WorldWideScience

Sample records for serotonergic nerve terminals

  1. Serotonergic synaptic input to facial motoneurons: localization by electron-microscopic autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanian, G K; McCall, R B [Yale Univ., New Haven, CT (USA). School of Medicine

    1980-12-01

    Serotonergic nerve terminals in the facial motor nucleus were labelled with (/sup 3/H)5-hydroxytryptamine. When serotonergic nerve terminals were destroyed (by the selective neurotoxin 5,7-dihydroxytryptamine) the labelling was lost. By electron-microscopic autoradiography, labelled serotonergic terminals were found to make axo-dendritic or axo-somatic junctions with facial motor neurons. No axo-axonic junctions were observed. These morphological findings are consistent with physiological studies which indicate that 5-hydroxytryptamine facilitates the excitation of facial motoneurons through a direct postsynaptic action.

  2. Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana

    Directory of Open Access Journals (Sweden)

    Kühnel Dana

    2002-06-01

    Full Text Available Abstract Background The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. Results The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Conclusion Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin.

  3. Terminal nerve: cranial nerve zero

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Duque Parra

    2006-12-01

    Full Text Available It has been stated, in different types of texts, that there are only twelve pairs of cranial nerves. Such texts exclude the existence of another cranial pair, the terminal nerve or even cranial zero. This paper considers the mentioned nerve like a cranial pair, specifying both its connections and its functional role in the migration of liberating neurons of the gonadotropic hormone (Gn RH. In this paper is also stated the hypothesis of the phylogenetic existence of a cerebral sector and a common nerve that integrates the terminal nerve with the olfactory nerves and the vomeronasals nerves which seem to carry out the odors detection function as well as in the food search, pheromone detection and nasal vascular regulation.

  4. Development of the terminal nerve system in the shark Scyliorhinus canicula.

    Science.gov (United States)

    Quintana-Urzainqui, Idoia; Anadón, Ramón; Candal, Eva; Rodríguez-Moldes, Isabel

    2014-01-01

    The nervus terminalis (or terminal nerve) system was discovered in an elasmobranch species more than a century ago. Over the past century, it has also been recognized in other vertebrate groups, from agnathans to mammals. However, its origin, functions or relationship with the olfactory system are still under debate. Despite the abundant literature about the nervus terminalis system in adult elasmobranchs, its development has been overlooked. Studies in other vertebrates have reported newly differentiated neurons of the terminal nerve system migrating from the olfactory epithelium to the telencephalon as part of a 'migratory mass' of cells associated with the olfactory nerve. Whether the same occurs in developing elasmobranchs (adults showing anatomically separated nervus terminalis and olfactory systems) has not yet been determined. In this work we characterized for the first time the development of the terminal nerve and ganglia in an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula), by means of tract-tracing techniques combined with immunohistochemical markers for the terminal nerve (such as FMRF-amide peptide), for the developing components of the olfactory system (Gα0 protein, GFAP, Pax6), and markers for early postmitotic neurons (HuC/D) and migrating immature neurons (DCX). We discriminated between embryonic olfactory and terminal nerve systems and determined that both components may share a common origin in the migratory mass. We also localized the exact point where they split off near the olfactory nerve-olfactory bulb junction. The study of the development of the terminal nerve system in a basal gnathostome contributes to the knowledge of the ancestral features of this system in vertebrates, shedding light on its evolution and highlighting the importance of elasmobranchs for developmental and evolutionary studies. © 2014 S. Karger AG, Basel.

  5. Cyclin dependent kinase 5 regulates endocytosis in nerve terminals via dynamin I phosphorylation

    International Nuclear Information System (INIS)

    Tan, T.C.; Hansra, G.; Calova, V.; Cousin, M.; Robinson, P.J.

    2002-01-01

    Full text: Synaptic vesicle endocytosis (SVE) in nerve terminals is essential for normal synaptic transmission and for memory retrieval. Dynamin I is a 96kDa nerve terminal phosphoprotein necessary for synaptic vesicle endocytosis in the nerve terminal. Dynamin I is dephosphorylated and rephosphorylated in a cyclical fashion with nerve terminal depolarisation and repolarisation. A number of kinases phosphorylate dynamin I in vitro including PKC, MAP kinase and cdc2. PKC phosphorylates dynamin in the proline rich domain on Ser 795 and is also thought to be the in vivo kinase for dynamin I. Another candidate is the neuron specific kinase cdk5, crucial for CNS development. The aim of this study is to identify the kinase which phosphorylates dynamin I in intact nerve terminals. Here we show that cyclin-dependent kinase 5 (cdk5) phosphorylates dynamin I in the proline-rich tail on Ser-774 or Ser-778. The phosphorylation of these sites but not Ser-795 also occurred in intact nerve terminals suggesting that cdk5 is the physiologically relevant enzyme for dynamin I. Synaptosomes prepared from rat brains (after cervical dislocations) and labelled with 32 Pi, were incubated with 100 M roscovitine (a selective inhibitor of cdks), 10 M Ro 31-8220 (a selective PKC inhibitor) and 100 M PD 98059 (a MEK kinase inhibitor). Dynamin rephosphorylation during repolarisation was reduced in synaptosomes treated with roscovitine and Ro 38-8220 but not in synaptosomes treated with PD 98059. Fluorimetric experiments on intact synaptosomes utilising FM-210 (a fluorescent dye) indicate that endocytosis was reduced in synaptosomes treated with 100 M roscovitine. Our results suggest that dynamin phosphorylation in intact nerve terminals may not be regulated by PKC or MAP kinase and that dynamin phosphorylation by cdk5 may regulate endocytosis. Copyright (2002) Australian Neuroscience Society

  6. The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.

    Science.gov (United States)

    Zhang, Feifan; Bhattacharya, Abhishek; Nelson, Jessica C; Abe, Namiko; Gordon, Patricia; Lloret-Fernandez, Carla; Maicas, Miren; Flames, Nuria; Mann, Richard S; Colón-Ramos, Daniel A; Hobert, Oliver

    2014-01-01

    Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.

  7. Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals.

    Science.gov (United States)

    Fassio, Anna; Fadda, Manuela; Benfenati, Fabio

    2016-01-01

    The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.

  8. MOLECULAR MACHINES DETERMINING THE FATE OF ENDOCYTOSED SYNAPTIC VESICLES IN NERVE TERMINALS

    Directory of Open Access Journals (Sweden)

    Anna eFassio

    2016-05-01

    Full Text Available The cycle of a synaptic vesicle (SV within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions.The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on (i the cyclin-dependent kinase-5 and calcineurin control of the recycling pool of SVs; (ii the role of small GTPases of the Rab and ADP-ribosylation factor (Arf families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.

  9. Modeling neuropeptide transport in various types of nerve terminals containing en passant boutons.

    Science.gov (United States)

    Kuznetsov, I A; Kuznetsov, A V

    2015-03-01

    We developed a mathematical model for simulating neuropeptide transport inside dense core vesicles (DCVs) in axon terminals containing en passant boutons. The motivation for this research is a recent experimental study by Levitan and colleagues (Bulgari et al., 2014) which described DCV transport in nerve terminals of type Ib and type III as well as in nerve terminals of type Ib with the transcription factor DIMM. The goal of our modeling is validating the proposition put forward by Levitan and colleagues that the dramatic difference in DCV number in type Ib and type III terminals can be explained by the difference in DCV capture in type Ib and type III boutons rather than by differences in DCV anterograde transport and half-life of resident DCVs. The developed model provides a tool for studying the dynamics of DCV transport in various types of nerve terminals. The model is also an important step in gaining a better mechanistic understanding of transport processes in axons and identifying directions for the development of new models in this area. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications

    DEFF Research Database (Denmark)

    Wanninger, Andreas Wilhelm Georg; Fuchs, Judith; Haszprunar, Gerhard

    2007-01-01

    the anatomy of the serotonergic nervous system of the creeping-type larva of Loxosomella murmanica. The apical organ is very complex and comprises six to eight centrally positioned flask cells and eight bipolar peripheral cells. In addition, a prototroch nerve ring, an anterior nerve loop, a paired buccal...... molluscs and may be diagnostic for a mollusc-entoproct clade. In addition, the larva of Loxosomella expresses a mosaic of certain neural features that are also found in other larval or adult Spiralia, e.g., a prototroch nerve ring, an anterior nerve loop, and a buccal nervous system....... ones, are found along the anterior-posterior axis. The combination of a complex larval serotonergic apical organ and (adult) tetraneury, comprising one pair of ventral and one pair of more dorsally situated lateral longitudinal nerve cords without ganglia, has so far only been reported for basal...

  11. Development of serotonergic and adrenergic receptors in the rat spinal cord: effects of neonatal chemical lesions and hyperthyroidism.

    Science.gov (United States)

    Lau, C; Pylypiw, A; Ross, L L

    1985-03-01

    The sympathetic preganglionic neurons in the spinal cord receive dense serotonergic (5-HT) and catecholaminergic (CA) afferent inputs from the descending supraspinal pathways. In the rat spinal cord, the levels of these biogenic amines and their receptors are low at birth, but undergo rapid ontogenetic increases in the ensuing 2-3 postnatal weeks until the adult levels are reached. In many systems it has been shown that denervation of presynaptic neurons leads to an up-regulation of the number of postsynaptic receptors. To determine whether the 5-HT and CA receptors in the developing spinal cord are also subject to such transsynaptic regulation, we examined the ontogeny of serotonergic receptors and alpha- and beta-adrenergic receptors in thoracolumbar spinal cord of rats given neurotoxins which destroy serotonergic (5,7-dihydroxytryptamine (5,7-DHT)) or noradrenergic (6-hydroxydopamine (6-OHDA)) nerve terminals. Intracisternal administration of 5,7-DHT or 6-OHDA at 1 and 6 days of age prevented, respectively, the development of 5-HT and CA levels in the spinal cord. Rats lesioned with 5,7-DHT displayed a marked elevation of 5-HT receptors with a binding of 50% greater than controls at 1 week and a continuing increase to twice normal by 4 weeks. A similar pattern of up-regulation was also detected with the alpha-adrenergic receptor, as rats lesioned with 6-OHDA exhibited persistent increases in receptor concentration. However, in these same animals ontogeny of the beta-adrenergic receptor in the spinal cord remained virtually unaffected by the chemical lesion. In several other parts of the nervous system, it has been demonstrated that the beta-adrenergic sensitivity can be modulated by hormonal signals, particularly that of the thyroid hormones. This phenomenon was examined in the spinal cord and in confirmation with previous studies neonatal treatment of triiodothyronine (0.1 mg/kg, s.c. daily) was capable of evoking persistent increases in beta

  12. The terminal latency of the phrenic nerve correlates with respiratory symptoms in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Park, Jin-Sung; Park, Donghwi

    2017-09-01

    The aim of the study was to investigate the electrophysiological parameters in phrenic nerve conduction studies (NCS) that sensitively reflect latent respiratory insufficiency present in amyotrophic lateral sclerosis (ALS). Forty-nine patients with ALS were examined, and after exclusion, 21 patients with ALS and their phrenic NCS results were reviewed. The patients were divided into two groups according to their respiratory sub-score in the ALS functional rating scale - revised (Group A, sub-score 12vs. Group B, sub-score 11). We compared the parameters of phrenic NCS between the two groups. There were no significant differences in the clinical characteristics between the two groups. Using a multivariate model, we found that the terminal latency of the phrenic nerve was the only parameter that was associated with early symptoms of respiratory insufficiency (pphrenic nerve was 7.65ms (sensitivity 80%, specificity 68.2%). The significantly prolonged terminal latency of the phrenic nerve in our study may reflect a profound distal motor axonal dysfunction of the phrenic nerve in patients with ALS in the early stage of respiratory insufficiency that can be used as a sensitive electrophysiological marker reflecting respiratory symptoms in ALS. The terminal latency of the phrenic nerve is useful for early detection of respiratory insufficiency in patients with ALS. Copyright © 2017. Published by Elsevier B.V.

  13. Comparison of Glutamate Turnover in Nerve Terminals and Brain Tissue During [1,6-13C2]Glucose Metabolism in Anesthetized Rats.

    Science.gov (United States)

    Patel, Anant B; Lai, James C K; Chowdhury, Golam I M; Rothman, Douglas L; Behar, Kevin L

    2017-01-01

    The 13 C turnover of neurotransmitter amino acids (glutamate, GABA and aspartate) were determined from extracts of forebrain nerve terminals and brain homogenate, and fronto-parietal cortex from anesthetized rats undergoing timed infusions of [1,6- 13 C 2 ]glucose or [2- 13 C]acetate. Nerve terminal 13 C fractional labeling of glutamate and aspartate was lower than those in whole cortical tissue at all times measured (up to 120 min), suggesting either the presence of a constant dilution flux from an unlabeled substrate or an unlabeled (effectively non-communicating on the measurement timescale) glutamate pool in the nerve terminals. Half times of 13 C labeling from [1,6- 13 C 2 ]glucose, as estimated by least squares exponential fitting to the time course data, were longer for nerve terminals (Glu C4 , 21.8 min; GABA C2 21.0 min) compared to cortical tissue (Glu C4 , 12.4 min; GABA C2 , 14.5 min), except for Asp C3 , which was similar (26.5 vs. 27.0 min). The slower turnover of glutamate in the nerve terminals (but not GABA) compared to the cortex may reflect selective effects of anesthesia on activity-dependent glucose use, which might be more pronounced in the terminals. The 13 C labeling ratio for glutamate-C4 from [2- 13 C]acetate over that of 13 C-glucose was twice as large in nerve terminals compared to cortex, suggesting that astroglial glutamine under the 13 C glucose infusion was the likely source of much of the nerve terminal dilution. The net replenishment of most of the nerve terminal amino acid pools occurs directly via trafficking of astroglial glutamine.

  14. Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    2015-03-01

    Full Text Available The effect of palmitoylethanolamide (PEA, an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes was investigated. PEA inhibited the Ca2+-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca2+ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca2+ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca2+ influx mediated by Cav2.1 (P/Q-type channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  15. [Gradient of serotonergic innervation of internal organs].

    Science.gov (United States)

    Lychkova, A E

    2004-01-01

    The unidirectional synergistic effect of the vegetative nervous system departments was studied at the regulation of the activity of internal organs. It was shown that the sympathetic nerve intensification of the vagal stimulation of EMA of stomach, urinary bladder, ureters, uteruss, fallopian tubes and deferent duct is realized by means of activation of serotonergic fibrae preganglionares that transmit the activation to 5-NTS,4 serotonin receptors of intramural ganglia that, in their turn, activate 5-NT1,2 serotonin receptors of effector cells.

  16. Autoregulation of neuromuscular transmission by nerve terminals. Annual report, 1 July 1983-1 July 1984

    Energy Technology Data Exchange (ETDEWEB)

    Bierkamper, G.G.

    1984-09-01

    The objective of this project is to investigate three mechanisms through which acetycholine (ACh) release may be modulated prejunctionally at the motor nerve terminal of skeletal muscle: (1) prejunctional cholinoceptor regulation of ACh release, (2) modulation of ACh release through preconditioning patterns of nerve stimulation, and (3) precursor control of ACh release. Neuromuscular transmission has been assessed in the vascular perfused rat phrenic nerve-diaphragm preparation (VPRH) by measuring the release of ACh directly by radioenzymatic assay or by chemiluminescence assay, and indirectly by intracellular recordings and by force of contradiction (FC) measurements. Additional experiments have been done on rat sciatic nerve in order to examine the axonal transport of nicotinic binding sites. The mouse hemidiahragm preparation has been used to study antidromic activity (backfiring) in the phrenic nerve in the presence of an anticholinesterase agent. The data resulting from the project support the concept that the nerve terminal possesses local mechanism for modulating ACh release. Attempts have been made to understand the normal function of these mechanisms and then to explore their activity under demanding physological conditions, drug exposure, and in the presence of acetylcholinesterase (AChE) inhibitors.

  17. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target

  18. Recovery of the sub-basal nerve plexus and superficial nerve terminals after corneal epithelial injury in mice.

    Science.gov (United States)

    Downie, Laura E; Naranjo Golborne, Cecilia; Chen, Merry; Ho, Ngoc; Hoac, Cam; Liyanapathirana, Dasun; Luo, Carol; Wu, Ruo Bing; Chinnery, Holly R

    2018-06-01

    Our aim was to compare regeneration of the sub-basal nerve plexus (SBNP) and superficial nerve terminals (SNT) following corneal epithelial injury. We also sought to compare agreement when quantifying nerve parameters using different image analysis techniques. Anesthetized, female C57BL/6 mice received central 1-mm corneal epithelial abrasions. Four-weeks post-injury, eyes were enucleated and processed for PGP9.5 to visualize the corneal nerves using wholemount immunofluorescence staining and confocal microscopy. The percentage area of the SBNP and SNT were quantified using: ImageJ automated thresholds, ImageJ manual thresholds and manual tracings in NeuronJ. Nerve sum length was quantified using NeuronJ and Imaris. Agreement between methods was considered with Bland-Altman analyses. Four-weeks post-injury, the sum length of nerve fibers in the SBNP, but not the SNT, was reduced compared with naïve eyes. In the periphery, but not central cornea, of both naïve and injured eyes, nerve fiber lengths in the SBNP and SNT were strongly correlated. For quantifying SBNP nerve axon area, all image analysis methods were highly correlated. In the SNT, there was poor correlation between manual methods and auto-thresholding, with a trend towards underestimating nerve fiber area using auto-thresholding when higher proportions of nerve fibers were present. In conclusion, four weeks after superficial corneal injury, there is differential recovery of epithelial nerve axons; SBNP sum length is reduced, however the sum length of SNTs is similar to naïve eyes. Care should be taken when selecting image analysis methods to compare nerve parameters in different depths of the corneal epithelium due to differences in background autofluorescence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    The labeling patterns produced by radioiodinated botulinum neurotoxin ( 125 I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. (a) 125 I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. (b) 125 I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. (c) The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. (d) It is not proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action on neurotransmitter release

  20. Comparative morphology of serotonergic-like immunoreactive elements in the central nervous system of kinorhynchs (Kinorhyncha, Cyclorhagida).

    Science.gov (United States)

    Herranz, María; Pardos, Fernando; Boyle, Michael J

    2013-03-01

    Cycloneuralian taxa exhibit similar organ system architectures, providing informative characters of metazoan evolution, yet very few modern comparative descriptions of cellular and molecular homologies within and among those taxa are available. We immunolabeled and characterized elements of the serotonergic nervous system in the kinorhynchs Echinoderes spinifurca, Antygomonas paulae, and Zelinkaderes brightae using confocal laser scanning microscopy. Fluorescent markers targeting DNA were combined with observations of auto-fluorescent structures to guide interpretations of the internal and external anatomy in each species. Results show a common pattern of the central nervous system with a circumenteric brain divided into ring-shaped anterior and posterior neuronal somata and a central neuropil connected to a multi-stringed, longitudinal ventral nerve cord. Structural similarities and differences in the nervous systems of these species were observed and described, stressing the incomplete ring nature of the anterior region of the kinorhynch brain, the functional relationship between the brain and the movable introvert, and the number and arrangement of nerve strings and somata of the ventral nerve cord. The ventral cord ends in two ventrolateral cell bodies in E. spinifurca, and forms a terminal loop associated with a midterminal spine in A. paulae and Z. brightae. The possible functional and phylogenetic significance of these features and arrangements are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  1. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    Science.gov (United States)

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Localization of serotonin and ultrastructure of serotonergic neutrons in the nervous system of fasciola hepatica

    International Nuclear Information System (INIS)

    Huang Shile; Cheng Bing; Rong Yaofang

    1993-01-01

    Rabbits antisera were raised against an antigen prepared by coupling 5-HT to bovine serum albumin (BSA) using formaldehyde as a coupling reagent. The fresh adult Fasciola hepatica were fixed with 4% formaldehyde and sectioned on a cryostat. The sections were stained by indirect immunofluorescence technique. Abundant immunofluorescence specific for 5-HT was observed in ganglion cell bodies and their processes, the transverse commissure that connects two ganglia and longitudinal axes extending from the ganglia. Immuno-reactivity to 5-HT was also found in the nerve fibre innervating tegument, gut wall, the epithelium of testes or ovary, the musculature of uterus and ootype, etc. The ultrastructure of serotonergic neurons was visualized. As in other invertebrates, the serotonergic neutrons of Fasciola hepatica consisted of cell bodies, axons, synapses, herring bodies and neuromuscular junctions. The nerve cell bodies were aggregatively located in ganglia and many dispersed spherical granular vesicles were present in cytoplasm. The nerve axons branched out to the muscles forming synapses, where synaptic vesicles contained 5-HT dense-core granules were found. The distribution of 5-HT within the neurons strongly suggested that 5-HT was functioning as a neurotrasmitter in Fasciola hepatica

  3. Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue

    Directory of Open Access Journals (Sweden)

    M. Kawashima

    2012-05-01

    Full Text Available Transient receptor potential vanilloid subfamily member 1 (TRPV1 is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP, a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRPexpressing terminals.

  4. COMPARATIVE STUDY OF THE EFFECTS OF DETONATION NANODIAMONDS WITH VARIED PROPERTIES ON FUNCTIONAL STATE OF BRAIN NERVE TERMINALS

    Directory of Open Access Journals (Sweden)

    M. A. Galkin

    2016-12-01

    Full Text Available The aim of the study was to compare the effects of detonation nanodiamond preparations from different batches cleaned from impurities by diverse methods of chemical treatment on the membrane potential and glutamate transport characteristics of rat brain nerve terminals. The size of nanodiamond particles vary from 10–20 nm to 10 μm. There are carbonyl, hydroxyl and carboxyl functional groups on the surface of the particles. Physical-chemical properties such as a magnetic susceptibility and the amount of incombustible residue in samples of detonation nanodia-mond vary depending on the synthesis regime and the method of chemical cleaning of the product and therefore, the neuroactive properties of nanodiamonds from different batches can be different. It was shown by dynamic light scattering analysis that nanodiamond preparations from different batches treated by diverse technologies of chemical treatment had varied average size of particles and distribution of particles by size. Nanodiamond preparations from different batches changed the plasma membrane potential and caused membrane depolarization of nerve terminals. Analysis of the effects of nanodiamonds on transporter-mediated L-[14C]glutamate uptake by nerve terminals also revealed that all studied nanodiamond preparations decreased abovementioned parameter. Therefore, detonation nanodiamonds from different batches have similar principal effects on functional state of nerve terminals, however variability in their physical and chemical properties is associated with diverse strength of these effects.

  5. High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal

    Directory of Open Access Journals (Sweden)

    Kilbride Seán M

    2011-07-01

    Full Text Available Abstract Background The activities of mitochondrial complex III (ubiquinol-cytochrome c reductase, EC 1.10.2.2 and complex IV (cytochrome c oxidase EC 1.9.3.1 are reduced by 30-70% in Huntington's disease and Alzheimer's disease, respectively, and are associated with excitotoxic cell death in these disorders. In this study, we investigated the control that complexes III and complex IV exert on glutamate release from the isolated nerve terminal. Results Inhibition of complex III activity by 60-90% was necessary for a major increase in the rate of Ca2+-independent glutamate release to occur from isolated nerve terminals (synaptosomes depolarized with 4-aminopyridine or KCl. Similarly, an 85-90% inhibition of complex IV activity was required before a major increase in the rate of Ca2+-independent glutamate release from depolarized synaptosomes was observed. Inhibition of complex III and IV activities by ~ 60% and above was required before rates of glutamate efflux from polarized synaptosomes were increased. Conclusions These results suggest that nerve terminal mitochondria possess high reserves of complex III and IV activity and that high inhibition thresholds must be reached before excess glutamate is released from the nerve terminal. The implications of the results in the context of the relationship between electron transport chain enzyme deficiencies and excitotoxicity in neurodegenerative disorders are discussed.

  6. High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal

    LENUS (Irish Health Repository)

    Kilbride, Sean M

    2011-07-26

    Abstract Background The activities of mitochondrial complex III (ubiquinol-cytochrome c reductase, EC 1.10.2.2) and complex IV (cytochrome c oxidase EC 1.9.3.1) are reduced by 30-70% in Huntington\\'s disease and Alzheimer\\'s disease, respectively, and are associated with excitotoxic cell death in these disorders. In this study, we investigated the control that complexes III and complex IV exert on glutamate release from the isolated nerve terminal. Results Inhibition of complex III activity by 60-90% was necessary for a major increase in the rate of Ca2+-independent glutamate release to occur from isolated nerve terminals (synaptosomes) depolarized with 4-aminopyridine or KCl. Similarly, an 85-90% inhibition of complex IV activity was required before a major increase in the rate of Ca2+-independent glutamate release from depolarized synaptosomes was observed. Inhibition of complex III and IV activities by ~ 60% and above was required before rates of glutamate efflux from polarized synaptosomes were increased. Conclusions These results suggest that nerve terminal mitochondria possess high reserves of complex III and IV activity and that high inhibition thresholds must be reached before excess glutamate is released from the nerve terminal. The implications of the results in the context of the relationship between electron transport chain enzyme deficiencies and excitotoxicity in neurodegenerative disorders are discussed.

  7. Formation and function of synapses with respect to Schwann cells at the end of motor nerve terminal branches on mature amphibian (Bufo marinus) muscle.

    Science.gov (United States)

    Macleod, G T; Dickens, P A; Bennett, M R

    2001-04-01

    A study has been made of the formation and regression of synapses with respect to Schwann cells at the ends of motor nerve terminal branches in mature toad (Bufo marinus) muscle. Synapse formation and regression, as inferred from the appearance and loss of N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide (FM1-43)-stained vesicle clusters, occurred at the ends of terminal branches over a 16 hr period. Multiple microelectrodes placed in an array about FM1-43 blobs at the ends of terminal branches detected the electrical signs of neurotransmitter being released onto receptors. Injection of a calcium indicator (Oregon Green 488 BAPTA-1) into the motor nerve with subsequent imaging of the calcium transients, in response to stimulation, often showed a reduced calcium influx in the ends of terminal branches. Injection of a fluorescent dye into motor nerves revealed the full extent of their terminal branches and growing processes. Injection of the terminal Schwann cells (TSCs) often revealed pseudopodial TSC processes up to 10-microm-long. Imaging of these TSC processes over minutes or hours showed that they were highly labile and capable of extending several micrometers in a few minutes. Injection of motor nerve terminals with a different dye to that injected into their TSCs revealed that terminal processes sometimes followed the TSC processes over a few hours. It is suggested that the ends of motor nerve terminals in vivo are in a constant state of remodeling through the formation and regression of processes, that TSC processes guide the remodeling, and that it can occur over a relatively short period of time.

  8. Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals

    International Nuclear Information System (INIS)

    Rasgado-Flores, H.; Sanchez-Armass, S.; Blaustein, M.P.; Nachshen, D.A.

    1987-01-01

    To gain insight into the mechanisms by which the divalent cations Sr, Ba, and Mn affect neurotransmitter release from presynaptic nerve terminals, the authors examined the sequestration of these cations, ion comparison to Ca, by mitochondrial and nonmitochondrial organelles and the extrusion of these cations from isolated nerve terminals. Sequestration was studied in synaptosomes made leaky to small ions by treatment with saponin; efflux was examined in intact synaptosomes that were preloaded with the divalent cations by incubation in depolarizing (K rich) media. The selectivity sequence for ATP-dependent mitochondrial uptake that they observed was Mn>>Ca>Sr>>Ba, whereas that for the SER was Ca ≥ Mn>Sr>>Ba. When synaptosomes that were preloaded with divalent cations were incubated in Na- and Ca-free media, there was little efflux of 45 Ca, 133 Ba, 85 Sr, or 54 Mn. When the incubation was carried out in media containing Na without Ca, there was substantial stimulation of Ca and Sr efflux, but only slight stimulation of Ba or Mn efflux. In Na-free media, the addition of 1 mM Ca promoted the efflux of all four divalent cations, probably via Ca-divalent cation exchange. In summary, the sequestration and extrusion data suggest that, with equal loads, Mn will be buffered to the greatest extent, whereas Ba will be least well buffered. These results may help to explain why Mn has a very long-lasting effect on transmitter release, while the effect of Sr is much briefer

  9. Study of nerve fibers nature reinforcing duodenal contractions by electrical stimulation of sympathetic nerve

    Directory of Open Access Journals (Sweden)

    Sveshnikov D.S.

    2011-09-01

    Full Text Available The subject of the article is to investigate the mechanism of increased reactions by electrical stimulation of the sympathetic nerve. Materials and methods: Experiments on dogs have shown that stimulant reactions during blockade of a-adrenergic by phentolamine and (3-adrenergic receptors with propranolol were completely eliminated by lizer-gol —the blocker of 5-HT12-receptors. Results: Infusion of lizergol did not influence on duodenal motor activity and the function of the vagus nerve. Conclusion: Effector neuron is found out to be serotonergic and its action is provided by 5-HT1 2 receptors

  10. Neuroactivity of detonation nanodiamonds: dose-dependent changes in transporter-mediated uptake and ambient level of excitatory/inhibitory neurotransmitters in brain nerve terminals.

    Science.gov (United States)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Galkin, Maxim; Borysov, Arsenii; Borisova, Tatiana

    2016-03-31

    Nanodiamonds are one of the most perspective nano-sized particles with superb physical and chemical properties, which are mainly composed of carbon sp(3) structures in the core with sp(2) and disorder/defect carbons on the surface. The research team recently demonstrated neuromodulatory properties of carbon nanodots with other than nanodiamonds hybridization types, i.e., sp(2) hybridized graphene islands and diamond-like sp(3) hybridized elements. In this study, neuroactive properties of uncoated nanodiamonds produced by detonation synthesis were assessed basing on their effects on transporter-mediated uptake and the ambient level of excitatory and inhibitory neurotransmitters, glutamate and γ-aminobutyric acid (GABA), in isolated rat brain nerve terminals. It was shown that nanodiamonds in a dose-dependent manner attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake and accumulation of L-[(14)C]glutamate and [(3)H]GABA by nerve terminals and increased the ambient level of these neurotransmitters. Also, nanodiamonds caused a weak reduction in acidification of synaptic vesicles and depolarization of the plasma membrane of nerve terminals. Therefore, despite different types of hybridization in nanodiamonds and carbon dots, they exhibit very similar effects on glutamate and GABA transport in nerve terminals and this common feature of both nanoparticles is presumably associated with their nanoscale size. Observed neuroactive properties of pure nanodiamonds can be used in neurotheranostics for simultaneous labeling/visualization of nerve terminals and modulation of key processes of glutamate- and GABAergic neurotransmission. In comparison with carbon dots, wider medical application involving hypo/hyperthermia, external magnetic fields, and radiolabel techniques can be perspective for nanodiamonds.

  11. Use of fluorescent probes to follow membrane traffic in nerve terminals

    Directory of Open Access Journals (Sweden)

    Guatimosim C.

    1998-01-01

    Full Text Available Optical tracers in conjunction with fluorescence microscopy have become widely used to follow the movement of synaptic vesicles in nerve terminals. The present review discusses the use of these optical methods to understand the regulation of exocytosis and endocytosis of synaptic vesicles. The maintenance of neurotransmission depends on the constant recycling of synaptic vesicles and important insights have been gained by visualization of vesicles with the vital dye FM1-43. A number of questions related to the control of recycling of synaptic vesicles by prolonged stimulation and the role of calcium to control membrane internalization are now being addressed. It is expected that optical monitoring of presynaptic activity coupled to appropriate genetic models will contribute to the understanding of membrane traffic in synaptic terminals.

  12. Hypoxia-induced increases in serotonin-immunoreactive nerve fibers in the medulla oblongata of the rat.

    Science.gov (United States)

    Morinaga, Ryosuke; Nakamuta, Nobuaki; Yamamoto, Yoshio

    2016-10-01

    Hypoxia induces respiratory responses in mammals and serotonergic neurons in the medulla oblongata participate in respiratory control. However, the morphological changes in serotonergic neurons induced by hypoxia have not yet been examined and respiratory controls of serotonergic neurons have not been clarified. We herein investigated the distribution of immunoreactivity for serotonin (5-hydroxytryptamine; 5-HT) in the medulla oblongata of control rats and rats exposed to 1-6h of hypoxia (10% O 2 ). We also examined the medulla oblongata by multiple immunofluorescence labeling for 5-HT, neurokinin 1 receptors (NK1R), a marker for some respiratory neurons in the pre-Bötzinger complex (PBC), and dopamine β-hydroxylase (DBH), a marker for catecholaminergic neurons. The number of 5-HT-immunoreactive nerve cell bodies in the raphe nuclei was higher in rats exposed to hypoxia than in control rats. The number of 5-HT-immunoreactive nerve fibers significantly increased in the rostral ventrolateral medulla of rats exposed to 1-6h of hypoxia, caudal ventrolateral medulla of rats exposed to 2-6h of hypoxia, and lateral part of the nucleus of the solitary tract and dorsal motor nucleus of the vagus nerve of rats exposed to 1-2h of hypoxia. Multiple immunofluorescence labeling showed that 5-HT-immunoreactive nerve fibers were close to NK1R-immunoreactive neurons in ventrolateral medulla and to DBH-immunoreactive neurons in the medulla. These results suggest that serotonergic neurons partly regulate respiratory control under hypoxic conditions by modulating the activity of NK1R-expressing and catecholaminergic neurons. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Terminal-Nerve-Derived Neuropeptide Y Modulates Physiological Responses in the Olfactory Epithelium of Hungry Axolotls (Ambystoma mexicanum)

    Science.gov (United States)

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J.; Eisthen, Heather L.

    2007-01-01

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by L-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances. PMID:16855098

  14. Terminal nerve-derived neuropeptide y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum).

    Science.gov (United States)

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J; Eisthen, Heather L

    2006-07-19

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the olfactory epithelium, displays anatomical and neurochemical characteristics that suggest that it modulates activity in the olfactory epithelium. Using immunocytochemical techniques, we demonstrate that neuropeptide Y (NPY) is abundantly present in the terminal nerve in the axolotl (Ambystoma mexicanum), an aquatic salamander. Because NPY plays an important role in regulating appetite and hunger in many vertebrates, we investigated the possibility that NPY modulates activity in the olfactory epithelium in relation to the animal's hunger level. We therefore characterized the full-length NPY gene from axolotls to enable synthesis of authentic axolotl NPY for use in electrophysiological experiments. We find that axolotl NPY modulates olfactory epithelial responses evoked by l-glutamic acid, a food-related odorant, but only in hungry animals. Similarly, whole-cell patch-clamp recordings demonstrate that bath application of axolotl NPY enhances the magnitude of a tetrodotoxin-sensitive inward current, but only in hungry animals. These results suggest that expression or activity of NPY receptors in the olfactory epithelium may change with hunger level, and that terminal nerve-derived peptides modulate activity in the olfactory epithelium in response to an animal's changing behavioral and physiological circumstances.

  15. Terminal-Nerve-Derived Neuropeptide Y Modulates Physiological Responses in the Olfactory Epithelium of Hungry Axolotls (Ambystoma mexicanum)

    OpenAIRE

    Mousley, Angela; Polese, Gianluca; Marks, Nikki J.; Eisthen, Heather L.

    2006-01-01

    The vertebrate brain actively regulates incoming sensory information, effectively filtering input and focusing attention toward environmental stimuli that are most relevant to the animal's behavioral context or physiological state. Such centrifugal modulation has been shown to play an important role in processing in the retina and cochlea, but has received relatively little attention in olfaction. The terminal nerve, a cranial nerve that extends underneath the lamina propria surrounding the o...

  16. Uptake and metabolism of fructose by rat neocortical cells in vivo and by isolated nerve terminals in vitro.

    Science.gov (United States)

    Hassel, Bjørnar; Elsais, Ahmed; Frøland, Anne-Sofie; Taubøll, Erik; Gjerstad, Leif; Quan, Yi; Dingledine, Raymond; Rise, Frode

    2015-05-01

    Fructose reacts spontaneously with proteins in the brain to form advanced glycation end products (AGE) that may elicit neuroinflammation and cause brain pathology, including Alzheimer's disease. We investigated whether fructose is eliminated by oxidative metabolism in neocortex. Injection of [(14) C]fructose or its AGE-prone metabolite [(14) C]glyceraldehyde into rat neocortex in vivo led to formation of (14) C-labeled alanine, glutamate, aspartate, GABA, and glutamine. In isolated neocortical nerve terminals, [(14) C]fructose-labeled glutamate, GABA, and aspartate, indicating uptake of fructose into nerve terminals and oxidative fructose metabolism in these structures. This was supported by high expression of hexokinase 1, which channels fructose into glycolysis, and whose activity was similar with fructose or glucose as substrates. By contrast, the fructose-specific ketohexokinase was weakly expressed. The fructose transporter Glut5 was expressed at only 4% of the level of neuronal glucose transporter Glut3, suggesting transport across plasma membranes of brain cells as the limiting factor in removal of extracellular fructose. The genes encoding aldose reductase and sorbitol dehydrogenase, enzymes of the polyol pathway that forms glucose from fructose, were expressed in rat neocortex. These results point to fructose being transported into neocortical cells, including nerve terminals, and that it is metabolized and thereby detoxified primarily through hexokinase activity. We asked how the brain handles fructose, which may react spontaneously with proteins to form 'advanced glycation end products' and trigger inflammation. Neocortical cells took up and metabolized extracellular fructose oxidatively in vivo, and isolated nerve terminals did so in vitro. The low expression of fructose transporter Glut5 limited uptake of extracellular fructose. Hexokinase was a main pathway for fructose metabolism, but ketohexokinase (which leads to glyceraldehyde formation) was

  17. Serotonergic mechanisms in the migraine brain

    DEFF Research Database (Denmark)

    Christensen, Marie Deen; Christensen, Casper Emil; Hougaard, Anders

    2017-01-01

    role of brain serotonergic mechanisms remains a matter of controversy. Methods We systematically searched PubMed for studies investigating the serotonergic system in the migraine brain by either molecular neuroimaging or electrophysiological methods. Results The literature search resulted in 59 papers......, of which 13 were eligible for review. The reviewed papers collectively support the notion that migraine patients have alterations in serotonergic neurotransmission. Most likely, migraine patients have a low cerebral serotonin level between attacks, which elevates during a migraine attack. Conclusion...... This review suggests that novel methods of investigating the serotonergic system in the migraine brain are warranted. Uncovering the serotonergic mechanisms in migraine pathophysiology could prove useful for the development of future migraine drugs....

  18. Nerve terminal contributes to acetylcholine receptor organization at the dystrophic neuromuscular junction of mdx mice.

    Science.gov (United States)

    Marques, Maria Julia; Taniguti, Ana Paula Tiemi; Minatel, Elaine; Neto, Humberto Santo

    2007-02-01

    Changes in the distribution of acetylcholine receptors have been reported to occur at the neuromuscular junction of mdx mice and may be a consequence of muscle fiber regeneration rather than the absence of dystrophin. In the present study, we examined whether the nerve terminal determines the fate of acetylcholine receptor distribution in the dystrophic muscle fibers of mdx mice. The left sternomastoid muscle of young (1-month-old) and adult (6-month-old) mdx mice was injected with 60 microl lidocaine hydrochloride to induce muscle degeneration-regeneration. Some mice had their sternomastoid muscle denervated at the time of lidocaine injection. After 10 days of muscle denervation, nerve terminals and acetylcholine receptors were labeled with 4-Di-2-ASP and rhodamine-alpha-bungarotoxin, respectively, for confocal microscopy. In young mdx mice, 75% (n = 137 endplates) of the receptors were distributed in islands. The same was observed in 100% (n = 114 endplates) of the adult junctions. In denervated-regenerated fibers of young mice, the receptors were distributed as branches in 89% of the endplates (n = 90). In denervated-regenerated fibers of adult mice, the receptors were distributed in islands in 100% of the endplates (n = 100). These findings show that nerve-dependent mechanisms are also involved in the changes in receptor distribution in young dystrophic muscles. In older dystrophic muscles, other factors may play a role in receptor distribution.

  19. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons

    OpenAIRE

    Chowdhury, Srikanta; Yamanaka, Akihiro

    2016-01-01

    Orexin/hypocretin neurons play a crucial role in the regulation of sleep/wakefulness, primarily in the maintenance of wakefulness. These neurons innervate wide areas of the brain and receive diverse synaptic inputs including those from serotonergic (5-HT) neurons in the raphe nucleus. Previously we showed that pharmacological application of 5-HT directly inhibited orexin neurons via 5-HT1A receptors. However, it was still unclear how 5-HT neurons regulated orexin neurons since 5-HT neurons co...

  20. Role of serotonergic neurons in the Drosophila larval response to light

    Directory of Open Access Journals (Sweden)

    Campos Ana

    2009-06-01

    Full Text Available Abstract Background Drosophila larval locomotion consists of forward peristalsis interrupted by episodes of pausing, turning and exploratory behavior (head swinging. This behavior can be regulated by visual input as seen by light-induced increase in pausing, head swinging and direction change as well as reduction of linear speed that characterizes the larval photophobic response. During 3rd instar stage, Drosophila larvae gradually cease to be repelled by light and are photoneutral by the time they wander in search for a place to undergo metamorphosis. Thus, Drosophila larval photobehavior can be used to study control of locomotion. Results We used targeted neuronal silencing to assess the role of candidate neurons in the regulation of larval photobehavior. Inactivation of DOPA decarboxylase (Ddc neurons increases the response to light throughout larval development, including during the later stages of the 3rd instar characterized by photoneutral response. Increased response to light is characterized by increase in light-induced direction change and associated pause, and reduction of linear movement. Amongst Ddc neurons, suppression of the activity of corazonergic and serotonergic but not dopaminergic neurons increases the photophobic response observed during 3rd instar stage. Silencing of serotonergic neurons does not disrupt larval locomotion or the response to mechanical stimuli. Reduced serotonin (5-hydroxytryptamine, 5-HT signaling within serotonergic neurons recapitulates the results obtained with targeted neuronal silencing. Ablation of serotonergic cells in the ventral nerve cord (VNC does not affect the larval response to light. Similarly, disruption of serotonergic projections that contact the photoreceptor termini in the brain hemispheres does not impact the larval response to light. Finally, pan-neural over-expression of 5-HT1ADro receptors, but not of any other 5-HT receptor subtype, causes a significant decrease in the response to

  1. DC-Evoked Modulation of Excitability of Myelinated Nerve Fibers and Their Terminal Branches; Differences in Sustained Effects of DC.

    Science.gov (United States)

    Kaczmarek, Dominik; Jankowska, Elzbieta

    2018-03-15

    Direct current (DC) evokes long-lasting changes in neuronal networks both presynaptically and postsynaptically and different mechanisms were proposed to be involved in them. Different mechanisms were also suggested to account for the different dynamics of presynaptic DC actions on myelinated nerve fibers stimulated before they entered the spinal gray matter and on their terminal branches. The aim of the present study was to examine whether these different dynamics might be related to differences in the involvement of K + channels. To this end, we compared effects of the K + channel blocker 4-amino-pyridine (4-AP) on DC-evoked changes in the excitability of afferent fibers stimulated within the dorsal columns (epidurally) and within their projection areas in the dorsal horn and motor nuclei (intraspinally). 4-AP was applied systemically in deeply anesthetized rats. DC-evoked increases in the excitability of epidurally stimulated afferent nerve fibers, and increases in field potentials evoked by these fibers, were not affected by 4-AP. In contrast, sustained decreases rather than increases in the excitability of intraspinally stimulated terminal nerve branches were evoked by local application of DC in conjunction with 4-AP. The study leads to the conclusion that 4-AP-sensitive K + channels contribute to the sustained DC-evoked post-polarization increases in the excitability at the level of terminal branches of nerve fibers but not of the nodes of Ranvier nor within the juxta-paranodal regions where other mechanisms would be involved in inducing the sustained DC-evoked changes. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors

    Directory of Open Access Journals (Sweden)

    Anne Teissier

    2015-12-01

    Full Text Available Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.

  3. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  4. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors.

    Science.gov (United States)

    Teissier, Anne; Chemiakine, Alexei; Inbar, Benjamin; Bagchi, Sneha; Ray, Russell S; Palmiter, Richard D; Dymecki, Susan M; Moore, Holly; Ansorge, Mark S

    2015-12-01

    Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Serotonergic control of the developing cerebellum

    NARCIS (Netherlands)

    Oostland, M.

    2013-01-01

    The work described in this thesis gives insights in the mechanism behind the serotonergic control of the cerebellum during postnatal development. The findings present a powerful role for serotonin in the physiology of the developing cerebellum. The effects of the serotonergic control extend both

  6. Harmane inhibits serotonergic dorsal raphe neurons in the rat.

    Science.gov (United States)

    Touiki, Khalid; Rat, Pascal; Molimard, Robert; Chait, Abderrahman; de Beaurepaire, Renaud

    2005-11-01

    Harmane and norharmane (two beta-carbolines) are tobacco components or products. The effects of harmane and norharmane on serotonergic raphe neurons remain unknown. Harmane and norharmane are inhibitors of the monoamine oxidases A (MAO-A) and B (MAO-B), respectively. To study the effects of harmane, norharmane, befloxatone (MAOI-A), and selegiline (MAOI-B) on the firing of serotonergic neurons. To compare the effects of these compounds to those of nicotine (whose inhibitory action on serotonergic neurons has been previously described). The effects of cotinine, a metabolite of nicotine known to interact with serotonergic systems, are also tested. In vivo electrophysiological recordings of serotonergic dorsal raphe neurons in the anaesthetized rat. Nicotine, harmane, and befloxatone inhibited serotonergic dorsal raphe neurons. The other compounds had no effects. The inhibitory effect of harmane (rapid and long-lasting inhibition) differed from that of nicotine (short and rapidly reversed inhibition) and from that of befloxatone (slow, progressive, and long-lasting inhibition). The inhibitory effects of harmane and befloxatone were reversed by the 5-HT1A antagonist WAY 100 635. Pretreatment of animals with p-chlorophenylalanine abolished the inhibitory effect of befloxatone, but not that of harmane. Nicotine, harmane, and befloxatone inhibit the activity of raphe serotonergic neurons. Therefore, at least two tobacco compounds, nicotine and harmane, inhibit the activity of serotonergic neurons. The mechanism by which harmane inhibits serotonergic dorsal raphe neurons is likely unrelated to a MAO-A inhibitory effect.

  7. Modulation of anxiety circuits by serotonergic systems

    DEFF Research Database (Denmark)

    Lowry, Christopher A; Johnson, Philip L; Hay-Schmidt, Anders

    2005-01-01

    of emotionally salient events, often when both rewarding and aversive outcomes are possible. In this review, we highlight recent advances in our understanding of the neural circuits regulating anxiety states and anxiety-related behavior with an emphasis on the role of brainstem serotonergic systems in modulating...... anxiety-related circuits. In particular, we explore the possibility that the regulation of anxiety states and anxiety-related behavior by serotonergic systems is dependent on a specific, topographically organized mesolimbocortical serotonergic system that originates in the mid-rostrocaudal and caudal...

  8. Regulation of Hippocampal 5-HT Release by P2X7 Receptors in Response to Optogenetic Stimulation of Median Raphe Terminals of Mice

    Directory of Open Access Journals (Sweden)

    Flóra Gölöncsér

    2017-10-01

    Full Text Available Serotonergic and glutamatergic neurons of median raphe region (MRR play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7 are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 μM, whereas the selective 5-HT1A agonist buspirone (0.1 μM was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 μM, and AZ-10606120 (0.1 μM. Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the

  9. Early attempts to visualize cortical monoamine nerve terminals.

    Science.gov (United States)

    Hökfelt, Tomas

    2016-08-15

    The Falck-Hillarp, formaldehyde fluorescence method for the demonstration of monoamine neurons in a microscope was established in Lund, Sweden and published in 1962. In the same year Hillarp moved to Karolinska Institutet in Stockholm. Two years later Dahlström and Fuxe published the famous supplement in Acta Physiologica Scandinavica, describing the distribution of the dopamine, noradrenaline and serotonin cell groups in the rat brain. This landmark paper also represented an important contribution to an emerging discipline in neuroscience - chemical neuroanatomy. During the following years several modifications of the original method were developed, attempting to solve some shortcomings, one being the reproducible demonstration of noradrenaline nerve terminals in cortical regions. One result was the paper focused on in the present article, which also describes other efforts in the same direction going on in parallel, primarily, in Lund and Stockholm. As a result there was, in the mid 1970s, a fairly complete knowledge of the catecholamine systems in the rat brain. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A Single Pair of Serotonergic Neurons Counteracts Serotonergic Inhibition of Ethanol Attraction in Drosophila.

    Science.gov (United States)

    Xu, Li; He, Jianzheng; Kaiser, Andrea; Gräber, Nikolas; Schläger, Laura; Ritze, Yvonne; Scholz, Henrike

    2016-01-01

    Attraction to ethanol is common in both flies and humans, but the neuromodulatory mechanisms underlying this innate attraction are not well understood. Here, we dissect the function of the key regulator of serotonin signaling-the serotonin transporter-in innate olfactory attraction to ethanol in Drosophila melanogaster. We generated a mutated version of the serotonin transporter that prolongs serotonin signaling in the synaptic cleft and is targeted via the Gal4 system to different sets of serotonergic neurons. We identified four serotonergic neurons that inhibit the olfactory attraction to ethanol and two additional neurons that counteract this inhibition by strengthening olfactory information. Our results reveal that compensation can occur on the circuit level and that serotonin has a bidirectional function in modulating the innate attraction to ethanol. Given the evolutionarily conserved nature of the serotonin transporter and serotonin, the bidirectional serotonergic mechanisms delineate a basic principle for how random behavior is switched into targeted approach behavior.

  11. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.

    Science.gov (United States)

    Borisova, Tatiana; Nazarova, Anastasia; Dekaliuk, Mariia; Krisanova, Natalia; Pozdnyakova, Natalia; Borysov, Arsenii; Sivko, Roman; Demchenko, Alexander P

    2015-02-01

    Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Characterization and regulation of [3H]-serotonin uptake and release in rodent spinal

    International Nuclear Information System (INIS)

    Stauderman, K.A.

    1986-01-01

    The uptake and release of [ 3 H]-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent [ 3 H]-serotonin accumulation processes were found. Sodium-dependent [ 3 H]-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC 50 75 nM), followed by desipramine (IC 50 430 nM) and nomifensine (IC 50 950 nM). The sodium-independent [ 3 H]-serotonin accumulation process was insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent [ 3 H]-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K + -induced release of previously accumulated [ 3 H]-serotonin was Ca 2+ -dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited [ 3 H]-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca 2+ -sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord

  13. Synaptic glutamate release by postnatal rat serotonergic neurons in microculture.

    Science.gov (United States)

    Johnson, M D

    1994-02-01

    Serotonergic neurons are thought to play a role in depression and obsessive compulsive disorder. However, their functional transmitter repertoire is incompletely known. To investigate this repertoire, intracellular recordings were obtained from 132 cytochemically identified rat mesopontine serotonergic neurons that had re-established synapses in microcultures. Approximately 60% of the neurons evoked excitatory glutamatergic potentials in themselves or in target neurons. Glutamatergic transmission was frequently observed in microcultures containing a solitary serotonergic neuron. Evidence for co-release of serotonin and glutamate from single raphe neurons was also obtained. However, evidence for gamma-aminobutyric acid release by serotonergic neurons was observed in only two cases. These findings indicate that many cultured serotonergic neurons form glutamatergic synapses and may explain several observations in slices and in vivo.

  14. Nerves and nerve endings in the skin of tropical cattle.

    Science.gov (United States)

    Amakiri, S F; Ozoya, S E; Ogunnaike, P O

    1978-01-01

    The nerves and nerve endings in the skin of tropical cattle were studied using histological and histochemical techniques. Many nerve trunks and fibres were present in the reticular and papillary dermis in both hairy and non-hairy skin sites. In non-hairy skin locations such as the muzzle and lower lip, encapsulated endings akin to Krause and Ruffini end bulbs, which arise from myelinated nerve trunks situated lower down the dermis were observed at the upper papillary layer level. Some fibre trunks seen at this level extended upwards to terminate within dermal papillae as bulb-shaped longitudinally lamellated Pacinian-type endings, while other onion-shaped lamellated nerve structures were located either within dermal papillae or near the dermo-epidermal area. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. On hairy skin sites, however, organized nerve endings or intraepidermal nerve endings were not readily identifiable.

  15. Peripheral nerve hyperexcitability with preterminal nerve and neuromuscular junction remodeling is a hallmark of Schwartz-Jampel syndrome.

    Science.gov (United States)

    Bauché, Stéphanie; Boerio, Delphine; Davoine, Claire-Sophie; Bernard, Véronique; Stum, Morgane; Bureau, Cécile; Fardeau, Michel; Romero, Norma Beatriz; Fontaine, Bertrand; Koenig, Jeanine; Hantaï, Daniel; Gueguen, Antoine; Fournier, Emmanuel; Eymard, Bruno; Nicole, Sophie

    2013-12-01

    Schwartz-Jampel syndrome (SJS) is a recessive disorder with muscle hyperactivity that results from hypomorphic mutations in the perlecan gene, a basement membrane proteoglycan. Analyses done on a mouse model have suggested that SJS is a congenital form of distal peripheral nerve hyperexcitability resulting from synaptic acetylcholinesterase deficiency, nerve terminal instability with preterminal amyelination, and subtle peripheral nerve changes. We investigated one adult patient with SJS to study this statement in humans. Perlecan deficiency due to hypomorphic mutations was observed in the patient biological samples. Electroneuromyography showed normal nerve conduction, neuromuscular transmission, and compound nerve action potentials while multiple measures of peripheral nerve excitability along the nerve trunk did not detect changes. Needle electromyography detected complex repetitive discharges without any evidence for neuromuscular transmission failure. The study of muscle biopsies containing neuromuscular junctions showed well-formed post-synaptic element, synaptic acetylcholinesterase deficiency, denervation of synaptic gutters with reinnervation by terminal sprouting, and long nonmyelinated preterminal nerve segments. These data support the notion of peripheral nerve hyperexcitability in SJS, which would originate distally from synergistic actions of peripheral nerve and neuromuscular junction changes as a result of perlecan deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Serotonergic neurons signal reward and punishment on multiple timescales

    Science.gov (United States)

    Cohen, Jeremiah Y; Amoroso, Mackenzie W; Uchida, Naoshige

    2015-01-01

    Serotonin's function in the brain is unclear. One challenge in testing the numerous hypotheses about serotonin's function has been observing the activity of identified serotonergic neurons in animals engaged in behavioral tasks. We recorded the activity of dorsal raphe neurons while mice experienced a task in which rewards and punishments varied across blocks of trials. We ‘tagged’ serotonergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to light. We found three main features of serotonergic neuron activity: (1) a large fraction of serotonergic neurons modulated their tonic firing rates over the course of minutes during reward vs punishment blocks; (2) most were phasically excited by punishments; and (3) a subset was phasically excited by reward-predicting cues. By contrast, dopaminergic neurons did not show firing rate changes across blocks of trials. These results suggest that serotonergic neurons signal information about reward and punishment on multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.06346.001 PMID:25714923

  17. The in vivo phosphorylation sites in multiple isoforms of amphiphysin I from rat brain nerve terminals

    DEFF Research Database (Denmark)

    Craft, George E; Graham, Mark E; Bache, Nicolai

    2008-01-01

    : serines 250, 252, 262, 268, 272, 276, 285, 293, 496, 514, 539, and 626 and Thr-310. These were distributed into two clusters around the proline-rich domain and the C-terminal Src homology 3 domain. Hierarchical phosphorylation of Ser-262 preceded phosphorylation of Ser-268, -272, -276, and -285. Off......, incorporating 16 and 23% of the 32P. The multiple phosphopeptides containing Ser-268, Ser-276, Ser-272, and Ser-285 had 27% of the 32P. Evidence for a role for at least one proline-directed protein kinase and one non-proline-directed kinase was obtained. Four phosphosites predicted for non-proline...... that are either dynamically turning over or constitutively phosphorylated in nerve terminals and improve understanding of the role of individual amphI sites or phosphosite clusters in synaptic SVE....

  18. Assessment of serotonergic system in formation of memory and learning

    Directory of Open Access Journals (Sweden)

    J. C. da Silva

    2017-11-01

    Full Text Available Abstract We evaluated the involvement of the serotonergic system on memory formation and learning processes in healthy adults Wistar rats. Fifty-seven rats of 5 groups had one serotonergic nuclei damaged by an electric current. Electrolytic lesion was carried out using a continuous current of 2mA during two seconds by stereotactic surgery. Animals were submitted to learning and memory tests. Rats presented different responses in the memory tests depending on the serotonergic nucleus involved. Both explicit and implicit memory may be affected after lesion although some groups showed significant difference and others did not. A damage in the serotonergic nucleus was able to cause impairment in the memory of Wistar. The formation of implicit and explicit memory is impaired after injury in some serotonergic nuclei.

  19. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    Directory of Open Access Journals (Sweden)

    Gabriela Fabbiani

    2018-03-01

    Full Text Available Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+ increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU and did not express the proliferating cell nuclear antigen (PCNA indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process.

  20. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    Science.gov (United States)

    Fabbiani, Gabriela; Rehermann, María I.; Aldecosea, Carina; Trujillo-Cenóz, Omar; Russo, Raúl E.

    2018-01-01

    Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process. PMID:29593503

  1. Peripheral nerve involvement in Bell's palsy

    Directory of Open Access Journals (Sweden)

    J. A. Bueri

    1984-12-01

    Full Text Available A group of patients with Bell's palsy were studied in order to disclose the presence of subclinical peripheral nerve involvement. 20 patients, 8 male and 12 female, with recent Bell's palsy as their unique disease were examined, in all cases other causes of polyneuropathy were ruled out. Patients were investigated with CSF examination, facial nerve latencies in the affected and in the sound sides, and maximal motor nerve conduction velocities, as well as motor terminal latencies from the right median and peroneal nerves. CSF laboratory examination was normal in all cases. Facial nerve latencies were abnormal in all patients in the affected side, and they differed significantly from those of control group in the clinically sound side. Half of the patients showed abnormal values in the maximal motor nerve conduction velocities and motor terminal latencies of the right median and peroneal nerves. These results agree with previous reports which have pointed out that other cranial nerves may be affected in Bell's palsy. However, we have found a higher frequency of peripheral nerve involvement in this entity. These findings, support the hypothesis that in some patients Bell's palsy is the component of a more widespread disease, affecting other cranial and peripheral nerves.

  2. Characterization of Induced Pluripotent Stem Cell-derived Human Serotonergic Neurons

    Directory of Open Access Journals (Sweden)

    Lining Cao

    2017-05-01

    Full Text Available In the brain, the serotonergic neurons located in the raphe nucleus are the unique resource of the neurotransmitter serotonin, which plays a pivotal role in the regulation of brain development and functions. Dysfunction of the serotonin system is present in many psychiatric disorders. Lack of in vitro functional human model limits the understanding of human central serotonergic system and its related diseases and clinical applications. Previously, we have developed a method generating human serotonergic neurons from induced pluripotent stem cells (iPSCs. In this study, we analyzed the features of these human iPSCs-derived serotonergic neurons both in vitro and in vivo. We found that these human serotonergic neurons are sensitive to the selective neurotoxin 5, 7-Dihydroxytryptamine (5,7-DHT in vitro. After being transplanted into newborn mice, the cells not only expressed their typical molecular markers, but also showed the migration and projection to the host’s cerebellum, hindbrain and spinal cord. The data demonstrate that these human iPSCs-derived neurons exhibit the typical features as the serotonergic neurons in the brain, which provides a solid foundation for studying on human serotonin system and its related disorders.

  3. Immunogold localization of serotonin within synaptic terminals in the rat mesencephalic trigeminal nucleus

    NARCIS (Netherlands)

    Liem, RSB; Copray, JCVM

    1996-01-01

    With the use of postembedding electron-microscopic immunogold cytochemistry, the vesicular distribution of serotonin within serotonergic synaptic terminals in the mesencephalic trigeminal nucleus was determined in order to obtain further insight into the mechanisms and function, significance of

  4. Handlebar palsy--a compression syndrome of the deep terminal (motor) branch of the ulnar nerve in biking.

    Science.gov (United States)

    Capitani, Daniel; Beer, Serafin

    2002-10-01

    We describe 3 patients who developed a severe palsy of the intrinsic ulnar supplied hand muscles after bicycle riding. Clinically and electrophysiologically all showed an isolated lesion of the deep terminal motor branch of the ulnar nerve leaving the hypothenar muscle and the distal sensory branch intact. This type of lesion at the canal of Guyon is quite unusual, caused in the majority of cases by chronic external pressure over the ulnar palm. In earlier reports describing this lesion in bicycle riders, most patients experienced this lesion after a long distance ride. Due to the change of riding position and shape of handlebars (horn handle) in recent years, however, even a single bicycle ride may be sufficient to cause a lesion of this ulnar branch. Especially in downhill riding, a large part of the body weight is supported by the hand on the corner of the handlebar leading to a high load at Guyon's canal. As no sensory fibres are affected, the patients are not aware of the ongoing nerve compression until a severe lesion develops. Individual adaptation of the handlebar and riding position seems to be crucial for prevention of this type of nerve lesion.

  5. Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice

    Science.gov (United States)

    Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.

    2015-01-01

    Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve

  6. TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase

    International Nuclear Information System (INIS)

    Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.; Liu Tao; Yue, H.-Y.; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2009-01-01

    We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na + -channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement. These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.

  7. Tetracycline inducible gene manipulation in serotonergic neurons.

    Directory of Open Access Journals (Sweden)

    Tillmann Weber

    Full Text Available The serotonergic (5-HT neuronal system has important and diverse physiological functions throughout development and adulthood. Its dysregulation during development or later in adulthood has been implicated in many neuropsychiatric disorders. Transgenic animal models designed to study the contribution of serotonergic susceptibility genes to a pathological phenotype should ideally allow to study candidate gene overexpression or gene knockout selectively in serotonergic neurons at any desired time during life. For this purpose, conditional expression systems such as the tet-system are preferable. Here, we generated a transactivator (tTA mouse line (TPH2-tTA that allows temporal and spatial control of tetracycline (Ptet controlled transgene expression as well as gene deletion in 5-HT neurons. The tTA cDNA was inserted into a 196 kb PAC containing a genomic mouse Tph2 fragment (177 kb by homologous recombination in E. coli. For functional analysis of Ptet-controlled transgene expression, TPH2-tTA mice were crossed to a Ptet-regulated lacZ reporter line (Ptet-nLacZ. In adult double-transgenic TPH2-tTA/Ptet-nLacZ mice, TPH2-tTA founder line L62-20 showed strong serotonergic β-galactosidase expression which could be completely suppressed with doxycycline (Dox. Furthermore, Ptet-regulated gene expression could be reversibly activated or inactivated when Dox was either withdrawn or added to the system. For functional analysis of Ptet-controlled, Cre-mediated gene deletion, TPH2-tTA mice (L62-20 were crossed to double transgenic Ptet-Cre/R26R reporter mice to generate TPH2-tTA/Ptet-Cre/R26R mice. Without Dox, 5-HT specific recombination started at E12.5. With permanent Dox administration, Ptet-controlled Cre-mediated recombination was absent. Dox withdrawal either postnatally or during adulthood induced efficient recombination in serotonergic neurons of all raphe nuclei, respectively. In the enteric nervous system, recombination could not be detected. We

  8. Selective serotonergic excitation of callosal projection neurons

    Directory of Open Access Journals (Sweden)

    Daniel eAvesar

    2012-03-01

    Full Text Available Serotonin (5-HT acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs of the mouse medial prefrontal cortex (mPFC, and found 3 distinct response types: long-lasting 5-HT1A (1A receptor-dependent inhibitory responses (84% of L5PNs, 5-HT2A (2A receptor-dependent excitatory responses (9%, and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%. Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM neurons that project to the contralateral cortex. We tested whether serotonergic responses in cortical pyramidal neurons are correlated with their axonal projection pattern using retrograde fluorescent labeling of COM and corticopontine-projecting (CPn neurons. 5-HT generated excitatory or biphasic responses in all 5-HT-responsive layer 5 COM neurons. Conversely, CPn neurons were universally inhibited by 5-HT. Serotonergic excitation of COM neurons was blocked by the 2A antagonist MDL 11939, while serotonergic inhibition of CPn neurons was blocked by the 1A antagonist WAY 100635, confirming a role for these two receptor subtypes in regulating pyramidal neuron activity. Selective serotonergic excitation of COM neurons was not layer-specific, as COM neurons in layer 2/3 were also selectively excited by 5-HT relative to their non-labeled pyramidal neuron neighbors. Because neocortical 2A receptors are implicated in the etiology and pathophysiology of schizophrenia, we propose that COM neurons may represent a novel cellular target for intervention in psychiatric disease.

