administering serotonin 2B (5-HT2B receptor antagonists was evaluated to clarify the role of 5-HT2B receptor activation in the decrease in feeding behavior after novelty stress. SB215505 and SB204741, 5-HT2B receptor antagonists, significantly improved the decrease in food intake after exposure to novelty stress. A component of RKT, isoliquiritigenin, prevented the decrease in 6 h cumulative food intake. Isoliquiritigenin showed 5-HT2B receptor antagonistic activity in vitro. In conclusion, the results suggested that RKT improves the decrease in food intake after novelty stress probably via 5-HT2B receptor antagonism of isoliquiritigenin contained in RKT.

  13. Humoral immunity provides resident intestinal eosinophils access to luminal antigen via eosinophil-expressed low affinity Fc gamma receptors

    Science.gov (United States)

    Smith, Kalmia M.; Rahman, Raiann S.; Spencer, Lisa A.

    2016-01-01

    Eosinophils are native to the healthy gastrointestinal tract, and are associated with inflammatory diseases likely triggered by exposure to food allergens (e.g. food allergies and eosinophilic gastrointestinal disorders). In models of allergic respiratory diseases and in vitro studies, direct antigen engagement elicits eosinophil effector functions including degranulation and antigen presentation. However, it was not known whether intestinal tissue eosinophils that are separated from luminal food antigens by a columnar epithelium might similarly engage food antigens. Using an intestinal ligated loop model in mice, here we determined that resident intestinal eosinophils acquire antigen from the lumen of antigen-sensitized but not naïve mice in vivo. Antigen acquisition was immunoglobulin-dependent; intestinal eosinophils were unable to acquire antigen in sensitized immunoglobulin-deficient mice, and passive immunization with immune serum or antigen-specific IgG was sufficient to enable intestinal eosinophils in otherwise naïve mice to acquire antigen in vivo. Intestinal eosinophils expressed low affinity IgG receptors, and the activating receptor FcγRIII was necessary for immunoglobulin-mediated acquisition of antigens by isolated intestinal eosinophils in vitro. Our combined data suggest that intestinal eosinophils acquire lumen-derived food antigens in sensitized mice via FcγRIII antigen focusing, and may therefore participate in antigen-driven secondary immune responses to oral antigens. PMID:27683752

  14. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling

    Czech Academy of Sciences Publication Activity Database

    Dráber, Petr; Hálová, Ivana; Levi-Schaffer, F.; Dráberová, Lubica

    2012-01-01

    Roč. 2, 11.1. (2012), s. 95 ISSN 1664-3224 R&D Projects: GA MŠk 1M0506; GA ČR GA301/09/1826; GA ČR GAP302/10/1759; GA AV ČR KAN200520701 Grant - others:AV ČR(CZ) M200520901 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : IgE receptor * LAT/LAT1 * LAX * NTAL/Lab/LAT2 * PAG/Cbp * mast cells * plasma membrane * transmembrane adaptor proteins Subject RIV: EB - Genetics ; Molecular Biology

  15. Pharmacokinetics and biodistribution of a radioiodine labeled peptidomimetic ligand for high-affinity nerve growth factor receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. H.; Kim, D. H.; Paik, J. Y.; Koh, B. H.; Bae, J. S.; Choe, Y. S.; Lee, K. H.; Kim, B. T. [Samsung Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    Some of the obstacles for the clinical application of whole nerve growth factor (NGF) may be overcome by utilizing small molecule mimetics. We thus investigated the in vivo pharmacokinetics and biodistribution of a small cyclic peptide derived from NGF-[C(92-96)] with high receptor binding affinity. I-125 C(92-96) was labeled with the Bolton-Hunter method, and binding to TrkA/IgG chimeric protein was confirmed on a polyacrylamide gel after cross-linking. Pharmacokinetic analysis was performed in normal ICR mice intravenously injected with 0.5 MBq I-125 C(92-96) containing varying doses of C(92-96). Biodistribution studies were done at 6 h after injection. Cross-linkage analysis confirmed binding of I-125 C(92-96) to the high affinity NGF receptor, TrkA. Intravenously injected I-125 C(92-96) was cleared from the blood in a biexponential manner with an early T1/2{alpha} of 5.2 min and late T1/2{beta} of 121.3 min. Log blood-concentration decreased over time with a k-slope of 0.0025, clearance of 11.8{+-}0.5 ml/min, T1/2 of 4.1{+-}0.4 hr, and volume of distribution of 69.7{+-}4.6 ml. The pattern of elimination from the blood remained essentially unchanged regardless of the dose of added C(92-96), with dose-proportionate increases in AUCs and peak concentrations consistent with linear pharmacokinetics. Biodistribution studies demonstrated high kidney activity suggesting renal excretion of I-125 C(92-96). There were moderate levels of accumulation in the spleen, lungs and liver, followed by the myocardium and skeletal muscle, whereas brain uptake was low (< 0.2 %ID/gm). Intravenously administered C(92-96) follows linear pharmacokinetics, and is cleared from the circulation at a rate comparable to whole NGF despite its substantially smaller size. Although intravenous C(92-96) does not adequately reach brain tissue, clinically relevant doses can achieve major organ accumulation levels that may be sufficient to elicit biologic responses through NGF receptors.

  16. Pharmacokinetics and biodistribution of a radioiodine labeled peptidomimetic ligand for high-affinity nerve growth factor receptors

    International Nuclear Information System (INIS)

    Jung, K. H.; Kim, D. H.; Paik, J. Y.; Koh, B. H.; Bae, J. S.; Choe, Y. S.; Lee, K. H.; Kim, B. T.

    2005-01-01

    Some of the obstacles for the clinical application of whole nerve growth factor (NGF) may be overcome by utilizing small molecule mimetics. We thus investigated the in vivo pharmacokinetics and biodistribution of a small cyclic peptide derived from NGF-[C(92-96)] with high receptor binding affinity. I-125 C(92-96) was labeled with the Bolton-Hunter method, and binding to TrkA/IgG chimeric protein was confirmed on a polyacrylamide gel after cross-linking. Pharmacokinetic analysis was performed in normal ICR mice intravenously injected with 0.5 MBq I-125 C(92-96) containing varying doses of C(92-96). Biodistribution studies were done at 6 h after injection. Cross-linkage analysis confirmed binding of I-125 C(92-96) to the high affinity NGF receptor, TrkA. Intravenously injected I-125 C(92-96) was cleared from the blood in a biexponential manner with an early T1/2α of 5.2 min and late T1/2β of 121.3 min. Log blood-concentration decreased over time with a k-slope of 0.0025, clearance of 11.8±0.5 ml/min, T1/2 of 4.1±0.4 hr, and volume of distribution of 69.7±4.6 ml. The pattern of elimination from the blood remained essentially unchanged regardless of the dose of added C(92-96), with dose-proportionate increases in AUCs and peak concentrations consistent with linear pharmacokinetics. Biodistribution studies demonstrated high kidney activity suggesting renal excretion of I-125 C(92-96). There were moderate levels of accumulation in the spleen, lungs and liver, followed by the myocardium and skeletal muscle, whereas brain uptake was low (< 0.2 %ID/gm). Intravenously administered C(92-96) follows linear pharmacokinetics, and is cleared from the circulation at a rate comparable to whole NGF despite its substantially smaller size. Although intravenous C(92-96) does not adequately reach brain tissue, clinically relevant doses can achieve major organ accumulation levels that may be sufficient to elicit biologic responses through NGF receptors

  17. [3H]naloxone as an opioid receptor label: Analysis of binding site heterogeneity and use for determination of opioid affinities of casomorphin analogues

    International Nuclear Information System (INIS)

    Schnittler, M.; Repke, H.; Liebmann, C.; Schrader, U.; Schulze, H.P.; Neubert, K.

    1990-01-01

    The nonselective antagonist [ 3 H]naloxone was used to identify opioid receptors in rat brain membranes. The multiple naloxone binding sites were related to different opioid receptors by means of selective opiod ligands as well as various β-casomorphin analogues. Analysis of binding site heterogeneity was performed using several computer curve fitting methods. The results indicate that structurally modified casomorphin peptides are able to discriminate between μ 1 and μ 2 binding sites. The affinities to the μ sites obtained with [ 3 H]naloxone as label are in a good agreement with those from experiments with the μ selective radioligand [ 3 H]DAGO. The μ 1 site affinities of these casomorphin derivatives are well correlated with their antinociceptive potencies. This finding suggests the mediation of the analgesic activity via the high-affinity μ 1 subtype. (author)

  18. Serotonin Test

    Science.gov (United States)

    ... microscope. (For more, see the article on Anatomic Pathology .) See More Common Questions See Less Common Questions ... tumor. Accessed December 2010. Vorvick, L. (Updated 2009 March 14). Serum serotonin level. MedlinePlus Medical Encyclopedia [On- ...

  19. Association of low-affinity FC gamma receptor 3B (FCGR3B) copy number variation with rheumatoid arthritis in Caucasian subjects

    NARCIS (Netherlands)

    Merriman, T.R.; Fanciulli, M.; Merriman, M.E.; Alizadeh, B.Z.; Koeleman, B.P.C.; Dalbeth, N.; Gow, P.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Vyse, T.; Aitman, T.; Radstake, T.; McKinney, C.

    2009-01-01

    Aim: There is increasing evidence that gene copy-number variation influences phenotypic variation. The low-affinity Fc receptor 3B (FCGR3B) is a copy-number polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonuclear neutrophils (PMN). Given the

  20. Deficient p75 low-affinity neurotrophin receptor expression does alter the composition of cellular infiltrate in experimental autoimmune encephalomyelitis in C57BL/6 mice

    NARCIS (Netherlands)

    Kust, B; Mantingh-Otter, [No Value; Boddeke, E; Copray, S

    We have shown earlier that induction of experimental autoimmune encephalomyelitis (EAE)-a model for the human disease multiple sclerosis-in C5713L/6 wild-type mice resulted in the expression of the p75 low-affinity neurotrophin receptor (p75(NTR)) in endothelial cells in the CNS. In comparison to

  1. Expression of the low affinity neurotrophin receptor p75 in spinal motoneurons in a transgenic mouse model for amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    Copray, JCVM; Jaarsma, D; Kust, BM; Bruggeman, RWG; Mantingh, [No Value; Brouwer, N; Boddeke, HWGM

    2003-01-01

    Amyotrophic lateral sclerosis is a lethal neurodegenerative disorder involving motoneuron loss in the cortex, brainstem and spinal cord, resulting in progressive paralysis. Aberrant neurotrophin signalling via the low affinity neurotrophin receptor p75 has been suggested to be involved in the

  2. The low-affinity neurotrophin receptor, p75, is upregulated in ganglioneuroblastoma/ganglioneuroma and reduces tumorigenicity of neuroblastoma cells in vivo

    NARCIS (Netherlands)

    Schulte, Johannes H.; Pentek, Falk; Hartmann, Wolfgang; Schramm, Alexander; Friedrichs, Nicolaus; Ora, Ingrid; Koster, Jan; Versteeg, Rogier; Kirfel, Jutta; Buettner, Reinhard; Eggert, Angelika

    2009-01-01

    Neuroblastoma, the most common extracranial tumor of childhood, is derived from neural crest progenitor cells that fail to differentiate along their predefined route to sympathetic neurons or sympatho-adrenergic adrenal cells. Although expression of the high-affinity neurotrophin receptors, TrkA and

  3. Radioiodsodestannylation. Convenient synthesis of a high affinity thromboxane A2/prostaglandin H2 receptor antagonist

    International Nuclear Information System (INIS)

    Mais, D.E.; Hamanaka, Nobuyuki

    1991-01-01

    Radioiodination of methyl-7-[(2R, 2S, 5R)-6,6-dimethyl-3-(4-trimethylstannylbenzenesulfononylamino3S) bicyclo[3.1.1]hept-2-yl]-5(Z)-heptenoate with [ 125 I] Na using a modification of the chloramine-T method in organic solvent is simple with high yields and site specific. The product, following hydrolysis of the ester, 7-[(2R, 2S, 3S, 5R)-6,6-dimethyl-3-(4[ 125 I]-iodobenzenesulfonylamino) bicyclo[3.1.1]hept-2-yl]-5(Z)-heptenoic acid [( 125 I]-ISAP), was purified by HPLC. The high specific activity and specific binding will make the ligand a useful tool for the characterization of thromboxane A 2 /prostaglandin H 2 receptors. (author)

  4. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    Science.gov (United States)

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The serotonin-1A receptor distribution in healthy men and women measured by PET and [carbonyl-11C]WAY-100635

    International Nuclear Information System (INIS)

    Stein, Patrycja; Savli, Markus; Fink, Martin; Spindelegger, Christoph; Moser, Ulrike; Kasper, Siegfried; Lanzenberger, Rupert; Wadsak, Wolfgang; Dudczak, Robert; Kletter, Kurt; Mitterhauser, Markus; Mien, Leonhard-Key

    2008-01-01

    The higher prevalence rates of depression and anxiety disorders in women compared to men have been associated with sexual dimorphisms in the serotonergic system. The present positron emission tomography (PET) study investigated the influence of sex on the major inhibitory serotonergic receptor subtype, the serotonin-1A (5-HT 1A ) receptor. Sixteen healthy women and 16 healthy men were measured using PET and the highly specific radioligand [carbonyl- 11 C]WAY-100635. Effects of age or gonadal hormones were excluded by restricting the inclusion criteria to young adults and by controlling for menstrual cycle phase. The 5-HT 1A receptor BP ND was quantified using (1) the 'gold standard' manual delineation approach with ten regions of interest (ROIs) and (2) a newly developed delineation method using a PET template normalized to the Montreal Neurologic Institute space with 45 ROIs based on automated anatomical labeling. The 5-HT 1A receptor BP ND was found equally distributed in men and women applying both the manual delineation method and the automated delineation approach. Women had lower mean BP ND values in every region investigated, with a borderline significant sex difference in the hypothalamus (p=0.012, uncorrected). There was a high intersubject variability of the 5-HT 1A receptor BP ND within both sexes compared to the small mean differences between men and women. To conclude, when measured in the follicular phase, women do not differ from men in the 5-HT 1A receptor binding. To explain the higher prevalence of affective disorders in women, further studies are needed to evaluate the relationship between hormonal status and the 5-HT 1A receptor expression. (orig.)

