WorldWideScience

Sample records for series-hydrologic cycle earth

  1. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  2. Anthropogenic Cycles of Rare Earth Elements

    Science.gov (United States)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  3. Global Carbon Cycle of the Precambrian Earth

    DEFF Research Database (Denmark)

    Wiewióra, Justyna

    The carbon isotopic composition of distinct Archaean geological records provides information about the global carbon cycle and emergence of life on early Earth. We utilized carbon isotopic records of Greenlandic carbonatites, diamonds, graphites, marbles, metacarbonates and ultramafic rocks...... in the surface environment and recycled back into the mantle In the third manuscript we investigate the carbon cycle components, which have maintained the carbon isotope composition of the mantle constant through time. Assuming constant organic ratio of the total carbon burial (f), we show that increased.......1‰) and metacarbonate ( -6.1 ± 0.1‰ to +1.5 ± 0.0‰) rocks from the ~3.8 Ga Isua Supracrustal Belt as resulting from the Rayleigh distillation process, which affected the ultramafic reservoir with initial δ13C between -2‰ and 0‰. Due to its high primary δ13C signature, carbon in the Isuan magnesite was most likely...

  4. Rainfall limit of the N cycle on Earth

    Science.gov (United States)

    Ewing, Stephanie A.; Michalski, Greg; Thiemens, Mark; Quinn, Richard C.; Macalady, Jennifer L.; Kohl, Steven; Wankel, Scott D.; Kendall, Carol; McKay, Christopher P.; Amundson, Ronald

    2007-09-01

    In most climates on Earth, biological processes control soil N. In the Atacama Desert of Chile, aridity severely limits biology, and soils accumulate atmospheric NO3-. We examined this apparent transformation of the soil N cycle using a series of ancient Atacama Desert soils (>2 My) that vary in rainfall (21 to Mars.

  5. The evolution and future of Earth's nitrogen cycle.

    Science.gov (United States)

    Canfield, Donald E; Glazer, Alexander N; Falkowski, Paul G

    2010-10-08

    Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by ~2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however, the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupted the nitrogen cycle. This has led to extensive eutrophication of fresh waters and coastal zones as well as increased inventories of the potent greenhouse gas nitrous oxide (N(2)O). Microbial processes will ultimately restore balance to the nitrogen cycle, but the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated.

  6. The Evolution and Future of Earth's Nitrogen Cycle

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Glazer, Alexander N.; Falkowski, Paul G.

    2010-01-01

    , the development of new agricultural practices to satisfy a growing global demand for food has drastically disrupted the nitrogen cycle. This has led to extensive eutrophication of fresh waters and coastal zones as well as increased inventories of the potent greenhouse gas nitrous oxide (N2O). Microbial processes......Atmospheric reactions and slow geological processes controlled Earth's earliest nitrogen cycle, and by similar to 2.7 billion years ago, a linked suite of microbial processes evolved to form the modern nitrogen cycle with robust natural feedbacks and controls. Over the past century, however...... will ultimately restore balance to the nitrogen cycle, but the damage done by humans to the nitrogen economy of the planet will persist for decades, possibly centuries, if active intervention and careful management strategies are not initiated....

  7. Xe isotopic constraints on cycling of deep Earth volatiles

    Science.gov (United States)

    Parai, R.; Mukhopadhyay, S.

    2017-12-01

    The modern deep Earth volatile budget reflects primordial volatiles delivered during accretion, radiogenic ingrowth of volatile species (e.g., 40Ar produced by 40K decay), outgassing in association with mantle processing, and regassing via subduction. The noble gases are unique volatile tracers in that they are chemically inert, but are thought to be trapped within hydrous alteration phases in downwelling lithologies. Noble gases thus provide a tracer of volatile transport between the deep Earth and surface reservoirs. Constraints on the fluxes of noble gases between deep Earth and surface reservoirs over time can accordingly be used to provide insight into temperature conditions at subduction zones, limits on volatile cycling, and the evolving distribution of major volatile species in terrestrial reservoirs over time. Xe isotope systematics in mantle-derived rocks show that 80-90% of the mantle Xe budget is derived from recycling of atmospheric Xe, indicating that atmospheric Xe is retained in subducting slabs beyond depths of magma generation in subduction zones over Earth history. We present an integrated model of Xe cycling between the mantle and atmosphere in association with mantle processing over Earth history. We test a wide variety of outgassing and regassing rates and take the evolution of the atmospheric Xe isotopic composition [e.g., 1] into account. Models in which the deep Earth transitions from a net outgassing to net regassing regime best satisfy Xe isotopic constraints from mantle-derived rocks [2-6]. [1] Avice et al., 2017; Nature Communications, 8; [2] Mukhopadhyay, 2012, Nature 486, 101-104; [3] Parai et al., 2012, EPSL 359-360, 227-239; [4] Parai and Mukhopadhay, 2015, G-cubed 16, 719-735; [5] Peto et al., 2013, EPSL 369-370, 13-23; [6] Tucker et al., 2012, EPSL 355-356, 244-254.

  8. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  9. Nutrient cycle benchmarks for earth system land model

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  10. Terrestrial nitrogen cycling in Earth system models revisited

    Science.gov (United States)

    Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke

    2016-01-01

    Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.

  11. Galactic cycles and their relationship to life on earth

    International Nuclear Information System (INIS)

    Olson, A.P.

    1984-05-01

    This paper draws attention to episodic events in the geologic time scale of the evolution of life on earth, and discusses potentially cyclic behavior relative to galactic structure. The question is a simple one: Do galactic processes affect the solar system. It is known that the sun is moving at about 220 +- 15 km/sec at a distance of about 8.5 +- 0.5 kpc from the galactic center. This motion, if circular and unperturbed, implies an orbital period of 237 +- 21 My for the solar system around the galaxy. The Milky Way also evidences structure typically interpreted as spiral arms, in the distribution of gas clouds in its central plane. The relative motion of the spiral arms, known as the pattern speed, is about 2/3 that of the sun. Consequently the solar system gains upon and passes through all the structure in its orbital plane once in three rotations or approx.700 My. If this structure is persistent over times longer than 700 My, it is clear that the interaction (if any) can be called cyclic. Furthermore, if there is any sub-structure or inner pattern to the 700 My cycle, it may show up as higher harmonics. Age estimates for the Milky Way are 12-15 By, or approx.17 to 22 structure cycles of 0.70 By. It seems not unreasonable to expect some persistence of a pattern over a few structure cycles. It must be noted that the pattern speed is quite uncertain. Perhaps geophysical evidence can be used to improve on the nominally 700 My structure cycle which is assumed in this paper. 16 references, 8 figures

  12. Earth's early O2 cycle suppressed by primitive continents

    Science.gov (United States)

    Smit, Matthijs A.; Mezger, Klaus

    2017-10-01

    Free oxygen began to accumulate in Earth's surface environments between 3.0 and 2.4 billion years ago. Links between oxygenation and changes in the composition of continental crust during this time are suspected, but have been difficult to demonstrate. Here we constrain the average composition of the exposed continental crust since 3.7 billion years ago by compiling records of the Cr/U ratio of terrigenous sediments. The resulting record is consistent with a predominantly mafic crust prior to 3.0 billion years ago, followed by a 500- to 700-million-year transition to a crust of modern andesitic composition. Olivine and other Mg-rich minerals in the mafic Archaean crust formed serpentine minerals upon hydration, continuously releasing O2-scavenging agents such as dihydrogen, hydrogen sulfide and methane to the environment. Temporally, the decline in mafic crust capable of such process coincides with the first accumulation of O2 in the oceans, and subsequently the atmosphere. We therefore suggest that Earth's early O2 cycle was ultimately limited by the composition of the exposed upper crust, and remained underdeveloped until modern andesitic continents emerged.

  13. First results of the earth observation water cycle multi-mission observation strategy (WACMOS)

    NARCIS (Netherlands)

    Su, Zhongbo; Fernadez-Prieto, D.; Timmermans, J.; Chen, Xuelong; Hungershoefer, K.; Schröder, M.; Schulz, J.; Stammes, P.; Wang, Peng; Wolters, e.

    2014-01-01

    Observing and monitoring the different components of the global water cycle and their dynamics are essential steps to understand the climate of the Earth, forecast the weather, predict natural disasters like floods and droughts, and improve water resources management. Earth observation technology is

  14. Earth Science (A Process Approach), Section 1: The Water Cycle.

    Science.gov (United States)

    Campbell, K. C.; And Others

    Included is a collection of earth science laboratory activities, which may provide the junior or senior high school science teacher with ideas for activities in his program. The included 48 experiments are grouped into these areas: properties of matter; evaporation; atmospheric moisture and condensation; precipitation; moving water, subsurface…

  15. Earth's Early Biosphere and the Biogeochemical Carbon Cycle

    Science.gov (United States)

    DesMarais, David

    2004-01-01

    Our biosphere has altered the global environment principally by influencing the chemistry of those elements most important for life, e g., C, N, S, O, P and transition metals (e.g., Fe and Mn). The coupling of oxygenic photosynthesis with the burial in sediments of photosynthetic organic matter, and with the escape of H2 to space, has increased the state of oxidation of the Oceans and atmosphere. It has also created highly reduced conditions within sedimentary rocks that have also extensively affected the geochemistry of several elements. The decline of volcanism during Earth's history reduced the flow of reduced chemical species that reacted with photosynthetically produced O2. The long-term net accumulation of photosynthetic O2 via biogeochemical processes has profoundly influenced our atmosphere and biosphere, as evidenced by the O2 levels required for algae, multicellular life and certain modem aerobic bacteria to exist. When our biosphere developed photosynthesis, it tapped into an energy resource that was much larger than the energy available from oxidation-reduction reactions associated with weathering and hydrothermal activity. Today, hydrothermal sources deliver globally (0.13-1.1)x10(exp l2) mol yr(sup -1) of reduced S, Fe(2+), Mn(2+), H2 and CH4; this is estimated to sustain at most about (0.2-2)xl0(exp 12)mol C yr(sup -1) of organic carbon production by chemautotrophic microorganisms. In contrast, global photosynthetic productivity is estimated to be 9000x10(exp 12) mol C yr(sup -1). Thus, even though global thermal fluxes were greater in the distant geologic past than today, the onset of oxygenic photosynthesis probably increased global organic productivity by some two or more orders of magnitude. This enormous productivity materialized principally because oxygenic photosynthesizers unleashed a virtually unlimited supply of reduced H that forever freed life from its sole dependence upon abiotic sources of reducing power such as hydrothermal emanations

  16. Cycling on Earth, in space, on the Moon.

    Science.gov (United States)

    di Prampero, P E

    2000-08-01

    The mechanical power for cycling (P(c)) at constant ground speed (s), in the absence of wind on smooth hard terrain is the sum of the power dissipated against rolling resistance, gravity and air resistance: P(c)=a x s + M x g x s x sin gamma + b x S3, where a and b are constants, M is the mass of the subject plus bike, g is the acceleration of gravity and gamma is the angle of the terrain with the horizontal. The constant b depends upon the drag coefficient (Cd), the overall area projected on the frontal plane (A(f)), and the air density (rhoa): b = 0.5 x C(d) x A(f) x rhoa. In turn, rhoa depends on air pressure (P(B)) and temperature (T): rhoa=rho0 x 0.359 x P(B) x T(-1), where rho0 is the air density at 760 mmHg (101.3 kPa) and 273 K. The metabolic power developed by the cyclist (E(c)) is related to P(c) E(c) = P(c) x eta(-1), where eta is the mechanical efficiency of cycling. The experimental values of a, b and eta are fairly well known so that, if the maximal metabolic power as a function of the performance time is known for a given cyclist, the following set of data can be individually calculated: (1) best performances over any given distance and for any given altitude above sea level, (2) the effects of posture and body size on maximal speeds, and (3) the maximal incline of the terrain that can be overcome at any given speed or coasting speed for any given downslope. The above set of information makes it possible also to calculate the characteristics of a "Twin Bikes System" (TBS) for preventing microgravity deconditioning during long-term space flight. The TBS consists of two bicycles that are mechanically coupled by a differential gearing, which move at the very same speed, but in the opposite sense, along the inner wall of a cylindrically shaped space module. The circular trajectories induce a centrifugal acceleration vector (a(c)) oriented along the head-to-feet direction of each subject: a(c) = v(t)2 x r(-1) where v(t) is the tangential velocity and r

  17. Millennial cycles of mean sea level excited by earth´s orbital variations

    Czech Academy of Sciences Publication Activity Database

    Chapanov, Y.; Ron, Cyril; Vondrák, Jan

    2015-01-01

    Roč. 12, č. 3 (2015), s. 259-266 ISSN 1214-9705 R&D Projects: GA ČR GA13-15943S Institutional support: RVO:67985815 Keywords : millenial cycles * mean sea level * Earth's insolation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.561, year: 2015

  18. A new model of the Earth system nitrogen cycle: how plates and life affect the atmosphere

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2017-12-01

    Nitrogen is the main component of Earth's atmosphere. It plays a key role in the evolution of the biosphere and surface of Earth [1]. There are contrasting views, however, on how N has evolved on the surface of the Earth over time. Some modeling efforts [e.g., 2] indicate a steady-state level of N in the atmosphere over geologic time, while geochemical [e.g., 3], other proxies [e.g., 4], and more recent models [5] indicate the mass of N in the atmosphere can change dramatically over Earth history. This conundrum, and potential solutions to it, present distinct interpretations of the history of Earth, and teleconnections between the surface and interior of the planet have applications to other terrestrial bodies as well. To help investigate this conundrum, we have constructed an Earth-system N cycle box model. To our knowledge, this is the most capable model for addressing evolution of the N reservoirs of Earth through time. The model combines biologic and geologic processes, driven by a mantle cooling history, to more fully describe the N cycle through geologic history. In addition to a full biologic N cycle (fixing, nitrification, denitrification), we also dynamically solve for PO4 through time and we have a prescribed O2 history. Results indicate that the atmosphere of Earth could have experienced major changes in mass over geologic time. Importantly, the amount of N in the atmosphere today appears to be directly related to the total N budget of the silicate Earth. For example, high initial atmospheric mass, suggested as a solution to the Faint Young Sun Paradox [1], is drawn down over time. This supports work that indicates the mantle has significantly more N than the atmosphere does today [6]. Contrastingly, model runs with low total N result in a crash in atmospheric mass. In nearly all model runs the bulk silicate Earth contains the majority of the planet's N. [1] Goldblatt et al. (2009) Nat. Geosci., 2, 891-896. [2] Berner, R. (2006) Geology., 34, 413

  19. Earth Without Life: A Systems Model of a Global Abiotic Nitrogen Cycle.

    Science.gov (United States)

    Laneuville, Matthieu; Kameya, Masafumi; Cleaves, H James

    2018-03-20

    Nitrogen is the major component of Earth's atmosphere and plays important roles in biochemistry. Biological systems have evolved a variety of mechanisms for fixing and recycling environmental nitrogen sources, which links them tightly with terrestrial nitrogen reservoirs. However, prior to the emergence of biology, all nitrogen cycling was abiological, and this cycling may have set the stage for the origin of life. It is of interest to understand how nitrogen cycling would proceed on terrestrial planets with comparable geodynamic activity to Earth, but on which life does not arise. We constructed a kinetic mass-flux model of nitrogen cycling in its various major chemical forms (e.g., N 2 , reduced (NH x ) and oxidized (NO x ) species) between major planetary reservoirs (the atmosphere, oceans, crust, and mantle) and included inputs from space. The total amount of nitrogen species that can be accommodated in each reservoir, and the ways in which fluxes and reservoir sizes may have changed over time in the absence of biology, are explored. Given a partition of volcanism between arc and hotspot types similar to the modern ones, our global nitrogen cycling model predicts a significant increase in oceanic nitrogen content over time, mostly as NH x , while atmospheric N 2 content could be lower than today. The transport timescales between reservoirs are fast compared to the evolution of the environment; thus atmospheric composition is tightly linked to surface and interior processes. Key Words: Nitrogen cycle-Abiotic-Planetology-Astrobiology. Astrobiology 18, xxx-xxx.