  9. Why does serotonergic activity drastically decrease during REM sleep?

    Science.gov (United States)

    Sato, Kohji

    2013-10-01

    Here, I postulate two hypotheses that can explain the missing link between sleep and the serotonergic system in terms of spine homeostasis and memory consolidation. As dendritic spines contain many kinds of serotonin receptors, and the activation of serotonin receptors generally increases the number of spines in the cortex and hippocampus, I postulate that serotonin neurons are down-regulated during sleep to decrease spine number, which consequently maintains the total spine number at a constant level. Furthermore, since synaptic consolidation during REM sleep needs long-term potentiation (LTP), and serotonin is reported to inhibit LTP in the cortex, I postulate that serotonergic activity must drastically decrease during REM sleep to induce LTP and do memory consolidation. Until now, why serotonergic neurons show these dramatic changes in the sleep-wake cycle remains unexplained; however, making these hypotheses, I can confer physiological meanings on these dramatic changes of serotonergic neurons in terms of spine homeostasis and memory consolidation. Copyright © 2013. Published by Elsevier Ltd.

  10. Involvement of autophagy upregulation in 3,4-methylenedioxymethamphetamine ('ecstasy')-induced serotonergic neurotoxicity.

    Science.gov (United States)

    Li, I-Hsun; Ma, Kuo-Hsing; Kao, Tzu-Jen; Lin, Yang-Yi; Weng, Shao-Ju; Yen, Ting-Yin; Chen, Lih-Chi; Huang, Yuahn-Sieh

    2016-01-01

    It has been suggested that autophagy plays pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug that causes long-term serotonergic neurotoxicity in the brain. Apoptosis and necrosis have been implicated in MDMA-induced neurotoxicity, but the role of autophagy in MDMA-elicited serotonergic toxicity has not been investigated. The present study aimed to examine the contribution of autophagy to neurotoxicity in serotonergic neurons in in vitro and in vivo animal models challenged with MDMA. Here, we demonstrated that in cultured rat serotonergic neurons, MDMA exposure induced LC3B-densely stained autophagosome formation, accompanying by a decrease in neurite outgrowth. Autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated MDMA-induced autophagosome accumulation, and ameliorated MDMA-triggered serotonergic neurite damage and neuron death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in serotonergic neurons and aggravated neurite degeneration. In addition, MDMA-induced autophagy activation in cultured serotonergic neurons might be mediated by serotonin transporter (SERT). In an in vivo animal model administered MDMA, neuroimaging showed that 3-MA protected the serotonin system against MDMA-induced downregulation of SERT evaluated by animal-PET with 4-[(18)F]-ADAM, a SERT radioligand. Taken together, our results demonstrated that MDMA triggers upregulation of autophagy in serotonergic neurons, which appears to be detrimental to neuronal growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Experimental studies for the improvement of facial nerve regeneration].

    Science.gov (United States)

    Guntinas-Lichius, O; Angelov, D N

    2008-02-01

    Using a combination of the following, it is possible to investigate procedures to improve the morphological and functional regeneration of the facial nerve in animal models: 1) retrograde fluorescence tracing to analyse collateral axonal sprouting and the selectivity of reinnervation of the mimic musculature, 2) immunohistochemistry to analyse both the terminal axonal sprouting in the muscles and the axon reaction within the nucleus of the facial nerve, the peripheral nerve, and its environment, and 3) digital motion analysis of the muscles. To obtain good functional facial nerve regeneration, a reduction of terminal sprouting in the mimic musculature seems to be more important than a reduction of collateral sprouting at the lesion site. Promising strategies include acceleration of nerve regeneration, forced induced use of the paralysed face, mechanical stimulation of the face, and transplantation of nerve-growth-promoting olfactory epithelium at the lesion site.

  12. Electrophysical properties, synaptic transmission and neuromodulation in serotonergic caudal raphe neurons.

    Science.gov (United States)

    Li, Y W; Bayliss, D A

    1998-06-01

    1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.

  13. Serotonergic drugs in the treatment of depressive and anxiety disorders

    NARCIS (Netherlands)

    Den Boer, JA; Bosker, FJ; Slaap, BR

    Serotonergic dysfunction has been implicated in the aetiology of several psychiatric conditions, including depressive and anxiety disorders. Much of the evidence for the role of serotonin (5-HT) in these disorders comes from treatment studies with serotonergic drugs, including selective serotonin

  14. Premature ejaculation and serotonergic antidepressants-induced delayed ejaculation : the involvement of the serotonergic system

    NARCIS (Netherlands)

    Waldinger, MD; Berendsen, HHG; Blok, BFM; Olivier, B; Holstege, G

    Premature ejaculation has generally been considered a psychosexual disorder with psychogenic aetiology. Although still mainly treated by behavioural therapy, in recent years double-blind studies have indicated the beneficial effects of some of the serotonergic antidepressants (SSRIs) in delaying

  15. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson's Disease Patients.

    Science.gov (United States)

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H; Caviness, John N; Shill, Holly A; Sabbagh, Marwan; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G

    2015-08-01

    Dysphagia is common in Parkinson's disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia.

  16. Deficient functional recovery after facial nerve crush in rats is associated with restricted rearrangements of synaptic terminals in the facial nucleus.

    Science.gov (United States)

    Hundeshagen, G; Szameit, K; Thieme, H; Finkensieper, M; Angelov, D N; Guntinas-Lichius, O; Irintchev, A

    2013-09-17

    Crush injuries of peripheral nerves typically lead to axonotmesis, axonal damage without disruption of connective tissue sheaths. Generally, human patients and experimental animals recover well after axonotmesis and the favorable outcome has been attributed to precise axonal reinnervation of the original peripheral targets. Here we assessed functionally and morphologically the long-term consequences of facial nerve axonotmesis in rats. Expectedly, we found that 5 months after crush or cryogenic nerve lesion, the numbers of motoneurons with regenerated axons and their projection pattern into the main branches of the facial nerve were similar to those in control animals suggesting precise target reinnervation. Unexpectedly, however, we found that functional recovery, estimated by vibrissal motion analysis, was incomplete at 2 months after injury and did not improve thereafter. The maximum amplitude of whisking remained substantially, by more than 30% lower than control values even 5 months after axonotmesis. Morphological analyses showed that the facial motoneurons ipsilateral to injury were innervated by lower numbers of glutamatergic terminals (-15%) and cholinergic perisomatic boutons (-26%) compared with the contralateral non-injured motoneurons. The structural deficits were correlated with functional performance of individual animals and associated with microgliosis in the facial nucleus but not with polyinnervation of muscle fibers. These results support the idea that restricted CNS plasticity and insufficient afferent inputs to motoneurons may substantially contribute to functional deficits after facial nerve injuries, possibly including pathologic conditions in humans like axonotmesis in idiopathic facial nerve (Bell's) palsy. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Transient electromyographic findings in serotonergic toxicity due to combination of essitalopram and isoniazid

    Directory of Open Access Journals (Sweden)

    Çagdas Erdogan

    2013-01-01

    Full Text Available Here, we report a case of serotonergic toxicity due to combination of essitalopram and isoniazid, which was rarely reported before. Moreover, we observed transient neurogenic denervation potentials in needle electromyography, which disappeared with the treatment of serotonergic toxicity. As to our best knowledge, this is the first case, reporting transient electromyographic changes probably due to serotonergic toxicity.

  18. Alpha-Synuclein Pathology in Sensory Nerve Terminals of the Upper Aerodigestive Tract of Parkinson’s Disease Patients

    Science.gov (United States)

    Mu, Liancai; Chen, Jingming; Sobotka, Stanislaw; Nyirenda, Themba; Benson, Brian; Gupta, Fiona; Sanders, Ira; Adler, Charles H.; Caviness, John N.; Shill, Holly A.; Sabbagh, Marwan; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.

    2015-01-01

    Dysphagia is common in Parkinson’s disease (PD) and causes significant morbidity and mortality. PD dysphagia has usually been explained as dysfunction of central motor control, much like other motor symptoms that are characteristic of the disease. However, PD dysphagia does not correlate with severity of motor symptoms nor does it respond to motor therapies. It is known that PD patients have sensory deficits in the pharynx, and that impaired sensation may contribute to dysphagia. However, the underlying cause of the pharyngeal sensory deficits in PD is not known. We hypothesized that PD dysphagia with sensory deficits may be due to degeneration of the sensory nerve terminals in the upper aerodigestive tract (UAT). We have previously shown that Lewy-type synucleinopathy (LTS) is present in the main pharyngeal sensory nerves of PD patients, but not in controls. In this study, the sensory terminals in UAT mucosa were studied to discern the presence and distribution of LTS. Whole-mount specimens (tongue-pharynx-larynx-upper esophagus) were obtained from 10 deceased human subjects with clinically diagnosed and neuropathologically confirmed PD (five with dysphagia and five without) and four age-matched healthy controls. Samples were taken from six sites and immunostained for phosphorylated α-synuclein (PAS). The results showed the presence of PAS-immunoreactive (PAS-ir) axons in all the PD subjects and in none of the controls. Notably, PD patients with dysphagia had more PAS-ir axons in the regions that are critical for initiating the swallowing reflex. These findings suggest that Lewy pathology affects mucosal sensory axons in specific regions of the UAT and may be related to PD dysphagia. PMID:26041249

  19. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    Science.gov (United States)

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role

  20. Pet measurements of presynaptic sympathetic nerve terminals in the heart

    International Nuclear Information System (INIS)

    Schwaiger, M.; Hutchins, G.D.; Wieland, D.M.

    1991-01-01

    [ 18 F]Metaraminol (FMR) and [ 11 C]hydroxyephedrine (HED) are catecholamine analogues that have been developed at the University of Michigan for the noninvasive characterization of the sympathetic nervous system of the heart using positron emission tomography (PET). Pharmacological studies employing neurotoxins and uptake inhibitors have demonstrated that both FMR and HED specifically trace the uptake and storage of catecholamines in sympathetic nerve terminals with little nonspecific tracer accumulation. These compounds exhibit excellent qualitative imaging characteristics with heart-to-blood ratios exceeding 6:1 as early as 15 min after intravenous injection in both animals (HED and FMR) and humans (HED). Tracer kinetic modeling techniques have been employed for the quantitative assessment of neuronal catecholamine uptake and storage. Indices of neuronal function, such as the volume of tracer distribution derived from the kinetic models, have been employed in preliminary human studies. Comparison of the tissue distribution volume of HED between normal (control subjects) and denervated (recent transplant patients) cardiac tissue demonstrates a dynamic range of approximately 5:1. This distribution volume is reduced by 60% from normal in patients with dilated cardiomyopathy, indicating dysfunction of the sympathetic system. These results show that HED used in combination with PET provides a sophisticated quantitative approach for studying the sympathetic nervous system of the normal and diseased human heart

  1. Musculocutaneous nerve substituting for the distal part of radial nerve: A case report and its embryological basis

    Directory of Open Access Journals (Sweden)

    A S Yogesh

    2011-01-01

    Full Text Available In the present case, we have reported a unilateral variation of the radial and musculocutaneous nerves on the left side in a 64-year-old male cadaver. The radial nerve supplied all the heads of the triceps brachii muscle and gave cutaneous branches such as lower lateral cutaneous nerve of the arm and posterior cutaneous nerve of forearm. The radial nerve ended without continuing further. The musculocutaneous nerve supplied the brachioradialis, extensor carpi radialis longus and extensor carpi radialis brevis muscles. The musculocutaneous nerve divided terminally into two branches, superficial and deep. The deep branch of musculocutaneous nerve corresponded to usual deep branch of the radial nerve while the superficial branch of musculocutaneous nerve corresponded to usual superficial branch of the radial nerve. The dissection was continued to expose the entire brachial plexus from its origin and it was found to be normal. The structures on the right upper limb were found to be normal. Surgeons should keep such variations in mind while performing the surgeries of the upper limb.

  2. Iatrogenic nerve injuries during shoulder surgery.

    Science.gov (United States)

    Carofino, Bradley C; Brogan, David M; Kircher, Michelle F; Elhassan, Bassem T; Spinner, Robert J; Bishop, Allen T; Shin, Alexander Y

    2013-09-18

    The current literature indicates that neurologic injuries during shoulder surgery occur infrequently and result in little if any morbidity. The purpose of this study was to review one institution's experience treating patients with iatrogenic nerve injuries after shoulder surgery. A retrospective review of the records of patients evaluated in a brachial plexus specialty clinic from 2000 to 2010 identified twenty-six patients with iatrogenic nerve injury secondary to shoulder surgery. The records were reviewed to determine the operative procedure, time to presentation, findings on physical examination, treatment, and outcome. The average age was forty-three years (range, seventeen to seventy-two years), and the average delay prior to referral was 5.4 months (range, one to fifteen months). Seven nerve injuries resulted from open procedures done to treat instability; nine, from arthroscopic surgery; four, from total shoulder arthroplasty; and six, from a combined open and arthroscopic operation. The injury occurred at the level of the brachial plexus in thirteen patients and at a terminal nerve branch in thirteen. Fifteen patients (58%) did not recover nerve function after observation and required surgical management. A structural nerve injury (laceration or suture entrapment) occurred in nine patients (35%), including eight of the thirteen who presented with a terminal nerve branch injury and one of the thirteen who presented with an injury at the level of the brachial plexus. Nerve injuries occurring during shoulder surgery can produce severe morbidity and may require surgical management. Injuries at the level of a peripheral nerve are more likely to be surgically treatable than injuries of the brachial plexus. A high index of suspicion and early referral and evaluation should be considered when evaluating patients with iatrogenic neurologic deficits after shoulder surgery.

  3. 3-aminopyridazine derivatives with atypical antidepressant, serotonergic, and dopaminergic activities.

    Science.gov (United States)

    Wermuth, C G; Schlewer, G; Bourguignon, J J; Maghioros, G; Bouchet, M J; Moire, C; Kan, J P; Worms, P; Biziere, K

    1989-03-01

    Minaprine [3-[(beta-morpholinoethyl)amino]-4-methyl-6-phenylpyridazine dihydrochloride] is active in most animal models of depression and exhibits in vivo a dual dopaminomimetic and serotoninomimetic activity profile. In an attempt to dissociate these two effects and to characterize the responsible structural requirements, a series of 47 diversely substituted analogues of minaprine were synthesized and tested for their potential antidepressant, serotonergic, and dopaminergic activities. The structure-activity relationships show that dopaminergic and serotonergic activities can be dissociated. Serotonergic activity appears to be correlated mainly with the substituent in the 4-position of the pyridazine ring whereas the dopaminergic activity appears to be dependent on the presence, or in the formation, of a para-hydroxylated aryl ring in the 6-position of the pyridazine ring.

  4. Neurogenin3 restricts serotonergic neuron differentiation to the hindbrain.

    Science.gov (United States)

    Carcagno, Abel L; Di Bella, Daniela J; Goulding, Martyn; Guillemot, Francois; Lanuza, Guillermo M

    2014-11-12

    The development of the nervous system is critically dependent on the production of functionally diverse neuronal cell types at their correct locations. In the embryonic neural tube, dorsoventral signaling has emerged as a fundamental mechanism for generating neuronal diversity. In contrast, far less is known about how different neuronal cell types are organized along the rostrocaudal axis. In the developing mouse and chick neural tube, hindbrain serotonergic neurons and spinal glutamatergic V3 interneurons are produced from ventral p3 progenitors, which possess a common transcriptional identity but are confined to distinct anterior-posterior territories. In this study, we show that the expression of the transcription factor Neurogenin3 (Neurog3) in the spinal cord controls the correct specification of p3-derived neurons. Gain- and loss-of-function manipulations in the chick and mouse embryo show that Neurog3 switches ventral progenitors from a serotonergic to V3 differentiation program by repressing Ascl1 in spinal p3 progenitors through a mechanism dependent on Hes proteins. In this way, Neurog3 establishes the posterior boundary of the serotonergic system by actively suppressing serotonergic specification in the spinal cord. These results explain how equivalent p3 progenitors within the hindbrain and the spinal cord produce functionally distinct neuron cell types. Copyright © 2014 the authors 0270-6474/14/3415223-11$15.00/0.

  5. Effects of new fluorinated analogues of GABA, pregabalin bioisosters, on the ambient level and exocytotic release of [3H]GABA from rat brain nerve terminals.

    Science.gov (United States)

    Borisova, T; Pozdnyakova, N; Shaitanova, E; Gerus, I; Dudarenko, M; Haufe, G; Kukhar, V

    2017-01-15

    Recently, we have shown that new fluorinated analogues of γ-aminobutyric acid (GABA), bioisosters of pregabalin (β-i-Bu-GABA), i.e. β-polyfluoroalkyl-GABAs (FGABAs), with substituents: β-CF 3 -β-OH (1), β-CF 3 (2); β-CF 2 CF 2 H (3), are able to increase the initial rate of [ 3 H]GABA uptake by isolated rat brain nerve terminals (synaptosomes), and this effect is higher than that of pregabalin. So, synthesized FGABAs are structural but not functional analogues of GABA. Herein, we assessed the effects of synthesized FGABAs (100μM) on the ambient level and exocytotic release of [ 3 H]GABA in nerve terminals and compared with those of pregabalin (100μM). It was shown that FGABAs 1-3 did not influence the ambient level of [ 3 H]GABA in the synaptosomal preparations, and this parameter was also not altered by pregabalin. During blockage of GABA transporters GAT1 by specific inhibitor NO-711, FGABAs and pregabalin also did not change ambient [ 3 H]GABA in synaptosomal preparations. Exocytotic release of [ 3 H]GABA from synaptosomes decreased in the presence of FGABAs 1-3 and pregabalin, and the effects of FGABAs 1 &3 were more significant than those of FGABAs 2 and pregabalin. FGABAs 1-3/pregabalin-induced decrease in exocytotic release of [ 3 H]GABA from synaptosomes was not a result of changes in the potential of the plasma membrane. Therefore, new synthesized FGABAs 1 &3 were able to decrease exocytotic release of [ 3 H]GABA from nerve terminals more effectively in comparison to pregabalin. Absence of unspecific side effects of FGABAs 1 &3 on the membrane potential makes these compounds perspective for medical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Role of sodium-calcium exchange in regulation of intracellular calcium in nerve terminals

    International Nuclear Information System (INIS)

    Sanchez-Armass, S.; Blaustein, M.P.

    1987-01-01

    Ca efflux from rat brain presynaptic nerve terminals (synaptosomes) was examined after loading the terminals with 45 Ca during a brief depolarization, usually in media containing 20 μM Ca labeled with 45 Ca, to assure a small (physiological) load. Efflux of 45 Ca was very slow in the absence of external Na and Ca and was greatly accelerated by Na and/or Ca. The dependence of 45 Ca efflux on external Na was sigmoid, with a Hill coefficient of ∼ 4.5; this implies that more than two external Na ions are required to activate the efflux of one Ca ion. The external Na (Na 0 )-dependent Ca efflux was inhibited by 1 mM external La, by low temperature, and by raising external K. With small Ca loads, the mitochondrial uncoupler, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), had negligible effect on either Ca uptake or efflux; with large loads, however, FCCP reduced the depolarization-stimulated Ca uptake and increased the Na 0 -dependent Ca efflux. These effects may be attributed to reduction of mitochondrial Ca sequestration. Mitochondria do not appear to sequester much Ca when the loads are smaller. Estimations of Ca efflux indicate that ∼ 20% of a small 45 Ca load may be extruded via Na + -Ca 2+ exchange within 1 s; this corresponds to a net Ca efflux of ∼ 110 pmol Ca x mg protein -1 x s -1 . This rate of extrusion is equivalent to the net Ca gain when the terminals fire at a frequency of ∼ 18/s. The data on the Ca efflux into Na- and Ca-free media indicate that the ATP-fueled Ca pump can only extrude ∼ 10-20 pmol Ca x mg protein -1 x s -1 . Thus the results imply that Na + -Ca 2+ exchange plays an important role in helping to extrude the Ca that enters during activity

  7. The terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs

    Directory of Open Access Journals (Sweden)

    Ed Zandro M. Taroc

    2017-10-01

    Yoshihara et al., 2005. Our data prove that correct development of the OBs and axonal connection of the olfactory/vomeronasal sensory neurons to the forebrain are not required for GnRH-1 ns migration, and suggest that the terminal nerve, which forms the GnRH-1 migratory scaffold, follows different guidance cues and differs in gene expression from olfactory/vomeronasal sensory neurons.

  8. Fluctuating serotonergic function in premenstrual dysphoric disorder and premenstrual syndrome: findings from neuroendocrine challenge tests.

    Science.gov (United States)

    Inoue, Y; Terao, T; Iwata, N; Okamoto, K; Kojima, H; Okamoto, T; Yoshimura, R; Nakamura, J

    2007-02-01

    Premenstrual dysphoric disorder (PMDD) has been assumed to be a subtype of premenstrual syndrome (PMS) with depressive symptoms, such as depressive mood, tension, anxiety, and mood liability during luteal phase. At present, no conclusion has been established about serotonergic function in PMDD. The purpose of this study was to investigate the serotonergic function of PMDD subjects in comparison to PMS without PMDD subjects and normal controls via neuroendocrine challenge tests. Twenty-four women (seven with PMDD, eight with PMS without PMDD, and nine normal controls) were tested on three occasions (follicular phase, early luteal phase, and late luteal phase) receiving paroxetine 20 mg orally as a serotonergic probe at 8:00 A: .M: . Plasma ACTH and cortisol were measured prior to the administration and every hour for 6 h thereafter. As a whole, there were significant differences in serotonergic function measured by ACTH and cortisol responses to paroxetine challenge across these three groups. PMDD subjects showed higher serotonergic function in follicular phase but lower serotonergic function in luteal phase, compared with women with PMS without PMDD and normal controls. The present findings suggest that PMDD women have fluctuating serotonergic function across their menstrual cycles and that the pattern may be different from PMS without PMDD.

  9. Neurofibroma Derived from the Deep Peroneal Nerve: A Case Report

    Directory of Open Access Journals (Sweden)

    Li-Ren Chang

    2006-06-01

    Full Text Available Neurofibromas may arise anywhere along a nerve from the dorsal root ganglion to the terminal nerve branches; however, peroneal nerve involvement is not common. Surgical resection of neurofibroma with total preservation of nerve function had been thought to be difficult. Here, we report a case of an intermuscular intraneural neurofibroma derived from the deep peroneal nerve in a patient with neurofibromatosis type 1. The diagnostic criteria, characteristics of imaging studies, and operative approach are described. The function of the deep peroneal nerve was preserved, with satisfactory results.

  10. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  11. Ultrasound-guided block of the axillary nerve

    DEFF Research Database (Denmark)

    Rothe, C; Lund, J; Jenstrup, M T

    2012-01-01

    The specific blocking of the axillary nerve has never been investigated clinically. We present four cases illustrating potential applications of the axillary nerve block in the perioperative setting and discuss possible directions for future research in this area. The axillary nerve blocks were all...... performed using a newly developed in-plane ultrasound-guided technique. In one patient undergoing arthroscopic shoulder surgery, we used the axillary nerve block as the only analgesic combined with propofol sedation and spontaneous breathing. Chronic shoulder pain was eliminated after the axillary nerve...... block in two patients. The pain score after arthroscopic shoulder surgery in these two patients remained low until termination of the nerve block. In a fourth patient, severe post-operative pain after osteosynthesis of a displaced proximal humerus fracture was almost eliminated after performing...

  12. Semi-quantitative ultrastructural analysis of the localization and neuropeptide content of gonadotropin releasing hormone nerve terminals in the median eminence throughout the estrous cycle of the rat.

    Science.gov (United States)

    Prevot, V; Dutoit, S; Croix, D; Tramu, G; Beauvillain, J C

    1998-05-01

    The ultrastructural appearance of gonadotropin releasing hormone-immunoreactive elements was studied in the external zone of the median eminence of adult female Wistar rats. On the one hand, the purpose of the study was to determine the distribution of gonadotropin releasing hormone terminals towards the parenchymatous basal lamina at the level of hypothalamo-hypophyseal portal vessels, throughout the estrous cycle. On the other hand, we have semi-quantified the gonadotropin releasing hormone content in nerve terminals or preterminals during this physiological condition. A morphometric study was coupled to a colloidal 15 mn gold postembedding immunocytochemistry procedure. Animals were killed at 09.00 on diestrus II, 0.900, 10.00, 13.00, 17.00 and 18.00 on proestrus and 09.00 on estrus (n = 4-8 rats/group). A preliminary light microscopic study was carried out to identify an antero-posterior part of median eminence strongly immunostained by anti-gonadotropin releasing hormone antibodies but which was, in addition, easily spotted. This last condition was necessary to make a good comparison between each animal. Contacts between gonadotropin releasing hormone nerve terminals and the basal lamina were observed only the day of proestrus. Such contacts, however, were rare and in the great majority of cases, gonadotropin releasing hormone terminals are separated from basal lamina by tanycytic end feet. The morphometric analysis showed no significant variation in average distance between gonadotropin releasing hormone terminals and capillaries throughout the estrous cycle. Consequently, it did not appear that a large neuroglial plasticity exists during the estrous cycle. However, the observation of contacts only on proestrus together with some ultrastructural images evoke the possibility of a slight plasticity. The semi-quantitative results show that the content of gonadotropin releasing hormone in the nerve endings presented two peaks on proestrus: one at 09.00 (23 +/- 5

  13. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport.

    Science.gov (United States)

    Borisova, Tatiana; Krisanova, Natalia; Borуsov, Arsenii; Sivko, Roman; Ostapchenko, Ludmila; Babic, Michal; Horak, Daniel

    2014-01-01

    The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.

  14. Acute corneal epithelial debridement unmasks the corneal stromal nerve responses to ocular stimulation in rats: implications for abnormal sensations of the eye.

    Science.gov (United States)

    Hirata, Harumitsu; Mizerska, Kamila; Dallacasagrande, Valentina; Guaiquil, Victor H; Rosenblatt, Mark I

    2017-05-01

    It is widely accepted that the mechanisms for transducing sensory information reside in the nerve terminals. Occasionally, however, studies have appeared demonstrating that similar mechanisms may exist in the axon to which these terminals are connected. We examined this issue in the cornea, where nerve terminals in the epithelial cell layers are easily accessible for debridement, leaving the underlying stromal (axonal) nerves undisturbed. In isoflurane-anesthetized rats, we recorded extracellularly from single trigeminal ganglion neurons innervating the cornea that are excited by ocular dryness and cooling: low-threshold (2°C) cold-sensitive plus dry-sensitive neurons playing possible roles in tearing and ocular pain. We found that the responses in both types of neurons to dryness, wetness, and menthol stimuli were effectively abolished by the debridement, indicating that their transduction mechanisms lie in the nerve terminals. However, some responses to the cold, heat, and hyperosmolar stimuli in low-threshold cold-sensitive plus dry-sensitive neurons still remained. Surprisingly, the responses to heat in approximately half of the neurons were augmented after the debridement. We were also able to evoke these residual responses and follow the trajectory of the stromal nerves, which we subsequently confirmed histologically. The residual responses always disappeared when the stromal nerves were cut at the limbus, suggesting that the additional transduction mechanisms for these sensory modalities originated most likely in stromal nerves. The functional significance of these residual and enhanced responses from stromal nerves may be related to the abnormal sensations observed in ocular disease. NEW & NOTEWORTHY In addition to the traditional view that the sensory transduction mechanisms exist in the nerve terminals, we report here that the proximal axons (stromal nerves in the cornea from which these nerve terminals originate) may also be capable of transducing

  15. Stimuli of Sensory-Motor Nerves Terminate Arterial Contractile Effects of Endothelin-1 by CGRP and Dissociation of ET-1/ETA-Receptor Complexes

    Science.gov (United States)

    Meens, Merlijn J. P. M. T.; Compeer, Matthijs G.; Hackeng, Tilman M.; van Zandvoort, Marc A.; Janssen, Ben J. A.; De Mey, Jo G. R.

    2010-01-01

    Background Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism. Methodology/Principal findings In isolated rat mesenteric resistance arteries, ETA-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1 but did not prevent persistent effects of the peptide. Stimuli of peri-vascular vasodilator sensory-motor nerves such as capsaicin not only reduced but also terminated long-lasting effects of ET-1. This was prevented by CGRP-receptor antagonists and was mimicked by exogenous calcitonin gene-related peptide (CGRP). Using 2-photon laser scanning microscopy in vital intact arteries, capsaicin and CGRP, but not ETA-antagonism, were observed to promote dissociation of pre-existing ET-1/ETA-receptor complexes. Conclusions Irreversible binding and activation of ETA-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1. PMID:20532232

  16. Effects of Stress and MDMA on Hippocampal Gene Expression

    OpenAIRE

    Weber, Georg F.; Johnson, Bethann N.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neuro...

  17. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2017-03-01

    Full Text Available Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN.

  18. Disruption of the Serotonergic System after Neonatal Hypoxia-Ischemia in a Rodent Model

    Directory of Open Access Journals (Sweden)

    Kathryn M. Buller

    2012-01-01

    Full Text Available Identifying which specific neuronal phenotypes are vulnerable to neonatal hypoxia-ischemia, where in the brain they are damaged, and the mechanisms that produce neuronal losses are critical to determine the anatomical substrates responsible for neurological impairments in hypoxic-ischemic brain-injured neonates. Here we describe our current work investigating how the serotonergic network in the brain is disrupted in a rodent model of preterm hypoxia-ischemia. One week after postnatal day 3 hypoxia-ischemia, losses of serotonergic raphé neurons, reductions in serotonin levels in the brain, and reduced serotonin transporter expression are evident. These changes can be prevented using two anti-inflammatory interventions; the postinsult administration of minocycline or ibuprofen. However, each drug has its own limitations and benefits for use in neonates to stem damage to the serotonergic network after hypoxia-ischemia. By understanding the fundamental mechanisms underpinning hypoxia-ischemia-induced serotonergic damage we will hopefully move closer to developing a successful clinical intervention to treat neonatal brain injury.

  19. Anomalous Innervation of the Median Nerve in the Arm in the Absence of the Musculocutaneous Nerve

    Directory of Open Access Journals (Sweden)

    Khursheed Raza

    2017-03-01

    Full Text Available The brachial plexus innervates the upper extremities. While variations in the formation of the brachial plexus and its terminal branches are quite common, it is uncommon for the median nerve to innervate the muscles of the arm. During the dissection of an elderly male cadaver at the Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India, in 2016, the coracobrachialis muscle was found to be supplied by a direct branch from the lateral root of the median nerve and the musculocutaneous nerve was absent. The branches of the median nerve supplied the biceps brachii and brachialis muscles and the last branch continued as the lateral cutaneous nerve of the forearm. These variations may present atypically in cases of arm flexor paralysis or sensory loss on the lateral forearm. Knowledge of these variations is important in surgeries and during the administration of regional anaesthesia near the shoulder joint and upper arm.

  20. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice.

    Science.gov (United States)

    Keesom, Sarah M; Morningstar, Mitchell D; Sandlain, Rebecca; Wise, Bradley M; Hurley, Laura M

    2018-05-12

    Early-life experiences, including maternal deprivation and social isolation during adolescence, have a profound influence on a range of adult social behaviors. Post-weaning social isolation in rodents influences behavior in part through the alteration of neuromodulatory systems, including the serotonergic system. Of significance to social behavior, the serotonergic system richly innervates brain areas involved in vocal communication, including the auditory system. However, the influence of isolation on serotonergic input to the auditory system remains underexplored. Here, we assess whether 4 weeks of post-weaning individual housing alters serotonergic fiber density in the inferior colliculus (IC), an auditory midbrain nucleus in which serotonin alters auditory-evoked activity. Individually housed male and female mice were compared to conspecifics housed socially in groups of three. Serotonergic projections were subsequently visualized with an antibody to the serotonin transporter, which labels serotonergic fibers with relatively high selectivity. Fiber densities were estimated in the three major subregions of the IC using line-scan intensity analysis. Individually housed female mice showed a significantly reduced fiber density relative to socially housed females, which was accompanied by a lower body weight in individually housed females. In contrast, social isolation did not affect serotonergic fiber density in the IC of males. This finding suggests that sensitivity of the serotonergic system to social isolation is sex-dependent, which could be due to a sex difference in the effect of isolation on psychosocial stress. Since serotonin availability depends on social context, this finding further suggests that social isolation can alter the acute social regulation of auditory processing. Copyright © 2018. Published by Elsevier B.V.

  1. [Local GABA-ergic modulation of serotonergic neuron activity in the nucleus raphe magnus].

    Science.gov (United States)

    Iniushkin, A N; Merkulova, N A; Orlova, A O; Iniushkina, E M

    2009-07-01

    In voltage-clamp experimental on slices of the rat brainstem the effects of 5-HT and GABA on serotonergic neurons of nucleus raphe magnus were investigated. Local applications of 5-HT induced an increase in IPCSs frequency and amplitude in 45% of serotonergic cells. The effect suppressed by the blocker of fast sodium channels tetradotoxin. Antagonist of GABA receptor gabazine blocked IPSCs in neurons both sensitive and non-sensitive to 5-HT action. Applications of GABA induced a membrane current (I(GABA)), which was completely blocked by gabazine. The data suggest self-control of the activity of serotonergic neurons in nucleus raphe magnus by negative feedback loop via local GABAergic interneurons.

  2. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers

    Science.gov (United States)

    Ohana, Ora; Sakmann, Bert

    1998-01-01

    Dual whole-cell voltage recordings were made from synaptically connected layer 5 (L5) pyramidal neurones in slices of the young (P14-P16) rat neocortex. The Ca2+ buffers BAPTA or EGTA were loaded into the presynaptic neurone via the pipette recording from the presynaptic neurone to examine their effect on the mean and the coefficient of variation (c.v.) of single fibre EPSP amplitudes, referred to as unitary EPSPs. The fast Ca2+ buffer BAPTA reduced unitary EPSP amplitudes in a concentration dependent way. With 0.1 mm BAPTA in the pipette, the mean EPSP amplitude was reduced by 14 ± 2.8% (mean ±s.e.m., n = 7) compared with control pipette solution, whereas with 1.5 mm BAPTA, the mean EPSP amplitude was reduced by 72 ± 1.5% (n = 5). The concentration of BAPTA that reduced mean EPSP amplitudes to one-half of control was close to 0.7 mm. Saturation of BAPTA during evoked release was tested by comparing the effect of loading the presynaptic neurone with 0.1 mm BAPTA at 2 and 1 mm[Ca2+]o. Reducing [Ca2+]o from 2 to 1 mm, thereby reducing Ca2+ influx into the terminals, decreased the mean EPSP amplitude by 60 ± 2.2% with control pipette solution and by 62 ± 1.9% after loading with 0.1 mm BAPTA (n = 7). The slow Ca2+ buffer EGTA at 1 mm reduced mean EPSP amplitudes by 15 ± 2.5% (n = 5). With 10 mm EGTA mean EPSP amplitudes were reduced by 56 ± 2.3% (n = 4). With both Ca2+ buffers, the reduction in mean EPSP amplitudes was associated with an increase in the c.v. of peak EPSP amplitudes, consistent with a reduction of the transmitter release probability as the major mechanism underlying the reduction of the EPSP amplitude. The results suggest that in nerve terminals of thick tufted L5 pyramidal cells the endogenous mobile Ca2+ buffer is equivalent to less than 0.1 mm BAPTA and that at many release sites of pyramidal cell terminals the Ca2+ channel domains overlap, a situation comparable with that at large calyx-type terminals in the brainstem. PMID:9782165

  3. Stimuli of sensory-motor nerves terminate arterial contractile effects of endothelin-1 by CGRP and dissociation of ET-1/ET(A-receptor complexes.

    Directory of Open Access Journals (Sweden)

    Merlijn J P M T Meens

    Full Text Available BACKGROUND: Endothelin-1 (ET-1, a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i limits reversing effects of the antagonists and (ii can be selectively dissociated by an endogenous counterbalancing mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In isolated rat mesenteric resistance arteries, ET(A-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1 but did not prevent persistent effects of the peptide. Stimuli of peri-vascular vasodilator sensory-motor nerves such as capsaicin not only reduced but also terminated long-lasting effects of ET-1. This was prevented by CGRP-receptor antagonists and was mimicked by exogenous calcitonin gene-related peptide (CGRP. Using 2-photon laser scanning microscopy in vital intact arteries, capsaicin and CGRP, but not ET(A-antagonism, were observed to promote dissociation of pre-existing ET-1/ET(A-receptor complexes. CONCLUSIONS: Irreversible binding and activation of ET(A-receptors by ET-1 (i occur at an antagonist-insensitive site of the receptor and (ii are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1.

  4. Different Serotonergic Expression in Nevomelanocytic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Naimi-Akbar, Clara; Ritter, Markus; Demel, Sasika; El-Nour, Husameldin; Hedblad, Mari-Anne [Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna (Sweden); Azmitia, Efrain C. [Department of Biology and Psychiatry, New York University, NY (United States); Nordlind, Klas, E-mail: klas.nordlind@karolinska.se [Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna (Sweden)

    2010-06-07

    The neuromediator serotonin (5-hydroxytryptamine; 5-HT) has been proposed to play a role in tumor progression. Thus, the aim of the present investigation was to determine whether alterations in the serotonergic system occur in nevomelanocytic tumors. For this purpose, paraffin-embedded biopsies of superficial spreading malignant melanoma (SSM), dysplastic compound nevi (DN) and benign compound nevi (BCN) were characterized with regard to their expression of 5-HT, the 5-HT1A and 5-HT2A receptors, and the serotonin transporter protein (SERT), by immunohistochemical analysis. Melanocytes in the region surrounding the tumor were found to express both the 5-HT1A and 5-HT2A receptors. Tumor cells that immunostained positively for the different serotonergic markers were observed in the suprabasal epidermis of DN tissue and, to an even greater extent, in the case of SSM. Furthermore, some of these latter cells expressed both 5-HT1AR and 5-HT2AR. The level of expression of 5-HT1AR at the junctional area was lower for SSM than for DN or BCN. As the degree of atypia increased, the intensity of tumor cell staining in the dermis for 5-HT1AR and SERT declined. Vessel immunoreactivity for 5-HT2A was more intense in SSM than in BCN tissue. Round-to-dendritic cells that expressed both SERT and 5-HT1AR were seen to infiltrate into the dermal region of the tumor, this infiltration being more evident in the case of DN and SSM. These latter cells were also tryptase-positive, indicating that they are mast cells. Thus, alterations in serotonergic system may be involved in nevomelanocytic tumors and mast cells may play an important role in this connection.

  5. Central serotonergic and noradrenergic receptors in functional dyspepsia

    Institute of Scientific and Technical Information of China (English)

    S O'Mahony; TG Dinan; PW Keeling; ASB Chua

    2006-01-01

    Functional dyspepsia is a symptom complex characterised by upper abdominal discomfort or pain, early satiety,motor abnormalities, abdominal bloating and nausea in the absence of organic disease. The central nervous system plays an important role in the conducting and processing of visceral signals. Alterations in brain processing of pain, perception and affective responses may be key factors in the pathogenesis of functional dyspepsia. Central serotonergic and noradrenergic receptor systems are involved in the processing of motor,sensory and secretory activities of the gastrointestinal tract. Visceral hypersensitivity is currently regarded as the mechanism responsible for both motor alterations and abdominal pain in functional dyspepsia. Some studies suggest that there are alterations in central serotonergic and noradrenergic systems which may partially explain some of the symptoms of functional dyspepsia. Alterations in the autonomic nervous system may be implicated in the motor abnormalities and increases in visceral sensitivity in these patients.Noradrenaline is the main neurotransmitter in the sympathetic nervous system and again alterations in the functioning of this system may lead to changes in motor function. Functional dyspepsia causes considerable burden on the patient and society. The pathophysiology of functional dyspepsia is not fully understood but alterations in central processing by the serotonergic and noradrenergic systems may provide plausible explanations for at least some of the symptoms and offer possible treatment targets for the future.

  6. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus.

    Science.gov (United States)

    Zhou, Li; Liu, Ming-Zhe; Li, Qing; Deng, Juan; Mu, Di; Sun, Yan-Gang

    2017-03-21

    Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Iodine 125-lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells

    International Nuclear Information System (INIS)

    Yagaloff, K.A.; Hartig, P.R.

    1985-01-01

    125 I-Lysergic acid diethylamide ( 125 I-LSD) binds with high affinity to serotonergic sites on rat choroid plexus. These sites were localized to choroid plexus epithelial cells by use of a novel high resolution stripping film technique for light microscopic autoradiography. In membrane preparations from rat choroid plexus, the serotonergic site density was 3100 fmol/mg of protein, which is 10-fold higher than the density of any other serotonergic site in brain homogenates. The choroid plexus site exhibits a novel pharmacology that does not match the properties of 5-hydroxytryptamine-1a (5-HT1a), 5-HT1b, or 5-HT2 serotonergic sites. 125 I-LSD binding to the choroid plexus site is potently inhibited by mianserin, serotonin, and (+)-LSD. Other serotonergic, dopaminergic, and adrenergic agonists and antagonists exhibit moderate to weak affinities for this site. The rat choroid plexus 125 I-LSD binding site appears to represent a new type of serotonergic site which is located on non-neuronal cells in this tissue

  8. Arthroscopic medial meniscus trimming or repair under nerve blocks: Which nerves should be blocked?

    Science.gov (United States)

    Taha, AM; Abd-Elmaksoud, AM

    2016-01-01

    Background: This study aimed to determine the role of the sciatic and obturator nerve blocks (in addition to femoral block) in providing painless arthroscopic medial meniscus trimming/repair. Materials and Methods: One hundred and twenty patients with medial meniscus tear, who had been scheduled to knee arthroscopy, were planned to be included in this controlled prospective double-blind study. The patients were randomly allocated into three equal groups; FSO, FS, and FO. The femoral, sciatic, and obturator nerves were blocked in FSO groups. The femoral and sciatic nerves were blocked in FS group, while the femoral and obturator nerves were blocked in FO group. Intraoperative pain and its causative surgical maneuver were recorded. Results: All the patients (n = 7, 100%) in FO group had intraoperative pain. The research was terminated in this group but completed in FS and FSO groups (40 patients each). During valgus positioning of the knee for surgical management of the medial meniscus tear, the patients in FS group experienced pain more frequently than those in FSO group (P = 0.005). Conclusion: Adding a sciatic nerve block to the femoral nerve block is important for painless knee arthroscopy. Further adding of an obturator nerve block may be needed when a valgus knee position is required to manage the medial meniscus tear. PMID:27375382

  9. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Science.gov (United States)

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  10. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Directory of Open Access Journals (Sweden)

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  11. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape.

    Science.gov (United States)

    Lloret-Fernández, Carla; Maicas, Miren; Mora-Martínez, Carlos; Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter; Flames, Nuria

    2018-03-22

    Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis -regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans . Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. © 2018, Lloret-Fernández et al.

  12. Nerve growth factor reduces apoptotic cell death in rat facial motor neurons after facial nerve injury.

    Science.gov (United States)

    Hui, Lian; Yuan, Jing; Ren, Zhong; Jiang, Xuejun

    2015-01-01

    To assess the effects of nerve growth factor (NGF) on motor neurons after induction of a facial nerve lesion, and to compare the effects of different routes of NGF injection on motor neuron survival. This study was carried out in the Department of Otolaryngology Head & Neck Surgery, China Medical University, Liaoning, China from October 2012 to March 2013. Male Wistar rats (n = 65) were randomly assigned into 4 groups: A) healthy controls; B) facial nerve lesion model + normal saline injection; C) facial nerve lesion model + NGF injection through the stylomastoid foramen; D) facial nerve lesion model + intraperitoneal injection of NGF. Apoptotic cell death was detected using the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. Expression of caspase-3 and p53 up-regulated modulator of apoptosis (PUMA) was determined by immunohistochemistry. Injection of NGF significantly reduced cell apoptosis, and also greatly decreased caspase-3 and PUMA expression in injured motor neurons. Group C exhibited better efficacy for preventing cellular apoptosis and decreasing caspase-3 and PUMA expression compared with group D (pfacial nerve injury in rats. The NGF injected through the stylomastoid foramen demonstrated better protective efficacy than when injected intraperitoneally.

  13. Drugs of abuse specifically sensitize noradrenergic and serotonergic neurons via a non-dopaminergic mechanism.

    Science.gov (United States)

    Lanteri, Christophe; Salomon, Lucas; Torrens, Yvette; Glowinski, Jacques; Tassin, Jean-Pol

    2008-06-01

    A challenge in drug dependence is to delineate long-term neurochemical modifications induced by drugs of abuse. Repeated d-amphetamine was recently shown to disrupt a mutual regulatory link between noradrenergic and serotonergic neurons, thus inducing long-term increased responses to d-amphetamine and para-chloroamphetamine, respectively. We show here that such a sensitization of noradrenergic and serotonergic neurons also occurs following repeated treatment with cocaine, morphine, or alcohol, three compounds belonging to main groups of addictive substances. In all cases, this sensitization is prevented by alpha 1b-adrenergic and 5-HT2A receptors blockade, indicating the critical role of these receptors on long-term effects of drugs of abuse. However, repeated treatments with two non-addictive antidepressants, venlafaxine, and clorimipramine, which nevertheless inhibit noradrenergic and serotonergic reuptake, do not induce noradrenergic and serotonergic neurons sensitization. Similarly, this sensitization does not occur following repeated treatments with a specific inhibitor of dopamine (DA) reuptake, GBR12783. Moreover, we show that the effects of SCH23390, a D1 receptor antagonist known to inhibit development of d-amphetamine behavioral sensitization, are due to its 5-HT2C receptor agonist property. SCH23390 blocks amphetamine-induced release of norepinephrine and RS102221, a 5-HT2C antagonist, can reverse this inhibition as well as inhibition of noradrenergic sensitization and development of behavioral sensitization induced by repeated d-amphetamine. We propose that noradrenergic/serotonergic uncoupling is a common neurochemical consequence of repeated consumption of drugs of abuse, unrelated with DA release. Our data also suggest that compounds able to restore the link between noradrenergic and serotonergic modulatory systems could represent important therapeutic targets for investigation.

  14. Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin

    DEFF Research Database (Denmark)

    Nielsen, Kirsten; Brask, Dorthe; Knudsen, Gitte M.

    2006-01-01

    Tracking serotonergic pathways in the brain through immunodetection of serotonin has widely been used for the anatomical characterization of the serotonergic system. Immunostaining for serotonin is also frequently applied for the visualization of individual serotonin containing fibers...... and quantification of serotonin positive fibers has been widely used to detect changes in the serotonergic innervation. However, particularly in conditions with enhanced serotonin metabolism the detection level of serotonin may lead to an underestimation of the true number of serotonergic fibers. The serotonin...... immunostained for serotonin and SERT protein and colocalization was quantified in several brain areas by confocal microscopy. In comparison with untreated rats, MAO inhibitor treated rats had a significantly higher number (almost 200% increase) of serotonin immunopositive fibers whereas no difference...

  15. Differential serotonergic mediation of aggression in roosters selected for resistance and susceptibility to Marek's disease

    Science.gov (United States)

    Serotonin (5-HT) is a primary regulating neurotransmitter involved in aggressive and impulsive behaviors in mammals. Previous studies have also demonstrated the function of serotonergic system in regulating aggression is affected by both genetic and environmental factors. The serotonergic system m...

  16. The nervus terminalis in the chick: a FMRFamide-immunoreactive and AChE-positive nerve.

    Science.gov (United States)

    Wirsig-Wiechmann, C R

    1990-07-16

    The chick terminal nerve (TN) was examined by immunocytochemical and histochemical methods. Molluscan cardioexcitatory peptide-immunoreactive (FMRFamide-ir) and acetylcholinesterase (AChE)-positive TN perikarya and fibers were distributed along olfactory and trigeminal nerves. FMRFamide-ir TN fibers terminated in the olfactory lamina propria and epithelium and in ganglia along the rostroventral nasal septum. This initial description of several populations of avian TN neurons should provide the foundation for future developmental studies of this system.

  17. Serotonergic modulation of hippocampal pyramidal cells in euthermic, cold-acclimated, and hibernating hamsters

    Science.gov (United States)

    Horrigan, D. J.; Horwitz, B. A.; Horowitz, J. M.

    1997-01-01

    Serotonergic fibers project to the hippocampus, a brain area previously shown to have distinctive changes in electroencephalograph (EEG) activity during entrance into and arousal from hibernation. The EEG activity is generated by pyramidal cells in both hibernating and nonhibernating species. Using the brain slice preparation, we characterized serotonergic responses of these CA1 pyramidal cells in euthermic, cold-acclimated, and hibernating Syrian hamsters. Stimulation of Shaffer-collateral/commissural fibers evoked fast synaptic excitation of CA1 pyramidal cells, a response monitored by recording population spikes (the synchronous generation of action potentials). Neuromodulation by serotonin (5-HT) decreased population spike amplitude by 54% in cold-acclimated animals, 80% in hibernating hamsters, and 63% in euthermic animals. The depression was significantly greater in slices from hibernators than from cold-acclimated animals. In slices from euthermic animals, changes in extracellular K+ concentration between 2.5 and 5.0 mM did not significantly alter serotonergic responses. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin mimicked serotonergic inhibition in euthermic hamsters. Results show that 5-HT is a robust neuromodulator not only in euthermic animals but also in cold-acclimated and hibernating hamsters.

  18. Neuropeptides as endogenous neuronal growth regulatory factors on serotonergic maturation

    International Nuclear Information System (INIS)

    Davila-Garcia, M.I.

    1989-01-01

    Products of the proopiomelanocortin molecule as well as leu- and met-enkephalin were tested for their effects on serotonergic neuronal maturation. High affinity uptake of ( 3 H)5-HT and morphometrics using immunocytochemistry specific for serotonergic neurons were used to monitor neuronal maturation. Cultured brainstem raphe neurons from 14 day fetuses, in the presence or absence of target tissue, were administered neuropeptides at various concentrations for 1,3 or 5 days in culture. ACTH peptides stimulate neurite length and, with the endorphins, the expression of ( 3 H)5-HT uptake by serotonergic fetal neurons cultured alone but had no effect when these neurons were cocultured with hippocampal target cells. A daily dose of leu-enkephalin to these cells inhibited neuronal uptake after 5 days of exposure and decreased neurite cell length in 24 hr cultures. In contrast, a single dose of leu-enkephalin at plating stimulated uptake after 5 days while co-administration of bacitracin inhibited uptake expression. Naloxone reversed the opioid effect and stimulated uptake when administered alone. Desulfated-CCK, which resembles leu-enkephalin, was equally potent as leu-enkephalin in inhibiting uptake

  19. Neuropeptides as endogenous neuronal growth regulatory factors on serotonergic maturation

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Garcia, M.I.

    1989-01-01

    Products of the proopiomelanocortin molecule as well as leu- and met-enkephalin were tested for their effects on serotonergic neuronal maturation. High affinity uptake of ({sup 3}H)5-HT and morphometrics using immunocytochemistry specific for serotonergic neurons were used to monitor neuronal maturation. Cultured brainstem raphe neurons from 14 day fetuses, in the presence or absence of target tissue, were administered neuropeptides at various concentrations for 1,3 or 5 days in culture. ACTH peptides stimulate neurite length and, with the endorphins, the expression of ({sup 3}H)5-HT uptake by serotonergic fetal neurons cultured alone but had no effect when these neurons were cocultured with hippocampal target cells. A daily dose of leu-enkephalin to these cells inhibited neuronal uptake after 5 days of exposure and decreased neurite cell length in 24 hr cultures. In contrast, a single dose of leu-enkephalin at plating stimulated uptake after 5 days while co-administration of bacitracin inhibited uptake expression. Naloxone reversed the opioid effect and stimulated uptake when administered alone. Desulfated-CCK, which resembles leu-enkephalin, was equally potent as leu-enkephalin in inhibiting uptake.

  20. Serotonin synthesis, release and reuptake in terminals: a mathematical model

    Directory of Open Access Journals (Sweden)

    Best Janet

    2010-08-01

    Full Text Available Abstract Background Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. Methods We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. Results We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to

  1. Increased postpartum haemorrhage, the possible relation with serotonergic and other psychopharmacological drugs: a matched cohort study

    NARCIS (Netherlands)

    Heller, Hanna M.; Ravelli, Anita C. J.; Bruning, Andrea H. L.; de Groot, Christianne J. M.; Scheele, Fedde; van Pampus, Maria G.; Honig, Adriaan

    2017-01-01

    Postpartum haemorrhage is a major obstetric risk worldwide. Therefore risk factors need to be investigated to control for this serious complication. A recent systematic review and meta-analysis revealed that the use of both serotonergic and non-serotonergic antidepressants in pregnancy are

  2. Effects of antibiotics on uptake of calcium into isolated nerve terminals

    International Nuclear Information System (INIS)

    Atchison, W.D.; Adgate, L.; Beaman, C.M.

    1988-01-01

    The goal of the present study was to determine whether several antibiotics which are known to block neuromuscular transmission would impair depolarization-dependent and/or -independent uptake of calcium into isolated nerve terminals prepared from forebrain synaptosomes of rats by conventional methods. Antibiotics tested for potential block of Ca++ uptake included the aminoglycosides neomycin and streptomycin, the lincosamide clindamycin, oxytetracycline and polymyxin B. Drugs were applied in concentrations ranging from 1 to 1000 microM. Uptake of 45Ca was determined during depolarization induced by an elevated K+ concentration (77.5 mM). Influxes of 45Ca during 1 and 10 sec of depolarization were used to assess Ca++ uptake via a fast, inactivating path and total uptake, respectively. Uptake of 45Ca during 10 sec of depolarization into synaptosomes which were previously depolarized for 10 sec in the presence of 77.5 mM K+ but in the absence of external Ca++ was used to measure uptake during a slow, noninactivating path. Total depolarization-dependent uptake of 45Ca was depressed significantly by all antibiotics tested except oxytetracycline; however, the various agents differed with respect to their efficacy and potency as blockers of Ca influx. The fast component of uptake, which is thought to be associated with neurotransmitter release, was decreased significantly by all antibiotics. Neomycin and polymyxin were the most potent and most effective at lowering fast phase 45Ca influx; streptomycin, was intermediate in effectiveness whereas clindamycin and oxytetracycline were only effective at concentrations greater than or equal to 100 microM. Only clindamycin, streptomycin and polymyxin B caused significant reductions in the slow phase of 45Ca uptake

  3. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Science.gov (United States)

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Nerve endings in the heart of teleosts.

    Science.gov (United States)

    Kumar, S

    1979-01-01

    The nerve endings in the heart of fishes were studied using silver impregnation techniques. The heart chambers are profusely innervated by the sympathetic, parasympathetic (vagal) and postganglionic fibers of the intracardiac ganglia situated at the sinuatrial and the atrioventricular junctions. The plexuses are composed of medullated and nonmedullated fibers. The nerve fibers generally end freely and are slightly branched or unbranched terminations of myelinated and unmyelinated fibers. Moreover, a few nerve fibers end redundant in the form of end-rings, bulb-like, bush-like, club-shaped end end-coil like structures. The complex unencapsulated types of endings are also found in the myocardium of the atrium and the ventricle. The encapsulated endings (Vater-Pacinian; Krause end-bulb) could not be observed.

  5. The role of the serotonergic system in suicidal behavior

    Science.gov (United States)

    Sadkowski, Marta; Dennis, Brittany; Clayden, Robert C; ElSheikh, Wala; Rangarajan, Sumathy; DeJesus, Jane; Samaan, Zainab

    2013-01-01

    Serotonin is a widely investigated neurotransmitter in several psychopathologies, including suicidal behavior (SB); however, its role extends to several physiological functions involving the nervous system, as well as the gastrointestinal and cardiovascular systems. This review summarizes recent research into ten serotonergic genes related to SB. These genes – TPH1, TPH2, SLC6A4, SLC18A2, HTR1A, HTR1B, HTR2A, DDC, MAOA, and MAOB – encode proteins that are vital to serotonergic function: tryptophan hydroxylase; the serotonin transporter 5-HTT; the vesicular transporter VMAT2; the HTR1A, HTR1B, and HTR2A receptors; the L-amino acid decarboxylase; and the monoamine oxidases. This review employed a systematic search strategy and a narrative research methodology to disseminate the current literature investigating the link between SB and serotonin. PMID:24235834

  6. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    Directory of Open Access Journals (Sweden)

    Annina Huser

    Full Text Available The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.

  7. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees.

    Science.gov (United States)

    Stimpson, Cheryl D; Barger, Nicole; Taglialatela, Jared P; Gendron-Fitzpatrick, Annette; Hof, Patrick R; Hopkins, William D; Sherwood, Chet C

    2016-03-01

    Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Affective spectrum disorders and role of serotonergic system of the brain

    Directory of Open Access Journals (Sweden)

    Timotijević Ivana P.

    2014-01-01

    Full Text Available Affective spectrum disorders include mood and anxiety disorders, whereas the term functional somatic syndromes describes disorders in which the main symptom is chronic pain, with no pathognomonic tissue damage, such as fibromyalgia, irritable colon, tension headache. Pain as a symptom is often present in patients with depression and anxiety, and similarly, depressed mood, anxiety and other psychiatric symptoms are common in patients with functional somatic syndromes. This explains attitudes that affective disorders and functional somatic syndromes should be found along the same spectrum, due to a similar neurobiochemicalmehanism and dysfunction of these CNS structures and neurotransmitter systems, which lead to similar symptoms in both groups. The symptoms of affective disorders, including somatic are associated with serotonin and serotonergic transmission in the CNS. The existence of depressive and anxiety disorders, such as fatigue, sleep disorders, cognitive disorders, depressed mood, anxiety, and functional somatic syndromes code indicate a similar mechanism of origin. Hypothesis of central neuropathic pain explains the possibility of the descending inhibitory pain mechanisms, including serotonergic and noradrenergic projections and their receptors. Central suprasegmental senzitization in nociceptive pathways, also at the level of the thalamus and the sensory cortex, trigered by an emotional stressors can cause painful symptoms in both groups of disorders. Serotonergic and noradrenergic pathways and voltage sensitive channels of their receptors are included in the mechanism. Modern psychopharmacology can no longer ignore the existence of painful symptoms in affective disorder or depressive and anxiety symptoms in functional somatic syndromes and their treatment can improve. Therapeutic effects of SSRI and SNRI antidepressants and alpha 2 delta ligands for all kinds of painful symptoms in affective disorders - serotonergic spectrum is

  9. Ciguatoxin enhances quantal transmitter release from frog motor nerve terminals.

    Science.gov (United States)

    Molgó, J.; Comella, J. X.; Legrand, A. M.

    1990-01-01

    1. Ciguatoxin (CTX), a marine toxin produced by the benthic dinoflagellate Gambierdiscus toxicus, is responsible for a complex endemic disease in man known as ciguatera fish poisoning. In the present study we have investigated the effects of purified CTX extracted for Gymnothorax javanicus moray-eel liver on frog isolated neuromuscular preparations with conventional electrophysiological techniques. 2. CTX (1-2.5 nM) applied to cutaneous pectoris nerve-muscle preparations induced, after a short delay, spontaneous fibrillations of the muscle fibres that could be suppressed with 1 microM tetrodotoxin (TTX) or by formamide to uncouple excitation-contraction. 3. In preparations treated with formamide, CTX (1-2.5 nM) caused either spontaneous or repetitive muscle action potentials (up to frequencies of 60-100 Hz) in response to a single nerve stimulus. Recordings performed at extrajunctional regions of the muscle membrane revealed that during the repetitive firing a prolongation of the repolarizing phase of the action potential occurred. At junctional sites the repetitive action potentials were triggered by repetitive endplate potentials (e.p.ps). 4. CTX (2.5 nM) caused a TTX-sensitive depolarization of the muscle membrane. 5. In junctions equilibrated in solutions containing high Mg2+ + low Ca2+, addition of CTX (1.5 nM) first induced an average increase of 239 +/- 36% in the mean quantal content of e.p.ps. Subsequently CTX reduced and finally blocked nerve-evoked transmitter release irreversibly. 6. CTX (1.5-2.5 nM) increased the frequency of miniature endplate potentials (m.e.p.ps) in junctions bathed either in normal Ringer, low Ca2(+)-high Mg2+ medium or in a nominally Ca2(+)-free solution containing EGTA.2+ Extensive washing with toxin-free solutions did not reverse the effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1972891

  10. [Psychotherapy with Adjuvant use of Serotonergic Psychoactive Substances: Possibilities and Challenges].

    Science.gov (United States)

    Majić, Tomislav; Jungaberle, Henrik; Schmidt, Timo T; Zeuch, Andrea; Hermle, Leo; Gallinat, Jürgen

    2017-07-01

    Background  Recently, scientific interest in the therapeutic potential of serotonergic and psilocybin hallucinogens (psychedelics) such as lysergic acid diethylamide (LSD) and entactogens like 3,4-methylendioxymethamphetamine (MDMA) within the framework of psychotherapy has resumed. The present article provides an overview on the current evidence on substance-assisted psychotherapy with these substances. Method  A selective search was carried out in the PubMed and Cochrane Library including studies investigating the clinical use of serotonergic psychoactive substances since 2000. Results  Studies were found investigating the following indications: alcohol (LSD and psilocybin) and tobacco addiction (psilocybin), anxiety and depression in patients suffering from life-threatening somatic illness (LSD and psilocybin), obsessive-compulsive disorder (OCD) (psilocybin), treatment-resistant major depression (psilocybin), and posttraumatic stress disorder (PTSD) (MDMA). Discussion  Substance use disorders, PTSD and anxiety and depression in patients suffering from life-threatening somatic illness belong to the indications with the best evidence for substance-assisted psychotherapy with serotonergic psychoactive agents. To date, studies indicate efficacy and relatively good tolerability. Further studies are needed to determine whether these substances may represent suitable and effective treatment options for some treatment-resistant psychiatric disorders in the future. © Georg Thieme Verlag KG Stuttgart · New York.