  6. The serotonin-1A receptor distribution in healthy men and women measured by PET and [carbonyl-{sup 11}C]WAY-100635

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Patrycja; Savli, Markus; Fink, Martin; Spindelegger, Christoph; Moser, Ulrike; Kasper, Siegfried; Lanzenberger, Rupert [Medical University of Vienna, Department of Psychiatry and Psychotherapy, Vienna (Austria); Wadsak, Wolfgang; Dudczak, Robert; Kletter, Kurt [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Mitterhauser, Markus; Mien, Leonhard-Key [Medical University of Vienna, Department of Nuclear Medicine, Vienna (Austria); University of Vienna, Department of Pharmaceutical Technology, Vienna (Austria)

    2008-12-15

    The higher prevalence rates of depression and anxiety disorders in women compared to men have been associated with sexual dimorphisms in the serotonergic system. The present positron emission tomography (PET) study investigated the influence of sex on the major inhibitory serotonergic receptor subtype, the serotonin-1A (5-HT{sub 1A}) receptor. Sixteen healthy women and 16 healthy men were measured using PET and the highly specific radioligand [carbonyl-{sup 11}C]WAY-100635. Effects of age or gonadal hormones were excluded by restricting the inclusion criteria to young adults and by controlling for menstrual cycle phase. The 5-HT{sub 1A} receptor BP{sub ND} was quantified using (1) the 'gold standard' manual delineation approach with ten regions of interest (ROIs) and (2) a newly developed delineation method using a PET template normalized to the Montreal Neurologic Institute space with 45 ROIs based on automated anatomical labeling. The 5-HT{sub 1A} receptor BP{sub ND} was found equally distributed in men and women applying both the manual delineation method and the automated delineation approach. Women had lower mean BP{sub ND} values in every region investigated, with a borderline significant sex difference in the hypothalamus (p=0.012, uncorrected). There was a high intersubject variability of the 5-HT{sub 1A} receptor BP{sub ND} within both sexes compared to the small mean differences between men and women. To conclude, when measured in the follicular phase, women do not differ from men in the 5-HT{sub 1A} receptor binding. To explain the higher prevalence of affective disorders in women, further studies are needed to evaluate the relationship between hormonal status and the 5-HT{sub 1A} receptor expression. (orig.)

  7. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations.

    Science.gov (United States)

    Kometer, Michael; Schmidt, André; Jäncke, Lutz; Vollenweider, Franz X

    2013-06-19

    Visual illusions and hallucinations are hallmarks of serotonergic hallucinogen-induced altered states of consciousness. Although the serotonergic hallucinogen psilocybin activates multiple serotonin (5-HT) receptors, recent evidence suggests that activation of 5-HT2A receptors may lead to the formation of visual hallucinations by increasing cortical excitability and altering visual-evoked cortical responses. To address this hypothesis, we assessed the effects of psilocybin (215 μg/kg vs placebo) on both α oscillations that regulate cortical excitability and early visual-evoked P1 and N170 potentials in healthy human subjects. To further disentangle the specific contributions of 5-HT2A receptors, subjects were additionally pretreated with the preferential 5-HT2A receptor antagonist ketanserin (50 mg vs placebo). We found that psilocybin strongly decreased prestimulus parieto-occipital α power values, thus precluding a subsequent stimulus-induced α power decrease. Furthermore, psilocybin strongly decreased N170 potentials associated with the appearance of visual perceptual alterations, including visual hallucinations. All of these effects were blocked by pretreatment with the 5-HT2A antagonist ketanserin, indicating that activation of 5-HT2A receptors by psilocybin profoundly modulates the neurophysiological and phenomenological indices of visual processing. Specifically, activation of 5-HT2A receptors may induce a processing mode in which stimulus-driven cortical excitation is overwhelmed by spontaneous neuronal excitation through the modulation of α oscillations. Furthermore, the observed reduction of N170 visual-evoked potentials may be a key mechanism underlying 5-HT2A receptor-mediated visual hallucinations. This change in N170 potentials may be important not only for psilocybin-induced states but also for understanding acute hallucinatory states seen in psychiatric disorders, such as schizophrenia and Parkinson's disease.

  8. Paroxetine and Low-dose Risperidone Induce Serotonin 5-HT1A and Dopamine D2 Receptor Heteromerization in the Mouse Prefrontal Cortex.

    Science.gov (United States)

    Kolasa, Magdalena; Solich, Joanna; Faron-Górecka, Agata; Żurawek, Dariusz; Pabian, Paulina; Łukasiewicz, Sylwia; Kuśmider, Maciej; Szafran-Pilch, Kinga; Szlachta, Marta; Dziedzicka-Wasylewska, Marta

    2018-05-01

    Recently, it has been shown that serotonin 5-HT 1A receptor interacts with dopamine D2 receptor in vitro. However, the existence of 5-HT 1A -D2 heteromers in native tissue remains unexplored. In the present study, we investigated 5-HT 1A -D2 receptor heteromerization in mice treated acutely or chronically with paroxetine (10 mg/kg) or risperidone (0.05 mg/kg). Receptor heteromerization was visualized and quantified in the mouse brain by in situ proximity ligation assay (PLA). Additionally, we aimed to determine the cellular localization of 5-HT 1A -D2 receptor heteromers in mouse adult primary neuronal cells by immunofluorescent staining with markers for astrocytes (GFAP) and neurons (NeuN and MAP2). The results from the current study demonstrated that 5-HT 1A and D2 receptor co-localization and heteromerization occurred in the mouse prefrontal cortex. Counterstaining after PLA confirmed neuronal (pyramidal and GABAergic) as well as astrocytal localization of 5-HT 1A -D2 receptor heteromers. Chronic administration of paroxetine or risperidone increased the level of 5-HT 1A -D2 receptor heteromers in the prefrontal cortex. These changes were not accompanied by any changes in the expression of mRNAs (measured by in situ hybridization) or densities of 5-HT 1A and D2 receptors (quantified by receptor autoradiography with [3H]8-OH-DPAT and [3H]domperidone, respectively), what all indicated that paroxetine and risperidone facilitated 5-HT 1A -D2 heteromer formation independently of the receptor expression. In vitro homogenous time-resolved FRET (HTRF) study confirmed the ability of tested drugs to influence the human 5-HT 1A -D2 heteromer formation. The obtained data indicate that the increase in 5-HT 1A -D2 receptor heteromerization is a common molecular characteristic of paroxetine and low-dose risperidone treatment. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Low serotonin1B receptor binding potential in the anterior cingulate cortex in drug-free patients with recurrent major depressive disorder.

    Science.gov (United States)

    Tiger, Mikael; Farde, Lars; Rück, Christian; Varrone, Andrea; Forsberg, Anton; Lindefors, Nils; Halldin, Christer; Lundberg, Johan

    2016-07-30

    The pathophysiology of major depressive disorder (MDD) is not fully understood and the diagnosis is largely based on history and clinical examination. So far, several lines of preclinical data and a single imaging study implicate a role for the serotonin1B (5-HT1B) receptor subtype. We sought to study 5-HT1B receptor binding in brain regions of reported relevance in patients with MDD. Subjects were examined at the Karolinska Institutet PET centre using positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369. Ten drug-free patients with recurrent MDD and ten control subjects matched for age and sex were examined. The main outcome measure was [(11)C]AZ10419369 binding in brain regions of reported relevance in the pathophysiology of MDD. The [(11)C]AZ10419369 binding potential was significantly lower in the MDD group compared with the healthy control group in the anterior cingulate cortex (20% between-group difference), the subgenual prefrontal cortex (17% between-group difference), and in the hippocampus (32% between-group difference). The low anterior cingulate [(11)C]AZ10419369 binding potential in patients with recurrent MDD positions 5-HT1B receptor binding in this region as a putative biomarker for MDD and corroborate a role of the anterior cingulate cortex and associated areas in the pathophysiology of recurrent MDD. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results

    Science.gov (United States)

    Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.

    2015-02-01

    To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.

  11. Behavioral Effects of a Novel Benzofuranyl-Piperazine Serotonin-2C Receptor Agonist Suggest a Potential Therapeutic Application in the Treatment of Obsessive–Compulsive Disorder

    Directory of Open Access Journals (Sweden)

    Michelle M. Rodriguez

    2017-05-01

    Full Text Available Selective serotonin reuptake inhibitors (SSRIs are the only effective pharmacological treatments for obsessive–compulsive disorder (OCD. Nonetheless, their generally limited efficacy, side-effects, and delayed onset of action require improved medications for this highly prevalent disorder. Preclinical and clinical findings have suggested serotonin2C (5-HT2C receptors as a potential drug target. Data in rats and mice are presented here on the effects of a novel 5-HT2C receptor agonist ((3S-3-Methyl-1-[4-(trifluoromethyl-7-benzofuranyl]-piperazine (CPD 1 with high potency and full efficacy at 5-HT2C receptors and less potency and partial agonism at 5-HT2A and 5-HT2B receptors. Effects of CPD 1 on consummatory (schedule-induced polydipsia in rats and non-consummatory behaviors (marble-burying and nestlet-shredding in mice that are repetitive and non-habituating were studied. We also evaluated the effects of CPD 1 in rats with isoproterenol- and deprivation-induced drinking in rats to compare with the polydipsia studies. The SSRIs, fluoxetine, and chlomipramine decreased the high rates of drinking in rats engendered by a schedule of intermittent food delivery (schedule-induced polydipsia. The effects of fluoxetine, but not of d-amphetamine, were prevented by the selective 5-HT2C receptor antagonist SB242084. The 5-HT2C receptor agonists Ro 60-0175 and CPD 1 also decreased drinking, but unlike the SSRIs and Ro 60-0175, CPD 1 dose-dependently decreased excessive drinking without affecting lever press responses that produced food. The effects of CPD 1 were prevented by SB242084. CPD 1 also suppressed drinking induced by isoproterenol and by water deprivation without affecting normative drinking behavior. CPD 1, like fluoxetine, also suppressed marble-burying and nestlet-shredding in mice at doses that did not affect rotarod performance or locomotor activity. The behavioral specificity of effects of CPD 1 against repetitive and excessive behaviors

  12. Crystal structure of an affinity-matured prolactin complexed to its dimerized receptor reveals the topology of hormone binding site 2

    DEFF Research Database (Denmark)

    Broutin, Isabelle; Jomain, Jean-Baptiste; Tallet, Estelle

    2010-01-01

    We report the first crystal structure of a 1:2 hormone.receptor complex that involves prolactin (PRL) as the ligand, at 3.8-A resolution. Stable ternary complexes were obtained by generating affinity-matured PRL variants harboring an N-terminal tail from ovine placental lactogen, a closely relate...... and prostate cancer.......We report the first crystal structure of a 1:2 hormone.receptor complex that involves prolactin (PRL) as the ligand, at 3.8-A resolution. Stable ternary complexes were obtained by generating affinity-matured PRL variants harboring an N-terminal tail from ovine placental lactogen, a closely related...... PRL receptor (PRLR) ligand. This structure allows one to draw up an exhaustive inventory of the residues involved at the PRL.PRLR site 2 interface, consistent with all previously reported site-directed mutagenesis data. We propose, with this description, an interaction model involving three structural...