  20. Evaluation of Earth's Geobiosphere Emergy Baseline and the Emergy of Crustal Cycling

    Science.gov (United States)

    De Vilbiss, Chris

    This dissertation quantitatively analyzed the exergy supporting the nucleosynthesis of the heavy isotopes, Earth's geobiosphere, and its crustal cycling. Exergy is that portion of energy that is available to drive work. The exergy sources that drive the geobiosphere are sunlight, Earth's rotational kinetic energy and relic heat, and radionuclides in Earth's interior. These four exergy sources were used to compute the Earth's geobiosphere emergy baseline (GEB), expressed as a single unit, solar equivalent joules (seJ). The seJ of radionuclides were computed by determining the quantity of gravitational exergy that dissipated in the production of both sunlight and heavy isotopes. This is a new method of computing solar equivalences also was applied to Earth's relic heat and rotational energy. The equivalent quantities of these four exergy sources were then added to express the GEB. This new baseline was compared with several other contemporary GEB methods. The new GEB is modeled as the support to Earth's crustal cycle and ultimately to the economical mineral deposits used in the US economy. Given the average annual cycling of crustal material and its average composition, specific emergies were calculated to express the average emergy per mass of particular crustal minerals. Chemical exergies of the minerals were used to develop transformities and specific emergies of minerals at heightened concentrations, i.e. minable concentrations. The effect of these new mineral emergy values were examined using the US economy as an example. The final result is an 83% reduction in the emergy of limestone, a 91% reduction in the aggregated emergy of all other minerals, and a 23% reduction in the emergy of the US economy. This dissertation explored three unique and innovative methods to compute the emergy of Earth's exergy sources and resources. First was a method for computing the emergy of radionuclides. Second was a method to evaluate the Earth's relic heat and dissipation of

  1. Water cycling between ocean and mantle: Super-earths need not be waterworlds

    International Nuclear Information System (INIS)

    Cowan, Nicolas B.; Abbot, Dorian S.

    2014-01-01

    Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.

  2. Water cycling between ocean and mantle: Super-earths need not be waterworlds

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Earth and Planetary Sciences, Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Abbot, Dorian S., E-mail: n-cowan@northwestern.edu [Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)

    2014-01-20

    Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.

  3. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    Science.gov (United States)

    Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun

    2017-07-01

    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.

  4. An Earth system view on boundaries for human perturbation of the N and P cycles

    Science.gov (United States)

    Cornell, Sarah; de Vries, Wim

    2015-04-01

    The appropriation and transformation of land, water, and living resources can alter Earth system functioning, and potentially undermine the basis for the sustainability of our societies. Human activities have greatly increased the flows of reactive forms of nitrogen (N) and phosphorus (P) in the Earth system. These non-substitutable nutrient elements play a fundamental role in the human food system. Furthermore, the current mode of social and economic globalization, and its effect on the present-day energy system, also has large effects including large NOx-N emissions through combustion. Until now, this perturbation of N and P cycles has been treated largely as a local/regional issue, and managed in terms of direct impacts (water, land or air pollution). However, anthropogenic N and P cycle changes affect physical Earth system feedbacks (through greenhouse gas and aerosol changes) and biogeochemical feedbacks (via ecosystem changes, links to the carbon cycle, and altered nutrient limitation) with impacts that can be far removed from the direct sources. While some form of N and P management at the global level seems likely to be needed for continued societal development, the current local-level and sectorial management is often problematically simplistic, as seen in the tensions between divergent N management needs for climate change mitigation, air pollution control, food production, and ecosystem conservation. We require a step change in understanding complex biogeochemical, physical and socio-economic interactions in order to analyse these effects together, and inform policy trade-offs to minimize emergent systemic risks. Planetary boundaries for N and P cycle perturbation have recently been proposed. We discuss the current status of these precautionary boundaries and how we may improve on these preliminary assessments. We present an overview of the human perturbation of the global biogeochemical cycles of N and P and its interaction with the functioning of the

  5. Early Evolution of Earth's Geochemical Cycle and Biosphere: Implications for Mars Exobiology

    Science.gov (United States)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Carbon (C) has played multiple key roles for life and its environment. C has formed organics, greenhouse gases, aquatic pH buffers, redox buffers, and magmatic constituents affecting plutonism and volcanism. These roles interacted across a network of reservoirs and processes known as the biogeochemical C cycle. Changes in the cycle over geologic time were driven by increasing solar luminosity, declining planetary heat flow, and continental and biological evolution. The early Archean C cycle was dominated by hydrothermal alteration of crustal rocks and by thermal emanations of CO2 and reduced species (eg., H2, Fe(2+) and sulfides). Bioorganic synthesis was achieved by nonphotosynthetic CO2-fixing bacteria (chemoautotrophs) and, possibly, bacteria (organotrophs) utilizing any available nonbiological organic C. Responding both to abundant solar energy and to a longterm decline in thermal sources of chemical energy and reducing power, the blaspheme first developed anoxygenic photosynthesis, then, ultimately, oxygenic photosynthesis. O2-photosynthesis played a central role in transforming the ancient environment and blaspheme to the modem world. The geochemical C cycles of early Earth and Mars were quite similar. The principal differences between the modem C cycles of these planets arose during the later evolution of their heat flows, crusts, atmospheres and, perhaps, their blasphemes.

  6. The application of Legacy Cycles in the development of Earth Science curriculum

    Science.gov (United States)

    Ellins, K.; Abernathy, E.; Negrito, K.; McCall, L.

    2009-04-01

    The Institute for Geophysics in the Jackson School of Geosciences at The University of Texas at Austin actively contributes to K-12 education, including the development of rigorous Earth and Space Science curriculum designed for secondary school learning environments. Here we report on our efforts to apply an innovative new pedagogical approach, the Legacy Cycle, to scientific ocean drilling paleoclimate data from fossil corals collected offshore Barbados in 2006 and to the creation of a high school water resources education program for Texas high school students supported by a grant from the Texas Water Development Board. The Legacy Cycle makes use of the Internet and computer technology to engage students in extended inquiry learning. A series of inquiry activities are organized around a set of three driving questions, or challenges. Students mimic the work of scientists by generating ideas to address a given challenge, listening to multiple perspectives from experts on the topic, researching a set of sub-questions and revising their original ideas, testing their mettle with labs and quizzes, and finally composing a project or paper that answers the original challenge. The technology makes it easy for students to move through the challenges and the organizational framework since there are hyperlinks to each of the sections (and to reach the other challenges) at the bottom of each webpage. Students' final work is posted to the Internet for others to see, and in this way they leave behind their legacy. Our Legacy Cycle activities use authentic hydrologic, water quality, geochemical, geophysical data, as well as remotely sensed data such as is collected by satellites. They are aligned with the U.S. National Science Education Standards, the new Ocean, Climate and Earth Science Literacy Principles (in development), and the Texas Essential Knowledge and Skills for Earth and Space Science. The work represents a collaboration involving teachers from The University of

  7. Anthrobiogeochemical platinum, palladium and rhodium cycles of earth: Emerging environmental contamination

    Science.gov (United States)

    Mitra, Arijeet; Sen, Indra Sekhar

    2017-11-01

    Anthrobiogeochemical cycles have been a subject of scientific research for many decades as they are important for identifying possible sources, sinks, and pathways of an element in the environment. In this study, we quantified global cycles for the platinum group elements (PGE; platinum (Pt), palladium (Pd) and rhodium (Rh)). We quantified the stocks of Pt, Pd, and Rh in Earth's various reservoirs, such as the core, mantle, consolidated crust, biomass, seawater, unconsolidated sediments, and atmosphere, as well as coal and petroleum deposits. We further quantified their fluxes, both natural and anthropogenic, between each reservoir, by identifying the flows across the hydrosphere, geosphere, biosphere, atmosphere and anthroposphere, including from mining activities, fossil fuel and biomass burning, construction activities, soil erosion, human contributions to net primary productivity, riverine transport, aeolian dust movement, primary production, volcanic eruption, sea-salt spray, crustal subduction, crust formation at mid ocean ridges, PGE recovery from recycling processes, and cosmic dust inputs at the Earth's surface. Stocks of PGEs were quantified by multiplying the mass of the reservoir by the average Pt, Pd and Rh concentration in the reservoir, whereas Pt, Pd and Rh fluxes were calculated by multiplying the rate of mass movement across the reservoirs with the Pt, Pd and Rh concentrations of the material. Uncertainties were explicitly incorporated in stock and flow estimations through Monte Carlo simulations. Our calculations reveal that the total surficial anthropogenic Pt, Pd, and Rh mobilizations were greater than their corresponding natural surficial mobilizations. We show that crustal subduction and crustal formation is the most important natural flow and contributes 21-42% of total PGE mobilization. When Earth's surficial processes are considered, soil erosion is the dominant flow for Rh and Pt mobilization, comprising 33% and 13%, respectively, of the

  8. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    Science.gov (United States)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  9. Revolutions in energy input and material cycling in Earth history and human history

    Science.gov (United States)

    Lenton, Timothy M.; Pichler, Peter-Paul; Weisz, Helga

    2016-04-01

    Major revolutions in energy capture have occurred in both Earth and human history, with each transition resulting in higher energy input, altered material cycles and major consequences for the internal organization of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxygenic photosynthesis, and land colonization by eukaryotic photosynthesizers as step changes in free energy input to the biosphere. In human history we focus on the Palaeolithic use of fire, the Neolithic revolution to farming, and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quantify the resulting increase in energy input, and discuss the consequences for material cycling and for biological and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolution gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and income brackets we show the unequal distribution in energy and material use among contemporary humans. Looking ahead, a prospective sustainability revolution will require scaling up new renewable and decarbonized energy technologies and the development of much more efficient material recycling systems - thus creating a more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can implement the changes in energy input and material cycling without losing the large achievements in standard of living and individual liberation associated with industrial societies.

  10. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  11. Development of a system emulating the global carbon cycle in Earth system models

    Science.gov (United States)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Oka, A.; Abe-Ouchi, A.; Kawamiya, M.

    2010-08-01

    Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs), which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs), which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM) which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite) which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO) including an ocean carbon cycle (an NPZD-type marine ecosystem model); a state of the art vegetation model (Sim-CYCLE); and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario. By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model) of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium climate sensitivity of 4.0 K

  12. Development of a system emulating the global carbon cycle in Earth system models

    Directory of Open Access Journals (Sweden)

    K. Tachiiri

    2010-08-01

    Full Text Available Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs, which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs, which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO including an ocean carbon cycle (an NPZD-type marine ecosystem model; a state of the art vegetation model (Sim-CYCLE; and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario.

    By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium

  13. A role for subducted super-hydrated kaolinite in Earth's deep water cycle

    Science.gov (United States)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-12-01

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  14. Connecting Atlantic temperature variability and biological cycling in two earth system models

    Science.gov (United States)

    Gnanadesikan, Anand; Dunne, John P.; Msadek, Rym

    2014-05-01

    Connections between the interdecadal variability in North Atlantic temperatures and biological cycling have been widely hypothesized. However, it is unclear whether such connections are due to small changes in basin-averaged temperatures indicated by the Atlantic Multidecadal Oscillation (AMO) Index, or whether both biological cycling and the AMO index are causally linked to changes in the Atlantic Meridional Overturning Circulation (AMOC). We examine interdecadal variability in the annual and month-by-month diatom biomass in two Earth System Models with the same formulations of atmospheric, land, sea ice and ocean biogeochemical dynamics but different formulations of ocean physics and thus different AMOC structures and variability. In the isopycnal-layered ESM2G, strong interdecadal changes in surface salinity associated with changes in AMOC produce spatially heterogeneous variability in convection, nutrient supply and thus diatom biomass. These changes also produce changes in ice cover, shortwave absorption and temperature and hence the AMO Index. Off West Greenland, these changes are consistent with observed changes in fisheries and support climate as a causal driver. In the level-coordinate ESM2M, nutrient supply is much higher and interdecadal changes in diatom biomass are much smaller in amplitude and not strongly linked to the AMO index.

  15. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M.

    2013-01-01

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al 11 RE 3 intermetallic particles which is associated to the reduction of β-(Mg 17 Al 12 ) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10 5 cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy

  16. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, M., E-mail: mehdi-mokhtari@hotmail.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Boutorabi, S.M.A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, M.; Nikravan, M. [Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of)

    2013-12-10

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al{sub 11}RE{sub 3} intermetallic particles which is associated to the reduction of β-(Mg{sub 17}Al{sub 12}) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10{sup 5} cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy.

  17. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  18. Subduction on Venus and Implications for Volatile Cycling, Early Earth and Exoplanets

    Science.gov (United States)

    Smrekar, S. E.; Davaille, A.; Mueller, N. T.; Dyar, M. D.; Helbert, J.; Barnes, H.

    2017-12-01

    Plate tectonics plays a key role in long-term climate evolution by cycling volatiles between the interior, surface and atmosphere. Subduction is a critical process. It is the first step in transitioning between a stagnant and a mobile lid, a means for conveying volatiles into the mantle, and a mechanism for creating felsic crust. Laboratory experiments using realistic rheology illuminate the deformation produced by plume-induced subduction (Davaille abstract). Characteristics include internal rifting and volcanism, external rift branches, with a partial arc of subduction creating a trench on the margins of the plume head, and an exterior flexural bulge with small strain extension perpendicular to the trench. These characteristics, along with a consistent gravity signature, occur at the two largest coronae (quasi-circular volcano-tectonic features) on Venus (Davaille et al. Nature Geos. 2017). This interpretation resolves a long-standing debate about the dual plume and subduction characteristics of these features. Numerous coronae also show signs of plume-induced subduction. At Astkhik Planum, subduction appears to have migrated beyond the margins of Selu Corona to create a 1600 km-long, linear subduction zone, along Vaidilute Rupes. The fractures that define Selu Corona merge with the trench to the north and a rift zone to the east, consistent with plume-induced subduction migrating outward from the corona. The lithosphere and crust are much thinner here than in other potential subduction zones. Subduction appears to have generated massive volcanism which could explain the 400 m elevation of the plateau. Within the plateau there are low-viscosity flow sets nearly 1000 km that may be associated with near infrared low emissivity in VIRTIS data. Unusual lava compositions might be indicative of recycling of CO2 or other volatiles into the lithosphere. Little evidence exists to illustrate how plate tectonics initiated on Earth, but Venus' high surface temperature makes

  19. Life cycle assessment of the production of rare earth elements for energy applications: a review

    Directory of Open Access Journals (Sweden)

    Julio eNavarro

    2014-11-01

    Full Text Available Rare earth elements (REEs are a group of seventeen elements with similar chemical properties, including fifteen in the lanthanide group, yttrium, and scandium. Due to their unique physical and chemical properties REEs gain increasing importance in many new energy technologies and systems that contribute to reduce greenhouse gas emissions and fossil fuel depletion (e.g., wind turbine, electric vehicles, high efficiency lighting, batteries, and hydrogen storage. However, it is well known that production of REEs is far from environmentally sustainable as it requires significant material and energy consumption while generating large amounts of air/water emissions and solid waste. Although life cycle assessment (LCA has been accepted as the most comprehensive approach to quantify the environmental sustainability of a product or process, to date, there have been only very limited LCA studies on the production of REEs. With the continual growth of renewable energy and energy efficient technologies, global production of REEs will increase. Therefore reducing environmental footprints of REE production becomes critical and identifying environmental hotspots based on a holistic and comprehensive assessment on environmental impacts serves as an important starting point. After providing an overview of LCA methodology and a high-level description of the major REE production routes used from 1990s to today, this paper reviews the published LCA studies on the production of REEs. To date, almost all the LCA studies are based on process information collected from the operation of Mountain Pass facility in U.S. in 1990s and the operation of facilities in Bayan Obo, China. Knowledge gaps are identified and future research efforts are suggested to advance understanding on environmental impacts of REE production from the life cycle perspective.

  20. Environmental and resources geochemistry of earth system mass transfer mechanism, geochemical cycle and the influence of human activity

    CERN Document Server

    Shikazono, Naotatsu

    2015-01-01

    The Earth system consists of subsystems that include the atmosphere, hydrosphere (water), geosphere (rocks, minerals), biosphere, and humans. In order to understand these subsystems and their interactions, it is essential to clarify the mass transfer mechanism, geochemical cycle, and influence of human activity on the natural environment. This book presents fundamental theories (thermodynamics, kinetics, mass balance model, coupling models such as the kinetics-fluid flow model, the box model, and others) concerning mechanisms in weathering, formation of hydrothermal ore deposits, hydrothermal alteration, formation of groundwater quality, and the seawater system. The interaction between fluids (atmosphere, water) and solid phases (rocks, minerals) occurs both in low-temperature and also in high-temperature systems. This book considers the complex low-temperature cycle with the high-temperature cycle, a combination that has not been dealt with in previous books concerning Earth systems. Humanity is a small part...