  11. Intramuscular Distribution of the Abducens Nerve in the Lateral Rectus Muscle for the Management of Strabismus.

    Science.gov (United States)

    Shin, Hyun Jin; Lee, Shin-Hyo; Shin, Kang-Jae; Koh, Ki-Seok; Song, Wu-Chul

    2018-06-01

    To elucidate the intramuscular distribution and branching patterns of the abducens nerve in the lateral rectus (LR) muscle so as to provide anatomical confirmation of the presence of compartmentalization, including for use in clinical applications such as botulinum toxin injections. Thirty whole-mount human cadaver specimens were dissected and then Sihler's stain was applied. The basic dimensions of the LR and its intramuscular nerve distribution were investigated. The distances from the muscle insertion to the point at which the abducens nerve enters the LR and to the terminal nerve plexus were also measured. The LR was 46.0 mm long. The abducens nerve enters the muscle on the posterior one-third of the LR and then typically divides into a few branches (average of 1.8). This supports a segregated abducens nerve selectively innervating compartments of the LR. The intramuscular nerve distribution showed a Y-shaped ramification with root-like arborization. The intramuscular nerve course finished around the middle of the LR (24.8 mm posterior to the insertion point) to form the terminal nerve plexus. This region should be considered the optimal target site for botulinum toxin injections. We have also identified the presence of an overlapping zone and communicating nerve branches between the neighboring LR compartments. Sihler's staining is a useful technique for visualizing the entire nerve network of the LR. Improving the knowledge of the nerve distribution patterns is important not only for researchers but also clinicians to understand the functions of the LR and the diverse pathophysiology of strabismus.

  12. Ultrastructural changes in the glial cells at neuromuscular synapses of Locusta migratoria occurring after nerve stimulation and subsequent rest: a morphometric analysis.

    Science.gov (United States)

    Reinecke, M

    1979-10-01

    The glial processes ensheathing the motor nerve terminals on the retractor unguis muscle of Locusta migratoria are described. Ultrastructural changes observed after electrical nerve stimulation (20 Hz, 7 min) without or with subsequent rest (2 min, 1 h) are analysed morphometrically. Immediately after stimulation both the average terminal circumference (+ 23%) and its proportion covered by glial processes (+ 16%) are significantly increased. The mean number of Schwann cell processes per micron of terminal circumference (without stimulation: 0.86 +/- 0.04) is also affected: Immediately after stimulation it is increased by about 15% and after 2 min of rest even by 36%. The periaxonal cleft (without stimulation: 16.5 nm +/- 0.36) becomes wider immediately after stimulation by about 19%, an effect which is almost reversed after 1 h of rest. It is suggested that these changes are a consequence of the enlargement of the nerve terminal's surface upon massive exocytotic activity and that they are possibly mediated by mechanical attachment between glial and terminal plasma membranes.

  13. Serotonergic modulation of reward and punishment

    DEFF Research Database (Denmark)

    Macoveanu, Julian

    2014-01-01

    Until recently, the bulk of research on the human reward system was focused on studying the dopaminergic and opioid neurotransmitter systems. However, extending the initial data from animal studies on reward, recent pharmacological brain imaging studies on human participants bring a new line......-related processing and may also provide a neural correlated for the emotional blunting observed in the clinical treatment of psychiatric disorders with selective serotonin reuptake inhibitors. Given the unique profile of action of each serotonergic receptor subtype, future pharmacological studies may favor receptor...

  14. Serotonergic modulation of reward and punishment: evidence from pharmacological fMRI studies.

    Science.gov (United States)

    Macoveanu, Julian

    2014-03-27

    Until recently, the bulk of research on the human reward system was focused on studying the dopaminergic and opioid neurotransmitter systems. However, extending the initial data from animal studies on reward, recent pharmacological brain imaging studies on human participants bring a new line of evidence on the key role serotonin plays in reward processing. The reviewed research has revealed how central serotonin availability and receptor specific transmission modulates the neural response to both appetitive (rewarding) and aversive (punishing) stimuli in putative reward-related brain regions. Thus, serotonin is suggested to be involved in behavioral control when there is a prospect of reward or punishment. The new findings may have implications in understanding psychiatric disorders such as major depression which is characterized by abnormal serotonergic function and reward-related processing and may also provide a neural correlated for the emotional blunting observed in the clinical treatment of psychiatric disorders with selective serotonin reuptake inhibitors. Given the unique profile of action of each serotonergic receptor subtype, future pharmacological studies may favor receptor specific investigations to complement present research mainly focused on global serotonergic manipulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Radioactive choline uptake in the isolated rat phrenic nerve-hemidiaphragm preparation. A biochemical and autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Veldsema-Currie, R.D.; van Marle, J.; Langemeijer, M.W.; Lind, A.; van Weeren-Kramer, J.

    1984-10-01

    When hemidiaphragms are stimulated via the phrenic nerve in the presence of 10 microM radioactive choline (Ch), the rate of radioactive Ch uptake in the endplate-rich area (EPA) is greater than that in the endplate-poor muscle (M). Ch uptake in the EPA is temperature-dependent, with a Q10 of 2.9 and an activation energy of 19.5 kcal/mol. It is inhibited in a Na+-depleted medium, in the absence of Ca2+, and by 10-20 microM hemicholinium-3 (HC-3) and it is not inhibited by alpha-bungarotoxin even when the muscle is completely paralyzed. In the absence of stimulation the rate of uptake in the EPA is slightly, but not significantly, greater than in M. Using autoradiography, we find an enhanced amount of isotope in the nerve terminals and their immediate vicinities compared with the muscle fibres, in both stimulated and unstimulated hemidiaphragms. There is no enhanced uptake of isotope into the nerve terminals in stimulated tissues in the presence of 26 microM HC-3. The uptake of isotope into the muscle is not altered by any of these treatments. There is a positive correlation between the initial rate of radioactive Ch uptake in the EPA and the amount of isotope in the nerve terminals (the mean corrected grain density above the nerve terminals). Without correcting for the large amount of diffusion that occurs, the ratio of the grain density above the synapses to that above the muscle fibres is 1.66 in tissue stimulated at 1 Hz, 1.04 in stimulated tissues in the presence of 26 microM HC-3, and 1.31 in unstimulated tissues.

  16. Generation of Pet1210-Cre Transgenic Mouse Line Reveals Non-Serotonergic Expression Domains of Pet1 Both in CNS and Periphery

    Science.gov (United States)

    Pelosi, Barbara; Migliarini, Sara; Pacini, Giulia; Pratelli, Marta; Pasqualetti, Massimo

    2014-01-01

    Neurons producing serotonin (5-hydroxytryptamine, 5-HT) constitute one of the most widely distributed neuronal networks in the mammalian central nervous system (CNS) and exhibit a profuse innervation throughout the CNS already at early stages of development. Serotonergic neuron specification is controlled by a combination of secreted molecules and transcription factors such as Shh, Fgf4/8, Nkx2.2, Lmx1b and Pet1. In the mouse, Pet1 mRNA expression appears between 10 and 11 days post coitum (dpc) in serotonergic post-mitotic precursors and persists in serotonergic neurons up to adulthood, where it promotes the expression of genes defining the mature serotonergic phenotype such as tryptophan hydroxylase 2 (Tph2) and serotonin transporter (SERT). Hence, the generation of genetic tools based on Pet1 specific expression represents a valuable approach to study the development and function of the serotonergic system. Here, we report the generation of a Pet1210-Cre transgenic mouse line in which the Cre recombinase is expressed under the control of a 210 kb fragment from the Pet1 genetic locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. Besides Cre-mediated recombination accurately occurred in the serotonergic system as expected and according to previous studies, Pet1210-Cre transgenic mouse line allowed us to identify novel, so far uncharacterized, Pet1 expression domains. Indeed, we showed that in the raphe Pet1 is expressed also in a non-serotonergic neuronal population intermingled with Tph2-expressing cells and mostly localized in the B8 and B9 nuclei. Moreover, we detected Cre-mediated recombination also in the developing pancreas and in the ureteric bud derivatives of the kidney, where it reflected a specific Pet1 expression. Thus, Pet1210-Cre transgenic mouse line faithfully drives Cre-mediated recombination in all Pet1 expression domains representing a valuable tool to genetically manipulate serotonergic and non-serotonergic

  17. The serotonergic system and cognitive function

    Directory of Open Access Journals (Sweden)

    Švob Štrac Dubravka

    2016-01-01

    Full Text Available Symptoms of cognitive dysfunction like memory loss, poor concentration, impaired learning and executive functions are characteristic features of both schizophrenia and Alzheimer’s disease (AD. The neurobiological mechanisms underlying cognition in healthy subjects and neuropsychiatric patients are not completely understood. Studies have focused on serotonin (5-hydroxytryptamine, 5-HT as one of the possible cognitionrelated biomarkers. The aim of this review is to provide a summary of the current literature on the role of the serotonergic (5-HTergic system in cognitive function, particularly in AD and schizophrenia.

  18. The sensory-motor bridge neurorraphy: an anatomic study of feasibility between sensory branch of the musculocutaneous nerve and deep branch of the radial nerve.

    Science.gov (United States)

    Goubier, Jean-Noel; Teboul, Frédéric

    2011-05-01

    Restoring elbow flexion remains the first step in the management of total palsy of the brachial plexus. Non avulsed upper roots may be grafted on the musculocutaneous nerve. When this nerve is entirely grafted, some motor fibres regenerate within the sensory fibres quota. Aiming potential utilization of these lost motor fibres, we attempted suturing the sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The objective of our study was to assess the anatomic feasibility of such direct suturing of the terminal sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The study was carried out with 10 upper limbs from fresh cadavers. The sensory branch of the musculocutaneous muscle was dissected right to its division. The motor branch of the radial nerve was identified and dissected as proximally as possible into the radial nerve. Then, the distance separating the two nerves was measured so as to assess whether direct neurorraphy of the two branches was feasible. The excessive distance between the two branches averaged 6 mm (1-13 mm). Thus, direct neurorraphy of the sensory branch of the musculocutaneous nerve and the deep branch of the radial nerve was possible. When the whole musculocutaneous nerve is grafted, some of its motor fibres are lost amongst the sensory fibres (cutaneous lateral antebrachial nerve). By suturing this sensory branch onto the deep branch of the radial nerve, "lost" fibres may be retrieved, resulting in restoration of digital extension. Copyright © 2011 Wiley-Liss, Inc.

  19. Non-Rapid Eye Movement Sleep Parasomnias and Migraine: A Role of Orexinergic Projections

    Directory of Open Access Journals (Sweden)

    Antonietta Messina

    2018-02-01

    Full Text Available IntroductionSleep and migraine share a common pathophysiological substrate, although the underlying mechanisms are unknown. The serotonergic and orexinergic systems are both involved in the regulation of sleep/wake cycle, and numerous studies show that both are involved in the migraine etiopathogenesis. These two systems are anatomically and functionally interconnected. Our hypothesis is that in migraine a dysfunction of orexinergic projections on the median raphe (MR nuclei, interfering with serotonergic regulation, may cause Non-Rapid Eye Movement parasomnias, such as somnambulism.Hypothesis/theoryActing on the serotonergic neurons of the raphe nuclei, the dysfunction of orexinergic neurons would lead to a higher release of serotonin. The activation of serotonergic receptors located on the walls of large cerebral vessels would lead to abnormal vasodilatation and consequently increase transmural pressure. This process could activate the trigeminal nerve terminals that innervate vascular walls. As a consequence, there is activation of sensory nerve endings at the level of hard vessels in the meninges, with release of pro-inflammatory peptides (e.g., substance P and CGRP. Within this hypothetical frame, the released serotonin could also interact with trigeminovascular afferents to activate and/or facilitate the release of the neuropeptide at the level of the trigeminal ganglion. The dysregulation of the physiological negative feedback of serotonin on the orexinergic neurons, in turn, would contribute to an alteration of the whole system, altering the sleep–wake cycle.ConclusionSerotonergic neurons of the MR nuclei receive an excitatory input from hypothalamic orexin/hypocretin neurons and reciprocally inhibit orexin/hypocretin neurons through the serotonin 1A receptor (or 5-HT1A receptor. Considering this complex system, if there is an alteration it may facilitate the pathophysiological mechanisms involved in the migraine, while it may produce

  20. Adenoviral vectors for highly selective gene expression in central serotonergic neurons reveal quantal characteristics of serotonin release in the rat brain

    Directory of Open Access Journals (Sweden)

    Teschemacher Anja G

    2009-03-01

    Full Text Available Abstract Background 5-hydroxytryptamine (5 HT, serotonin is one of the key neuromodulators in mammalian brain, but many fundamental properties of serotonergic neurones and 5 HT release remain unknown. The objective of this study was to generate an adenoviral vector system for selective targeting of serotonergic neurones and apply it to study quantal characteristics of 5 HT release in the rat brain. Results We have generated adenoviral vectors which incorporate a 3.6 kb fragment of the rat tryptophan hydroxylase-2 (TPH-2 gene which selectively (97% co-localisation with TPH-2 target raphe serotonergic neurones. In order to enhance the level of expression a two-step transcriptional amplification strategy was employed. This allowed direct visualization of serotonergic neurones by EGFP fluorescence. Using these vectors we have performed initial characterization of EGFP-expressing serotonergic neurones in rat organotypic brain slice cultures. Fluorescent serotonergic neurones were identified and studied using patch clamp and confocal Ca2+ imaging and had features consistent with those previously reported using post-hoc identification approaches. Fine processes of serotonergic neurones could also be visualized in un-fixed tissue and morphometric analysis suggested two putative types of axonal varicosities. We used micro-amperometry to analyse the quantal characteristics of 5 HT release and found that central 5 HT exocytosis occurs predominantly in quanta of ~28000 molecules from varicosities and ~34000 molecules from cell bodies. In addition, in somata, we observed a minority of large release events discharging on average ~800000 molecules. Conclusion For the first time quantal release of 5 HT from somato-dendritic compartments and axonal varicosities in mammalian brain has been demonstrated directly and characterised. Release from somato-dendritic and axonal compartments might have different physiological functions. Novel vectors generated in this

  1. Thyroid hormone modulates the development of cholinergic terminal fields in the rat forebrain: relation to nerve growth factor receptor.

    Science.gov (United States)

    Oh, J D; Butcher, L L; Woolf, N J

    1991-04-24

    Hyperthyroidism, induced in rat pups by the daily intraperitoneal administration of 1 microgram/g body weight triiodothyronine, facilitated the development of ChAT fiber plexuses in brain regions innervated by basal forebrain cholinergic neurons, leading to an earlier and increased expression of cholinergic markers in those fibers in the cortex, hippocampus and amygdala. A similar enhancement was seen in the caudate-putamen complex. This histochemical profile was correlated with an accelerated appearance of ChAT-positive telencephalic puncta, as well as with a larger total number of cholinergic terminals expressed, which persisted throughout the eight postnatal week, the longest time examined in the present study. Hypothyroidism was produced in rat pups by adding 0.5% propylthiouracil to the dams' diet beginning the day after birth. This dietary manipulation resulted in the diminished expression of ChAT in forebrain fibers and terminals. Hypothyroid treatment also reduced the quantity of ChAT puncta present during postnatal weeks 2 and 3, and, from week 4 and continuing through week 6, the number of ChAT-positive terminals in the telencephalic regions examined was actually less than the amount extant during the former developmental epoch. Immunostaining for nerve growth factor receptor (NGF-R), which is associated almost exclusively with ChAT-positive somata and fibers in the basal forebrain, demonstrated a different time course of postnatal development. Forebrain fibers and terminals demonstrating NGF-R were maximally visualized 1 week postnatally, a time at which these same neuronal elements evinced minimal ChAT-like immunopositivity. Thereafter and correlated with increased immunoreactivity for ChAT, fine details of NGF-R stained fibers were observed less frequently. Although propylthiouracil administration decreased NGF-R immunodensity, no alteration in the development of that receptor was observed as a function of triiodothyronine treatment. Cholinergic

  2. Neurotoxicity of drugs of abuse - the case of methylenedioxy amphetamines (MDMA, ecstasy ), and amphetamines

    Science.gov (United States)

    Gouzoulis-Mayfrank, Euphrosyne; Daumann, Joerg

    2009-01-01

    Ecstasy (MDMA, 3,4-methylendioxymethamphetamine) and the stimulants methamphetamine (METH, speed) and amphetamine are popular drugs among young people, particularly in the dance scene. When given in high doses both MDMA and the stimulant amphetamines are clearly neurotoxic in laboratory animals. MDMA causes selective and persistent lesions of central serotonergic nerve terminals, whereas amphetamines damage both the serotonergic and dopaminergic systems. In recent years, the question of ecstasy-induced neurotoxicity and possible functional sequelae has been addressed in several studies in drug users. Despite large methodological problems, the bulk of evidence suggests residual alterations of serotonergic transmission in MDMA users, although at least partial recovery may occur after long-term abstinence. However, functional sequelae may persist even after longer periods of abstinence. To date, the most consistent findings associate subtle cognitive impairments with ecstasy use, particularly with memory. In contrast, studies on possible long-term neurotoxic effects of stimulant use have been relatively scarce. Preliminary evidence suggests that alterations of the dopaminergic system may persist even after years of abstinence from METH, and may be associated with deficits in motor and cognitive performance. In this paper, we will review the literature focusing on human studies. PMID:19877498

  3. Lateral Parabrachial Nucleus Serotonergic Mechanisms and Salt Appetite Induced by Sodium Depletion

    Science.gov (United States)

    Menani, Jose Vanderlei; DeLuca, Laurival Antonio, Jr.; Johnson, Alan Kim

    1998-01-01

    This study investigated the effects of bilateral injections of a serotonin (5-HT) receptor agonist into the lateral parabrachial nucleus on the intake of NaCl and water induced by 24-h water deprivation or by sodium depletion followed by 24 h of sodium deprivation (injection of the diuretic furosemide plus 24 h of d sodium-deficient diet). Rats had stainless steel cannulas implanted bilaterally into the LPBN. Bilateral LPBN injections of the serotonergic 5-HT(1/2) receptor antagonist methysergide (4 micro-g/200 nl at each site) increased hypertonic NaCl intake when tested 24 h after sodium depletion and after 24 h of water deprivation. Water intake also increased after bilateral injections of methysergide into the LPBN. In contrast, the intake of a palatable solution (0.06 M sucrose) under body fluid-replete conditions was not changed after bilateral LPBN methysergide injections. The results show that serotonergic mechanisms in the LPBN modulate water and sodium intake induced by volume depletion and sodium loss. The finding that sucrose intake was not affected by LPBN serotonergic blockade suggests that the effects of the methysergide treatment on the intakes of water and NaCl are not due to a mechanism producing a nonspecific enhancement of all ingestive behaviors.

  4. Electrophysiologic studies of cutaneous nerves of the forelimb of the cat.

    Science.gov (United States)

    Kitchell, R L; Canton, D D; Johnson, R D; Maxwell, S A

    1982-10-01

    The cutaneous innervation of the forelimb was investigated in 20 barbiturate-anesthetized cats by using electrophysiological techniques. The cutaneous area (CA) innervated by each cutaneous nerve was delineated in at least six cats by brushing the hair in the CA with a small watercolor brush while recording from the nerve. Mapping of adjacent CA revealed larger overlap zones (OZ) than were noted in the dog. Remarkable findings were that the brachiocephalic nerve arose from the axillary nerve and the CA comparable to that supplied by the cutaneous branch of the brachiocephalic nerve in the dog was supplied by a cutaneous branch of the suprascapular nerve. The CA supplied by the communicating branch from the musculocutaneous to the median nerve was similar in both species except that the communicating branch arose proximal to any other branches of the musculocutaneous nerve in the cat, whereas it was a terminal branch in the dog. The superficial branch of the radial nerve gave off cutaneous brachial branches in the cat proximal to the lateral cutaneous antebrachial nerve. The CA of the palmar branches of the ulnar nerve did not completely overlap the CA of the palmar branches of the median nerve as occurred in the dog; thus an autonomous zone (AZ) for the CA of the palmar branches of the median nerve is present in the cat, whereas no AZ existed for the CA of this nerve in the dog.

  5. Quantitative determination of 3,4-methylenedioxymethamphetamine by thin-layer chromatography in ecstasy illicit pills in Tehran.

    Science.gov (United States)

    Shetab Boushehri, Seyed Vahid; Tamimi, Maryam; Kebriaeezadeh, Abbas

    2009-11-01

    3,4-Methylenedioxymethamphetamine (MDMA) is the major ingredient of ecstasy illicit pills. It is a hallucinogen, central nervous system stimulant, and serotonergic neurotoxin that strongly releases serotonin from serotonergic nerves terminals. Moreover, it releases norepinephrine and dopamine from nerves terminal, but to a lesser extent than serotonin. Poisoning and even death from abusing MDMA-containing ecstasy illicit pills among abusers is usual. Thus, quantitative determination of MDMA content of ecstasy illicit pills in illicit drug bazaar must be done regularly to find the most high dose ecstasy illicit pills and removing them from illicit drug bazaar. In the present study, MDMA contents of 13 most abundant ecstasy illicit pills were determined by quantitative thin-layer chromatography (TLC). Two procedures for quantitative determination of MDMA contents of ecstasy illicit pills by TLC were used: densitometric and so-called 'scraping off' methods. The former was done in a reflection mode at 285 nm and the latter was done by absorbance measurement of eluted scraped off spots. Limit of detection (LOD), considering signal-to-noise ratio (S/N) of 2, and limit of quantification (LOQ), regarding S/N of 10, of densitometric and scraping off methods were 0.40 microg, 1.20 microg, and 6.87 mug, 20.63 microg, respectively. Repeatabilities (within-laboratory error) of densitometric and scraping off methods were 0.5% and 3.6%, respectively. The results showed that the ecstasy illicit pills contained 24-124.5 mg and 23.9-122.2 mg MDMA by densitometric and scraping off methods, respectively.

  6. Serotonergic contribution to boys' behavioral regulation.

    Directory of Open Access Journals (Sweden)

    Amélie Nantel-Vivier

    Full Text Available Animal and human adult studies reveal a contribution of serotonin to behavior regulation. Whether these findings apply to children is unclear. The present study investigated serotonergic functioning in boys with a history of behavior regulation difficulties through a double-blind, acute tryptophan supplementation procedure.Participants were 23 boys (age 10 years with a history of elevated physical aggression, recruited from a community sample. Eleven were given a chocolate milkshake supplemented with 500 mg tryptophan, and 12 received a chocolate milkshake without tryptophan. Boys engaged in a competitive reaction time game against a fictitious opponent, which assessed response to provocation, impulsivity, perspective taking, and sharing. Impulsivity was further assessed through a Go/No-Go paradigm. A computerized emotion recognition task and a staged instrumental help incident were also administered.Boys, regardless of group, responded similarly to high provocation by the fictitious opponent. However, boys in the tryptophan group adjusted their level of responding optimally as a function of the level of provocation, whereas boys in the control group significantly decreased their level of responding towards the end of the competition. Boys in the tryptophan group tended to show greater perspective taking, tended to better distinguish facial expressions of fear and happiness, and tended to provide greater instrumental help to the experimenter.The present study provides initial evidence for the feasibility of acute tryptophan supplementation in children and some effect of tryptophan supplementation on children's behaviors. Further studies are warranted to explore the potential impact of increased serotonergic functioning on boys' dominant and affiliative behaviors.

  7. Serotonergic contribution to boys' behavioral regulation.

    Science.gov (United States)

    Nantel-Vivier, Amélie; Pihl, Robert O; Young, Simon N; Parent, Sophie; Bélanger, Stacey Ageranioti; Sutton, Rachel; Dubois, Marie-Eve; Tremblay, Richard E; Séguin, Jean R

    2011-01-01

    Animal and human adult studies reveal a contribution of serotonin to behavior regulation. Whether these findings apply to children is unclear. The present study investigated serotonergic functioning in boys with a history of behavior regulation difficulties through a double-blind, acute tryptophan supplementation procedure. Participants were 23 boys (age 10 years) with a history of elevated physical aggression, recruited from a community sample. Eleven were given a chocolate milkshake supplemented with 500 mg tryptophan, and 12 received a chocolate milkshake without tryptophan. Boys engaged in a competitive reaction time game against a fictitious opponent, which assessed response to provocation, impulsivity, perspective taking, and sharing. Impulsivity was further assessed through a Go/No-Go paradigm. A computerized emotion recognition task and a staged instrumental help incident were also administered. Boys, regardless of group, responded similarly to high provocation by the fictitious opponent. However, boys in the tryptophan group adjusted their level of responding optimally as a function of the level of provocation, whereas boys in the control group significantly decreased their level of responding towards the end of the competition. Boys in the tryptophan group tended to show greater perspective taking, tended to better distinguish facial expressions of fear and happiness, and tended to provide greater instrumental help to the experimenter. The present study provides initial evidence for the feasibility of acute tryptophan supplementation in children and some effect of tryptophan supplementation on children's behaviors. Further studies are warranted to explore the potential impact of increased serotonergic functioning on boys' dominant and affiliative behaviors.

  8. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.

    Science.gov (United States)

    Suchak, Sachin K; Baloyianni, Nicoletta V; Perkinton, Michael S; Williams, Robert J; Meldrum, Brian S; Rattray, Marcus

    2003-02-01

    The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.

  9. The association between concomitant use of serotonergic antidepressants and lithium-induced polyuria. A multicenter medical chart review study.

    Science.gov (United States)

    Wilting, I; Egberts, A C G; Movig, K L L; Laarhoven, J H M van; Heerdink, E R; Nolen, W A

    2008-07-01

    A previous study aimed at revealing the prevalence and determinants of lithium induced polyuria suggested an increased risk of polyuria (urine volume > or =3 L/24 h) in those using serotonergic antidepressants next to lithium. The objective of our study was to re-evaluate this secondary finding in another study population. We performed a multicenter medical chart review study in patients using lithium in whom a 24-hour urine volume had been determined. We included 116 patients, twelve (26%)of the 46 patients with polyuria used serotonergic antidepressants compared to ten (14%) of the 70 patients without polyuria. We found an increased risk of polyuria in lithium users concurrently using serotonergic antidepressants (oddsratio 2.86; 95% confidence interval 1.00-8.21), adjusted for age, gender, use of antiepileptics and thyreomimetics. Our results confirm the previous secondary finding of an increased risk of polyuria in patients using serotonergic antidepressants next to lithium. Physicians should take this into account when evaluating polyuria in patients using lithium and when choosing an antidepressant in patients using lithium.

  10. Afferent fibers and sensory ganglion cells within the oculomotor nerve in some mammals and man. II. Electrophysiological investigations.

    Science.gov (United States)

    Manni, E; Bortolami, R; Pettorossi, V E; Lucchi, M L; Callegari, E

    1978-01-01

    The main aim of the present study was to localize with electrophysiological techniques the central projections and terminations of the aberrant trigeminal fibres contained in the oculomotor nerve of the lamb. After severing a trigeminal root, single-shock electrical stimulation of the trigeminal axons present in the central stump of the ipsilateral oculomotor nerve evoked field potentials in the area of, i) the subnucleus gelatinosus of the nucleus caudalis trigemini at the level of C1-C2; ii) the main sensory trigeminal nucleus; iii) the descending trigeminal nucleus and tract; iv) the adjacent reticular formation. Units whose discharge rate was influenced by such a stimulation were also found in the same territories. These regions actually exhibited degenerations after cutting an oculomotor nerve. We conclude, therefore, that the trigeminal fibres which leave the Vth nerve at the level of the cavernous sinus and enter the brain stem through the IIIrd nerve, end in the same structures which receive the terminations of the afferent fibres entering the brain stem through the sensory trigeminal root.

  11. Serotonergic transmission at Merkel discs: modulation by exogenously applied chemical messengers and involvement of Ih currents.

    Science.gov (United States)

    Chang, Weipang; Kanda, Hirosato; Ikeda, Ryo; Ling, Jennifer; Gu, Jianguo G

    2017-05-01

    The Merkel disc is a main type of tactile end organ consisting of Merkel cells and Aβ-afferent endings that responds to tactile stimulation with slowly adapting type 1 (SA1) afferent impulses. Our recent study has shown that Merkel discs in whisker hair follicles are serotonergic synapses using endogenous serotonin to transmit tactile signals from Merkel cells to Aβ-afferent endings. In this study, we hypothesize that tactile sensitivity of Merkel discs can be modulated by chemical messengers. We tested this hypothesis by determining whether and how SA1 responses of mouse whisker hair follicles may be affected by exogenously applied chemical messengers. We found that SA1 responses were potentiated by serotonin at low concentration (10 μM) but almost completely occluded by serotonin at high concentration (2 mM). In contrast, SA1 responses were not significantly affected by ATP and its metabolically stable analog α,β-methylene-ATP, glutamate, γ-aminobutyric acid (GABA), and histamine. SA1 responses were also not affected by antagonists for P2X receptors, ionotropic glutamate receptors, and ionotropic GABA and glycine receptors. Whole-cell patch-clamp recordings reconfirm the presence of both ionotropic and metabotropic 5-HT receptors on afferent neurons and their terminals innervating whisker hair follicles. All whisker afferent neurons expressed hyperpolarization-activated inward currents (I h ), which are potentiated by serotonin through the activation of metabotropic 5-HT receptors. Taken together, the findings substantiate the serotonergic mechanism of tactile transmission at Merkel discs and identify the involvement of I h currents in postsynaptic excitatory actions of serotonin. In addition, the findings do not favor any significant involvement of ATP, glutamate, histamine, GABA, or glycine in tactile transmission at the Merkel discs of whisker hair follicles. © 2017 International Society for Neurochemistry.

  12. Retrograde axonal transport of 125I-nerve growth factor in rat ileal mesenteric nerves. Effect of streptozocin diabetes

    International Nuclear Information System (INIS)

    Schmidt, R.E.; Plurad, S.B.; Saffitz, J.E.; Grabau, G.G.; Yip, H.K.

    1985-01-01

    The retrograde axonal transport of intravenously (i.v.) administered 125 I-nerve growth factor ( 125 I-NGF) was examined in mesenteric nerves innervating the small bowel of rats with streptozocin (STZ) diabetes using methods described in detail in the companion article. The accumulation of 125 I-NGF distal to a ligature on the ileal mesenteric nerves of diabetic animals was 30-40% less than in control animals. The inhibition of accumulation of 125 I-NGF in diabetic animals was greater at a ligature tied 2 h after i.v. administration than at a ligature tied after 14 h, which suggests that the diabetic animals may have a lag in initiation of NGF transport in the terminal axon or retardation of transport at some site along the axon. The 125 I-NGF transport defect was observed as early as 3 days after the induction of diabetes, a time before the development of structural axonal lesions, and did not worsen at later times when dystrophic axonopathy is present. Both the ileal mesenteric nerves, which eventually develop dystrophic axonopathy in experimental diabetes, and the jejunal mesenteric nerves, which never develop comparable structural alterations, showed similar 125 I-NGF transport deficits, suggesting that the existence of the transport abnormality does not predict the eventual development of dystrophic axonal lesions. Autoradiographic localization of 125 I-NGF in the ileal mesenteric nerves of animals that had been diabetic for 11-13 mo demonstrated decreased amounts of 125 I-NGF in transit in unligated paravascular nerve fascicles. There was, however, no evidence for focal retardation of transported 125 I-NGF at the sites of dystrophic axonal lesions

  13. The use of serotonergic drugs to treat obesity – is there any hope?

    Directory of Open Access Journals (Sweden)

    Nicholas T Bello

    2011-02-01

    Full Text Available Nicholas T Bello1, Nu-Chu Liang21Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; 2Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USAAbstract: Surgical interventional strategies for the treatment of obesity are being implemented at an increasing rate. The safety and feasibility of these procedures are questionable for most overweight or obese individuals. The use of long-term pharmacotherapy options, on the other hand, can target a greater portion of the obese population and provide early intervention to help individuals maintain a healthy lifestyle to promote weight loss. Medications that act on the central serotonergic pathways have been a relative mainstay for the treatment of obesity for the last 35 years. The clinical efficacy of these drugs, however, has been encumbered by the potential for drug-associated complications. Two drugs that act, albeit by different mechanisms, on the central serotonergic system to reduce food intake and decrease body weight are sibutramine and lorcaserin. Sibutramine is a serotonin and norepinephrine reuptake inhibitor, whereas lorcaserin is a selective 5HT2C receptor agonist. The recent worldwide withdrawal of sibutramine and FDA rejection of lorcaserin has changed the landscape not only for serotonin-based therapeutics specifically, but for obesity pharmacotherapy in general. The purpose of this review is to focus on the importance of the serotonergic system in the control of feeding and its potential as a target for obesity pharmacotherapy. Advances in refining and screening more selective receptor agonists and a better understanding of the potential off-target effects of serotonergic drugs are needed to produce beneficial pharmacotherapy.Keywords: 5-hydroxytryptamine, serotonin 1B, fenfluramine, dexfenfluramine, satiety, dorsal raphe

  14. Marginal mandibular branch of the facial nerve: An anatomical study

    Directory of Open Access Journals (Sweden)

    Ayman Ahmad Khanfour

    2014-06-01

    Results: Results showed that the (MMBFN arises as a single branch, two branches, and three branches in 36.7%, 43.3% and 20% of specimens, respectively. In 83.3% of cases, one of the main or secondary branches of the marginal mandibular nerve crosses superficial (lateral to the facial vessels. There are communications either between the main or the secondary branches of the marginal mandibular nerve itself in 53.6% of specimens and with the buccal branch of the facial nerve in 40%, also with the anterior branch of the great auricular nerve in 3.3%, and with the transverse cervical nerve in 3.3% of specimens. The relationship of the nerve to the lower border of the mandible at a point midway between the angle of the mandible and symphysis menti is variable; it is either totally above it in most of the specimens 80%, or below it in 10% or at it in the remaining 10% of the specimens. The branches that lie above the lower border of the mandible are always deep into the superficial layer of the parotid fascia, while those branches that lie below the lower border of the mandible are intrafascially. The termination of the nerve is deep into the muscles of the ipsilateral lower lip in all specimens.

  15. Nerve fibre studies in skin biopsies in peripheral neuropathies. I. Immunohistochemical analysis of neuropeptides in diabetes mellitus

    DEFF Research Database (Denmark)

    Lindberger, M; Schröder, H D; Schultzberg, M

    1989-01-01

    Standardised skin biopsies followed by immunohistochemical examination for the presence of terminal nerve fibres reacting for neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) were evaluated. Healthy subjects regularly displayed free nerve endings of both fibre types in th...... a sensitive tool in evaluation of patients with peripheral neuropathies....

  16. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    Science.gov (United States)

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  17. Mechanisms Underlying Serotonergic Excitation of Callosal Projection Neurons in the Mouse Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Emily K. Stephens

    2018-01-01

    Full Text Available Serotonin (5-HT selectively excites subpopulations of pyramidal neurons in the neocortex via activation of 5-HT2A (2A receptors coupled to Gq subtype G-protein alpha subunits. Gq-mediated excitatory responses have been attributed primarily to suppression of potassium conductances, including those mediated by KV7 potassium channels (i.e., the M-current, or activation of non-specific cation conductances that underlie calcium-dependent afterdepolarizations (ADPs. However, 2A-dependent excitation of cortical neurons has not been extensively studied, and no consensus exists regarding the underlying ionic effector(s involved. In layer 5 of the mouse medial prefrontal cortex, we tested potential mechanisms of serotonergic excitation in commissural/callosal (COM projection neurons, a subpopulation of pyramidal neurons that exhibits 2A-dependent excitation in response to 5-HT. In baseline conditions, 5-HT enhanced the rate of action potential generation in COM neurons experiencing suprathreshold somatic current injection. This serotonergic excitation was occluded by activation of muscarinic acetylcholine (ACh receptors, confirming that 5-HT acts via the same Gq-signaling cascades engaged by ACh. Like ACh, 5-HT promoted the generation of calcium-dependent ADPs following spike trains. However, calcium was not necessary for serotonergic excitation, as responses to 5-HT were enhanced (by >100%, rather than reduced, by chelation of intracellular calcium with 10 mM BAPTA. This suggests intracellular calcium negatively regulates additional ionic conductances gated by 2A receptors. Removal of extracellular calcium had no effect when intracellular calcium signaling was intact, but suppressed 5-HT response amplitudes, by about 50%, when BAPTA was included in patch pipettes. This suggests that 2A excitation involves activation of a non-specific cation conductance that is both calcium-sensitive and calcium-permeable. M-current suppression was found to be a third

  18. Stimuli of sensory-motor nerves terminate arterial contractile effects of endothelin-1 by CGRP and dissociation of ET-1/ET(A)-receptor complexes

    DEFF Research Database (Denmark)

    Meens, Merlijn J P M T; Compeer, Matthijs G; Hackeng, Tilman M

    2010-01-01

    of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In isolated rat mesenteric resistance arteries, ET(A)-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1......BACKGROUND: Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects...... but did not prevent persistent effects of the peptide. Stimuli of peri-vascular vasodilator sensory-motor nerves such as capsaicin not only reduced but also terminated long-lasting effects of ET-1. This was prevented by CGRP-receptor antagonists and was mimicked by exogenous calcitonin gene...

  19. Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs

    DEFF Research Database (Denmark)

    Abrams, J K; Johnson, P L; Hay-Schmidt, Anders

    2005-01-01

    Serotonergic systems play important roles in modulating behavioral arousal, including behavioral arousal and vigilance associated with anxiety states. To further our understanding of the neural systems associated with increases in anxiety states, we investigated the effects of multiple anxiogenic...... and vigilance behaviors consistent with an increase in anxiety state. In addition, these anxiogenic drugs, excluding yohimbine, had convergent actions on an anatomically-defined subset of serotonergic neurons within the middle and caudal, dorsal subdivision of the DR. High resolution topographical analysis...... nucleus, a forebrain structure important for emotional appraisal and modulation of anxiety-related physiological and behavioral responses. Together these findings support the hypothesis that there is a functional topographical organization in the DR and are consistent with the hypothesis that anxiogenic...

  20. Serotonergic neurotransmission in emotional processing

    DEFF Research Database (Denmark)

    Laursen, Helle Ruff; Henningsson, Susanne; Macoveanu, Julian

    2016-01-01

    ,4-methylene-dioxymethamphetamine [MDMA]) induces alterations in serotonergic neurotransmission that are comparable to those observed in a depleted state. In this functional magnetic resonance imaging (fMRI) study, we investigated the responsiveness of the amygdala to emotional face stimuli in recreational...... ecstasy users as a model of long-term serotonin depletion. Fourteen ecstasy users and 12 non-using controls underwent fMRI to measure the regional neural activity elicited in the amygdala by male or female faces expressing anger, disgust, fear, sadness, or no emotion. During fMRI, participants made a sex...... judgement on each face stimulus. Positron emission tomography with (11)C-DASB was additionally performed to assess serotonin transporter (SERT) binding in the brain. In the ecstasy users, SERT binding correlated negatively with amygdala activity, and accumulated lifetime intake of ecstasy tablets...

  1. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    International Nuclear Information System (INIS)

    Lin, Tzu-Yu; Lu, Cheng-Wei; Wang, Chia-Chuan; Lu, Jyh-Feng; Wang, Su-Jane

    2012-01-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K + channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca 2+ ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca 2+ concentration ([Ca 2+ ] C ), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na + /Ca 2+ exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca 2+ entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat cerebrocortical synaptosomes. ► This action did

  2. Hispidulin inhibits the release of glutamate in rat cerebrocortical nerve terminals

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tzu-Yu [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan, 320, Taiwan (China); Lu, Cheng-Wei [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei, 22060, Taiwan (China); Wang, Chia-Chuan; Lu, Jyh-Feng [School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); Wang, Su-Jane, E-mail: med0003@mail.fju.edu.tw [Graduate Institute of Basic Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China); School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei, 24205, Taiwan (China)

    2012-09-01

    Hispidulin, a naturally occurring flavone, has been reported to have an antiepileptic profile. An excessive release of glutamate is considered to be related to neuropathology of epilepsy. We investigated whether hispidulin affected endogenous glutamate release in rat cerebral cortex nerve terminals (synaptosomes) and explored the possible mechanism. Hispidulin inhibited the release of glutamate evoked by the K{sup +} channel blocker 4-aminopyridine (4-AP). The effects of hispidulin on the evoked glutamate release were prevented by the chelation of extracellular Ca{sup 2+} ions and the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate did not have any effect on hispidulin action. Hispidulin reduced the depolarization-induced increase in cytosolic free Ca{sup 2+} concentration ([Ca{sup 2+}]{sub C}), but did not alter 4-AP-mediated depolarization. Furthermore, the effect of hispidulin on evoked glutamate release was abolished by blocking the Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na{sup +}/Ca{sup 2+} exchange. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of hispidulin on evoked glutamate release. Western blot analyses showed that hispidulin decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK; this decrease was also blocked by the MEK inhibitor. Moreover, the inhibition of glutamate release by hispidulin was strongly attenuated in mice without synapsin I. These results show that hispidulin inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca{sup 2+} entry and ERK/synapsin I signaling pathway. -- Highlights: ► Hispidulin inhibited glutamate release from rat

  3. Early myelin breakdown following sural nerve crush: a freeze-fracture study

    Directory of Open Access Journals (Sweden)

    Martinez A.M.B.

    2000-01-01

    Full Text Available In this study we describe the early changes of the myelin sheath following surgical nerve crush. We used the freeze-fracture technique to better evaluate myelin alterations during an early stage of Wallerian degeneration. Rat sural nerves were experimentally crushed and animals were sacrificed by transcardiac perfusion 30 h after surgery. Segments of the nerves were processed for routine transmission electron microscopy and freeze-fracture techniques. Our results show that 30 h after the lesion there was asynchrony in the pattern of Wallerian degeneration, with different nerve fibers exhibiting variable degrees of axon disruption. This was observed by both techniques. Careful examination of several replicas revealed early changes in myelin membranes represented by vacuolization and splitting of consecutive lamellae, rearrangement of intramembranous particles and disappearance of paranodal transverse bands associated or not with retraction of paranodal myelin terminal loops from the axolemma. These alterations are compatible with a direct injury to the myelin sheath following nerve crush. The results are discussed in terms of a similar mechanism underlying both axon and myelin breakdown.

  4. Genetic and biochemical changes of the serotonergic system in migraine pathobiology.

    Science.gov (United States)

    Gasparini, Claudia Francesca; Smith, Robert Anthony; Griffiths, Lyn Robyn

    2017-12-01

    Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.

  5. Acute treatment with fluvoxamine elevates rat brain serotonin synthesis in some terminal regions: An autoradiographic study

    International Nuclear Information System (INIS)

    Muck-Seler, Dorotea; Pivac, Nela; Diksic, Mirko

    2012-01-01

    Introduction: A considerable body of evidence indicates the involvement of the neurotransmitter serotonin (5-HT) in the pathogenesis and treatment of depression. Methods: The acute effect of fluvoxamine, on 5-HT synthesis rates was investigated in rat brain regions, using α- 14 C-methyl-L-tryptophan as a tracer. Fluvoxamine (25 mg/kg) and saline (control) were injected intraperitoneally, one hour before the injection of the tracer (30 μCi). Results: There was no significant effect of fluvoxamine on plasma free tryptophan. After Benjamini–Hochberg False Discovery Rate correction, a significant decrease in the 5-HT synthesis rate in the fluvoxamine treated rats, was found in the raphe magnus (− 32%), but not in the median (− 14%) and dorsal (− 3%) raphe nuclei. In the regions with serotonergic axon terminals, significant increases in synthesis rates were observed in the dorsal (+ 41%) and ventral (+ 43%) hippocampus, visual (+ 38%), auditory (+ 65%) and parietal (+ 37%) cortex, and the substantia nigra pars compacta (+ 56%). There were no significant changes in the 5-HT synthesis rates in the median (+ 11%) and lateral (+ 24%) part of the caudate-putamen, nucleus accumbens (+ 5%), VTA (+ 16%) or frontal cortex (+ 6%). Conclusions: The data show that the acute administration of fluvoxamine affects 5-HT synthesis rates in a regionally specific pattern, with a general elevation of the synthesis in the terminal regions and a reduction in some cell body structures. The reasons for the regional specific effect of fluvoxamine on 5-HT synthesis are unclear, but may be mediated by the presynaptic serotonergic autoreceptors.

  6. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  7. End-to-side neurorrhaphy repairs peripheral nerve injury: sensory nerve induces motor nerve regeneration.

    Science.gov (United States)

    Yu, Qing; Zhang, She-Hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-Dong

    2017-10-01

    End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.

  8. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn

    Directory of Open Access Journals (Sweden)

    Black Joel A

    2012-11-01

    Full Text Available Abstract Background Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn. Results Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF, exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals. Conclusions The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.

  9. In vitro assessment of induced phrenic nerve cryothermal injury.

    Science.gov (United States)

    Goff, Ryan P; Bersie, Stephanie M; Iaizzo, Paul A

    2014-10-01

    Phrenic nerve injury, both left and right, is considered a significant complication of cryoballoon ablation for treatment of drug-refractory atrial fibrillation, and functional recovery of the phrenic nerve can take anywhere from hours to months. The purpose of this study was to focus on short periods of cooling to determine the minimal amount of cooling that may terminate nerve function related to cryo ablation. Left and/or right phrenic nerves were dissected from the pericardium and connective tissue of swine (n = 35 preparations). Nerves were placed in a recording chamber modified with a thermocouple array. This apparatus was placed in a digital water bath to maintain an internal chamber temperature of 37°C. Nerves were stimulated proximally with a 1-V, 0.1-ms square wave. Bipolar compound action potentials were recorded proximal and distal to the site of ablation both before and after ablation, then analyzed to determine changes in latency, amplitude, and duration. Temperatures were recorded at a rate of 5 Hz, and maximum cooling rates were calculated. Phrenic nerves were found to elicit compound action potentials upon stimulation for periods up to 4 hours minimum. Average conduction velocity was 56.7 ± 14.7 m/s preablation and 49.8 ± 16.6 m/s postablation (P = .17). Cooling to mild subzero temperatures ceased production of action potentials for >1 hour. Taking into account the data presented here, previous publications, and a conservative stance, during cryotherapy applications, cooling of the nerve to below 4°C should be avoided whenever possible. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation

    Directory of Open Access Journals (Sweden)

    Xicotencatl Gracida

    2017-12-01

    Full Text Available Neuromodulatory cells transduce environmental information into long-lasting behavioral responses. However, the mechanisms governing how neuronal cells influence behavioral plasticity are difficult to characterize. Here, we adapted the translating ribosome affinity purification (TRAP approach in C. elegans to profile ribosome-associated mRNAs from three major tissues and the neuromodulatory dopaminergic and serotonergic cells. We identified elc-2, an Elongin C ortholog, specifically expressed in stress-sensing amphid neuron dual ciliated sensory ending (ADF serotonergic sensory neurons, and we found that it plays a role in mediating a long-lasting change in serotonin-dependent feeding behavior induced by heat stress. We demonstrate that ELC-2 and the von Hippel-Lindau protein VHL-1, components of an Elongin-Cullin-SOCS box (ECS E3 ubiquitin ligase, modulate this behavior after experiencing stress. Also, heat stress induces a transient redistribution of ELC-2, becoming more nuclearly enriched. Together, our results demonstrate dynamic regulation of an E3 ligase and a role for an ECS complex in neuromodulation and control of lasting behavioral states.

  11. Anatomy of the palmar cutaneous branch of the median nerve: clinical significance.

    Science.gov (United States)

    DaSilva, M F; Moore, D C; Weiss, A P; Akelman, E; Sikirica, M

    1996-07-01

    A detailed anatomic, histologic, and immunohistochemical study of the palmar cutaneous branch of the median nerve (PCBMN) and its distal arborization was undertaken on 12 fresh human cadaveric hands. Small unmyelinated fibers terminated in the superficial loose connective tissue of the transverse carpal ligament. There were no nerve fibers detected in the deep, dense collagen aspect of the ligament. Based on these findings, during open carpal tunnel release, the skin incision should be placed along the axis of the ring finger to avoid injury to the superficial branches of the PCBMN. When open release is used, the very small terminal branches in the loose tissue of the ligament will be transected; this may in part be responsible for postoperative soft tissue pain. For endoscopic releases, some risk for transection of the main trunk of the PCBMN at the proximal incision exists. Repeated passes of the endoscopic knife should be avoided in an attempt to limit damage to the small fibers in the superficial aspect of the ligament.

  12. The role of the serotonergic system in suicidal behavior

    Directory of Open Access Journals (Sweden)

    Sadkowski M

    2013-11-01

    Full Text Available Marta Sadkowski,1,* Brittany Dennis,2–4,* Robert C Clayden,2 Wala ElSheikh,5 Sumathy Rangarajan,5 Jane DeJesus,5 Zainab Samaan3–6 1Arts and Sciences Program, 2Faculty of Health Sciences, 3Department of Clinical Epidemiology and Biostatistics, 4Population Genomics Program, McMaster University, Hamilton, ON, Canada; 5Population Health Research Institute, Hamilton, ON, Canada; 6Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada *These authors contributed equally to this work Abstract: Serotonin is a widely investigated neurotransmitter in several psychopathologies, including suicidal behavior (SB; however, its role extends to several physiological functions involving the nervous system, as well as the gastrointestinal and cardiovascular systems. This review summarizes recent research into ten serotonergic genes related to SB. These genes – TPH1, TPH2, SLC6A4, SLC18A2, HTR1A, HTR1B, HTR2A, DDC, MAOA, and MAOB – encode proteins that are vital to serotonergic function: tryptophan hydroxylase; the serotonin transporter 5-HTT; the vesicular transporter VMAT2; the HTR1A, HTR1B, and HTR2A receptors; the L-amino acid decarboxylase; and the monoamine oxidases. This review employed a systematic search strategy and a narrative research methodology to disseminate the current literature investigating the link between SB and serotonin. Keywords: serotonin, suicide, genetic

  13. Absence of the musculocutaneous nerve: a rare anatomical variation with possible clinical-surgical implications

    Directory of Open Access Journals (Sweden)

    José Humberto Tavares Guerreiro Fregnani

    Full Text Available CONTEXT: The musculocutaneous nerve is one of the terminal branches of the lateral fasciculus of the brachial plexus, and is responsible for innervation of the flexor musculature of the elbow and for skin sensitivity on the lateral surface of the forearm. Its absence has been described previously, but its real prevalence is unknown. CASE REPORT: A case of absence of the musculocutaneous nerve that was observed during the dissection of the right arm of a male cadaver is described. The area of innervation was supplied by the median nerve. From this, three branches emerged: one to the coracobrachialis muscle, another to the biceps brachii muscle and the third to the brachialis muscle. This last branch continued as a lateral antebrachial cutaneous nerve. This is an anatomical variation that has clinical-surgical implications, considering that injury to the median nerve in this case would have caused unexpected paralysis of the flexor musculature of the elbow and hypoesthesia of the lateral surface of the forearm.

  14. Influence of early stress on social abilities and serotonergic functions across generations in mice.

    Directory of Open Access Journals (Sweden)

    Tamara B Franklin

    Full Text Available Exposure to adverse environments during early development is a known risk factor for several psychiatric conditions including antisocial behavior and personality disorders. Here, we induced social anxiety and altered social recognition memory in adult mice using unpredictable maternal separation and maternal stress during early postnatal life. We show that these social defects are not only pronounced in the animals directly subjected to stress, but are also transmitted to their offspring across two generations. The defects are associated with impaired serotonergic signaling, in particular, reduced 5HT1A receptor expression in the dorsal raphe nucleus, and increased serotonin level in a dorsal raphe projection area. These findings underscore the susceptibility of social behaviors and serotonergic pathways to early stress, and the persistence of their perturbation across generations.

  15. Active uptake of substance P carboxy-terminal heptapeptide (5-11) into rat brain and rabbit spinal cord slices

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Y; Kusaka, Y; Yajima, H; Segawa, T

    1981-12-01

    We previously reported that nerve terminals and glial cells lack an active uptake system capable of terminating transmitter action of substance P (SP). In the present study, we demonstrated the existence of an active uptake system for SP carboxy-terminal heptapeptide, (5-11)SP. When the slices from either rat brain or rabbit spinal cord were incubated with (3H)(5-11)SP, the uptake of (5-11)SP into slices was observed. The uptake system has the properties of an active transport mechanism: it is dependent on temperature and sensitive to hypoosmotic treatment and is inhibited by ouabain and dinitrophenol (DNP). In the brain, (5-11)SP was accumulated by means of a high-affinity and a low-affinity uptake system. The Km and the Vmax values for the high-affinity system were 4.20 x 10(-8) M and 7.59 fmol/10 mg wet weight/min, respectively, whereas these values for the low-affinity system were 1.00 x 10(-6) M and 100 fmol/10 mg wet weight/min, respectively. In the spinal cord, there was only one uptake system, with a Km value of 2.16 x 10(-7) M and Vmax value of 26.2 fmol/10 mg wet weight/min. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP before or after acting as a neurotransmitter, which is in turn accumulated into nerve terminals. Therefore, the uptake system may represent a possible mechanism for the inactivation of SP.

  16. Effect of cochlear nerve electrocautery on the adult cochlear nucleus.

    Science.gov (United States)

    Iseli, Claire E; Merwin, William H; Klatt-Cromwell, Cristine; Hutson, Kendall A; Ewend, Matthew G; Adunka, Oliver F; Fitzpatrick, Douglas C; Buchman, Craig A

    2015-04-01

    Electrocauterization and subsequent transection of the cochlear nerve induce greater injury to the cochlear nucleus than sharp transection alone. Some studies show that neurofibromatosis Type 2 (NF2) patients fit with auditory brainstem implants (ABIs) fail to achieve speech perception abilities similar to ABI recipients without NF2. Reasons for these differences remain speculative. One hypothesis posits poorer performance to surgically induced trauma to the cochlear nucleus from electrocautery. Sustained electrosurgical depolarization of the cochlear nerve may cause excitotoxic-induced postsynaptic nuclear injury. Equally plausible is that cautery in the vicinity of the cochlear nucleus induces necrosis. The cochlear nerve was transected in anesthetized adult gerbils sharply with or without bipolar electrocautery at varying intensities. Gerbils were perfused at 1, 3, 5, and 7 days postoperatively; their brainstem and cochleas were embedded in paraffin and sectioned at 10 μm. Alternate sections were stained with flourescent markers for neuronal injury or Nissl substance. In additional experiments, anterograde tracers were applied directly to a sectioned eighth nerve to verify that fluorescent-labeled profiles seen were terminating auditory nerve fibers. Cochlear nerve injury was observed from 72 hours postoperatively and was identical across cases regardless of surgical technique. Postsynaptic cochlear nucleus injury was not seen after distal transection of the nerve. By contrast, proximal transection was associated with trauma to the cochlear nucleus. Distal application of bipolar electrocautery seems safe for the cochlear nucleus. Application near the root entry zone must be used cautiously because this may compromise nuclear viability needed to support ABI stimulation.

  17. Recruitment order of quadriceps motor units: femoral nerve vs. direct quadriceps stimulation.

    Science.gov (United States)

    Rodriguez-Falces, Javier; Place, Nicolas

    2013-12-01

    To investigate potential differences in the recruitment order of motor units (MUs) in the quadriceps femoris when electrical stimulation is applied over the quadriceps belly versus the femoral nerve. M-waves and mechanical twitches were evoked using femoral nerve stimulation and direct quadriceps stimulation of gradually increasing intensity from 20 young, healthy subjects. Recruitment order was investigated by analysing the time-to-peak twitch and the time interval from the stimulus artefact to the M-wave positive peak (M-wave latency) for the vastus medialis (VM) and vastus lateralis (VL) muscles. During femoral nerve stimulation, time-to-peak twitch and M-wave latency decreased consistently (P  0.05). For the VM muscle, M-wave latency decreased with increasing stimulation level for both femoral nerve and direct quadriceps stimulation, whereas, for the VL muscle, the variation of M-wave latency with stimulus intensity was different for the two stimulation geometries (P recruitment order during direct quadriceps stimulation was more complex, depending ultimately on the architecture of the peripheral nerve and its terminal branches below the stimulating electrodes for each muscle. For the VM, MUs were orderly recruited for both stimulation geometries, whereas, for the VL muscle, MUs were orderly recruited for femoral nerve stimulation, but followed no particular order for direct quadriceps stimulation.

  18. Lycopene depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebrocortical nerve terminals.

    Science.gov (United States)

    Lu, Cheng-Wei; Hung, Chi-Feng; Jean, Wei-Horng; Lin, Tzu-Yu; Huang, Shu-Kuei; Wang, Su-Jane

    2018-05-01

    Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca 2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca 2+ -release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca 2+ entry and protein kinase C activity.

  19. Rehabilitation, Using Guided Cerebral Plasticity, of a Brachial Plexus Injury Treated with Intercostal and Phrenic Nerve Transfers.

    Science.gov (United States)

    Dahlin, Lars B; Andersson, Gert; Backman, Clas; Svensson, Hampus; Björkman, Anders

    2017-01-01

    Recovery after surgical reconstruction of a brachial plexus injury using nerve grafting and nerve transfer procedures is a function of peripheral nerve regeneration and cerebral reorganization. A 15-year-old boy, with traumatic avulsion of nerve roots C5-C7 and a non-rupture of C8-T1, was operated 3 weeks after the injury with nerve transfers: (a) terminal part of the accessory nerve to the suprascapular nerve, (b) the second and third intercostal nerves to the axillary nerve, and (c) the fourth to sixth intercostal nerves to the musculocutaneous nerve. A second operation-free contralateral gracilis muscle transfer directly innervated by the phrenic nerve-was done after 2 years due to insufficient recovery of the biceps muscle function. One year later, electromyography showed activation of the biceps muscle essentially with coughing through the intercostal nerves, and of the transferred gracilis muscle by deep breathing through the phrenic nerve. Voluntary flexion of the elbow elicited clear activity in the biceps/gracilis muscles with decreasing activity in intercostal muscles distal to the transferred intercostal nerves (i.e., corresponding to eighth intercostal), indicating cerebral plasticity, where neural control of elbow flexion is gradually separated from control of breathing. To restore voluntary elbow function after nerve transfers, the rehabilitation of patients operated with intercostal nerve transfers should concentrate on transferring coughing function, while patients with phrenic nerve transfers should focus on transferring deep breathing function.

  20. Fisetin exerts antihyperalgesic effect in a mouse model of neuropathic pain: engagement of spinal serotonergic system

    Science.gov (United States)

    Zhao, Xin; Wang, Chuang; Cui, Wu-Geng; Ma, Qing; Zhou, Wen-Hua

    2015-01-01

    Fisetin, a natural flavonoid, has been shown in our previous studies to exert antidepressant-like effect. As antidepressant drugs are clinically used to treat chronic neuropathic pain, this work aimed to investigate the potential antinociceptive efficacies of fisetin against neuropathic pain and explore mechanism(s). We subjected mice to chronic constriction injury (CCI) by loosely ligating the sciatic nerves, and Hargreaves test or von Frey test was used to assess thermal hyperalgesia or mechanical allodynia, respectively. Chronic fisetin treatment (5, 15 or 45 mg/kg, p.o.) ameliorated thermal hyperalgesia (but not mechanical allodynia) in CCI mice, concomitant with escalated levels of spinal monoamines and suppressed monoamine oxidase (MAO)-A activity. The antihyperalgesic action of fisetin was abolished by chemical depletion of spinal serotonin (5-HT) but potentiated by co-treatment with 5-HTP, a precursor of 5-HT. Moreover, intraperitoneal (i.p.) or intrathecal (i.t.) co-treatment with 5-HT7 receptor antagonist SB-258719 completely abrogated fisetin's antihyperalgesia. These findings confirm that chronic fisetin treatment exerts antinociceptive effect on thermal hyperalgesia in neuropathic mice, with spinal serotonergic system (coupled with 5-HT7) being critically involved. Of special benefit, fisetin attenuated co-morbidly behavioral symptoms of depression and anxiety (evaluated in forced swim test, novelty suppressed feeding test and light-dark test) evoked by neuropathic pain. PMID:25761874

  1. A preconditioning nerve lesion inhibits mechanical pain hypersensitivity following subsequent neuropathic injury

    Directory of Open Access Journals (Sweden)

    Wu Ann

    2011-01-01

    Full Text Available Abstract Background A preconditioning stimulus can trigger a neuroprotective phenotype in the nervous system - a preconditioning nerve lesion causes a significant increase in axonal regeneration, and cerebral preconditioning protects against subsequent ischemia. We hypothesized that a preconditioning nerve lesion induces gene/protein modifications, neuronal changes, and immune activation that may affect pain sensation following subsequent nerve injury. We examined whether a preconditioning lesion affects neuropathic pain and neuroinflammation after peripheral nerve injury. Results We found that a preconditioning crush injury to a terminal branch of the sciatic nerve seven days before partial ligation of the sciatic nerve (PSNL; a model of neuropathic pain induced a significant attenuation of pain hypersensitivity, particularly mechanical allodynia. A preconditioning lesion of the tibial nerve induced a long-term significant increase in paw-withdrawal threshold to mechanical stimuli and paw-withdrawal latency to thermal stimuli, after PSNL. A preconditioning lesion of the common peroneal induced a smaller but significant short-term increase in paw-withdrawal threshold to mechanical stimuli, after PSNL. There was no difference between preconditioned and unconditioned animals in neuronal damage and macrophage and T-cell infiltration into the dorsal root ganglia (DRGs or in astrocyte and microglia activation in the spinal dorsal and ventral horns. Conclusions These results suggest that prior exposure to a mild nerve lesion protects against adverse effects of subsequent neuropathic injury, and that this conditioning-induced inhibition of pain hypersensitivity is not dependent on neuroinflammation in DRGs and spinal cord. Identifying the underlying mechanisms may have important implications for the understanding of neuropathic pain due to nerve injury.

  2. Nerve Blocks

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Nerve Blocks A nerve block is an injection to ... the limitations of Nerve Block? What is a Nerve Block? A nerve block is an anesthetic and/ ...

  3. Effect of Gymnodinium breve toxin in the rat phrenic nerve diaphragm preparation.

    Science.gov (United States)

    Gallagher, J. P.; Shinnick-Gallagher, P.