  13. Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells

    International Nuclear Information System (INIS)

    Snyers, L.; De Wit, L.; Content, J.

    1990-01-01

    Interleukin 6 (IL-6) is a potent pleiotropic cytokine, known, among others, to stimulate immunoglobulin production by B cells and to trigger acute-phase protein synthesis by hepatocytes. Similar to IL-1, it is produced by monocytes and macrophages following an inflammatory challenge. Analysis of IL-6 receptor (IL-6R) expression on different human cell lines indicates that dexamethasone could up-regulate the number of IL-6R on one epithelial cell line (UAC) and on two hepatoma cell lines (HepG2 and Hep3B). This effect was confirmed by Scatchard analysis of binding experiments, using [ 35 S]methionine and [ 35 S]cysteine metabolically labeled IL-6. It was confirmed at the level of mRNA expression by Northern blot analysis. These results provide evidence for a link between IL-6 and glucocorticoids. They could represent an example of a system in which one role of glucocorticoids is to define more accurately the target of cytokines, and they could explain, at least partly, the frequently observed synergy between IL-6 and glucocorticoids, notably in the case of hepatocytes

  14. Chiral dimethylamine flutamide derivatives-modeling, synthesis, androgen receptor affinities and carbon-11 labeling

    International Nuclear Information System (INIS)

    Jacobson, Orit; Laky, Desideriu; Carlson, Kathryn E.; Elgavish, Sharona; Gozin, Michael; Even-Sapir, Einat; Leibovitc, Ilan; Gutman, Mordechai; Chisin, Roland; Katzenellenbogen, John A.; Mishani, Eyal

    2006-01-01

    Most prostate cancers are androgen dependent upon initial diagnosis. On the other hand, some very aggressive forms of prostate cancer were shown to have lost the expression of the androgen receptor (AR). Although the AR is routinely targeted in endocrine treatment, the clinical outcome remains suboptimal. Therefore, it is crucial to demonstrate the presence and activity of the AR in each case of prostate cancer, before and after treatment. While noninvasive positron emission tomography (PET) has the potential to determine AR expression of tumor cells in vivo, fully optimized PET imaging agents are not yet available. Based on molecular modeling, three novel derivatives of hydroxyflutamide (Compounds 1-3) were designed and synthesized. They contain an electron-rich group (dimethylamine) located on the methyl moiety, which may confer a better stability to the molecule in vivo. Compounds 1-3 have AR binding that is similar or higher than that of the currently used commercial drugs. An automated carbon-11 radiolabeling route was developed, and the compounds were successfully labeled with a 10-15% decay-corrected radiochemical yield, 99% radiochemical purity and a specific activity of 4Ci/μmol end of bombardment (n=15). These labeled biomarkers may facilitate the future quantitative molecular imaging of AR-positive prostate cancer using PET and may also allow for image-guided treatment of prostate cancer

  15. Association of serotonin receptor 2a haplotypes with obsessive-compulsive disorder and its treatment response in Iranian patients: a genetic and pharmacogenetic study.

    Science.gov (United States)

    Sina, Marzie; Ahmadiani, Abolhassan; Asadi, Sareh; Shams, Jamal

    2018-01-01

    Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder causing intrusive thoughts or repetitive behaviors. Serotonin reuptake inhibitors are used for OCD treatment, but 40%-60% of patients do not respond to them adequately. In this study, the associations of serotonin receptor 2a polymorphisms rs6311 and rs6313 with OCD, its familial form and fluvoxamine treatment response in Iranian population were investigated. Association analyses were conducted in 293 OCD cases fulfilling the Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV-TR and 245 controls. Pharmacotherapy was defined as 12 weeks of treatment with fluvoxamine (150-300 mg). Treatment response was considered as >25% reduction in Yale-Brown Obsessive Compulsive Scale score. Genotyping was performed by means of PCR-RFLP. The results showed no association of rs6311 or rs6313 with OCD, but their haplotypes had different distribution patterns in cases and controls. Moreover, rs6313 was associated with the familial form of OCD in females significantly ( P =0.005) under the recessive genetic model. Moreover, rs6311-rs6313 haplotypes were associated with fluvoxamine treatment response in OCD patients with more AC and less AT in responders. HTR2A haplotypes are associated with OCD and its treatment response with a fluvoxamine in Iranian patients. Furthermore, the observed association of rs6313 with the familial form of OCD in females suggests different genetic background of OCD familial and non-familial forms, which needs further investigation.

  16. Establishment of a novel high-affinity IgE receptor-positive canine mast cell line with wild-type c-kit receptors

    International Nuclear Information System (INIS)

    Amagai, Yosuke; Tanaka, Akane; Ohmori, Keitaro; Matsuda, Hiroshi

    2008-01-01

    Much is known regarding participations of mast cells with innate and acquired immunity by secreting various cytokines and chemical mediators. However, details of mast cell biology still remain unclear. In this study, we successfully established a novel growth factor-independent mast cell line (MPT-1) derived from canine mast cell tumor. MPT-1 cells manifested factor-independent proliferation as floating cells containing a large amount of histamine, as well as chymase-like dog mast cell protease 3, in cytosolic granules. Particularly, MPT-1 cells expressed high-affinity IgE receptors (FcεRI) and wild-type c-kit receptors. Degranulation of MPT-1 cells was induced not only by stimulation with calcium ionophore but also by cross-linkage of the surface IgE. Given that MPT-1 is the first mast cell line with FcεRI which has no c-kit mutations, MPT-1 cells may provide great contribution for investigation of IgE-mediated activation mechanisms of mast cells, leading to development of effective treatment for allergic disorders

  17. The 5-HT(1A) receptor agonist, 8-OH-DPAT, attenuates stress-induced anorexia in conjunction with the suppression of hypothalamic serotonin release in rats.

    Science.gov (United States)

    Shimizu, N; Hori, T; Ogino, C; Kawanishi, T; Hayashi, Y

    2000-12-22

    The effect of the selective 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on stress-induced anorexia and serotonin (5-HT) release in the rat hypothalamus was studied with brain microdialysis. Subcutaneous injection of 8-OH-DPAT (1 mg/kg) significantly attenuated the immobilization-induced anorexia for 3 h, but had no effect during the following 9 h. Injection of 8-OH-DPAT itself had no effect on basal release of 5-HT, while it significantly blocked the immobilization-induced 5-HT release in the lateral hypothalamus. The results suggest that 8-OH-DPAT attenuated the stress-induced anorexia through the activation of 5-HT(1A) autoreceptors in dorsal raphe nucleus.

  18. In vivo assessment of dopamine D-2 and serotonin S-2 receptors measured by C-11 N-methylspiperone (NMSP) in manic-depressive illness

    International Nuclear Information System (INIS)

    Wong, D.F.; Pearlson, G.; Wagner, H.N. Jr.

    1985-01-01

    The hypothesis has been suggested that either the dopaminergic or serotonergic neurotransmitter systems may be involved in manic-depressive illness (MD). The authors have studied 16 subjects with C-11 NMSP PET imaging. Two had never received neuroleptics; 4 were drug free for 1 month at the time of scanning; of these 3 were acutely manic; the rest were on stable lithium treatment. The dopamine and serotonin binding was estimated by the 43 min. caudate/cerebellum (Ca/Cb) and frontal/cerebellum (FC/Cb) ratios, respectively. No statistically significant difference was detected when compared to 44 age and sex matched controls. Based upon the variance in the normal data and the average age of the patient group studied, the probability of detecting a difference of >30% between patients and normals is >0.8. Hence, identification of receptor abnormalities if present will be improved with increased sample size of both normals and patients

  19. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    International Nuclear Information System (INIS)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-01-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB 1 Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB 2 Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB 2 Rs (hCB 2 Rs). The affinity of cannabinoids for hCB 2 Rs was determined by competition binding studies employing CHO-hCB 2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB 2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB 2 Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB 2 Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ 9 -tetrahydrocannabinol (Δ 9 -THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB 2 R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB 2 Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB 2 Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB 1 and CB 2 Rs. - Highlights: • JWH-018 and JWH-073 are synthetic cannabinoids present in abused K2

  20. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  1. Differential structural properties of GLP-1 and exendin-4 determine their relative affinity for the GLP-1 receptor N-terminal extracellular domain.

    Science.gov (United States)

    Runge, Steffen; Schimmer, Susann; Oschmann, Jan; Schiødt, Christine Bruun; Knudsen, Sanne Möller; Jeppesen, Claus Bekker; Madsen, Kjeld; Lau, Jesper; Thøgersen, Henning; Rudolph, Rainer

    2007-05-15

    Glucagon-like peptide-1 (GLP-1) and exendin-4 (Ex4) are homologous peptides with established potential for treatment of type 2 diabetes. They bind and activate the pancreatic GLP-1 receptor (GLP-1R) with similar affinity and potency and thereby promote insulin secretion in a glucose-dependent manner. GLP-1R belongs to family B of the seven transmembrane G-protein coupled receptors. The N-terminal extracellular domain (nGLP-1R) is a ligand binding domain with differential affinity for Ex4 and GLP-1: low affinity for GLP-1 and high affinity for exendin-4. The superior affinity of nGLP-1R for Ex4 was previously explained by an additional interaction between nGLP-1R and the C-terminal Trp-cage of Ex4. In this study we have combined biophysical and pharmacological approaches thus relating structural properties of the ligands in solution to their relative binding affinity for nGLP-1R. We used both a tracer competition assay and ligand-induced thermal stabilization of nGLP-1R to measure the relative affinity of full length, truncated, and chimeric ligands for soluble refolded nGLP-1R. The ligands in solution and the conformational consequences of ligand binding to nGLP-1R were characterized by circular dichroism and fluorescence spectroscopy. We found a correlation between the helical content of the free ligands and their relative binding affinity for nGLP-1R, supporting the hypothesis that the ligands are helical at least in the segment that binds to nGLP-1R. The Trp-cage of Ex4 was not necessary to maintain a superior helicity of Ex4 compared to GLP-1. The results suggest that the differential affinity of nGLP-1R is explained almost entirely by divergent residues in the central part of the ligands: Leu10-Gly30 of Ex4 and Val16-Arg36 of GLP-1. In view of our results it appears that the Trp-cage plays only a minor role for the interaction between Ex4 and nGLP-1R and for the differential affinity of nGLP-1R for GLP-1 and Ex4.

  2. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

    Science.gov (United States)

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.

  3. Determination of optimal acquisition time of [18F]FCWAY PET for imaging serotonin 1A receptors in the healthy male subjects

    International Nuclear Information System (INIS)

    Yong Choi, Jae; Lee, Minkyung; Jeon, Tae Joo; Choi, Soo-Hee; Choi, Ye Ji; Lee, Yu Kyung; Kim, Jae-Jin; Ryu, Young Hoon

    2014-01-01

    The purpose of this research is to find optimal acquisition time point of [ 18 F]FCWAY PET for the assessment of serotonin 1A receptor (5-HT 1A ) density. To achieve this goal, we examined the specific-to-nonspecific ratios in various brain regions. The cerebellum has very few 5-HT 1A receptors in the brain, so we set this region as the reference tissue. As a result, specific-to-nonspecific binding ratios in the frontal, temporal cortex and the hippocampus were steadily increased at 90 min after injection and remained stable at 120 min. In addition, the binding ratio of the late time was significantly higher than that of the previous time points. From these results, we recommend that 90 min p.i. is a better single time point for the analysis rather than previous time points for assessing [ 18 F]FCWAY binding to 5-HT 1A receptors. - Highlights: • For routine clinical study, PET protocol should be conducted on a single time point with short imaging acquisition. • The specific-to-nonspecific ratios in the various brain regions were calculated. • Optimal [ 18 F]FCWAY PET acquisition time point was proposed

  4. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  5. Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis.

    Science.gov (United States)

    Hastrup, H; Schwartz, T W

    1996-12-16

    The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.