  1. From Gene Expression to the Earth System: Isotopic Constraints on Nitrogen Cycling Across Scales

    Science.gov (United States)

    Houlton, B. Z.

    2015-12-01

    A central motivation of the Biogeosciences is to understand the cycling of biologically essential elements over multiple scales of space and time. This charge is vital to basic knowledge of Earth system functioning. It is also relevant to many of the global challenges we face, such as climate change, biodiversity conservation, and the multifaceted role of global fertilizer use in maximizing human health and well-being. Nitrogen is connected to all of these; yet it has been one of the more vexing elements to quantitatively appraise across systems and scales. Here I discuss how research in my group has been exploring the use of natural nitrogen isotope abundance (15N/14N) as a biogeochemical tracer - from the level of gene expression to nitrogen's role in global climate change. First, I present evidence for a positive correlation between the bacterial genes that encode for gaseous nitrogen production (i.e., nirS) and the 15N/14N of soil extractable nitrate pools across an array of terrestrial ecosystems. Second, I demonstrate how these local-scale results fit with our work on ecosystem-scale nitrogen isotope budgets, where we quantify a uniformly small isotope effect (i.e., supports the working hypothesis that bacterial denitrification is the major fractionating pathway of nitrogen loss from the terrestrial biosphere, much like the global ocean.

  2. Rare earths as burnable poison for extended cycles control in electricity generation reactors

    International Nuclear Information System (INIS)

    Asou, M.

    1995-01-01

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR's and PWR's operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR's. (author). 58 refs., 65 figs., 47 tabs

  3. Representation of deforestation impacts on climate, water, and nutrient cycles in the ACME earth system model

    Science.gov (United States)

    Cai, X.; Riley, W. J.; Zhu, Q.

    2017-12-01

    Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.

  4. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    Science.gov (United States)

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles

    Science.gov (United States)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike

    2018-02-01

    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below

  6. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets.

    Science.gov (United States)

    Sprecher, Benjamin; Xiao, Yanping; Walton, Allan; Speight, John; Harris, Rex; Kleijn, Rene; Visser, Geert; Kramer, Gert Jan

    2014-04-01

    Neodymium is one of the more critical rare earth elements with respect to current availability and is most often used in high performance magnets. In this paper, we compare the virgin production route of these magnets with two hypothetical recycling processes in terms of environmental impact. The first recycling process looks at manual dismantling of computer hard disk drives (HDDs) combined with a novel hydrogen based recycling process. The second process assumes HDDs are shredded. Our life cycle assessment is based both on up to date literature and on our own experimental data. Because the production process of neodymium oxide is generic to all rare earths, we also report the life cycle inventory data for the production of rare earth oxides separately. We conclude that recycling of neodymium, especially via manual dismantling, is preferable to primary production, with some environmental indicators showing an order of magnitude improvement. The choice of recycling technology is also important with respect to resource recovery. While manual disassembly allows in principle for all magnetic material to be recovered, shredding leads to very low recovery rates (<10%).

  7. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  8. Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model

    Science.gov (United States)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.

    2018-04-01

    A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine

  9. Structure and Stability of High-Pressure Dolomite with Implications for the Earth's Deep Carbon Cycle

    Science.gov (United States)

    Solomatova, N. V.; Asimow, P. D.

    2014-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth's deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A

  10. Millennial timescale carbon cycle and climate change in an efficient Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Lenton, T.M. [University of East Anglia, Tyndall Centre, UK and School of Environmental Sciences, Norwich (United Kingdom); Williamson, M.S. [University of East Anglia, Tyndall Centre, UK and School of Environmental Sciences, Norwich (United Kingdom); UK and National Oceanography Centre, Tyndall Centre, Southampton (United Kingdom); Edwards, N.R. [Open University, Earth Sciences, Milton Keynes (United Kingdom); Marsh, R.; Shepherd, J.G. [UK and National Oceanography Centre, Tyndall Centre, Southampton (United Kingdom); Price, A.R.; Cox, S.J. [University of Southampton, Southampton e-Science Centre, Southampton (United Kingdom); Ridgwell, A.J. [University of British Columbia, Department of Earth and Ocean Sciences, Vancouver (Canada)

    2006-06-15

    A new Earth system model, GENIE-1, is presented which comprises a 3-D frictional geostrophic ocean, phosphate-restoring marine biogeochemistry, dynamic and thermodynamic sea-ice, land surface physics and carbon cycling, and a seasonal 2-D energy-moisture balance atmosphere. Three sets of model climate parameters are used to explore the robustness of the results and for traceability to earlier work. The model versions have climate sensitivity of 2.8-3.3 C and predict atmospheric CO{sub 2} close to present observations. Six idealized total fossil fuel CO{sub 2} emissions scenarios are used to explore a range of 1,100-15,000 GtC total emissions and the effect of rate of emissions. Atmospheric CO{sub 2} approaches equilibrium in year 3000 at 420-5,660 ppmv, giving 1.5-12.5 C global warming. The ocean is a robust carbon sink of up to 6.5 GtC year{sup -1}. Under 'business as usual', the land becomes a carbon source around year 2100 which peaks at up to 2.5 GtC year{sup -1}. Soil carbon is lost globally, boreal vegetation generally increases, whilst under extreme forcing, dieback of some tropical and sub-tropical vegetation occurs. Average ocean surface pH drops by up to 1.15 units. A Greenland ice sheet melt threshold of 2.6 C local warming is only briefly exceeded if total emissions are limited to 1,100 GtC, whilst 15,000 GtC emissions cause complete Greenland melt by year 3000, contributing 7 m to sea level rise. Total sea-level rise, including thermal expansion, is 0.4-10 m in year 3000 and ongoing. The Atlantic meridional overturning circulation shuts down in two out of three model versions, but only under extreme emissions including exotic fossil fuel resources. (orig.)

  11. EDITORIAL: The Earth radiation balance as driver of the global hydrological cycle

    Science.gov (United States)

    Wild, Martin; Liepert, Beate

    2010-06-01

    Variations in the intensity of the global hydrological cycle can have far-reaching effects on living conditions on our planet. While climate change discussions often revolve around possible consequences of future temperature changes, the adaptation to changes in the hydrological cycle may pose a bigger challenge to societies and ecosystems. Floods and droughts are already today amongst the most damaging natural hazards, with floods being globally the most significant disaster type in terms of loss of human life (Jonkman 2005). From an economic perspective, changes in the hydrological cycle can impose great pressures and damages on a variety of industrial sectors, such as water management, urban planning, agricultural production and tourism. Despite their obvious environmental and societal importance, our understanding of the causes and magnitude of the variations of the hydrological cycle is still unsatisfactory (e.g., Ramanathan et al 2001, Ohmura and Wild 2002, Allen and Ingram 2002, Allan 2007, Wild et al 2008, Liepert and Previdi 2009). The link between radiation balance and hydrological cycle Globally, precipitation can be approximated by surface evaporation, since the variability of the atmospheric moisture storage is negligible. This is the case because the fluxes are an order of magnitude larger than the atmospheric storage (423 x 1012 m3 year-1 versus 13 x 1012 m3 according to Baumgartner and Reichel (1975)), the latter being determined by temperature (Clausius-Clapeyron). Hence the residence time of evaporated water in the atmosphere is not more than a few days, before it condenses and falls back to Earth in the form of precipitation. Any change in the globally averaged surface evaporation therefore implies an equivalent change in precipitation, and thus in the intensity of the global hydrological cycle. The process of evaporation requires energy, which it obtains from the surface radiation balance (also known as surface net radiation), composed of the

  12. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    OpenAIRE

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-01-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle from 2002 to 2013 to verify if solar cycle-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection spe...

  13. Implementation of methane cycling for deep time, global warming simulations with the DCESS Earth System Model (Version 1.2)

    DEFF Research Database (Denmark)

    Shaffer, Gary; Villanueva, Esteban Fernández; Rondanelli, Roberto

    2017-01-01

    Geological records reveal a number of ancient, large and rapid negative excursions of carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth System over a short duration. These injections may have forced strong global warming events, sometimes....... With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, time scales and locations of methane injections driving specific, observed deep time, global warming events......., or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth System models should include a comprehensive treatment of methane cycling but such a treatment...

  14. Sc, Y, La-Lu. Rare earth elements. Vol. A 6a. Y, La, and the lanthanoids. Geochemistry: Sedimentary cycle. Metamorphic cycle. 8. rev. ed

    Energy Technology Data Exchange (ETDEWEB)

    Ditz, R; Sarbas, B; Schubert, P; Toepper, W

    1988-01-01

    The present volume 'Rare Earth Elements' A 6a describes origin, mode of occurrence, and behavior of Y and RE elements in the sedimentary and metamorphic cycles, and completes the series of volumes describing cosmo- and geochemistry of these elements. In the chapter 'Sedimentary Cycle', the behavior of Y and RE during the weathering process is first outlined under both marine and terrestrial conditions, including a short compilation for migration and precipitation in surficial weathering and oxidation zones. The main part of the chapter treats, in addition to the mode of occurrence, predominantly the distribution of Y and RE in the different types of sedimentary rocks in relation to genetic processes (comprising physical and/or spatial factors such as geological age of the deposition). A concluding part gives a description of mobilization, migration, and precipitation of Y and RE during the diagenetic transformation of sediments, especially in relation to the various types of ferromanganese concretions. In the chapter 'Metamorphic Cycle', the first, extensive part gives examples of mode of occurrence and behavior of Y and RE during both the contact-metamorphic and prograde and retrograde regional-metamorphic processes affecting sedimentary and igeneous source rocks. The second part briefly describes behaviour of Y and RE during ultrametamorphism of metamorphic rocks, and during metamorphic processes in connection with special types of geologic events (as, e.g., subduction of crustal material into the earth's mantle and impact of extraterrestrial material). (orig.) With 4 figs.

  15. Decadal Cycles of Earth Rotation, Mean Sea Level and Climate, Excited by Solar Activity

    Czech Academy of Sciences Publication Activity Database

    Chapanov, Y.; Ron, Cyril; Vondrák, Jan

    2017-01-01

    Roč. 14, č. 2 (2017), s. 241-250 ISSN 1214-9705 R&D Projects: GA ČR GA13-15943S Institutional support: RVO:67985815 Keywords : Earth rotation * solar activity * mean sea level Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.699, year: 2016

  16. The Carbonate-Silicate Cycle on Earth-like Planets Near The End Of Their Habitable Lifetimes

    Science.gov (United States)

    Rushby, A. J.; Mills, B.; Johnson, M.; Claire, M.

    2016-12-01

    The terrestrial cycle of silicate weathering and metamorphic outgassing buffers atmospheric CO2 and global climate over geological time on Earth. To first order, the operation of this cycle is assumed to occur on Earth-like planets in the orbit of other main-sequence stars in the galaxy that exhibit similar continent/ocean configurations. This has important implications for studies of planetary habitability, atmospheric and climatic evolution, and our understanding of the potential distribution of life in the Universe. We present results from a simple biogeochemical carbon cycle model developed to investigate the operation of the carbonate-silicate cycle under conditions of differing planet mass and position within the radiative habitable zone. An active carbonate-silicate cycle does extend the length of a planet's habitable period through the regulation of the CO2 greenhouse. However, the breakdown of the negative feedback between temperature, pCO2, and weathering rates towards the end of a planet's habitable lifespan results in a transitory regime of `carbon starvation' that would inhibit the ability of oxygenic photoautotrophs to metabolize, and result in the collapse of any putative biosphere supported by these organisms, suggesting an earlier limit for the initiation of inhabitable conditions than when considering temperature alone. This conclusion stresses the importance of considering the full suite of planetary properties when determining potential habitability. A small sample of exoplanets was tested using this model, and the length of their habitable periods were found to be significantly longer than that of the Earth, primarily as a function of the differential rates of stellar evolution expected from their host stars. Furthermore, we carried out statistical analysis of a series of model input parameters, determining that both the mass of the planet and the sensitivity of seafloor weathering processes to dissolved CO2 exhibit significant controls on the

  17. Development of a Model of Geophysical and Geochemical Controls on Abiotic Carbon Cycling on Earth-Like Planets

    Science.gov (United States)

    Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.

    2017-12-01

    About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water

  18. Global Transition Zone Anisotropy and Consequences for Mantle Flow and Earth's Deep Water Cycle

    Science.gov (United States)

    Beghein, C.; Yuan, K.

    2011-12-01

    The transition zone has long been at the center of the debate between multi- and single-layered convection models that directly relate to heat transport and chemical mixing throughout the mantle. It has also been suggested that the transition zone is a reservoir that collects water transported by subduction of the lithosphere into the mantle. Since water lowers mantle minerals density and viscosity, thereby modifying their rheology and melting behavior, it likely affects global mantle dynamics and the history of plate tectonics. Constraining mantle flow is therefore important for our understanding of Earth's thermochemical evolution and deep water cycle. Because it can result from deformation by dislocation creep during convection, seismic anisotropy can help us model mantle flow. It is relatively well constrained in the uppermost mantle, but its presence in the transition zone is still debated. Its detection below 250 km depth has been challenging to date because of the poor vertical resolution of commonly used datasets. In this study, we used global Love wave overtone phase velocity maps, which are sensitive to structure down to much larger depths than fundamental modes alone, and have greater depth resolution than shear wave-splitting data. This enabled us to obtain a first 3-D model of azimuthal anisotropy for the upper 800km of the mantle. We inverted the 2Ψ terms of anisotropic phase velocity maps [Visser, et al., 2008] for the first five Love wave overtones between 35s and 174s period. The resulting model shows that the average anisotropy amplitude for vertically polarized shear waves displays two main stable peaks: one in the uppermost mantle and, most remarkably, one in the lower transition zone. F-tests showed that the presence of 2Ψ anisotropy in the transition zone is required to improve the third, fourth, and fifth overtones fit. Because of parameter trade-offs, however, we cannot exclude that the anisotropy is located in the upper transition zone as

  19. Global Change Research Related to the Earth's Energy and Hydrologic Cycle

    Science.gov (United States)

    1998-01-01

    The Institute for Global Change Research and Education (IGCRE) is a joint initiative of the Universities Space Research Association (USRA) and the University of Alabama in Huntsville (UAH) for coordinating and facilitating research and education relevant to global environmental change. Created in 1992 with primary support from the National Aeronautics and Space Administration (NASA), IGCRE fosters participation by university, private sector and government scientists who seek to develop long-term collaborative research in global change science, focusing on the role of water and energy in the Earth's atmosphere and physical climate system. IGCRE is also chartered to address educational needs of Earth system and global change science, including the preparation of future scientists and training of primary and secondary education teachers.