    1980-01-01

    1 The effects of a crude fraction of Gymnodinium breve toxin (GBTX) were studied on the rat phrenic nerve diaphragm preparation. 2 Indirectly stimulated muscle contractions were more sensitive to blockade by increasing concentrations of GBTX (0.25 microgram/ml to 10 micrograms/ml) than direct muscle contractions. 3 GBTX increased miniature endplate potential (m.e.p.p.) frequency and depolarized the resting membrane potential of the muscle fibres at the endplate and in non-synaptic regions of muscle fibre. 4 A concentration-dependent biphasic effect on m.e.p.p. amplitude was evident. At lower concentrations m.e.p.p. amplitudes were depressed whereas at high concentrations they were increased. 5 GBTX blocked endplate potentials (e.p.ps) in concentrations (0.5 microgram/ml to 2 micrograms/ml) that did not block m.e.p.ps. 6 Muscle fibre action potentials recorded from cells held at control membrane potential by hyperpolarizing current were not altered by toxin treatment. No repetitive e.p.ps, or muscle action potentials were observed. 7 These data suggest that GBTX may block indirectly stimulated muscle contractions and e.p.ps by depolarizing the nerve terminal in a manner similar to the observed depolarization of the muscle fibre. The depolarization of the nerve terminal may be sufficient to inhibit transmitter release. PMID:7190451

  4. The antidepressant-like effect of ethynyl estradiol is mediated by both serotonergic and noradrenergic systems in the forced swimming test.

    Science.gov (United States)

    Vega-Rivera, N M; López-Rubalcava, C; Estrada-Camarena, E

    2013-10-10

    17α-Ethynyl-estradiol (EE2, a synthetic steroidal estrogen) induces antidepressant-like effects in the forced swimming test (FST) similar to those induced by 5-HT and noradrenaline reuptake inhibitors (dual antidepressants). However, the precise mechanism of action of EE2 has not been studied. In the present study, the participation of estrogen receptors (ERs) and the serotonergic and the noradrenergic presynaptic sites in the antidepressant-like action of EE2 was evaluated in the FST. The effects of the ER antagonist ICI 182,780 (10 μg/rat; i.c.v.), the serotonergic and noradrenergic terminal destruction with 5,7-dihydroxytryptamine (5,7-DHT; 200 μg/rat, i.c.v.), and N-(2-chloro-ethyl)-N-ethyl-2-bromobenzylamine (DSP4; 10mg/kg, i.p.) were studied in ovariectomized rats treated with EE2 and subjected to the FST. In addition, the participation of α2-adrenergic receptors in the antidepressant-like action of EE2 was explored using the selective α2-receptor antagonist idazoxan (0.25, 0.5 and 1.0mg/kg, i.p.). EE2 induced an antidepressant-like action characterized by a decrease in immobility behavior with a concomitant increase in swimming and climbing behaviors. The ER antagonist, 5,7-DHT, DSP4, and idazoxan blocked the effects of EE2 on the immobility behavior, whereas ICI 182,780 and 5,7-DHT affected swimming behavior. The noradrenergic compound DSP4 altered climbing behavior, while Idazoxan inhibited the increase of swimming and climbing behaviors induced by EE2. Our results suggest that the antidepressant-like action of EE2 implies a complex mechanism of action on monoaminergic systems and estrogen receptors. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational 'Ecstasy' users.

    Science.gov (United States)

    Parrott, Andrew C

    2013-09-01

    Serotonergic neurotoxicity following MDMA is well-established in laboratory animals, and neuroimaging studies have found lower serotonin transporter (SERT) binding in abstinent Ecstasy/MDMA users. Serotonin is a modulator for many different psychobiological functions, and this review will summarize the evidence for equivalent functional deficits in recreational users. Declarative memory, prospective memory, and higher cognitive skills are often impaired. Neurocognitive deficits are associated with reduced SERT in the hippocampus, parietal cortex, and prefrontal cortex. EEG and ERP studies have shown localised reductions in brain activity during neurocognitive performance. Deficits in sleep, mood, vision, pain, psychomotor skill, tremor, neurohormonal activity, and psychiatric status, have also been demonstrated. The children of mothers who take Ecstasy/MDMA during pregnancy have developmental problems. These psychobiological deficits are wide-ranging, and occur in functions known to be modulated by serotonin. They are often related to lifetime dosage, with light users showing slight changes, and heavy users displaying more pronounced problems. In summary, abstinent Ecstasy/MDMA users can show deficits in a wide range of biobehavioral functions with a serotonergic component. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Estrogenic mediation of serotonergic and neurotrophic systems: implications for female mood disorders.

    Science.gov (United States)

    Borrow, Amanda P; Cameron, Nicole M

    2014-10-03

    Clinical research has demonstrated a significant sex difference in the occurrence of depressive disorders. Beginning at pubertal onset, women report a higher incidence of depression than men. Women are also vulnerable to the development of depressive disorders such as premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression. These disorders are associated with reproductive stages involving changes in gonadal hormone levels. Specifically, female depression and female affective behaviors are influenced by estradiol levels. This review argues two major mechanisms by which estrogens influence depression and depressive-like behavior: through interactions with neurotrophic factors and through an influence on the serotonergic system. In particular, estradiol increases brain derived neurotrophic factor (BDNF) levels within the brain, and alters serotonergic expression in a receptor subtype-specific manner. We will take a regional approach, examining these effects of estrogens in the major brain areas implicated in depression. Finally, we will discuss the gaps in our current knowledge of the effects of estrogens on female depression, and the potential utility for estrogen receptor modulators in treatment for this disorder. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Peripheral axotomy of the rat mandibular trigeminal nerve leads to an increase in VIP and decrease of other primary afferent neuropeptides in the spinal trigeminal nucleus.

    Science.gov (United States)

    Atkinson, M E; Shehab, S A

    1986-12-01

    In the vasoactive intestinal polypeptide (VIP)-rich lumbosacral spinal cord, VIP increases at the expense of other neuropeptides after primary sensory nerve axotomy. This study was undertaken to ascertain whether similar changes occur in peripherally axotomised cranial sensory nerves. VIP immunoreactivity increased in the terminal region of the mandibular nerve in the trigeminal nucleus caudalis following unilateral section of the sensory root of the mandibular trigeminal nerve at the foramen orale. Other primary afferent neuropeptides (substance P, cholecystokinin and somatostatin) were depleted and fluoride-resistant acid phosphatase activity was abolished in the same circumscribed areas of the nucleus caudalis. The rise in VIP and depletion of other markers began 4 days postoperatively and was maximal by 10 days, these levels remaining unchanged up to 1 year postoperatively. VIP-immunoreactive cell bodies were absent from trigeminal ganglia from the unoperated side but small and medium cells stained intensely in the ganglia of the operated side after axotomy. These observations indicate that increase of VIP in sensory nerve terminals is a general phenomenon occurring in both cranial and spinal sensory terminal areas. The intense VIP immunoreactivity in axotomised trigeminal ganglia suggests that the increased levels of VIP in the nucleus caudalis are of peripheral origin, indicating a change in expression of neuropeptides within primary afferent neurons following peripheral axotomy.

  8. Evaluating of the Anticonvulsant Gabapentin against Nerve Agent-Induced Seizures in a Guinea Pig Model

    Science.gov (United States)

    2010-07-01

    treating neuropathic pain. This study evaluated whether gabapentin could terminate or moderate nerve agent-induced seizures using a validated guinea ... pig model. Male Hartley guinea pigs were surgically prepared to record electroencephalographic (EEG) activity. After a week recovery, animals were

  9. Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery

    Science.gov (United States)

    Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro

    2017-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.

  10. Denervation of nerve terminals in renal arteries: one-year follow-up of interventional treatment of arterial hypertension.

    Science.gov (United States)

    Bartuś, Krzysztof; Sadowski, Jerzy; Kapelak, Bogusław; Litwinowicz, Radosław; Zajdel, Wojciech; Godlewski, Jacek; Bartuś, Magdalena; Zmudka, Krzysztof; Chrapusta, Anna; Konstanty-Kalandyk, Janusz; Węgrzyn, Piotr; Sobotka, Paul A

    2014-01-01

    Arterial hypertension is the most common cardiovascular system disease, affecting nearly one billion people worldwide. Despite the widespread use of antihypertensive medications, in some groups of patients an optimal blood pressure (BP) cannot be achieved. To assess BP reduction in patients with resistant hypertension after a catheter-based renal sympathetic denervation procedure and to report vascular and kidney safety in one-year follow-up. Twenty eight patients with diagnosed resistant hypertension (median age 52.02 years, range 42-72) underwent percutaneous catheter-based renal denervation of nerve terminals in renal arteries. Arterial angiography and procedure of ablation was performed by Symplicity catheters and generator provided by Ardian (currently Medtronic Inc., USA). Mean BP value before ablation was [mm Hg]: systolic 176.6, diastolic 100.28 and pulse pressure 73.4. After the procedure, reductions in the value of BP were reported [mm Hg]: systolic 154.8/152.54; diastolic 90.2/89.8, pulse pressure 64.66/62.73, respectively in nine-month and one-year follow-up. All results were statistically significant. No complications during one year observation were observed. Percutaneous renal artery ablation procedure effectively reduces systolic BP, diastolic BP, and pulse pressure. No vascular or renal complications in any of the patients were observed. The results of a Polish research group showed no significant differences compared to the results obtained in the international studies Symplicity I and Symplicity II.

  11. [Morphology research of the rat sciatic nerve bridged by collage-heparin sulfate scaffold].

    Science.gov (United States)

    Wang, Shu-sen; Hu, Yun-yu; Luo, Zhuo-jing; Chen, Liang-wei; Liu, Hui-ling; Meng, Guo-lin; Lü, Rong; Xu, Xin-zhi

    2005-04-15

    To observe the treating effect of collage-heparin sulfate after the 10 mm rat sciatic nerve defect was bridged by it. A new kind of nervous tissue engineering scaffold was produced by freeze-drying technique from collagen-heparin sulfate. Thirty-two SD rats were randomly divided into A, B, C and D groups. Sciatic nerve defect in group A was bridged by collagen-heparin sulfate. In group B, sciatic nerve was bridged by auto-nerve transplantation. Group C was the blank control group. Animals in group D were normal. And 10 mm sciatic nerve defect was bridged in the experiment. Thirty-six weeks after the operation, the experimental animals were detected by HRP labeled retrograde trace, HE staining, toluidine staining, silvering staining, S100, GAP-43 and NF immunohistological staining, MBP immunofluorescence staining and transmission electron microscope to observe the nerve regeneration inducing effect of this new scaffold. Nine months after operation, the collage-heparin sulfate scaffold was replaced by newly regenerated nerve. The number of HRP labeled spinal cord anterior horn cells and the area of sensation nerve fiber at the posterior horn were similar with that was repaired by auto-nerve. GAP-43, NF and S100 labeled regenerated nerve fiber had passed the total scaffold and entered the distal terminal. The regenerated nerve fibers were paralleled, lineage arranged, coincide with the prearranged regenerating "channel" in the collagen-heparin sulfate scaffold. MBP immunofluorescence staining also proved that the newly regenerated nerve fiber could be ensheathed. In the experimental group, the area of myelinated nerve fiber and the thickness of the myelin sheath had no obvious difference with that of the group repaired by auto-nerve, except that the density of the regenerated myelinated sheath fiber was lower than that of the control group. Nervous tissue engineering scaffold produced by collagen-heparin sulfate can guide the regeneration of nerve fibers. The nerve

  12. Brain Aromatase Modulates Serotonergic Neuron by Regulating Serotonin Levels in Zebrafish Embryos and Larvae

    Directory of Open Access Journals (Sweden)

    Zulvikar Syambani Ulhaq

    2018-05-01

    Full Text Available Teleost fish are known to express two isoforms of P450 aromatase, a key enzyme for estrogen synthesis. One of the isoforms, brain aromatase (AroB, cyp19a1b, is highly expressed during early development of zebrafish, thereby suggesting its role in brain development. On the other hand, early development of serotonergic neuron, one of the major monoamine neurons, is considered to play an important role in neurogenesis. Therefore, in this study, we investigated the role of AroB in development of serotonergic neuron by testing the effects of (1 estradiol (E2 exposure and (2 morpholino (MO-mediated AroB knockdown. When embryos were exposed to E2, the effects were biphasic. The low dose of E2 (0.005 µM significantly increased serotonin (5-HT positive area at 48 hour post-fertilization (hpf detected by immunohistochemistry and relative mRNA levels of tryptophan hydroxylase isoforms (tph1a, tph1b, and tph2 at 96 hpf measured by semi-quantitative PCR. To test the effects on serotonin transmission, heart rate and thigmotaxis, an indicator of anxiety, were analyzed. The low dose also significantly increased heart rate at 48 hpf and decreased thigmotaxis. The high dose of E2 (1 µM exhibited opposite effects in all parameters. The effects of both low and high doses were reversed by addition of estrogen receptor (ER blocker, ICI 182,780, thereby suggesting that the effects were mediated through ER. When AroB MO was injected to fertilized eggs, 5-HT-positive area was significantly decreased, while the significant decrease in relative tph mRNA levels was found only with tph2 but not with two other isoforms. AroB MO also decreased heart rate and increased thigmotaxis. All the effects were rescued by co-injection with AroB mRNA and by exposure to E2. Taken together, this study demonstrates the role of brain aromatase in development of serotonergic neuron in zebrafish embryos and larvae, implying that brain-formed estrogen is an important factor to

  13. Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study

    Science.gov (United States)

    Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.

    2011-01-01

    Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979

  14. Association Between Serotonergic Antidepressant Use During Pregnancy and Autism Spectrum Disorder in Children.

    Science.gov (United States)

    Brown, Hilary K; Ray, Joel G; Wilton, Andrew S; Lunsky, Yona; Gomes, Tara; Vigod, Simone N

    2017-04-18

    Previous observations of a higher risk of child autism spectrum disorder with serotonergic antidepressant exposure during pregnancy may have been confounded. To evaluate the association between serotonergic antidepressant exposure during pregnancy and child autism spectrum disorder. Retrospective cohort study. Health administrative data sets were used to study children born to mothers who were receiving public prescription drug coverage during pregnancy in Ontario, Canada, from 2002-2010, reflecting 4.2% of births. Children were followed up until March 31, 2014. Serotonergic antidepressant exposure was defined as 2 or more consecutive maternal prescriptions for a selective serotonin or serotonin-norepinephrine reuptake inhibitor between conception and delivery. Child autism spectrum disorder identified after the age of 2 years. Exposure group differences were addressed by inverse probability of treatment weighting based on derived high-dimensional propensity scores (computerized algorithm used to select a large number of potential confounders) and by comparing exposed children with unexposed siblings. There were 35 906 singleton births at a mean gestational age of 38.7 weeks (50.4% were male, mean maternal age was 26.7 years, and mean duration of follow-up was 4.95 years). In the 2837 pregnancies (7.9%) exposed to antidepressants, 2.0% (95% CI, 1.6%-2.6%) of children were diagnosed with autism spectrum disorder. The incidence of autism spectrum disorder was 4.51 per 1000 person-years among children exposed to antidepressants vs 2.03 per 1000 person-years among unexposed children (between-group difference, 2.48 [95% CI, 2.33-2.62] per 1000 person-years; hazard ratio [HR], 2.16 [95% CI, 1.64-2.86]; adjusted HR, 1.59 [95% CI, 1.17-2.17]). After inverse probability of treatment weighting based on the high-dimensional propensity score, the association was not significant (HR, 1.61 [95% CI, 0.997-2.59]). The association was also not significant when exposed children

  15. Vascularized nerve grafts for lower extremity nerve reconstruction.

    Science.gov (United States)

    Terzis, Julia K; Kostopoulos, Vasileios K

    2010-02-01

    Vascularized nerve grafts (VNG) were introduced in 1976 but since then, there have been no reports of their usage in lower extremity reconstruction systematically. The factors influencing outcomes as well as a comparison with conventional nerve grafts will be presented.Since 1981, 14 lower extremity nerve injuries in 12 patients have been reconstructed with VNG. Common peroneal nerve was injured in 12 and posterior tibial nerve in 5 patients. The level of the injury was at the knee or thigh. Twelve sural nerves were used as VNG with or without concomitant vascularized posterior calf fascia.All patients regained improved sensibility and adequate posterior tibial nerve function. For common peroneal nerve reconstructions, all patients with denervation time less than 6 months regained muscle strength of grade at least 4, even when long grafts were used for defects of 20 cm or more. Late cases, yielded inadequate muscle function even with the use of VNG.Denervation time of 6 months or less was critical for reconstruction with vascularized nerve graft. Not only the results were statistically significant compared with late cases, but also all early operated patients achieved excellent results. VNG are strongly recommended in traction avulsion injuries of the lower extremity with lengthy nerve damage.

  16. Nerve Cross-Bridging to Enhance Nerve Regeneration in a Rat Model of Delayed Nerve Repair

    Science.gov (United States)

    2015-01-01

    There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays. PMID:26016986

  17. Impairment of Serotonergic Transmission by the Antiparkinsonian Drug L-DOPA: Mechanisms and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Cristina Miguelez

    2017-09-01

    Full Text Available The link between the anti-Parkinsonian drug L-3,4-dihydroxyphenylalanine (L-DOPA and the serotonergic (5-HT system has been long established and has received increased attention during the last decade. Most studies have focused on the fact that L-DOPA can be transformed into dopamine (DA and released from 5-HT terminals, which is especially important for the management of L-DOPA-induced dyskinesia. In patients, treatment using L-DOPA also impacts 5-HT neurotransmission; however, few studies have investigated the mechanisms of this effect. The purpose of this review is to summarize the electrophysiological and neurochemical data concerning the effects of L-DOPA on 5-HT cell function. This review will argue that L-DOPA disrupts the link between the electrical activity of 5-HT neurons and 5-HT release as well as that between 5-HT release and extracellular 5-HT levels. These effects are caused by the actions of L-DOPA and DA in 5-HT neurons, which affect 5-HT neurotransmission from the biosynthesis of 5-HT to the impairment of the 5-HT transporter. The interaction between L-DOPA and 5-HT transmission is especially relevant in those Parkinson’s disease (PD patients that suffer dyskinesia, comorbid anxiety or depression, since the efficacy of antidepressants or 5-HT compounds may be affected.

  18. Nerve conduction and excitability studies in peripheral nerve disorders

    DEFF Research Database (Denmark)

    Krarup, Christian; Moldovan, Mihai

    2009-01-01

    counterparts in the peripheral nervous system, in some instances without peripheral nervous system symptoms. Both hereditary and acquired demyelinating neuropathies have been studied and the effects on nerve pathophysiology have been compared with degeneration and regeneration of axons. SUMMARY: Excitability......PURPOSE OF REVIEW: The review is aimed at providing information about the role of nerve excitability studies in peripheral nerve disorders. It has been known for many years that the insight into peripheral nerve pathophysiology provided by conventional nerve conduction studies is limited. Nerve...... excitability studies are relatively novel but are acquiring an increasingly important role in the study of peripheral nerves. RECENT FINDINGS: By measuring responses in nerve that are related to nodal function (strength-duration time constant, rheobase and recovery cycle) and internodal function (threshold...

  19. Serotonergic Drugs and Valvular Heart Disease

    Science.gov (United States)

    Rothman, Richard B.; Baumann, Michael H.

    2009-01-01

    Background The serotonin (5-HT) releasers (±)-fenfluramine and (+)-fenfluramine were withdrawn from clinical use due to increased risk of valvular heart disease. One prevailing hypothesis (i.e., the “5-HT hypothesis”) suggests that fenfluramine-induced increases in plasma 5-HT underlie the disease. Objective Here we critically evaluate the possible mechanisms responsible for fenfluramine-associated valve disease. Methods Findings from in vitro and in vivo experiments performed in our laboratory are reviewed. The data are integrated with existing literature to address the validity of the 5-HT hypothesis and suggest alternative explanations. Conclusions The overwhelming majority of evidence refutes the 5-HT hypothesis. A more likely cause of fenfluramine-induced valvulopathy is activation of 5-HT2B receptors on heart valves by the metabolite norfenfluramine. Future serotonergic medications should be designed to lack 5-HT2B agonist activity. PMID:19505264

  20. Serotonergic neurotransmission in emotional processing: New evidence from long-term recreational poly-drug ecstasy use.

    Science.gov (United States)

    Laursen, Helle Ruff; Henningsson, Susanne; Macoveanu, Julian; Jernigan, Terry L; Siebner, Hartwig R; Holst, Klaus K; Skimminge, Arnold; Knudsen, Gitte M; Ramsoy, Thomas Z; Erritzoe, David

    2016-12-01

    The brain's serotonergic system plays a crucial role in the processing of emotional stimuli, and several studies have shown that a reduced serotonergic neurotransmission is associated with an increase in amygdala activity during emotional face processing. Prolonged recreational use of ecstasy (3,4-methylene-dioxymethamphetamine [MDMA]) induces alterations in serotonergic neurotransmission that are comparable to those observed in a depleted state. In this functional magnetic resonance imaging (fMRI) study, we investigated the responsiveness of the amygdala to emotional face stimuli in recreational ecstasy users as a model of long-term serotonin depletion. Fourteen ecstasy users and 12 non-using controls underwent fMRI to measure the regional neural activity elicited in the amygdala by male or female faces expressing anger, disgust, fear, sadness, or no emotion. During fMRI, participants made a sex judgement on each face stimulus. Positron emission tomography with 11 C-DASB was additionally performed to assess serotonin transporter (SERT) binding in the brain. In the ecstasy users, SERT binding correlated negatively with amygdala activity, and accumulated lifetime intake of ecstasy tablets was associated with an increase in amygdala activity during angry face processing. Conversely, time since the last ecstasy intake was associated with a trend toward a decrease in amygdala activity during angry and sad face processing. These results indicate that the effects of long-term serotonin depletion resulting from ecstasy use are dose-dependent, affecting the functional neural basis of emotional face processing. © The Author(s) 2016.

  1. Correlation of ultrasound appearance, gross anatomy, and histology of the femoral nerve at the femoral triangle.

    Science.gov (United States)

    Lonchena, Tiffany K; McFadden, Kathryn; Orebaugh, Steven L

    2016-01-01

    Correlation between ultrasound appearance, gross anatomic characteristics, and histologic structure of the femoral nerve (FN) is lacking. Utilizing cadavers, we sought to characterize the anatomy of the FN, and provide a quantitative measure of its branching. We hypothesize that at the femoral crease, the FN exists as a group of nerve branches, rather than a single nerve structure, and secondarily, that this transition into many branches is apparent on ultrasonography. Nineteen preserved cadavers were investigated. Ultrasonography was sufficient to evaluate the femoral nerve in nine specimens; gross dissection was utilized in all 19. Anatomic characteristics were recorded, including distances from the inguinal ligament to femoral crease, first nerve branch, and complete arborization of the nerve. The nerves from nine specimens were excised for histologic analysis. On ultrasound, the nerve became more flattened, widened, and less discrete as it coursed distally. Branching of the nerve was apparent in 12 of 18 images, with mean distance from inguinal ligament of 3.9 (1.0) cm. However, upon dissection, major branching of the femoral nerve occurred at 3.1 (1.0) cm distal to the inguinal ligament, well proximal to the femoral crease. Histologic analysis was consistent with findings at dissection. The femoral nerve arborizes into multiple branches between the inguinal ligament and the femoral crease. Initial branching is often high in the femoral triangle. As hypothesized, the FN exists as a closely associated group of nerve branches at the level of the femoral crease; however, the termination of the nerve into multiple branches is not consistently apparent on ultrasonography.

  2. Acute restriction impairs memory in the elevated T-maze (ETM) and modifies serotonergic activity in the dorsolateral striatum.

    Science.gov (United States)

    Cruz-Morales, Sara Eugenia; García-Saldívar, Norma Laura; González-López, María Reyes; Castillo-Roberto, Georgina; Monroy, Juana; Domínguez, Roberto

    2008-12-16

    Serotonin (5-HT) is involved in behaviors such as sleep, eating, memory, in mental disorders like anxiety and depression and plays an important role in the modulation of stress. On the other hand, exposure to stress influence learning as well as declarative and non-declarative memory. These effects are dependent on the type of stressor, their magnitude, and the type of memory. The striatum has been associated with non-declarative procedural memory, while the information about stress effects on procedural memory and their relation with striatal serotonin is scarce. The objective of this study was to evaluate the effects of stress on the modifications of the striatal serotonergic system. In Experiment 1, the effects of either 60 min of restraint (R) or exposure to the elevated T-maze (ETM) was assessed. Exposure to ETM decreased 5-HT concentration and to R increased 5-HT activity ([metabolite]/[neurotransmitter]). In Experiment 2, we evaluated the effects of restraint on ETM trained immediately, 24 or 48 h after restraint. No effects were detected in acquisition or escape latencies, while retention latencies were lower in all groups compared with the non-restrained group, although significant effects were detected immediately and 24h after restraint. The memory impairment seems to be associated with changes in striatal serotonergic system, given that 5-HT concentration increased, while serotonergic activity decreased. The differences in the activity of 5-HT detected in each experiment could be explained by the effects of different stressors on the serotonergic neurons ability to synthesize the neurotransmitter. Thus, we suggest that exposure to stress impairs procedural memory and that striatal serotonin modulates this effect.

  3. External laryngeal nerve in thyroid surgery: is the nerve stimulator necessary?

    Science.gov (United States)

    Aina, E N; Hisham, A N

    2001-09-01

    To find out the incidence and type of external laryngeal nerves during operations on the thyroid, and to assess the role of a nerve stimulator in detecting them. Prospective, non-randomised study. Teaching hospital, Malaysia. 317 patients who had 447 dissections between early January 1998 and late November 1999. Number and type of nerves crossing the cricothyroid space, and the usefulness of the nerve stimulator in finding them. The nerve stimulator was used in 206/447 dissections (46%). 392 external laryngeal nerves were seen (88%), of which 196/206 (95%) were detected with the stimulator. However, without the stimulator 196 nerves were detected out of 241 dissections (81%). The stimulator detected 47 (23%) Type I nerves (nerve > 1 cm from the upper edge of superior pole); 86 (42%) Type IIa nerves (nerve edge of superior pole); and 63 (31%) Type IIb nerves (nerve below upper edge of superior pole). 10 nerves were not detected. When the stimulator was not used the corresponding figures were 32 (13%), 113 (47%), and 51 (21%), and 45 nerves were not seen. If the nerve cannot be found we recommend dissection of capsule close to the medial border of the upper pole of the thyroid to avoid injury to the nerve. Although the use of the nerve stimulator seems desirable, it confers no added advantage in finding the nerve. In the event of uncertainty about whether a structure is the nerve, the stimulator may help to confirm it. However, exposure of the cricothyroid space is most important for good exposure in searching for the external laryngeal nerve.

  4. Cocaine modulates allosteric D2-σ1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum.

    Science.gov (United States)

    Beggiato, Sarah; Borelli, Andrea Celeste; Borroto-Escuela, Dasiel; Corbucci, Ilaria; Tomasini, Maria Cristina; Marti, Matteo; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell; Ferraro, Luca

    2017-12-01

    The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D 2 -σ 1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ 1 receptors (σ 1 Rs) in the cocaine-provoked amplification of D 2 receptor (D 2 R)-induced reduction of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D 2 -likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. The σ 1 R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K + -evoked [ 3 H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σ 1 R and D 2L R HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D 2L R singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D 2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D 2 -σ 1 R complexes on the rat striatal DA and glutamate nerve terminals and functional D 2 -σ 1 R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D 2 R signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Biophysical properties and computational modeling of calcium spikes in serotonergic neurons of the dorsal raphe nucleus.

    Science.gov (United States)

    Tuckwell, Henry C

    2013-06-01

    Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is desirable to construct computational models and to this end these it is necessary to have details of the biophysical and spike properties of the serotonergic neurons. Here several basic properties are reviewed with data from several studies since the 1960s to the present. The quantities included are input resistance, resting membrane potential, membrane time constant, firing rate, spike duration, spike and afterhyperpolarization (AHP) amplitude, spike threshold, cell capacitance, soma and somadendritic areas. The action potentials of these cells are normally triggered by a combination of sodium and calcium currents which may result in autonomous pacemaker activity. We here analyse the mechanisms of high-threshold calcium spikes which have been demonstrated in these cells the presence of TTX (tetrodotoxin). The parameters for calcium dynamics required to give calcium spikes are quite different from those for regular spiking which suggests the involvement of restricted parts of the soma-dendritic surface as has been found, for example, in hippocampal neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Sympathetic Nerves in Breast Cancer: Angiogenesis and Antiangiogenic Therapy

    Science.gov (United States)

    2013-02-01

    an enzyme found only outside nerve terminals (6). We showed that splenic NE and NMN were markedly elevated 3 days after DMI implantation relative to...daily ISO treatment (Figs. 3A; attached manuscript day x treatment interaction, p = 0.14). To further investigate potential ß-AR-induced effects on...It has high affinity for ß2-AR, but is unable to desensitize ß-AR, resulting in a long-term effectiveness that cannot be achieved with most ß-agonists

  7. Chitin biological absorbable catheters bridging sural nerve grafts transplanted into sciatic nerve defects promote nerve regeneration.

    Science.gov (United States)

    Wang, Zhi-Yong; Wang, Jian-Wei; Qin, Li-Hua; Zhang, Wei-Guang; Zhang, Pei-Xun; Jiang, Bao-Guo

    2018-06-01

    To investigate the efficacy of chitin biological absorbable catheters in a rat model of autologous nerve transplantation. A segment of sciatic nerve was removed to produce a sciatic nerve defect, and the sural nerve was cut from the ipsilateral leg and used as a graft to bridge the defect, with or without use of a chitin biological absorbable catheter surrounding the graft. The number and morphology of regenerating myelinated fibers, nerve conduction velocity, nerve function index, triceps surae muscle morphology, and sensory function were evaluated at 9 and 12 months after surgery. All of the above parameters were improved in rats in which the nerve graft was bridged with chitin biological absorbable catheters compared with rats without catheters. The results of this study indicate that use of chitin biological absorbable catheters to surround sural nerve grafts bridging sciatic nerve defects promotes recovery of structural, motor, and sensory function and improves muscle fiber morphology. © 2018 John Wiley & Sons Ltd.

  8. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    International Nuclear Information System (INIS)

    Tsoumakidou, Georgia; Garnon, Julien; Ramamurthy, Nitin; Buy, Xavier; Gangi, Afshin

    2013-01-01

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO 2 insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve

  9. Interest of Electrostimulation of Peripheral Motor Nerves during Percutaneous Thermal Ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Garnon, Julien, E-mail: juliengarnon@gmail.com; Ramamurthy, Nitin, E-mail: nitin_ramamurthy@hotmail.com; Buy, Xavier, E-mail: xbuy@ymail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [University Hospital of Strasbourg (France)

    2013-12-15

    Purpose: We present our experience of utilizing peripheral nerve electrostimulation as a complementary monitoring technique during percutaneous thermal ablation procedures; and we highlight its utility and feasibility in the prevention of iatrogenic neurologic thermal injury. Methods: Peripheral motor nerve electrostimulation was performed in 12 patients undergoing percutaneous image-guided thermal ablations of spinal/pelvic lesions in close proximity to the spinal cord and nerve roots. Electrostimulation was used in addition to existing insulation (active warming/cooling with hydrodissection, passive insulation with CO{sub 2} insufflation) and temperature monitoring (thermocouples) techniques. Impending neurologic deficit was defined as a visual reduction of muscle response or need for a stronger electric current to evoke muscle contraction, compared with baseline. Results: Significant reduction of the muscle response to electrostimulation was observed in three patients during the ablation, necessitating temporary interruption, followed by injection of warm/cool saline. This resulted in complete recovery of the muscle response in two cases, while for the third patient the response did not improve and the procedure was terminated. No patient experienced postoperative motor deficit. Conclusion: Peripheral motor nerve electrostimulation is a simple, easily accessible technique allowing early detection of impending neurologic injury during percutaneous image-guided thermal ablation. It complements existing monitoring techniques and provides a functional assessment along the whole length of the nerve.

  10. A novel method of lengthening the accessory nerve for direct coaptation during nerve repair and nerve transfer procedures.

    Science.gov (United States)

    Tubbs, R Shane; Maldonado, Andrés A; Stoves, Yolanda; Fries, Fabian N; Li, Rong; Loukas, Marios; Oskouian, Rod J; Spinner, Robert J

    2018-01-01

    OBJECTIVE The accessory nerve is frequently repaired or used for nerve transfer. The length of accessory nerve available is often insufficient or marginal (under tension) for allowing direct coaptation during nerve repair or nerve transfer (neurotization), necessitating an interpositional graft. An attractive maneuver would facilitate lengthening of the accessory nerve for direct coaptation. The aim of the present study was to identify an anatomical method for such lengthening. METHODS In 20 adult cadavers, the C-2 or C-3 connections to the accessory nerve were identified medial to the sternocleidomastoid (SCM) muscle and the anatomy of the accessory nerve/cervical nerve fibers within the SCM was documented. The cervical nerve connections were cut. Lengths of the accessory nerve were measured. Samples of the cut C-2 and C-3 nerves were examined using immunohistochemistry. RESULTS The anatomy and adjacent neural connections within the SCM are complicated. However, after the accessory nerve was "detethered" from within the SCM and following transection, the additional length of the accessory nerve increased from a mean of 6 cm to a mean of 10.5 cm (increase of 4.5 cm) after cutting the C-2 connections, and from a mean of 6 cm to a mean length of 9 cm (increase of 3.5 cm) after cutting the C-3 connections. The additional length of accessory nerve even allowed direct repair of an infraclavicular target (i.e., the proximal musculocutaneous nerve). The cervical nerve connections were shown not to contain motor fibers. CONCLUSIONS An additional length of the accessory nerve made available in the posterior cervical triangle can facilitate direct repair or neurotization procedures, thus eliminating the need for an interpositional nerve graft, decreasing the time/distance for regeneration and potentially improving clinical outcomes.

  11. The percentage of macrophage numbers in rat model of sciatic nerve crush injury

    Directory of Open Access Journals (Sweden)

    Satrio Wicaksono

    2016-02-01

    Full Text Available ABSTRACT Excessive accumulation of macrophages in sciatic nerve fascicles inhibits regeneration of peripheral nerves. The aim of this study is to determine the percentage of the macrophages inside and outside of the fascicles at the proximal, at the site of injury and at the distal segment of rat model of sciatic nerve crush injury. Thirty male 3 months age Wistar rats of 200-230 g were divided into sham-operation group and crush injury group. Termination was performed on day 3, 7, and 14 after crush injury. Immunohistochemical examination was done using anti CD68 antibody. Counting of immunopositive and immunonegative cells was done on three representative fields for extrafascicular and intrafascicular area of proximal, injury and distal segments. The data was presented as percentage of immunopositive cells. The percentage of the macrophages was significantly increased in crush injury group compared to the sham-operated group in all segments of the peripheral nerves. While the percentage of macrophages outside fascicle in all segments of sciatic nerve and within the fascicle in the proximal segment reached its peak on day 3, the percentage of macrophages within the fascicles at the site of injury and distal segments reached the peak later at day 7. In conclusions, accumulation of macrophages outside the nerve fascicles occurs at the beginning of the injury, and then followed later by the accumulation of macrophages within nerve fascicles

  12. Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration

    Science.gov (United States)

    2016-04-01

    1 Award Number: W81XWH-11-2-0047 TITLE: Nanofiber Nerve Guide for Peripheral Nerve Repair and Regeneration PRINCIPAL INVESTIGATOR: Ahmet Höke...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-2-0047 Nanofiber nerve guide for peripheral nerve repair and regeneration 5b. GRANT NUMBER...goal of this collaborative research project was to develop next generation engineered nerve guide conduits (NGCs) with aligned nanofibers and

  13. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  14. Malignant peripheral nerve sheath tumor of the oculomotor nerve

    DEFF Research Database (Denmark)

    Kozic, D; Nagulic, M; Ostojic, J

    2006-01-01

    We present the short-term follow-up magnetic resonance (MR) studies and 1H-MR spectroscopy in a child with malignant peripheral nerve sheath tumor of the oculomotor nerve associated with other less aggressive cranial nerve schwannomas. The tumor revealed perineural extension and diffuse nerve...

  15. Scaffoldless tissue-engineered nerve conduit promotes peripheral nerve regeneration and functional recovery after tibial nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Aaron M. Adams; Keith W. VanDusen; Tatiana Y. Kostrominova; Jacob P. Mertens; Lisa M. Larkin

    2017-01-01

    Damage to peripheral nerve tissue may cause loss of function in both the nerve and the targeted muscles it innervates. This study compared the repair capability of engineered nerve conduit (ENC), engineered fibroblast conduit (EFC), and autograft in a 10-mm tibial nerve gap. ENCs were fabricated utilizing primary fibroblasts and the nerve cells of rats on embryonic day 15 (E15). EFCs were fabricated utilizing primary fi-broblasts only. Following a 12-week recovery, nerve repair was assessed by measuring contractile properties in the medial gastrocnemius muscle, distal motor nerve conduction velocity in the lateral gastrocnemius, and histology of muscle and nerve. The autografts, ENCs and EFCs reestablished 96%, 87% and 84% of native distal motor nerve conduction velocity in the lateral gastrocnemius, 100%, 44% and 44% of native specific force of medical gastrocnemius, and 63%, 61% and 67% of native medial gastrocnemius mass, re-spectively. Histology of the repaired nerve revealed large axons in the autograft, larger but fewer axons in the ENC repair, and many smaller axons in the EFC repair. Muscle histology revealed similar muscle fiber cross-sectional areas among autograft, ENC and EFC repairs. In conclusion, both ENCs and EFCs promot-ed nerve regeneration in a 10-mm tibial nerve gap repair, suggesting that the E15 rat nerve cells may not be necessary for nerve regeneration, and EFC alone can suffice for peripheral nerve injury repair.

  16. Communication between radial nerve and medial cutaneous nerve of forearm

    Directory of Open Access Journals (Sweden)

    R R Marathe

    2010-01-01

    Full Text Available Radial nerve is usually a branch of the posterior cord of the brachial plexus. It innervates triceps, anconeous, brachialis, brachioradialis, extensor carpi radialis longus muscles and gives the posterior cutaneous nerve of the arm, lower lateral cutaneous nerve of arm, posterior cutaneous nerve of forearm; without exhibiting any communication with the medial cutaneous nerve of forearm or any other nerve. We report communication between the radial nerve and medial cutaneous nerve of forearm on the left side in a 58-year-old male cadaver. The right sided structures were found to be normal. Neurosurgeons should keep such variations in mind while performing the surgeries of axilla and upper arm.

  17. Ulnar nerve dysfunction

    Science.gov (United States)

    Neuropathy - ulnar nerve; Ulnar nerve palsy; Mononeuropathy; Cubital tunnel syndrome ... Damage to one nerve group, such as the ulnar nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  18. Sensory nerve endings in the penis in green monkey (Cercopithecus aethiops sabaeus).

    Science.gov (United States)

    Malinovský, L; Sommerová, J

    1977-01-01

    The authors examined the sensory innervation of the skin in the penis in green monkey in four adult individuals both in the light and in the elctron microscope. They found 3 kings of nerve endings. The free nerve endings were the most frequently occurring kind of nerve endings in the superficial layers of the corium--altogether 6,444 in number. The second kind of sensory nerve endings is represented by the glomerular endings out of which 96 per cent were found in the papillae. The typical Meissner's endings were observed in the light microscopy only rarely. Deeper in the corium the authors also found single simple sensory corpuscles and Pacinian corpuscles. Studying the ultrastructure the authors found in the papillae of the corium 4 types of glomerular endings: quite simple glomerular endings with irregularly arranged Schwann cells, larger and more complicated glomerular endings having a thicker capsule, endings with lamellar system around the terminals and typical Meissner's endings. In the epidermis the authors observed naked axons which passed in the spaces among the epidermal cells. They contained an accumulation of mitochondria. In the basal cell layer of the epidermis there was a small amount of Langerhans cells.

  19. Serotonergic outcome, stress and sexual steroid hormones, and growth in a South American cichlid fish fed with an L-tryptophan enriched diet.

    Science.gov (United States)

    Morandini, Leonel; Ramallo, Martín Roberto; Moreira, Renata Guimarães; Höcht, Christian; Somoza, Gustavo Manuel; Silva, Ana; Pandolfi, Matías

    2015-11-01

    Reared animals for edible or ornamental purposes are frequently exposed to high aggression and stressful situations. These factors generally arise from conspecifics in densely breeding conditions. In vertebrates, serotonin (5-HT) has been postulated as a key neuromodulator and neurotransmitter involved in aggression and stress. The essential amino acid L-tryptophan (trp) is crucial for the synthesis of 5-HT, and so, leaves a gateway for indirectly augmenting brain 5-HT levels by means of a trp-enriched diet. The cichlid fish Cichlasoma dimerus, locally known as chanchita, is an autochthonous, potentially ornamental species and a fruitful laboratory model which behavior and reproduction has been studied over the last 15years. It presents complex social hierarchies, and great asymmetries between subordinate and dominant animals in respect to aggression, stress, and reproductive chance. The first aim of this work was to perform a morphological description of chanchita's brain serotonergic system, in both males and females. Then, we evaluated the effects of a trp-supplemented diet, given during 4weeks, on brain serotonergic activity, stress and sexual steroid hormones, and growth in isolated specimens. Results showed that chanchita's brain serotonergic system is composed of several populations of neurons located in three main areas: pretectum, hypothalamus and raphe, with no clear differences between males and females at a morphological level. Animals fed with trp-enriched diets exhibited higher forebrain serotonergic activity and a significant reduction in their relative cortisol levels, with no effects on sexual steroid plasma levels or growth parameters. Thus, this study points to food trp enrichment as a "neurodietary'' method for elevating brain serotonergic activity and decreasing stress, without affecting growth or sex steroid hormone levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The First Experience of Triple Nerve Transfer in Proximal Radial Nerve Palsy.

    Science.gov (United States)

    Emamhadi, Mohammadreza; Andalib, Sasan

    2018-01-01

    Injury to distal portion of posterior cord of brachial plexus leads to palsy of radial and axillary nerves. Symptoms are usually motor deficits of the deltoid muscle; triceps brachii muscle; and extensor muscles of the wrist, thumb, and fingers. Tendon transfers, nerve grafts, and nerve transfers are options for surgical treatment of proximal radial nerve palsy to restore some motor functions. Tendon transfer is painful, requires a long immobilization, and decreases donor muscle strength; nevertheless, nerve transfer produces promising outcomes. We present a patient with proximal radial nerve palsy following a blunt injury undergoing triple nerve transfer. The patient was involved in a motorcycle accident with complete palsy of the radial and axillary nerves. After 6 months, on admission, he showed spontaneous recovery of axillary nerve palsy, but radial nerve palsy remained. We performed triple nerve transfer, fascicle of ulnar nerve to long head of the triceps branch of radial nerve, flexor digitorum superficialis branch of median nerve to extensor carpi radialis brevis branch of radial nerve, and flexor carpi radialis branch of median nerve to posterior interosseous nerve, for restoration of elbow, wrist, and finger extensions, respectively. Our experience confirmed functional elbow, wrist, and finger extensions in the patient. Triple nerve transfer restores functions of the upper limb in patients with debilitating radial nerve palsy after blunt injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Frøkjær, Vibe; Kalbitzer, Jan

    2012-01-01

    and the serotonin transporter binding, the latter as a measure of serotonergic projections and neurons. Twelve patients with AD (average Mini Mental State Examination [MMSE]: 24) and 11 healthy age-matched subjects underwent positron emission tomography (PET) scanning with [(18)F]altanserin and [(11)C...

  2. One-stage human acellular nerve allograft reconstruction for digital nerve defects

    Directory of Open Access Journals (Sweden)

    Xue-yuan Li

    2015-01-01

    Full Text Available Human acellular nerve allografts have a wide range of donor origin and can effectively avoid nerve injury in the donor area. Very little is known about one-stage reconstruction of digital nerve defects. The present study observed the feasibility and effectiveness of human acellular nerve allograft in the reconstruction of < 5-cm digital nerve defects within 6 hours after injury. A total of 15 cases of nerve injury, combined with nerve defects in 18 digits from the Department of Emergency were enrolled in this study. After debridement, digital nerves were reconstructed using human acellular nerve allografts. The patients were followed up for 6-24 months after reconstruction. Mackinnon-Dellon static two-point discrimination results showed excellent and good rates of 89%. Semmes-Weinstein monofilament test demonstrated that light touch was normal, with an obvious improvement rate of 78%. These findings confirmed that human acellular nerve allograft for one-stage reconstruction of digital nerve defect after hand injury is feasible, which provides a novel trend for peripheral nerve reconstruction.

  3. Phospho-dependent Accumulation of GABABRs at Presynaptic Terminals after NMDAR Activation.

    Science.gov (United States)

    Hannan, Saad; Gerrow, Kim; Triller, Antoine; Smart, Trevor G

    2016-08-16

    Here, we uncover a mechanism for regulating the number of active presynaptic GABAB receptors (GABABRs) at nerve terminals, an important determinant of neurotransmitter release. We find that GABABRs gain access to axon terminals by lateral diffusion in the membrane. Their relative accumulation is dependent upon agonist activation and the presence of the two distinct sushi domains that are found only in alternatively spliced GABABR1a subunits. Following brief activation of NMDA receptors (NMDARs) using glutamate, GABABR diffusion is reduced, causing accumulation at presynaptic terminals in a Ca(2+)-dependent manner that involves phosphorylation of GABABR2 subunits at Ser783. This signaling cascade indicates how synaptically released glutamate can initiate, via a feedback mechanism, increased levels of presynaptic GABABRs that limit further glutamate release and excitotoxicity. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Diagnostic nerve ultrasonography

    International Nuclear Information System (INIS)

    Baeumer, T.; Grimm, A.; Schelle, T.

    2017-01-01

    For the diagnostics of nerve lesions an imaging method is necessary to visualize peripheral nerves and their surrounding structures for an etiological classification. Clinical neurological and electrophysiological investigations provide functional information about nerve lesions. The information provided by a standard magnetic resonance imaging (MRI) examination is inadequate for peripheral nerve diagnostics; however, MRI neurography is suitable but on the other hand a resource and time-consuming method. Using ultrasonography for peripheral nerve diagnostics. With ultrasonography reliable diagnostics of entrapment neuropathies and traumatic nerve lesions are possible. The use of ultrasonography for neuropathies shows that a differentiation between different forms is possible. Nerve ultrasonography is an established diagnostic tool. In addition to the clinical examination and clinical electrophysiology, structural information can be obtained, which results in a clear improvement in the diagnostics. Ultrasonography has become an integral part of the diagnostic work-up of peripheral nerve lesions in neurophysiological departments. Nerve ultrasonography is recommended for the diagnostic work-up of peripheral nerve lesions in addition to clinical and electrophysiological investigations. It should be used in the clinical work-up of entrapment neuropathies, traumatic nerve lesions and spacy-occupying lesions of nerves. (orig.) [de

  5. Nerve ultrasound shows subclinical peripheral nerve involvement in neurofibromatosis type 2.

    Science.gov (United States)

    Telleman, Johan A; Stellingwerff, Menno D; Brekelmans, Geert J; Visser, Leo H

    2018-02-01

    Neurofibromatosis type 2 (NF2) is mainly associated with central nervous system (CNS) tumors. Peripheral nerve involvement is described in symptomatic patients, but evidence of subclinical peripheral nerve involvement is scarce. We conducted a cross-sectional pilot study in 2 asymptomatic and 3 minimally symptomatic patients with NF2 to detect subclinical peripheral nerve involvement. Patients underwent clinical examination, nerve conduction studies (NCS), and high-resolution ultrasonography (HRUS). A total of 30 schwannomas were found, divided over 20 nerve segments (33.9% of all investigated nerve segments). All patients had at least 1 schwannoma. Schwannomas were identified with HRUS in 37% of clinically unaffected nerve segments and 50% of nerve segments with normal NCS findings. HRUS shows frequent subclinical peripheral nerve involvement in NF2. Clinicians should consider peripheral nerve involvement as a cause of weakness and sensory loss in the extremities in patients with this disease. Muscle Nerve 57: 312-316, 2018. © 2017 Wiley Periodicals, Inc.

  6. Up-regulation of serotonergic binding sites labeled by (3H) WB4101 following fimbrial transection and 5,7-dihydroxytryptamine-induced lesions

    International Nuclear Information System (INIS)

    Morrow, A.L.; Norman, A.B.; Battaglia, G.; Loy, R.; Creese, I.

    1985-01-01

    Lesions of the serotonergic afferents to the hippocampus, by fimbrial transection or by 5,7-dihydroxytryptamine treatment, produce an increase in the Bmax of ( 3 H)WB4101 to its nanomolar affinity binding site, with no effect on its picomolar affinity binding site or on ( 3 H)prazosin binding. The nanomolar site is serotonergic as the serotonergic agonists, serotonin and 8-hydroxy-dipropylaminotetraline (8-OH-DPAT) have nanomolar affinity for ( 3 H)WB4101 binding when studied in the presence of a prazosin mask (30nM) of the alpha-1 component of ( 3 H)WB4101 binding. The serotonin receptor antagonists metergoline, lysergic acid diethylamide and lisuride also have high nanomolar affinities while ketanserin, yohimbine, prazosin and noradrenergic agonists have affinities in the micromolar range. Fimbrial transection or 5,7-dihydroxytryptamine injections produced 32% and 44% increases in the Bmax of ( 3 H)WB4101 binding in the presence of a prazosin mask. Serotonin competition for ( 3 H)WB4101 binding was identical in control and experimental tissues from each lesion experiment. Although specific binding of ( 3 H)WB4101 was increased, there was no change in the affinities or the percentages of the two binding components for serotonin competition with ( 3 H)WB4101. These data suggest that removal of the serotonergic input to the hippocampus produces an increase in the Bmax of serotonin receptor binding sites labeled by ( 3 H)WB4101. 33 references, 3 figures, 3 tables

  7. Polymeric Nerve Conduits with Contact Guidance Cues Used in Nerve Repair

    Institute of Scientific and Technical Information of China (English)

    G DAI; X NIU; J YIN

    2016-01-01

    In the modern life, the nerve injury frequently happens due to mechanical, chemical or thermal accidents. In the trivial injuries, the peripheral nerves can regenerate on their own; however, in most of the cases the clinical treatments are required, where relatively large nerve injury gaps are formed. Currently, the nerve repair can be accomplished by direct suture when the injury gap is not too large;while the autologous nerve graft working as the gold standard of peripheral nerve injury treatment for nerve injuries with larger gaps. However, the direct suture is limited by heavy tension at the suture sites, and the autologous nerve graft also has the drawbacks of donor site morbidity and insufifcient donor tissue. Recently, artiifcial nerve conduits have been developed as an alternative for clinical nerve repair to overcome the limitations associated with the above treatments. In order to further improve the efifciency of nerve conduits, various guidance cues are incorporated, including physical cues, biochemical signals, as well as support cells. First, this paper reviewed the contact guidance cues applied in nerve conduits, such as lumen ifllers, multi-channels and micro-patterns on the inner surface. Then, the paper focused on the polymeric nerve conduits with micro inner grooves. The polymeric nerve conduits were fabricated using the phase inversion-based ifber spinning techniques. The smart spinneret with grooved die was designed in the spinning platform, while different spinning conditions, including flow rates, air-gap distances, and polymer concentrations, were adjusted to investigate the inlfuence of fabrication conditions on the geometry of nerve conduits. The inner groove size in the nerve conduits can be precisely controlled in our hollow ifber spinning process, which can work as the efifcient contact guidance cue for nerve regeneration.

  8. Tissue-engineered spiral nerve guidance conduit for peripheral nerve regeneration.

    Science.gov (United States)

    Chang, Wei; Shah, Munish B; Lee, Paul; Yu, Xiaojun

    2018-06-01

    Recently in peripheral nerve regeneration, preclinical studies have shown that the use of nerve guidance conduits (NGCs) with multiple longitudinally channels and intra-luminal topography enhance the functional outcomes when bridging a nerve gap caused by traumatic injury. These features not only provide guidance cues for regenerating nerve, but also become the essential approaches for developing a novel NGC. In this study, a novel spiral NGC with aligned nanofibers and wrapped with an outer nanofibrous tube was first developed and investigated. Using the common rat sciatic 10-mm nerve defect model, the in vivo study showed that a novel spiral NGC (with and without inner nanofibers) increased the successful rate of nerve regeneration after 6 weeks recovery. Substantial improvements in nerve regeneration were achieved by combining the spiral NGC with inner nanofibers and outer nanofibrous tube, based on the results of walking track analysis, electrophysiology, nerve histological assessment, and gastrocnemius muscle measurement. This demonstrated that the novel spiral NGC with inner aligned nanofibers and wrapped with an outer nanofibrous tube provided a better environment for peripheral nerve regeneration than standard tubular NGCs. Results from this study will benefit for future NGC design to optimize tissue-engineering strategies for peripheral nerve regeneration. We developed a novel spiral nerve guidance conduit (NGC) with coated aligned nanofibers. The spiral structure increases surface area by 4.5 fold relative to a tubular NGC. Furthermore, the aligned nanofibers was coated on the spiral walls, providing cues for guiding neurite extension. Finally, the outside of spiral NGC was wrapped with randomly nanofibers to enhance mechanical strength that can stabilize the spiral NGC. Our nerve histological data have shown that the spiral NGC had 50% more myelinated axons than a tubular structure for nerve regeneration across a 10 mm gap in a rat sciatic nerve

  9. The auriculotemporal nerve in etiology of migraine headaches: compression points and anatomical variations.

    Science.gov (United States)

    Chim, Harvey; Okada, Haruko C; Brown, Matthew S; Alleyne, Brendan; Liu, Mengyuan T; Zwiebel, Samantha; Guyuron, Bahman

    2012-08-01

    The auriculotemporal nerve has been identified as one of the peripheral trigger sites for migraine headaches. However, its distal course is poorly mapped following emergence from the parotid gland. In addition, a reliable anatomical landmark for locating the potential compression points along the course of the nerve during surgery has not been sufficiently described. Twenty hemifaces on 10 fresh cadavers were dissected to trace the course of the auriculotemporal nerve from the inferior border of the zygomatic arch to its termination in the temporal scalp. The compression points were mapped and the distances were measured from the most anterosuperior point of the external auditory meatus, which was used as a fixed anatomical landmark. Three potential compression points along the course of the auriculotemporal nerve were identified. Compression points 1 and 2 corresponded to preauricular fascial bands. Compression point 1 was centered 13.1±5.9 mm anterior and 5.0±7.0 mm superior to the most anterosuperior point of the external auditory meatus, whereas compression point 2 was centered at 11.9±6.0 mm anterior and 17.2±10.4 mm superior to the most anterosuperior point of the external auditory meatus. A significant relationship was found between the auriculotemporal nerve and superficial temporal artery (compression point 3) in 80 percent of hemifaces, with three patterns of interaction: a single site of artery crossing over the nerve (62.5 percent), a helical intertwining relationship (18.8 percent), and nerve crossing over the artery (18.8 percent). Findings from this cadaver study provide information relevant to the operative localization of potential compression points along the auriculotemporal nerve.

  10. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism

    Directory of Open Access Journals (Sweden)

    Dietmar Fuchs

    2010-08-01

    Full Text Available Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects. Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC and the non-psychotropic cannabidiol (CBD modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC. The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO, suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system. Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling. We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.

  11. Sensation, mechanoreceptor, and nerve fiber function after nerve regeneration

    DEFF Research Database (Denmark)

    Krarup, Christian; Rosén, Birgitta; Boeckstyns, Michel

    2017-01-01

    Objective: Sensation is essential for recovery after peripheral nerve injury. However, the relationship between sensory modalities and function of regenerated fibers is uncertain. We have investigated the relationships between touch threshold, tactile gnosis, and mechanoreceptor and sensory fiber...... function after nerve regeneration. Methods: Twenty-one median or ulnar nerve lesions were repaired by a collagen nerve conduit or direct suture. Quantitative sensory hand function and sensory conduction studies by near-nerve technique, including tactile stimulation of mechanoreceptors, were followed for 2...... years, and results were compared to noninjured hands. Results: At both repair methods, touch thresholds at the finger tips recovered to 81 ± 3% and tactile gnosis only to 20 ± 4% (p nerve action potentials (SNAPs) remained dispersed and areas recovered to 23 ± 2...

  12. The role of great auricular-facial nerve neurorrhaphy in facial nerve damage

    OpenAIRE

    Sun, Yan; Liu, Limei; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo

    2015-01-01

    Background: Facial nerve is easy to be damaged, and there are many reconstructive methods for facial nerve reconstructive, such as facial nerve end to end anastomosis, the great auricular nerve graft, the sural nerve graft, or hypoglossal-facial nerve anastomosis. However, there is still little study about great auricular-facial nerve neurorrhaphy. The aim of the present study was to identify the role of great auricular-facial nerve neurorrhaphy and the mechanism. Methods: Rat models of facia...

  13. Reactive microglia after taste nerve injury: comparison to nerve injury models of chronic pain [v1; ref status: indexed, http://f1000r.es/wh

    Directory of Open Access Journals (Sweden)

    Dianna L Bartel

    2013-02-01

    Full Text Available The chorda tympani (CT, which innervates taste buds on the anterior portion of the tongue, is susceptible to damage during inner ear surgeries. Injury to the CT causes a disappearance of taste buds, which is concurrent with significant microglial responses at central nerve terminals in the nucleus of the solitary tract (nTS. The resulting taste disturbances that can occur may persist for months or years, long after the nerve and taste buds have regenerated. These persistent changes in taste sensation suggest alterations in central functioning and may be related to the microglial responses. This is reminiscent of nerve injuries that result in chronic pain, where microglial reactivity is essential in maintaining the altered sensation (i.e., pain. In these models, methods that diminish microglial responses also diminish the corresponding pain behavior. Although the CT nerve does not contain nociceptive pain fibers, the microglial reactivity after CT damage is similar to that described in pain models. Therefore, methods that decrease microglial responses in pain models were used here to test if they could also affect microglial reactivity after CT injury. Treatment with minocycline, an antibiotic that dampens pain responsive microglia, was largely ineffective in diminishing microglial responses after CT injury. In addition, signaling through the toll-like 4 receptor (TLR4 does not seem to be required after CT injury as blocking or deleting TLR4 had no effect on microglial reactivity. These results suggest that microglial responses following CT injury rely on different signaling mechanisms than those described in nerve injuries resulting in chronic pain.

  14. The role of great auricular-facial nerve neurorrhaphy in facial nerve damage.

    Science.gov (United States)

    Sun, Yan; Liu, Limei; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo

    2015-01-01

    Facial nerve is easy to be damaged, and there are many reconstructive methods for facial nerve reconstructive, such as facial nerve end to end anastomosis, the great auricular nerve graft, the sural nerve graft, or hypoglossal-facial nerve anastomosis. However, there is still little study about great auricular-facial nerve neurorrhaphy. The aim of the present study was to identify the role of great auricular-facial nerve neurorrhaphy and the mechanism. Rat models of facial nerve cut (FC), facial nerve end to end anastomosis (FF), facial-great auricular neurorrhaphy (FG), and control (Ctrl) were established. Apex nasi amesiality observation, electrophysiology and immunofluorescence assays were employed to investigate the function and mechanism. In apex nasi amesiality observation, it was found apex nasi amesiality of FG group was partly recovered. Additionally, electrophysiology and immunofluorescence assays revealed that facial-great auricular neurorrhaphy could transfer nerve impulse and express AChR which was better than facial nerve cut and worse than facial nerve end to end anastomosis. The present study indicated that great auricular-facial nerve neurorrhaphy is a substantial solution for facial lesion repair, as it is efficiently preventing facial muscles atrophy by generating neurotransmitter like ACh.

  15. Pinched Nerve

    Science.gov (United States)

    ... You are here Home » Disorders » All Disorders Pinched Nerve Information Page Pinched Nerve Information Page What research is being done? Within the NINDS research programs, pinched nerves are addressed primarily through studies associated with pain ...

  16. Assessment of nerve regeneration across nerve allografts treated with tacrolimus.

    Science.gov (United States)

    Haisheng, Han; Songjie, Zuo; Xin, Li

    2008-01-01

    Although regeneration of nerve allotransplant is a major concern in the clinic, there have been few papers quantitatively assessing functional recovery of animals' nerve allografts in the long term. In this study, functional recovery, histopathological study, and immunohistochemistry changes of rat nerve allograft with FK506 were investigated up to 12 weeks without slaughtering. C57 and SD rats were used for transplantation. The donor's nerve was sliced and transplanted into the recipient. The sciatic nerve was epineurally sutured with 10-0 nylon. In total, 30 models of transplantation were performed and divided into 3 groups that were either treated with FK506 or not. Functional recovery of the grafted nerve was serially assessed by the pin click test, walking track analysis and electrophysiological evaluations. A histopathological study and immunohistochemistry study were done in the all of the models. Nerve allografts treated with FK506 have no immune rejection through 12 weeks. Sensibility had similarly improved in both isografts and allografts. There has been no difference in each graft. Walk track analysis demonstrates significant recovery of motor function of the nerve graft. No histological results of difference were found up to 12 weeks in each graft. In the rodent nerve graft model, FK506 prevented nerve allograft rejection across a major histocompatibility barrier. Sensory recovery seems to be superior to motor function. Nerve isograft and allograft treated with FK506 have no significant difference in function recovery, histopathological result, and immunohistochemistry changes.

  17. Differential serotonergic mediation of aggression in roosters selected for resistance and susceptibility to Marek’s disease

    Science.gov (United States)

    1. Serotonin (5-HT) is a primary regulating neurotransmitter involved in aggressive and impulsive behaviors in mammals and birds. Previous studies have also demonstrated the function of serotonergic system in regulating aggression is affected by both genetic and environmental factors. 2. Our obje...