  6. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Kring, Sofia I I; Werge, Thomas; Holst, Claus

    2009-01-01

    BACKGROUND: Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs) of these......BACKGROUND: Candidate genes of psychological importance include 5HT2A, 5HT2C, and COMT, implicated in the serotonin, noradrenaline and dopamine pathways, which also may be involved in regulation of energy balance. We investigated the associations of single nucleotide polymorphisms (SNPs......) of these genes with obesity and metabolic traits. METHODOLOGY/PRINCIPAL FINDINGS: In a population of 166 200 young men examined at the draft boards, obese men (n = 726, BMI> or =31.0 kg/m(2)) and a randomly selected group (n = 831) were re-examined at two surveys at mean ages 46 and 49 years (S-46, S-49......). Anthropometric, physiological and biochemical measures were available. Logistic regression analyses were used to assess age-adjusted odds ratios. No significant associations were observed of 5HT2A rs6311, 5HT2C rs3813929 and COMT rs4680 with obesity, except that COMT rs4680 GG-genotype was associated with fat...

  7. Serotonin binding in vitro by releasable proteins from human blood platelets

    International Nuclear Information System (INIS)

    Heemstra, V.L.

    1983-11-01

    Among the substances released from human blood platelets are serotonin and various proteins. It was hypothesized that one of these proteins binds serotonin and that serotonin might be important to the protein's function or that the protein might be important to serotonin's function. Two platelet-specific proteins, platelet factor 4 (PF4) and β-thromboglobulin (βTG) were found to bind serotonin in vitro. Endogenous PF4 was isolated by serotonin-affinity chromatography and was identified by radioimmunoassay. Purified [ 125 I] -PF4 and native PF4 bound to and eluted from a serotonin-affinity column similarly. Ultrafiltration of the homologous protein, βTG, with [ 14 C]-serotonin demonstrated binding of about 8 moles serotonin per mole tetrameric βTG with a dissociation constant of about 4 X 10(sup-8) M. Equilibrium dialysis of PF4 with radiolabelled serotonin was attempted, but no binding constant values were obtained because serotonin apparently bound to the dialysis membrane. Since EDTA was one of the two agents that eluted PF4 from the serotonin-affinity gel, calcium binding by PF4 was investigated by equilibrium dialysis. Evidence was obtained for positively cooperative binding of calcium ions by PF4. It is concluded that PF4 and βTG bind serotonin in vitro, that they may also bind in vivo when platelets undergo release, and that the functions of serotonin, PF4 and βTG may be mediated in part by serotonin-protein associations

  8. Critical biological parameters modulate affinity as a determinant of function in T-cell receptor gene-modified T-cells.

    Science.gov (United States)

    Spear, Timothy T; Wang, Yuan; Foley, Kendra C; Murray, David C; Scurti, Gina M; Simms, Patricia E; Garrett-Mayer, Elizabeth; Hellman, Lance M; Baker, Brian M; Nishimura, Michael I

    2017-11-01

    T-cell receptor (TCR)-pMHC affinity has been generally accepted to be the most important factor dictating antigen recognition in gene-modified T-cells. As such, there is great interest in optimizing TCR-based immunotherapies by enhancing TCR affinity to augment the therapeutic benefit of TCR gene-modified T-cells in cancer patients. However, recent clinical trials using affinity-enhanced TCRs in adoptive cell transfer (ACT) have observed unintended and serious adverse events, including death, attributed to unpredicted off-tumor or off-target cross-reactivity. It is critical to re-evaluate the importance of other biophysical, structural, or cellular factors that drive the reactivity of TCR gene-modified T-cells. Using a model for altered antigen recognition, we determined how TCR-pMHC affinity influenced the reactivity of hepatitis C virus (HCV) TCR gene-modified T-cells against a panel of naturally occurring HCV peptides and HCV-expressing tumor targets. The impact of other factors, such as TCR-pMHC stabilization and signaling contributions by the CD8 co-receptor, as well as antigen and TCR density were also evaluated. We found that changes in TCR-pMHC affinity did not always predict or dictate IFNγ release or degranulation by TCR gene-modified T-cells, suggesting that less emphasis might need to be placed on TCR-pMHC affinity as a means of predicting or augmenting the therapeutic potential of TCR gene-modified T-cells used in ACT. A more complete understanding of antigen recognition by gene-modified T-cells and a more rational approach to improve the design and implementation of novel TCR-based immunotherapies is necessary to enhance efficacy and maximize safety in patients.

  9. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface

    DEFF Research Database (Denmark)

    Ahring, Philip K.; Olsen, Jeppe A.; Nielsen, Elsebet O.

    2015-01-01

    The nicotinic acetylcholine receptor alpha 4 beta 2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (alpha 4)(2)(beta 2)(3) and (alpha 4)(3)(beta 2)(2). While these are similar in many aspects, the (alpha 4)(3)(beta 2)(2) stoichiometry...... differs by harboring a third orthosteric acetylcholine binding site located at the alpha 4-alpha 4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known....... The present study was therefore aimed at determining binding affinities of nicotinic ligands to the alpha 4-alpha 4 interface. Given that epibatidine shows large functional potency differences at alpha 4-beta 2 vs. alpha 4-alpha 4 interfaces, biphasic binding properties would be expected at (alpha 4)(3)(beta...

  10. Radioiodinated ligands for the estrogen receptor: Effect of different 7-cyanoalkyl chains on the binding affinity of novel iodovinyl-6-dehydroestradiols

    International Nuclear Information System (INIS)

    Neto, Carina; Oliveira, Maria Cristina; Gano, Lurdes; Marques, Fernanda; Santos, Isabel; Morais, Goreti Ribeiro; Yasuda, Takumi; Thiemann, Thies; Botelho, Filomena; Oliveira, Carlos F.

    2009-01-01

    Three novel 17α-ethynyl-Δ 6,7 -estra-3,17β-diols and their 17α-[ 125 I]-iodovinyl derivatives, containing different C7-cyanoalkyl chains, were studied as potential radioligands for the estrogen receptor. The influence of the chain length on the biological behaviour of the compounds was assessed through in vitro ER binding assays of the ethynyl derivatives and breast cancer cell uptake studies of the 17α-[ 125 I]-iodovinyl-Δ 6,7 -estra-3,17β-diols. A difference in alkyl chain induced a decrease in ER binding affinities of substances, however, the receptor-binding affinities (RBA) of all compounds were lower than that of estradiol itself. In addition, a non-specific cell binding was observed which is in accordance with the encountered ethynyl RBA values suggesting that the uptake is not ER mediated

  11. Regulation of Pituitary Beta Endorphin Release: Role of Serotonin Neurons

    Science.gov (United States)

    1983-12-15

    endogenous) may be related to pain and its transmission in the nervous system. Areas known to have a large number of opiate receptors both in primates and...serotonin meta- bolite 5-hydroxytrvptamine; serotonin 5-hydroxtryptophan; serotonin precursor intra- cerebro -ventricular administration intermediate lobe

  12. Acute serotonin 2A receptor blocking alters the processing of fearful faces in the orbitofrontal cortex and amygdala

    DEFF Research Database (Denmark)

    Hornboll, Bettina; Macoveanu, Julian; Rowe, James

    2013-01-01

    judging the gender of neutral, fearful and angry faces. Methods: 5-HT2A receptors were blocked with ketanserin to a variable degree across subjects by adjusting the time between ketanserin-infusion and onset of the fMRI protocol. Neocortical 5-HT2A receptor binding in terms of the binding potential (BPp...... blockade reduced the neural response to fearful faces in the medial orbitofrontal cortex (OFC), independently of 5-HT2A receptor occupancy or neocortical 5-HT2A receptor BPp . The medial OFC also showed increased functional coupling with the left amygdala during processing of fearful faces depending...

  13. G protein- and agonist-bound serotonin 5-HT2A receptor model activated by steered molecular dynamics simulations

    DEFF Research Database (Denmark)

    Ísberg, Vignir; Balle, Thomas; Sander, Tommy

    2011-01-01

    molecular dynamics (MD) simulations. The driving force for the transformation was the addition of several known intermolecular and receptor interhelical hydrogen bonds enforcing the necessary helical and rotameric movements. Subsquent MD simulations without constraints confirmed the stability......A 5-HT(2A) receptor model was constructed by homology modeling based on the ß(2)-adrenergic receptor and the G protein-bound opsin crystal structures. The 5-HT(2A) receptor model was transferred into an active conformation by an agonist ligand and a G(aq) peptide in four subsequent steered...

  14. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    Science.gov (United States)

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  15. A DFT and Semiempirical Model-Based Study of Opioid Receptor Affinity and Selectivity in a Group of Molecules with a Morphine Structural Core

    Directory of Open Access Journals (Sweden)

    Tamara Bruna-Larenas

    2012-01-01

    Full Text Available We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31 levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  16. Clobazam and its active metabolite N-desmethylclobazam display significantly greater affinities for α₂- versus α₁-GABA(A-receptor complexes.

    Directory of Open Access Journals (Sweden)

    Henrik Sindal Jensen

    Full Text Available Clobazam (CLB, a 1,5-benzodiazepine (BZD, was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α₁-subunit-selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α₂ subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB, CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α₁, α₂, α₃, or α₅, β₂, and γ₂ subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α₂- vs. α₁-receptor complexes, a difference not observed for CLN, for which no distinction between α₂ and α₁ receptors was observed. Our experiments with ZOL confirmed the high preference for α₁ receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB.

  17. Relative contributions of norepinephrine and serotonin transporters to antinociceptive synergy between monoamine reuptake inhibitors and morphine in the rat formalin model.

    Directory of Open Access Journals (Sweden)

    Fei Shen

    Full Text Available Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy. In this study, we assessed the pharmacodynamic interactions between morphine and monoamine reuptake inhibitors that possess different affinities and selectivities for norepinephrine and serotonin transporters. Using the rat formalin model, in conjunction with measurements of ex vivo transporter occupancy, we show that neither the norepinephrine-selective inhibitor, esreboxetine, nor the serotonin-selective reuptake inhibitor, fluoxetine, produce antinociceptive synergy with morphine. Atomoxetine, a monoamine reuptake inhibitor that achieves higher levels of norepinephrine than serotonin transporter occupancy, exhibited robust antinociceptive synergy with morphine. Similarly, a fixed-dose combination of esreboxetine and fluoxetine which achieves comparable levels of transporter occupancy potentiated the antinociceptive response to morphine. By contrast, duloxetine, a monoamine reuptake inhibitor that achieves higher serotonin than norepinephrine transporter occupancy, failed to potentiate the antinociceptive response to morphine. However, when duloxetine was coadministered with the 5-HT3 receptor antagonist, ondansetron, potentiation of the antinociceptive response to morphine was revealed. These results support the notion that inhibition of both serotonin and norepinephrine transporters is required for monoamine reuptake inhibitor and opioid

  18. Serotonin receptor and dendritic plasticity in the spinal cord mediated by chronic serotonergic pharmacotherapy combined with exercise following complete SCI in the adult rat.

    Science.gov (United States)

    Ganzer, Patrick D; Beringer, Carl R; Shumsky, Jed S; Nwaobasi, Chiemela; Moxon, Karen A

    2018-06-01

    Severe spinal cord injury (SCI) damages descending motor and serotonin (5-HT) fiber projections leading to paralysis and serotonin depletion. 5-HT receptors (5-HTRs) subsequently upregulate following 5-HT fiber degeneration, and dendritic density decreases indicative of atrophy. 5-HT pharmacotherapy or exercise can improve locomotor behavior after SCI. One might expect that 5-HT pharmacotherapy acts on upregulated spinal 5-HTRs to enhance function, and that exercise alone can influence dendritic atrophy. In the current study, we assessed locomotor recovery and spinal proteins influenced by SCI and therapy. 5-HT, 5-HT 2A R, 5-HT 1A R, and dendritic densities were quantified both early (1 week) and late (9 weeks) after SCI, and also following therapeutic interventions (5-HT pharmacotherapy, bike therapy, or a combination). Interestingly, chronic 5-HT pharmacotherapy largely normalized spinal 5-HTR upregulation following injury. Improvement in locomotor behavior was not correlated to 5-HTR density. These results support the hypothesis that chronic 5-HT pharmacotherapy can mediate recovery following SCI, despite acting on largely normal spinal 5-HTR levels. We next assessed spinal dendritic plasticity and its potential role in locomotor recovery. Single therapies did not normalize the loss of dendritic density after SCI. Groups displaying significantly atrophied dendritic processes were rarely able to achieve weight supported open-field locomotion. Only a combination of 5-HT pharmacotherapy and bike therapy enabled significant open-field weigh-supported stepping, mediated in part by restoring spinal dendritic density. These results support the use of combined therapies to synergistically impact multiple markers of spinal plasticity and improve motor recovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Association of serotonin receptor 2a haplotypes with obsessive–compulsive disorder and its treatment response in Iranian patients: a genetic and pharmacogenetic study

    Science.gov (United States)

    Sina, Marzie; Ahmadiani, Abolhassan; Asadi, Sareh; Shams, Jamal

    2018-01-01

    Introduction Obsessive–compulsive disorder (OCD) is a debilitating psychiatric disorder causing intrusive thoughts or repetitive behaviors. Serotonin reuptake inhibitors are used for OCD treatment, but 40%–60% of patients do not respond to them adequately. In this study, the associations of serotonin receptor 2a polymorphisms rs6311 and rs6313 with OCD, its familial form and fluvoxamine treatment response in Iranian population were investigated. Patients and methods Association analyses were conducted in 293 OCD cases fulfilling the Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV-TR and 245 controls. Pharmacotherapy was defined as 12 weeks of treatment with fluvoxamine (150–300 mg). Treatment response was considered as >25% reduction in Yale–Brown Obsessive Compulsive Scale score. Genotyping was performed by means of PCR-RFLP. Results The results showed no association of rs6311 or rs6313 with OCD, but their haplotypes had different distribution patterns in cases and controls. Moreover, rs6313 was associated with the familial form of OCD in females significantly (P=0.005) under the recessive genetic model. Moreover, rs6311–rs6313 haplotypes were associated with fluvoxamine treatment response in OCD patients with more AC and less AT in responders. Conclusion HTR2A haplotypes are associated with OCD and its treatment response with a fluvoxamine in Iranian patients. Furthermore, the observed association of rs6313 with the familial form of OCD in females suggests different genetic background of OCD familial and non-familial forms, which needs further investigation. PMID:29785111

  20. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study.