  20. Characterizing post-industrial changes in the ocean carbon cycle in an Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Katsumi; Tokos, Kathy S.; Chikamoto, Megumi O. (Geology and Geophysics, Univ. of Minnesota, MN (United States)), e-mail: katsumi@umn.edu; Ridgwell, Andy (School of Geographical Sciences, Univ. of Bristol, Bristol (United Kingdom))

    2010-10-22

    Understanding the oceanic uptake of carbon from the atmosphere is essential for better constraining the global budget, as well as for predicting the air-borne fraction of CO{sub 2} emissions and thus degree of climate change. Gaining this understanding is difficult, because the 'natural' carbon cycle, the part of the global carbon cycle unaltered by CO{sub 2} emissions, also responds to climate change and ocean acidification. Using a global climate model of intermediate complexity, we assess the evolution of the natural carbon cycle over the next few centuries. We find that physical mechanisms, particularly Atlantic meridional overturning circulation and gas solubility, alter the natural carbon cycle the most and lead to a significant reduction in the overall oceanic carbon uptake. Important biological mechanisms include reduced organic carbon export production due to reduced nutrient supply, increased organic carbon production due to higher temperatures and reduced CaCO{sub 3} production due to increased ocean acidification. A large ensemble of model experiments indicates that the most important source of uncertainty in ocean uptake projections in the near term future are the upper ocean vertical diffusivity and gas exchange coefficient. By year 2300, the model's climate sensitivity replaces these two and becomes the dominant factor as global warming continues

  1. Modelling carbon cycle in boreal wetlands with the Earth System Model ECHAM6/MPIOM

    Science.gov (United States)

    Getzieh, Robert J.; Brovkin, Victor; Kleinen, Thomas; Raivonen, Maarit; Sevanto, Sanna

    2010-05-01

    Wetlands of the northern high latitudes provide excellent conditions for peat accumulation and methanogenesis. High moisture and low O2 content in the soils lead to effective preservation of soil organic matter and methane emissions. Boreal Wetlands contain about 450 PgC and currently constitute a significant natural source of methane (CH4) even though they cover only 3% of the global land surface. While storing carbon and removing CO2 from the atmosphere, boreal wetlands have contributed to global cooling on millennial timescales. Undisturbed boreal wetlands are likely to continue functioning as a net carbon sink. On the other hand these carbon pools might be destabilised in future since they are sensitive to climate change. Given that processes of peat accumulation and decay are closely dependent on hydrology and temperature, this balance may be altered significantly in the future. As a result, northern wetlands could have a large impact on carbon cycle-climate feedback mechanisms and therefore play an important role in global carbon cycle dynamics. However global biogeochemistry models used for simulations of CO2 dynamics in past and future climates usually neglect carbon cycle in wetlands. We investigate the potential for positive or negative feedbacks to the climate system through fluxes of greenhouse gases (CO2 and CH4) with the general circulation model ECHAM6/MPIOM. A generic model of peat accumulation and decay has been developed and implemented into the land surface module JSBACH. We consider anaerobic biogeochemical processes which lead to formation of thick organic soils. Furthermore we consider specific wetland plant functional types (PFTs) in our model such as vascular plants (sedges) which impact methane transport and oxidation processes and non vascular plants (sphagnum mosses) which are promoting peat growth. As prototypes we use the modelling approaches by Frolking et al. (2001) as well as Walter & Heimann (2001) for the peat dynamics, and the

  2. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions.

    Science.gov (United States)

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-10-01

    In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk

  3. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    Science.gov (United States)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  4. Solar Cycle variations in Earth's open flux content measured by the SuperDARN radar network

    Science.gov (United States)

    Imber, S. M.; Milan, S. E.; Lester, M.

    2013-09-01

    We present a long term study, from 1996 - 2012, of the latitude of the Heppner-Maynard Boundary (HMB) determined using the northern hemisphere SuperDARN radars. The HMB represents the equatorward extent of ionospheric convection and is here used as a proxy for the amount of open flux in the polar cap. The mean HMB latitude (measured at midnight) is found to be at 64 degrees during the entire period, with secondary peaks at lower latitudes during the solar maximum of 2003, and at higher latitudes during the recent extreme solar minimum of 2008-2011. We associate these large scale statistical variations in open flux content with solar cycle variations in the solar wind parameters leading to changes in the intensity of the coupling between the solar wind and the magnetosphere.

  5. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth.

    Science.gov (United States)

    McGenity, Terry J; Crombie, Andrew T; Murrell, J Colin

    2018-04-01

    Isoprene (2-methyl-1,3-butadiene), the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, is highly reactive and can have diverse and often detrimental atmospheric effects, which impact on climate and health. Most isoprene is produced by terrestrial plants, but (micro)algal production is important in aquatic environments, and the relative bacterial contribution remains unknown. Soils are a sink for isoprene, and bacteria that can use isoprene as a carbon and energy source have been cultivated and also identified using cultivation-independent methods from soils, leaves and coastal/marine environments. Bacteria belonging to the Actinobacteria are most frequently isolated and identified, and Proteobacteria have also been shown to degrade isoprene. In the freshwater-sediment isolate, Rhodococcus strain AD45, initial oxidation of isoprene to 1,2-epoxy-isoprene is catalyzed by a multicomponent isoprene monooxygenase encoded by the genes isoABCDEF. The resultant epoxide is converted to a glutathione conjugate by a glutathione S-transferase encoded by isoI, and further degraded by enzymes encoded by isoGHJ. Genome sequence analysis of actinobacterial isolates belonging to the genera Rhodococcus, Mycobacterium and Gordonia has revealed that isoABCDEF and isoGHIJ are linked in an operon, either on a plasmid or the chromosome. In Rhodococcus strain AD45 both isoprene and epoxy-isoprene induce a high level of transcription of 22 contiguous genes, including isoABCDEF and isoGHIJ. Sequence analysis of the isoA gene, encoding the large subunit of the oxygenase component of isoprene monooxygenase, from isolates has facilitated the development of PCR primers that are proving valuable in investigating the ecology of uncultivated isoprene-degrading bacteria.

  6. Stress variations during a glacial cycle at 500 m depth in Forsmark and Oskarshamn: Earth model effects

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Bjoern [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2006-06-15

    glacial cycle. The results show that with the used ice model and Earth models, fault stability is generally enhanced in both Forsmark and Oskarshamn during ice cover of the sites. Oskarshamn, however, show long periods of decreased fault stability during inter-stadials and for some models at the end of the final deglaciation. Fault stability in Forsmark is generally higher than in Oskarshamn, with the exception of a pulse of instability at the end of deglaciations.

  7. Stress variations during a glacial cycle at 500 m depth in Forsmark and Oskarshamn: Earth model effects

    International Nuclear Information System (INIS)

    Lund, Bjoern

    2006-06-01

    This study has considered the response to a glaciation of Earth models of increasingly complex structure in elastic parameters and viscosity. The models are one-dimensional in the sense that they vary only in the depth direction, i.e. there are only uniform, horizontal layers in the models. I find that as the complexity of the models increase, and the properties of the uppermost kilometer of the Earth become less affected by average properties from deeper down, the flexural stresses at 500 m depth decrease, as expected. A lower Young's modulus, lower compressibility and lower density in the uppermost layer all act to lower the stresses. However, the three properties act differently on the resulting response. Introducing layering in Young's modulus generally decreases the stresses all along a profile through the ice model. Going from incompressible to compressible models affect the stresses outside the ice edge significantly more than the stresses under the ice sheet. Introducing layering in density conversely affect the stresses under the ice sheet more than those outside the ice edge. The combined effects of the most complex models tested here show that the glacially induced horizontal stresses at 500 m depth decrease to levels very similar in magnitude to the loading stress. There are, however, temporal variations in these horizontal stresses that do not follow the loading stress and which induce tensional or compressional horizontal stresses that persist when no ice is present.As is well known, changes in viscosity structure has a very large effect on the Earth response. Viscosity affect both the magnitudes of the induced stresses and the temporal behavior of the stress evolution. This is confirmed in the current study.The glacially induced stresses for some of the models have been used in combination with the current background stress field at Forsmark and Oskarshamn, as estimated in SKB's site models, to evaluate fault stability throughout a glacial cycle. The

  8. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Directory of Open Access Journals (Sweden)

    M. Adloff

    2018-04-01

    Full Text Available In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP-type simulations starting from climates representing the Last Glacial Maximum (LGM and pre-industrial times (PI. In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon–climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon–climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon–climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment

  9. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    Science.gov (United States)

    Adloff, Markus; Reick, Christian H.; Claussen, Martin

    2018-04-01

    In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment

  10. Plate Tectonic Cycling and Whole Mantle Convection Modulate Earth's 3He/22Ne Ratio

    Science.gov (United States)

    Dygert, N. J.; Jackson, C.; Hesse, M. A.; Tremblay, M. M.; Shuster, D. L.; Gu, J.

    2016-12-01

    3He and 22Ne are not produced in the mantle or fractionated by partial melting, and neither isotope is recycled back into the mantle by subduction of oceanic basalt or sediment. Thus, it is a surprise that large 3He/22Ne variations exist within the mantle and that the mantle has a net elevated 3He/22Ne ratio compared to volatile-rich planetary precursor materials. Depleted subcontinental lithospheric mantle and mid-ocean ridge basalt (MORB) mantle have distinctly higher 3He/22Ne compared to ocean island basalt (OIB) sources ( 4-12.5 vs. 2.5-4.5, respectively) [1,2]. The low 3He/22Ne of OIBs approaches chondritic ( 1) and solar nebula values ( 1.5). The high 3He/22Ne of the MORB mantle is not similar to solar sources or any known family of meteorites, requiring a mechanism for fractionating He from Ne in the mantle and suggesting isolation of distinct mantle reservoirs throughout geologic time. We model the formation of a MORB source with elevated and variable 3He/22Ne though diffusive exchange between dunite channel-hosted basaltic liquids and harzburgite wallrock beneath mid-ocean ridges. Over timescales relevant to mantle upwelling beneath spreading centers, He may diffuse tens to hundreds of meters into wallrock while Ne is relatively immobile, producing a regassed, depleted mantle lithosphere with elevated 3He/22Ne. Subduction of high 3He/22Ne mantle would generate a MORB source with high 3He/22Ne. Regassed, high 3He/22Ne mantle lithosphere has He concentrations 2-3 orders of magnitude lower than undegassed mantle. To preserve the large volumes of high 3He/22Ne mantle required by the MORB source, mixing between subducted and undegassed mantle reservoirs must have been limited throughout geologic time. Using the new 3He/22Ne constraints, we ran a model similar to [3] to quantify mantle mixing timescales, finding they are on the order of Gyr assuming physically reasonable seafloor spreading rates, and that Earth's convecting mantle has lost >99% of its primordial

  11. The Earth Science Education Unit's Professional Development Workshop on "The Carbon Question--Cycling, Releasing, Capturing" for Teachers of Key Stages 3 and 4

    Science.gov (United States)

    King, Chris

    2014-01-01

    The revised National Curriculum for Science for key stages 3 and 4 (ages 11-16) in England provides the opportunity to develop a new coherent approach to teaching about the carbon cycle, the use of carbon as a fuel and the resulting issues. The Earth Science Education Unit (ESEU) intends to develop a new workshop to support the teaching of this…

  12. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    International Nuclear Information System (INIS)

    Schwab, Oliver; Bayer, Peter; Juraske, Ronnie; Verones, Francesca; Hellweg, Stefanie

    2014-01-01

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  13. Beyond the material grave: Life Cycle Impact Assessment of leaching from secondary materials in road and earth constructions

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Oliver [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Karlsruhe Institute of Technology, Institute for Geography and Geoecology, Adenauerring 20, 76131 Karlsruhe (Germany); Bayer, Peter, E-mail: bayer@erdw.ethz.ch [Swiss Federal Institute of Technology Zurich, Geological Institute, Sonneggstrasse 5, 8092 Zurich (Switzerland); Juraske, Ronnie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Verones, Francesca [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland); Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Hellweg, Stefanie [Swiss Federal Institute of Technology Zurich, Institute of Environmental Engineering, John-von-Neumann-Weg 9, 8093 Zurich (Switzerland)

    2014-10-15

    Highlights: • We model environmental impacts of leaching from secondary construction material. • Industrial wastes in construction contain up to 45,000 t heavy metals per year (D). • In a scenario, 150 t are leached to the environment within 100 years after construction. • All heavy metals but As, Sb and Mo are adsorbed by 20 cm subsoil in this scenario. • Environmental impacts depend on material, pollutant, construction type, and geography. - Abstract: In industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors

  14. Life-Cycle Assessment of the Production of Rare-Earth Elements for Energy Applications: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Julio [School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States); Zhao, Fu, E-mail: fzhao@purdue.edu [Division of Environmental and Ecological Engineering, School of Mechanical Engineering, Purdue University, West Lafayette, IN (United States)

    2014-11-06

    Rare-earth elements (REEs) are a group of 17 elements with similar chemical properties, including 15 in the lanthanide group, yttrium, and scandium. Due to their unique physical and chemical properties, REEs gain increasing importance in many new energy technologies and systems that contribute to reduce greenhouse gas emissions and fossil fuel depletion (e.g., wind turbine, electric vehicles, high efficiency lighting, batteries, and hydrogen storage). However, it is well known that production of REEs is far from environmentally sustainable as it requires significant material and energy consumption while generating large amounts of air/water emissions and solid waste. Although life-cycle assessment (LCA) has been accepted as the most comprehensive approach to quantify the environmental sustainability of a product or process, to date, there have been only very limited LCA studies on the production of REEs. With the continual growth of renewable energy and energy efficient technologies, global production of REEs will increase. Therefore, reducing environmental footprints of REE production becomes critical and identifying environmental hotspots based on a holistic and comprehensive assessment on environmental impacts serves as an important starting point. After providing an overview of LCA methodology and a high-level description of the major REE production routes used from 1990s to today, this paper reviews the published LCA studies on the production of REEs. To date, almost all the LCA studies are based on process information collected from the operation of Mountain Pass facility in U.S. in 1990s and the operation of facilities in Bayan Obo, China. Knowledge gaps are identified and future research efforts are suggested to advance understanding on environmental impacts of REE production from the life-cycle perspective.

  15. Life-Cycle Assessment of the Production of Rare-Earth Elements for Energy Applications: A Review

    International Nuclear Information System (INIS)

    Navarro, Julio; Zhao, Fu

    2014-01-01

    Rare-earth elements (REEs) are a group of 17 elements with similar chemical properties, including 15 in the lanthanide group, yttrium, and scandium. Due to their unique physical and chemical properties, REEs gain increasing importance in many new energy technologies and systems that contribute to reduce greenhouse gas emissions and fossil fuel depletion (e.g., wind turbine, electric vehicles, high efficiency lighting, batteries, and hydrogen storage). However, it is well known that production of REEs is far from environmentally sustainable as it requires significant material and energy consumption while generating large amounts of air/water emissions and solid waste. Although life-cycle assessment (LCA) has been accepted as the most comprehensive approach to quantify the environmental sustainability of a product or process, to date, there have been only very limited LCA studies on the production of REEs. With the continual growth of renewable energy and energy efficient technologies, global production of REEs will increase. Therefore, reducing environmental footprints of REE production becomes critical and identifying environmental hotspots based on a holistic and comprehensive assessment on environmental impacts serves as an important starting point. After providing an overview of LCA methodology and a high-level description of the major REE production routes used from 1990s to today, this paper reviews the published LCA studies on the production of REEs. To date, almost all the LCA studies are based on process information collected from the operation of Mountain Pass facility in U.S. in 1990s and the operation of facilities in Bayan Obo, China. Knowledge gaps are identified and future research efforts are suggested to advance understanding on environmental impacts of REE production from the life-cycle perspective.

  16. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N; Catling, David C

    2018-04-17

    The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO 2 , which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. Copyright © 2018 the Author(s). Published by PNAS.

  17. Strain-controlled low cycle fatigue properties of a rare-earth containing ME20 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, F.A., E-mail: f4mirza@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Wang, K.; Bhole, S.D.; Friedman, J.; Chen, D.L. [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3 (Canada); Ni, D.R.; Xiao, B.L. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Ma, Z.Y., E-mail: zyma@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-04-20

    The present study was aimed to evaluate the strain-controlled cyclic deformation characteristics and low cycle fatigue (LCF) life of a low (~0.3 wt%) Ce-containing ME20-H112 magnesium alloy. The alloy contained equiaxed grains with ellipsoidal particles containing Mg and Ce (Mg{sub 12}Ce), and exhibited a relatively weak basal texture. Unlike the high rare earth (RE)-containing magnesium alloy, the ME20M-H112 alloy exhibited asymmetrical hysteresis loops somewhat similar to the RE-free extruded Mg alloys due to the presence of twinning-detwinning activities during cyclic deformation. While cyclic stabilization was barely achieved even at the lower strain amplitudes, cyclic softening was the predominant characteristics at most strain amplitudes. The ME20M-H112 alloy showed basically an equivalent fatigue life to that of the RE-free extruded Mg alloys, which could be described by the Coffin-Manson law and Basquin's equation. Fatigue crack was observed to initiate from the near-surface imperfections, and in contrast to the typical fatigue striations, the present alloy showed some shallow dimples along with some fractions of quasi-cleavage features in the crack propagation area.