  18. Pulp nerve fibers distribution of human carious teeth: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2010-12-01

    Full Text Available Background: Human dental pulp is richly innervated by trigeminal afferent axons that subserve nociceptive function. Accordingly, they respond to stimuli that induce injury to the pulp tissue. An injury to the nerve terminals and other tissue components in the pulp stimulate metabolic activation of the neurons in the trigeminal ganglion which result in morphological changes in the peripheral nerve terminals. Purpose: The aim of the study was to observe caries-related changes in the distribution of human pulpal nerve. Methods: Under informed consents, 15 third molars with caries at various stages of decay and 5 intact third molars were extracted because of orthodontic or therapeutic reasons. All samples were observed by micro-computed tomography to confirm the lesion condition 3-dimensionally, before decalcifying with 10% EDTA solution (pH 7.4. The specimens were then processed for immunohistochemistry using anti-protein gene products (PGP 9.5, a specific marker for the nerve fiber. Results: In normal intact teeth, PGP 9.5 immunoreactive nerve fibers were seen concentrated beneath the odontoblast cell layer. Nerve fibers exhibited an increased density along the pulp-dentin border corresponding to the carious lesions. Conclusion: Neural density increases throughout the pulp chamber with the progression of caries. The activity and pathogenicity of the lesion as well as caries depth, might influence the degree of neural sprouting.Latar belakang: Pulpa gigi manusia diinervasi oleh serabut saraf trigeminal yang berespon terhadap stimuli penyebab perlukaan dengan menimbulkan rasa sakit. Perlukaan pada akhiran saraf dan komponen lain dari pulpa akan menstimulasi aktivasi metabolik dari neuron pada ganglion trigeminal sehingga mengakibatkan perubahan morfologi pada akhiran saraf perifer. Tujuan: Penelitian ini bertujuan untuk mengamati perubahan distribusi saraf pada pulpa gigi manusia yang disebabkan oleh proses karies. Metode: Penelitian ini menggunakan

  19. Peripheral nerve regeneration through P(DLLA-epsilon-CL) nerve guides

    NARCIS (Netherlands)

    Den Dunnen, WFA; Meek, MF; Robinson, PH; Schakernraad, JM

    1998-01-01

    P(DLLA-epsilon-CL) nerve guides can be used perfectly for short nerve gaps in rats, and are even better than short autologous nerve grafts. The tube dimensions, such as the internal diameter and wall thickness, are very important for the final outcome of peripheral nerve regeneration, as well as the

  20. Putaminal serotonergic innervation: monitoring dyskinesia risk in Parkinson disease.

    Science.gov (United States)

    Lee, Jee-Young; Seo, Seongho; Lee, Jae Sung; Kim, Han-Joon; Kim, Yu Kyeong; Jeon, Beom S

    2015-09-08

    To explore serotonergic innervation in the basal ganglia in relation to levodopa-induced dyskinesia in patients with Parkinson disease (PD). A total of 30 patients with PD without dementia or depression were divided into 3 matched groups (dyskinetic, nondyskinetic, and drug-naive) for this study. We acquired 2 PET scans and 3T MRI for each patient using [(11)C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile ((11)C-DASB) and N-(3-[(18)F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane ((18)F-FP-CIT). Then we analyzed binding potentials of the 2 radiotracers at basal ganglia structures and correlations with clinical variables. We observed no difference in (18)F-FP-CIT binding between dyskinetic and nondyskinetic patients, whereas there were differences in (11)C-DASB binding for the caudate and putamen. Binding potential ratios ((11)C-DASB/(18)F-FP-CIT) at the putamen, which indicate serotoninergic fiber innervation relative to dopaminergic fiber availability, were highest in the dyskinetic group, followed by the nondyskinetic and drug-naive PD groups. (11)C-DASB/(18)F-FP-CIT ratios at the putamen and pallidum correlated positively with Unified Parkinson's Disease Rating Scale (UPDRS) total scores and duration of PD, and pallidal binding ratio also correlated with the UPDRS motor scores. Ratios were not dependent on dopaminergic medication dosages for any of the regions studied. Relative serotonergic innervation of the putamen and pallidum increased with clinical PD progression and was highest in patients with established dyskinesia. The serotonin/dopamine transporter ratio might be a potential marker of disease progression and an indicator of risk for levodopa-induced dyskinesia in PD. A prospective evaluation is warranted in the future. © 2015 American Academy of Neurology.

  1. A happy valve in a happy patient? Serotonergic antidepressants and the risk of valvular heart disease (SERVAL). A case-control study.

    Science.gov (United States)

    De Backer, Tine; Petrovic, Mirko; Audenaert, Kurt; Coeman, Mathieu; De Bacquer, Dirk

    2016-02-01

    The objective was to investigate the risk of valvular heart disease in humans in relation to the use of selective serotonin reuptake inhibitors (SSRIs) and serotonin and noradrenaline reuptake inhibitors. A case-control study. We conducted a case-control study within this cohort in which patients with newly diagnosed cardiac valve regurgitation were age-matched to controls. Patient demographics, their cardiovascular risk factors and medication use were extracted in both series. Use of SSRIs, serotonin and noradreline reuptake inhibitors (SNRIs) and other pro-serotonergic agents, their dose and treatment duration were recorded. Logistic regression analysis was used to establish the strength of the association between SSRI/SNRI use and valvular heart disease. Outpatient clinic of the cardiology department at the Ghent University Hospital, East-Flanders in Belgium. Total of 2911 persons 21-58 years of age who had undergone an echocardiogram in the period 2006-2010 and had no known cardiovascular disease or previous cardiac intervention. Two hundred and six echocardiographically proven cases of valvular regurgitation and 195 matched controls. Odd ratio of valvular disease associated with intake of serotonergic drugs. Of the 206 patients with newly diagnosed cardiac valve regurgitation, 11.6% were exposed to serotonergic agents compared to 4.1% in the 195 control patients, leading to an odds ratio of 3.08 (95% confidence interval [CI] 1.35-7.04). The analysis of doses and treatment durations revealed a dose-relationship pattern between SSRI/SNRI use and prevalent valvular heart disease. In this study, use of serotonergic antidepressants was associated with an increased rate of valvular regurgitation in humans.

  2. Computational and biological evidences on the serotonergic involvement of SeTACN antidepressant-like effect in mice.

    Directory of Open Access Journals (Sweden)

    Mariana G Fronza

    Full Text Available A series of phenylselanyl-1H-1,2,3-triazole-4-carbonitriles with different substituents were screened for their binding affinity with serotonin transporter (SERT and dopamine transporter (DAT by docking molecular. 5-(4methoxyphenyl-1-(2-(phenylselanylphenyl-1H-1,2,3-triazole-4-carbonitrile (SeTACN exhibited the best conformation with SERT even higher than fluoxetine and serotonin, suggesting a competitive inhibition. SeTACN demonstrated additional affinity to other serotonergic receptors involved in antidepressant effects: 5HT1a, 5HT2a and 5HT3. In another set of experiments, SeTACN led to significant reductions in the immobility time of mice submitted to forced swimming test (FST in the dose range of 0.1- 20mg/kg, suggesting an antidepressant-like effect. The possible mechanism of action was investigated using serotonergic and dopaminergic antagonists. The antidepressant-like effect of SeTACN (0.1mg/kg i.g. was prevented by the pretreatment with WAY100635 (a selective 5HT1a antagonist, ketanserin (a 5HT2a/c antagonist and ondansetron (a selective 5ht3 antagonist, PCPA (an inhibitor of serotonin synthesis but not with SCH23390 (dopaminergic D1 antagonist and sulpiride (D2 antagonist. Sub-effective dose of fluoxetine was able to potentiate the effects of a sub-effective dose of SeTACN in FST. None of the treatments affected locomotor activity in open field test (OFT. These results together, suggest that the SeTACN antidepressant-like effect is mediate, at least in parts, by serotonergic system.

  3. Effect of diet on serotonergic neurotransmission in depression.

    Science.gov (United States)

    Shabbir, Faisal; Patel, Akash; Mattison, Charles; Bose, Sumit; Krishnamohan, Raathathulaksi; Sweeney, Emily; Sandhu, Sarina; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Ngu, Nguasaah; Sharma, Sushil

    2013-02-01

    Depression is characterized by sadness, purposelessness, irritability, and impaired body functions. Depression causes severe symptoms for several weeks, and dysthymia, which may cause chronic, low-grade symptoms. Treatment of depression involves psychotherapy, medications, or phototherapy. Clinical and experimental evidence indicates that an appropriate diet can reduce symptoms of depression. The neurotransmitter, serotonin (5-HT), synthesized in the brain, plays an important role in mood alleviation, satiety, and sleep regulation. Although certain fruits and vegetables are rich in 5-HT, it is not easily accessible to the CNS due to blood brain barrier. However the serotonin precursor, tryptophan, can readily pass through the blood brain barrier. Tryptophan is converted to 5-HT by tryptophan hydroxylase and 5-HTP decarboxylase, respectively, in the presence of pyridoxal phosphate, derived from vitamin B(6). Hence diets poor in tryptophan may induce depression as this essential amino acid is not naturally abundant even in protein-rich foods. Tryptophan-rich diet is important in patients susceptible to depression such as certain females during pre and postmenstrual phase, post-traumatic stress disorder, chronic pain, cancer, epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, and drug addiction. Carbohydrate-rich diet triggers insulin response to enhance the bioavailability of tryptophan in the CNS which is responsible for increased craving of carbohydrate diets. Although serotonin reuptake inhibitors (SSRIs) are prescribed to obese patients with depressive symptoms, these agents are incapable of precisely regulating the CNS serotonin and may cause life-threatening adverse effects in the presence of monoamine oxidase inhibitors. However, CNS serotonin synthesis can be controlled by proper intake of tryptophan-rich diet. This report highlights the clinical significance of tryptophan-rich diet and vitamin B(6) to boost serotonergic neurotransmission in

  4. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.

    1994-01-01

    Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into media and lateral parts. Utiricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrstriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. moast afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have perviously been classified into four types based on hair bundle morphology. Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely

  5. Electrophysiology of Cranial Nerve Testing: Spinal Accessory and Hypoglossal Nerves.

    Science.gov (United States)

    Stino, Amro M; Smith, Benn E

    2018-01-01

    Multiple techniques have been developed for the electrodiagnostic evaluation of cranial nerves XI and XII. Each of these carries both benefits and limitations, with more techniques and data being available in the literature for spinal accessory than hypoglossal nerve evaluation. Spinal accessory and hypoglossal neuropathy are relatively uncommon cranial mononeuropathies that may be evaluated in the outpatient electrodiagnostic laboratory setting. A review of available literature using PubMed was conducted regarding electrodiagnostic technique in the evaluation of spinal accessory and hypoglossal nerves searching for both routine nerve conduction studies and repetitive nerve conduction studies. The review provided herein provides a resource by which clinical neurophysiologists may develop and implement clinical and research protocols for the evaluation of both of these lower cranial nerves in the outpatient setting.

  6. The effects of increased central serotonergic activity on prepulse inhibition and habituation of the human startle response

    DEFF Research Database (Denmark)

    Frederiksen, Kristian Steen; Oranje, Bob; Wienberg, Malene

    2007-01-01

    Sensorimotor gating is critical to normal brain functioning, and disruptions are associated with certain mental illnesses, such as schizophrenia. Prepulse inhibition of the acoustic startle reflex (ASR) (PPI) is an operational measure of sensorimotor gating, of which evidence for a serotonergic...

  7. Characterization of the serotonin transporter knockout rat : A selective change in the functioning of the serotonergic system

    NARCIS (Netherlands)

    Homberg, J. R.; Olivier, J.D.A.; Smits, B. M. G.; Mul, J. D.; Mudde, J.; Verheul, M.; Nieuwenhuizen, O. F. M.; Cools, A. R.; Ronken, E; Cremers, Thomas; Schoffelmeere, A. N. M.; Ellenbroeik, B. A.; Cuppen, E.

    2007-01-01

    Serotonergic signaling is involved in many neurobiological processes and disturbed 5-HT homeostasis is implicated in a variety of psychiatric and addictive disorders. Here, we describe the functional characterization of the serotonin transporter (SERT) knockout rat model, that is generated by

  8. Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system.

    NARCIS (Netherlands)

    Homberg, J.R.; Olivier, J.D.A.; Smits, B.M.; Mul, J.D.; Mudde, J.; Verheul, M.; Nieuwenhuizen, O.F.; Cools, A.R.; Ronken, E.; Cremers, T.; Schoffelmeer, A.N.; Ellenbroek, B.A.; Cuppen, E.

    2007-01-01

    Serotonergic signaling is involved in many neurobiological processes and disturbed 5-HT homeostasis is implicated in a variety of psychiatric and addictive disorders. Here, we describe the functional characterization of the serotonin transporter (SERT) knockout rat model, that is generated by

  9. Frameworking memory and serotonergic markers.

    Science.gov (United States)

    Meneses, Alfredo

    2017-07-26

    The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals' species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7 receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.

  10. Evaluation of Morphological and Functional Nerve Recovery of Rat Sciatic Nerve with a Hyaff11-Based Nerve Guide

    Directory of Open Access Journals (Sweden)

    K. Jansen

    2006-01-01

    Full Text Available Application of a Hyaff11-based nerve guide was studied in rats. Functional tests were performed to study motor nerve recovery. A withdrawal reflex test was performed to test sensory recovery. Morphology was studied by means of histology on explanted tissue samples. Motor nerve recovery was established within 7 weeks. Hereafter, some behavioral parameters like alternating steps showed an increase in occurence, while others remained stable. Sensory function was observed within the 7 weeks time frame. Nerve tissue had bridged the 10-mm gap within 7 weeks. The average nerve fiber surface area increased significantly in time. In situ degradation of the nerve conduit was fully going on at week 7 and tubes had collapsed by then. At weeks 15 and 21, the knitted tube wall structure was completely surrounded by macrophages and giant cells, and matrix was penetrating the tube wall. We conclude that a Hyaff11-based nerve guide can be used to bridge short peripheral nerve defects in rat. However, adaptations need to be made.

  11. [Facial nerve neurinomas].

    Science.gov (United States)

    Sokołowski, Jacek; Bartoszewicz, Robert; Morawski, Krzysztof; Jamróz, Barbara; Niemczyk, Kazimierz

    2013-01-01

    Evaluation of diagnostic, surgical technique, treatment results facial nerve neurinomas and its comparison with literature was the main purpose of this study. Seven cases of patients (2005-2011) with facial nerve schwannomas were included to retrospective analysis in the Department of Otolaryngology, Medical University of Warsaw. All patients were assessed with history of the disease, physical examination, hearing tests, computed tomography and/or magnetic resonance imaging, electronystagmography. Cases were observed in the direction of potential complications and recurrences. Neurinoma of the facial nerve occurred in the vertical segment (n=2), facial nerve geniculum (n=1) and the internal auditory canal (n=4). The symptoms observed in patients were analyzed: facial nerve paresis (n=3), hearing loss (n=2), dizziness (n=1). Magnetic resonance imaging and computed tomography allowed to confirm the presence of the tumor and to assess its staging. Schwannoma of the facial nerve has been surgically removed using the middle fossa approach (n=5) and by antromastoidectomy (n=2). Anatomical continuity of the facial nerve was achieved in 3 cases. In the twelve months after surgery, facial nerve paresis was rated at level II-III° HB. There was no recurrence of the tumor in radiological observation. Facial nerve neurinoma is a rare tumor. Currently surgical techniques allow in most cases, the radical removing of the lesion and reconstruction of the VII nerve function. The rate of recurrence is low. A tumor of the facial nerve should be considered in the differential diagnosis of nerve VII paresis. Copyright © 2013 Polish Otorhinolaryngology - Head and Neck Surgery Society. Published by Elsevier Urban & Partner Sp. z.o.o. All rights reserved.

  12. Use of superficial peroneal nerve graft for treating peripheral nerve injuries

    Directory of Open Access Journals (Sweden)

    Samuel Ribak

    2016-02-01

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the clinical results from treating chronic peripheral nerve injuries using the superficial peroneal nerve as a graft donor source. METHODS: This was a study on eleven patients with peripheral nerve injuries in the upper limbs that were treated with grafts from the sensitive branch of the superficial peroneal nerve. The mean time interval between the dates of the injury and surgery was 93 days. The ulnar nerve was injured in eight cases and the median nerve in six. There were three cases of injury to both nerves. In the surgery, a longitudinal incision was made on the anterolateral face of the ankle, thus viewing the superficial peroneal nerve, which was located anteriorly to the extensor digitorum longus muscle. Proximally, the deep fascia between the extensor digitorum longus and the peroneal longus muscles was dissected. Next, the motor branch of the short peroneal muscle (one of the branches of the superficial peroneal nerve was identified. The proximal limit of the sensitive branch was found at this point. RESULTS: The average space between the nerve stumps was 3.8 cm. The average length of the grafts was 16.44 cm. The number of segments used was two to four cables. In evaluating the recovery of sensitivity, 27.2% evolved to S2+, 54.5% to S3 and 18.1% to S3+. Regarding motor recovery, 72.7% presented grade 4 and 27.2% grade 3. There was no motor deficit in the donor area. A sensitive deficit in the lateral dorsal region of the ankle and the dorsal region of the foot was observed. None of the patients presented complaints in relation to walking. CONCLUSIONS: Use of the superficial peroneal nerve as a graft source for treating peripheral nerve injuries is safe and provides good clinical results similar to those from other nerve graft sources.

  13. Delayed peripheral nerve repair: methods, including surgical 'cross-bridging' to promote nerve regeneration.

    Science.gov (United States)

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H

    2015-10-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to 'protect' chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  14. Lead exposure during demolition of a steel structure coated with lead-based paints: II. Reversible changes in the conduction velocity of the motor nerves in transiently exposed workers

    NARCIS (Netherlands)

    Muijser, H.; Hoogendijk, E.M.G.; Hooisma, J.; Twisk, D.A.M.

    1987-01-01

    In a group of workers exposed to high levels of lead during five months nerve conduction velocity parameters were evaluated at the termination of exposure, and also three and fifteen months later. At the termination of exposure the mean blood lead level was 4.0 ??mol/l, and motor conduction

  15. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

    Science.gov (United States)

    Kubota, Shinji; Hirano, Masato; Morishita, Takuya; Uehara, Kazumasa; Funase, Kozo

    2015-03-25

    Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (H(max)/M(max)) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and H(max)/M(max) were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on H(max)/M(max). Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  16. Terminal changes in hereditary sensory and autonomic neuropathy: a long-term follow-up of a sporadic case.

    Science.gov (United States)

    Lee, Sang-Soo; Lee, Sung-Hyun; Han, Seol-Heui

    2003-07-01

    We describe terminal changes in a long-term follow-up of a 51-year-old man with sporadic hereditary sensory and autonomic neuropathy (HSAN). From the age of 15 years onwards, he suffered from multiple painless ulcers of his feet and fingers, necessitating amputation. Neurological studies revealed almost complete sensory loss affecting all modalities in the upper and lower limbs, minimal involvement of motor fibers, and areflexia. A neurophysiological abnormality involved an absence of sensory action potentials with relatively normal motor nerve conduction velocities. Biopsy of the sural nerve showed almost total loss of myelinated fibers with a mild decrease in unmyelinated fibers. Despite the late onset of the disease, the progressive course, and the lancinating pain, the terminal features of this patient, which involved a selective loss of myelinated fibers and widespread sensory loss, seem to be symptomatic of HSAN II, the progressive form of autosomal recessive sensory neuropathy, and emphasize the clinical heterogeneity of HSAN.

  17. Sensory nerve function and auto-mutilation after reconstruction of various gap lengths with nerve guides and autologous nerve grafts

    NARCIS (Netherlands)

    den Dunnen, WFA; Meek, MF

    The aim of this study was to evaluate sensory nerve recovery and auto-mutilation after reconstruction of various lengths of nerve gaps in the sciatic nerve of the rat, using different techniques. Group 4, in which the longest nerve gap (15 mm) was reconstructed with a thin-walled

  18. Evidence Suggesting that the Buccal and Zygomatic Branches of the Facial Nerve May Contain Parasympathetic Secretomotor Fibers to the Parotid Gland by Means of Communications from the Auriculotemporal Nerve.

    Science.gov (United States)

    Tansatit, Tanvaa; Apinuntrum, Prawit; Phetudom, Thavorn

    2015-12-01

    The auriculotemporal nerve is one of the peripheral nerves that communicates with the facial nerve. However, the function of these communications is poorly understood. Details of how these communications form and connect with each other are still unclear. In addition, a reliable anatomical landmark for locating these communications during surgery has not been sufficiently described. Microdissection was performed on 20 lateral hemifaces of 10 soft-embalmed cadavers to investigate facial-auriculotemporal nerve communications with emphasis on determining their function. The auriculotemporal nerve was identified in the retromandibular space and traced towards its terminations. The communicating branches were followed and the anatomical relationships to surrounding structures observed. The auriculotemporal nerve is suspended above the maxillary artery in the dense retromandibular fascia behind the mandibular ramus. It forms a knot and fans out, providing multiple branches in all directions in the sagittal plane. Inferiorly, it connects the maxillary periarterial plexus, while minute branches supply the temporomandibular joint anteriorly. The larger branches mainly communicate with the branches of the temporofacial division of the facial nerve, and the auricular branches enter the fascia of the auricular cartilage posteriorly. The temporal branches and occasionally the zygomatic branches arise superiorly to distribute within the temporoparietal fascia. The auriculotemporal nerve forms the parotid retromandibular plexus through two types of communication. It sends one to three branches to join the zygomatic and buccal branches of the facial nerve at the branching area of the temporofacial division. It also communicates with the periarterial plexus of the superficial temporal and maxillary arteries. This plexus continues anteriorly along the branches of the facial nerve and the periarterial plexus of the transverse facial artery as the parotid periductal autonomic plexus

  19. Tissue-engineered rhesus monkey nerve grafts for the repair of long ulnar nerve defects: similar outcomes to autologous nerve grafts

    Directory of Open Access Journals (Sweden)

    Chang-qing Jiang

    2016-01-01

    Full Text Available Acellular nerve allografts can help preserve normal nerve structure and extracellular matrix composition. These allografts have low immunogenicity and are more readily available than autologous nerves for the repair of long-segment peripheral nerve defects. In this study, we repaired a 40-mm ulnar nerve defect in rhesus monkeys with tissue-engineered peripheral nerve, and compared the outcome with that of autograft. The graft was prepared using a chemical extract from adult rhesus monkeys and seeded with allogeneic Schwann cells. Pathomorphology, electromyogram and immunohistochemistry findings revealed the absence of palmar erosion or ulcers, and that the morphology and elasticity of the hypothenar eminence were normal 5 months postoperatively. There were no significant differences in the mean peak compound muscle action potential, the mean nerve conduction velocity, or the number of neurofilaments between the experimental and control groups. However, outcome was significantly better in the experimental group than in the blank group. These findings suggest that chemically extracted allogeneic nerve seeded with autologous Schwann cells can repair 40-mm ulnar nerve defects in the rhesus monkey. The outcomes are similar to those obtained with autologous nerve graft.

  20. Tissue-engineered rhesus monkey nerve gratfs for the repair of long ulnar nerve defects:similar outcomes to autologous nerve gratfs

    Institute of Scientific and Technical Information of China (English)

    Chang-qing Jiang; Jun Hu; Jian-ping Xiang; Jia-kai Zhu; Xiao-lin Liu; Peng Luo

    2016-01-01

    Acellular nerve allogratfs can help preserve normal nerve structure and extracellular matrix composition. These allogratfs have low immu-nogenicity and are more readily available than autologous nerves for the repair of long-segment peripheral nerve defects. In this study, we repaired a 40-mm ulnar nerve defect in rhesus monkeys with tissue-engineered peripheral nerve, and compared the outcome with that of autogratf. The gratf was prepared using a chemical extract from adult rhesus monkeys and seeded with allogeneic Schwann cells. Pathomo-rphology, electromyogram and immunohistochemistry ifndings revealed the absence of palmar erosion or ulcers, and that the morphology and elasticity of the hypothenar eminence were normal 5 months postoperatively. There were no signiifcant differences in the mean peak compound muscle action potential, the mean nerve conduction velocity, or the number of neuroiflaments between the experimental and control groups. However, outcome was signiifcantly better in the experimental group than in the blank group. These ifndings suggest that chemically extracted allogeneic nerve seeded with autologous Schwann cells can repair 40-mm ulnar nerve defects in the rhesus monkey. The outcomes are similar to those obtained with autologous nerve gratf.

  1. Tenascin-C in peripheral nerve morphogenesis.

    Science.gov (United States)

    Chiquet, M; Wehrle-Haller, B

    1994-01-01

    The extracellular matrix (ECM) molecule tenascin/cytotactin (TN-C) is expressed at a high level by satellite (glial precursor) cells in developing peripheral nerves of the chick embryo; synthesis of its mRNA peaks at the time period when axonal growth is maximal. When offered as a substrate in vitro, TN-C mediates neurite outgrowth by both motor and sensory neurons. The ability to grow neurites on TN-C is developmentally regulated: sensory neurons from 4-day chick embryos (the stage at which peripheral nerves start to develop) grow immediately and rapidly, whereas neurons from older embryos respond with a long delay. A TN-C domain responsible for this activity is located within the C-terminal (distal) portion of TN-C subunits. Integrin receptors seem to be involved on peripheral neurites because their growth on TN-C is completely blocked by antibodies to beta 1 integrins. In striking contrast to neuronal processes, nerve satellite cells can attach to a TN-C substrate but are completely inhibited in their migratory activity. Artificial substrate borders between tenascin and fibronectin or laminin act as selective barriers that allow neurites to pass while holding up satellite cells. The repulsive action of TN-C on satellite cells is similar to that observed for other cell types and is likely to be mediated by additional TN-C domains. In view of these data, it is surprising that mice seem to develop normally without a functional TN-C gene. TN-C is likely to be redundant, that is, its dual action on cell adhesion is shared by other molecules.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Optic nerve oxygenation

    DEFF Research Database (Denmark)

    Stefánsson, Einar; Pedersen, Daniella Bach; Jensen, Peter Koch

    2005-01-01

    The oxygen tension of the optic nerve is regulated by the intraocular pressure and systemic blood pressure, the resistance in the blood vessels and oxygen consumption of the tissue. The oxygen tension is autoregulated and moderate changes in intraocular pressure or blood pressure do not affect...... the optic nerve oxygen tension. If the intraocular pressure is increased above 40 mmHg or the ocular perfusion pressure decreased below 50 mmHg the autoregulation is overwhelmed and the optic nerve becomes hypoxic. A disturbance in oxidative metabolism in the cytochromes of the optic nerve can be seen...... at similar levels of perfusion pressure. The levels of perfusion pressure that lead to optic nerve hypoxia in the laboratory correspond remarkably well to the levels that increase the risk of glaucomatous optic nerve atrophy in human glaucoma patients. The risk for progressive optic nerve atrophy in human...

  3. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats.

    Science.gov (United States)

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.

  4. The Role of Nerve Exploration in Supracondylar Humerus Fracture in Children with Nerve Injury

    Directory of Open Access Journals (Sweden)

    Anuar RIM

    2015-11-01

    Full Text Available The supracondylar humerus fracture (SCHF in children is common and can be complicated with nerve injury either primarily immediate post-trauma or secondarily posttreatment. The concept of neurapraxic nerve injury makes most surgeons choose to ‘watch and see’ the nerve recovery before deciding second surgery if the nerve does not recover. We report three cases of nerve injury in SCHF, all of which underwent nerve exploration for different reasons. Early reduction in the Casualty is important to release the nerve tension before transferring the patient to the operation room. If close reduction fails, we proceed to explore the nerve together with open reduction of the fracture. In iatrogenic nerve injury, we recommend nerve exploration to determine the surgical procedure that is causing the injury. Primary nerve exploration will allow early assessment of the injured nerve and minimize subsequent surgery.

  5. Localization of substance P, calcitonin gene related peptide and galanin in the nerve fibers of porcine cystic ovaries

    Directory of Open Access Journals (Sweden)

    Mariusz Majewski

    2012-01-01

    Full Text Available In a previous study, we showed that both the noradrenergic and cholinergic component of ovarian innervation is markedly changed in porcine cystic ovaries. The present study is aimed at elucidating the distribution pattern of substance P- (SP, calcitonin gene related peptide CGRP- and/or galanin (GAL-containing nerve fibers within porcine cystic ovaries. The status polycysticus was induced by dexamethasone phosphate disodium salt i.m. injections performed from the 7th until the 21st day of the first studied estrous cycle. During the same period of time, gilts of the control group received saline. All animals were slaughtered on the expected 11th day of the second studied estrous cycle, and their ovaries were collected. When compared to control gonad, a distinct difference in the distribution pattern and the density of SP-, CGRP- and/or GAL-immunoreactive (GAL-IR nerve fibers was observed. Thus, unlike in the control gonad, SP- and/or CGRP-IR perivascular nerve fibers were found to supply medullar blood vessels of polycystic ovary. Furthermore, the number of GAL-IR nerve fibers contributing to the ground plexus in polycystic ovaries was higher than that observed in the control gonads. Thus, as may be judged from the profound changes in the distribution pattern of differently chemically coded afferent terminals within polycystic gonads, it appears possible that neuropeptides released from these terminals may take part in the etiopathogenesis of this disorder. (Folia Histochemica et Cytobiologica 2011; Vol. 49, No. 4, pp. 622–630

  6. Early life environmental and pharmacological stressors result in persistent dysregulations of the serotonergic system

    Directory of Open Access Journals (Sweden)

    Peiyan eWong

    2015-04-01

    Full Text Available Dysregulations in the brain serotonergic system and exposure to environmental stressors have been implicated in the development of major depressive disorder. Here, we investigate the interactions between the stress and serotonergic systems by characterizing the behavioral and biochemical effects of chronic stress applied during early-life or adulthood in wild type (WT mice and mice with deficient tryptophan hydroxylase 2 (TPH2 function. We showed that chronic mild stress applied in adulthood did not affect the behaviors and serotonin levels of WT and TPH2 knock-in (KI mice. Whereas, maternal separation (MS stress increased anxiety- and depressive-like behaviors of WT mice, with no detectable behavioral changes in TPH2 KI mice. Biochemically, we found that MS WT mice had reduced brain serotonin levels, which was attributed to increased expression of monoamine oxidase A (MAO A. The increased MAO A expression was detected in MS WT mice at 4 weeks old and adulthood. No change in TPH2 expression was detected. To determine whether a pharmacological stressor, dexamethasone (Dex, will result in similar biochemical results obtained from MS, we used an in vitro system, SH-SY5Y cells, and found that Dex treatment resulted in increased MAO A expression levels. We then treated WT mice with Dex for 5 days, either during postnatal days 7-11 or adulthood. Both groups of Dex treated WT mice had reduced basal corticosterone and glucocorticoid receptors expression levels. However, only Dex treatment during PND7-11 resulted in reduced serotonin levels and increased MAO A expression. Just as with MS WT mice, TPH2 expression in PND7-11 Dex-treated WT mice was unaffected. Taken together, our findings suggest that both environmental and pharmacological stressors affect the expression of MAO A, and not TPH2, when applied during the critical postnatal period. This leads to long-lasting perturbations in the serotonergic system, and results in anxiety- and depressive

  7. Poly(DL-lactide-epsilon-caprolactone) nerve guides perform better than autologous nerve grafts

    NARCIS (Netherlands)

    DenDunnen, WFA; VanderLei, B; Schakenraad, JM; Stokroos, [No Value; Blaauw, E; Pennings, AJ; Robinson, PH; Bartels, H.

    1996-01-01

    The aim of this study was to compare the speed and quality of nerve regeneration after reconstruction using a biodegradable nerve guide or an autologous nerve graft. We evaluated nerve regeneration using light microscopy, transmission electron microscopy and morphometric analysis. Nerve regeneration

  8. Neural stem cells enhance nerve regeneration after sciatic nerve injury in rats.

    Science.gov (United States)

    Xu, Lin; Zhou, Shuai; Feng, Guo-Ying; Zhang, Lu-Ping; Zhao, Dong-Mei; Sun, Yi; Liu, Qian; Huang, Fei

    2012-10-01

    With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5 × 10(5) NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair.

  9. Using Eggshell Membrane as Nerve Guide Channels in Peripheral Nerve Regeneration

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Farjah

    2013-08-01

    Full Text Available Objective(s:  The aim of this study was to evaluate the final outcome of nerve regeneration across the eggsell membrane (ESM tube conduit in comparison with autograft. Materials and Methods: Thirty adult male rats (250-300 g were randomized into (1 ESM conduit, (2 autograft, and (3 sham surgery groups. The eggs submerged in 5% acetic acid. The decalcifying membranes were cut into four pieces, rotated over the teflon mandrel and dried at   37°C. The left sciatic nerve was surgically cut. A 10-mm nerve segment was cut and removed. In the ESM group, the proximal and distal cut ends of the sciatic nerve were telescoped into the nerve guides. In the autograft group, the 10 mm nerve segment was reversed and used as an autologous nerve graft. All animals were evaluated by sciatic functional index (SFI and electrophysiology testing.  Results:The improvement in SFI from the first to the last evalution in ESM and autograft groups were evaluated. On days 49 and 60 post-operation, the mean SFI of ESM group was significantly greater than the autograft group (P 0.05. Conclusion:These findings demonstrate that ESM effectively enhances nerve regeneration and promotes functional recovery in injured sciatic nerve of rat.

  10. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Daniel W. Sparks

    2018-01-01

    Full Text Available Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh and serotonin (5-HT have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.

  11. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex.

    Science.gov (United States)

    Sparks, Daniel W; Tian, Michael K; Sargin, Derya; Venkatesan, Sridevi; Intson, Katheron; Lambe, Evelyn K

    2017-01-01

    Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh) and serotonin (5-HT) have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.

  12. An analysis of facial nerve function in irradiated and unirradiated facial nerve grafts

    International Nuclear Information System (INIS)

    Brown, Paul D.; Eshleman, Jeffrey S.; Foote, Robert L.; Strome, Scott E.

    2000-01-01

    Purpose: The effect of high-dose radiation therapy on facial nerve grafts is controversial. Some authors believe radiotherapy is so detrimental to the outcome of facial nerve graft function that dynamic or static slings should be performed instead of facial nerve grafts in all patients who are to receive postoperative radiation therapy. Unfortunately, the facial function achieved with dynamic and static slings is almost always inferior to that after facial nerve grafts. In this retrospective study, we compared facial nerve function in irradiated and unirradiated nerve grafts. Methods and Materials: The medical records of 818 patients with neoplasms involving the parotid gland who received treatment between 1974 and 1997 were reviewed, of whom 66 underwent facial nerve grafting. Fourteen patients who died or had a recurrence less than a year after their facial nerve graft were excluded. The median follow-up for the remaining 52 patients was 10.6 years. Cable nerve grafts were performed in 50 patients and direct anastomoses of the facial nerve in two. Facial nerve function was scored by means of the House-Brackmann (H-B) facial grading system. Twenty-eight of the 52 patients received postoperative radiotherapy. The median time from nerve grafting to start of radiotherapy was 5.1 weeks. The median and mean doses of radiation were 6000 and 6033 cGy, respectively, for the irradiated grafts. One patient received preoperative radiotherapy to a total dose of 5000 cGy in 25 fractions and underwent surgery 1 month after the completion of radiotherapy. This patient was placed, by convention, in the irradiated facial nerve graft cohort. Results: Potential prognostic factors for facial nerve function such as age, gender, extent of surgery at the time of nerve grafting, preoperative facial nerve palsy, duration of preoperative palsy if present, or number of previous operations in the parotid bed were relatively well balanced between irradiated and unirradiated patients. However

  13. Optic Nerve Imaging

    Science.gov (United States)

    ... News About Us Donate In This Section Optic Nerve Imaging email Send this article to a friend ... measurements of nerve fiber damage (or loss). The Nerve Fiber Analyzer (GDx) uses laser light to measure ...

  14. POROSITY OF THE WALL OF A NEUROLAC (R) NERVE CONDUIT HAMPERS NERVE REGENERATION

    NARCIS (Netherlands)

    Meek, Marcel F.; Den Dunnen, Wilfred F. A.

    2009-01-01

    One way to improve nerve regeneration and bridge longer nerve gaps may be the use of semipermeable/porous conduits. With porosity less biomaterial is used for the nerve conduit. We evaluated the short-term effects of porous Neurolac (R) nerve conduits for in vivo peripheral nerve regeneration. In 10

  15. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Guang-shuai Li

    2016-01-01

    Full Text Available Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8ß and complement factor D in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration.

  16. Comparison of percutaneous electrical nerve stimulation with transcutaneous electrical nerve stimulation for long-term pain relief in patients with chronic low back pain.

    Science.gov (United States)

    Yokoyama, Masataka; Sun, Xiaohui; Oku, Satoru; Taga, Naoyuki; Sato, Kenji; Mizobuchi, Satoshi; Takahashi, Toru; Morita, Kiyoshi

    2004-06-01

    The long-term effect of percutaneous electrical nerve stimulation (PENS) on chronic low back pain (LBP) is unclear. We evaluated the number of sessions for which PENS should be performed to alleviate chronic LBP and how long analgesia is sustained. Patients underwent treatment on a twice-weekly schedule for 8 wk. Group A (n = 18) received PENS for 8 wk, group B (n = 17) received PENS for the first 4 wk and transcutaneous electrical nerve stimulation (TENS) for the second 4 wk, and group C (n = 18) received TENS for 8 wk. Pain level, degree of physical impairment, and the daily intake of nonsteroidal antiinflammatory drugs (NSAIDs) were assessed before the first treatment, 3 days after Week 2, Week 4, and Week 8 treatments, and at 1 and 2 mo after the sessions. During PENS therapy, the pain level decreased significantly from Week 2 in Groups A and B (P pain level decreased significantly only at Week 8 (P TENS for chronic LBP but must be continued to sustain the analgesic effect. A cumulative analgesic effect was observed in patients with chronic low back pain (LBP) after repeated percutaneous electrical nerve stimulation (PENS), but this effect gradually faded after the treatment was terminated. Results indicate that although PENS is effective for chronic LBP, treatments need to be continued to sustain analgesia.

  17. Delayed peripheral nerve repair: methods, including surgical ?cross-bridging? to promote nerve regeneration

    OpenAIRE

    Gordon, Tessa; Eva, Placheta; Borschel, Gregory H.

    2015-01-01

    Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour per...

  18. Electrophysiology of Cranial Nerve Testing: Trigeminal and Facial Nerves.

    Science.gov (United States)

    Muzyka, Iryna M; Estephan, Bachir

    2018-01-01

    The clinical examination of the trigeminal and facial nerves provides significant diagnostic value, especially in the localization of lesions in disorders affecting the central and/or peripheral nervous system. The electrodiagnostic evaluation of these nerves and their pathways adds further accuracy and reliability to the diagnostic investigation and the localization process, especially when different testing methods are combined based on the clinical presentation and the electrophysiological findings. The diagnostic uniqueness of the trigeminal and facial nerves is their connectivity and their coparticipation in reflexes commonly used in clinical practice, namely the blink and corneal reflexes. The other reflexes used in the diagnostic process and lesion localization are very nerve specific and add more diagnostic yield to the workup of certain disorders of the nervous system. This article provides a review of commonly used electrodiagnostic studies and techniques in the evaluation and lesion localization of cranial nerves V and VII.

  19. Effects of acute administration of selective serotonin reuptake inhibitors on sympathetic nerve activity

    International Nuclear Information System (INIS)

    Tiradentes, R.V.; Pires, J.G.P.; Silva, N.F.; Ramage, A.G.; Santuzzi, C.H.; Futuro, H.A. Neto

    2014-01-01

    Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central

  20. Effects of acute administration of selective serotonin reuptake inhibitors on sympathetic nerve activity

    Energy Technology Data Exchange (ETDEWEB)

    Tiradentes, R.V. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Pires, J.G.P. [Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Silva, N.F. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Ramage, A.G. [Department of Neuroscience, Physiology and Pharmacology, University College London, London (United Kingdom); Santuzzi, C.H. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Centro Universitário do Espírito Santo, Colatina, ES (Brazil); Futuro, H.A. Neto [Escola de Medicina da Empresa Brasileira de Ensino, Vitória, ES (Brazil); Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Escola Superior de Ciências da Saúde, Santa Casa de Misericórdia de Vitória, Vitória, ES (Brazil)

    2014-05-30

    Serotonergic mechanisms have an important function in the central control of circulation. Here, the acute effects of three selective serotonin (5-HT) reuptake inhibitors (SSRIs) on autonomic and cardiorespiratory variables were measured in rats. Although SSRIs require 2-3 weeks to achieve their full antidepressant effects, it has been shown that they cause an immediate inhibition of 5-HT reuptake. Seventy male Wistar rats were anesthetized with urethane and instrumented to record blood pressure, heart rate, renal sympathetic nerve activity (RSNA), and respiratory frequency. At lower doses, the acute cardiovascular effects of fluoxetine, paroxetine and sertraline administered intravenously were insignificant and variable. At middle and higher doses, a general pattern was observed, with significant reductions in sympathetic nerve activity. At 10 min, fluoxetine (3 and 10 mg/kg) reduced RSNA by -33±4.7 and -31±5.4%, respectively, without changes in blood pressure; 3 and 10 mg/kg paroxetine reduced RSNA by -35±5.4 and -31±5.5%, respectively, with an increase in blood pressure +26.3±2.5; 3 mg/kg sertraline reduced RSNA by -59.4±8.6%, without changes in blood pressure. Sympathoinhibition began 5 min after injection and lasted approximately 30 min. For fluoxetine and sertraline, but not paroxetine, there was a reduction in heart rate that was nearly parallel to the sympathoinhibition. The effect of these drugs on the other variables was insignificant. In conclusion, acute peripheral administration of SSRIs caused early autonomic cardiovascular effects, particularly sympathoinhibition, as measured by RSNA. Although a peripheral action cannot be ruled out, such effects are presumably mostly central.

  1. Miconazole enhances nerve regeneration and functional recovery after sciatic nerve crush injury.

    Science.gov (United States)

    Lin, Tao; Qiu, Shuai; Yan, Liwei; Zhu, Shuang; Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin

    2018-05-01

    Improving axonal outgrowth and remyelination is crucial for peripheral nerve regeneration. Miconazole appears to enhance remyelination in the central nervous system. In this study we assess the effect of miconazole on axonal regeneration using a sciatic nerve crush injury model in rats. Fifty Sprague-Dawley rats were divided into control and miconazole groups. Nerve regeneration and myelination were determined using histological and electrophysiological assessment. Evaluation of sensory and motor recovery was performed using the pinprick assay and sciatic functional index. The Cell Counting Kit-8 assay and Western blotting were used to assess the proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole promoted axonal regrowth, increased myelinated nerve fibers, improved sensory recovery and walking behavior, enhanced stimulated amplitude and nerve conduction velocity, and elevated proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole was beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Muscle Nerve 57: 821-828, 2018. © 2017 Wiley Periodicals, Inc.

  2. Delayed peripheral nerve repair: methods, including surgical ′cross-bridging′ to promote nerve regeneration

    Directory of Open Access Journals (Sweden)

    Tessa Gordon

    2015-01-01

    Full Text Available Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts (cross-bridges into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ′protect′ chronically denervated Schwann cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.

  3. Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish.

    Science.gov (United States)

    Montgomery, Jacob E; Wiggin, Timothy D; Rivera-Perez, Luis M; Lillesaar, Christina; Masino, Mark A

    2016-06-01

    Zebrafish intraspinal serotonergic neuron (ISN) morphology and distribution have been examined in detail at different ages; however, some aspects of the development of these cells remain unclear. Although antibodies to serotonin (5-HT) have detected ISNs in the ventral spinal cord of embryos, larvae, and adults, the only tryptophan hydroxylase (tph) transcript that has been described in the spinal cord is tph1a. Paradoxically, spinal tph1a is only expressed transiently in embryos, which brings the source of 5-HT in the ISNs of larvae and adults into question. Because the pet1 and tph2 promoters drive transgene expression in the spinal cord, we hypothesized that tph2 is expressed in spinal cords of zebrafish larvae. We confirmed this hypothesis through in situ hybridization. Next, we used 5-HT antibody labeling and transgenic markers of tph2-expressing neurons to identify a transient population of ISNs in embryos that was distinct from ISNs that appeared later in development. The existence of separate ISN populations may not have been recognized previously due to their shared location in the ventral spinal cord. Finally, we used transgenic markers and immunohistochemical labeling to identify the transient ISN population as GABAergic Kolmer-Agduhr double-prime (KA″) neurons. Altogether, this study revealed a novel developmental paradigm in which KA″ neurons are transiently serotonergic before the appearance of a stable population of tph2-expressing ISNs. © 2015 Wiley Periodicals, Inc.

  4. Serial neurophysiological and neurophysiological examinations for delayed facial nerve palsy in a patient with Fisher syndrome.

    Science.gov (United States)

    Umekawa, Motoyuki; Hatano, Keiko; Matsumoto, Hideyuki; Shimizu, Takahiro; Hashida, Hideji

    2017-05-27

    The patient was a 47-year-old man who presented with diplopia and gait instability with a gradual onset over the course of three days. Neurological examinations showed ophthalmoplegia, diminished tendon reflexes, and truncal ataxia. Tests for anti-GQ1b antibodies and several other antibodies to ganglioside complex were positive. We made a diagnosis of Fisher syndrome. After administration of intravenous immunoglobulin, the patient's symptoms gradually improved. However, bilateral facial palsy appeared during the recovery phase. Brain MRI showed intensive contrast enhancement of bilateral facial nerves. During the onset phase of facial palsy, the amplitude of the compound muscle action potential (CMAP) in the facial nerves was preserved. During the peak phase, the facial CMAP amplitude was within the lower limit of normal values, or mildly decreased. During the recovery phase, the CMAP amplitude was normalized, and the R1 and R2 responses of the blink reflex were prolonged. The delayed facial nerve palsy improved spontaneously, and the enhancement on brain MRI disappeared. Serial neurophysiological and neuroradiological examinations suggested that the main lesions existed in the proximal part of the facial nerves and the mild lesions existed in the facial nerve terminals, probably due to reversible conduction failure.

  5. Optic Nerve Disorders

    Science.gov (United States)

    The optic nerve is a bundle of more than 1 million nerve fibers that carry visual messages. You have one connecting ... retina) to your brain. Damage to an optic nerve can cause vision loss. The type of vision ...

  6. Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila.

    Science.gov (United States)

    Subramanian, Aswati; Siefert, Matthew; Banerjee, Soumya; Vishal, Kumar; Bergmann, Kayla A; Curts, Clay C M; Dorr, Meredith; Molina, Camillo; Fernandes, Joyce

    2017-10-01

    Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017. © 2017 Wiley Periodicals, Inc.

  7. Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification.

    Directory of Open Access Journals (Sweden)

    Lise Gutknecht

    Full Text Available Brain serotonin (5-HT is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2. Tph2 inactivation (Tph2-/- resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT(1A and 5-HT(1B receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis.

  8. Progress of nerve bridges in the treatment of peripheral nerve disruptions

    OpenAIRE

    Ao,Qiang

    2016-01-01

    Qiang Ao Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning, Peoples’ Republic of China Abstract: Clinical repair of a nerve defect is one of the most challenging surgical problems. Autologous nerve grafting remains the gold standard treatment in addressing peripheral nerve injuries that cannot be bridged by direct epineural suturing. However, the autologous nerve graft is not readily available, and the process of harvesting...

  9. Optic Nerve Pit

    Science.gov (United States)

    ... Conditions Frequently Asked Questions Español Condiciones Chinese Conditions Optic Nerve Pit What is optic nerve pit? An optic nerve pit is a ... may be seen in both eyes. How is optic pit diagnosed? If the pit is not affecting ...

  10. The vestibulocochlear nerve (VIII).

    Science.gov (United States)

    Benoudiba, F; Toulgoat, F; Sarrazin, J-L

    2013-10-01

    The vestibulocochlear nerve (8th cranial nerve) is a sensory nerve. It is made up of two nerves, the cochlear, which transmits sound and the vestibular which controls balance. It is an intracranial nerve which runs from the sensory receptors in the internal ear to the brain stem nuclei and finally to the auditory areas: the post-central gyrus and superior temporal auditory cortex. The most common lesions responsible for damage to VIII are vestibular Schwannomas. This report reviews the anatomy and various investigations of the nerve. Copyright © 2013. Published by Elsevier Masson SAS.

  11. Functional nerve recovery after bridging a 15 mm gap in rat sciatic nerve with a biodegradable nerve guide

    NARCIS (Netherlands)

    Meek, MF; Klok, F; Robinson, PH; Nicolai, JPA; Gramsbergen, A; van der Werf, J.F.A.

    2003-01-01

    Recovery of nerve function was evaluated after bridging a 15 mm sciatic nerve gap in 51 rats with a biodegradable poly(DL-lactide-epsilon-caprolactone) nerve guide. Recovery of function was investigated by analysing the footprints, by analysing video recordings of gait, by electrically eliciting the

  12. The Use of Degradable Nerve Conduits for Human Nerve Repair: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    M. F. Meek

    2005-01-01

    Full Text Available The management of peripheral nerve injury continues to be a major clinical challenge. The most widely used technique for bridging defects in peripheral nerves is the use of autologous nerve grafts. This technique, however, has some disadvantages. Many alternative experimental techniques have thus been developed, such as degradable nerve conduits. Degradable nerve guides have been extensively studied in animal experimental studies. However, the repair of human nerves by degradable nerve conduits has been limited to only a few clinical studies. In this paper, an overview of the available international published literature on degradable nerve conduits for bridging human peripheral nerve defects is presented for literature available until 2004. Also, the philosophy on the use of nerve guides and nerve grafts is given.

  13. [Glaucoma and optic nerve drusen: Limitations of optic nerve head OCT].

    Science.gov (United States)

    Poli, M; Colange, J; Goutagny, B; Sellem, E

    2017-09-01

    Optic nerve head drusen are congenital calcium deposits located in the prelaminar section of the optic nerve head. Their association with visual field defects has been classically described, but the diagnosis of glaucoma is not easy in these cases of altered optic nerve head anatomy. We describe the case of a 67-year-old man with optic nerve head drusen complicated by glaucoma, which was confirmed by visual field and OCT examination of the peripapillary retinal nerve fiber layer (RNFL), but the measurement of the minimum distance between the Bruch membrane opening and the internal limiting membrane (minimum rim width, BMO-MRW) by OCT was normal. OCT of the BMO-MRW is a new diagnostic tool for glaucoma. Superficial optic nerve head drusen, which are found between the internal limiting membrane and the Bruch's membrane opening, overestimate the value of this parameter. BMO-MRW measurement is not adapted to cases of optic nerve head drusen and can cause false-negative results for this parameter, and the diagnosis of glaucoma in this case should be based on other parameters such as the presence of a fascicular defect in the retinal nerve fibers, RNFL or macular ganglion cell complex thinning, as well as visual field data. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Transient facial nerve palsy after occipital nerve block: a case report.

    Science.gov (United States)

    Strauss, Lauren; Loder, Elizabeth; Rizzoli, Paul

    2014-01-01

    Occipital nerve blocks are commonly performed to treat a variety of headache syndromes and are generally believed to be safe and well tolerated. We report the case of an otherwise healthy 24-year-old woman with left side-locked occipital, parietal, and temporal pain who was diagnosed with probable occipital neuralgia. She developed complete left facial nerve palsy within minutes of blockade of the left greater and lesser occipital nerves with a solution of bupivicaine and triamcinolone. Magnetic resonance imaging of the brain with gadolinium contrast showed no abnormalities, and symptoms had completely resolved 4-5 hours later. Unintended spread of the anesthetic solution along tissue planes seems the most likely explanation for this adverse event. An aberrant course of the facial nerve or connections between the facial and occipital nerves also might have played a role, along with the patient's prone position and the use of a relatively large injection volume of a potent anesthetic. Clinicians should be aware that temporary facial nerve palsy is a possible complication of occipital nerve block. © 2014 American Headache Society.

  15. A reassessment of the role of serotonergic system in the control of feeding behavior

    Directory of Open Access Journals (Sweden)

    Medeiros Magda A.

    2005-01-01

    Full Text Available The role of serotonergic system in the feeding behaviorwas appraised by electrolytic lesions in the dorsal raphe nucleus (DRN and administration of para-chlorophenylalanine (PCPA, 3 mg/5 mul, icv. Chronic evaluations were accomplished through 120 and 360 days in PCPA-injected and DRN-lesioned rats, respectively. Acute food intake was evaluated in fasted rats and submitted to injection of PCPA and hydroxytryptophan (LHTP, 30 mg/kg, ip. DRN-lesioned rats exhibited 22-80% increase in food intake up to sixth month, whereas the obesity was evident and sustained by whole period. In PCPA-injected rats was observed an initial increase in the food intake followed by hypophagy from 25th to 30th day and a transitory increase of body weight from 5th to 60th day. In the acute study, the LHTP reverted partially the PCPA-induced increase in food intake of fasted rats suggesting a sustained capacity of decarboxylation of precursor by serotonergic neurons. Slow restoration of the levels of food intake in DRN-lesioned rats reveals a neuroplasticity in the systems that regulate feeding behavior. A plateau on the body weight curve in lesioned rats possibly represents the establishment of a new and higher set point of energetic balance.

  16. 142 Key words: Brachialis, radial nerve, musculocutaneous nerve.

    African Journals Online (AJOL)

    AWORI KIRSTEEN

    The innervation of brachialis muscle by the musculocutaneous nerve has been described as either type I or type II and the main trunk to this muscle is rarely absent. The contribution .... brachialis muscle by fiber analysis of supply nerves].

  17. Facial reanimation by muscle-nerve neurotization after facial nerve sacrifice. Case report.

    Science.gov (United States)

    Taupin, A; Labbé, D; Babin, E; Fromager, G

    2016-12-01

    Recovering a certain degree of mimicry after sacrifice of the facial nerve is a clinically recognized finding. The authors report a case of hemifacial reanimation suggesting a phenomenon of neurotization from muscle-to-nerve. A woman benefited from a parotidectomy with sacrifice of the left facial nerve indicated for recurrent tumor in the gland. The distal branches of the facial nerve, isolated at the time of resection, were buried in the masseter muscle underneath. The patient recovered a voluntary hémifacial motricity. The electromyographic analysis of the motor activity of the zygomaticus major before and after block of the masseter nerve showed a dependence between mimic muscles and the masseter muscle. Several hypotheses have been advanced to explain the spontaneous reanimation of facial paralysis. The clinical case makes it possible to argue in favor of muscle-to-nerve neurotization from masseter muscle to distal branches of the facial nerve. It illustrates the quality of motricity that can be obtained thanks to this procedure. The authors describe a simple implantation technique of distal branches of the facial nerve in the masseter muscle during a radical parotidectomy with facial nerve sacrifice and recovery of resting tone but also a quality voluntary mimicry. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. The longitudinal epineural incision and complete nerve transection method for modeling sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Xing-long Cheng

    2015-01-01

    Full Text Available Injury severity, operative technique and nerve regeneration are important factors to consider when constructing a model of peripheral nerve injury. Here, we present a novel peripheral nerve injury model and compare it with the complete sciatic nerve transection method. In the experimental group, under a microscope, a 3-mm longitudinal incision was made in the epineurium of the sciatic nerve to reveal the nerve fibers, which were then transected. The small, longitudinal incision in the epineurium was then sutured closed, requiring no stump anastomosis. In the control group, the sciatic nerve was completely transected, and the epineurium was repaired by anastomosis. At 2 and 4 weeks after surgery, Wallerian degeneration was observed in both groups. In the experimental group, at 8 and 12 weeks after surgery, distinct medullary nerve fibers and axons were observed in the injured sciatic nerve. Regular, dense myelin sheaths were visible, as well as some scarring. By 12 weeks, the myelin sheaths were normal and intact, and a tight lamellar structure was observed. Functionally, limb movement and nerve conduction recovered in the injured region between 4 and 12 weeks. The present results demonstrate that longitudinal epineural incision with nerve transection can stably replicate a model of Sunderland grade IV peripheral nerve injury. Compared with the complete sciatic nerve transection model, our method reduced the difficulties of micromanipulation and surgery time, and resulted in good stump restoration, nerve regeneration, and functional recovery.

  19. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering

    Science.gov (United States)

    Zilic, Leyla; Garner, Philippa E; Yu, Tong; Roman, Sabiniano; Haycock, John W; Wilshaw, Stacy-Paul

    2015-01-01

    Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons. PMID:26200940

  20. Antidepressant-like effect of m-trifluoromethyl-diphenyl diselenide in the mouse forced swimming test involves opioid and serotonergic systems.

    Science.gov (United States)

    Brüning, César Augusto; Souza, Ana Cristina Guerra; Gai, Bibiana Mozzaquatro; Zeni, Gilson; Nogueira, Cristina Wayne

    2011-05-11

    Serotonergic and opioid systems have been implicated in major depression and in the action mechanism of antidepressants. The organoselenium compound m-trifluoromethyl-diphenyl diselenide (m-CF(3)-PhSe)(2) shows antioxidant and anxiolytic activities and is a selective inhibitor of monoamine oxidase A activity. The present study was designed to investigate the antidepressant-like effect of (m-CF(3)-PhSe)(2) in female mice, employing the forced swimming test. The involvement of the serotonergic and opioid systems in the antidepressant-like effect of (m-CF(3)-PhSe)(2) was appraised. (m-CF(3)-PhSe)(2) at doses of 50 and 100mg/kg (p.o.) exhibited antidepressant-like action in the forced swimming test. The effect of (m-CF(3)-PhSe)(2) (50mg/kg p.o.) was prevented by pretreatment of mice with WAY100635 (0.1mg/kg, s.c. a selective 5-HT(1A) receptor antagonist), ritanserin (4 mg/kg, i.p., a non-selective 5HT(2A/2C) receptor antagonist), ondansetron (1mg/kg, i.p., a selective 5-HT(3) receptor antagonist) and naloxone (1mg/kg, i.p., a non-selective antagonist of opioid receptors). These results suggest that (m-CF(3)-PhSe)(2) produced an antidepressant-like effect in the mouse forced swimming test and this effect seems most likely to be mediated through an interaction with serotonergic and opioid systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Microvascular Cranial Nerve Palsy

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Microvascular Cranial Nerve Palsy Sections What Is Microvascular Cranial Nerve Palsy? ... Microvascular Cranial Nerve Palsy Treatment What Is Microvascular Cranial Nerve Palsy? Leer en Español: ¿Qué es una parálisis ...

  2. Engineering a multimodal nerve conduit for repair of injured peripheral nerve

    Science.gov (United States)

    Quigley, A. F.; Bulluss, K. J.; Kyratzis, I. L. B.; Gilmore, K.; Mysore, T.; Schirmer, K. S. U.; Kennedy, E. L.; O'Shea, M.; Truong, Y. B.; Edwards, S. L.; Peeters, G.; Herwig, P.; Razal, J. M.; Campbell, T. E.; Lowes, K. N.; Higgins, M. J.; Moulton, S. E.; Murphy, M. A.; Cook, M. J.; Clark, G. M.; Wallace, G. G.; Kapsa, R. M. I.

    2013-02-01

    Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate

  3. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    Science.gov (United States)

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by

  4. Transfer of obturator nerve for femoral nerve injury: an experiment study in rats.

    Science.gov (United States)

    Meng, Depeng; Zhou, Jun; Lin, Yaofa; Xie, Zheng; Chen, Huihao; Yu, Ronghua; Lin, Haodong; Hou, Chunlin

    2018-07-01

    Quadriceps palsy is mainly caused by proximal lesions in the femoral nerve. The obturator nerve has been previously used to repair the femoral nerve, although only a few reports have described the procedure, and the outcomes have varied. In the present study, we aimed to confirm the feasibility and effectiveness of this treatment in a rodent model using the randomized control method. Sixty Sprague-Dawley rats were randomized into two groups: the experimental group, wherein rats underwent femoral neurectomy and obturator nerve transfer to the femoral nerve motor branch; and the control group, wherein rats underwent femoral neurectomy without nerve transfer. Functional outcomes were measured using the BBB score, muscle mass, and histological assessment. At 12 and 16 weeks postoperatively, the rats in the experimental group exhibited recovery to a stronger stretch force of the knee and higher BBB score, as compared to the control group (p nerve with myelinated and unmyelinated fibers was observed in the experimental group. No significant differences were observed between groups at 8 weeks postoperatively (p > 0.05). Obturator nerve transfer for repairing femoral nerve injury was feasible and effective in a rat model, and can hence be considered as an option for the treatment of femoral nerve injury.

  5. Enhanced peripheral nerve regeneration through asymmetrically porous nerve guide conduit with nerve growth factor gradient.

    Science.gov (United States)

    Oh, Se Heang; Kang, Jun Goo; Kim, Tae Ho; Namgung, Uk; Song, Kyu Sang; Jeon, Byeong Hwa; Lee, Jin Ho

    2018-01-01

    In this study, we fabricated a nerve guide conduit (NGC) with nerve growth factor (NGF) gradient along the longitudinal direction by rolling a porous polycaprolactone membrane with NGF concentration gradient. The NGF immobilized on the membrane was continuously released for up to 35 days, and the released amount of the NGF from the membrane gradually increased from the proximal to distal NGF ends, which may allow a neurotrophic factor gradient in the tubular NGC for a sufficient period. From the in vitro cell culture experiment, it was observed that the PC12 cells sense the NGF concentration gradient on the membrane for the cell proliferation and differentiation. From the in vivo animal experiment using a long gap (20 mm) sciatic nerve defect model of rats, the NGC with NGF concentration gradient allowed more rapid nerve regeneration through the NGC than the NGC itself and NGC immobilized with uniformly distributed NGF. The NGC with NGF concentration gradient seems to be a promising strategy for the peripheral nerve regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 52-64, 2018. © 2017 Wiley Periodicals, Inc.

  6. Primary nerve-sheath tumours of the trigeminal nerve: clinical and MRI findings

    International Nuclear Information System (INIS)

    Majoie, C.B.L.M.; Hulsmans, F.J.H.; Sie, L.H.; Castelijns, J.A.; Valk, J.; Walter, A.; Albrecht, K.W.

    1999-01-01

    We reviewed the clinical and MRI findings in primary nerve-sheath tumours of the trigeminal nerve. We retrospectively reviewed the medical records, imaging and histological specimens of 10 patients with 11 primary tumours of the trigeminal nerve. We assessed whether tumour site, size, morphology or signal characteristics were related to symptoms and signs or histological findings. Histological proof was available for 8 of 11 tumours: six schwannomas and two plexiform neurofibromas. The other three tumours were thought to be schwannomas, because they were present in patients with neurofibromatosis type 2 and followed the course of the trigeminal nerve. Uncommon MRI appearances were observed in three schwannomas and included a large intratumoral haemorrhage, a mainly low-signal appearance on T2-weighted images and a rim-enhancing, multicystic appearance. Only four of nine schwannomas caused trigeminal nerve symptoms, including two with large cystic components, one haemorrhagic and one solid tumor. Of the five schwannomas which did not cause any trigeminal nerve symptoms, two were large. Only one of the plexiform neurofibromas caused trigeminal nerve symptoms. Additional neurological symptoms and signs, not related to the trigeminal nerve, could be attributed to the location of the tumour in three patients. (orig.)

  7. Treatment of peroneal nerve injuries with simultaneous tendon transfer and nerve exploration.

    Science.gov (United States)

    Ho, Bryant; Khan, Zubair; Switaj, Paul J; Ochenjele, George; Fuchs, Daniel; Dahl, William; Cederna, Paul; Kung, Theodore A; Kadakia, Anish R

    2014-08-06

    Common peroneal nerve palsy leading to foot drop is difficult to manage and has historically been treated with extended bracing with expectant waiting for return of nerve function. Peroneal nerve exploration has traditionally been avoided except in cases of known traumatic or iatrogenic injury, with tendon transfers being performed in a delayed fashion after exhausting conservative treatment. We present a new strategy for management of foot drop with nerve exploration and concomitant tendon transfer. We retrospectively reviewed a series of 12 patients with peroneal nerve palsies that were treated with tendon transfer from 2005 to 2011. Of these patients, seven were treated with simultaneous peroneal nerve exploration and repair at the time of tendon transfer. Patients with both nerve repair and tendon transfer had superior functional results with active dorsiflexion in all patients, compared to dorsiflexion in 40% of patients treated with tendon transfers alone. Additionally, 57% of patients treated with nerve repair and tendon transfer were able to achieve enough function to return to running, compared to 20% in patients with tendon transfer alone. No patient had full return of native motor function resulting in excessive dorsiflexion strength. The results of our limited case series for this rare condition indicate that simultaneous nerve repair and tendon transfer showed no detrimental results and may provide improved function over tendon transfer alone.