    Directory of Open Access Journals (Sweden)

    Dea Siggaard Stenbæk

    Full Text Available Serotonin (5-HT brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R brain availability, which has recently become possible to image with Positron Emission Tomography (PET. This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females, the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17 or the latent construct of global 5-HT4R levels (all p-values > .37. Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.

  1. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study.

    Science.gov (United States)

    Stenbæk, Dea Siggaard; Dam, Vibeke Høyrup; Fisher, Patrick MacDonald; Hansen, Nanna; Hjordt, Liv Vadskjær; Frokjaer, Vibe Gedsoe

    2017-01-01

    Serotonin (5-HT) brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R) brain availability, which has recently become possible to image with Positron Emission Tomography (PET). This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females), the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R) and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC) were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17) or the latent construct of global 5-HT4R levels (all p-values > .37). Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.

  2. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    Science.gov (United States)

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Serotonin Receptors in the Medulla Oblongata of the Human Fetus and Infant: The Analytic Approach of the International Safe Passage Study

    Science.gov (United States)

    Folkerth, Rebecca D.; Paterson, David S.; Broadbelt, Kevin G.; Dan Zaharie, S.; Hewlett, Richard H.; Dempers, Johan J.; Burger, Elsie; Wadee, Shabbir; Schubert, Pawel; Wright, Colleen; Sens, Mary Ann; Nelsen, Laura; Randall, Bradley B.; Tran, Hoa; Geldenhuys, Elaine; Elliott, Amy J.; Odendaal, Hein J.; Kinney, Hannah C.

    2016-01-01

    The Safe Passage Study is an international, prospective study of approximately 12 000 pregnancies to determine the effects of prenatal alcohol exposure (PAE) upon stillbirth and the sudden infant death syndrome (SIDS). A key objective of the study is to elucidate adverse effects of PAE upon binding to serotonin (5-HT) 1A receptors in brainstem homeostatic networks postulated to be abnormal in unexplained stillbirth and/or SIDS. We undertook a feasibility assessment of 5-HT1A receptor binding using autoradiography in the medulla oblongata (6 nuclei in 27 cases). 5-HT1A binding was compared to a reference dataset from the San Diego medical examiner’s system. There was no adverse effect of postmortem interval ≤100 h. The distribution and quantitated values of 5-HT1A binding in Safe Passage Study cases were essentially identical to those in the reference dataset, and virtually identical between stillbirths and live born fetal cases in grossly non-macerated tissues. The pattern of binding was present at mid-gestation with dramatic changes in binding levels in the medullary 5-HT nuclei over the second half of gestation; there was a plateau at lower levels in the neonatal period and into infancy. This study demonstrates feasibility of 5-HT1A binding analysis in the medulla in the Safe Passage Study. PMID:27634962

  4. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    Science.gov (United States)

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    International Nuclear Information System (INIS)

    Chow, Tiffany W; Mamo, David C; Uchida, Hiroyuki; Graff-Guerrero, Ariel; Houle, Sylvain; Smith, Gwenn S; Pollock, Bruce G; Mulsant, Benoit H

    2009-01-01

    Position emission tomography (PET) imaging using [ 18 F]-setoperone to quantify cortical 5-HT 2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT 2A receptor (5HT 2A R) binding potential. The purpose of this study was to assess the test-retest variability of [ 18 F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT 2A R availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [ 18 F]-setoperone PET scans on two separate occasions 5–16 weeks apart. The average difference in the binding potential (BP ND ) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. We conclude that the test-retest variability of [ 18 F]-setoperone PET in elderly subjects is comparable to that of [ 18 F]-setoperone and other 5HT 2A R radiotracers in younger subject samples

  6. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Daiji; Ishihara, Noriko [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Bujo, Hideaki [Department of Clinical Laboratory Medicine, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Shirai, Kohji [Department of Vascular Function, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Tatsuno, Ichiro, E-mail: ichiro.tatsuno@med.toho-u.ac.jp [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan)

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  7. 5-HT2C receptors in the BNST are necessary for the enhancement of fear learning by selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Pelrine, Eliza; Pasik, Sara Diana; Bayat, Leyla; Goldschmiedt, Debora; Bauer, Elizabeth P

    2016-12-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed to treat anxiety and depression, yet they paradoxically increase anxiety during initial treatment. Acute administration of these drugs prior to learning can also enhance Pavlovian cued fear conditioning. This potentiation has been previously reported to depend upon the bed nucleus of the stria terminalis (BNST). Here, using temporary inactivation, we confirmed that the BNST is not necessary for the acquisition of cued or contextual fear memory. Systemic administration of the SSRI citalopram prior to fear conditioning led to an upregulation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) in the oval nucleus of the BNST, and a majority of these neurons expressed the 5-HT2C receptor. Finally, local infusions of a 5-HT2C receptor antagonist directly into the oval nucleus of the BNST prevented the fear memory-enhancing effects of citalopram. These findings highlight the ability of the BNST circuitry to be recruited into gating fear and anxiety-like behaviors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Distribution of serotonin 2A and 2C receptor mRNA expression in the cervical ventral horn and phrenic motoneurons following spinal cord hemisection.

    Science.gov (United States)

    Basura, G J; Zhou, S Y; Walker, P D; Goshgarian, H G

    2001-06-01

    Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states. Copyright 2001 Academic Press.

  9. Serotonin 2A and 2C receptor biosynthesis in the rodent striatum during postnatal development: mRNA expression and functional linkage to neuropeptide gene regulation.

    Science.gov (United States)

    Basura, G J; Walker, P D

    2000-11-01

    The present study was designed to determine if there are region-specific differences in serotonin (5-HT) neurotransmission and 5-HT receptor expression that may limit the stimulatory effects of the 5-HT releaser p-chloroamphetamine (pCA) on striatal neuropeptide gene expression to the posterior striatum (P-STR) during postnatal maturation. Sprague-Dawley rat brains from postnatal days (PND) 1-35 were processed for 5-HT(2A) and 5-HT(2C) receptor mRNA expression by in situ hybridization and monoamine analysis by HPLC. Within the P-STR, 5-HT(2A) receptor mRNA expression reached young adult (PND 35) levels by PND 3, while levels in the A-STR were significantly less (range: 1.43 +/- 0.219-6. 36 +/- 0.478) than P-STR (5.36 +/- 0.854-12.11 +/- 1.08) at each respective age throughout the time course. 5-HT(2C) receptor mRNA expression reached young adult levels at PND 7 in the A-STR and by PND 3 in the P-STR. At each PND age 5-HT(2C) receptor mRNA levels within the P-STR were significantly less (6.23 +/- 1.02-12.32 +/- 0.427) than the A-STR (7.31 +/- 1.65-26.84 +/- 2.24). 5-HT content increased across the developmental time course within the P-STR (5.01 +/- 0.327-15.7 +/- 1.03 ng/mg protein) and A-STR (2.97 +/- 0. 223-11.2 +/- 0.701 ng/mg protein). Four hours following injection (i. p.) of pCA (10 mg/kg), preprotachykinin (PPT) mRNA levels increased 89% in the P-STR but not the anterior (A-STR) striatum of the 3-week-old rat, which were prevented by preinjection (30 min, i.p.) of the 5-HT(2) receptor antagonist ritanserin (1 mg/kg). Together, these data suggest that faster maturity of 5-HT(2A) receptor expression in the P-STR may be sufficient to convey the region-specific acute stimulatory effects of pCA on PPT mRNA transcription in the developing rodent striatum. These results provide further evidence that the influence of 5-HT on neuropeptide gene expression is far stronger in caudal vs. rostral striatal regions during postnatal development. Copyright 2000 Wiley

  10. The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain

    DEFF Research Database (Denmark)

    Aznar, Susana; Qian, Zhaoxia; Shah, Reshma

    2003-01-01

    distributed in the rat brain, with a particularly high density in the limbic system. The receptor's localization in the different neuronal subtypes, which may be of importance for understanding its role in neuronal circuitries, is, however, unknown. In this study we show by immunocytochemical double......-labeling techniques, that the 5-HT(1A) receptor is present on both pyramidal and principal cells, and calbindin- and parvalbumin-containing neurons, which generally define two different subtypes of interneurons. Moreover, semiquantitative analysis showed that the receptor's distribution in the different neuronal...... types varies between brain areas. In cortex, hippocampus, hypothalamus, and amygdala the receptor was located on both principal cells and calbindin- and parvalbumin-containing neurons. In septum and thalamus, the receptor was mostly present on calbindin- and parvalbumin-containing cells. Especially...

  11. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    Science.gov (United States)

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  12. beta-Arrestin 1 and 2 stabilize the angiotensin II type I receptor in distinct high-affinity conformations

    DEFF Research Database (Denmark)

    Sanni, S J; Hansen, J T; Bonde, M M

    2010-01-01

    The angiotensin II type 1 (AT(1)) receptor belongs to family A of 7 transmembrane (7TM) receptors. The receptor has important roles in the cardiovascular system and is commonly used as a drug target in cardiovascular diseases. Interaction of 7TM receptors with G proteins or beta-arrestins often...

  13. Evaluation of 3-Ethyl-3-(phenylpiperazinylbutyl)oxindoles as PET Ligands for the Serotonin 5-HT7 Receptor

    DEFF Research Database (Denmark)

    Herth, Matthias M; Andersen, Valdemar L; Hansen, Hanne D

    2015-01-01

    We have investigated several oxindole derivatives in the pursuit of a 5-HT7 receptor PET ligand. Herein the synthesis, chiral separation, and pharmacological profiling of two possible PET candidates toward a wide selection of CNS-targets are detailed. Subsequent (11)C-labeling and in vivo evaluat...... evaluation in Danish landrace pigs showed that both ligands displayed high brain uptake. However, neither of the radioligands could be displaced by the 5-HT7 receptor selective inverse agonist SB-269970....

  14. Serotonin receptor B may lock the gate of PTTH release/synthesis in the Chinese silk moth, Antheraea pernyi; a diapause initiation/maintenance mechanism?

    Directory of Open Access Journals (Sweden)

    Qiushi Wang

    Full Text Available The release of prothoracicotropic hormone, PTTH, or its blockade is the major endocrine switch regulating the developmental channel either to metamorphosis or to pupal diapause in the Chinese silk moth, Antheraea pernyi. We have cloned cDNAs encoding two types of serotonin receptors (5HTRA and B. 5HTRA-, and 5HTRB-like immunohistochemical reactivities (-ir were colocalized with PTTH-ir in two pairs of neurosecretory cells at the dorsolateral region of the protocerebrum (DL. Therefore, the causal involvement of these receptors was suspected in PTTH release/synthesis. The level of mRNA(5HTRB responded to 10 cycles of long-day activation, falling to 40% of the original level before activation, while that of 5HTRA was not affected by long-day activation. Under LD 16:8 and 12:12, the injection of dsRNA(5HTRB resulted in early diapause termination, whereas that of dsRNA(5HTRA did not affect the rate of diapause termination. The injection of dsRNA(5HTRB induced PTTH accumulation, indicating that 5HTRB binding suppresses PTTH synthesis also. This conclusion was supported pharmacologically; the injection of luzindole, a melatonin receptor antagonist, plus 5th inhibited photoperiodic activation under LD 16:8, while that of 5,7-DHT, induced emergence in a dose dependent fashion under LD 12:12. The results suggest that 5HTRB may lock the PTTH release/synthesis, maintaining diapause. This could also work as diapause induction mechanism.