  18. Responses of the ocean carbon cycle to climate change: Results from an earth system climate model simulation

    Institute of Scientific and Technical Information of China (English)

    WANG Shuang-Jing; CAO Long; LI Na

    2014-01-01

    Based on simulations using the University of Victoria’s Earth System Climate Model, we analyzed the responses of the ocean carbon cycle to increasing atmospheric CO2 levels and climate change from 1800 to 2500 following the RCP 8.5 scenario and its extension. Compared to simulations without climate change, the simulation with a climate sensitivity of 3.0 K shows that in 2100, due to increased atmospheric CO2 concentrations, the simulated sea surface temperature increases by 2.7 K, the intensity of the North Atlantic deep water formation reduces by4.5 Sv, and the oceanic uptake of anthropogenic CO2 decreases by 0.8 Pg C. Climate change is also found to have a large effect on the North Atlantic’s ocean column inventory of anthropogenic CO2. Between the years 1800 and 2500, compared with the simulation with no climate change, the simulation with climate change causes a reduction in the total anthropogenic CO2 column inventory over the entire ocean and in North Atlantic by 23.1% and 32.0%, respectively. A set of simulations with climate sensitivity variations from 0.5 K to 4.5 K show that with greater climate sensitivity climate change would have a greater effect in reducing the ocean’s ability to absorb CO2 from the atmosphere.

  19. Carbon cycling of European croplands: A framework for the assimilation of optical and microwave Earth observation data

    Science.gov (United States)

    Revill, Andrew; Sus, Oliver; Williams, Mathew

    2013-04-01

    Croplands are traditionally managed to maximise the production of food, feed, fibre and bioenergy. Advancements in agricultural technologies, together with land-use change, have approximately doubled World grain harvests over the past 50 years. Cropland ecosystems also play a significant role in the global carbon (C) cycle and, through changes to C storage in response to management activities, they can provide opportunities for climate change mitigation. However, quantifying and understanding the cropland C cycle is complex, due to variable environmental drivers, varied management practices and often highly heterogeneous landscapes. Efforts to upscale processes using simulation models must resolve these challenges. Here we show how data assimilation (DA) approaches can link C cycle modelling to Earth observation (EO) and reduce uncertainty in upscaling. We evaluate a framework for the assimilation of leaf area index (LAI) time series, empirically derived from EO optical and radar sensors, for state-updating a model of crop development and C fluxes. Sensors are selected with fine spatial resolutions (20-50 m) to resolve variability across field sizes typically used in European agriculture. Sequential DA is used to improve the canopy development simulation, which is validated by comparing time-series LAI and net ecosystem exchange (NEE) predictions to independent ground measurements and eddy covariance observations at multiple European cereal crop sites. Significant empirical relationships were established between the LAI ground measurements and the optical reflectance and radar backscatter, which allowed for single LAI calibrations being valid for all the cropland sites for each sensor. The DA of all EO LAI estimates results indicated clear adjustments in LAI and an enhanced representation of daily CO2 exchanges, particularly around the time of peak C uptake. Compared to the simulation without DA, the assimilation of all EO LAI estimates improved the predicted at

  20. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    Science.gov (United States)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  1. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models

    Science.gov (United States)

    Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.

    2018-05-01

    The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.

  2. Vegetation and Carbon Cycle Dynamics in the High-Resolution Transient Holocene Simulations Using the MPI Earth System Model

    Science.gov (United States)

    Brovkin, V.; Lorenz, S.; Raddatz, T.; Claussen, M.; Dallmeyer, A.

    2017-12-01

    One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. At 8 kyr BP, vegetation cover was much denser in Africa, mainly due to increased rainfall in response to the orbital forcing. Boreal forests moved northward in both, North America and Eurasia. The boreal forest expansion in North America is much less pronounced than in Eurasia. Simulated physical ocean fields, including surface temperatures and meridional overturning, do not change substantially in the Holocene. Carbonate ion concentration in deep ocean decreases in both, prescribed and interactive CO2simulations. Comparison with available proxies for terrestrial vegetation and for the ocean carbonate chemistry will be presented. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon die to productivity decrease. This decadal

  3. Rare Earth Element Distribution in the NE Atlantic: Evidence for Benthic Sources, Longevity of the Seawater Signal, and Biogeochemical Cycling

    Directory of Open Access Journals (Sweden)

    Kirsty C. Crocket

    2018-04-01

    Full Text Available Seawater rare earth element (REE concentrations are increasingly applied to reconstruct water mass histories by exploiting relative changes in the distinctive normalised patterns. However, the mechanisms by which water masses gain their patterns are yet to be fully explained. To examine this, we collected water samples along the Extended Ellett Line (EEL, an oceanographic transect between Iceland and Scotland, and measured dissolved REE by offline automated chromatography (SeaFAST and ICP-MS. The proximity to two continental boundaries, the incipient spring bloom coincident with the timing of the cruise, and the importance of deep water circulation in this climatically sensitive gateway region make it an ideal location to investigate sources of REE to seawater and the effects of vertical cycling and lateral advection on their distribution. The deep waters have REE concentrations closest to typical North Atlantic seawater and are dominated by lateral advection. Comparison to published seawater REE concentrations of the same water masses in other locations provides a first measure of the temporal and spatial stability of the seawater REE signal. We demonstrate the REE pattern is replicated for Iceland-Scotland Overflow Water (ISOW in the Iceland Basin from adjacent stations sampled 16 years previously. A recently published Labrador Sea Water (LSW dissolved REE signal is reproduced in the Rockall Trough but shows greater light and mid REE alteration in the Iceland Basin, possibly due to the dominant effect of ISOW and/or continental inputs. An obvious concentration gradient from seafloor sediments to the overlying water column in the Rockall Trough, but not the Iceland Basin, highlights release of light and mid REE from resuspended sediments and pore waters, possibly a seasonal effect associated with the timing of the spring bloom in each basin. The EEL dissolved oxygen minimum at the permanent pycnocline corresponds to positive heavy REE

  4. Deep mantle roots and continental hypsometry: implications for whole-Earth elemental cycling, long-term climate, and the Cambrian explosion

    Science.gov (United States)

    Lee, C. T.

    2016-12-01

    Most of Earth's continents today are above sea level, but the presence of thick packages of ancient sediments on top of the stable cores of continents indicates that continents must have been submerged at least once in their past. Elevations of continents are controlled by the interplay between crustal thickness, mantle root thickness and the temperature of the ambient convecting mantle. The history of a continent begins with mountain building through magmatic or tectonic crustal thickening, during which exhumation of deep-seated igneous and metamorphic rocks are highest. Mountain building is followed by a long interval of subsidence as a result of continued, but decreasing erosion and thermal relaxation, the latter in the form of a growing thermal boundary layer. Subsidence is manifest first as a boring interval in which no sedimentary record is preserved, followed by continent-scale submergence wherein sediments are deposited directly on deep-seated igneous/metamorphic basement, generating a major disconformity. The terminal resting elevation of a mature continent, however, is defined by the temperature of the ambient convecting mantle: below sea level when the mantle is hot and above sea level when the mantle is cold. Using thermobarometric constraints on secular cooling of Earth's mantle, our results suggest that Earth, for most of its history, must have been a water world, with regions of land confined to narrow orogenic belts and oceans characterized by deep basins and shallow continental seas, the latter serving as repositories of sediments and key redox-sensitive biological nutrients, such as phosphorous. Cooling of the Earth led to the gradual and irreversible rise of the continents, culminating in rapid emergence, through fits and starts and possible instabilities in climate, between 500-1000 Ma. Such emergence fundamentally altered marine biogeochemical cycling, continental weathering and the global hydrologic cycle, defining the backdrop for the

  5. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    International Nuclear Information System (INIS)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui

    2012-01-01

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  6. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    Science.gov (United States)

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Implementation of methane cycling for deep-time global warming simulations with the DCESS Earth system model (version 1.2)

    Science.gov (United States)

    Shaffer, Gary; Fernández Villanueva, Esteban; Rondanelli, Roberto; Olaf Pepke Pedersen, Jens; Malskær Olsen, Steffen; Huber, Matthew

    2017-11-01

    Geological records reveal a number of ancient, large and rapid negative excursions of the carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth system over a short duration. These injections may have forced strong global warming events, sometimes accompanied by mass extinctions such as the Triassic-Jurassic and end-Permian extinctions 201 and 252 million years ago, respectively. In many cases, evidence points to methane as the dominant form of injected carbon, whether as thermogenic methane formed by magma intrusions through overlying carbon-rich sediment or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth system models for addressing such events should include a comprehensive treatment of methane cycling but such a treatment has often been lacking. Here we implement methane cycling in the Danish Center for Earth System Science (DCESS) model, a simplified but well-tested Earth system model of intermediate complexity. We use a generic methane input function that allows variation in input type, size, timescale and ocean-atmosphere partition. To be able to treat such massive inputs more correctly, we extend the model to deal with ocean suboxic/anoxic conditions and with radiative forcing and methane lifetimes appropriate for high atmospheric methane concentrations. With this new model version, we carried out an extensive set of simulations for methane inputs of various sizes, timescales and ocean-atmosphere partitions to probe model behavior. We find that larger methane inputs over shorter timescales with more methane dissolving in the ocean lead to ever-increasing ocean anoxia with consequences for ocean life and global carbon cycling. Greater methane input directly to the atmosphere leads to more warming and, for example, greater carbon dioxide release

  8. Implementation of methane cycling for deep-time global warming simulations with the DCESS Earth system model (version 1.2

    Directory of Open Access Journals (Sweden)

    G. Shaffer

    2017-11-01

    Full Text Available Geological records reveal a number of ancient, large and rapid negative excursions of the carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth system over a short duration. These injections may have forced strong global warming events, sometimes accompanied by mass extinctions such as the Triassic-Jurassic and end-Permian extinctions 201 and 252 million years ago, respectively. In many cases, evidence points to methane as the dominant form of injected carbon, whether as thermogenic methane formed by magma intrusions through overlying carbon-rich sediment or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth system models for addressing such events should include a comprehensive treatment of methane cycling but such a treatment has often been lacking. Here we implement methane cycling in the Danish Center for Earth System Science (DCESS model, a simplified but well-tested Earth system model of intermediate complexity. We use a generic methane input function that allows variation in input type, size, timescale and ocean–atmosphere partition. To be able to treat such massive inputs more correctly, we extend the model to deal with ocean suboxic/anoxic conditions and with radiative forcing and methane lifetimes appropriate for high atmospheric methane concentrations. With this new model version, we carried out an extensive set of simulations for methane inputs of various sizes, timescales and ocean–atmosphere partitions to probe model behavior. We find that larger methane inputs over shorter timescales with more methane dissolving in the ocean lead to ever-increasing ocean anoxia with consequences for ocean life and global carbon cycling. Greater methane input directly to the atmosphere leads to more warming and, for example

  9. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) of the rare earth elements (REEs) in beneficiation rare earth waste from the gold processing: case study

    Science.gov (United States)

    Bieda, Bogusław; Grzesik, Katarzyna

    2017-11-01

    The study proposes an stochastic approach based on Monte Carlo (MC) simulation for life cycle assessment (LCA) method limited to life cycle inventory (LCI) study for rare earth elements (REEs) recovery from the secondary materials processes production applied to the New Krankberg Mine in Sweden. The MC method is recognizes as an important tool in science and can be considered the most effective quantification approach for uncertainties. The use of stochastic approach helps to characterize the uncertainties better than deterministic method. Uncertainty of data can be expressed through a definition of probability distribution of that data (e.g. through standard deviation or variance). The data used in this study are obtained from: (i) site-specific measured or calculated data, (ii) values based on literature, (iii) the ecoinvent process "rare earth concentrate, 70% REO, from bastnäsite, at beneficiation". Environmental emissions (e.g, particulates, uranium-238, thorium-232), energy and REE (La, Ce, Nd, Pr, Sm, Dy, Eu, Tb, Y, Sc, Yb, Lu, Tm, Y, Gd) have been inventoried. The study is based on a reference case for the year 2016. The combination of MC analysis with sensitivity analysis is the best solution for quantified the uncertainty in the LCI/LCA. The reliability of LCA results may be uncertain, to a certain degree, but this uncertainty can be noticed with the help of MC method.

  10. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    Science.gov (United States)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so

  11. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  12. Implementation of methane cycling for deep time, global warming simulations with the DCESS Earth System Model (Version 1.2)

    DEFF Research Database (Denmark)

    Shaffer, Gary; Villanueva, Esteban Fernández; Rondanelli, Roberto

    2017-01-01

    Geological records reveal a number of ancient, large and rapid negative excursions of carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth System over a short duration. These injections may have forced strong global warming events, sometimes....... With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, time scales and locations of methane injections driving specific, observed deep time, global warming events....

  13. Effect of Rare Earth on Corrosion Products and Impedance Behavior of AZ91 Magnesium Alloy Under Dry-wet Cycles

    Directory of Open Access Journals (Sweden)

    ZHAO Xi

    2017-04-01

    Full Text Available The effect of mischmetal of lanthanum and cerium on the composition and structure of the corrosion products on the surface of AZ91 Mg alloy in deicing salt solution under dry-wet cycles was investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD and energy dispersive spectrometer (EDS. The results show that the corrosion products of AZ91 Mg alloy without mischmetal addition (La,Ce are mainly composed of Mg(OH2, MgO, CaCO3 and Mg6Al2CO3(OH16·4H2O; and (La,CeAlO3 can be found in the products of AZ91 with mischmetal addition, meanwhile dense layer occurs in the corrosion products. Electrochemical impedance spectroscopy (EIS measurements show that the charge transfer resistance of AZ91 alloy with mischmetal addition tested in the same dry-wet cycles is much higher than that of AZ91 alloy, the addition of mischmetal helps to reduce the dispersing effect of impedance spectroscopy, indicating that the corrosion resistance of AZ91 Mg alloy and the stability of corrosion product films can be improved by mischmetal of La and Ce.

  14. Sc, Y, La-Lu. Rare earth elements. Vol. A6b. Y, La, and the lanthanoids. Geochemistry: Hydrosphere, atmosphere. Cosmo- and geochemical cycles. Balance

    Energy Technology Data Exchange (ETDEWEB)

    Sarbas, B; Toepper, W

    1988-01-01

    The present volume 'Rare earth elements' A6b describes in its first part the origin, mode of occurrence, and behavior of Y and/or RE elements in the hydrosphere and atmosphere. Separately for marine and non-marine environments (surface, subsurface, mineral, and thermal waters), the behavior of RE (including Y) in the hydrosphere comprises especially the relationship between content/composition and the chemistry of water, and the processes acting during migration, removal, and precipitation are outlined; the influence of biological material is mentioned. Behavior of RE in the atmosphere involves mainly transport, regional differences, and temporal variations as well as removal by precipitation; the anthropogenic influence is only outlined. The second part of this volume treats, partly in a more summary manner, the cosmo- and geochemical cycles and the balance of Y and/or RE elements. The relationship between geodynamic position and type of magmatism, as well as the geochemical variations in the geospheres, especially mantle and crust of the earth, are described in greater detail. With 2 figs..

  15. Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere.

    Science.gov (United States)

    Morris, Cindy E; Conen, Franz; Alex Huffman, J; Phillips, Vaughan; Pöschl, Ulrich; Sands, David C

    2014-02-01

    Landscapes influence precipitation via the water vapor and energy fluxes they generate. Biologically active landscapes also generate aerosols containing microorganisms, some being capable of catalyzing ice formation and crystal growth in clouds at temperatures near 0 °C. The resulting precipitation is beneficial for the growth of plants and microorganisms. Mounting evidence from observations and numerical simulations support the plausibility of a bioprecipitation feedback cycle involving vegetated landscapes and the microorganisms they host. Furthermore, the evolutionary history of ice nucleation-active bacteria such as Pseudomonas syringae supports that they have been part of this process on geological time scales since the emergence of land plants. Elucidation of bioprecipitation feedbacks involving landscapes and their microflora could contribute to appraising the impact that modified landscapes have on regional weather and biodiversity, and to avoiding inadvertent, negative consequences of landscape management. © 2013 John Wiley & Sons Ltd.

  16. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N.; Catling, David C.

    2018-04-01

    The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6‑0.4+0.6 (2σ) at 4.0 Ga to 7.0‑0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9‑0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.