  8. A STUDY OF TUMOURS OF THE CRANIAL NERVE AND PARASPINAL NERVE

    Directory of Open Access Journals (Sweden)

    Sudesh Shetty

    2016-03-01

    Full Text Available INTRODUCTION One of the frequent sites of tumour formation is the cranial nerves and paraspinal nerves. The cranial nerves perform a plethora of functions and so the signs and symptoms caused may be different. They are mainly classified into four different types. The aim of the study is: 1. To study the tumours arising from the cranial nerves in an epidemiological point of view. 2. To study the tumours histopathologically. 3. To classify the tumours according to WHO classification. Thirty-eight brain tumor cases were studied in the Department of Medicine, A. J. Shetty Institute of Medical Sciences, Mangalore. Cranial nerve tumours accounts for 4(10% among the intracranial tumours. Schwannomas makes up 3(7.39% among the Intracranial tumours. and constituted 3(75% among cranial nerve tumours. All the 3 schwannomas were located in CP angle. The geographic distribution of cases was found to be 28 cases from Mangalore and 10 cases from Kerala.

  9. The Effect of Tongue Exercise on Serotonergic Input to the Hypoglossal Nucleus in Young and Old Rats

    Science.gov (United States)

    Behan, Mary; Moeser, Adam E.; Thomas, Cathy F.; Russell, John A.; Wang, Hao; Leverson, Glen E.; Connor, Nadine P.

    2012-01-01

    Purpose: Breathing and swallowing problems affect elderly people and may be related to age-associated tongue dysfunction. Hypoglossal motoneurons that innervate the tongue receive a robust, excitatory serotonergic (5HT) input and may be affected by aging. We used a rat model of aging and progressive resistance tongue exercise to determine whether…

  10. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens.

    Science.gov (United States)

    Halberstadt, Adam L

    2015-01-15

    Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The association between concomitant use of serotonergic antidepressants and lithium-induced polyuria. A multicenter medical chart review study

    NARCIS (Netherlands)

    Wilting, I.; Egberts, A. C. G.; Movig, K. L. L.; van Laarhoven, J. H. M.; Heerdink, E. R.; Nolen, W. A.

    Background: A previous Study aimed at revealing the prevalence and determinants Of lithium induced polyuria Suggested an increased risk of polyuria (urine volume >= 3L/24h) in those using serotonergic antidepressants next to lithium. Objective: The objective of our study was to re-evaluate this

  12. Electrophysiology of Cranial Nerve Testing: Cranial Nerves IX and X.

    Science.gov (United States)

    Martinez, Alberto R M; Martins, Melina P; Moreira, Ana Lucila; Martins, Carlos R; Kimaid, Paulo A T; França, Marcondes C

    2018-01-01

    The cranial nerves IX and X emerge from medulla oblongata and have motor, sensory, and parasympathetic functions. Some of these are amenable to neurophysiological assessment. It is often hard to separate the individual contribution of each nerve; in fact, some of the techniques are indeed a composite functional measure of both nerves. The main methods are the evaluation of the swallowing function (combined IX and X), laryngeal electromyogram (predominant motor vagal function), and heart rate variability (predominant parasympathetic vagal function). This review describes, therefore, the techniques that best evaluate the major symptoms presented in IX and X cranial nerve disturbance: dysphagia, dysphonia, and autonomic parasympathetic dysfunction.

  13. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-01-01

    Full Text Available Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ′excellent′ and ′good′ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.

  14. Phrenic nerve transfer to the musculocutaneous nerve for the repair of brachial plexus injury: electrophysiological characteristics.

    Science.gov (United States)

    Liu, Ying; Xu, Xun-Cheng; Zou, Yi; Li, Su-Rong; Zhang, Bin; Wang, Yue

    2015-02-01

    Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering 'excellent' and 'good' muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.

  15. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries.

    Science.gov (United States)

    Patel, Nitesh P; Lyon, Kristopher A; Huang, Jason H

    2018-05-01

    Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.

  16. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits.

    Science.gov (United States)

    Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin

    2018-07-01

    Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.

  17. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    Science.gov (United States)

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998). In the present study, 20 mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent of functional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Should we routinely expose recurrent laryngeal nerve(s) during thyroid surgery

    International Nuclear Information System (INIS)

    Ahmed, M.; Aurangzeb, A.; Rashid, A.Z.; Qureshi, M.A.; Iqbal, N.; Boota, M.; Ashfaq, M.

    2013-01-01

    Objective: To compare the frequency of recurrent laryngeal nerve(s) (RLNs) palsy after various thyroid procedures with and without identification of recurrent laryngeal nerve during the operation. Study Design: Randomized controlled trial. Place and Duration of Study: Department of Surgery, Military Hospital, Rawalpindi, from August 2008 to April 2010. Methodology: Patients undergoing indirect laryngoscopy with normal vocal cords and those with carcinoma and re-do surgery having normal vocal cord were included in the study. Patients with hoarseness of voice, abnormal vocal cord movements and with solitary nodule in the isthmus were excluded. These patients were randomly divided into 2 groups of 50 each using random number tables. RLN was identified by exposing the inferior thyroid artery and traced along its entire course in group-A. Whereas, in group-B, nerves were not identified during the operations. Immediate postoperative direct laryngoscopy was performed by a surgeon with the help of an anaesthesiologist for the assessment of vocal cords. Patients with persistent hoarseness of voice were followed-up with indirect laryngoscopy at 3 and 6 months. Results: Temporary unilateral recurrent laryngeal nerve palsies occurred in 2 (4%) patients in group-A where the voice and cord movements returned to normal in 6 months. In group-B, it occurred in 8 (16%) patients, 2 bilateral (4%) injuries requiring tracheostomy and 6 unilateral injuries (12%). Among the 2 bilateral recurrent laryngeal nerve injuries, the tracheostomy was removed in one case after 6 months with persistent hoarseness of voice but no respiratory difficulty during routine activities. Tracheostomy was permanent in the other case. Among the 6 cases of unilateral nerve injuries, the voice improved considerably in 4 cases within 6 months but in 2 cases hoarseness persisted even after 6 months. Frequency of recurrent laryngeal nerve palsies was significantly lower in group-A as compared to group-B (p = 0

  19. Intraoperative cranial nerve monitoring.

    Science.gov (United States)

    Harper, C Michel

    2004-03-01

    The purpose of intraoperative monitoring is to preserve function and prevent injury to the nervous system at a time when clinical examination is not possible. Cranial nerves are delicate structures and are susceptible to damage by mechanical trauma or ischemia during intracranial and extracranial surgery. A number of reliable electrodiagnostic techniques, including nerve conduction studies, electromyography, and the recording of evoked potentials have been adapted to the study of cranial nerve function during surgery. A growing body of evidence supports the utility of intraoperative monitoring of cranial nerve nerves during selected surgical procedures.

  20. Short-term observations of the regenerative potential of injured proximal sensory nerves crossed with distal motor nerves

    Directory of Open Access Journals (Sweden)

    Xiu-xiu Zhang

    2017-01-01

    Full Text Available Motor nerves and sensory nerves conduct signals in different directions and function in different ways. In the surgical treatment of peripheral nerve injuries, the best prognosis is obtained by keeping the motor and sensory nerves separated and repairing the nerves using the suture method. However, the clinical consequences of connections between sensory and motor nerves currently remain unknown. In this study, we analyzed the anatomical structure of the rat femoral nerve, and observed the motor and sensory branches of the femoral nerve in the quadriceps femoris. After ligation of the nerves, the proximal end of the sensory nerve was connected with the distal end of the motor nerve, followed by observation of the changes in the newly-formed regenerated nerve fibers. Acetylcholinesterase staining was used to distinguish between the myelinated and unmyelinated motor and sensory nerves. Denervated muscle and newly formed nerves were compared in terms of morphology, electrophysiology and histochemistry. At 8 weeks after connection, no motor nerve fibers were observed on either side of the nerve conduit and the number of nerve fibers increased at the proximal end. The proportion of newly-formed motor and sensory fibers was different on both sides of the conduit. The area occupied by autonomic nerves in the proximal regenerative nerve was limited, but no distinct myelin sheath was visible in the distal nerve. These results confirm that sensory and motor nerves cannot be effectively connected. Moreover, the change of target organ at the distal end affects the type of nerves at the proximal end.

  1. Adult Stem Cell Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2016-10-01

    accompanied by injuries to peripheral nerves; if not repaired, the trauma can lead to significant dysfunction and disability . While nerves have the ability to...recovery, minimized disability , and increased quality of life for our wounded warriors. 2. KEYWORDS: Stem Cell, Nerve Conduit, Peripheral Nerve...would be a paradigm shift away from ordering X-rays at 10-12 weeks and only ordering a CT scan. It has the potential to change the standard of care

  2. Microsurgical reconstruction of large nerve defects using autologous nerve grafts.

    Science.gov (United States)

    Daoutis, N K; Gerostathopoulos, N E; Efstathopoulos, D G; Misitizis, D P; Bouchlis, G N; Anagnostou, S K

    1994-01-01

    Between 1986 and 1993, 643 patients with peripheral nerve trauma were treated in our clinic. Primary neurorraphy was performed in 431 of these patients and nerve grafting in 212 patients. We present the functional results after nerve grafting in 93 patients with large nerve defects who were followed for more than 2 years. Evaluation of function was based on the Medical Research Council (MRC) classification for motor and sensory recovery. Factors affecting functional outcome, such as age of the patient, denervation time, length of the defect, and level of the injury were noted. Good results according to the MRC classification were obtained in the majority of cases, although function remained less than that of the uninjured side.

  3. Involvement of adrenergic and serotonergic nervous mechanisms in allethrin-induced tremors in mice.

    Science.gov (United States)

    Nishimura, M; Obana, N; Yagasaki, O; Yanagiya, I

    1984-05-01

    Oral or intravenous administration of allethrin, a synthetic derivative of the pirethrin-based insecticides, produces neurotoxic symptoms consisting of mild salivation, hyperexcitability, tremors and convulsions which result in death. Intracerebroventricular injection of allethrin to mouse at about one-nineth the dose of intravenous administration, produced qualitatively identical but less prominent symptoms, indicating that at least some of the symptoms may be originated in the central nervous system. To investigate the mechanism of action of the compound, we studied the ability of agents which alter neurotransmission to prevent or potentiate the effect of convulsive doses of technical grade (15.5% cis, 84.5% trans) allethrin. Intraperitoneal pretreatment with drugs which block noradrenergic receptors or norepinephrine synthesis, such as pentobarbital, chlorpromazine, phentolamine, phenoxybenzamine and reserpine, depressed the tremor induced by allethrin. The inhibitory effect of reserpine was reversed by phenylephrine. Both the serotonergic blocker, methysergide, and the serotonin depletor, rho-chlorphenylalanine, potentiated the effect of allethrin. The potentiating effect of methysergide was antagonized by 5-hydroxytryptamine. However, intracerebroventricular administration of methysergide was ineffective in potentiating the effect of allethrin. alpha 2- and beta-adrenoceptor blockers, muscarinic antagonists, GABA mimenergics and morphine had no effect. These results suggest that allethrin produces its neurotoxic responses in mice by acting on the brain and spinal levels. Furthermore, adrenergic excitatory and serotonergic inhibitory mechanisms may be involved in the neural pathway through which the allethrin-induced tremor is evoked.

  4. Gradual nerve elongation affects nerve cell bodies and neuro-muscular junctions.

    Science.gov (United States)

    Kazuo Ikeda, K I; Masaki Matsuda, M M; Daisuke Yamauchi, D Y; Katsuro Tomita, K T; Shigenori Tanaka, S T

    2005-07-01

    The purpose of this study is to clarify the reactions of the neuro-muscular junction and nerve cell body to gradual nerve elongation. The sciatic nerves of Japanese white rabbits were lengthened by 30 mm in increments of 0.8 mm/day, 2.0 mm/day and 4.0 mm/day. A scanning electron microscopic examination showed no degenerative change at the neuro-muscular junction, even eight weeks after elongation in the 4-mm group. Hence, neuro-muscular junction is not critical for predicting damage from gradual nerve elongation. There were no axon reaction cells in the 0.8-mm group, a small amount in the 2-mm group, and a large amount in the 4-mm group. The rate of growth associated protein-43 positive nerve cells was significant in the 4-mm group. Hence, the safe speed for nerve cells appeared to be 0.8-mm/day, critical speed to be 2.0-mm/day, and dangerous speed to be 4.0-mm/day in this elongation model.

  5. A fine structural localization of the non-specific cholinesterase activity in glomerular nerve formations (endings).

    Science.gov (United States)

    Dubový, P

    1990-01-01

    Snout glabrous skin (rhinarium) of the cat is innervated not only by typical simple lamellar corpuscles but also glomerular formations. In contrast to simple lamellar corpuscles, glomerular nerve formations are located away the dermal papillae. In cross sections, glomerular nerve formation consists of several axonal profiles enveloped by 1-2 cytoplasmic lamellae of Schwann cells. The space among them is filled by collagenous microfibrils and the basal lamina-like material. Capsule was composed from fibroblast-like cells without definite basal lamina. An electron-dense reaction product due to non-specific cholinesterase activity was associated with Schwann cells and their processes surrounding unmyelinated terminal portion of the sensory axons. Abundant reaction product was bound to the collagenous microfibrils and was deposited in extracellular matrix between Schwann cell processes. These results are further evidence for the presence of the non-specific cholinesterase molecules as integral component of the extracellular matrix in sensory corpuscles. On the basis of histochemical study two possible explanation are considered for functional involving of this enzyme in sensory nerve formations.

  6. Comparison of percutaneous electrical nerve stimulation and ultrasound imaging for nerve localization

    NARCIS (Netherlands)

    Wegener, J. T.; Boender, Z. J.; Preckel, B.; Hollmann, M. W.; Stevens, M. F.

    2011-01-01

    Background. Percutaneous nerve stimulation (PNS) is a non-invasive technique to localize superficial nerves before performing peripheral nerve blocks, but its precision has never been evaluated by high-resolution ultrasound. This study compared stimulating points at the skin with the position of

  7. Glutamatergic modulation of synaptic-like vesicle recycling in mechanosensory lanceolate nerve terminals of mammalian hair follicles.

    Science.gov (United States)

    Banks, Robert W; Cahusac, Peter M B; Graca, Anna; Kain, Nakul; Shenton, Fiona; Singh, Paramjeet; Njå, Arild; Simon, Anna; Watson, Sonia; Slater, Clarke R; Bewick, Guy S

    2013-05-15

    Our aim in the present study was to determine whether a glutamatergic modulatory system involving synaptic-like vesicles (SLVs) is present in the lanceolate ending of the mouse and rat hair follicle and, if so, to assess its similarity to that of the rat muscle spindle annulospiral ending we have described previously. Both types of endings are formed by the peripheral sensory terminals of primary mechanosensory dorsal root ganglion cells, so the presence of such a system in the lanceolate ending would provide support for our hypothesis that it is a general property of fundamental importance to the regulation of the responsiveness of the broad class of primary mechanosensory endings. We show not only that an SLV-based system is present in lanceolate endings, but also that there are clear parallels between its operation in the two types of mechanosensory endings. In particular, we demonstrate that, as in the muscle spindle: (i) FM1-43 labels the sensory terminals of the lanceolate ending, rather than the closely associated accessory (glial) cells; (ii) the dye enters and leaves the terminals primarily by SLV recycling; (iii) the dye does not block the electrical response to mechanical stimulation, in contrast to its effect on the hair cell and dorsal root ganglion cells in culture; (iv) SLV recycling is Ca(2+) sensitive; and (v) the sensory terminals are enriched in glutamate. Thus, in the lanceolate sensory ending SLV recycling is itself regulated, at least in part, by glutamate acting through a phospholipase D-coupled metabotropic glutamate receptor.

  8. Electrical Stimulation of Low-Threshold Proprioceptive Fibers in the Adult Rat Increases Density of Glutamatergic and Cholinergic Terminals on Ankle Extensor α-Motoneurons.

    Directory of Open Access Journals (Sweden)

    Olga Gajewska-Woźniak

    Full Text Available The effects of stimulation of low-threshold proprioceptive afferents in the tibial nerve on two types of excitatory inputs to α-motoneurons were tested. The first input is formed by glutamatergic Ia sensory afferents contacting monosynaptically α-motoneurons. The second one is the cholinergic input originating from V0c-interneurons, located in lamina X of the spinal cord, modulating activity of α-motoneurons via C-terminals. Our aim was to clarify whether enhancement of signaling to ankle extensor α-motoneurons, via direct electrical stimulation addressed predominantly to low-threshold proprioceptive fibers in the tibial nerve of awake rats, will affect Ia glutamatergic and cholinergic innervation of α-motoneurons of lateral gastrocnemius (LG. LG motoneurons were identified with True Blue tracer injected intramuscularly. Tibial nerve was stimulated for 7 days with continuous bursts of three pulses applied in four 20 min sessions daily. The Hoffmann reflex and motor responses recorded from the soleus muscle, LG synergist, allowed controlling stimulation. Ia terminals and C-terminals abutting on LG-labeled α-motoneurons were detected by immunofluorescence (IF using input-specific anti- VGLUT1 and anti-VAChT antibodies, respectively. Quantitative analysis of confocal images revealed that the number of VGLUT1 IF and VAChT IF terminals contacting the soma of LG α-motoneurons increased after stimulation by 35% and by 26%, respectively, comparing to the sham-stimulated side. The aggregate volume of VGLUT1 IF and VAChT IF terminals increased by 35% and by 30%, respectively. Labeling intensity of boutons was also increased, suggesting an increase of signaling to LG α-motoneurons after stimulation. To conclude, one week of continuous burst stimulation of proprioceptive input to LG α-motoneurons is effective in enrichment of their direct glutamatergic but also indirect cholinergic inputs. The effectiveness of such and longer stimulation in models

  9. Mediation by the serotonergic system of U-50,488H-induced antinociception and tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Begonia Yeeman.

    1989-01-01

    The antinociceptive action of U-50,488H, a selective {kappa}-opioid receptor agonist, was attenuated by serotonergic but not by noradrenergic receptor antagonists. Intracerebroventricularly (i.c.v.) administered U-50,488H was antagonized by more than two fold by i.c.v. administered pindolol, methysergide, mianserin, ketanserin, pirenperone or ICS-205,930. A similar degree of antagonism of U-50,488H (i.c.v.) was found after intrathecal (i.t.) treatments with pindolol, methysergide or ICS-205,930 but not with mianserin, ketanserin or pirenperone. When U-50,488H and the antagonists were both given i.t., its antinociceptive action was attenuated by pindolol or methysergide, potentiated by mianserin, ketanserin or pirenperone and not affected by ICS-205,930. The release of serotonin was further studied directly by using a superfusion system. A naloxone reversible, concentration- and Ca{sup 2+}- dependent enhancement of release of ({sup 3}H)serotonin by U-50,488H was observed in spinal and brain tissues. Tolerance to the antinociceptive action of U-50,488H was induced in mice using slow release preparations of U-50,488H. Serotonergic receptor antagonists (pindolol or ketanserin) were co-administered with U-50,488H to test for their effects on the development of tolerance to U-50,488H.

  10. On the appearance of acetylcholine receptors in denervated rat diaphragm, and its dependence on nerve stump length

    International Nuclear Information System (INIS)

    Uchitel, O.; Robbins, N.

    1978-01-01

    Acetylcholine (ACh) sensitivity and extrajunctional receptor distribution of the rat diaphragm were closely monitored during the early period following denervation. Both contracture in response to 10 μg/ml of ACh and extrajunctional binding of [ 125 I]alpha-bungarotoxin ([ 125 I]α-BTX) were first detectable 30 h after cutting the phrenic nerve in the thorax. If the nerve were cut more proximally, leaving a 3.5 cm distal nerve stump, the same level of ACh contracture and [ 125 I]α-BTX binding did not appear until 40 h after operation. This 10-h delay was far longer than the 3-h delay in transmission failure reportedly dependent on stump length. The earliest detectable extrajunctional [ 125 I]α-BTX binding appeared throughout the entire muscle fiber, and was not localized to the endplate region as would be expected if degeneration in the nerve terminal induced new receptors. However, later significant increases in [ 125 I]α-BTX binding at the endplate region could have resulted from such degeneration. All these results are consistent with neurotrophic regulation of muscle ACh receptors, working via a mechanism involving axonal transport. (Auth.)

  11. Imaging the trigeminal nerve

    International Nuclear Information System (INIS)

    Borges, Alexandra; Casselman, Jan

    2010-01-01

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  12. Imaging the trigeminal nerve

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [Radiology Department, Instituto Portugues de Oncologia Francisco Gentil, Centro de Lisboa, Rua Prof. Lima Basto, 1093, Lisboa (Portugal)], E-mail: borgalexandra@gmail.com; Casselman, Jan [Department of Radiology, A. Z. St Jan Brugge and A. Z. St Augustinus Antwerpen Hospitals (Belgium)

    2010-05-15

    Of all cranial nerves, the trigeminal nerve is the largest and the most widely distributed in the supra-hyoid neck. It provides sensory input from the face and motor innervation to the muscles of mastication. In order to adequately image the full course of the trigeminal nerve and its main branches a detailed knowledge of neuroanatomy and imaging technique is required. Although the main trunk of the trigeminal nerve is consistently seen on conventional brain studies, high-resolution tailored imaging is mandatory to depict smaller nerve branches and subtle pathologic processes. Increasing developments in imaging technique made possible isotropic sub-milimetric images and curved reconstructions of cranial nerves and their branches and led to an increasing recognition of symptomatic trigeminal neuropathies. Whereas MRI has a higher diagnostic yield in patients with trigeminal neuropathy, CT is still required to demonstrate the bony anatomy of the skull base and is the modality of choice in the context of traumatic injury to the nerve. Imaging of the trigeminal nerve is particularly cumbersome as its long course from the brainstem nuclei to the peripheral branches and its rich anastomotic network impede, in most cases, a topographic approach. Therefore, except in cases of classic trigeminal neuralgia, in which imaging studies can be tailored to the root entry zone, the full course of the trigeminal nerve has to be imaged. This article provides an update in the most recent advances on MR imaging technique and a segmental imaging approach to the most common pathologic processes affecting the trigeminal nerve.

  13. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  14. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon

    DEFF Research Database (Denmark)

    Ducray, Angélique; Krebs, Sandra H:; Schaller, Benoft

    2006-01-01

    Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about...... factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development....

  15. Requirement for tyrosine phosphatase during serotonergic neuromodulation by protein kinase C.

    Science.gov (United States)

    Catarsi, S; Drapeau, P

    1997-08-01

    Tyrosine kinases and phosphatases are abundant in the nervous system, where they signal cellular differentiation, mediate the responses to growth factors, and direct neurite outgrowth during development. Tyrosine phosphorylation can also alter ion channel activity, but its physiological significance remains unclear. In an identified leech mechanosensory neuron, the ubiquitous neuromodulator serotonin increases the activity of a cation channel by activating protein kinase C (PKC), resulting in membrane depolarization and modulation of the receptive field properties. We observed that the effects on isolated neurons and channels were blocked by inhibiting tyrosine phosphatases. Serotonergic stimulation of PKC thus activates a tyrosine phosphatase activity associated with the channels, which reverses their constitutive inhibition by tyrosine phosphorylation, representing a novel form of neuromodulation.

  16. Transient femoral nerve palsy following ilioinguinal nerve block for ...

    African Journals Online (AJOL)

    Nigerian Journal of Surgery ... Background: Elective inguinal hernia repair in young fit patients is preferably done under ilioinguinal nerve block anesthesia in the ambulatory setting to improve ... Conclusion: TFNP is a rare complication of ilioinguinal nerve block which delays patient discharge postambulatory hernioplasty.

  17. Serotonergic Regulation of Prefrontal Cortical Circuitries Involved in Cognitive Processing: A Review of Individual 5-HT Receptor Mechanisms and Concerted Effects of 5-HT Receptors Exemplified by the Multimodal Antidepressant Vortioxetine.

    Science.gov (United States)

    Leiser, Steven C; Li, Yan; Pehrson, Alan L; Dale, Elena; Smagin, Gennady; Sanchez, Connie

    2015-07-15

    It has been known for several decades that serotonergic neurotransmission is a key regulator of cognitive function, mood, and sleep. Yet with the relatively recent discoveries of novel serotonin (5-HT) receptor subtypes, as well as an expanding knowledge of their expression level in certain brain regions and localization on certain cell types, their involvement in cognitive processes is still emerging. Of particular interest are cognitive processes impacted in neuropsychiatric and neurodegenerative disorders. The prefrontal cortex (PFC) is critical to normal cognitive processes, including attention, impulsivity, planning, decision-making, working memory, and learning or recall of learned memories. Furthermore, serotonergic dysregulation within the PFC is implicated in many neuropsychiatric disorders associated with prominent symptoms of cognitive dysfunction. Thus, it is important to better understand the overall makeup of serotonergic receptors in the PFC and on which cell types these receptors mediate their actions. In this Review, we focus on 5-HT receptor expression patterns within the PFC and how they influence cognitive behavior and neurotransmission. We further discuss the net effects of vortioxetine, an antidepressant acting through multiple serotonergic targets given the recent findings that vortioxetine improves cognition by modulating multiple neurotransmitter systems.

  18. Ulnar nerve damage (image)

    Science.gov (United States)

    The ulnar nerve originates from the brachial plexus and travels down arm. The nerve is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body where ...

  19. Chondromyxoid fibroma of the mastoid facial nerve canal mimicking a facial nerve schwannoma.

    Science.gov (United States)

    Thompson, Andrew L; Bharatha, Aditya; Aviv, Richard I; Nedzelski, Julian; Chen, Joseph; Bilbao, Juan M; Wong, John; Saad, Reda; Symons, Sean P

    2009-07-01

    Chondromyxoid fibroma of the skull base is a rare entity. Involvement of the temporal bone is particularly rare. We present an unusual case of progressive facial nerve paralysis with imaging and clinical findings most suggestive of a facial nerve schwannoma. The lesion was tubular in appearance, expanded the mastoid facial nerve canal, protruded out of the stylomastoid foramen, and enhanced homogeneously. The only unusual imaging feature was minor calcification within the tumor. Surgery revealed an irregular, cystic lesion. Pathology diagnosed a chondromyxoid fibroma involving the mastoid portion of the facial nerve canal, destroying the facial nerve.

  20. Regeneration of 5-HT fibers in hippocampal heterotopia of methylazoxymethanol-induced micrencephalic rats after neonatal 5,7-DHT injection.

    Science.gov (United States)

    Nakamura, Arata; Kadowaki, Taro; Sakakibara, Shin-ichi; Yoshimoto, Kanji; Hirata, Koichi; Ueda, Shuichi

    2010-03-01

    In order to elucidate the regeneration properties of serotonergic fibers in the hippocampus of methylazoxymethanol acetate (MAM)-induced micrencephalic rats (MAM rats), we examined serotonergic regeneration in the hippocampus following neonatal intracisternal 5,7-dihydroxytryptamine (5,7-DHT) injection. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Immunohistochemical and neurochemical analyses revealed hyperinnervation of serotonergic fibers in the hippocampus of MAM rats. After neonatal 5,7-DHT injection, most serotonergic fibers in the hippocampus of 2-week-old MAM rats had degenerated, while a small number of serotonergic fibers in the stratum lacunosum-moleculare (SLM) of the hippocampus and in the hilus adjacent to the granular cell layer of the dentate gyrus (DG) had not. Regenerating serotonergic fibers from the SLM first extended terminals into the hippocampal heterotopia, then fibers from the hilus reinnervated the DG and some fibers extended to the heterotopia. These findings suggest that the hippocampal heterotopia exerts trophic target effects for regenerating serotonergic fibers in the developmental period in micrencephalic rats.

  1. Femoral nerve damage (image)

    Science.gov (United States)

    The femoral nerve is located in the leg and supplies the muscles that assist help straighten the leg. It supplies sensation ... leg. One risk of damage to the femoral nerve is pelvic fracture. Symptoms of femoral nerve damage ...

  2. End-to-side nerve suture – a technique to repair peripheral nerve ...

    African Journals Online (AJOL)

    Lateral sprouting from an intact nerve into an attached nerve does occur, and functional recovery (sensory and motor) has been demonstrated. We have demonstrated conclusively that ETSNS in the human is a viable option in treating peripheral nerve injuries, including injuries to the brachial plexus. Among the many ...

  3. Tumors of the optic nerve

    DEFF Research Database (Denmark)

    Lindegaard, Jens; Heegaard, Steffen

    2009-01-01

    A variety of lesions may involve the optic nerve. Mainly, these lesions are inflammatory or vascular lesions that rarely necessitate surgery but may induce significant visual morbidity. Orbital tumors may induce proptosis, visual loss, relative afferent pupillary defect, disc edema and optic...... atrophy, but less than one-tenth of these tumors are confined to the optic nerve or its sheaths. No signs or symptoms are pathognomonic for tumors of the optic nerve. The tumors of the optic nerve may originate from the optic nerve itself (primary tumors) as a proliferation of cells normally present...... in the nerve (e.g., astrocytes and meningothelial cells). The optic nerve may also be invaded from tumors originating elsewhere (secondary tumors), invading the nerve from adjacent structures (e.g., choroidal melanoma and retinoblastoma) or from distant sites (e.g., lymphocytic infiltration and distant...

  4. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb.

    Science.gov (United States)

    Kowalska, Berta; Sudoł-Szopińska, Iwona

    2012-06-01

    The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the "elevator technique". All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the "Journal of Ultrasonography".

  5. Cholinergic and serotonergic modulation of visual information processing in monkey V1.

    Science.gov (United States)

    Shimegi, Satoshi; Kimura, Akihiro; Sato, Akinori; Aoyama, Chisa; Mizuyama, Ryo; Tsunoda, Keisuke; Ueda, Fuyuki; Araki, Sera; Goya, Ryoma; Sato, Hiromichi

    2016-09-01

    The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the primary visual cortex (V1) of macaque monkey, which has a highly differentiated laminar structure, is optimized by serotonergic and cholinergic systems by examining anatomical and in vivo electrophysiological aspects to highlight their similarities and distinctions. We show that these two systems have a similar layer bias for axonal fiber innervation and receptor distribution. The common target sites are the geniculorecipient layers and geniculocortical fibers, where the appropriate gain control is established through a geniculocortical signal transformation. Both systems exert activity-dependent response gain control across layers, but in a manner consistent with the receptor subtype. The serotonergic receptors 5-HT1B and 5HT2A modulate the contrast-response curve in a manner consistent with bi-directional response gain control, where the sign (facilitation/suppression) is switched according to the firing rate and is complementary to the other. On the other hand, cholinergic nicotinic/muscarinic receptors exert mono-directional response gain control without a sign reversal. Nicotinic receptors increase the response magnitude in a multiplicative manner, while muscarinic receptors exert both suppressive and facilitative effects. We discuss the implications of the two neuromodulator systems in hierarchical visual signal processing in V1 on the basis of the developed laminar structure. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Electrophysiological Assessment of a Peptide Amphiphile Nanofiber Nerve Graft for Facial Nerve Repair.

    Science.gov (United States)

    Greene, Jacqueline J; McClendon, Mark T; Stephanopoulos, Nicholas; Álvarez, Zaida; Stupp, Samuel I; Richter, Claus-Peter

    2018-04-27

    Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with 1) an intact nerve, 2) following resection of a nerve segment, and following resection and immediate repair with either a 3) autograft (using the resected nerve segment), 4) neurograft, or 5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes while nerve compound action potentials (nCAPs) and electromygraphic (EMG) responses were recorded. After 8 weeks, the proximal buccal branch was surgically re-exposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and TEM confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair. This article is protected by copyright. All rights reserved.

  7. Serotonergic blunting to meta-chlorophenylpiperazine (m-CPP) highly correlates with sustained childhood abuse in impulsive and autoaggressive female borderline patients

    NARCIS (Netherlands)

    Rinne, T; Westenberg, HGM; den Boer, JA

    2000-01-01

    Background: Disturbances of affect, impulse regulation and autoaggressive behavior which are all said to be related to an altered function of the central serotonergic (5-HT) system, are prominent features of borderline personality disorder (BPD). A high coincidence of childhood physical and sexual

  8. Kinetics, Ca2+ dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals

    Science.gov (United States)

    Chen, B. M.; Grinnell, A. D.

    1997-01-01

    Neurotransmitter release from frog motor nerve terminals is strongly modulated by change in muscle length. Over the physiological range, there is an approximately 10% increase in spontaneous and evoked release per 1% muscle stretch. Because many muscle fibers do not receive suprathreshold synaptic inputs at rest length, this stretch-induced enhancement of release constitutes a strong peripheral amplifier of the spinal stretch reflex. The stretch modulation of release is inhibited by peptides that block integrin binding of natural ligands. The modulation varies linearly with length, with a delay of no more than approximately 1-2 msec and is maintained constant at the new length. Moreover, the stretch modulation persists in a zero Ca2+ Ringer and, hence, is not dependent on Ca2+ influx through stretch activated channels. Eliminating transmembrane Ca2+ gradients and buffering intraterminal Ca2+ to approximately normal resting levels does not eliminate the modulation, suggesting that it is not the result of release of Ca2+ from internal stores. Finally, changes in temperature have no detectable effect on the kinetics of stretch-induced changes in endplate potential (EPP) amplitude or miniature EPP (mEPP) frequency. We conclude, therefore, that stretch does not act via second messenger pathways or a chemical modification of molecules involved in the release pathway. Instead, there is direct mechanical modulation of release. We postulate that tension on integrins in the presynaptic membrane is transduced mechanically into changes in the position or conformation of one or more molecules involved in neurotransmitter release, altering sensitivity to Ca2+ or the equilibrium for a critical reaction leading to vesicle fusion.

  9. Development of a mechanism-based pharmacokinetic/pharmacodynamic model to characterize the thermoregulatory effects of serotonergic drugs in mice

    Directory of Open Access Journals (Sweden)

    Xi-Ling Jiang

    2016-09-01

    Full Text Available We have shown recently that concurrent harmaline, a monoamine oxidase-A inhibitor (MAOI, potentiates serotonin (5-HT receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT-induced hyperthermia. The objective of this study was to develop an integrated pharmacokinetic/pharmacodynamic (PK/PD model to characterize and predict the thermoregulatory effects of such serotonergic drugs in mice. Physiological thermoregulation was described by a mechanism-based indirect-response model with adaptive feedback control. Harmaline-induced hypothermia and 5-MeO-DMT–elicited hyperthermia were attributable to the loss of heat through the activation of 5-HT1A receptor and thermogenesis via the stimulation of 5-HT2A receptor, respectively. Thus serotonergic 5-MeO-DMT–induced hyperthermia was readily distinguished from handling/injection stress-provoked hyperthermic effects. This PK/PD model was able to simultaneously describe all experimental data including the impact of drug-metabolizing enzyme status on 5-MeO-DMT and harmaline PK properties, and drug- and stress-induced simple hypo/hyperthermic and complex biphasic effects. Furthermore, the modeling results revealed a 4-fold decrease of apparent SC50 value (1.88–0.496 µmol/L for 5-MeO-DMT when harmaline was co-administered, providing a quantitative assessment for the impact of concurrent MAOI harmaline on 5-MeO-DMT–induced hyperthermia. In addition, the hyperpyrexia caused by toxic dose combinations of harmaline and 5-MeO-DMT were linked to the increased systemic exposure to harmaline rather than 5-MeO-DMT, although the body temperature profiles were mispredicted by the model. The results indicate that current PK/PD model may be used as a new conceptual framework to define the impact of serotonergic agents and stress factors on thermoregulation.

  10. Nerve growth factor receptor immunostaining suggests an extrinsic origin for hypertrophic nerves in Hirschsprung's disease.

    OpenAIRE

    Kobayashi, H; O'Briain, D S; Puri, P

    1994-01-01

    The expression of nerve growth factor receptor in colon from 20 patients with Hirshsprung's disease and 10 controls was studied immunohistochemically. The myenteric and submucous plexuses in the ganglionic bowel and hypertrophic nerve trunks in the aganglionic bowel displayed strong expression of nerve growth factor receptor. The most important finding was the identical localisation of nerve growth factor receptor immunoreactivity on the perineurium of both hypertrophic nerve trunks in Hirshs...

  11. Experimental study of vascularized nerve graft: evaluation of nerve regeneration using choline acetyltransferase activity.

    Science.gov (United States)

    Iwai, M; Tamai, S; Yajima, H; Kawanishi, K

    2001-01-01

    A comparative study of nerve regeneration was performed on vascularized nerve graft (VNG) and free nerve graft (FNG) in Fischer strain rats. A segment of the sciatic nerve with vascular pedicle of the femoral artery and vein was harvested from syngeneic donor rat for the VNG group and the sciatic nerve in the same length without vascular pedicle was harvested for the FNG group. They were transplanted to a nerve defect in the sciatic nerve of syngeneic recipient rats. At 2, 4, 6, 8, 12, 16, and 24 weeks after operation, the sciatic nerves were biopsied and processed for evaluation of choline acetyltransferase (CAT) activity, histological studies, and measurement of wet weight of the muscle innervated by the sciatic nerve. Electrophysiological evaluation of the grafted nerve was also performed before sacrifice. The average CAT activity in the distal to the distal suture site was 383 cpm in VNG and 361 cpm in FNG at 2 weeks; 6,189 cpm in VNG and 2,264 cpm in FNG at 4 weeks; and 11,299 cpm in VNG and 9,424 cpm in FNG at 6 weeks postoperatively. The value of the VNG group was statistically higher than that of the FNG group at 4 weeks postoperatively. Electrophysiological and histological findings also suggested that nerve regeneration in the VNG group was superior to that in the FNG group during the same period. However, there was no significant difference between the two groups after 6 weeks postoperatively in any of the evaluations. The CAT measurement was useful in the experiments, because it was highly sensitive and reproducible. Copyright 2001 Wiley-Liss, Inc.

  12. Recurrent unilateral facial nerve palsy in a child with dehiscent facial nerve canal

    Directory of Open Access Journals (Sweden)

    Christopher Liu

    2016-12-01

    Full Text Available Objective: The dehiscent facial nerve canal has been well documented in histopathological studies of temporal bones as well as in clinical setting. We describe clinical and radiologic features of a child with recurrent facial nerve palsy and dehiscent facial nerve canal. Methods: Retrospective chart review. Results: A 5-year-old male was referred to the otolaryngology clinic for evaluation of recurrent acute otitis media and hearing loss. He also developed recurrent left peripheral FN palsy associated with episodes of bilateral acute otitis media. High resolution computed tomography of the temporal bones revealed incomplete bony coverage of the tympanic segment of the left facial nerve. Conclusions: Recurrent peripheral FN palsy may occur in children with recurrent acute otitis media in the presence of a dehiscent facial nerve canal. Facial nerve canal dehiscence should be considered in the differential diagnosis of children with recurrent peripheral FN palsy.

  13. Reconstruction of the abdominal vagus nerve using sural nerve grafts in canine models.

    Science.gov (United States)

    Liu, Jingbo; Wang, Jun; Luo, Fen; Wang, Zhiming; Wang, Yin

    2013-01-01

    Recently, vagus nerve preservation or reconstruction of vagus has received increasing attention. The present study aimed to investigate the feasibility of reconstructing the severed vagal trunk using an autologous sural nerve graft. Ten adult Beagle dogs were randomly assigned to two groups of five, the nerve grafting group (TG) and the vagal resection group (VG). The gastric secretion and emptying functions in both groups were assessed using Hollander insulin and acetaminophen tests before surgery and three months after surgery. All dogs underwent laparotomy under general anesthesia. In TG group, latency and conduction velocity of the action potential in a vagal trunk were measured, and then nerves of 4 cm long were cut from the abdominal anterior and posterior vagal trunks. Two segments of autologous sural nerve were collected for performing end-to-end anastomoses with the cut ends of vagal trunk (8-0 nylon suture, 3 sutures for each anastomosis). Dogs in VG group only underwent partial resections of the anterior and posterior vagal trunks. Laparotomy was performed in dogs of TG group, and latency and conduction velocity of the action potential in their vagal trunks were measured. The grafted nerve segment was removed, and stained with anti-neurofilament protein and toluidine blue. Latency of the action potential in the vagal trunk was longer after surgery than before surgery in TG group, while the conduction velocity was lower after surgery. The gastric secretion and emptying functions were weaker after surgery in dogs of both groups, but in TG group they were significantly better than in VG group. Anti-neurofilament protein staining and toluidine blue staining showed there were nerve fibers crossing the anastomosis of the vagus and sural nerves in dogs of TG group. Reconstruction of the vagus nerve using the sural nerve is technically feasible.

  14. Reconstruction of the abdominal vagus nerve using sural nerve grafts in canine models.

    Directory of Open Access Journals (Sweden)

    Jingbo Liu

    Full Text Available BACKGROUND: Recently, vagus nerve preservation or reconstruction of vagus has received increasing attention. The present study aimed to investigate the feasibility of reconstructing the severed vagal trunk using an autologous sural nerve graft. METHODS: Ten adult Beagle dogs were randomly assigned to two groups of five, the nerve grafting group (TG and the vagal resection group (VG. The gastric secretion and emptying functions in both groups were assessed using Hollander insulin and acetaminophen tests before surgery and three months after surgery. All dogs underwent laparotomy under general anesthesia. In TG group, latency and conduction velocity of the action potential in a vagal trunk were measured, and then nerves of 4 cm long were cut from the abdominal anterior and posterior vagal trunks. Two segments of autologous sural nerve were collected for performing end-to-end anastomoses with the cut ends of vagal trunk (8-0 nylon suture, 3 sutures for each anastomosis. Dogs in VG group only underwent partial resections of the anterior and posterior vagal trunks. Laparotomy was performed in dogs of TG group, and latency and conduction velocity of the action potential in their vagal trunks were measured. The grafted nerve segment was removed, and stained with anti-neurofilament protein and toluidine blue. RESULTS: Latency of the action potential in the vagal trunk was longer after surgery than before surgery in TG group, while the conduction velocity was lower after surgery. The gastric secretion and emptying functions were weaker after surgery in dogs of both groups, but in TG group they were significantly better than in VG group. Anti-neurofilament protein staining and toluidine blue staining showed there were nerve fibers crossing the anastomosis of the vagus and sural nerves in dogs of TG group. CONCLUSION: Reconstruction of the vagus nerve using the sural nerve is technically feasible.

  15. Electrophysiology of Extraocular Cranial Nerves: Oculomotor, Trochlear, and Abducens Nerve.

    Science.gov (United States)

    Hariharan, Praveen; Balzer, Jeffery R; Anetakis, Katherine; Crammond, Donald J; Thirumala, Parthasarathy D

    2018-01-01

    The utility of extraocular cranial nerve electrophysiologic recordings lies primarily in the operating room during skull base surgeries. Surgical manipulation during skull base surgeries poses a risk of injury to multiple cranial nerves, including those innervating extraocular muscles. Because tumors distort normal anatomic relationships, it becomes particularly challenging to identify cranial nerve structures. Studies have reported the benefits of using intraoperative spontaneous electromyographic recordings and compound muscle action potentials evoked by electrical stimulation in preventing postoperative neurologic deficits. Apart from surgical applications, electromyography of extraocular muscles has also been used to guide botulinum toxin injections in patients with strabismus and as an adjuvant diagnostic test in myasthenia gravis. In this article, we briefly review the rationale, current available techniques to monitor extraocular cranial nerves, technical difficulties, clinical and surgical applications, as well as future directions for research.

  16. Conjoined lumbosacral nerve roots

    International Nuclear Information System (INIS)

    Kyoshima, Kazumitsu; Nishiura, Iwao; Koyama, Tsunemaro

    1986-01-01

    Several kinds of the lumbosacral nerve root anomalies have already been recognized, and the conjoined nerve roots is the most common among them. It does not make symptoms by itself, but if there is a causation of neural entrapment, for example, disc herniation, lateral recessus stenosis, spondylolisthesis, etc., so called ''biradicular syndrome'' should occur. Anomalies of the lumbosacral nerve roots, if not properly recognized, may lead to injury of these nerves during operation of the lumbar spine. Recently, the chance of finding these anomalous roots has been increased more and more with the use of metrizamide myelography and metrizamide CT, because of the improvement of the opacification of nerve roots. We describe the findings of the anomalous roots as revealed by these two methods. They demonstrate two nerve roots running parallel and the asymmetrical wide root sleeve. Under such circumstances, it is important to distinguish the anomalous roots from the normal ventral and dorsal roots. (author)

  17. Ultrasound-guided approach for axillary brachial plexus, femoral nerve, and sciatic nerve blocks in dogs.

    Science.gov (United States)

    Campoy, Luis; Bezuidenhout, Abraham J; Gleed, Robin D; Martin-Flores, Manuel; Raw, Robert M; Santare, Carrie L; Jay, Ariane R; Wang, Annie L

    2010-03-01

    To describe an ultrasound-guided technique and the anatomical basis for three clinically useful nerve blocks in dogs. Prospective experimental trial. Four hound-cross dogs aged 2 +/- 0 years (mean +/- SD) weighing 30 +/- 5 kg and four Beagles aged 2 +/- 0 years and weighing 8.5 +/- 0.5 kg. Axillary brachial plexus, femoral, and sciatic combined ultrasound/electrolocation-guided nerve blocks were performed sequentially and bilaterally using a lidocaine solution mixed with methylene blue. Sciatic nerve blocks were not performed in the hounds. After the blocks, the dogs were euthanatized and each relevant site dissected. Axillary brachial plexus block Landmark blood vessels and the roots of the brachial plexus were identified by ultrasound in all eight dogs. Anatomical examination confirmed the relationship between the four ventral nerve roots (C6, C7, C8, and T1) and the axillary vessels. Three roots (C7, C8, and T1) were adequately stained bilaterally in all dogs. Femoral nerve block Landmark blood vessels (femoral artery and femoral vein), the femoral and saphenous nerves and the medial portion of the rectus femoris muscle were identified by ultrasound in all dogs. Anatomical examination confirmed the relationship between the femoral vessels, femoral nerve, and the rectus femoris muscle. The femoral nerves were adequately stained bilaterally in all dogs. Sciatic nerve block. Ultrasound landmarks (semimembranosus muscle, the fascia of the biceps femoris muscle and the sciatic nerve) could be identified in all of the dogs. In the four Beagles, anatomical examination confirmed the relationship between the biceps femoris muscle, the semimembranosus muscle, and the sciatic nerve. In the Beagles, all but one of the sciatic nerves were stained adequately. Ultrasound-guided needle insertion is an accurate method for depositing local anesthetic for axillary brachial plexus, femoral, and sciatic nerve blocks.

  18. The nervous system of the basal mollusk Wirenia argentea (Solenogastres): a study employing immunocytochemical and 3D reconstruction techniques

    DEFF Research Database (Denmark)

    Todt, Christiane; Bchinger, Thomas; Wanninger, Andreas Wilhelm Georg

    2008-01-01

    is present in most compartments of the nervous system, while serotonergic immunoreactivity appears to be restricted to the longitudinal nerve cords, the cerebro-pedal commissure and part of the cerebral ganglion. The buccal system shows immunoreactivity against none of the neurotransmitters....

  19. Secondary digital nerve repair in the foot with resorbable p(DLLA-epsilon-CL) nerve conduits

    NARCIS (Netherlands)

    Meek, MF; Nicolai, JPA; Robinson, PH

    Nerve guides are increasingly being used in peripheral nerve repair. In the last decade, Much preclinical research has been undertaken into a resorbable nerve guide composed of p(DLLA-epsilon-CL). This report describes the results of secondary digital nerve reconstruction in the foot in a patient

  20. Serotonergic blunting to meta-chlorophenylpiperazine (m-CPP) highly correlates with sustained childhood abuse in impulsive and autoaggressive female borderline patients

    NARCIS (Netherlands)

    Rinne, T.; Westenberg, H. G.; den Boer, J. A.; van den Brink, W.

    2000-01-01

    Disturbances of affect, impulse regulation, and autoaggressive behavior, which are all said to be related to an altered function of the central serotonergic (5-HT) system, are prominent features of borderline personality disorder (BPD). A high coincidence of childhood physical and sexual abuse is

  1. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  2. Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair.

    Science.gov (United States)

    Zhang, Li; Zhao, Weijia; Niu, Changmei; Zhou, Yujie; Shi, Haiyan; Wang, Yalin; Yang, Yumin; Tang, Xin

    2018-07-01

    Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the "gold standard" clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was introduced into a chitosan (CS) matrix scaffold utilizing genipin (GP) as the crosslinking agent, to fabricate CS-GP-TNF-α inhibitor nerve conduits. The in vitro release kinetics of TNF-α inhibitors from the CS-GP-TNF-α inhibitor nerve conduits were investigated using high-performance liquid chromatography. The in vivo continuous release profile of the TNF-α inhibitors released from the CS-GP-TNF-α inhibitor nerve conduits was measured using an enzyme-linked immunosorbent assay over 14 days. We found that the amount of TNF-α inhibitors released decreased with time after the bridging of the sciatic nerve defects in rats. Moreover, 4 and 12 weeks after surgery, histological analyses and functional evaluations were carried out to assess the influence of the TENG on regeneration. Immunochemistry performed 4 weeks after grafting to assess early regeneration outcomes revealed that the TENG strikingly promoted axonal outgrowth. Twelve weeks after grafting, the TENG accelerated myelin sheath formation, as well as functional restoration. In general, the regenerative outcomes following TENG more closely paralleled findings observed with autologous grafting than the use of the CS matrix scaffold. Collectively, our data indicate that the CS-GP-TNF-α inhibitor nerve conduits comprised an elaborate system for sustained release of TNF-α inhibitors in vitro, while studies in vivo demonstrated that the TENG could accelerate regenerating axonal outgrowth and functional restoration. The introduction of CS-GP-TNF-α-inhibitor nerve conduits into a scaffold may contribute to an efficient and adaptive immune microenvironment that can be used to facilitate peripheral nerve repair.

  3. [Does intraoperative nerve monitoring reduce the rate of recurrent nerve palsies during thyroid surgery?].

    Science.gov (United States)

    Timmermann, W; Dralle, H; Hamelmann, W; Thomusch, O; Sekulla, C; Meyer, Th; Timm, S; Thiede, A

    2002-05-01

    Two different aspects of the influence of neuromonitoring on the possible reduction of post-operative recurrent laryngeal nerve palsies require critical examination: the nerve identification and the monitoring of it's functions. Due to the additional information from the EMG signals, neuromonitoring is the best method for identifying the nerves as compared to visual identification alone. There are still no randomized studies available that compare the visual and electrophysiological recurrent laryngeal nerve detection in thyroid operations with respect to the postoperative nerve palsies. Nevertheless, comparisons with historical collectives show that a constant low nerve-palsy-rate was achieved with electrophysiological detection in comparison to visual detection. The rate of nerve identification is normally very high and amounts to 99 % in our own patients. The data obtained during the "Quality assurance of benign and malignant Goiter" study show that in hemithyreoidectomy and subtotal resection, lower nerve-palsy-rates are achieved with neuromonitoring as compared to solely visual detection. Following subtotal resection, this discrepancy becomes even statistically significant. While monitoring the nerve functions with the presently used neuromonitoring technique, it is possible to observe the EMG-signal remaining constant or decreasing in volume. Assuming that a constant neuromonitoring signal represents a normal vocal cord, our evaluation shows that there is a small percentage of false negative and positive results. Looking at the permanent recurrent nerve palsy rates, this method has a specificity of 98 %, a sensitivity of 100 %, a positive prognostic value of 10 %, and a negative prognostic value of 100 %. Although an altered neuromonitoring signal can be taken as a clear indication of eventual nerve damage, an absolutely reliable statement about the postoperative vocal cord function is presently not possible with intraoperative neuromonitoring.

  4. Fabrication of nerve guidance conduit with luminal filler as scaffold for peripheral nerve repair

    International Nuclear Information System (INIS)

    Aranilla, Charito T.; Wach, Rodoslaw; Ulanski, Piotr

    2015-01-01

    Peripheral nerve injury is a serious health concern for society, affecting trauma patients, many of whom acquire life-long disability. The gold standard of treatment for peripheral nerve injury is the use of nerve grafts, wherein nerve autograft or allograft is used to bridge the gap in the damaged nerve. Nerve guidance conduits (NGCs) are an attractive alternative to nerve autografts for aiding in the regeneration of peripheral nerve tissue. NGCs are small cylinders or tubes composed of either natural or synthetic biomaterials that are used to axon regeneration. The ends of the damaged nerve are inserted into either end of the cylinder and the NGC acts both as a connecting bridge for the severed nerve ends as well as a protective shelter for the regenerating nerve. This study aims at fabricating nerve guidance conduits with luminal structure based on synthetic biodegradable and biocompatible polymers such as poly (trimethylene carbonate ) (PTMC), poly (lactic acid) (PLA) and poly (caprolactone) (PCL). Initial base materials for fabrication were PLA acid tubes compared to PCL tubes when prepared by spray and dip-coating methods. The morphology of the tubes where examined by SEM and results showed better porosity of PLA acid tubes compared to PCL tubes when prepared by spraying technique. Poly(lactic acid) was then blended with poly(trimethylene carbonate) at a ratio of 1:4 (5% total polymer content) for further fabrication. Electron beam radiation (25 and 50 kGy) was employed for sterilization and the changes in properties induced by irradiation in comprising polymers were evaluated. The wettability, mechanical thermal properties were not significantly changed by irradiation.In a separate experiment, synthesis of carboxymethyl chitosan hydrogel crosslinked by electron beam radiation was studied to create a luminal filler for PTMC-PLA tubes. Based on proper viscosity of solution before crosslinking, sufficient gel fraction and swelling, 10% w/v concentration of

  5. NERVE REGENERATION THROUGH A 2-PLY BIODEGRADABLE NERVE GUIDE IN THE RAT AND THE INFLUENCE OF ACTH4-9 NERVE GROWTH-FACTOR

    NARCIS (Netherlands)

    ROBINSON, PH; VANDERLEI, B; HOPPEN, HJ; LEENSLAG, JW; PENNINGS, AJ; NIEUWENHUIS, P

    1991-01-01

    Biodegradable polyurethane-based (PU) nerve guides, instilled with or without ACTH4-9 analog (a melanocortin) were used for bridging an 8 mm gap in the rat sciatic nerve and were evaluated for function and histological appearance after 16 weeks of implantation. Autologous nerve grafts functioned as

  6. Normal and sonographic anatomy of selected peripheral nerves. Part III: Peripheral nerves of the lower limb

    Directory of Open Access Journals (Sweden)

    Berta Kowalska

    2012-06-01

    Full Text Available The ultrasonographic examination is currently increasingly used in imaging peripheral nerves, serving to supplement the physical examination, electromyography and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive and well-tolerated by patients. The typical ultrasonographic picture of peripheral nerves as well as the examination technique have been discussed in part I of this article series, following the example of the median nerve. Part II of the series presented the normal anatomy and the technique for examining the peripheral nerves of the upper limb. This part of the article series focuses on the anatomy and technique for examining twelve normal peripheral nerves of the lower extremity: the iliohypogastric and ilioinguinal nerves, the lateral cutaneous nerve of the thigh, the pudendal, sciatic, tibial, sural, medial plantar, lateral plantar, common peroneal, deep peroneal and superficial peroneal nerves. It includes diagrams showing the proper positioning of the sonographic probe, plus USG images of the successively discussed nerves and their surrounding structures. The ultrasonographic appearance of the peripheral nerves in the lower limb is identical to the nerves in the upper limb. However, when imaging the lower extremity, convex probes are more often utilized, to capture deeply-seated nerves. The examination technique, similarly to that used in visualizing the nerves of upper extremity, consists of locating the nerve at a characteristic anatomic reference point and tracking it using the “elevator technique”. All 3 parts of the article series should serve as an introduction to a discussion of peripheral nerve pathologies, which will be presented in subsequent issues of the “Journal of Ultrasonography”.

  7. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making.

    Science.gov (United States)

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha; Zhou, Xiaolin

    2017-09-01

    The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. © The Author (2017). Published by Oxford University Press.

  8. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making

    Science.gov (United States)

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha

    2017-01-01

    Abstract The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. PMID:28431168

  9. Neuromuscular ultrasound of cranial nerves.

    Science.gov (United States)

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  10. An overview on benzylisoquinoline derivatives with dopaminergic and serotonergic activities.

    Science.gov (United States)

    Cabedo, N; Berenguer, I; Figadère, B; Cortes, D

    2009-01-01

    Dopamine and serotonin are important neurotransmitters in the mammalian central nervous system (CNS) involved in numerous physiological and behavioural disorders such as schizophrenia, major depression, anxiety, Parkinson's and Huntington's diseases, and attention deficit hyperactivity disorder. Several natural and synthetic benzylisoquinoline derivatives have displayed affinity for dopamine and serotonin receptors in nanomolar or micromolar ranges. This review covers the last three decades of dopaminergic and serotonergic activities, and especially focuses on structure-activity relationships of natural and synthetic benzylisoquinoline derivatives. We have included aporphines, 1-benzyltetrahydroisoquinolines, bis-benzylisoquinolines, protoberberines, cularines and other structural analogues. Further molecular modelling calculations have been considered as important tools to not only obtain structural information of both neurotransmitter receptors, but to also identify their pharmacophore features. The development of selective potential ligands like benzylisoquinoline derivatives may help in the therapy of diseases related to CNS dysfunction.

  11. Light and electron microscopic observation of regenerated fungiform taste buds in patients with recovered taste function after severing chorda tympani nerve.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Narita, Norihiko; Yamada, Takechiyo; Manabe, Yasuhiro

    2011-11-01

    The aim of this study was to evaluate the mean number of regenerated fungiform taste buds per papilla and perform light and electron microscopic observation of taste buds in patients with recovered taste function after severing the chorda tympani nerve during middle ear surgery. We performed a biopsy on the fungiform papillae (FP) in the midlateral region of the dorsal surface of the tongue from 5 control volunteers (33 total FP) and from 7 and 5 patients with and without taste recovery (34 and 29 FP, respectively) 3 years 6 months to 18 years after surgery. The specimens were observed by light and transmission electron microscopy. The taste function was evaluated by electrogustometry. The mean number of taste buds in the FP of patients with completely recovered taste function was significantly smaller (1.9 +/- 1.4 per papilla; p taste buds. Nerve fibers and nerve terminals were also found in the taste buds. It was clarified that taste buds containing taste cells and nerve endings do regenerate in the FP of patients with recovered taste function.

  12. Diagnostic nerve ultrasonography; Diagnostische Nervensonographie

    Energy Technology Data Exchange (ETDEWEB)

    Baeumer, T. [Universitaet zu Luebeck CBBM, Haus 66, Institut fuer Neurogenetik, Luebeck (Germany); Grimm, A. [Universitaetsklinikum Tuebingen, Klinik und Poliklinik fuer Neurologie, Tuebingen (Germany); Schelle, T. [Staedtisches Klinikum Dessau, Neurologische Klinik, Dessau (Germany)

    2017-03-15

    For the diagnostics of nerve lesions an imaging method is necessary to visualize peripheral nerves and their surrounding structures for an etiological classification. Clinical neurological and electrophysiological investigations provide functional information about nerve lesions. The information provided by a standard magnetic resonance imaging (MRI) examination is inadequate for peripheral nerve diagnostics; however, MRI neurography is suitable but on the other hand a resource and time-consuming method. Using ultrasonography for peripheral nerve diagnostics. With ultrasonography reliable diagnostics of entrapment neuropathies and traumatic nerve lesions are possible. The use of ultrasonography for neuropathies shows that a differentiation between different forms is possible. Nerve ultrasonography is an established diagnostic tool. In addition to the clinical examination and clinical electrophysiology, structural information can be obtained, which results in a clear improvement in the diagnostics. Ultrasonography has become an integral part of the diagnostic work-up of peripheral nerve lesions in neurophysiological departments. Nerve ultrasonography is recommended for the diagnostic work-up of peripheral nerve lesions in addition to clinical and electrophysiological investigations. It should be used in the clinical work-up of entrapment neuropathies, traumatic nerve lesions and spacy-occupying lesions of nerves. (orig.) [German] Fuer die Diagnostik von Nervenlaesionen ist ein bildgebendes Verfahren zur Darstellung des peripheren Nervs und seiner ihn umgebenden Strukturen fuer eine aetiologische Einordnung erforderlich. Mit der klinisch-neurologischen Untersuchung und Elektrophysiologie ist eine funktionelle Aussage ueber die Nervenlaesion moeglich. In der Standard-MRT-Untersuchung wird der periphere Nerv nur unzureichend gut dargestellt. Die MRT-Neurographie ist ein sehr gutes, aber auch zeit- und ressourcenintensives Verfahren. Nutzung des Ultraschalls fuer die

  13. Diagnostic value of the near-nerve needle sensory nerve conduction in sensory inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Odabasi, Zeki; Oh, Shin J

    2018-03-01

    In this study we report the diagnostic value of the near-nerve needle sensory nerve conduction study (NNN-SNCS) in sensory inflammatory demyelinating polyneuropathy (IDP) in which the routine nerve conduction study was normal or non-diagnostic. The NNN-SNCS was performed to identify demyelination in the plantar nerves in 14 patients and in the median or ulnar nerve in 2 patients with sensory IDP. In 16 patients with sensory IDP, routine NCSs were either normal or non-diagnostic for demyelination. Demyelination was identified by NNN-SNCS by dispersion and/or slow nerve conduction velocity (NCV) below the demyelination marker. Immunotherapy was initiated in 11 patients, 10 of whom improved or remained stable. NNN-SNCS played an essential role in identifying demyelinaton in 16 patients with sensory IDP, leading to proper treatment. Muscle Nerve 57: 414-418, 2018. © 2017 Wiley Periodicals, Inc.

  14. Interfascicular suture with nerve autografts for median, ulnar and radial nerve lesions.

    Science.gov (United States)

    Pluchino, F; Luccarelli, G

    1981-05-01

    Interfascicular nerve suture with autografts is the operation of choice for repairing peripheral nerve injuries because it ensures more precise alignment of the fasciculi and so better chances of reinnervation of the sectioned nerve. The procedure as described by Millesi et al has been used at the Istituto Neurologico di Milano in 30 patients with traumatic lesions of the median, ulnar and radial nerves. All have been followed up for 2 to 7 years since operation. The results obtained are compared with those of other series obtained with interfascicular suture and with epineural suture. Microsurgery is essential. The best time to operate is discussed.

  15. Chemoattractive capacity of different lengths of nerve fragments bridging regeneration chambers for the repair of sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Jiren Zhang; Yubo Wang; Jincheng Zhang

    2012-01-01

    A preliminary study by our research group showed that 6-mm-long regeneration chamber bridging is equivalent to autologous nerve transplantation for the repair of 12-mm nerve defects.In this study,we compared the efficacy of different lengths (6,8,10 mm) of nerve fragments bridging 6-mm regeneration chambers for the repair of 12-mm-long nerve defects.At 16 weeks after the regeneration chamber was implanted,the number,diameter and myelin sheath thickness of the regenerated nerve fibers,as well as the conduction velocity of the sciatic nerve and gastrocnemius muscle wet weight ratio,were similar to that observed with autologous nerve transplantation.Our results demonstrate that 6-,8-and 10-mm-long nerve fragments bridging 6-mm regeneration chambers effectively repair 12-mm-long nerve defects.Because the chemoattractive capacity is not affected by the length of the nerve fragment,we suggest adopting 6-mm-long nerve fragments for the repair of peripheral nerve defects.