  15. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT neurons in mice with altered 5-HT homeostasis

    Directory of Open Access Journals (Sweden)

    Naozumi eAraragi

    2013-08-01

    Full Text Available Firing activity of serotonin (5-HT neurons in the dorsal raphe nucleus (DRN is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert -/- and tryptophan hydroxylase-2 knockout (Tph2 -/- mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+-8-hydroxy-2-(di-n-propylaminotetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2 -/- mice and Sert -/- mice, respectively. While 5-HT neurons from Tph2 -/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert -/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP, neurons from both Tph2 -/- and Sert -/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

  16. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Directory of Open Access Journals (Sweden)

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  17. The Effect of Traumatic Stress on Multiple Aminergic Systems in the Basolateral Amygdala and Hypothalamus: Specific Impairment of Serotonin 5-HT2a Receptor Signaling and its Pathophysiological Role in an Animal Model of Post Traumatic Stress Disorder

    Science.gov (United States)

    2007-02-27

    discomfort, such as pain (Tanimoto et al., 2003;Bernard et al., 1992), psychological stressors (LeDoux, 2003;LeDoux, 2000), and the disturbance of plasma...Barbarich NC, Kaye WH (2004) Altered 5-HT(2A) receptor binding after recovery from bulimia -type anorexia nervosa: relationships to harm avoidance and...Serotonin alterations in anorexia and bulimia nervosa: New insights from imaging studies. Physiology & Behavior 85:73-81. Kaye WH, Frank GK, Meltzer CC

  18. Mutation-induced quisqualic acid and ibotenic acid affinity at the metabotropic glutamate receptor subtype 4: ligand selectivity results from a synergy of several amino acid residues

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Bräuner-Osborne, Hans

    2004-01-01

    The metabotropic glutamate receptors (mGluRs) are key modulators of excitatory neurotransmission in the central nervous system. The eight mGluR subtypes are seven trans-membrane-spanning proteins that possess a large extracellular amino-terminal domain in which the endogenous ligand binding pocket...... resides. In this study, we have identified four non-conserved amino acid residues that are essential for differentiating mGluR1 from mGluR4. Our approach has been to increase the affinity of the classic mGluR1 agonists, quisqualic acid and ibotenic acid, at mGluR4 by making various point mutations......, the mutations K74Y and K317R induced dramatic triple-order-of-magnitude increases in the affinity of ibotenic acid at mGluR4, making the affinity equivalent to that of mGluR1. Furthermore, the affinity of quisqualic acid at mGluR4 was increased to the same level as mGluR1 by the two double mutations, K74Y/K317R...

  19. Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity

    Science.gov (United States)

    Dunn, Steven M.; Rizkallah, Pierre J.; Baston, Emma; Mahon, Tara; Cameron, Brian; Moysey, Ruth; Gao, Feng; Sami, Malkit; Boulter, Jonathan; Li, Yi; Jakobsen, Bent K.

    2006-01-01

    The mammalian α/β T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR–MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential. PMID:16600963

  20. Synthesis, modelling, and mu-opioid receptor affinity of N-3(9)-arylpropenyl-N-9(3)-propionyl-3,9-diazabicycl.

    Science.gov (United States)

    Pinna, G A; Murineddu, G; Curzu, M M; Villa, S; Vianello, P; Borea, P A; Gessi, S; Toma, L; Colombo, D; Cignarella, G

    2000-08-01

    A series of N-3-arylpropenyl-N-9-propionyl-3,9-diazabicyclo[3.3.1]nonanes (1a-g) and of reverted N-3-propionyl-N-9-arylpropenyl isomers (2a-g), as homologues of the previously reported analgesic 3,8-diazabicyclo[3.2.1]octanes (I-II), were synthesized and evaluated for the binding affinity towards opioid receptor subtypes mu, delta and kappa. Compounds 1a-g and 2a-g exhibited a strong selective mu-affinity with Ki values in the nanomolar range, which favourably compared with those of I and II. In addition, contrary to the trend observed for DBO-I, II, the mu-affinity of series 2 is markedly higher than that of the isomeric series 1. This aspect was discussed on the basis of the conformational studies performed on DBN which allowed hypotheses on the mode of interaction of these compounds with the mu receptor.

  1. The chemosensitivity of labellar sugar receptor in female Phormia regina is paralleled with ovary maturation: Effects of serotonin.

    Science.gov (United States)

    Solari, Paolo; Stoffolano, John G; De Rose, Francescaelena; Barbarossa, Iole Tomassini; Liscia, Anna

    2015-11-01

    Oogenesis in most adult insects is a nutrient-dependent process involving ingestion of both proteins and carbohydrates that ultimately depends on peripheral input from chemoreceptors. The main goal of this study was to characterize, in the female blowfly Phormia regina, the responsive changes of the labellar chemoreceptors to carbohydrates and proteins in relation to four different stages along the ovarian cycle: (1) immature ovaries, (2) mid-mature ovaries, (3) mature ovaries and ready for egg-laying and (4) post egg-laying ovaries. Then, the possible effects exerted by exogenous serotonin on the chemoreceptor sensitivity profiles were investigated. Our results show that ovary length, width and contraction rate progressively increase from stage 1 to 3, when all these parameters reach their maximum values, before declining in the next stage 4. The sensitivity of the labellar "sugar" chemoreceptors to both sucrose and proteins varies during the ovarian maturation stages, reaching a minimum for sucrose in stage 3, while that to proteins begins. Exogenous 5-HT supply specifically increases the chemoreceptor sensitivity to sugar at the stages 3 and 4, while it does not affect that to proteins. In conclusion, our results provide evidence that in female blowflies the cyclic variations in the sensitivity of the labellar chemosensilla to sugars and proteins are time-related to ovarian development and that during the stages 3 and 4 the responsiveness of the sugar cell to sucrose is under serotonergic control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    by chemical cross-linking, but quantitative binding/competition studies showed that the apparent ligand affinity was 100- to 1000-fold lower than that of the intact suPAR. This loss of affinity was comparable with the loss found after cleavage between the first domain (D1) and D(2 + 3), using chymotrypsin...

  3. Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype.

    Science.gov (United States)

    Decker, T; Schneller, F; Kronschnabl, M; Dechow, T; Lipford, G B; Wagner, H; Peschel, C

    2000-05-01

    CpG-oligodeoxynucleotides (CpG-ODN) have been shown to induce proliferation, cytokine production, and surface molecule regulation in normal and malignant human B cells. In the present study, we investigated the potential of CpG-ODN to induce functional high-affinity receptors in leukemic and normal B cells and the effects of costimulation with IL-2 on proliferation, cytokine secretion, and surface molecule regulation. Highly purified B cells from B-CLL patients and normal controls were stimulated with CpG-ODN with or without IL-2. Expression of CD25 was determined using FACS, and the presence of high-affinity IL-2 receptors was determined by scatchard analysis. Costimulatory effects of IL-2 and CpG-ODN were investigated using proliferation assays, ELISA (IL-6, TNF-alpha), and FACS analysis (CD80, CD86 expression). Reactivity of autologous and allogeneic T cells toward activated B-CLL cells was determined in mixed lymphocyte reactions and Interferon-gamma Elispot assays. The CpG-ODN DSP30 caused a significantly stronger induction of the IL-2 receptor alpha chain in malignant as compared with normal B cells (p = 0.03). This resulted in the expression of functional high-affinity IL-2 receptors in B-CLL cells, but fewer numbers of receptors with less affinity were expressed in normal B cells. Although addition of IL-2 to CpG-ODN-stimulated cells augmented proliferation in both normal B cells and B-CLL cells, no costimulatory effect on cytokine production or surface molecule expression could be observed in normal B cells. In contrast, TNF-alpha and IL-6 production was increased in B-CLL cells, and the expression of CD80 and CD86 was further enhanced when IL-2 was used as a costimulus. Autologous and allogeneic immune recognition of B-CLL cells stimulated with CpG-ODN and IL-2 was increased compared with B-CLL cells stimulated with CpG-ODN alone. Stimulation of B-CLL cells with CpG-ODN and IL-2 might be an attractive strategy for potential immunotherapies for B

  4. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Chad M. Williams

    2017-07-01

    Full Text Available The discovery of naturally occurring T cell receptors (TCRs that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds rather than synergy (total CD8 cooperation alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our

  5. Effect of tandospirone, a serotonin-1A receptor partial agonist, on information processing and locomotion in dizocilpine-treated rats

    Czech Academy of Sciences Publication Activity Database

    Bubeníková-Valešová, V.; Svoboda, Jan; Horáček, J.; Sumiyoshi, T.

    2010-01-01

    Roč. 212, č. 2 (2010), s. 267-276 ISSN 0033-3158 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z50110509 Keywords : Tandospirone * Schizophrenia * NMDA receptor Subject RIV: FH - Neurology Impact factor: 3.817, year: 2010

  6. Central Serotonin-2A (5-HT2A Receptor Dysfunction in Depression and Epilepsy: The Missing Link?

    Directory of Open Access Journals (Sweden)

    Bruno Pierre Guiard

    2015-03-01

    Full Text Available 5-Hydroxytryptamine 2A receptors (5-HT2A-Rs are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses.

  7. Culture as a mediator of gene-environment interaction: Cultural consonance, childhood adversity, a 2A serotonin receptor polymorphism, and depression in urban Brazil.

    Science.gov (United States)

    Dressler, William W; Balieiro, Mauro C; Ferreira de Araújo, Luiza; Silva, Wilson A; Ernesto Dos Santos, José

    2016-07-01

    Research on gene-environment interaction was facilitated by breakthroughs in molecular biology in the late 20th century, especially in the study of mental health. There is a reliable interaction between candidate genes for depression and childhood adversity in relation to mental health outcomes. The aim of this paper is to explore the role of culture in this process in an urban community in Brazil. The specific cultural factor examined is cultural consonance, or the degree to which individuals are able to successfully incorporate salient cultural models into their own beliefs and behaviors. It was hypothesized that cultural consonance in family life would mediate the interaction of genotype and childhood adversity. In a study of 402 adult Brazilians from diverse socioeconomic backgrounds, conducted from 2011 to 2014, the interaction of reported childhood adversity and a polymorphism in the 2A serotonin receptor was associated with higher depressive symptoms. Further analysis showed that the gene-environment interaction was mediated by cultural consonance in family life, and that these effects were more pronounced in lower social class neighborhoods. The findings reinforce the role of the serotonergic system in the regulation of stress response and learning and memory, and how these processes in turn interact with environmental events and circumstances. Furthermore, these results suggest that gene-environment interaction models should incorporate a wider range of environmental experience and more complex pathways to better understand how genes and the environment combine to influence mental health outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Association of Polymorphisms of Serotonin Transporter (5HTTLPR) and 5-HT2C Receptor Genes with Criminal Behavior in Russian Criminal Offenders

    Science.gov (United States)

    Toshchakova, Valentina A.; Bakhtiari, Yalda; Kulikov, Alexander V.; Gusev, Sergey I.; Trofimova, Marina V.; Fedorenko, Olga Yu.; Mikhalitskaya, Ekaterina V.; Popova, Nina K.; Bokhan, Nikolay A.; Hovens, Johannes E.; Loonen, Anton J.M.; Wilffert, Bob; Ivanova, Svetlana A.