  17. Living with the stars how the human body is connected to the life cycles of the Earth, the planets, and the stars

    CERN Document Server

    Schrijver, Karel

    2015-01-01

    Living with the Stars tells the fascinating story of what truly makes the human body. The body that is with us all our lives is always changing. We are quite literally not who we were years, weeks, or even days ago: our cells die and are replaced by new ones at an astonishing pace. The entire body continually rebuilds itself, time and again, using the food and water that flow through us as fuel and as construction material. What persists over time is not fixed but merely a pattern in flux. We rebuild using elements captured from our surroundings, and are thereby connected to animals and plants around us, and to the bacteria within us that help digest them, and to geological processes such as continental drift and volcanism here on Earth. We are also intimately linked to the Sun's nuclear furnace and to the solar wind, to collisions with asteroids and to the cycles of the birth of stars and their deaths in cataclysmic supernovae, and ultimately to the beginning of the universe. Our bodies are made of the burn...

  18. Rare earths as burnable poison for extended cycles control in electricity generation reactors; Etude des terres rares en tant que poison consommable pour le controle des cycles allonges pour les reacteurs electrogenes

    Energy Technology Data Exchange (ETDEWEB)

    Asou, M

    1995-05-12

    The search of an optimization of the French electronuclear network operations leads to a necessary optimization of the core performances. All the economic studies performed by the utilities had shown that there is a real gain to minimize shut down periods for refueling. So, increasing the cycle length from 12 to 18 months will present a gain of shut down for a three years operation period. The theoretical burnable absorber will be a fuel admixed material bringing the required initial negative reactivity with a burn-up kinetic well suited to the fuel and allowing the lowest residual penalty as possible. The residual penalty us defined in this case by the non complete burn up of the poison, by the low of fissile material and by the accumulate of residual isotopes or nuclides. Because of the well known use of gadolinium as burnable absorber for BWR`s and PWR`s operations, the search for the best compromise to optimize all the above stress is pointed towards the rare earths. In the nuclides family, considering criteria such as cross sections, natural abundance and availability only five nuclides can play the role as burnable absorbers, namely: gadolinium, samarium, dysprosium, europium and erbium. The study presented here will show that only gadolinium and erbium will be considered to control the reactivity of the PWR`s. (author). 58 refs., 65 figs., 47 tabs.

  19. Earth Observation and Life Cycle Assessment in Support of a Sustainable and Innovative Water Sector. RESEWAM-O, Remote Sensing for Water Management Optimisation

    Science.gov (United States)

    Lopez-Baeza, Ernesto

    2016-07-01

    facilitate their decision whether the necessary expenditure and investment would be worthwhile and rewarding. In this paper, RESEWAM-O will show the use of current remote sensing technology and Earth Observation data and products to identify sensitive areas and evaluate their potential productivity in different parts of the world, namely Spain, Brazil, Colombia, Iran. The methodology is being developed to be compatible and continued real-time with the close forthcoming ESA Sentinel missions, mainly Sentinel-3, within the joint ESA/EU Copernicus Programme. Soil moisture is also monitored with the current ESA (SMOS, Soil Moisture and Ocean Salinity) and NASA (SMAP, Soil Moisture Active and Passive) missions. Complementary to Earth Observation, life cycle thinking perspective seems to be the correct approach to drive sustainability within the different human activities, also addressing the potential burdens on environment. The Life Cycle Assessment (LCA) methodology and its holistic perspective are useful tools to support both the screening and decision making procedures. With the aim of incorporating LCA to the RESEWAM-O's methodology, a first analysis has been carried out to identify the water and carbon footprints due to different organic agricultural practices over two organic vineyards of the Utiel-Requena Plateau natural region, Valencia (Spain), during the years 2014 and 2015. A cradle-to-gate analysis, from the raw material extraction up to the grapes production, was carried out using primary data (furnished by the wineries) and literature information (peer-review and database). LCA results were used to evaluate the environmental repercussions associated with different agricultural practices (e.g. manure spreading and the use of other fertilizer), as a consequence of the reduced rain abundance, and support the wineries in the decision making procedure by helping to identify operationally inefficient practices and quantify the environmental benefits of moving towards

  20. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....

  1. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    Science.gov (United States)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  2. EARTH FROM SPACE

    Indian Academy of Sciences (India)

    Table of contents. EARTH FROM SPACE · Slide 2 · Earth System · Slide 4 · Global water cycle · Slide 6 · Slide 7 · Direct Observations of Recent Climate Change · Slide 9 · Slide 10 · Snow cover and Arctic sea ice are decreasing · Polar Melting & Global Heat Transport · Antarctica: Melting and Thickening · Slide 14 · Slide 15.

  3. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    ) such as the Marine nitrogen cycle The marine nitrogen cycle. ‘X’ and ‘Y’ are intra-cellular intermediates that do not accumulate in water column. (Source: Codispoti et al., 2001) Page 1 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www... and nitrous oxide budgets: Moving targets as we enter the anthropocene?, Sci. Mar., 65, 85-105, 2001. Page 2 of 3Marine nitrogen cycle - Encyclopedia of Earth 11/20/2006http://www.eoearth.org/article/Marine_nitrogen_cycle square6 Gruber, N.: The dynamics...

  4. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  5. CORRELATION BETWEEN THE 22-YEAR SOLAR MAGNETIC CYCLE AND THE 22-YEAR QUASICYCLE IN THE EARTH'S ATMOSPHERIC TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Qu Weizheng; Zhao Jinping; Huang Fei; Deng Shenggui, E-mail: quweizhe@ouc.edu.cn [College of Environment Oceanography, Ocean University of China, Qingdao 266100 (China)

    2012-07-15

    According to the variation pattern of the solar magnetic field polarity and its relation to the relative sunspot number, we established the time series of the sunspot magnetic field polarity index and analyzed the strength and polarity cycle characteristics of the solar magnetic field. The analysis showed the existence of a cycle with about a 22-year periodicity in the strength and polarity of the solar magnetic field, which proved the Hale proposition that the 11-year sunspot cycle is one-half of the 22-year solar magnetic cycle. By analyzing the atmospheric temperature field, we found that the troposphere and the stratosphere in the middle latitude of both the northern and southern hemispheres exhibited a common 22-year quasicycle in the atmospheric temperature, which is believed to be attributable to the 22-year solar magnetic cycle.

  6. Final Technical Report. Supporting carbon cycle and earth systems modeling with measurements and analysis from the Howland AmeriFlux Site

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, David [USDA Forest Service, Washington, DC (United States); Davidson, E. [Woods Hole Research Center, Falmouth, MA (United States); Dail, D. B. [Univ. of Maine, Orono, ME (United States); Richardson, A. [Harvard Univ., Cambridge, MA (United States)

    2016-01-11

    This report provides and overview of the work carried out and lists the products produced under the terms of agreement SC0005578 with the USDA Forest Service. This relates to scientific investigation of the carbon cycle at the Howland Forest AmeriFlux site located in central Maine, USDA. The overall goal of this work was to understand the various (and interacting) impacts of a changing climate on carbon cycling at the Howland AmeriFlux site, representative of an important component of the North American boreal forest.

  7. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    Science.gov (United States)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  8. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1 – Part 2: Historical simulations

    Directory of Open Access Journals (Sweden)

    T. Ziehn

    2017-07-01

    Full Text Available Over the last decade many climate models have evolved into Earth system models (ESMs, which are able to simulate both physical and biogeochemical processes through the inclusion of additional components such as the carbon cycle. The Australian Community Climate and Earth System Simulator (ACCESS has been recently extended to include land and ocean carbon cycle components in its ACCESS-ESM1 version. A detailed description of ACCESS-ESM1 components including results from pre-industrial simulations is provided in Part 1. Here, we focus on the evaluation of ACCESS-ESM1 over the historical period (1850–2005 in terms of its capability to reproduce climate and carbon-related variables. Comparisons are performed with observations, if available, but also with other ESMs to highlight common weaknesses. We find that climate variables controlling the exchange of carbon are well reproduced. However, the aerosol forcing in ACCESS-ESM1 is somewhat larger than in other models, which leads to an overly strong cooling response in the land from about 1960 onwards. The land carbon cycle is evaluated for two scenarios: running with a prescribed leaf area index (LAI and running with a prognostic LAI. We overestimate the seasonal mean (1.7 vs. 1.4 and peak amplitude (2.0 vs. 1.8 of the prognostic LAI at the global scale, which is common amongst CMIP5 ESMs. However, the prognostic LAI is our preferred choice, because it allows for the vegetation feedback through the coupling between LAI and the leaf carbon pool. Our globally integrated land–atmosphere flux over the historical period is 98 PgC for prescribed LAI and 137 PgC for prognostic LAI, which is in line with estimates of land use emissions (ACCESS-ESM1 does not include land use change. The integrated ocean–atmosphere flux is 83 PgC, which is in agreement with a recent estimate of 82 PgC from the Global Carbon Project for the period 1959–2005. The seasonal cycle of simulated atmospheric CO2 is

  9. Phosphine and methylphosphine production by simulated lightning - s study for the volatile phosphorus cycle and cloud formation in the earth atmosphere

    OpenAIRE

    Glindemann, D.; Edwards, M.; Schrems, Otto

    2004-01-01

    Phosphine (PH3), was recently found worldwide even in the remote atmosphere (Naturwissenschaften 83 (1996a,131, Atmos. Environ. 37 (2003) 2429). It is of interest to find natural mechanisms which could produce phosphine gas and drive a volatile link of the atmospheric phosphorus cycle and the formation of phosphoric acid as possible condensation nuclei for clouds.Here we report on simulated lightning exposing sodium phosphate in a reducing medium (methane model atmosphere or organic matter) f...

  10. Statistical analysis of solar events associated with SSC over one year of solar maximum during cycle 23: propagation and effects from the Sun to the Earth

    Science.gov (United States)

    Cornilleau-Wehrlin, Nicole; Bocchialini, Karine; Menvielle, Michel; Chambodut, Aude; Fontaine, Dominique; Grison, Benjamin; Marchaudon, Aurélie; Pick, Monique; Pitout, Frédéric; Schmieder, Brigitte; Régnier, Stéphane; Zouganelis, Yannis

    2017-04-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, helicity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The observed Sun-to-Earth travel times are compared to those estimated using existing simple models of propagation in the interplanetary medium. This comparison is used to statistically assess performances of various models. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach (for instance the all 12 well identified Magnetic Clouds of 2002 give rise to SSCs).

  11. Rock Cycle Roulette.

    Science.gov (United States)

    Schmidt, Stan M.; Palmer, Courtney

    2000-01-01

    Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…

  12. Teaching and Learning about the Earth. ERIC Digest.

    Science.gov (United States)

    Lee, Hyonyong

    This ERIC Digest investigates the earth and space science guidelines of the National Science Education Standards. These guidelines are frequently referred to as the earth system and include components such as plate tectonics, the water cycle, and the carbon cycle. This Digest describes the development of earth systems science and earth systems…

  13. Understanding Earth's Albedo Effect

    Science.gov (United States)

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  14. A statistical study of the performance of the Hakamada-Akasofu-Fry version 2 numerical model in predicting solar shock arrival times at Earth during different phases of solar cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.M.P. [National Univ. of Ireland, Maynooth, Co. Kildare (Ireland). Space Technology Ireland; Fry, C.D. [Exploration Physics International, Inc., Huntsville, AL (United States); Dryer, M. [Exploration Physics International, Inc., Huntsville, AL (United States); NOAA Space Environment Center, Boulder, CO (United States); Heynderickx, D. [D-H Consultancy, Leuven (Belgium); Kecskemety, K. [KFKI Research Institute for Particle and Nuclear Physics, Budapest (Hungary); Kudela, K. [Institute of Experimental Physics, Kosice (Slovakia); Balaz, J. [National Univ. of Ireland, Maynooth, Co. Kildare (Ireland). Space Technology Ireland; Institute of Experimental Physics, Kosice (Slovakia)

    2012-07-01

    The performance of the Hakamada Akasofu-Fry, version 2 (HAFv.2) numerical model, which provides predictions of solar shock arrival times at Earth, was subjected to a statistical study to investigate those solar/interplanetary circumstances under which the model performed well/poorly during key phases (rise/maximum/decay) of solar cycle 23. In addition to analyzing elements of the overall data set (584 selected events) associated with particular cycle phases, subsets were formed such that those events making up a particular sub-set showed common characteristics. The statistical significance of the results obtained using the various sets/subsets was generally very low and these results were not significant as compared with the hit by chance rate (50 %). This implies a low level of confidence in the predictions of the model with no compelling result encouraging its use. However, the data suggested that the success rates of HAFv.2 were higher when the background solar wind speed at the time of shock initiation was relatively fast. Thus, in scenarios where the background solar wind speed is elevated and the calculated success rate significantly exceeds the rate by chance, the forecasts could provide potential value to the customer. With the composite statistics available for solar cycle 23, the calculated success rate at high solar wind speed, although clearly above 50 %, was indicative rather than conclusive. The RMS error estimated for shock arrival times for every cycle phase and for the composite sample was in each case significantly better than would be expected for a random data set. Also, the parameter ''Probability of Detection, yes'' (PODy) which presents the Proportion of Yes observations that were correctly forecast (i.e. the ratio between the shocks correctly predicted and all the shocks observed), yielded values for the rise/maximum/decay phases of the cycle and using the composite sample of 0.85, 0.64, 0.79 and 0.77, respectively. The

  15. A statistical study of the performance of the Hakamada-Akasofu-Fry version 2 numerical model in predicting solar shock arrival times at Earth during different phases of solar cycle 23

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    2012-02-01

    Full Text Available The performance of the Hakamada Akasofu-Fry, version 2 (HAFv.2 numerical model, which provides predictions of solar shock arrival times at Earth, was subjected to a statistical study to investigate those solar/interplanetary circumstances under which the model performed well/poorly during key phases (rise/maximum/decay of solar cycle 23. In addition to analyzing elements of the overall data set (584 selected events associated with particular cycle phases, subsets were formed such that those events making up a particular sub-set showed common characteristics. The statistical significance of the results obtained using the various sets/subsets was generally very low and these results were not significant as compared with the hit by chance rate (50%. This implies a low level of confidence in the predictions of the model with no compelling result encouraging its use. However, the data suggested that the success rates of HAFv.2 were higher when the background solar wind speed at the time of shock initiation was relatively fast. Thus, in scenarios where the background solar wind speed is elevated and the calculated success rate significantly exceeds the rate by chance, the forecasts could provide potential value to the customer. With the composite statistics available for solar cycle 23, the calculated success rate at high solar wind speed, although clearly above 50%, was indicative rather than conclusive. The RMS error estimated for shock arrival times for every cycle phase and for the composite sample was in each case significantly better than would be expected for a random data set. Also, the parameter "Probability of Detection, yes" (PODy which presents the Proportion of Yes observations that were correctly forecast (i.e. the ratio between the shocks correctly predicted and all the shocks observed, yielded values for the rise/maximum/decay phases of the cycle and using the composite sample of 0.85, 0.64, 0.79 and 0.77, respectively. The statistical

  16. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  17. Statistical analysis of solar events associated with SSC over year of solar maximum during cycle 23: 2. Characterisation on the Sun-Earth path - Geoeffectiveness

    Science.gov (United States)

    Cornilleau-Wehrlin, N.; Bocchialini, K.; Menvielle, M.; Fontaine, D.; Grison, B.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Regnier, S.; Zouganelis, Y.; Chambodut, A.

    2017-12-01

    Taking the 32 sudden storm commencements (SSC) listed by the observatory de l'Ebre / ISGI over the year 2002 (maximal solar activity) as a starting point, we performed a statistical analysis of the related solar sources, solar wind signatures, and terrestrial responses. For each event, we characterized and identified, as far as possible, (i) the sources on the Sun (Coronal Mass Ejections -CME-), with the help of a series of criteria (velocities, drag coefficient, radio waves, magnetic field polarity), as well as (ii) the structure and properties in the interplanetary medium, at L1, of the event associated to the SSC: magnetic clouds -MC-, non-MC interplanetary coronal mass ejections -ICME-, co-rotating/stream interaction regions -SIR/CIR-, shocks only and unclear events that we call "miscellaneous" events. The geoeffectiveness of the events, classified by category at L1, is analysed by their signatures in the Earth ionized (magnetosphere and ionosphere) and neutral (thermosphere) environments, using a broad set of in situ, remote and ground based instrumentation. The role of the presence of a unique or of a multiple source at the Sun, of its nature, halo or non halo CME, is also discussed. The set of observations is statistically analyzed so as to evaluate and compare the geoeffectiveness of the events. The results obtained for this set of geomagnetic storms started by SSCs is compared to the overall statistics of year 2002, relying on already published catalogues of events, allowing assessing the relevance of our approach ; for instance all the 12 well identified Magnetic Clouds of 2002 give rise to SSCs.