  16. Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration

    Science.gov (United States)

    Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang

    2013-01-01

    Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration. PMID:22871377

  17. Anatomy of pudendal nerve at urogenital diaphragm--new critical site for nerve entrapment.

    Science.gov (United States)

    Hruby, Stephan; Ebmer, Johannes; Dellon, A Lee; Aszmann, Oskar C

    2005-11-01

    To investigate the relations of the pudendal nerve in this complex anatomic region and determine possible entrapment sites that are accessible for surgical decompression. Entrapment neuropathies of the pudendal nerve are an uncommon and, therefore, often overlooked or misdiagnosed clinical entity. The detailed relations of this nerve as it exits the pelvis through the urogenital diaphragm and enters the mobile part of the penis have not yet been studied. Detailed anatomic dissections were performed in 10 formalin preserved hemipelves under 3.5x loupe magnification. The pudendal nerve was dissected from the entrance into the Alcock canal to the dorsum of the penis. The branching pattern of the nerve and its topographic relationship were recorded and photographs taken. The anatomic dissections revealed that the pudendal nerve passes through a tight osteofibrotic canal just distal to the urogenital diaphragm at the entrance to the base of the penis. This canal is, in part, formed by the inferior ramus of the pubic bone, the suspensory ligament of the penis, and the ischiocavernous body. In two specimens, a fusiform pseudoneuromatous thickening was found. The pudendal nerve is susceptible to compression at the passage from the Alcock canal to the dorsum of the penis. Individuals exposed to repetitive mechanical irritation in this region are especially endangered. Diabetic patients with peripheral neuropathy can have additional compression neuropathy with decreased penile sensibility and will benefit from decompression of the pudendal nerve.

  18. Adult Stem Cell-Based Enhancement of Nerve Conduit for Peripheral Nerve Repair

    Science.gov (United States)

    2017-10-01

    acceptable donor nerves are often not available for this purpose, particularly in patients suffering multiple extremity injuries or faced with traumatic...amputations. Alternatives include the use of a blood vessel graft or a synthetic nerve guide, although these devices are only effective over distances less...of combat-related orthopaedic trauma. Given the severity of the orthopaedic injuries sustained during battlefield trauma, an acceptable donor nerve is

  19. Clinical experience with a novel electromyographic approach to preventing phrenic nerve injury during cryoballoon ablation in atrial fibrillation.

    Science.gov (United States)

    Mondésert, Blandine; Andrade, Jason G; Khairy, Paul; Guerra, Peter G; Dyrda, Katia; Macle, Laurent; Rivard, Léna; Thibault, Bernard; Talajic, Mario; Roy, Denis; Dubuc, Marc; Shohoudi, Azadeh

    2014-08-01

    Phrenic nerve palsy remains the most frequent complication associated with cryoballoon-based pulmonary vein (PV) isolation. We sought to characterize our experience using a novel monitoring technique for the prevention of phrenic nerve palsy. Two hundred consecutive cryoballoon-based PV isolation procedures between October 2010 and October 2013 were studied. In addition to standard abdominal palpation during right phrenic nerve pacing from the superior vena cava, all patients underwent diaphragmatic electromyographic monitoring using surface electrodes. Cryoablation was terminated on any perceived reduction in diaphragmatic motion or a 30% decrease in the compound motor action potential (CMAP). During right-sided ablation, a ≥30% reduction in CMAP amplitude occurred in 49 patients (24.5%). Diaphragmatic motion decreased in 30 of 49 patients and was preceded by a 30% reduction in CMAP amplitude in all. In 82% of cases, this reduction in CMAP amplitude occurred during right superior PV isolation. The baseline CMAP amplitude was 946.5±609.2 mV and decreased by 13.8±13.8% at the end of application. This decrease was more marked in the 33 PVs with a reduction in diaphragmatic motion than in those without (40.9±15.3% versus 11.3±10.5%; Pphrenic nerve palsy persisted beyond the end of the procedure, with all cases recovering within 6 months. Despite the shortened application all veins were isolated. At repeat procedure the right-sided PVs reconnected less frequently than the left-sided PVs in those with phrenic nerve palsy. Electromyographic phrenic nerve monitoring using the surface CMAP is reliable, easy to perform, and offers an early warning to impending phrenic nerve injury. © 2014 American Heart Association, Inc.

  20. Degenerative Nerve Diseases

    Science.gov (United States)

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many ... viruses. Sometimes the cause is not known. Degenerative nerve diseases include Alzheimer's disease Amyotrophic lateral sclerosis Friedreich's ...

  1. Delayed repair of the peripheral nerve: a novel model in the rat sciatic nerve.

    Science.gov (United States)

    Wu, Peng; Spinner, Robert J; Gu, Yudong; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2013-03-30

    Peripheral nerve reconstruction is seldom done in the acute phase of nerve injury due to concomitant injuries and the uncertainty of the extent of nerve damage. A proper model that mimics true clinical scenarios is critical but lacking. The aim of this study is to develop a standardized, delayed sciatic nerve repair model in rats and validate the feasibility of direct secondary neurrorraphy after various delay intervals. Immediately or 1, 4, 6, 8 and 12 weeks after sciatic nerve transection, nerve repair was carried out. A successful tension-free direct neurorraphy (TFDN) was defined when the gap was shorter than 4.0 mm and the stumps could be reapproximated with 10-0 stitches without detachment. Compound muscle action potential (CMAP) was recorded postoperatively. Gaps between the two nerve stumps ranged from 0 to 9 mm, the average being 1.36, 2.85, 3.43, 3.83 and 6.4 mm in rats with 1, 4, 6, 8 and 12 week delay, respectively. The rate of successful TFDN was 78% overall. CMAP values of 1 and 4 week delay groups were not different from the immediate repair group, whereas CMAP amplitudes of 6, 8 and 12 week delay groups were significantly lower. A novel, standardized delayed nerve repair model is established. For this model to be sensitive, the interval between nerve injury and secondary repair should be at least over 4 weeks. Thereafter the longer the delay, the more challenging the model is for nerve regeneration. The choice of delay intervals can be tailored to meet specific requirements in future studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Pathology of the vestibulocochlear nerve

    Energy Technology Data Exchange (ETDEWEB)

    De Foer, Bert [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: bert.defoer@GZA.be; Kenis, Christoph [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: christophkenis@hotmail.com; Van Melkebeke, Deborah [Department of Neurology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Deborah.vanmelkebeke@Ugent.be; Vercruysse, Jean-Philippe [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: jphver@yahoo.com; Somers, Thomas [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Thomas.somers@GZA.be; Pouillon, Marc [Department of Radiology, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: marc.pouillon@GZA.be; Offeciers, Erwin [University Department of ENT, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium)], E-mail: Erwin.offeciers@GZA.be; Casselman, Jan W. [Department of Radiology, AZ Sint-Jan AV Hospital, Ruddershove 10, Bruges (Belgium); Consultant Radiologist, Sint-Augustinus Hospital, Oosterveldlaan 24, 2610 Wilrijk (Belgium); Academic Consultent, University of Ghent (Belgium)], E-mail: jan.casselman@azbrugge.be

    2010-05-15

    There is a large scala of pathology affecting the vestibulocochlear nerve. Magnetic resonance imaging is the method of choice for the investigation of pathology of the vestibulocochlear nerve. Congenital pathology mainly consists of agenesis or hypoplasia of the vestibulocochlear nerve. Tumoral pathology affecting the vestibulocochlear nerve is most frequently located in the internal auditory canal or cerebellopontine angle. Schwannoma of the vestibulocochlear nerve is the most frequently found tumoral lesion followed by meningeoma, arachnoid cyst and epidermoid cyst. The most frequently encountered pathologies as well as some more rare entities are discussed in this chapter.

  3. Pathology of the vestibulocochlear nerve

    International Nuclear Information System (INIS)

    De Foer, Bert; Kenis, Christoph; Van Melkebeke, Deborah; Vercruysse, Jean-Philippe; Somers, Thomas; Pouillon, Marc; Offeciers, Erwin; Casselman, Jan W.

    2010-01-01

    There is a large scala of pathology affecting the vestibulocochlear nerve. Magnetic resonance imaging is the method of choice for the investigation of pathology of the vestibulocochlear nerve. Congenital pathology mainly consists of agenesis or hypoplasia of the vestibulocochlear nerve. Tumoral pathology affecting the vestibulocochlear nerve is most frequently located in the internal auditory canal or cerebellopontine angle. Schwannoma of the vestibulocochlear nerve is the most frequently found tumoral lesion followed by meningeoma, arachnoid cyst and epidermoid cyst. The most frequently encountered pathologies as well as some more rare entities are discussed in this chapter.

  4. Serotonergic and dopaminergic modulation of attentional processes.

    Science.gov (United States)

    Boulougouris, Vasileios; Tsaltas, Eleftheria

    2008-01-01

    Disturbances in attentional processes are a common feature of several psychiatric disorders such as schizophrenia, attention deficit/hyperactivity disorder and Huntington's disease. The use of animal models has been useful in defining various candidate neural systems thus enabling us to translate basic laboratory science to the clinic and vice-versa. In this chapter, a comparative and integrated account is provided on the neuroanatomical and neurochemical modulation of basic behavioural operations such as selective attention, vigilance, set-shifting and executive control focusing on the comparative functions of the serotonin and dopamine systems in the cognitive control exerted by the prefrontal cortex. Specifically, we have reviewed evidence emerging from several behavioural paradigms in experimental animals and humans each of which centres on a different aspect of the attentional function. These paradigms offering both human and animal variants include the five-choice serial reaction time task (5CSRTT), attentional set-shifting and stop-signal reaction time task. In each case, the types of operation that are measured by the given paradigm and their neural correlates are defined. Then, the role of the ascending dopaminergic and serotonergic systems in the neurochemical modulation of its behavioural output are examined, and reference is made to clinical implications for neurological and neuropsychiatric disorders which exhibit deficits in these cognitive tests.

  5. Radiation-induced cranial nerve palsy

    International Nuclear Information System (INIS)

    Berger, P.S.; Bataini, J.P.

    1977-01-01

    Twenty-five patients with 35 cranial nerve palsies were seen at the Fondation Curie during follow-up after radical radiotherapy for head and neck tumors. The twelfth nerve was involved in 19 cases, the tenth in nine, and the eleventh in five; the fifth and second nerves were involved once each and in the same patient. The twelfth nerve was involved alone in 16 patients and the tenth nerve alone in three, with multiple nerves involved in the remaining six patients. The palsy was noted from 12 to 145 months after diagnosis of the tumor. The latency period could be correlated with dose so that the least square fit equation representing NSD vs delay is NSD = 2598--Delay (in months) x 4.6, with a correlation coefficient of -0.58. The distinction between tumor recurrence and radiation-induced nerve palsy is critical. It can often be inferred from the latency period but must be confirmed by observation over a period of time

  6. The loudness dependence of auditory evoked potentials (LDAEP as an indicator of serotonergic dysfunction in patients with predominant schizophrenic negative symptoms.

    Directory of Open Access Journals (Sweden)

    Christine Wyss

    Full Text Available Besides the influence of dopaminergic neurotransmission on negative symptoms in schizophrenia, there is evidence that alterations of serotonin (5-HT system functioning also play a crucial role in the pathophysiology of these disabling symptoms. From post mortem and genetic studies on patients with negative symptoms a 5-HT dysfunction is documented. In addition atypical neuroleptics and some antidepressants improve negative symptoms via serotonergic action. So far no research has been done to directly clarify the association between the serotonergic functioning and the extent of negative symptoms. Therefore, we examined the status of brain 5-HT level in negative symptoms in schizophrenia by means of the loudness dependence of auditory evoked potentials (LDAEP. The LDAEP provides a well established and non-invasive in vivo marker of the central 5-HT activity. We investigated 13 patients with schizophrenia with predominant negative symptoms treated with atypical neuroleptics and 13 healthy age and gender matched controls with a 32-channel EEG. The LDAEP of the N1/P2 component was evaluated by dipole source analysis and single electrode estimation at Cz. Psychopathological parameters, nicotine use and medication were assessed to control for additional influencing factors. Schizophrenic patients showed significantly higher LDAEP in both hemispheres than controls. Furthermore, the LDAEP in the right hemisphere in patients was related to higher scores in scales assessing negative symptoms. A relationship with positive symptoms was not found. These data might suggest a diminished central serotonergic neurotransmission in patients with predominant negative symptoms.

  7. Matching of motor-sensory modality in the rodent femoral nerve model shows no enhanced effect on peripheral nerve regeneration

    Science.gov (United States)

    Kawamura, David H.; Johnson, Philip J.; Moore, Amy M.; Magill, Christina K.; Hunter, Daniel A.; Ray, Wilson Z.; Tung, Thomas HH.; Mackinnon, Susan E.

    2010-01-01

    The treatment of peripheral nerve injuries with nerve gaps largely consists of autologous nerve grafting utilizing sensory nerve donors. Underlying this clinical practice is the assumption that sensory autografts provide a suitable substrate for motoneuron regeneration, thereby facilitating motor endplate reinnervation and functional recovery. This study examined the role of nerve graft modality on axonal regeneration, comparing motor nerve regeneration through motor, sensory, and mixed nerve isografts in the Lewis rat. A total of 100 rats underwent grafting of the motor or sensory branch of the femoral nerve with histomorphometric analysis performed after 5, 6, or 7 weeks. Analysis demonstrated similar nerve regeneration in motor, sensory, and mixed nerve grafts at all three time points. These data indicate that matching of motor-sensory modality in the rat femoral nerve does not confer improved axonal regeneration through nerve isografts. PMID:20122927

  8. Nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis.

    Science.gov (United States)

    d'Ovidio, Dario; Noviello, Emilio; Adami, Chiara

    2015-07-01

    To describe the nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis. Prospective clinical trial. Five captive raptors (Falco peregrinus) aged 6.7 ± 1.3 years. Anaesthesia was induced and maintained with isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine (0.05 mL kg(-1) per nerve) as the sole intra-operative analgesic treatment. Intraoperative physiological variables were recorded every 10 minutes from endotracheal intubation until the end of anaesthesia. Assessment of intraoperative nociception was based on changes in physiological variables above baseline values, while evaluation of postoperative pain relied on species-specific behavioural indicators. The sciatic-femoral nerve block was feasible in raptors and the motor responses following electrical stimulation of both nerves were consistent with those reported in mammalian species. During surgery no rescue analgesia was required. The anaesthesia plane was stable and cardiorespiratory variables did not increase significantly in response to surgical stimulation. Iatrogenic complications, namely nerve damage and local anaesthetic toxicity, did not occur. Recovery was smooth and uneventful. The duration (mean ± SD) of the analgesic effect provided by the nerve block was 130 ± 20 minutes. The sciatic-femoral nerve block as described in dogs and rabbits can be performed in raptors as well. Further clinical trials with a control groups are required to better investigate the analgesic efficacy and the safety of this technique in raptors. © 2014 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  9. Pregnancy and delivery while receiving vagus nerve stimulation for the treatment of major depression: a case report

    Directory of Open Access Journals (Sweden)

    Stegman Diane

    2005-09-01

    Full Text Available Abstract Background Depression during pregnancy can have significant health consequences for the mother and her infant. Antidepressant medications, which pass through the placenta, may increase the risk of low birth weight and preterm delivery. The use of selective serotonin reuptake inhibitors (SSRIs during pregnancy may induce serotonergic symptoms in the infant after delivery. Antidepressant medications in breast milk may also be passed to an infant. Vagus nerve stimulation (VNS therapy is an effective non-pharmacologic treatment for treatment-resistant depression (TRD, but little information exists regarding the use of VNS therapy during pregnancy. Case presentation The patient began receiving VNS therapy for TRD in March 1999. The therapy was effective, producing substantial reductions in depressive symptoms and improvement of function. In 2002, the patient reported that she was pregnant. She continued receiving VNS therapy throughout her pregnancy, labor, and delivery, which enabled the sustained remission of her depression. The pregnancy was uneventful; a healthy daughter was delivered at full term. Conclusion In this case, VNS therapy provided effective treatment for TRD during pregnancy and delivery. VNS was safe for the patient and her child.

  10. Evaluation of phrenic nerve and diaphragm function with peripheral nerve stimulation and M-mode ultrasonography in potential pediatric phrenic nerve or diaphragm pacing candidates.

    Science.gov (United States)

    Skalsky, Andrew J; Lesser, Daniel J; McDonald, Craig M

    2015-02-01

    Assessing phrenic nerve function in the setting of diaphragmatic paralysis in diaphragm pacing candidates can be challenging. Traditional imaging modalities and electrodiagnostic evaluations are technically difficult. Either modality alone is not a direct measure of the function of the phrenic nerve and diaphragm unit. In this article, the authors present their method for evaluating phrenic nerve function and the resulting diaphragm function. Stimulating the phrenic nerve with transcutaneous stimulation and directly observing the resulting movement of the hemidiaphragm with M-mode ultrasonography provides quantitative data for predicting the success of advancing technologies such as phrenic nerve pacing and diaphragm pacing. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Sexually dimorphic serotonergic dysfunction in a mouse model of Huntington's disease and depression.

    Directory of Open Access Journals (Sweden)

    Thibault Renoir

    Full Text Available Depression is the most common psychiatric disorder in Huntington's disease (HD patients. In the general population, women are more prone to develop depression and such susceptibility might be related to serotonergic dysregulation. There is yet to be a study of sexual dimorphism in the development and presentation of depression in HD patients. We investigated whether 8-week-old male and female R6/1 transgenic HD mice display depressive-like endophenotypes associated with serotonergic impairments. We also studied the behavioral effects of acute treatment with sertraline. We found that only female HD mice exhibited a decreased preference for saccharin as well as impaired emotionality-related behaviors when assessed on the novelty-suppressed feeding test (NSFT and the forced-swimming test (FST. The exaggerated immobility time displayed by female HD in the FST was reduced by acute administration of sertraline. We also report an increased response to the 5-HT(1A receptor agonist 8-OH-DPAT in inducing hypothermia and a decreased 5-HT(2A receptor function in HD animals. While tissue levels of serotonin were reduced in both male and female HD mice, we found that serotonin concentration and hydroxylase-2 (TPH2 mRNA levels were higher in the hippocampus of males compared to female animals. Finally, the antidepressant-like effects of sertraline in the FST were blunted in male HD animals. This study reveals sex-specific depressive-related behaviors during an early stage of HD prior to any cognitive and motor deficits. Our data suggest a crucial role for disrupted serotonin signaling in mediating the sexually dimorphic depression-like phenotype in HD mice.

  12. Concomitant use of opioid medications with triptans or serotonergic antidepressants in US office-based physician visits.

    Science.gov (United States)

    Molina, Kyle C; Fairman, Kathleen A; Sclar, David A

    2018-01-01

    Opioids are not recommended for routine treatment of migraine because their benefits are outweighed by risks of medication overuse headache and abuse/dependence. A March 2016 US Food and Drug Administration (FDA) safety communication warned of the risk of serotonin syndrome from using opioids concomitantly with 5-hydroxytryptamine receptor agonists (triptans) or serotonergic antidepressants: selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). Epidemiological information about co-prescribing of these medications is limited. The objective of this study was to estimate the nationwide prevalence of co-prescribing of an opioid with a serotonergic antidepressant and/or triptan in US office-based physician visits made by 1) all patients and 2) patients diagnosed with migraine. National Ambulatory Medical Care Survey (NAMCS) data were obtained for 2013 and 2014. Physician office visits that included the new or continued prescribing of ≥1 opioid medication with a triptan or an SSRI/SNRI were identified. Co-prescribed opioids were stratified by agent to determine the proportion of co-prescriptions with opioids posing a higher risk of serotonergic agonism (meperidine, tapentadol, and tramadol). Of an annualized mean 903.6 million office-based physician visits in 2013-2014, 17.7 million (2.0% of all US visits) resulted in the prescribing of ≥1 opioid medication with a triptan or an SSRI/SNRI. Opioid-SSRI/SNRI was co-prescribed in 16,044,721 visits, while opioid-triptan was co-prescribed in 1,622,827 visits. One-fifth of opioid co-prescribing was attributable to higher-risk opioids, predominantly tramadol (18.6% of opioid-SSRI/SNRI, 21.8% of opioid-triptan). Of 7,672,193 visits for patients diagnosed with migraine, 16.3% included opioid prescribing and 2.0% included co-prescribed opioid-triptan. During a period approximately 2 years prior to an FDA warning about the risk of serotonin syndrome from opioid-SSRI/SNRI or

  13. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.

    Science.gov (United States)

    Chiono, Valeria; Tonda-Turo, Chiara

    2015-08-01

    The current trend of peripheral nerve tissue engineering is the design of advanced nerve guidance channels (NGCs) acting as physical guidance for regeneration of nerves across lesions. NGCs should present multifunctional properties aiming to direct the sprouting of axons from the proximal nerve end, to concentrate growth factors secreted by the injured nerve ends, and to reduce the ingrowth of scar tissue into the injury site. A critical aspect in the design of NGCs is conferring them the ability to provide topographic, chemotactic and haptotactic cues that lead to functional nerve regeneration thus increasing the axon growth rate and avoiding or minimizing end-organ (e.g. muscle) atrophy. The present work reviews the recent state of the art in NGCs engineering and defines the external guide and internal fillers structural and compositional requirements that should be satisfied to improve nerve regeneration, especially in the case of large gaps (>2 cm). Techniques for NGCs fabrication were described highlighting the innovative approaches direct to enhance the regeneration of axon stumps compared to current clinical treatments. Furthermore, the possibility to apply stem cells as internal cues to the NGCs was discussed focusing on scaffold properties necessary to ensure cell survival. Finally, the optimized features for NGCs design were summarized showing as multifunctional cues are needed to produce NGCs having improved results in clinics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Facilitation of facial nerve regeneration using chitosan-β-glycerophosphate-nerve growth factor hydrogel.

    Science.gov (United States)

    Chao, Xiuhua; Xu, Lei; Li, Jianfeng; Han, Yuechen; Li, Xiaofei; Mao, YanYan; Shang, Haiqiong; Fan, Zhaomin; Wang, Haibo

    2016-06-01

    Conclusion C/GP hydrogel was demonstrated to be an ideal drug delivery vehicle and scaffold in the vein conduit. Combined use autologous vein and NGF continuously delivered by C/GP-NGF hydrogel can improve the recovery of facial nerve defects. Objective This study investigated the effects of chitosan-β-glycerophosphate-nerve growth factor (C/GP-NGF) hydrogel combined with autologous vein conduit on the recovery of damaged facial nerve in a rat model. Methods A 5 mm gap in the buccal branch of a rat facial nerve was reconstructed with an autologous vein. Next, C/GP-NGF hydrogel was injected into the vein conduit. In negative control groups, NGF solution or phosphate-buffered saline (PBS) was injected into the vein conduits, respectively. Autologous implantation was used as a positive control group. Vibrissae movement, electrophysiological assessment, and morphological analysis of regenerated nerves were performed to assess nerve regeneration. Results NGF continuously released from C/GP-NGF hydrogel in vitro. The recovery rate of vibrissae movement and the compound muscle action potentials of regenerated facial nerve in the C/GP-NGF group were similar to those in the Auto group, and significantly better than those in the NGF group. Furthermore, larger regenerated axons and thicker myelin sheaths were obtained in the C/GP-NGF group than those in the NGF group.

  15. Effect of hip and knee position on nerve conduction in the common fibular nerve.

    Science.gov (United States)

    Broadhurst, Peter Kaas; Robinson, Lawrence R

    2017-09-01

    The aim of this study was to measure the influence that hip and knee position have on routine fibular motor nerve conduction studies. Healthy subjects under age 40 were recruited (n = 24) to have fibular nerve conduction studies completed in various positions, using hip extension-knee extension as a control. A mean increase in conduction velocity of 2.5 m/s across the knee (P = 0.020) was seen during hip flexion compared with hip extension. A mean decrease in velocity of 1.6 m/s through the leg segment (P = 0.016) was seen during knee flexion compared with knee extension. This study shows that the optimal position of the leg during fibular nerve studies is with the hip in flexion and knee in extension, to more accurately reflect nerve length for velocity calculations. This may have implications for other peripheral nerves with respect to proximal joint position affecting calculated velocity. Muscle Nerve 56: 519-521, 2017. © 2017 Wiley Periodicals, Inc.

  16. Surgical anatomy of the hypoglossal nerve: A new classification system for selective upper airway stimulation.

    Science.gov (United States)

    Heiser, Clemens; Knopf, Andreas; Hofauer, Benedikt

    2017-12-01

    Selective upper airway stimulation (UAS) has shown effectiveness in treating patients with obstructive sleep apnea (OSA). The terminating branches of the hypoglossal nerve show a wide complexity, requiring careful discernment of a functional breakpoint between branches for inclusion and exclusion from the stimulation cuff electrode. The purpose of this study was to describe and categorize the topographic phenotypes of these branches. Thirty patients who received an implant with selective UAS from July 2015 to June 2016 were included. All implantations were recorded using a microscope and resultant tongue motions were captured perioperatively for comparison. Eight different variations of the branches were encountered and described, both in a tabular numeric fashion and in pictorial schema. The examinations showed the complex phenotypic surgical anatomy of the hypoglossal nerve. A schematic classification system has been developed to help surgeons identify the optimal location for cuff placement in UAS. © 2017 Wiley Periodicals, Inc.

  17. Microsurgical anatomy of the abducens nerve.

    Science.gov (United States)

    Joo, Wonil; Yoshioka, Fumitaka; Funaki, Takeshi; Rhoton, Albert L

    2012-11-01

    The aim of this study is to demonstrate and review the detailed microsurgical anatomy of the abducens nerve and surrounding structures along its entire course and to provide its topographic measurements. Ten cadaveric heads were examined using ×3 to ×40 magnification after the arteries and veins were injected with colored silicone. Both sides of each cadaveric head were dissected using different skull base approaches to demonstrate the entire course of the abducens nerve from the pontomedullary sulcus to the lateral rectus muscle. The anatomy of the petroclival area and the cavernous sinus through which the abducens nerve passes are complex due to the high density of critically important neural and vascular structures. The abducens nerve has angulations and fixation points along its course that put the nerve at risk in many clinical situations. From a surgical viewpoint, the petrous tubercle of the petrous apex is an intraoperative landmark to avoid damage to the abducens nerve. The abducens nerve is quite different from the other nerves. No other cranial nerve has a long intradural path with angulations and fixations such as the abducens nerve in petroclival venous confluence. A precise knowledge of the relationship between the abducens nerve and surrounding structures has allowed neurosurgeon to approach the clivus, petroclival area, cavernous sinus, and superior orbital fissure without surgical complications. Copyright © 2012 Wiley Periodicals, Inc.

  18. Biocompatibility of Different Nerve Tubes

    Science.gov (United States)

    Stang, Felix; Keilhoff, Gerburg; Fansa, Hisham

    2009-01-01

    Bridging nerve gaps with suitable grafts is a major clinical problem. The autologous nerve graft is considered to be the gold standard, providing the best functional results; however, donor site morbidity is still a major disadvantage. Various attempts have been made to overcome the problems of autologous nerve grafts with artificial nerve tubes, which are “ready-to-use” in almost every situation. A wide range of materials have been used in animal models but only few have been applied to date clinically, where biocompatibility is an inevitable prerequisite. This review gives an idea about artificial nerve tubes with special focus on their biocompatibility in animals and humans.

  19. Axillary nerve dysfunction

    Science.gov (United States)

    ... changes in sensation or movement No history of injury to the area No signs of nerve damage These medicines reduce swelling and pressure on the nerve. They may be injected directly into the area or taken by mouth. Other medicines include: Over-the-counter pain ...

  20. Nerve stepping stone has minimal impact in aiding regeneration across long acellular nerve allografts.

    Science.gov (United States)

    Yan, Ying; Hunter, Daniel A; Schellhardt, Lauren; Ee, Xueping; Snyder-Warwick, Alison K; Moore, Amy M; Mackinnon, Susan E; Wood, Matthew D

    2018-02-01

    Acellular nerve allografts (ANAs) yield less consistent favorable outcomes compared with autografts for long gap reconstructions. We evaluated whether a hybrid ANA can improve 6-cm gap reconstruction. Rat sciatic nerve was transected and repaired with either 6-cm hybrid or control ANAs. Hybrid ANAs were generated using a 1-cm cellular isograft between 2.5-cm ANAs, whereas control ANAs had no isograft. Outcomes were assessed by graft gene and marker expression (n = 4; at 4 weeks) and motor recovery and nerve histology (n = 10; at 20 weeks). Hybrid ANAs modified graft gene and marker expression and promoted modest axon regeneration across the 6-cm defect compared with control ANA (P nerve gaps with autografts. Muscle Nerve 57: 260-267, 2018. © 2017 Wiley Periodicals, Inc.

  1. Treatment of soft-tissue loss with nerve defect in the finger using the boomerang nerve flap.

    Science.gov (United States)

    Chen, Chao; Tang, Peifu; Zhang, Xu

    2013-01-01

    This study reports simultaneous repair of soft-tissue loss and proper digital nerve defect in the finger using a boomerang nerve flap including nerve graft from the dorsal branch of the proper digital nerve. From July of 2007 to May of 2010, the flap was used in 17 fingers in 17 patients. The injured fingers included five index, seven long, and five ring fingers. The mean soft-tissue loss was 2.5 × 1.9 cm. The mean flap size was 2.8 × 2.1 cm. Proper digital nerve defects were reconstructed using nerve graft harvested from the dorsal branch of the adjacent finger's proper digital nerve. The average nerve graft length was 2.5 cm. The comparison group included 32 patients treated using a cross-finger flap and a secondary free nerve graft. In the study group, 15 flaps survived completely. Partial necrosis at the distal edge of the flap occurred in two cases. At a mean follow-up of 22 months, the average static two-point discrimination and Semmes-Weinstein monofilament test results on the pulp of the reconstructed finger were 7.5 mm and 3.86, respectively. In the comparison group, the results were 9.3 mm and 3.91, respectively. The study group presented better discriminatory sensation on the pulp and milder pain and cold intolerance in the reconstructed finger. The boomerang nerve flap is useful and reliable for reconstructing complicated finger damage involving soft-tissue loss and nerve defect, especially in difficult anatomical regions. Therapeutic, II.

  2. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Hansen, Freja Herborg; Sørensen, Gunnar

    2013-01-01

    believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different dopamine transporter knock-in mice with disrupted PDZ-binding motifs (dopamine transporter-AAA and dopamine transporter+Ala) are characterized by dramatic loss of dopamine......The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence...... transporter expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from dopamine transporter-AAA mice, we find markedly reduced dopamine transporter surface levels and evidence for enhanced constitutive internalization...

  3. Future Perspectives in the Management of Nerve Injuries.

    Science.gov (United States)

    Mackinnon, Susan E

    2018-04-01

     The author presents a solicited "white paper" outlining her perspective on the role of nerve transfers in the management of nerve injuries.  PubMed/MEDLINE and EMBASE databases were evaluated to compare nerve graft and nerve transfer. An evaluation of the scientific literature by review of index articles was also performed to compare the number of overall clinical publications of nerve repair, nerve graft, and nerve transfer. Finally, a survey regarding the prevalence of nerve transfer surgery was administrated to the World Society of Reconstructive Microsurgery (WSRM) results.  Both nerve graft and transfer can generate functional results and the relative success of graft versus transfer depended on the function to be restored and the specific transfers used. Beginning in the early 1990s, there has been a rapid increase from baseline of nerve transfer publications such that clinical nerve transfer publication now exceeds those of nerve repair or nerve graft. Sixty-two responses were received from WSRM membership. These surgeons reported their frequency of "usually or always using nerve transfers for repairing brachial plexus injuries as 68%, radial nerves as 27%, median as 25%, and ulnar as 33%. They reported using nerve transfers" sometimes for brachial plexus 18%, radial nerve 30%, median nerve 34%, ulnar nerve 35%.  Taken together this evidence suggests that nerve transfers do offer an alternative technique along with tendon transfers, nerve repair, and nerve grafts. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. Normal and sonographic anatomy of selected peripheral nerves. Part II: Peripheral nerves of the upper limb

    Directory of Open Access Journals (Sweden)

    Berta Kowalska

    2012-06-01

    Full Text Available The ultrasonographic examination is frequently used for imaging peripheral nerves. It serves to supplement the physical examination, electromyography, and magnetic resonance imaging. As in the case of other USG imaging studies, the examination of peripheral nerves is non-invasive, well-tolerated by patients, and relatively inexpensive. Part I of this article series described in detail the characteristic USG picture of peripheral nerves and the proper examination technique, following the example of the median nerve. This nerve is among the most often examined peripheral nerves of the upper limb. This part presents describes the normal anatomy and ultrasound picture of the remaining large nerve branches in the upper extremity and neck – the spinal accessory nerve, the brachial plexus, the suprascapular, axillary, musculocutaneous, radial and ulnar nerves. Their normal anatomy and ultrasonographic appearance have been described, including the division into individual branches. For each of them, specific reference points have been presented, to facilitate the location of the set trunk and its further monitoring. Sites for the application of the ultrasonographic probe at each reference point have been indicated. In the case of the ulnar nerve, the dynamic component of the examination was emphasized. The text is illustrated with images of probe positioning, diagrams of the normal course of the nerves as well as a series of ultrasonographic pictures of normal nerves of the upper limb. This article aims to serve as a guide in the ultrasound examination of the peripheral nerves of the upper extremity. It should be remembered that a thorough knowledge of the area’s topographic anatomy is required for this type of examination.

  5. Intraoperative Ultrasound for Peripheral Nerve Applications.

    Science.gov (United States)

    Willsey, Matthew; Wilson, Thomas J; Henning, Phillip Troy; Yang, Lynda J-S

    2017-10-01

    Offering real-time, high-resolution images via intraoperative ultrasound is advantageous for a variety of peripheral nerve applications. To highlight the advantages of ultrasound, its extraoperative uses are reviewed. The current intraoperative uses, including nerve localization, real-time evaluation of peripheral nerve tumors, and implantation of leads for peripheral nerve stimulation, are reviewed. Although intraoperative peripheral nerve localization has been performed previously using guide wires and surgical dyes, the authors' approach using ultrasound-guided instrument clamps helps guide surgical dissection to the target nerve, which could lead to more timely operations and shorter incisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Natural history of sensory nerve recovery after cutaneous nerve injury following foot and ankle surgery

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2015-01-01

    Full Text Available Cutaneous nerve injury is the most common complication following foot and ankle surgery. However, clinical studies including long-term follow-up data after cutaneous nerve injury of the foot and ankle are lacking. In the current retrospective study, we analyzed the clinical data of 279 patients who underwent foot and ankle surgery. Subjects who suffered from apparent paresthesia in the cutaneous sensory nerve area after surgery were included in the study. Patients received oral vitamin B 12 and methylcobalamin. We examined final follow-up data of 17 patients, including seven with sural nerve injury, five with superficial peroneal nerve injury, and five with plantar medial cutaneous nerve injury. We assessed nerve sensory function using the Medical Research Council Scale. Follow-up immediately, at 6 weeks, 3, 6 and 9 months, and 1 year after surgery demonstrated that sensory function was gradually restored in most patients within 6 months. However, recovery was slow at 9 months. There was no significant difference in sensory function between 9 months and 1 year after surgery. Painful neuromas occurred in four patients at 9 months to 1 year. The results demonstrated that the recovery of sensory function in patients with various cutaneous nerve injuries after foot and ankle surgery required at least 6 months

  7. MRI of enlarged dorsal ganglia, lumbar nerve roots, and cranial nerves in polyradiculoneuropathies

    International Nuclear Information System (INIS)

    Castillo, M.; Mukherji, S.K.

    1996-01-01

    This paper describes the MRI findings in four patients with a clinical diagnosis of hypertrophic polyradiculoneuropathies. In two examination of the lumbar spine showed enlarged nerve roots and dorsal ganglia, and similar findings were present in the cervical spine in a third. The cisternal portions of the cranial nerves were enlarged in another patient. MRI allows identification of enlarged nerves in hypertrophic polyradiculopathies. (orig.)

  8. Tibial nerve (image)

    Science.gov (United States)

    ... nerve is commonly injured by fractures or other injury to the back of the knee or the lower leg. It may be affected by systemic diseases such as diabetes mellitus. The nerve can also be damaged by pressure from a tumor, abscess, or bleeding into the ...

  9. Peripheral markers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder.

    Science.gov (United States)

    Croonenberghs, J; Delmeire, L; Verkerk, R; Lin, A H; Meskal, A; Neels, H; Van der Planken, M; Scharpe, S; Deboutte, D; Pison, G; Maes, M

    2000-03-01

    Some studies have suggested that disorders in the peripheral and central metabolism of serotonin (5-HT) and noradrenaline may play a role in the pathophysiology of autistic disorder. This study examines serotonergic and noradrenergic markers in a study group of 13 male, post-pubertal, caucasian autistic patients (age 12-18 y; I.Q. > 55) and 13 matched volunteers. [3H]-paroxetine binding Kd values were significantly higher in patients with autism than in healthy volunteers. Plasma concentrations of tryptophan, the precursor of 5-HT, were significantly lower in autistic patients than in healthy volunteers. There were no significant differences between autistic and normal children in the serum concentrations of 5-HT, or the 24-hr urinary excretion of 5-hydroxy-indoleacetic acid (5-HIAA), adrenaline, noradrenaline, and dopamine. There were no significant differences in [3H]-rauwolscine binding Bmax or Kd values, or in the serum concentrations of tyrosine, the precursor of noradrenaline, between both study groups. There were highly significant positive correlations between age and 24-hr urinary excretion of 5-HIAA and serum tryptophan. The results suggest that: 1) serotonergic disturbances, such as defects in the 5-HT transporter system and lowered plasma tryptophan, may play a role in the pathophysiology of autism; 2) autism is not associated with alterations in the noradrenergic system; and 3) the metabolism of serotonin in humans undergoes significant changes between the ages of 12 and 18 years.

  10. Imaging the ocular motor nerves.

    NARCIS (Netherlands)

    Ferreira, T.; Verbist, B.M.; Buchem, M. van; Osch, T. van; Webb, A.

    2010-01-01

    The ocular motor nerves (OMNs) comprise the oculomotor, trochlear and the abducens nerves. According to their course, they are divided into four or five anatomic segments: intra-axial, cisternal, cavernous and intra-orbital and, for the abducens nerve, an additional interdural segment. Magnetic

  11. Anatomical etiology of “pseudo-sciatica” from superior cluneal nerve entrapment: a laboratory investigation

    Directory of Open Access Journals (Sweden)

    Konno T

    2017-11-01

    Full Text Available Tomoyuki Konno,1 Yoichi Aota,2 Hiroshi Kuniya,1 Tomoyuki Saito,1 Ning Qu,3 Shogo Hayashi,3 Shinichi Kawata,3 Masahiro Itoh3 1Department of Orthopaedic Surgery, Yokohama City University Graduate School of Medicine, 2Department of Spine & Spinal Cord Surgery, Yokohama Brain and Spine Center, Yokohama, 3Department of Anatomy, Tokyo Medical University, Tokyo, Japan Objective: The superior cluneal nerve (SCN may become entrapped where it pierces the thoracolumbar fascia over the iliac crest; this can cause low back pain (LBP and referred pain radiating into the posterior thigh, calf, and occasionally the foot, producing the condition known as “pseudo-sciatica.” Because the SCN was thought to be a cutaneous branch of the lumbar dorsal rami, originating from the dorsal roots of L1–L3, previous anatomical studies failed to explain why SCN causes “pseudo-sciatica”. The purpose of the present anatomical study was to better elucidate the anatomy and improve the understanding of “pseudo-sciatica” from SCN entrapment. Materials and methods: SCN branches were dissected from their origin to termination in subcutaneous tissue in 16 cadavers (5 male and 11 female with a mean death age of 88 years (range 81–101 years. Special attention was paid to identify SCNs from their emergence from nerve roots and passage through the fascial attachment to the iliac crest. Results: Eighty-one SCN branches were identified originating from T12 to L5 nerve roots with 13 branches passing through the osteofibrous tunnel. These 13 branches originated from L3 (two sides, L4 (six sides, and L5 (five sides. Ten of the 13 branches showed macroscopic entrapment in the tunnel. Conclusion: The majority of SCNs at risk of nerve entrapment originated from the lower lumbar nerve. These anatomical results may explain why patients with SCN entrapment often evince leg pain or tingling that mimics sciatica. Keywords: superior cluneal nerve, entrapment neuropathy, dorsal rami

  12. Role of Demyelination Efficiency within Acellular Nerve Scaffolds during Nerve Regeneration across Peripheral Defects

    Directory of Open Access Journals (Sweden)

    Meiqin Cai

    2017-01-01

    Full Text Available Hudson’s optimized chemical processing method is the most commonly used chemical method to prepare acellular nerve scaffolds for the reconstruction of large peripheral nerve defects. However, residual myelin attached to the basal laminar tube has been observed in acellular nerve scaffolds prepared using Hudson’s method. Here, we describe a novel method of producing acellular nerve scaffolds that eliminates residual myelin more effectively than Hudson’s method through the use of various detergent combinations of sulfobetaine-10, sulfobetaine-16, Triton X-200, sodium deoxycholate, and peracetic acid. In addition, the efficacy of this new scaffold in repairing a 1.5 cm defect in the sciatic nerve of rats was examined. The modified method produced a higher degree of demyelination than Hudson’s method, resulting in a minor host immune response in vivo and providing an improved environment for nerve regeneration and, consequently, better functional recovery. A morphological study showed that the number of regenerated axons in the modified group and Hudson group did not differ. However, the autograft and modified groups were more similar in myelin sheath regeneration than the autograft and Hudson groups. These results suggest that the modified method for producing a demyelinated acellular scaffold may aid functional recovery in general after nerve defects.

  13. Combined KHFAC + DC nerve block without onset or reduced nerve conductivity after block

    Science.gov (United States)

    Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-10-01

    Objective. Kilohertz frequency alternating current (KHFAC) waveforms have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Approach. A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC + CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC + CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 s (range: 318-1563 s) of cumulative dc to investigate the impact of combined KHFAC + CBDC on nerve viability. Main results. The peak onset force was reduced significantly from 20.73 N (range: 18.6-26.5 N) with KHFAC alone to 0.45 N (range: 0.2-0.7 N) with the combined CBDC and KHFAC block waveform (p conductivity was observed after application of the combined KHFAC + CBDC block relative to KHFAC waveforms. Significance. The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity.

  14. Genetic modification of human sural nerve segments by a lentiviral vector encoding nerve growth factor

    NARCIS (Netherlands)

    Tannemaat, Martijn R; Boer, Gerard J; Verhaagen, J.; Malessy, Martijn J A

    2007-01-01

    OBJECTIVE: Autologous nerve grafts are used to treat severe peripheral nerve injury, but recovery of nerve function after grafting is rarely complete. Exogenous application of neurotrophic factors may enhance regeneration, but thus far the application of neurotrophic factors has been hampered by

  15. Comparing the Efficacy of Triple Nerve Transfers with Nerve Graft Reconstruction in Upper Trunk Obstetric Brachial Plexus Injury.

    Science.gov (United States)

    O'Grady, Kathleen M; Power, Hollie A; Olson, Jaret L; Morhart, Michael J; Harrop, A Robertson; Watt, M Joe; Chan, K Ming

    2017-10-01

    Upper trunk obstetric brachial plexus injury can cause profound shoulder and elbow dysfunction. Although neuroma excision with interpositional sural nerve grafting is the current gold standard, distal nerve transfers have a number of potential advantages. The goal of this study was to compare the clinical outcomes and health care costs between nerve grafting and distal nerve transfers in children with upper trunk obstetric brachial plexus injury. In this prospective cohort study, children who underwent triple nerve transfers were followed with the Active Movement Scale for 2 years. Their outcomes were compared to those of children who underwent nerve graft reconstruction. To assess health care use, a cost analysis was also performed. Twelve patients who underwent nerve grafting were compared to 14 patients who underwent triple nerve transfers. Both groups had similar baseline characteristics and showed improved shoulder and elbow function following surgery. However, the nerve transfer group displayed significantly greater improvement in shoulder external rotation and forearm supination 2 years after surgery (p The operative time and length of hospital stay were significantly lower (p the overall cost was approximately 50 percent less in the nerve transfer group. Triple nerve transfer for upper trunk obstetric brachial plexus injury is a feasible option, with better functional shoulder external rotation and forearm supination, faster recovery, and lower cost compared with traditional nerve graft reconstruction. Therapeutic, II.

  16. Extra- and intramuscular nerve supply of the muscles of the anterior antebrachial compartment: applications for selective neurotomy and for botulinum toxin injection.

    Science.gov (United States)

    Lepage, D; Parratte, B; Tatu, L; Vuiller, F; Monnier, G

    2005-12-01

    Hypertonia of the upper limb due to spasticity causes pronation of the forearm and flexion of wrist and fingers. Nowadays this spasticity is often treated with injections of botulinum toxin and sometimes with selective fascicular neurotomy. To correctly perform this microsurgical technique, it is necessary to get precise knowledge of the extramuscular nerve branching in order to be better able to select the motor branches which supply the muscles involved in spasticity. The same knowledge is required for botulinum toxin injections which must be made as near as possible to the zones where intramuscular nerve endings are the densest, which is also where neuromuscular junctions are the most numerous. Thus, it is necessary to better know these zones, but their knowledge remains today imprecise. The muscles of the anterior compartment of 30 forearms were dissected, first macroscopically, then microscopically, to study the extra- and intramuscular nerve supply and the distribution of terminal nerve ramifications. The results were then linked to surface topographical landmarks to indicate the precise location of motor branches for each muscle with the aim of proposing appropriate surgical approaches for selective neurotomies. Then for each muscle, the zones with the highest density of nerve endings were divided into segments, thus determining the optimal zones for botulinim toxin injections.

  17. Anatomy of the trigeminal nerve

    NARCIS (Netherlands)

    van Eijden, T.M.G.J.; Langenbach, G.E.J.; Baart, J.A.; Brand, H.S.

    2017-01-01

    The trigeminal nerve is the fifth cranial nerve (n. V), which plays an important role in the innervation of the head and neck area, together with other cranial and spinal nerves. Knowledge of the nerve’s anatomy is very important for the correct application of local anaesthetics.

  18. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone nerve conduit with tailored degradation rate

    Directory of Open Access Journals (Sweden)

    Jiang Xinquan

    2011-07-01

    Full Text Available Abstract Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone (collagen/PCL fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it

  19. Inferior alveolar nerve block: Alternative technique.

    Science.gov (United States)

    Thangavelu, K; Kannan, R; Kumar, N Senthil

    2012-01-01

    Inferior alveolar nerve block (IANB) is a technique of dental anesthesia, used to produce anesthesia of the mandibular teeth, gingivae of the mandible and lower lip. The conventional IANB is the most commonly used the nerve block technique for achieving local anesthesia for mandibular surgical procedures. In certain cases, however, this nerve block fails, even when performed by the most experienced clinician. Therefore, it would be advantageous to find an alternative simple technique. The objective of this study is to find an alternative inferior alveolar nerve block that has a higher success rate than other routine techniques. To this purpose, a simple painless inferior alveolar nerve block was designed to anesthetize the inferior alveolar nerve. This study was conducted in Oral surgery department of Vinayaka Mission's dental college Salem from May 2009 to May 2011. Five hundred patients between the age of 20 years and 65 years who required extraction of teeth in mandible were included in the study. Out of 500 patients 270 were males and 230 were females. The effectiveness of the IANB was evaluated by using a sharp dental explorer in the regions innervated by the inferior alveolar, lingual, and buccal nerves after 3, 5, and 7 min, respectively. This study concludes that inferior alveolar nerve block is an appropriate alternative nerve block to anesthetize inferior alveolar nerve due to its several advantages.

  20. Functional Outcomes of Multiple Sural Nerve Grafts for Facial Nerve Defects after Tumor-Ablative Surgery

    Directory of Open Access Journals (Sweden)

    Myung Chul Lee

    2015-07-01

    Full Text Available BackgroundFunctional restoration of the facial expression is necessary after facial nerve resection to treat head and neck tumors. This study was conducted to evaluate the functional outcomes of patients who underwent facial nerve cable grafting immediately after tumor resection.MethodsPatients who underwent cable grafting from April 2007 to August 2011 were reviewed, in which a harvested branch of the sural nerve was grafted onto each facial nerve division. Twelve patients underwent facial nerve cable grafting after radical parotidectomy, total parotidectomy, or schwannoma resection, and the functional facial expression of each patient was evaluated using the Facial Nerve Grading Scale 2.0. The results were analyzed according to patient age, follow-up duration, and the use of postoperative radiation therapy.ResultsAmong the 12 patients who were evaluated, the mean follow-up duration was 21.8 months, the mean age at the time of surgery was 42.8 years, and the mean facial expression score was 14.6 points, indicating moderate dysfunction. Facial expression scores were not influenced by age at the time of surgery, follow-up duration, or the use of postoperative radiation therapy.ConclusionsThe results of this study indicate that facial nerve cable grafting using the sural nerve can restore facial expression. Although patients were provided with appropriate treatment, the survival rate for salivary gland cancer was poor. We conclude that immediate facial nerve reconstruction is a worthwhile procedure that improves quality of life by allowing the recovery of facial expression, even in patients who are older or may require radiation therapy.

  1. Sleep deprivation decreases phase-shift responses of circadian rhythms to light in the mouse: role of serotonergic and metabolic signals.

    Science.gov (United States)

    Challet, E; Turek, F W; Laute, M; Van Reeth, O

    2001-08-03

    The circadian pacemaker in the suprachiasmatic nuclei is primarily synchronized to the daily light-dark cycle. The phase-shifting and synchronizing effects of light can be modulated by non-photic factors, such as behavioral, metabolic or serotonergic cues. The present experiments examine the effects of sleep deprivation on the response of the circadian pacemaker to light and test the possible involvement of serotonergic and/or metabolic cues in mediating the effects of sleep deprivation. Photic phase-shifting of the locomotor activity rhythm was analyzed in mice transferred from a light-dark cycle to constant darkness, and sleep-deprived for 8 h from Zeitgeber Time 6 to Zeitgeber Time 14. Phase-delays in response to a 10-min light pulse at Zeitgeber Time 14 were reduced by 30% in sleep-deprived mice compared to control mice, while sleep deprivation without light exposure induced no significant phase-shifts. Stimulation of serotonin neurotransmission by fluoxetine (10 mg/kg), a serotonin reuptake inhibitor that decreases light-induced phase-delays in non-deprived mice, did not further reduce light-induced phase-delays in sleep-deprived mice. Impairment of serotonin neurotransmission with p-chloroamphetamine (three injections of 10 mg/kg), which did not increase light-induced phase-delays in non-deprived mice significantly, partially normalized light-induced phase-delays in sleep-deprived mice. Injections of glucose increased light-induced phase-delays in control and sleep-deprived mice. Chemical damage of the ventromedial hypothalamus by gold-thioglucose (600 mg/kg) prevented the reduction of light-induced phase-delays in sleep-deprived mice, without altering phase-delays in control mice. Taken together, the present results indicate that sleep deprivation can reduce the light-induced phase-shifts of the mouse suprachiasmatic pacemaker, due to serotonergic and metabolic changes associated with the loss of sleep.

  2. Muscle potentials evoked by magnetic stimulation of the sciatic nerve in unilateral sciatic nerve dysfunction

    NARCIS (Netherlands)

    Van Soens, I.; Struys, M. M. R. F.; Van Ham, L. M. L.

    Magnetic stimulation of the sciatic nerve and subsequent recording of the muscle-evoked potential (MEP) was performed in eight dogs and three cats with unilateral sciatic nerve dysfunction. Localisation of the lesion in the sciatic nerve was based on the history, clinical neurological examination

  3. A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration.

    Directory of Open Access Journals (Sweden)

    Fatemeh Mottaghitalab

    Full Text Available As a contribution to the functionality of nerve guide conduits (NGCs in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts.

  4. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Hong-fei Li

    2015-01-01

    Full Text Available Nerve growth factor (NGF plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.

  5. Optic nerve invasion of uveal melanoma

    DEFF Research Database (Denmark)

    Lindegaard, Jens; Isager, Peter; Prause, Jan Ulrik

    2007-01-01

    in Denmark between 1942 and 2001 were reviewed (n=157). Histopathological characteristics and depth of optic nerve invasion were recorded. The material was compared with a control material from the same period consisting of 85 cases randomly drawn from all choroidal/ciliary body melanomas without optic nerve...... juxtapapillary tumors invading the optic nerve because of simple proximity to the nerve. A neurotropic subtype invades the optic nerve and retina in a diffuse fashion unrelated to tumor size or location. Udgivelsesdato: 2007-Jan...

  6. Neurotization of the phrenic nerve with accessory nerve for high cervical spinal cord injury with respiratory distress: an anatomic study.

    Science.gov (United States)

    Wang, Ce; Zhang, Ying; Nicholas, Tsai; Wu, Guoxin; Shi, Sheng; Bo, Yin; Wang, Xinwei; Zhou, Xuhui; Yuan, Wen

    2014-01-01

    High cervical spinal cord injury is associated with high morbidity and mortality. Traditional treatments carry various complications such as infection, pacemaker failure and undesirable movement. Thus, a secure surgical strategy with fewer complications analogous to physiological ventilation is still required. We hope to offer one potential method to decrease the complications and improve survival qualities of patients from the aspect of anatomy. The purpose of the study is to provide anatomic details on the accessory nerve and phrenic nerve for neurotization in patients with high spinal cord injuries. 38 cadavers (76 accessory and 76 phrenic nerves) were dissected in the study. The width, length and thickness of each accessory nerve and phrenic nerve above clavicle were measured. The distances from several landmarks on accessory nerve to the origin and the end of the phrenic nerve above clavicle were measured too. Then, the number of motor nerve fibers on different sections of the nerves was calculated using the technique of immunohistochemistry. The accessory nerves distal to its sternocleidomastoid muscular branches were 1.52 ± 0.32 mm ~1.54 ± 0.29 mm in width, 0.52 ± 0.18 mm ~ 0.56 ± 0.20mm in thickness and 9.52 ± 0.98 cm in length. And the phrenic nerves above clavicle were 1.44 ± 0.23 mm ~ 1.45 ± 0.24 mm in width, 0.47 ± 0.15 mm ~ 0.56 ± 0.25 mm in thickness and 6.48 ± 0.78 cm in length. The distance between the starting point of accessory nerve and phrenic nerve were 3.24 ± 1.17 cm, and the distance between the starting point of accessory nerve and the end of the phrenic nerve above clavicle were 8.72 ± 0.84 cm. The numbers of motor nerve fibers in accessory nerve were 1,038 ± 320~1,102 ± 216, before giving out the sternocleidomastoid muscular branches. The number of motor nerve fibers in the phrenic nerve was 911 ± 321~1,338 ± 467. The accessory nerve and the phrenic were similar in width, thickness and the number of motor nerve fibers. And

  7. Anatomical study of terminal peroneal artery perforators and their clinical applications

    Directory of Open Access Journals (Sweden)

    Rajendran Purushothaman

    2013-01-01

    Full Text Available Introduction: Peroneal artery gives off plenty of perforators that pass through fascial septum to supply skin and tenosynovium of peroneal muscles. Aim: The aim of this study was to study the anatomical basis of perforators from terminal part of peroneal artery axiality and to make use of this knowledge in reconstructing defects of posterior heel with the advantage of reducing the morbidity of conventional flaps. Materials and Methods: Our study was conducted at Department of Plastic surgery, Madras Medical College and Rajiv Gandhi Government General Hospital, India. We have carried out eleven cadaver dissections (from six cadavers-four fresh cadavers and two preserved cadavers and delineated all septocutaneous and septosynovial perforators of distal peroneal axis and studied their relation with short saphenous vein (SSV and sural nerve. Using this anatomical knowledge we have fashioned perforator based flaps in 13 patients (three propeller, four V-Y advancement, six tenosynovial flaps for reconstruction of defects over tendo achilles and pericalcaneal region . Results: In all cases, SSV and sural nerve were preserved and donor site was closed primarily. No total flap loss was noted. Conclusion: Perforator based flaps from distal most part of peroneal artery provide a good and reliable method for reconstruction of pericalcaneal and tendo achilles region defects with preservation of SSV and sural nerve. It also avoids contour deformity of the grafted donor site of the classical lateral calcaneal artery axial flap.

  8. Tumors of peripheral nerves

    International Nuclear Information System (INIS)

    Ho, Michael; Lutz, Amelie M.

    2017-01-01

    Differentiation between malignant and benign tumors of peripheral nerves in the early stages is challenging; however, due to the unfavorable prognosis of malignant tumors early identification is required. To show the possibilities for detection, differential diagnosis and clinical management of peripheral nerve tumors by imaging appearance in magnetic resonance (MR) neurography. Review of current literature available in PubMed and MEDLINE, supplemented by the authors' own observations in clinical practice. Although not pathognomonic, several imaging features have been reported for a differentiation between distinct peripheral nerve tumors. The use of MR neurography enables detection and initial differential diagnosis in tumors of peripheral nerves. Furthermore, it plays an important role in clinical follow-up, targeted biopsy and surgical planning. (orig.) [de

  9. Magnetic resonance imaging of optic nerve

    International Nuclear Information System (INIS)

    Gala, Foram

    2015-01-01

    Optic nerves are the second pair of cranial nerves and are unique as they represent an extension of the central nervous system. Apart from clinical and ophthalmoscopic evaluation, imaging, especially magnetic resonance imaging (MRI), plays an important role in the complete evaluation of optic nerve and the entire visual pathway. In this pictorial essay, the authors describe segmental anatomy of the optic nerve and review the imaging findings of various conditions affecting the optic nerves. MRI allows excellent depiction of the intricate anatomy of optic nerves due to its excellent soft tissue contrast without exposure to ionizing radiation, better delineation of the entire visual pathway, and accurate evaluation of associated intracranial pathologies

  10. Cranial nerve involvement in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Oezyar, E.; Atahan, I.L.; Akyol, F.H.; Guerkaynak, M.; Zorlu, A.F.

    1994-01-01

    Between 1975 and 1989, 23 nasopharyngeal carcinoma patients presenting with cranial nerve involvement (CNI) of one or more nerves at the time of diagnosis were treated and followed-up in our department. All patients were irradiated with curative intent, and total doses of 50 to 70 Gy (median 65 Gy) were delivered to the nasopharynx. Cranial nerves VI, III, V, IV, IX, and XII were the most commonly involved nerves. The total response rate of cranial nerves was 74% in a median follow-up time of 2 years, with the highest rate observed in the third and sixth cranial nerves. All complete responses except two were observed in the first month after radiotherapy. (author)

  11. Immunocytochemistry and metamorphic fate of the larval nervous system of Triphyllozoon mucronatum (Ectoprocta: Gymnolaemata: Cheilostomata)

    DEFF Research Database (Denmark)

    Wanninger, Andreas; Koop, Demian; Degnan, Bernard M.

    2005-01-01

    The development of gymnolaemate Ectoprocta includes a larval stage of either the coronate or the cyphonautes type. Herein, we provide the first description of the larval neural anatomy of a coronate larva using immunocytochemical methods. We used antibodies against the neurotransmitters serotonin...... that the larval neuroanatomy and the processes that underlie the reorganization of larval organ systems during metamorphosis may vary much more among lophotrochozoan taxa than previously thought....... and FMRFamide and followed the fate of immunoreactive cells through metamorphosis. The larval serotonergic nervous system of Triphyllozoon mucronatum consists of an apical commissure, one pair of lateral axons, a coronate nerve net, an internal nerve mesh, and one pair of axons innervating the frontal organ....... FMRFamide is only found in the larval commissure and in the lateral axons. The entire serotonergic and FMRFamidergic nervous system is lost during metamorphosis and the adult neural structures form independent of the larval ones. In the postlarval zooid, both neurotransmitters are detected in the cerebral...

  12. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair

    Directory of Open Access Journals (Sweden)

    Natalia Perussi Biscola

    2016-01-01

    Full Text Available Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons.

  13. Tractography of lumbar nerve roots: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne [Hopital Roger Salengro, Service de Radiologie et d' Imagerie musculo-squelettique, Lille Cedex (France); Duhamel, Alain [Universite de Lille 2, UDSL, Lille (France); Bera-Louville, Anne [Service de Rhumatologie, Hopital Roger Salengro, Lille (France)

    2011-06-15

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  14. Tractography of lumbar nerve roots: initial results

    International Nuclear Information System (INIS)

    Balbi, Vincent; Budzik, Jean-Francois; Thuc, Vianney le; Cotten, Anne; Duhamel, Alain; Bera-Louville, Anne

    2011-01-01

    The aims of this preliminary study were to demonstrate the feasibility of in vivo diffusion tensor imaging (DTI) and fibre tracking (FT) of the lumbar nerve roots, and to assess potential differences in the DTI parameters of the lumbar nerves between healthy volunteers and patients suffering from disc herniation. Nineteen patients with unilateral sciatica related to posterolateral or foraminal disc herniation and 19 healthy volunteers were enrolled in this study. DTI with tractography of the L5 or S1 nerves was performed. Mean fractional anisotropy (FA) and mean diffusivity (MD) values were calculated from tractography images. FA and MD values could be obtained from DTI-FT images in all controls and patients. The mean FA value of the compressed lumbar nerve roots was significantly lower than the FA of the contralateral nerve roots (p=0.0001) and of the nerve roots of volunteers (p=0.0001). MD was significantly higher in compressed nerve roots than in the contralateral nerve root (p=0.0002) and in the nerve roots of volunteers (p=0.04). DTI with tractography of the lumbar nerves is possible. Significant changes in diffusion parameters were found in the compressed lumbar nerves. (orig.)

  15. [Imaging anatomy of cranial nerves].

    Science.gov (United States)

    Hermier, M; Leal, P R L; Salaris, S F; Froment, J-C; Sindou, M

    2009-04-01

    Knowledge of the anatomy of the cranial nerves is mandatory for optimal radiological exploration and interpretation of the images in normal and pathological conditions. CT is the method of choice for the study of the skull base and its foramina. MRI explores the cranial nerves and their vascular relationships precisely. Because of their small size, it is essential to obtain images with high spatial resolution. The MRI sequences optimize contrast between nerves and surrounding structures (cerebrospinal fluid, fat, bone structures and vessels). This chapter discusses the radiological anatomy of the cranial nerves.

  16. Factors that influence peripheral nerve regeneration

    DEFF Research Database (Denmark)

    Krarup, Christian; Archibald, Simon J; Madison, Roger D

    2002-01-01

    median nerve lesions (n = 46) in nonhuman primates over 3 to 4 years, a time span comparable with such lesions in humans. Nerve gap distances of 5, 20, or 50mm were repaired with nerve grafts or collagen-based nerve guide tubes, and three electrophysiological outcome measures were followed: (1) compound...... muscle action potentials in the abductor pollicis brevis muscle, (2) the number and size of motor units in reinnervated muscle, and (3) compound sensory action potentials from digital nerve. A statistical model was used to assess the influence of three variables (repair type, nerve gap distance, and time...... to earliest muscle reinnervation) on the final recovery of the outcome measures. Nerve gap distance and the repair type, individually and concertedly, strongly influenced the time to earliest muscle reinnervation, and only time to reinnervation was significant when all three variables were included as outcome...