    2018-01-01

    Background Human aggression is a heterogeneous behavior with biological, psychological, and social backgrounds. As the biological mechanisms that regulate aggression are components of both reward-seeking and adversity-fleeing behavior, these phenomena are difficult to disentangle into separate neurochemical processes. Nevertheless, evidence exists linking some forms of aggression to aberrant serotonergic neurotransmission. We determined possible associations between 6 serotonergic neurotransmission-related gene variants and severe criminal offenses. Methods Male Russian prisoners who were convicted for murder (n = 117) or theft (n = 77) were genotyped for variants of the serotonin transporter (5HTTLPR), tryptophan hydroxylase, tryptophan-2,3-dioxygenase, or type 2C (5-HT2C) receptor genes and compared with general-population male controls (n = 161). Prisoners were psychologically phenotyped using the Buss-Durkee Hostility Inventory and the Beck Depression Inventory. Results No differences were found between murderers and thieves either concerning genotypes or concerning psychological measures. Comparison of polymorphism distribution between groups of prisoners and controls revealed highly significant associations of 5HTTLPR and 5-HTR2C (rs6318) gene polymorphisms with being convicted for criminal behavior. Conclusions The lack of biological differences between the 2 groups of prisoners indicates that the studied 5HT-related genes do not differentiate between the types of crimes committed. PMID:29621775

  9. Measuring the serotonin uptake site using [3H]paroxetine--a new serotonin uptake inhibitor

    International Nuclear Information System (INIS)

    Gleiter, C.H.; Nutt, D.J.

    1988-01-01

    Serotonin is an important neurotransmitter that may be involved in ethanol preference and dependence. It is possible to label the serotonin uptake site in brain using the tricyclic antidepressant imipramine, but this also binds to other sites. We have used the new high-affinity uptake blocker paroxetine to define binding to this site and report it to have advantages over imipramine as a ligand

  10. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    Science.gov (United States)

    Li, Chen; Kirby, Lynn G

    2016-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Stressors and stress hormones can inhibit the dorsal raphe nucleus (DRN)-5-HT system, which composes the majority of forebrain-projecting 5-HT. This inhibition is mediated via stimulation of GABA synaptic activity at DRN-5-HT neurons. Using swim stress-induced reinstatement of morphine conditioned place-preference, recent data from our laboratory indicate that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. Moreover, GABAA receptor-mediated inhibition of the serotonergic DRN is required for this reinstatement. In our current experiment, we tested the hypothesis that GABAergic sensitization of DRN-5-HT neurons is a neuroadaptation elicited by multiple classes of abused drugs across multiple models of stress-induced relapse by applying a chemical stressor (yohimbine) to induce reinstatement of previously extinguished cocaine self-administration in Sprague-Dawley rats. Whole-cell patch-clamp recordings of GABA synaptic activity in DRN-5-HT neurons were conducted after the reinstatement. Behavioral data indicate that yohimbine triggered reinstatement of cocaine self-administration. Electrophysiology data indicate that 5-HT neurons in the cocaine group exposed to yohimbine had increased amplitude of inhibitory postsynaptic currents compared to yoked-saline controls exposed to yohimbine or unstressed animals in both drug groups. These data, together with previous findings, indicate that interaction between psychostimulant or opioid history and chemical or physical stressors may increase postsynaptic GABA receptor density and/or sensitivity in DRN-5-HT neurons. Such mechanisms may result in serotonergic hypofunction and consequent dysphoric mood states which confer vulnerability to stress-induced drug reinstatement. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  11. 5-Hydroxytryptamine (serotonin)2A receptors in rat anterior cingulate cortex mediate the discriminative stimulus properties of d-lysergic acid diethylamide.

    Science.gov (United States)

    Gresch, Paul J; Barrett, Robert J; Sanders-Bush, Elaine; Smith, Randy L

    2007-02-01

    d-Lysergic acid diethylamide (LSD), an indoleamine hallucinogen, produces profound alterations in mood, thought, and perception in humans. The brain site(s) that mediates the effects of LSD is currently unknown. In this study, we combine the drug discrimination paradigm with intracerebral microinjections to investigate the anatomical localization of the discriminative stimulus of LSD in rats. Based on our previous findings, we targeted the anterior cingulate cortex (ACC) to test its involvement in mediating the discriminative stimulus properties of LSD. Rats were trained to discriminate systemically administered LSD (0.085 mg/kg s.c.) from saline. Following acquisition of the discrimination, bilateral cannulae were implanted into the ACC (AP, +1.2 mm; ML, +/-1.0 mm; DV, -2.0 mm relative to bregma). Rats were tested for their ability to discriminate varying doses of locally infused LSD (0.1875, 0.375, and 0.75 microg/side) or artificial cerebrospinal fluid (n = 3-7). LSD locally infused into ACC dose-dependently substituted for systemically administered LSD, with 0.75 microg/side LSD substituting completely (89% correct). Systemic administration of the selective 5-hydroxytryptamine (serotonin) (5-HT)(2A) receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907; 0.4 mg/kg) blocked the discriminative cue of LSD (0.375 microg/side) infused into ACC (from 68 to 16% drug lever responding). Furthermore, M100907 (0.5 microg/microl/side) locally infused into ACC completely blocked the stimulus effects of systemic LSD (0.04 mg/kg; from 80 to 12% on the LSD lever). Taken together, these data indicate that 5-HT(2A) receptors in the ACC are a primary target mediating the discriminative stimulus properties of LSD.

  12. G protein-coupled receptor kinase-2 (GRK-2) regulates serotonin metabolism through the monoamine oxidase AMX-2 in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Jianjun; Luo, Jiansong; Aryal, Dipendra K; Wetsel, William C; Nass, Richard; Benovic, Jeffrey L

    2017-04-07

    G protein-coupled receptors (GPCRs) regulate many animal behaviors. GPCR signaling is mediated by agonist-promoted interactions of GPCRs with heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. To further elucidate the role of GRKs in regulating GPCR-mediated behaviors, we utilized the genetic model system Caenorhabditis elegans Our studies demonstrate that grk-2 loss-of-function strains are egg laying-defective and contain low levels of serotonin (5-HT) and high levels of the 5-HT metabolite 5-hydroxyindole acetic acid (5-HIAA). The egg laying defect could be rescued by the expression of wild type but not by catalytically inactive grk-2 or by the selective expression of grk-2 in hermaphrodite-specific neurons. The addition of 5-HT or inhibition of 5-HT metabolism also rescued the egg laying defect. Furthermore, we demonstrate that AMX-2 is the primary monoamine oxidase that metabolizes 5-HT in C. elegans , and we also found that grk-2 loss-of-function strains have abnormally high levels of AMX-2 compared with wild-type nematodes. Interestingly, GRK-2 was also found to interact with and promote the phosphorylation of AMX-2. Additional studies reveal that 5-HIAA functions to inhibit egg laying in a manner dependent on the 5-HT receptor SER-1 and the G protein GOA-1. These results demonstrate that GRK-2 modulates 5-HT metabolism by regulating AMX-2 function and that 5-HIAA may function in the SER-1 signaling pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Variation in Dopamine D2 and Serotonin 5-HT2A Receptor Genes is Associated with Working Memory Processing and Response to Treatment with Antipsychotics.

    Science.gov (United States)

    Blasi, Giuseppe; Selvaggi, Pierluigi; Fazio, Leonardo; Antonucci, Linda Antonella; Taurisano, Paolo; Masellis, Rita; Romano, Raffaella; Mancini, Marina; Zhang, Fengyu; Caforio, Grazia; Popolizio, Teresa; Apud, Jose; Weinberger, Daniel R; Bertolino, Alessandro

    2015-06-01

    Dopamine D2 and serotonin 5-HT2A receptors contribute to modulate prefrontal cortical physiology and response to treatment with antipsychotics in schizophrenia. Similarly, functional variation in the genes encoding these receptors is also associated with these phenotypes. In particular, the DRD2 rs1076560 T allele predicts a lower ratio of expression of D2 short/long isoforms, suboptimal working memory processing, and better response to antipsychotic treatment compared with the G allele. Furthermore, the HTR2A T allele is associated with lower 5-HT2A expression, impaired working memory processing, and poorer response to antipsychotics compared with the C allele. Here, we investigated in healthy subjects whether these functional polymorphisms have a combined effect on prefrontal cortical physiology and related cognitive behavior linked to schizophrenia as well as on response to treatment with second-generation antipsychotics in patients with schizophrenia. In a total sample of 620 healthy subjects, we found that subjects with the rs1076560 T and rs6314 T alleles have greater fMRI prefrontal activity during working memory. Similar results were obtained within the attentional domain. Also, the concomitant presence of the rs1076560 T/rs6314 T alleles also predicted lower behavioral accuracy during working memory. Moreover, we found that rs1076560 T carrier/rs6314 CC individuals had better responses to antipsychotic treatment in two independent samples of patients with schizophrenia (n=63 and n=54, respectively), consistent with the previously reported separate effects of these genotypes. These results indicate that DRD2 and HTR2A genetic variants together modulate physiological prefrontal efficiency during working memory and also modulate the response to antipsychotics. Therefore, these results suggest that further exploration is needed to better understand the clinical consequences of these genotype-phenotype relationships.

  14. The influence of the rs6295 gene polymorphism on serotonin-1A receptor distribution investigated with PET in patients with major depression applying machine learning.

    Science.gov (United States)

    Kautzky, A; James, G M; Philippe, C; Baldinger-Melich, P; Kraus, C; Kranz, G S; Vanicek, T; Gryglewski, G; Wadsak, W; Mitterhauser, M; Rujescu, D; Kasper, S; Lanzenberger, R

    2017-06-13

    Major depressive disorder (MDD) is the most common neuropsychiatric disease and despite extensive research, its genetic substrate is still not sufficiently understood. The common polymorphism rs6295 of the serotonin-1A receptor gene (HTR1A) is affecting the transcriptional regulation of the 5-HT 1A receptor and has been closely linked to MDD. Here, we used positron emission tomography (PET) exploiting advances in data mining and statistics by using machine learning in 62 healthy subjects and 19 patients with MDD, which were scanned with PET using the radioligand [carbonyl- 11 C]WAY-100635. All the subjects were genotyped for rs6295 and genotype was grouped in GG vs C allele carriers. Mixed model was applied in a ROI-based (region of interest) approach. ROI binding potential (BP ND ) was divided by dorsal raphe BP ND as a specific measure to highlight rs6295 effects (BP Div ). Mixed model produced an interaction effect of ROI and genotype in the patients' group but no effects in healthy controls. Differences of BP Div was demonstrated in seven ROIs; parahippocampus, hippocampus, fusiform gyrus, gyrus rectus, supplementary motor area, inferior frontal occipital gyrus and lingual gyrus. For classification of genotype, 'RandomForest' and Support Vector Machines were used, however, no model with sufficient predictive capability could be computed. Our results are in line with preclinical data, mouse model knockout studies as well as previous clinical analyses, demonstrating the two-pronged effect of the G allele on 5-HT 1A BP ND for, we believe, the first time. Future endeavors should address epigenetic effects and allosteric heteroreceptor complexes. Replication in larger samples of MDD patients is necessary to substantiate our findings.

  15. Affinity and selectivity of PD156707, a novel nonpeptide endothelin antagonist, for human ET(A) and ET(B) receptors.

    Science.gov (United States)

    Maguire, J J; Kuc, R E; Davenport, A P

    1997-02-01

    We have determined the affinity and selectivity of a new nonpeptide antagonist PD156707 (sodium 2-benzo(1,3ioxol-5-yl-4-(4-methoxy-pheny l)-4-oxo-3-(3,4,5-trime tho xybenzyl)-but-2-enoate) for human endothelin (ET)(A) and ET(B) receptors. In human coronary artery and saphenous vein the affinity of the ET(A) receptor for PD156707 was 0.15 +/- 0.06 nM and 0.5 +/- 0.13 nM, respectively. Competition experiments in human left ventricle and kidney revealed that PD156707 had 1,000- to 15,000-fold selectivity for the ET(A) receptor over the ET(B) receptor. This selectivity was confirmed autoradiographically. In human coronary artery, mammary artery and saphenous vein PD156707 (3-300 nM) potently antagonized the vasoconstrictor responses to ET-1. The pA2 values estimated from the Gaddum-Schild equation were 8.07 +/- 0.09, 8.45 +/- 0.11 and 8.70 +/- 0.13, respectively. The concentration-response curves to ET-1 were shifted to the right in parallel fashion, without reduction of the maximum response. However, the regression lines fitted to the resulting Schild data deviated significantly from one. PD156707 appeared to be a more effective antagonist at lower concentrations than at the higher ones. It is possible that PD156707, a sodium salt, was reverting to a less soluble form which results in underestimation of its potency. These data show that PD156707 is a potent and selective antagonist at human ET(A) receptors and will be useful in clarifying the role of the endothelin peptides in human cardiovascular disease.

  16. 5HT-1A receptors and anxiety-like behaviours: studies in rats with constitutionally upregulated/downregulated serotonin transporter.