  18. Investigating the climate and carbon cycle impacts of CMIP6 Land Use and Land Cover Change in the Community Earth System Model (CESM2)

    Science.gov (United States)

    Lawrence, P.; Lawrence, D. M.; O'Neill, B. C.; Hurtt, G. C.

    2017-12-01

    For the next round of CMIP6 climate simulations there are new historical and SSP - RCP land use and land cover change (LULCC) data sets that have been compiled through the Land Use Model Intercomparison Project (LUMIP). The new time series data include new functionality following lessons learned through CMIP5 project and include new developments in the Community Land Model (CLM5) that will be used in all the CESM2 simulations of CMIP6. These changes include representing explicit crop modeling and better forest representation through the extended to 12 land units of the Global Land Model (GLM). To include this new information in CESM2 and CLM5 simulations new transient land surface data sets have been generated for the historical period 1850 - 2015 and for preliminary SSP - RCP paired future scenarios. The new data sets use updated MODIS Land Cover, Vegetation Continuous Fields, Leaf Area Index and Albedo to describe Primary and Secondary, Forested and Non Forested land units, as well as Rangelands and Pasture. Current day crop distributions are taken from the MIRCA2000 crop data set as done with the CLM 4.5 crop model and used to guide historical and future crop distributions. Preliminary "land only" simulations with CLM5 have been performed for the historical period and for the SSP1-RCP2.6 and SSP3-RCP7 land use and land cover change time series data. Equivalent no land use and land cover change simulations have been run for these periods under the same meteorological forcing data. The "land only" simulations use GSWP3 historical atmospheric forcing data from 1850 to 2010 and then time increasing RCP 8.5 atmospheric CO2 and climate anomalies on top of the current day GSWP3 atmospheric forcing data from 2011 to 2100. The offline simulations provide a basis to evaluate the surface climate, carbon cycle and crop production impacts of changing land use and land cover for each of these periods. To further evaluate the impacts of the new CLM5 model and the CMIP6 land

  19. Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects

    Science.gov (United States)

    Bocchialini, K.; Grison, B.; Menvielle, M.; Chambodut, A.; Cornilleau-Wehrlin, N.; Fontaine, D.; Marchaudon, A.; Pick, M.; Pitout, F.; Schmieder, B.; Régnier, S.; Zouganelis, I.

    2018-05-01

    Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l'Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km s-1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 3 X-class, 19 M-class, and 22 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric-hectometric wavelengths is a very useful criterion for the CME-SSC events association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR

  20. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  1. Global water cycle

    Science.gov (United States)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  2. The global carbon cycle

    International Nuclear Information System (INIS)

    Maier-Reimer, E.

    1991-01-01

    Basic concepts of the global carbon cycle on earth are described; by careful analyses of isotopic ratios, emission history and oceanic ventilation rates are derived, which provide crucial tests for constraining and calibrating models. Effects of deforestation, fertilizing, fossil fuel burning, soil erosion, etc. are quantified and compared, and the oceanic carbon process is evaluated. Oceanic and terrestrial biosphere modifications are discussed and a carbon cycle model is proposed

  3. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  4. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  5. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  6. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  7. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  8. Physical Processes Controlling Earth's Climate

    Science.gov (United States)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  9. Carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, J; Halbritter, G; Neumann-Hauf, G

    1982-05-01

    This report contains a review of literature on the subjects of the carbon cycle, the increase of the atmospheric CO/sub 2/ concentration and the possible impacts of an increased CO/sub 2/ concentration on the climate. In addition to this survey, the report discusses the questions that are still open and the resulting research needs. During the last twenty years a continual increase of the atmospheric carbon dioxide concentration by about 1-2 ppm per years has been observed. In 1958 the concentration was 315 ppm and this increased to 336 ppm in 1978. A rough estimate shows that the increase of the atmospheric carbon dioxide concentration is about half of the amount of carbon dioxide added to the atmosphere by the combustion of fossil fuels. Two possible sinks for the CO/sub 2/ released into the atmosphere are known: the ocean and the biota. The role of the biota is, however, unclear, since it can act both as a sink and as a source. Most models of the carbon cycle are one-dimensional and cannot be used for accurate predictions. Calculations with climate models have shown that an increased atmospheric CO/sub 2/ concentration leads to a warming of the earth's surface and lower atmosphere. Calculations show that a doubling of the atmospheric CO/sub 2/-concentration would lead to a net heating of the lower atmosphere and earth's surface by a global average of about 4 W m/sup -2/. Greater uncertainties arise in estimating the change in surface temperature resulting from this change in heating rate. It is estimated that the global average annual surface temperature would change between 1.5 and 4.5 K. There are, however, latitudinal and seasonal variations of the impact of increased CO/sub 2/ concentration. Other meteorological variables (e.g. precipitation, wind speed etc.) would also be changed. It appears that the impacts of the other products of fossil fuel combustion are unlikely to counteract the impacts of CO/sub 2/ on the climate.

  10. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  11. Biogeochemical cycles

    NARCIS (Netherlands)

    Reijnders, L.; Boersema, J.J.; Reijnders, L.

    2009-01-01

    It is now often assumed that life first appeared on planet Earth about 3,500 million years ago. Since then ‘our’ Sun has changed considerably. While the flux of solar energy to the Earth has increased by about 30% over this period, though, this has not led to a corresponding increase in the Earth's

  12. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  13. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M

    1960-01-01

    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  14. Carbon cycle makeover

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Kump, Lee R.

    2013-01-01

    remaining in sediments after respiration leave a residual of oxygen in the atmosphere. The source of oxygen to the atmosphere represented by organic matter burial is balanced by oxygen sinks associated with rock weathering and chemical reaction with volcanic gases. This is the long-term carbon and oxygen...... geochemical cycle. But Earth is an old planet, and oxygen levels have changed through time (2). On page 540 of this issue, Schrag et al. (3) challenge the most commonly used geochemical approach to assess long-term changes in the coupled oxygen and carbon cycles....

  15. Earth sciences

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1977-01-01

    Studies on waste management research included reduction of radionuclide discharges and radionuclide cycling in terrestrial environments. Studies on assessment of K determinations included use of mathematical models to simulate the movement of radionuclides through soils and porous media and distribution coefficients of 237 Pu with Fuguay Sand in various suspending media and pH values

  16. Sulfur cycle

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.

    Microbes, especially bacteria, play an important role in oxidative and reductive cycle of sulfur. The oxidative part of the cycle is mediated by photosynthetic bacteria in the presence of light energy and chemosynthetic forms in the absence of light...

  17. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  18. Origins of the supercontinent cycle

    Directory of Open Access Journals (Sweden)

    R. Damian Nance

    2013-07-01

    Full Text Available The supercontinent cycle, by which Earth history is seen as having been punctuated by the episodic assembly and breakup of supercontinents, has influenced the rock record more than any other geologic phenomena, and its recognition is arguably the most important advance in Earth Science since plate tectonics. It documents fundamental aspects of the planet's interior dynamics and has charted the course of Earth's tectonic, climatic and biogeochemical evolution for billions of years. But while the widespread realization of the importance of supercontinents in Earth history is a relatively recent development, the supercontinent cycle was first proposed thirty years ago and episodicity in tectonic processes was recognized long before plate tectonics provided a potential explanation for its occurrence. With interest in the supercontinent cycle gaining momentum and the literature expanding rapidly, it is instructive to recall the historical context from which the concept developed. Here we examine the supercontinent cycle from this perspective by tracing its development from the early recognition of long-term episodicity in tectonic processes, through the identification of tectonic cycles following the advent of plate tectonics, to the first realization that these phenomena were the manifestation of episodic supercontinent assembly and breakup.

  19. Earth sciences

    International Nuclear Information System (INIS)

    Tamura, T.

    1978-01-01

    The following waste management studies were conducted: assessment of ORNL radioactive solid waste disposal practices and facilities; assessment of stream monitoring network in White Oak Creek watershed; discharge of 90 Sr from burial ground 4; evaluation of burial ground corrective measures; halocarbons as ground water tracers; 60 Co transport mechanisms; 60 Co adsorption kinetics; and soil chromatograph K/sub d/ values. Other studies were conducted on cycling and transport of fusion-activation products in the terrestrial environment; Clinch River inventory; biological denitrification; leachates from stored fossil-fuel solids; coal storage piles; and disposal of solid wastes

  20. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Goldblatt, Colin; Johnson, Benjamin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth’s biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  1. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  2. Earth evolution as a thermal system

    Science.gov (United States)

    Tang, C.

    2014-12-01

    After fifty years of plate-tectonic theory, the reasons why earth sometime freezed as a snowball or sometime became lethally hot resulting in mass extinction remain enigmatic. This article proposes a new hypothesis on Earth evolution. The unbalance of heat between the input and output is considered as the driving force for the Earth evolution, the lithospheric expansion and associated uplift are the triggers, the self-organized progressive failure leading to collapse of the Earth are the amplifier, and the global scale response in terms of volcanism and magmatism is the globalizer. This shallow process of lithosphere may reach a critical state with a positive feedback loop, and result in the formation of no-plume original Large Igneous Provinces (NPOLIP) in a top-down pattern. Endothermic phase changes during de-compressive melting remove heat from and cool their surroundings, including the upper parts of the lithosphere. The huge loss of Earth's heat during eruption of LIPs, together with the endothermic cooling, may put the thermal cycle to an end and a new start of the cycle initiates. In summary, Earth drives itself to evolve in terms of thermal cycles. Global cooling and warming are the two stages of the many cycles during the Earth evolution. Glaciations are the extreme result of global cooling, whereas the LIPs, sometime accompanied with remarkable sea level dropping, are the extreme result of global warming, with a long recovering age, the interglacialstage, between them. They come and go as thermal cycle evolves, with climate warming, being caused by Earth itself rather than by external forces or human activities, as the most attractive prediction.

  3. Stovetop Earth Pecan Pie

    Science.gov (United States)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  4. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    glaciers and a permafrost. This is a global warming. The version of the author: the periods of inversion of a magnetic field of the Earth determine cycles of the Ice Age. At inversions of a magnetic field when B=0, radial electric currents are small or are absent, excretion of thermal energy minimally or an equal to zero,it is the beginning of the cooling the Earth and offensive of the Ice Age. Disappearance warm current Gulf Stream warming the north of the Europe and Canada. Drift of a magnetic dipole of the Earth in a rotation the opposite to rotation of the Earth, is acknowledgement of drift of a kernel of the Earth in a rotation the opposite to rotation of the Earth and is acknowledgement of the theory « the Magnetic field of the Earth ». The author continues to develop the theory « the Magnetic field of the Earth » and invites geophysicists to accept in it participation in it.

  5. The supercontinent cycle

    Energy Technology Data Exchange (ETDEWEB)

    Nance, R.D.; Worsley, T.R.; Moody, J.B.

    1988-07-01

    This paper discusses a new theory of plate tectonics which proposes that Pangaea was only the most recent in a series of supercontinents that have been breaking up and reassembling every 500 million years or so. The cycle, driven by heat percolating up from the mantle, splits continents and drives interrelated processes that shape the earth's geology and climate and play a role in biological evolution. The framework of the supercontinent theory makes it possible to understand the timing of changes in sea level that have taken place in the past 570 million years, and also helps to explain periods of intense mountain building, episodes of glaciation, and changes in the nature of life on the earth.

  6. GEOSS Water Cycle Integrator

    Science.gov (United States)

    Koike, Toshio; Lawford, Richard; Cripe, Douglas

    2013-04-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the intergovernmental Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS). A component of GEOSS now under development is the "GEOSS Water Cycle Integrator (WCI)", which integrates Earth observations, modeling, data and information, management systems and education systems. GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS

  7. Earth observing system - Concepts and implementation strategy

    Science.gov (United States)

    Hartle, R. E.

    1986-01-01

    The concepts of an Earth Observing System (EOS), an information system being developed by the EOS Science and Mission Requirements Working Group for international use and planned to begin in the 1990s, are discussed. The EOS is designed to study the factors that control the earth's hydrologic cycle, biochemical cycles, and climatologic processes by combining the measurements from remote sensing instruments, in situ measurement devices, and a data and information system. Three EOS platforms are planned to be launched into low, polar, sun-synchronous orbits during the Space Station's Initial Operating Configuration, one to be provided by ESA and two by the United States.

  8. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.

  9. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  10. Fuel cycles

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1983-05-01

    AECL publications, from the open literature, on fuels and fuel cycles used in CANDU reactors are listed in this bibliography. The accompanying index is by subject. The bibliography will be brought up to date periodically

  11. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  12. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  13. Changing Pre-School Children's Conceptions of the Day/Night Cycle.

    Science.gov (United States)

    Valanides, N.; Gritsi, F.; Kampeza, M.; Ravanis, K.

    2000-01-01

    Examined the impact of a teaching intervention on preschoolers' concepts of the day/night cycle. Found that most children readily accepted that the sun and earth are separate spherical objects, but fewer attributed the day/night cycle to rotation of the earth on its axis. Most were puzzled by simultaneous movements of the earth around the sun and…

  14. Solar Flare Aimed at Earth

    Science.gov (United States)

    2002-01-01

    At the height of the solar cycle, the Sun is finally displaying some fireworks. This image from the Solar and Heliospheric Observatory (SOHO) shows a large solar flare from June 6, 2000 at 1424 Universal Time (10:24 AM Eastern Daylight Savings Time). Associated with the flare was a coronal mass ejection that sent a wave of fast moving charged particles straight towards Earth. (The image was acquired by the Extreme ultaviolet Imaging Telescope (EIT), one of 12 instruments aboard SOHO) Solar activity affects the Earth in several ways. The particles generated by flares can disrupt satellite communications and interfere with power transmission on the Earth's surface. Earth's climate is tied to the total energy emitted by the sun, cooling when the sun radiates less energy and warming when solar output increases. Solar radiation also produces ozone in the stratosphere, so total ozone levels tend to increase during the solar maximum. For more information about these solar flares and the SOHO mission, see NASA Science News or the SOHO home page. For more about the links between the sun and climate change, see Sunspots and the Solar Max. Image courtesy SOHO Extreme ultaviolet Imaging Telescope, ESA/NASA

  15. Material fluxes on the surface of the earth

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; Board on Earth Sciences & Resources; National Research Council; National Academy of Sciences

    ...) level of surficial fluxes and their dynamics. Leading experts in the field offer a historical perspective on geofluxes and discuss the cycles of materials on the earth's surface, from weathering processes to the movement of material...

  16. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  17. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  18. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  19. Fire in the Earth system.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. T N Krishnamurti. Articles written in Journal of Earth System Science. Volume 115 Issue 2 April 2006 pp 185-201. Transitions in the surface energy balance during the life cycle of a monsoon season · T N Krishnamurti Mrinal K Biswas · More Details Abstract Fulltext PDF.

  1. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    -, č. 274 (2005), s. 1-26 ISSN 1211-3298 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * crises * cycles and fluctuations Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp274.pdf

  2. Happy Cycling

    DEFF Research Database (Denmark)

    Geert Jensen, Birgitte; Nielsen, Tom

    2013-01-01

    og Interaktions Design, Aarhus Universitet under opgave teamet: ”Happy Cycling City – Aarhus”. Udfordringen i studieopgaven var at vise nye attraktive løsningsmuligheder i forhold til cyklens og cyklismens integration i byrum samt at påpege relationen mellem design og overordnede diskussioner af...

  3. Coordination cycles

    Czech Academy of Sciences Publication Activity Database

    Steiner, Jakub

    2008-01-01

    Roč. 63, č. 1 (2008), s. 308-327 ISSN 0899-8256 Institutional research plan: CEZ:AV0Z70850503 Keywords : global games * coordination * crises * cycles and fluctuations Subject RIV: AH - Economics Impact factor: 1.333, year: 2008

  4. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  5. The Contemporary Carbon Cycle

    Science.gov (United States)

    Houghton, R. A.