  17. Suprascapular nerve entrapment in newsreel cameramen.

    Science.gov (United States)

    Karataş, Gülçin Kaymak; Göğüş, Feride

    2003-03-01

    To determine presence of suprascapular nerve entrapment in a group of newsreel cameramen. Thirty-six men working as newsreel cameramen participated in the study. In addition to musculoskeletal and neurologic examinations, bilateral suprascapular nerve conduction studies and needle electromyography were performed. A group of 19 healthy, male volunteers were included in the study as normal controls for suprascapular nerve conduction studies. In newsreel cameramen, mean suprascapular nerve latency was 3.20 +/- 0.56 msec and 2.84 +/- 0.36 msec for right and left shoulders, respectively (P = 0.001). The mean latency difference between right and left suprascapular nerves was -0.05 +/- 0.19 msec in the control group and 0.36 +/- 0.58 msec in the cameramen group (P mobile camera on the shoulder might cause suprascapular nerve entrapment in newsreel cameramen. This could be considered an occupational disorder of the suprascapular nerve, like meat-packer's neuropathy.

  18. Biodegradable p(DLLA-epsilon-CL) nerve guides versus autologous nerve grafts : Electromyographic and video analysis

    NARCIS (Netherlands)

    Meek, MF; Nicolai, JPA; Gramsbergen, A; van der Werf, J.F.A.

    The aim of this study was to evaluate the functional effects of bridging a gap in the sciatic nerve of the rat with either a biodegradable copolymer of (DL)-lactide and epsilon -caprolactone [p(DLLA-epsilon -CL)] nerve guide or an autologous nerve graft. Electromyograms (EMGs) of the gastrocnemius

  19. Transient delayed facial nerve palsy after inferior alveolar nerve block anesthesia.

    Science.gov (United States)

    Tzermpos, Fotios H; Cocos, Alina; Kleftogiannis, Matthaios; Zarakas, Marissa; Iatrou, Ioannis

    2012-01-01

    Facial nerve palsy, as a complication of an inferior alveolar nerve block anesthesia, is a rarely reported incident. Based on the time elapsed, from the moment of the injection to the onset of the symptoms, the paralysis could be either immediate or delayed. The purpose of this article is to report a case of delayed facial palsy as a result of inferior alveolar nerve block, which occurred 24 hours after the anesthetic administration and subsided in about 8 weeks. The pathogenesis, treatment, and results of an 8-week follow-up for a 20-year-old patient referred to a private maxillofacial clinic are presented and discussed. The patient's previous medical history was unremarkable. On clinical examination the patient exhibited generalized weakness of the left side of her face with a flat and expressionless appearance, and she was unable to close her left eye. One day before the onset of the symptoms, the patient had visited her dentist for a routine restorative procedure on the lower left first molar and an inferior alveolar block anesthesia was administered. The patient's medical history, clinical appearance, and complete examinations led to the diagnosis of delayed facial nerve palsy. Although neurologic occurrences are rare, dentists should keep in mind that certain dental procedures, such as inferior alveolar block anesthesia, could initiate facial nerve palsy. Attention should be paid during the administration of the anesthetic solution.

  20. Trigeminal neuralgia and facial nerve paralysis

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alexandra [IPOFG, Department of Radiology, Lisbon (Portugal)

    2005-03-01

    The trigeminal nerve is the largest of the cranial nerves. It provides sensory input from the face and motor innervation to the muscles of mastication. The facial nerve is the cranial nerve with the longest extracranial course, and its main functions include motor innervation to the muscles of facial expression, sensory control of lacrimation and salivation, control of the stapedial reflex and to carry taste sensation from the anterior two-thirds of the tongue. In order to be able adequately to image and follow the course of these cranial nerves and their main branches, a detailed knowledge of neuroanatomy is required. As we are dealing with very small anatomic structures, high resolution dedicated imaging studies are required to pick up normal and pathologic nerves. Whereas CT is best suited to demonstrate bony neurovascular foramina and canals, MRI is preferred to directly visualize the nerve. It is also the single technique able to detect pathologic processes afflicting the nerve without causing considerable expansion such as is usually the case in certain inflammatory/infectious conditions, perineural spread of malignancies and in very small intrinsic tumours. Because a long course from the brainstem nuclei to the peripheral branches is seen, it is useful to subdivide the nerve in several segments and then tailor the imaging modality and the imaging study to that specific segment. This is particularly true in cases where topographic diagnosis can be used to locate a lesion in the course of these nerves. (orig.)

  1. Axillary nerve injury associated with sports.

    Science.gov (United States)

    Lee, Sangkook; Saetia, Kriangsak; Saha, Suparna; Kline, David G; Kim, Daniel H

    2011-11-01

    The aim of this retrospective study was to present and investigate axillary nerve injuries associated with sports. This study retrospectively reviewed 26 axillary nerve injuries associated with sports between the years 1985 and 2010. Preoperative status of the axillary nerve was evaluated by using the Louisiana State University Health Science Center (LSUHSC) grading system published by the senior authors. Intraoperative nerve action potential recordings were performed to check nerve conduction and assess the possibility of resection. Neurolysis, suture, and nerve grafts were used for the surgical repair of the injured nerves. In 9 patients with partial loss of function and 3 with complete loss, neurolysis based on nerve action potential recordings was the primary treatment. Two patients with complete loss of function were treated with resection and suturing and 12 with resection and nerve grafting. The minimum follow-up period was 16 months (mean 20 months). The injuries were associated with the following sports: skiing (12 cases), football (5), rugby (2), baseball (2), ice hockey (2), soccer (1), weightlifting (1), and wrestling (1). Functional recovery was excellent. Neurolysis was performed in 9 cases, resulting in an average functional recovery of LSUHSC Grade 4.2. Recovery with graft repairs averaged LSUHSC Grade 3 or better in 11 of 12 cases Surgical repair can restore useful deltoid function in patients with sports-associated axillary nerve injuries, even in cases of severe stretch-contusion injury.

  2. Trigeminal neuralgia and facial nerve paralysis

    International Nuclear Information System (INIS)

    Borges, Alexandra

    2005-01-01

    The trigeminal nerve is the largest of the cranial nerves. It provides sensory input from the face and motor innervation to the muscles of mastication. The facial nerve is the cranial nerve with the longest extracranial course, and its main functions include motor innervation to the muscles of facial expression, sensory control of lacrimation and salivation, control of the stapedial reflex and to carry taste sensation from the anterior two-thirds of the tongue. In order to be able adequately to image and follow the course of these cranial nerves and their main branches, a detailed knowledge of neuroanatomy is required. As we are dealing with very small anatomic structures, high resolution dedicated imaging studies are required to pick up normal and pathologic nerves. Whereas CT is best suited to demonstrate bony neurovascular foramina and canals, MRI is preferred to directly visualize the nerve. It is also the single technique able to detect pathologic processes afflicting the nerve without causing considerable expansion such as is usually the case in certain inflammatory/infectious conditions, perineural spread of malignancies and in very small intrinsic tumours. Because a long course from the brainstem nuclei to the peripheral branches is seen, it is useful to subdivide the nerve in several segments and then tailor the imaging modality and the imaging study to that specific segment. This is particularly true in cases where topographic diagnosis can be used to locate a lesion in the course of these nerves. (orig.)

  3. The morphological substrate for Renal Denervation: Nerve distribution patterns and parasympathetic nerves. A post-mortem histological study.

    Science.gov (United States)

    van Amsterdam, Wouter A C; Blankestijn, Peter J; Goldschmeding, Roel; Bleys, Ronald L A W

    2016-03-01

    Renal Denervation as a possible treatment for hypertension has been studied extensively, but knowledge on the distribution of nerves surrounding the renal artery is still incomplete. While sympathetic and sensory nerves have been demonstrated, there is no mention of the presence of parasympathetic nerve fibers. To provide a description of the distribution patterns of the renal nerves in man, and, in addition, provide a detailed representation of the relative contribution of the sympathetic, parasympathetic and afferent divisions of the autonomic nervous system. Renal arteries of human cadavers were each divided into four longitudinal segments and immunohistochemically stained with specific markers for afferent, parasympathetic and sympathetic nerves. Nerve fibers were semi-automatically quantified by computerized image analysis, and expressed as cross-sectional area relative to the distance to the lumen. A total of 3372 nerve segments were identified in 8 arteries of 7 cadavers. Sympathetic, parasympathetic and afferent nerves contributed for 73.5% (95% CI: 65.4-81.5%), 17.9% (10.7-25.1%) and 8.7% (5.0-12.3%) of the total cross-sectional nerve area, respectively. Nerves are closer to the lumen in more distal segments and larger bundles that presumably innervate the kidney lie at 1-3.5mm distance from the lumen. The tissue-penetration depth of the ablation required to destroy 50% of the nerve fibers is 2.37 mm in the proximal segment and 1.78 mm in the most distal segments. Sympathetic, parasympathetic and afferent nerves exist in the vicinity of the renal artery. The results warrant further investigation of the role of the parasympathetic nervous system on renal physiology, and may contribute to refinement of the procedure by focusing the ablation on the most distal segment. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Immediate Nerve Transfer for Treatment of Peroneal Nerve Palsy Secondary to an Intraneural Ganglion: Case Report and Review.

    Science.gov (United States)

    Ratanshi, Imran; Clark, Tod A; Giuffre, Jennifer L

    2018-05-01

    Intraneural ganglion cysts, which occur within the common peroneal nerve, are a rare cause of foot drop. The current standard of treatment for intraneural ganglion cysts involving the common peroneal nerve involves (1) cyst decompression and (2) ligation of the articular nerve branch to prevent recurrence. Nerve transfers are a time-dependent strategy for recovering ankle dorsiflexion in cases of high peroneal nerve palsy; however, this modality has not been performed for intraneural ganglion cysts involving the common peroneal nerve. We present a case of common peroneal nerve palsy secondary to an intraneural ganglion cyst occurring in a 74-year-old female. The patient presented with a 5-month history of pain in the right common peroneal nerve distribution and foot drop. The patient underwent simultaneous cyst decompression, articular nerve branch ligation, and nerve transfer of the motor branch to flexor hallucis longus to a motor branch of anterior tibialis muscle. At final follow-up, the patient demonstrated complete (M4+) return of ankle dorsiflexion, no pain, no evidence of recurrence and was able to bear weight without the need for orthotic support. Given the minimal donor site morbidity and recovery of ankle dorsiflexion, this report underscores the importance of considering early nerve transfers in cases of high peroneal neuropathy due to an intraneural ganglion cyst.

  5. Peripheral nerve conduits: technology update

    Science.gov (United States)

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  6. Distal median nerve dysfunction

    Science.gov (United States)

    ... later on. Inflammation of the tendons ( tendonitis ) or joints ( arthritis ) can also put pressure on the nerve. ... how fast electrical signals move through a nerve Neuromuscular ultrasound to view problems with the muscles and ...

  7. Effects of graded mechanical compression of rabbit sciatic nerve on nerve blood flow and electrophysiological properties.

    Science.gov (United States)

    Yayama, Takafumi; Kobayashi, Shigeru; Nakanishi, Yoshitaka; Uchida, Kenzo; Kokubo, Yasuo; Miyazaki, Tsuyoshi; Takeno, Kenichi; Awara, Kosuke; Mwaka, Erisa S; Iwamoto, Yukihide; Baba, Hisatoshi

    2010-04-01

    Entrapment neuropathy is a frequent clinical problem that can be caused by, among other factors, mechanical compression; however, exactly how a compressive force affects the peripheral nerves remains poorly understood. In this study, using a rabbit model of sciatic nerve injury (n=12), we evaluated the time-course of changes in intraneural blood flow, compound nerve action potentials, and functioning of the blood-nerve barrier during graded mechanical compression. Nerve injury was applied using a compressor equipped with a custom-made pressure transducer. Cessation of intraneural blood flow was noted at a mean compressive force of 0.457+/-0.022 N (+/-SEM), and the compound action potential became zero at 0.486+/-0.031 N. Marked extravasation of Evans blue albumin was noted after 20 min of intraneural ischemia. The functional changes induced by compression are likely due to intraneural edema, which could subsequently result in impairment of nerve function. These changes may be critical factors in the development of symptoms associated with nerve compression. (c) 2009 Elsevier Ltd. All rights reserved.

  8. Thoracoscopic phrenic nerve patch insulation to avoid phrenic nerve stimulation with cardiac resynchronization therapy

    Directory of Open Access Journals (Sweden)

    Masatsugu Nozoe, MD, PhD

    2014-04-01

    Full Text Available A 76-year-old female was implanted with a cardiac resynchronization therapy (CRT device, with the left ventricular lead implanted through a transvenous approach. One day after implantation, diaphragmatic stimulation was observed when the patient was in the seated position, which could not be resolved by device reprogramming. We performed thoracoscopic phrenic nerve insulation using a Gore-Tex patch. The left phrenic nerve was carefully detached from the pericardial adipose tissue, and a Gore-Tex patch was inserted between the phrenic nerve and pericardium using a thoracoscopic technique. This approach represents a potential option for the management of uncontrollable phrenic nerve stimulation during CRT.

  9. Facial Nerve Paralysis due to a Pleomorphic Adenoma with the Imaging Characteristics of a Facial Nerve Schwannoma.

    Science.gov (United States)

    Nader, Marc-Elie; Bell, Diana; Sturgis, Erich M; Ginsberg, Lawrence E; Gidley, Paul W

    2014-08-01

    Background Facial nerve paralysis in a patient with a salivary gland mass usually denotes malignancy. However, facial paralysis can also be caused by benign salivary gland tumors. Methods We present a case of facial nerve paralysis due to a benign salivary gland tumor that had the imaging characteristics of an intraparotid facial nerve schwannoma. Results The patient presented to our clinic 4 years after the onset of facial nerve paralysis initially diagnosed as Bell palsy. Computed tomography demonstrated filling and erosion of the stylomastoid foramen with a mass on the facial nerve. Postoperative histopathology showed the presence of a pleomorphic adenoma. Facial paralysis was thought to be caused by extrinsic nerve compression. Conclusions This case illustrates the difficulty of accurate preoperative diagnosis of a parotid gland mass and reinforces the concept that facial nerve paralysis in the context of salivary gland tumors may not always indicate malignancy.

  10. Collision tumor of the facial nerve: a synchronous seventh nerve schwannoma and neurofibroma.

    Science.gov (United States)

    Gross, Brian C; Carlson, Matthew L; Driscoll, Colin L; Moore, Eric J

    2012-10-01

    To report a novel case of a collision tumor involving an intraparotid neurofibroma and a mastoid segment facial nerve schwannoma. Clinical capsule report. Tertiary academic referral center. A 29-year-old woman with a 2-year history of an asymptomatic enlarging left infraauricular mass and normal FN function presented to a tertiary care referral center. Computed tomography and magnetic resonance imaging demonstrated a cystic lesion in the deep portion of the parotid gland extending into the stylomastoid foramen. The patient underwent superficial parotidectomy, and a cystic parotid mass was found to be intrinsic to the intraparotid facial nerve. A portion of the mass was biopsied, and intraoperative frozen section pathology was consistent with a neurofibroma. A mastoidectomy with FN decompression was then performed until a normal-appearing segment was identified just proximal to the second genu. After biopsy, proximal facial nerve stimulation failed to elicit evoked motor potentials, and en bloc resection was performed. Final pathology demonstrated a schwannoma involving the mastoid segment and a neurofibroma involving the proximal intraparotid facial nerve. We report the first case of a facial nerve collision tumor involving an intraparotid neurofibroma and a mastoid segment facial nerve schwannoma. Benign FN sheath tumors of the parotid gland are rare but should be considered in the differential diagnosis of a parotid mass.

  11. Reconstruction of facial nerve injuries in children.

    Science.gov (United States)

    Fattah, Adel; Borschel, Gregory H; Zuker, Ron M

    2011-05-01

    Facial nerve trauma is uncommon in children, and many spontaneously recover some function; nonetheless, loss of facial nerve activity leads to functional impairment of ocular and oral sphincters and nasal orifice. In many cases, the impediment posed by facial asymmetry and reduced mimetic function more significantly affects the child's psychosocial interactions. As such, reconstruction of the facial nerve affords great benefits in quality of life. The therapeutic strategy is dependent on numerous factors, including the cause of facial nerve injury, the deficit, the prognosis for recovery, and the time elapsed since the injury. The options for treatment include a diverse range of surgical techniques including static lifts and slings, nerve repairs, nerve grafts and nerve transfers, regional, and microvascular free muscle transfer. We review our strategies for addressing facial nerve injuries in children.

  12. A prospective clinical evaluation of biodegradable neurolac nerve guides for sensory nerve repair in the hand

    NARCIS (Netherlands)

    Bertleff, MJOE; Meek, MF; Nicolai, JPA

    Purpose: Our purpose was to study the recovery of sensory nerve function, after treatment of traumatic peripheral nerve lesions with a biodegradable poly(DL-lactide-ε-caprolactone) Neurolac nerve guide (Polyganics B.V., Groningen, the Netherlands) versus the current standard reconstruction

  13. The Cranial Nerve Skywalk: A 3D Tutorial of Cranial Nerves in a Virtual Platform

    Science.gov (United States)

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways…

  14. The enlargement of geniculate fossa of facial nerve canal: a new CT finding of facial nerve canal fracture

    International Nuclear Information System (INIS)

    Gong Ruozhen; Li Yuhua; Gong Wuxian; Wu Lebin

    2006-01-01

    Objective: To discuss the value of enlargement of geniculate fossa of facial nerve canal in the diagnosis of facial nerve canal fracture. Methods: Thirty patients with facial nerve canal fracture underwent axial and coronal CT scan. The correlation between the fracture and the enlargement of geniculate fossa of facial nerve canal was analyzed. The ability of showing the fracture and enlargement of geniculate fossa of facial nerve canal in axial and coronal imaging were compared. Results: Fracture of geniculate fossa of facial nerve canal was found in the operation in 30 patients, while the fracture was detected in CT in 18 patients. Enlargement of geniculate ganglion of facial nerve was detected in 30 patients in the operation, while the enlargement of fossa was found in CT in 28 cases. Enlargement and fracture of geniculate fossa of facial nerve canal were both detected in CT images in 18 patients. Only the enlargement of geniculate fossa of facial nerve canal was shown in 12 patients in CT. Conclusion: Enlargement of geniculate fossa of facial nerve canal was a useful finding in the diagnosis of fracture of geniculate fossa in patients with facial paralysis, even no fracture line was shown on CT images. (authors)

  15. Side Effects: Nerve Problems (Peripheral Neuropathy)

    Science.gov (United States)

    Nerve problems, such as peripheral neuropathy, can be caused by cancer treatment. Learn about signs and symptoms of nerve changes. Find out how to prevent or manage nerve problems during cancer treatment.

  16. Effects of stress and MDMA on hippocampal gene expression.

    Science.gov (United States)

    Weber, Georg F; Johnson, Bethann N; Yamamoto, Bryan K; Gudelsky, Gary A

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature.

  17. Infraorbital nerve transposition to expand the endoscopic transnasal maxillectomy.

    Science.gov (United States)

    Salzano, Giovanni; Turri-Zanoni, Mario; Karligkiotis, Apostolos; Zocchi, Jacopo; Dell'Aversana Orabona, Giovanni; Califano, Luigi; Battaglia, Paolo; Castelnuovo, Paolo

    2017-02-01

    The infraorbital nerve (ION) is a terminal branch of the maxillary nerve (V2) providing sensory innervation to the malar skin. It is sometimes necessary to sacrifice the ION and its branches to obtain adequate maxillary sinus exposure for radical resection of sinonasal tumors. Consequently, patients suffer temporary or permanent paresthesia, hypoestesthia, and neuralgia of the face. We describe an innovative technique used for preservation of the ION while removing the anterior, superior, and lateral walls of the maxillary sinus through a medial endoscopic transnasal maxillectomy. All patients who underwent transnasal endoscopic maxillectomy with ION transposition in our institute were retrospectively reviewed. Two patients were identified who had been treated for sinonasal cancers using this approach. No major complications were observed. Transient loss of ION function was observed with complete recovery of skin sensory perception within 6 months of surgery. One patient referred to a mild permanent anesthesia of the upper incisors. No diplopia or enophthalmos were encountered in any of the patients. The ION transposition is useful for selected cases of benign and malignant sinonasal tumors that do not infiltrate the ION itself but involve the surrounding portion of the maxillary sinus. Anatomic preservation of the ION seems to be beneficial to the postoperative quality of life of such patients. © 2016 ARS-AAOA, LLC.

  18. Sustained neurochemical plasticity in central terminals of mouse DRG neurons following colitis.

    Science.gov (United States)

    Benson, Jessica R; Xu, Jiameng; Moynes, Derek M; Lapointe, Tamia K; Altier, Christophe; Vanner, Stephen J; Lomax, Alan E

    2014-05-01

    Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.

  19. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.

    Science.gov (United States)

    Lin, Tao; Liu, Sheng; Chen, Shihao; Qiu, Shuai; Rao, Zilong; Liu, Jianghui; Zhu, Shuang; Yan, Liwei; Mao, Haiquan; Zhu, Qingtang; Quan, Daping; Liu, Xiaolin

    2018-06-01

    Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy

  20. Human vagus nerve branching in the cervical region.

    Directory of Open Access Journals (Sweden)

    Niels Hammer

    Full Text Available Vagus nerve stimulation is increasingly applied to treat epilepsy, psychiatric conditions and potentially chronic heart failure. After implanting vagus nerve electrodes to the cervical vagus nerve, side effects such as voice alterations and dyspnea or missing therapeutic effects are observed at different frequencies. Cervical vagus nerve branching might partly be responsible for these effects. However, vagus nerve branching has not yet been described in the context of vagus nerve stimulation.Branching of the cervical vagus nerve was investigated macroscopically in 35 body donors (66 cervical sides in the carotid sheath. After X-ray imaging for determining the vertebral levels of cervical vagus nerve branching, samples were removed to confirm histologically the nerve and to calculate cervical vagus nerve diameters and cross-sections.Cervical vagus nerve branching was observed in 29% of all cases (26% unilaterally, 3% bilaterally and proven histologically in all cases. Right-sided branching (22% was more common than left-sided branching (12% and occurred on the level of the fourth and fifth vertebra on the left and on the level of the second to fifth vertebra on the right side. Vagus nerves without branching were significantly larger than vagus nerves with branches, concerning their diameters (4.79 mm vs. 3.78 mm and cross-sections (7.24 mm2 vs. 5.28 mm2.Cervical vagus nerve branching is considerably more frequent than described previously. The side-dependent differences of vagus nerve branching may be linked to the asymmetric effects of the vagus nerve. Cervical vagus nerve branching should be taken into account when identifying main trunk of the vagus nerve for implanting electrodes to minimize potential side effects or lacking therapeutic benefits of vagus nerve stimulation.

  1. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration.

    Science.gov (United States)

    Li, Guicai; Xiao, Qinzhi; Zhang, Luzhong; Zhao, Yahong; Yang, Yumin

    2017-09-01

    Artificial chitosan scaffolds have been widely investigated for peripheral nerve regeneration. However, the effect was not as good as that of autologous grafts and therefore could not meet the clinical requirement. In the present study, the nerve growth factor (NGF) loaded heparin/chitosan scaffolds were fabricated via electrostatic interaction for further improving nerve regeneration. The physicochemical properties including morphology, wettability and composition were measured. The heparin immobilization, NGF loading and release were quantitatively and qualitatively characterized, respectively. The effect of NGF loaded heparin/chitosan scaffolds on nerve regeneration was evaluated by Schwann cells culture for different periods. The results showed that the heparin immobilization and NGF loading did not cause the change of bulk properties of chitosan scaffolds except for morphology and wettability. The pre-immobilization of heparin in chitosan scaffolds could enhance the stability of subsequently loaded NGF. The NGF loaded heparin/chitosan scaffolds could obviously improve the attachment and proliferation of Schwann cells in vitro. More importantly, the NGF loaded heparin/chitosan scaffolds could effectively promote the morphology development of Schwann cells. The study may provide a useful experimental basis to design and develop artificial implants for peripheral nerve regeneration and other tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Genistein alleviates anxiety-like behaviors in post-traumatic stress disorder model through enhancing serotonergic transmission in the amygdala.

    Science.gov (United States)

    Wu, Zhong-Min; Ni, Gui-Lian; Shao, Ai-Min; Cui, Rong

    2017-09-01

    Post-traumatic stress disorder (PTSD) is a chronic psychiatric disorder, characterized by intense fear, and increased arousal and avoidance of traumatic events. The current available treatments for PTSD have limited therapeutic value. Genistein, a natural isoflavone, modulates a variety of cell functions. In this study, we tested anti-anxiety activity and underlying mechanisms of genistein in a PTSD rat model. The rats were trained to associate a tone with foot shock delivery on day 0, then fear conditioning was performed on day 7, 14 and 21. Genistein (2-8mg/kg) was injected intraperitoneally daily for 7 days. The anti-anxiety effects of genistein were measured by contextual freezing behavior and elevated plus maze. By the end of the experiments, the amygdala was extracted and subject to neurochemistry analysis. Genistein alleviated contextual freezing behavior and improved performance in elevated plus maze dose-dependently in PTSD rats. Furthermore, in these rats, genistein enhanced serotonergic transmission in the amygdala, including upregulation of tryptophan hydroxylase, serotonin, and phosphorylated (p)-CaMKII and p-CREB, as well. Genistein exerts anti-anxiety effects on a PTSD model probably through enhancing serotonergic system and CaMKII/CREB signaling pathway in the amygdala. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. [Morphologic changes during neuroplastic nerve restoration].

    Science.gov (United States)

    Bakalski, E P; Rozhkov, E N

    1976-06-01

    The dynamics of ultrastructural changes in plastic recovery of the function of the additional nerve by the anterior branch of the second cervical nerve was studied. The nerve cells at the level of the donor-nerve were found to be highly reactive and plastic. It was established that in the process of heterogenic regeneration of the nerve the most substantial changes in neuronal structures were observed during the first two months. The cysterns of the endoplasmic network remained dilated for a long time after platic operation with might be related with the increased protein metabolism in the neuron.

  4. Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves

    DEFF Research Database (Denmark)

    Barghash, Ziad; Larsen, Jytte Overgaard; Al-Bishri, Awad

    2013-01-01

    The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod...... for 30 s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both...... in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed...

  5. Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals.

    Science.gov (United States)

    Chang, Weipang; Kanda, Hirosato; Ikeda, Ryo; Ling, Jennifer; DeBerry, Jennifer J; Gu, Jianguo G

    2016-09-13

    The evolution of sensory systems has let mammals develop complicated tactile end organs to enable sophisticated sensory tasks, including social interaction, environmental exploration, and tactile discrimination. The Merkel disc, a main type of tactile end organ consisting of Merkel cells (MCs) and Aβ-afferent endings, are highly abundant in fingertips, touch domes, and whisker hair follicles of mammals. The Merkel disc has high tactile acuity for an object's physical features, such as texture, shape, and edges. Mechanisms underlying the tactile function of Merkel discs are obscured as to how MCs transmit tactile signals to Aβ-afferent endings leading to tactile sensations. Using mouse whisker hair follicles, we show herein that tactile stimuli are transduced by MCs into excitatory signals that trigger vesicular serotonin release from MCs. We identify that both ionotropic and metabotropic 5-hydroxytryptamine (5-HT) receptors are expressed on whisker Aβ-afferent endings and that their activation by serotonin released from MCs initiates Aβ-afferent impulses. Moreover, we demonstrate that these ionotropic and metabotropic 5-HT receptors have a synergistic effect that is critical to both electrophysiological and behavioral tactile responses. These findings elucidate that the Merkel disc is a unique serotonergic synapse located in the epidermis and plays a key role in tactile transmission. The epidermal serotonergic synapse may have important clinical implications in sensory dysfunctions, such as the loss of tactile sensitivity and tactile allodynia seen in patients who have diabetes, inflammatory diseases, and undergo chemotherapy. It may also have implications in the exaggerated tactile sensations induced by recreational drugs that act on serotoninergic synapses.

  6. Neurochemical and neuroanatomic effects of 3,4-methylenedioxymethamphetamine (MDMA) in rats

    International Nuclear Information System (INIS)

    Virus, R.; Commins, D.; Vosmer, G.; Woolverton, W.; Schuster, C.; Seiden, L.

    1986-01-01

    Rats injected s.c. twice daily for 4 consecutive days with 10,20, or 40 mg/kg MDMA or saline and sacrificed 2 weeks after the last injection showed dose-dependent reductions in serotonin (5-HT) concentrations in hypothalamus, hippocampus (HIP), striatum (STR), somatosensory cortex (SC) and other cortical areas (CTX). 5-HT depletion was maximal in HIP (11.5 +/- 1.7%) and SC (15.3 +/- 3.2%, p 3 H)5-HT uptake sites (V/sub max/ 35.2% of control) without affecting the affinity (K/sub m/) in HIP. Fink-Heimer staining showed that rats injected s.c. twice daily for 2 days with 80 mg/kg MDMA had greater degeneration of nerve terminals in STR (p<0.005) and pyramidal cells in Layer III of SC (p<0.01) than did control rats. These results clearly suggest that repeated exposure to MDMA selectively damages serotonergic neurons in the central nervous system of rats

  7. Descending serotonergic facilitation and the antinociceptive effects of pregabalin in a rat model of osteoarthritic pain

    Directory of Open Access Journals (Sweden)

    Dolphin Annette C

    2009-08-01

    descending serotonergic facilitation plays a role in mediating the brush and innocuous mechanical punctate evoked neuronal responses in MIA rats, suggesting an adaptive change in the excitatory serotonergic drive modulating low threshold evoked neuronal responses in MIA-induced OA pain. This alteration in excitatory serotonergic drive, alongside an increase in α2δ-1 mRNA levels, may underlie pregabalin's state dependent effects in this model of chronic pain.

  8. [Isolated traumatic injuries of the axillary nerve. Radial nerve transfer in four cases and literatura review].

    Science.gov (United States)

    Domínguez-Páez, Miguel; Socolovsky, Mariano; Di Masi, Gilda; Arráez-Sánchez, Miguel Ángel

    2012-11-01

    To analyze the results of an initial series of four cases of traumatic injuries of the axillary nerve, treated by a nerve transfer from the triceps long branch of the radial nerve. An extensive analysis of the literature has also been made. Four patients aged between 21 and 42 years old presenting an isolated traumatic palsy of the axillary nerve were operated between January 2007 and June 2010. All cases were treated by nerve transfer six to eight months after the trauma. The results of these cases are analyzed, the same as the axillary nerve injuries series presented in the literature from 1982. One year after the surgery, all patients improved their abduction a mean of 70° (range 30 to 120°), showing a M4 in the British Medical Council Scale. No patient complained of triceps weakness after the procedure. These results are similar to those published employing primary grafting for the axillary nerve. Isolated injuries of the axillary nerve should be treated with surgery when spontaneous recovery is not verified 6 months after the trauma. Primary repair with grafts is the most popular surgical technique, with a rate of success of approximately 90%. The preliminary results of a nerve transfer employing the long triceps branch are similar, and a definite comparison of both techniques with a bigger number of cases should be done in the future. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  9. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  10. Altered brain serotonergic neurotransmission following caffeine withdrawal produces behavioral deficits in rats.

    Science.gov (United States)

    Khaliq, Saima; Haider, Saida; Naqvi, Faizan; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Caffeine administration has been shown to enhance performance and memory in rodents and humans while its withdrawal on the other hand produces neurobehavioral deficits which are thought to be mediated by alterations in monoamines neurotransmission. A role of decreased brain 5-HT (5-hydroxytryptamine, serotonin) levels has been implicated in impaired cognitive performance and depression. Memory functions of rats were assessed by Water Maze (WM) and immobility time by Forced Swim Test (FST). The results of this study showed that repeated caffeine administration for 6 days at 30 mg/kg dose significantly increases brain 5-HT (pcaffeine. Withdrawal of caffeine however produced memory deficits and significantly increases the immobility time of rats in FST. The results of this study are linked with caffeine induced alterations in serotonergic neurotransmission and its role in memory and depression.

  11. Changes in the blood-nerve barrier after sciatic nerve cold injury: indications supporting early treatment

    Directory of Open Access Journals (Sweden)

    Hao Li

    2015-01-01

    Full Text Available Severe edema in the endoneurium can occur after non-freezing cold injury to the peripheral nerve, which suggests damage to the blood-nerve barrier. To determine the effects of cold injury on the blood-nerve barrier, the sciatic nerve on one side of Wistar rats was treated with low temperatures (3-5°C for 2 hours. The contralateral sciatic nerve was used as a control. We assessed changes in the nerves using Evans blue as a fluid tracer and morphological methods. Excess fluid was found in the endoneurium 1 day after cold injury, though the tight junctions between cells remained closed. From 3 to 5 days after the cold injury, the fluid was still present, but the tight junctions were open. Less tracer leakage was found from 3 to 5 days after the cold injury compared with 1 day after injury. The cold injury resulted in a breakdown of the blood-nerve barrier function, which caused endoneurial edema. However, during the early period, the breakdown of the blood-nerve barrier did not include the opening of tight junctions, but was due to other factors. Excessive fluid volume produced a large increase in the endoneurial fluid pressure, prevented liquid penetration into the endoneurium from the microvasculature. These results suggest that drug treatment to patients with cold injuries should be administered during the early period after injury because it may be more difficult for the drug to reach the injury site through the microcirculation after the tissue fluid pressure becomes elevated.

  12. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    Science.gov (United States)

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  13. 3D printing strategies for peripheral nerve regeneration.

    Science.gov (United States)

    Petcu, Eugen B; Midha, Rajiv; McColl, Erin; Popa-Wagner, Aurel; Chirila, Traian V; Dalton, Paul D

    2018-03-23

    After many decades of biomaterials research for peripheral nerve regeneration, a clinical product (the nerve guide), is emerging as a proven alternative for relatively short injury gaps. This review identifies aspects where 3D printing can assist in improving long-distance nerve guide regeneration strategies. These include (1) 3D printing of the customizable nerve guides, (2) fabrication of scaffolds that fill nerve guides, (3) 3D bioprinting of cells within a matrix/bioink into the nerve guide lumen and the (4) establishment of growth factor gradients along the length a nerve guide. The improving resolution of 3D printing technologies will be an important factor for peripheral nerve regeneration, as fascicular-like guiding structures provide one path to improved nerve guidance. The capability of 3D printing to manufacture complex structures from patient data based on existing medical imaging technologies is an exciting aspect that could eventually be applied to treating peripheral nerve injury. Ultimately, the goal of 3D printing in peripheral nerve regeneration is the automated fabrication, potentially customized for the patient, of structures within the nerve guide that significantly outperform the nerve autograft over large gap injuries.

  14. Evaluation of functional nerve recovery after reconstruction with a new biodegradable poly (DL-lactide-epsilon-caprolactone) nerve guide

    NARCIS (Netherlands)

    Meek, MF; denDunnen, WFA; Robinson, PH; Pennings, AJ; Schakenraad, JM

    The aim of this study was to evaluate functional nerve recovery following reconstruction of a 1 cm gap in the sciatic nerve of a rat, using a new biodegradable p (DLLA-epsilon-CL) nerve guide. To evaluate both motor and sensory nerve recovery, walking track analysis and electrostimulation tests were

  15. Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves.

    Science.gov (United States)

    Barghash, Z; Larsen, J O; Al-Bishri, A; Kahnberg, K-E

    2013-12-01

    The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod for 30s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed in the degenerative pattern; however, at day 19 the buccal branch had regenerated to the normal number of axons, whereas the mental nerve had only regained 50% of the normal number of axons. We conclude that the regenerative process is faster and/or more complete in the facial nerve (motor function) than it is in the mental nerve (somatosensory function). Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Outcome of different facial nerve reconstruction techniques

    OpenAIRE

    Mohamed, Aboshanif; Omi, Eigo; Honda, Kohei; Suzuki, Shinsuke; Ishikawa, Kazuo

    2016-01-01

    Abstract Introduction: There is no technique of facial nerve reconstruction that guarantees facial function recovery up to grade III. Objective: To evaluate the efficacy and safety of different facial nerve reconstruction techniques. Methods: Facial nerve reconstruction was performed in 22 patients (facial nerve interpositional graft in 11 patients and hypoglossal-facial nerve transfer in another 11 patients). All patients had facial function House-Brackmann (HB) grade VI, either caused by...

  17. Anxiogenic drug administration and elevated plus-maze exposure in rats activate populations of relaxin-3 neurons in the nucleus incertus and serotonergic neurons in the dorsal raphe nucleus.

    Science.gov (United States)

    Lawther, A J; Clissold, M L; Ma, S; Kent, S; Lowry, C A; Gundlach, A L; Hale, M W

    2015-09-10

    Anxiety is a complex and adaptive emotional state controlled by a distributed and interconnected network of brain regions, and disruption of these networks is thought to give rise to the behavioral symptoms associated with anxiety disorders in humans. The dorsal raphe nucleus (DR), which contains the majority of forebrain-projecting serotonergic neurons, is implicated in the control of anxiety states and anxiety-related behavior via neuromodulatory effects on these networks. Relaxin-3 is the native neuropeptide ligand for the Gi/o-protein-coupled receptor, RXFP3, and is primarily expressed in the nucleus incertus (NI), a tegmental region immediately caudal to the DR. RXFP3 activation has been shown to modulate anxiety-related behavior in rodents, and RXFP3 mRNA is expressed in the DR. In this study, we examined the response of relaxin-3-containing neurons in the NI and serotonergic neurons in the DR following pharmacologically induced anxiety and exposure to an aversive environment. We administered the anxiogenic drug FG-7142 or vehicle to adult male Wistar rats and, 30 min later, exposed them to either the elevated plus-maze or home cage control conditions. Immunohistochemical detection of c-Fos was used to determine activation of serotonergic neurons in the DR and relaxin-3 neurons in the NI, measured 2h following drug injection. Analysis revealed that FG-7142 administration and exposure to the elevated plus-maze are both associated with an increase in c-Fos expression in relaxin-3-containing neurons in the NI and in serotonergic neurons in dorsal and ventrolateral regions of the DR. These data are consistent with the hypothesis that relaxin-3 systems in the NI and serotonin systems in the DR interact to form part of a network involved in the control of anxiety-related behavior. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Unilateral traumatic oculomotor nerve paralysis

    International Nuclear Information System (INIS)

    Asari, Syoji; Satoh, Toru; Yamamoto, Yuji

    1982-01-01

    The present authors report a case of unilateral traumatic oculomotor nerve paralysis which shows interesting CT findings which suggest its mechanism. A 60-year-old woman was admitted to our hospital with a cerebral concussion soon after a traffic accident. A CT scan was performed soon after admission. A high-density spot was noted at the medial aspect of the left cerebral peduncle, where the oculomotor nerve emerged from the midbrain, and an irregular, slender, high-density area was delineated in the right dorsolateral surface of the midbrain. Although the right hemiparesis had already improved by the next morning, the function of the left oculomotor nerve has been completely disturbed for the three months since the injury. In our case, it is speculated that an avulsion of the left oculomotor nerve rootlet occurred at the time of impact as the mechanism of the oculomotor nerve paralysis. A CT taken soon after the head injury showed a high-density spot; this was considered to be a hemorrhage occurring because of the avulsion of the nerve rootlet at the medial surface of the cerebral peduncle. (J.P.N.)

  19. Comparison of four different nerve conduction techniques of the superficial fibular sensory nerve.

    Science.gov (United States)

    Saffarian, Mathew R; Condie, Nathan C; Austin, Erica A; Mccausland, Katie E; Andary, Michael T; Sylvain, James R; Mull, Iian R; Zemper, Eric D; Jannausch, Mary L

    2017-09-01

    There are many different nerve conduction study (NCS) techniques to study the superficial fibular sensory nerve (SFSN). We present reference distal latency values and comparative data regarding 4 different NCS for the SFSN. Four different NCS techniques, Spartan technique, Izzo techniques (medial and intermediate dorsal cutaneous branches), and Daube technique, were performed on (114) healthy volunteers. A total of 108 subjects with 164 legs were included. The mean latency of the Spartan technique was longest (3.9 ± 0.3 ms) while the Daube technique was the shortest (3.6 ± 0.7 ms). The mean amplitude of the Daube technique displayed the highest (15.2 ± 8.2 μV) with the Spartan technique having the lowest (8.7 ± 4.2 μV). Among the absent sensory nerve action potentials (SNAPs), the Spartan technique was absent only twice (1.2%) and the Izzo Medial technique was absent more than the other techniques (2.9%). All 4 techniques were reliable methods for obtaining the superficial fibular nerve SNAP, present in 95% of individuals. Muscle Nerve 56: 458-462, 2017. © 2017 Wiley Periodicals, Inc.

  20. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  1. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    International Nuclear Information System (INIS)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-01-01

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  2. High-intensity facial nerve lesions on T2-weighted images in chronic persistent facial nerve palsy

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, T. [Dept. of Radiology, Sendai City Hospital, Sendai (Japan); Dept. of Radiology, Tottori Univ. (Japan); Ishii, K. [Dept. of Radiology, Sendai City Hospital, Sendai (Japan); Okitsu, T. [Dept. of Otolaryngology, Sendai City Hospital (Japan); Ogawa, T. [Dept. of Radiology, Tottori Univ. (Japan); Okudera, T. [Dept. of Radiology, Research Inst. of Brain and Blood Vessels-Akita, Akita (Japan)

    2001-05-01

    Our aim was to estimate the value of MRI in detecting irreversibly paralysed facial nerves. We examined 95 consecutive patients with a facial nerve palsy (14 with a persistent palsy, and 81 with good recovery), using a 1.0 T unit, with T2-weighted and contrast-enhanced T1-weighted images. The geniculate ganglion and tympanic segment had gave high signal on T2-weighted images in the chronic stage of persistent palsy, but not in acute palsy. The enhancement pattern of the facial nerve in the chronic persistent facial nerve palsy is similar to that in the acute palsy with good recovery. These findings suggest that T2-weighted MRI can be used to show severely damaged facial nerves. (orig.)

  3. Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: a 5-year bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2015-01-01

    Full Text Available With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and large-gap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "pe-ripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany, Washington University (USA, and Nantong University (China. The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad-ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.

  4. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes

    Science.gov (United States)

    Vasudevan, Srikanth; Patel, Kunal; Welle, Cristin

    2017-02-01

    Objective. In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. Approach. Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. Main results. Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons

  5. Optogenetic probing of nerve and muscle function after facial nerve lesion in the mouse whisker system

    Science.gov (United States)

    Bandi, Akhil; Vajtay, Thomas J.; Upadhyay, Aman; Yiantsos, S. Olga; Lee, Christian R.; Margolis, David J.

    2018-02-01

    Optogenetic modulation of neural circuits has opened new avenues into neuroscience research, allowing the control of cellular activity of genetically specified cell types. Optogenetics is still underdeveloped in the peripheral nervous system, yet there are many applications related to sensorimotor function, pain and nerve injury that would be of great benefit. We recently established a method for non-invasive, transdermal optogenetic stimulation of the facial muscles that control whisker movements in mice (Park et al., 2016, eLife, e14140)1. Here we present results comparing the effects of optogenetic stimulation of whisker movements in mice that express channelrhodopsin-2 (ChR2) selectively in either the facial motor nerve (ChAT-ChR2 mice) or muscle (Emx1-ChR2 or ACTA1-ChR2 mice). We tracked changes in nerve and muscle function before and up to 14 days after nerve transection. Optogenetic 460 nm transdermal stimulation of the distal cut nerve showed that nerve degeneration progresses rapidly over 24 hours. In contrast, the whisker movements evoked by optogenetic muscle stimulation were up-regulated after denervation, including increased maximum protraction amplitude, increased sensitivity to low-intensity stimuli, and more sustained muscle contractions (reduced adaptation). Our results indicate that peripheral optogenetic stimulation is a promising technique for probing the timecourse of functional changes of both nerve and muscle, and holds potential for restoring movement after paralysis induced by nerve damage or motoneuron degeneration.

  6. Curcumin promotes nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats.

    Science.gov (United States)

    Ma, Junxiong; Yu, Hailong; Liu, Jun; Chen, Yu; Wang, Qi; Xiang, Liangbi

    2016-01-01

    Curcumin is capable of promoting peripheral nerve regeneration in normal condition. However, it is unclear whether its beneficial effect on nerve regeneration still exists under diabetic mellitus. The present study was designed to investigate such a possibility. Diabetes in rats was developed by a single dose of streptozotocin at 50 mg/kg. Immediately after nerve crush injury, the diabetic rats were intraperitoneally administrated daily for 4 weeks with curcumin (50 mg/kg, 100 mg/kg and 300 mg/kg), or normal saline, respectively. The axonal regeneration was investigated by morphometric analysis and retrograde labeling. The functional recovery was evaluated by electrophysiological studies and behavioral analysis. Axonal regeneration and functional recovery was significantly enhanced by curcumin, which were significantly better than those in vehicle saline group. In addition, high doses of curcumin (100 mg/kg and 300 mg/kg) achieved better axonal regeneration and functional recovery than low dose (50 mg/kg). In conclusion, curcumin is capable of promoting nerve regeneration after sciatic nerve crush injury in diabetes mellitus, highlighting its therapeutic values as a neuroprotective agent for peripheral nerve injury repair in diabetes mellitus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Effect of Atorvastatin vs. Rosuvastatin on cardiac sympathetic nerve activity in non-diabetic patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsutamoto, Takayoshi; Ibe, Kunihiro [Toyosato Hospital, Toyosato, Shiga (Japan); Sakai, Hiroshi; Yamaji, Masayuki; Kawahara, Chiho; Nakae, Ichiro; Fujii, Masanori; Yamamoto, Takashi; Horie, Minoru [Shiga Univ. of Medical Science, Faculty of Medicine, Otsu, Shiga (Japan)

    2011-08-15

    Effects of statin therapy on cardiac sympathetic nerve activity in patients with chronic heart failure (CHF) have not previously been evaluated. To compare the effects of lipophilic atorvastatin and hydrophilic rosuvastatin on cardiac sympathetic nerve activity in CHF patients with dilated cardiomyopathy (DCM), 63 stable outpatients with DCM, who were already receiving standard therapy for CHF, were randomized to atorvastatin (n=32) or rosuvastatin (n=31). We evaluated cardiac sympathetic nerve activity by cardiac {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy, hemodynamic parameters and neurohumoral factors before and after 6 months of treatment. There were no differences in the baseline characteristics of the 2 groups. In the rosuvastatin group, there were no changes in MIBG parameters, left ventricular ejection fraction or plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP) after 6 months of treatment. In contrast, the atorvastatin group showed a significant increase in the delayed heart/mediastinum count ratio (2.18{+-}0.4 vs. 2.36{+-}0.4, P<0.0001), and the washout rate was significantly decreased (34.8{+-}5.7 vs. 32.6{+-}6.3%, P=0.0001) after 6 months of treatment compared with the baseline values. The plasma NT-proBNP level was also significantly decreased (729{+-}858 vs. 558{+-}747 pg/ml, P=0.0139). Lipophilic atorvastatin but not hydrophilic rosuvastatin improves cardiac sympathetic nerve activity in CHF patients with DCM. (author)

  8. Cranial nerve palsies

    International Nuclear Information System (INIS)

    Ruggieri, P.; Adelizzi, J.; Modic, M.T.; Ross, J.S.; Tkach, J.; Masaryk, T.J.

    1990-01-01

    This paper evaluates the utility of multiplanar reconstructions (MPRs) of three-dimensional (3D) MR angiography data sets in the examination of patients with cranial nerve palsies. The authors hypothesis was that 3D data could be reformatted to highlight the intricate spatial relationships of vessels to adjacent neural tissues by taking advantage of the high vessel-parenchyma contrast in high-resolution 3D time-of-flight sequences. Twenty patients with cranial nerve palsies and 10 asymptomatic patients were examined with coronal T1-weighted and axial T2-weighted imaging plus a gadolinium-enhanced 3D MRA sequence (40/7/15 degrees, axial 60-mm volume, 0.9-mm isotropic resolution). Cranial nerves II-VIII were subsequently evaluated on axial and reformatted coronal and/or sagittal images

  9. Use of Processed Nerve Allografts to Repair Nerve Injuries Greater Than 25 mm in the Hand.

    Science.gov (United States)

    Rinker, Brian; Zoldos, Jozef; Weber, Renata V; Ko, Jason; Thayer, Wesley; Greenberg, Jeffrey; Leversedge, Fraser J; Safa, Bauback; Buncke, Gregory

    2017-06-01

    Processed nerve allografts (PNAs) have been demonstrated to have improved clinical results compared with hollow conduits for reconstruction of digital nerve gaps less than 25 mm; however, the use of PNAs for longer gaps warrants further clinical investigation. Long nerve gaps have been traditionally hard to study because of low incidence. The advent of the RANGER registry, a large, institutional review board-approved, active database for PNA (Avance Nerve Graft; AxoGen, Inc, Alachua, FL) has allowed evaluation of lower incidence subsets. The RANGER database was queried for digital nerve repairs of 25 mm or greater. Demographics, injury, treatment, and functional outcomes were recorded on standardized forms. Patients younger than 18 and those lacking quantitative follow-up data were excluded. Recovery was graded according to the Medical Research Council Classification for sensory function, with meaningful recovery defined as S3 or greater level. Fifty digital nerve injuries in 28 subjects were included. There were 22 male and 6 female subjects, and the mean age was 45. Three patients gave a previous history of diabetes, and there were 6 active smokers. The most commonly reported mechanisms of injury were saw injuries (n = 13), crushing injuries (n = 9), resection of neuroma (n = 9), amputation/avulsions (n = 8), sharp lacerations (n = 7), and blast/gunshots (n = 4). The average gap length was 35 ± 8 mm (range, 25-50 mm). Recovery to the S3 or greater level was reported in 86% of repairs. Static 2-point discrimination (s2PD) and Semmes-Weinstein monofilament (SWF) were the most common completed assessments. Mean s2PD in 24 repairs reporting 2PD data was 9 ± 4 mm. For the 38 repairs with SWF data, protective sensation was reported in 33 repairs, deep pressure in 2, and no recovery in 3. These data compared favorably with historical data for nerve autograft repairs, with reported levels of meaningful recovery of 60% to 88%. There were no reported adverse effects

  10. Electron microscopic study of the myelinated nerve fibres and the perineurial cell basement membrane in the diabetic human peripheral nerves

    International Nuclear Information System (INIS)

    ElBarrany, Wagih G.; Hamdy, Raid M.; AlHayani, Abdulmonem A.; Jalalah, Sawsan M.

    2009-01-01

    To study the quantitative and ultrastructural changes in myelinated nerve fibers and the basement membranes of the perineurial cells in diabetic nerves. The study was performed at the Department of Anatomy, Faculty of Medicine, King Abdul-Aziz University, Jeddah, Saudi Arabia from 2003 to 2005. Human sural nerves were obtained from 15 lower limbs and 5 diabetic nerve biopsies. The total mean and density of myelinated nerve fibers per fascicle were calculated, with density of microtubules and mitochondria in the axoplasm. The number of the perineurial cell basement membrane layers was counted, and thickness of the basement membrane was measured. Among the 15 diabetic and 5 normal human sural nerves, the average diameters, number and surface area of myelinated nerve fibers and axonal microtubules density were found to be less in diabetic nerves. Mitochondrial density was higher in diabetic axons. Thickness of the perineurial cell basement membrane had a greater mean, but the number of perineurial cell layers was less than that of the diabetic group. The inner cellular layer of the perineurium of the diabetic nerves contained large vacuoles containing electron-dense degenerated myelin. A few specimens showed degenerated myelinated nerve fibers, while others showed recovering ones. Retracted axoplasms were encountered with albumin extravasation. Diabetes caused an increase in perineurial permeability. The diabetic sural nerve showed marked decrease in the myelinated nerve fibres, increase degenerated mitochondria, and decreased microtubules. (author)

  11. Neurophysiological approach to disorders of peripheral nerve

    DEFF Research Database (Denmark)

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves......, plexus, or root lesions). Furthermore pathological processes may result in either demyelination, axonal degeneration or both. In order to reach an exact diagnosis of any neuropathy electrophysiological studies are crucial to obtain information about these variables. Conventional electrophysiological...

  12. Effect of diabetic retinopathy and panretinal photocoagulation on retinal nerve fiber layer and optic nerve appearance.

    Science.gov (United States)

    Lim, Michele C; Tanimoto, Suzana A; Furlani, Bruno A; Lum, Brent; Pinto, Luciano M; Eliason, David; Prata, Tiago S; Brandt, James D; Morse, Lawrence S; Park, Susanna S; Melo, Luiz A S

    2009-07-01

    To determine if panretinal photocoagulation (PRP) alters retinal nerve fiber layer (RNFL) thickness and optic nerve appearance. Patients with diabetes who did and did not undergo PRP and nondiabetic control subjects were enrolled in a prospective study. Participants underwent optical coherence tomography of the peripapillary retina and optic nerve. Stereoscopic optic nerve photographs were graded in a masked fashion. Ninety-four eyes of 48 healthy individuals, 89 eyes of 55 diabetic patients who did not undergo PRP, and 37 eyes of 24 subjects with diabetes who underwent PRP were included in this study. Eyes that had been treated with PRP had thinner peripapillary RNFL compared with the other groups; this was statistically significantly different in the inferior (P = .004) and nasal (P = .003) regions. Optic nerve cupping did not increase with severity of disease classification, but the proportion of optic nerves graded as suspicious for glaucoma or as having nonglaucomatous optic neuropathy did (P = .008). These grading categories were associated with thinner RNFL measurements. Diabetic eyes that have been treated with PRP have thinner RNFL than nondiabetic eyes. Optic nerves in eyes treated with PRP are more likely to be graded as abnormal, but their appearance is not necessarily glaucomatous and may be related to thinning of the RNFL.

  13. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    Science.gov (United States)

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.

  14. Effect of bupivacaine and adjuvant drugs for regional anesthesia on nerve tissue oximetry and nerve blood flow

    Directory of Open Access Journals (Sweden)

    Wiesmann T

    2018-01-01

    Full Text Available Thomas Wiesmann,1 Stefan Müller,1,2 Hans-Helge Müller,3 Hinnerk Wulf,1 Thorsten Steinfeldt1,4 1Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Marburg, Philipps University, Marburg, 2Department of Anesthesiology and Intensive Care Medicine, University Hospital Giessen, Justus-Liebig-University, Giessen, 3Institute of Medical Biometry and Epidemiology, Philipps University, Marburg, 4Department of Anesthesiology and Intensive Care Medicine, Diakoniekrankenhaus Schwäbisch Hall, Schwäbisch Hall, Germany Background: Nerve blood flow has a critical role in acute and chronic pathologies in peripheral nerves. Influences of local anesthetics and adjuvants on tissue perfusion and oxygenation are deemed as relevant factors for nerve damage after peripheral regional anesthesia. The link between low tissue perfusion due to local anesthetics and resulting tissue oxygenation is unclear.Methods: Combined tissue spectrophotometry and laser-Doppler flowmetry were used to assess nerve blood flow in 40 surgically exposed median nerves in pigs, as well as nerve tissue oximetry for 60 min. After baseline measurements, test solutions saline (S, bupivacaine (Bupi, bupivacaine with epinephrine (BupiEpi, and bupivacaine with clonidine (BupiCloni were applied topically.Results: Bupivacaine resulted in significant decrease in nerve blood flow, as well as tissue oximetry values, compared with saline control. Addition of epinephrine resulted in a rapid, but nonsignificant, reduction of nerve blood flow and extensive lowering of tissue oximetry levels. The use of clonidine resulted in a reduction of nerve blood flow, comparable to bupivacaine alone (relative blood flow at T60 min compared with baseline, S: 0.86 (0.67–1.18, median (25th–75th percentile; Bupi: 0.33 (0.25–0.60; BupiCloni: 0.43 (0.38–0.63; and BupiEpi: 0.41(0.30–0.54. The use of adjuvants did not result in any relevant impairment of tissue oximetry

  15. Ephaptic coupling of myelinated nerve fibers

    DEFF Research Database (Denmark)

    Binczak, S.; Eilbeck, J. C.; Scott, Alwyn C.

    2001-01-01

    Numerical predictions of a simple myelinated nerve fiber model are compared with theoretical results in the continuum and discrete limits, clarifying the nature of the conduction process on an isolated nerve axon. Since myelinated nerve fibers are often arranged in bundles, this model is used...

  16. Imaging of the facial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Veillon, F. [Service de Radiologie I, Hopital de Hautepierre, 67098 Strasbourg Cedex (France)], E-mail: Francis.Veillon@chru-strasbourg.fr; Ramos-Taboada, L.; Abu-Eid, M. [Service de Radiologie I, Hopital de Hautepierre, 67098 Strasbourg Cedex (France); Charpiot, A. [Service d' ORL, Hopital de Hautepierre, 67098 Strasbourg Cedex (France); Riehm, S. [Service de Radiologie I, Hopital de Hautepierre, 67098 Strasbourg Cedex (France)

    2010-05-15

    The facial nerve is responsible for the motor innervation of the face. It has a visceral motor function (lacrimal, submandibular, sublingual glands and secretion of the nose); it conveys a great part of the taste fibers, participates to the general sensory of the auricle (skin of the concha) and the wall of the external auditory meatus. The facial mimic, production of tears, nasal flow and salivation all depend on the facial nerve. In order to image the facial nerve it is mandatory to be knowledgeable about its normal anatomy including the course of its efferent and afferent fibers and about relevant technical considerations regarding CT and MR to be able to achieve high-resolution images of the nerve.

  17. Surgical management of third nerve palsy

    Directory of Open Access Journals (Sweden)

    Anupam Singh

    2016-01-01

    Full Text Available Third nerve paralysis has been known to be associated with a wide spectrum of presentation and other associated factors such as the presence of ptosis, pupillary involvement, amblyopia, aberrant regeneration, poor bell′s phenomenon, superior oblique (SO overaction, and lateral rectus (LR contracture. Correction of strabismus due to third nerve palsy can be complex as four out of the six extraocular muscles are involved and therefore should be approached differently. Third nerve palsy can be congenital or acquired. The common causes of isolated third nerve palsy in children are congenital (43%, trauma (20%, inflammation (13%, aneurysm (7%, and ophthalmoplegic migraine. Whereas, in adult population, common etiologies are vasculopathic disorders (diabetes mellitus, hypertension, aneurysm, and trauma. Treatment can be both nonsurgical and surgical. As nonsurgical modalities are not of much help, surgery remains the main-stay of treatment. Surgical strategies are different for complete and partial third nerve palsy. Surgery for complete third nerve palsy may involve supra-maximal recession - resection of the recti. This may be combined with SO transposition and augmented by surgery on the other eye. For partial third nerve, palsy surgery is determined according to nature and extent of involvement of extraocular muscles.

  18. Surgical management of third nerve palsy

    Science.gov (United States)

    Singh, Anupam; Bahuguna, Chirag; Nagpal, Ritu; Kumar, Barun

    2016-01-01

    Third nerve paralysis has been known to be associated with a wide spectrum of presentation and other associated factors such as the presence of ptosis, pupillary involvement, amblyopia, aberrant regeneration, poor bell's phenomenon, superior oblique (SO) overaction, and lateral rectus (LR) contracture. Correction of strabismus due to third nerve palsy can be complex as four out of the six extraocular muscles are involved and therefore should be approached differently. Third nerve palsy can be congenital or acquired. The common causes of isolated third nerve palsy in children are congenital (43%), trauma (20%), inflammation (13%), aneurysm (7%), and ophthalmoplegic migraine. Whereas, in adult population, common etiologies are vasculopathic disorders (diabetes mellitus, hypertension), aneurysm, and trauma. Treatment can be both nonsurgical and surgical. As nonsurgical modalities are not of much help, surgery remains the main-stay of treatment. Surgical strategies are different for complete and partial third nerve palsy. Surgery for complete third nerve palsy may involve supra-maximal recession - resection of the recti. This may be combined with SO transposition and augmented by surgery on the other eye. For partial third nerve, palsy surgery is determined according to nature and extent of involvement of extraocular muscles. PMID:27433033

  19. The thoracic muscular system and its innervation in third instar Calliphora vicina Larvae. II. Projection patterns of the nerves associated with the pro- and mesothorax and the pharyngeal complex.

    Science.gov (United States)

    Schoofs, Andreas; Hanslik, Ulrike; Niederegger, Senta; Heinzel, Hans-Georg; Spiess, Roland

    2010-08-01

    We describe the anatomy of the nerves that project from the central nervous system (CNS) to the pro- and mesothoracic segments and the cephalopharyngeal skeleton (CPS) for third instar Calliphora larvae. Due to the complex branching pattern we introduce a nomenclature that labels side branches of first and second order. Two fine nerves that were not yet described are briefly introduced. One paired nerve projects to the ventral arms (VAs) of the CPS. The second, an unpaired nerve, projects to the ventral surface of the cibarial part of the esophagus (ES). Both nerves were tentatively labeled after the structures they innervate. The antennal nerve (AN) innervates the olfactory dorsal organ (DO). It contains motor pathways that project through the frontal connectives (FC) to the frontal nerve (FN) and innervate the cibarial dilator muscles (CDM) which mediate food ingestion. The maxillary nerve (MN) innervates the sensory terminal organ (TO), ventral organ (VO), and labial organ (LO) and comprises the motor pathways to the mouth hook (MH) elevator, MH depressor, and the labial retractor (LR) which opens the mouth cavity. An anastomosis of unknown function exists between the AN and MN. The prothoracic accessory nerve (PaN) innervates a dorsal protractor muscle of the CPS and sends side branches to the aorta and the bolwig organ (BO) (stemmata). In its further course, this nerve merges with the prothoracic nerve (PN). The architecture of the PN is extremely complex. It innervates a set of accessory pharyngeal muscles attached to the CPS and the body wall musculature of the prothorax. Several anastomoses exist between side branches of this nerve which were shown to contain motor pathways. The mesothoracic nerve (MeN) innervates a MH accessor and the longitudinal and transversal body wall muscles of the second segment. J. Morphol. 271:969-979, 2010. (c) 2010 Wiley-Liss, Inc.

  20. Facial Nerve Paralysis due to a Pleomorphic Adenoma with the Imaging Characteristics of a Facial Nerve Schwannoma

    OpenAIRE

    Nader, Marc-Elie; Bell, Diana; Sturgis, Erich M.; Ginsberg, Lawrence E.; Gidley, Paul W.

    2014-01-01

    Background Facial nerve paralysis in a patient with a salivary gland mass usually denotes malignancy. However, facial paralysis can also be caused by benign salivary gland tumors. Methods We present a case of facial nerve paralysis due to a benign salivary gland tumor that had the imaging characteristics of an intraparotid facial nerve schwannoma. Results The patient presented to our clinic 4 years after the onset of facial nerve paralysis initially diagnosed as Bell palsy. Computed tomograph...