    Science.gov (United States)

    Bordukalo-Niksic, Tatjana; Mokrovic, Gordana; Stefulj, Jasminka; Zivin, Marko; Jernej, Branimir; Cicin-Sain, Lipa

    2010-12-01

    Altered activity of brain serotonergic (5HT) system has been implicated in a wide range of behaviours and behavioural disorders, including anxiety. Functioning of 5HT-1A receptor has been suggested as a modulator of emotional balance in both, normal and pathological forms of anxiety. Here, we studied serotonergic modulation of anxiety-like behaviour using a genetic rat model with constitutional differences in 5HT homeostasis, named Wistar-Zagreb 5HT (WZ-5HT) rats. The model, consisting of high-5HT and low-5HT sublines, was developed by selective breeding of animals for extreme activities of peripheral (platelet) 5HT transporter, but selection process had affected also central 5HT homeostasis, as evidenced from neurochemical and behavioural studies. Anxiety-like behaviour in WZ-5HT rats was evaluated by two commonly used paradigms: open field and elevated-plus maze. The involvement of 5HT-1A receptors in behavioural response was assessed by measuring mRNA expression in cell bodies (raphe nuclei) and projection regions (frontal cortex, hippocampus) by use of RT-PCR and in situ hybridization, and by measuring functionality of cortical 5HT-1A receptors by use of [(3)H]8-OH-DPAT radioligand binding. Animals from the high-5HT subline exhibit increased anxiety-like behaviour and decreased exploratory activity when exposed to novel environment. No measurable differences in constitutional (baseline) functionality or expression of 5HT-1A receptors between sublines were found. The results support contribution of increased serotonergic functioning to the anxiety-like behaviour. They also validate the high-5HT subline of WZ-5HT rats as a potential model to study mechanisms of anxiety, especially of its nonpathological form, while the low-5HT subline may be useful to model sensation seeking phenotype. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Inhibition of alpha oscillations through serotonin-2A receptor activation underlies the visual effects of ayahuasca in humans

    OpenAIRE

    Valle, Marta; Ana Elda, Maqueda; Rabella, Mireia; Rodríguez Pujadas, Aina; Antonijoan Arbós, Rosa Maria; Romero Lafuente, Sergio; Alonso López, Joan Francesc; Mañanas Villanueva, Miguel Ángel; Barker, Steven; Friedlander, Pablo; Feilding, Amanda; Riba, Jordi

    2016-01-01

    Ayahuasca is an Amazonian psychotropic plant tea typically obtained from two plants, Banisteriopsis caapi and Psychotria viridis. It contains the psychedelic 5-HT2A and sigma-1 agonist N,N-dimethyltryptamine (DMT) plus ß-carboline alkaloids with monoamine-oxidase (MAO)-inhibiting properties. Although the psychoactive effects of ayahuasca have commonly been attributed solely to agonism at the 5-HT2A receptor, the molecular target of classical psychedelics, this has not been tested experimental...

  18. Pindolol antagonises G-protein activation at both pre- and postsynaptic serotonin 5-HT1A receptors: a.

    Science.gov (United States)

    Newman-Tancredi, A; Chaput, C; Touzard, M; Millan, M J

    2001-04-01

    The arylalkylamine, pindolol, may potentiate the clinical actions of antidepressant agents. Although it is thought to act via blockade of 5-HT1A autoreceptors, its efficacy at these sites remains controversial. Herein, we evaluated the actions of pindolol at 5-HT1A autoreceptors and specific populations of postsynaptic 5-HT1A receptors employing [35S]GTPgammaS autoradiography, a measure of receptor-mediated G-protein activation. Both 8-OH-DPAT (1 microM) and 5-HT (10 microM) elicited a pronounced increase in [35S]GTPyS binding in the dorsal raphe nucleus, which contains serotonergic cell bodies bearing 5-HT1A autoreceptors. Pindolol abolished their actions. In the dentate gyrus, lateral septum and entorhinal cortex, structures enriched in postsynaptic 5-HT1A receptors, 8-OH-DPAT (1 microM) and 5-HT (10 microM) also elicited a marked increase in [35S]GTPgammaS binding which was likewise blocked by pindolol. The antagonism of 5-HT-induced [35S]GTPgammaS labelling in the dentate gyrus was shown to be concentration-dependent, yielding a pIC50 of 5.82. Pindolol did not, itself, affect [35S]GTPgammaS binding in any brain region examined. In conclusion, these data suggest that, as characterised by [35S]GTPgammaS autoradiography, and compared with 5-HT and 8-OH-DPAT, pindolol possesses low efficacy at both pre- and postsynaptic 5-HT1A receptors.

  19. An immunocapture/scintillation proximity analysis of G alpha q/11 activation by native serotonin (5-HT)2A receptors in rat cortex: blockade by clozapine and mirtazapine.

    Science.gov (United States)

    Mannoury La Cour, C; Chaput, C; Touzard, M; Millan, M J

    2009-02-01

    Though transduction mechanisms recruited by heterologously expressed 5-HT(2A) receptors have been extensively studied, their interaction with specific subtypes of G-protein remains to be directly evaluated in cerebral tissue. Herein, as shown by an immunocapture/scintillation proximity analysis, 5-HT, the prototypical 5-HT(2A) agonist, DOI, and Ro60,0175 all enhanced [(35)S]GTPgammaS binding to G alpha q/11 in rat cortex with pEC(50) values of 6.22, 7.24 and 6.35, respectively. No activation of G o or G s/olf was seen at equivalent concentrations of DOI. Stimulation of G alpha q/11 by 5-HT (30 microM) and DOI (30 microM) was abolished by the selective 5-HT(2A) vs. 5-HT(2C)/5-HT(2B) antagonists, ketanserin (pK(B) values of 9.11 and 8.88, respectively) and MDL100,907 (9.82 and 9.68). By contrast, 5-HT-induced [(35)S]GTPgammaS binding to G alpha q/11 was only weakly inhibited by the preferential 5-HT(2C) receptor antagonists, RS102,221 (6.94) and SB242,084 (7.39), and the preferential 5-HT(2B) receptor antagonist, LY266,097 (6.66). The antipsychotic, clozapine, which had marked affinity for 5-HT(2A) receptors, blocked the recruitment of G alpha q/11 by 5-HT and DOI with pK(B) values of 8.54 and 8.14, respectively. Its actions were mimicked by the "atypical" antidepressant and 5-HT(2A) receptor antagonist, mirtazapine, which likewise blocked 5-HT and DOI-induced G alpha q/11 protein activation with pK(B) values of 7.90 and 7.76, respectively. In conclusion, by use of an immunocapture/scintillation proximity strategy, this study shows that native 5-HT(2A) receptors in rat frontal cortex specifically recruit G alpha q/11 and that this action is blocked by clozapine and mirtazapine. Quantification of 5-HT(2A) receptor-mediated G alpha q/11 activation in frontal cortex should prove instructive in characterizing the actions of diverse classes of psychotropic agent. 2008 Wiley-Liss, Inc.

  20. Solubilization and purification of melatonin receptors from lizard brain

    International Nuclear Information System (INIS)

    Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.

    1990-01-01

    Melatonin receptors in lizard brain were identified and characterized using 125 I-labeled melatonin ([ 125 I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography

  1. Solubilization and purification of melatonin receptors from lizard brain.

    Science.gov (United States)

    Rivkees, S A; Conron, R W; Reppert, S M

    1990-09-01

    Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.

  2. In vivo measurement of haloperidol affinity to dopamine D2/D3 receptors by [123I]IBZM and single photon emission computed tomography

    DEFF Research Database (Denmark)

    Videbaek, C; Toska, K; Friberg, L

    2001-01-01

    This study examines the feasibility of a steady-state bolus-integration method with the dopamine D2/D3 receptor single photon emission computer tomography (SPECT) tracer, [123I]IBZM, for determination of in vivo affinity of haloperidol. The nonspecific binding of [123I]IBZM was examined in the rat...... brain by infusion of haloperidol to plasma levels approximately 100 times the Kd level in man. In humans, Kd for haloperidol binding was measured in four healthy volunteers that were examined twice: once with partial dopamine D2/D3 receptor blockade obtained by a scheduled infusion of unlabeled...... haloperidol (0.7 mg total dosage), and once in an unblocked state. Blood sampling and SPECT were performed intermittently during 6 hours after intravenous [123I]IBZM bolus injection. Plasma [123I]IBZM was determined by octane extraction. Plasma haloperidol was determined by a radioimmunoassay, and plasma...

  3. Two classes of astrocytes in the adult human and pig retina in terms of their expression of high affinity NGF receptor (TrkA).

    Science.gov (United States)

    Ruiz-Ederra, Javier; Hitchcock, Peter F; Vecino, Elena

    2003-02-13

    Astrocytes have been implicated in axon guidance and synaptic regeneration in the retina and these processes involve activation of the high affinity nerve growth factor receptor, known as the tyrosine kinase A (TrkA) receptor. The purpose of the present study was to characterize the expression of TrkA in astrocytes of the adult pig and human retina. To this end, sections of human and pig retinas were immunolabeled with a combination of antibodies to glial fibrillary acidic protein (GFAP) and TrkA. Our study revealed that most of the GFAP-positive cells express TrkA, whereas a rare, novel subpopulation of astrocytes was found to be devoid of TrkA. Our results support the idea that astrocytes play an important neurotrophic role in the retina.

  4. Disturbance of serotonin 5HT{sub 2} receptors in remitted patients suffering from hereditary depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Larisch, R.; Vosberg, H.; Tosch, M.; Mueller-Gaertner, H.W. [Kliniken fuer Nuklearmedizin der Heinrich-Heine-Univ., Duesseldorf (Germany); Klimke, A.; Gaebel, W. [Kliniken fuer Psychiatrie der Heinrich-Heine-Univ., Duesseldorf (Germany); Mayoral, F.; Rivas, F. [Psychiatrische Klinik des Hospital Civil Carlos Haya, Malaga (Spain); Hamacher, K.; Coenen, H.H. [Inst. fuer Nuklearchemie des Forschungszentrums Juelich GmbH (Germany); Herzog, H.R. [Inst. fuer Medizin des Forschungszentrums Juelich GmbH (Germany)

    2001-08-01

    Aim: The characteristics of 5HT{sub 2} receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Methods: Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. Results: The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p<0.001). A multiple regression analysis revealed that this difference was mainly induced by depression rather than by medication. Conclusions: The data suggest that 5HT{sub 2} receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness. (orig.) [German] Ziel: Die vorliegende Studie untersucht die 5HT{sub 2}-Rezeptorbindung bei depressiven Patienten in vivo mit der Positronen-Emissionstomographie und dem Radioliganden F-18-Altanserin. Methoden: Zwoelf Patienten aus Familien mit hoher Inzidenz fuer Depressionen, die in einer geographisch abgeschlossenen Region leben, wurden untersucht und mit gesunden Kontrollpersonen verglichen. Zum Zeitpunkt der PET-Messung waren alle Patienten klinisch remittiert, was bei einigen den Einsatz von Antidepressiva erforderlich machte. Das Bindungspotenzial wurde mit Logans graphischer Methode bestimmt. Ergebnisse: Die Altanserinbindung war bei den Patienten um ca. 38% niedriger als bei den Kontrollpersonen (p<0,001). Eine multiple Regressionsanalyse zeigte, dass dieser Unterschied in erster Linie durch die Erkrankung und nicht durch Praemedikation hervorgerufen wurde. Schlussfolgerung: Die Studie zeigt, dass die 5HT{sub 2}-Rezeptoren an der Depression beteiligt sind. Die

  5. Postsynaptic alpha-adrenergic receptors potentiate the beta-adrenergic stimulation of pineal serotonin N-acetyltransferase.

    OpenAIRE

    Klein, D C; Sugden, D; Weller, J L

    1983-01-01

    The role played by postsynaptic alpha-adrenergic receptors in the stimulation of pineal N-acetyltransferase (EC 2.3.1.5) and [3H]melatonin production was investigated in the rat. In vivo studies indicated that phenylephrine, an alpha-adrenergic agonist, potentiated and prolonged the effects of isoproterenol, a beta-adrenergic agonist. Similar observations were made in organ culture with glands devoid of functional nerve endings. In addition, a combination of 1 microM prazosin, an alpha 1-adre...

  6. N- and C-terminally truncated forms of glucose-dependent insulinotropic polypeptide are high-affinity competitive antagonists of the human GIP receptor

    DEFF Research Database (Denmark)

    Hansen, L S; Sparre-Ulrich, A H; Christensen, M.

    2016-01-01

    functions and pharmacological potential. GIP(1-30)NH2 is a naturally occurring truncation of GIP(1-42). Here we characterize eight N-terminal trrncations of human GIP(