    2003-12-01

    The global carbon cycle refers to the exchanges of carbon within and between four major reservoirs: the atmosphere, the oceans, land, and fossil fuels. Carbon may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric CO2 into sugar through photosynthesis) or over millennia (e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter). This chapter emphasizes the exchanges that are important over years to decades and includes those occurring over the scale of months to a few centuries. The focus will be on the years 1980-2000 but our considerations will broadly include the years ˜1850-2100. Chapter 8.09, deals with longer-term processes that involve rates of carbon exchange that are small on an annual timescale (weathering, vulcanism, sedimentation, and diagenesis).The carbon cycle is important for at least three reasons. First, carbon forms the structure of all life on the planet, making up ˜50% of the dry weight of living things. Second, the cycling of carbon approximates the flows of energy around the Earth, the metabolism of natural, human, and industrial systems. Plants transform radiant energy into chemical energy in the form of sugars, starches, and other forms of organic matter; this energy, whether in living organisms or dead organic matter, supports food chains in natural ecosystems as well as human ecosystems, not the least of which are industrial societies habituated (addicted?) to fossil forms of energy for heating, transportation, and generation of electricity. The increased use of fossil fuels has led to a third reason for interest in the carbon cycle. Carbon, in the form of carbon dioxide (CO2) and methane (CH4), forms two of the most important greenhouse gases. These gases contribute to a natural greenhouse effect that has kept the planet warm enough to evolve and support life (without the greenhouse effect the Earth's average temperature would be -33

  6. Fuel cycle

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-01-01

    The situation of the nuclear fuel cycle for LWR type reactors in France and in the Federal Republic of Germany was presented in 14 lectures with the aim to compare the state-of-the-art in both countries. In addition to the momentarily changing fuilds of fuel element development and fueling strategies, the situation of reprocessing, made interesting by some recent developmnts, was portrayed and differences in ultimate waste disposal elucidated. (orig.) [de

  7. USGEO Common Framework For Earth Observation Data

    Science.gov (United States)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  8. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  9. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  10. Mineral evolution and Earth history

    Science.gov (United States)

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  11. The Global Nitrogen Cycle

    Science.gov (United States)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  12. Safe cycling!

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    The HSE Unit will be running a cycling safety campaign at the entrances to CERN's restaurants on 14, 15 and 16 May. Pop along to see if they can persuade you to get back in the saddle!   With summer on its way, you might feel like getting your bike out of winter storage. Well, the HSE Unit has come up with some original ideas to remind you of some of the most basic safety rules. This year, the prevention campaign will be focussing on three themes: "Cyclists and their equipment", "The bicycle on the road", and "Other road users". This is an opportunity to think about the condition of your bike as well as how you ride it. From 14 to 16 May, representatives of the Swiss Office of Accident Prevention and the Touring Club Suisse will join members of the HSE Unit at the entrances to CERN's restaurants to give you advice on safe cycling (see box). They will also be organising three activity stands where you can test your knowle...

  13. Cycle 22

    International Nuclear Information System (INIS)

    Kappernman, J.G.; Albertson, V.D.

    1991-01-01

    This paper reports that for many electric utility systems, Solar Cycle 22 has been the first introduction to the phenomena of Geomagnetic Disturbances and the disrupting and damaging effects that they can have upon modern power systems. For all intents and purposes, Power Industry awareness of Cycle 22 started with a bang during the Great Geomagnetic Storm of March 13, 1989. This storm caused a blackout to the entire Province of Quebec, permanently damaged a large nuclear plant GSU transformer in New Jersey, and created enough havoc across the entire North American power grid to create the plausible threat of a massive power system blackout. The flurry of activity and investigation that followed has led many engineers to realize that their power systems are indeed vulnerable to this phenomena and if anything are becoming ever more vulnerable as the system grows to meet future requirements. As a result some organizations such as Hydro Quebec, PSE and G, and the PJM Pool now implement strategic measures as a remedial response to detection of geomagnetic storm conditions. Many more companies pay particularly close attention to storm forecasts and alerts, and the industry in general has accelerated research and monitoring activities through their own means of in concert with the Electric Power Research Institute (EPRI)

  14. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  15. Changing global carbon cycle

    International Nuclear Information System (INIS)

    Canadell, Pep

    2007-01-01

    Full text: The increase in atmospheric carbon dioxide (C02) is the single largest human perturbation on the earth's radiative balance contributing to climate change. Its rate of change reflects the balance between anthropogenic carbon emissions and the dynamics of a number of terrestrial and ocean processes that remove or emit C02. It is the long term evolution of this balance that will determine to large extent the speed and magnitude of the human induced climate change and the mitigation requirements to stabilise atmospheric C02 concentrations at any given level. In this talk, we show new trends in global carbon sources and sinks, with particularly focus on major shifts occurring since 2000 when the growth rate of atmospheric C02 has reached its highest level on record. The acceleration in the C02 growth results from the combination of several changes in properties of the carbon cycle, including: acceleration of anthropogenic carbon emissions; increased carbon intensity of the global economy, and decreased efficiency of natural carbon sinks. We discuss in more detail some of the possible causes of the reduced efficiency of natural carbon sinks on land and oceans, such as the decreased net sink in the Southern Ocean and on terrestrial mid-latitudes due to world-wide occurrence of drought. All these changes reported here characterise a carbon cycle that is generating stronger than expected climate forcing, and sooner than expected

  16. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  17. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  18. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  19. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  20. Climate and the Carbon Cycle

    Science.gov (United States)

    Manley, Jim

    2017-04-01

    Climate and the Carbon Cycle EOS3a Science in tomorrow's classroom Students, like too much of the American public, are largely unaware or apathetic to the changes in world climate and the impact that these changes have for life on Earth. A study conducted by Michigan State University and published in 2011 by Science Daily titled 'What carbon cycle? College students lack scientific literacy, study finds'. This study relates how 'most college students in the United States do not grasp the scientific basis of the carbon cycle - an essential skill in understanding the causes and consequences of climate change.' The study authors call for a new approach to teaching about climate. What if teachers better understood vital components of Earth's climate system and were able to impart his understanding to their students? What if students based their responses to the information taught not on emotion, but on a deeper understanding of the forces driving climate change, their analysis of the scientific evidence and in the context of earth system science? As a Middle School science teacher, I have been given the opportunity to use a new curriculum within TERC's EarthLabs collection, Climate and the Carbon Cycle, to awaken those brains and assist my students in making personal lifestyle choices based on what they had learned. In addition, with support from TERC and The University of Texas Institute for Geophysics I joined others to begin training other teachers on how to implement this curriculum in their classrooms to expose their students to our changing climate. Through my poster, I will give you (1) a glimpse into the challenges faced by today's science teachers in communicating the complicated, but ever-deepening understanding of the linkages between natural and human-driven factors on climate; (2) introduce you to a new module in the EarthLabs curriculum designed to expose teachers and students to global scientific climate data and instrumentation; and (3) illustrate how

  1. Signals from the planets, via the Sun to the Earth

    Science.gov (United States)

    Solheim, J.-E.

    2013-12-01

    The best method for identification of planetary forcing of the Earth's climate is to investigate periodic variations in climate time series. Some natural frequencies in the Earth climate system seem to be synchronized to planetary cycles, and amplified to a level of detection. The response by the Earth depends on location, and in global averaged series, some planetary signals may be below detection. Comparing sea level rise with sunspot variations, we find phase variations, and even a phase reversal. A periodogram of the global temperature shows that the Earth amplifies other periods than observed in sunspots. A particular case is that the Earth amplifies the 22 yr Hale period, and not the 11 yr Schwabe period. This may be explained by alternating peak or plateau appearance of cosmic ray counts. Among longer periods, the Earth amplifies the 60 yr planetary period and keeps the phase during centennials. The recent global warming may be interpreted as a rising branch of a millennium cycle, identified in ice cores and sediments and also recorded in history. This cycle peaks in the second half of this century, and then a 500 yr cooling trend will start. An expected solar grand minimum due to a 200 yr cycle will introduce additional cooling in the first part of this century.

  2. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A

    1986-12-01

    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  3. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  4. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  5. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  6. Your Menstrual Cycle

    Science.gov (United States)

    ... your menstrual cycle What happens during your menstrual cycle The menstrual cycle includes not just your period, but the rise ... that take place over the weeks in your cycle. Want to know what happens on each day ...

  7. Biomes and Natural Cycles. [CD-ROM].

    Science.gov (United States)

    1996

    This interactive multimedia software illustrates and explains life on planet Earth through colorful and dynamic representations. Clear explanations and animation elucidate a variety of subjects such as the organization of the ecosphere, the flux of energy, water cycles, climates, and characteristics of regions across the globe. Five animated films…

  8. Element Cycles: An Environmental Chemistry Board Game

    Science.gov (United States)

    Pippins, Tracy; Anderson, Cody M.; Poindexter, Eric F.; Sultemeier, S. Whitney; Schultz, Linda D.

    2011-01-01

    "Element Cycles" is an activity designed to reinforce correlation of essential elements and their different forms in the ecosystem. Students are assigned essential elements to research as homework, then share results, and construct game boards with four ecosphere sections: geosphere (earth), hydrosphere (water), atmosphere (air), and biosphere…

  9. A Solar Energy Cycle

    Science.gov (United States)

    Childs, Gregory

    2007-01-01

    In sixth grade, students understand that Earth gets visible light from the Sun, but students may also believe the Earth gets heat from the Sun. This last part is incorrect because the Sun is too far from the Earth to heat it directly. So, how does the Sun heat the Earth? When light strikes an object, it can be reflected or absorbed. Absorbed light…

  10. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  11. Solar Cycle Effects on the Near-Earth Space Systems

    Science.gov (United States)

    1990-08-06

    foreign nationals. This technical report has been reviewed and is approved for publication. Publication of this report does not constitute Air Force...approval of the report’s findings or conclusions. It is published only for the exchange and stimulation of ideas. RAFAEL A. RIVIERE, Capt, USAF ONATHAN...M. EMHES , MAJ, USAF MOIE Project Officer MOIE Project Manager SSD/CNL AFSTC/WCO OL-AB UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE REPORT

  12. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  13. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  14. Is There a Tectonically Driven Supertidal Cycle?

    Science.gov (United States)

    Green, J. A. M.; Molloy, J. L.; Davies, H. S.; Duarte, J. C.

    2018-04-01

    Earth is 180 Myr into the current supercontinent cycle, and the next supercontinent is predicted to form in 250 Myr. The continuous changes in continental configuration can move the ocean between resonant states, and the semidiurnal tides are currently large compared to the past 252 Myr due to tidal resonance in the Atlantic. This leads to the hypothesis that there is a "supertidal" cycle linked to the supercontinent cycle. Here this is tested using new tectonic predictions for the next 250 Myr as bathymetry in a numerical tidal model. The simulations support the following hypothesis: a new tidal resonance will appear 150 Myr from now, followed by a decreasing tide as the supercontinent forms 100 Myr later. This affects the dissipation of tidal energy in the oceans, with consequences for the evolution of the Earth-Moon system, ocean circulation and climate, and implications for the ocean's capacity of hosting and evolving life.

  15. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  16. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  17. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  18. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  19. Water Cycle Missions for the Next Decade

    Science.gov (United States)

    Houser, P. R.

    2013-12-01

    The global water cycle describes the circulation of water as a vital and dynamic substance in its liquid, solid, and vapor phases as it moves through the atmosphere, oceans and land. Life in its many forms exists because of water, and modern civilization depends on learning how to live within the constraints imposed by the availability of water. The scientific challenge posed by the need to observe the global water cycle is to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The vision to address that challenge is a series of Earth observation missions that will measure the states, stocks, flows, and residence times of water on regional to global scales followed by a series of coordinated missions that will address the processes, on a global scale, that underlie variability and changes in water in all its three phases. The accompanying societal challenge is to foster the improved use of water data and information as a basis for enlightened management of water resources, to protect life and property from effects of extremes in the water cycle. A major change in thinking about water science that goes beyond its physics to include its role in ecosystems and society is also required. Better water-cycle observations, especially on the continental and global scales, will be essential. Water-cycle predictions need to be readily available globally to reduce loss of life and property caused by water-related natural hazards. Building on the 2007 Earth Science Decadal Survey, NASA's Plan for a Climate-Centric Architecture for Earth Observations and Applications from Space , and the 2012 Chapman Conference on Remote Sensing of the Terrestrial Water Cycle, a workshop was held in April 2013 to gather wisdom and determine how to prepare for the next generation of water cycle missions in support of the second Earth Science Decadal Survey. This talk will present the outcomes of the workshop including the intersection between

  20. The uranium cycle

    International Nuclear Information System (INIS)

    Ferguson, J.

    1988-01-01

    In identifying uranium provinces, and, more importantly, mineralized zones within these provinces, it is of paramount importance to attempt to trace the geochemical behaviour of an element through all stages of Earth's evolution. Aspects that need to be addressed in this regard include solar abundance levels and fractionation processes during accretion, changing patterns of crustal evolution, effects of an evolving atmosphere, and the weathering cycle. Abundance patterns and partition coefficients of some of the siderophile elements in mantle rocks lend support to a multistage accretionary process. Lack of a terrestrial record in the first 500 Ma necessitates that lunar models be invoked, which suggests that early fractionation of a mafic/ultramafic magma resulted in an anorthositic crust. Fractionation of the mantle and transfer of materials to the upper levels must be central to any model invoked for development of the crust. Given high heat flow conditions in the early Archaean it would seem inescapable that the process of sea floor spreading and plate tectonics was an ongoing process. If the plate tectonic model is taken back to 3500 Ma, and assuming current speading rates, then about half of the mantle has passed through the irreversible differentiation cycle. Arguments in support of recycled material must be balanced against mantle metasomatism effects. With the associated advent of partial melting of the mantle material a partitioning of minor and trace elements into the melt fraction would take place. The early primitive mafic and ultramafic komatiites exemplify this feature by concentrating U and Th by a factor of 5 compared to chondritic abundances. It is of tantamount importance to understand the generation of the magmas in order to predict which are the 'fertile' bodies in terms of radioelement concentrations. In that the granitoid magmas image their source compositions, the association of high radioelements will primarily be source-dependent. Uranium

  1. The climate: Earth and men

    International Nuclear Information System (INIS)

    Poitou, Jean; Braconnot, Pascale; Masson-Delmotte, Valerie

    2015-01-01

    In this book, the authors first present the climate system as it operates under the influence of the atmosphere and oceans: Earth heated by the Sun, temperatures and movements within the atmosphere, surface and deep circulation in the oceans, exchanges between the atmosphere and the oceans. They present the various actors of climate and their interactions: water cycle, carbon cycle, greenhouse effect, clouds, aerosols, ocean, cryosphere-climate interaction, interaction between continental biosphere and climate, interactions between climate, continents and lithosphere, feedbacks and climate sensitivity. They comment the variety of climates and their variability when considered on a large scale (role of the Sun, ocean-atmosphere oscillations in El Nino and La Nina, North Atlantic oscillation, other examples of oscillations). The next part addresses climate modelling: model fundamentals (parameters and other components, coupling between components), model adjustment (simulation types, multi-model sets, and model assessment), models of intermediate complexity, regional models. The authors discuss the warming phenomenon: history of temperature measurements, clues of global warming, how to make climate change. They propose a presentation and discussion of anthropogenic and natural factors which disturb the climate: CO 2 and other greenhouse gases, changes in soil uses, other possible causes of climate disturbance (aerosol, aircraft wakes, volcanoes, and sun), combination of these disturbances, and identification of anthropogenic disturbances. They discuss past climate evolutions, and finally discuss how the climate could evolve in the future

  2. Orbital Noise in the Earth System and Climate Fluctuations

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  3. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  4. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  5. Earth study from space

    Science.gov (United States)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  6. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  7. Near Earth Asteroid Scout

    Data.gov (United States)

    National Aeronautics and Space Administration — Near-Earth Asteroid Scout, or NEA Scout, is a 6U CubeSat developed jointly between NASA’s Marshall Space Flight Center and the Jet Propulsion Laboratory. NASA...

  8. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  9. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  10. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  11. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  12. The geobiological nitrogen cycle: From microbes to the mantle.

    Science.gov (United States)

    Zerkle, A L; Mikhail, S

    2017-05-01

    Nitrogen forms an integral part of the main building blocks of life, including DNA, RNA, and proteins. N 2 is the dominant gas in Earth's atmosphere, and nitrogen is stored in all of Earth's geological reservoirs, including the crust, the mantle, and the core. As such, nitrogen geochemistry is fundamental to the evolution of planet Earth and the life it supports. Despite the importance of nitrogen in the Earth system, large gaps remain in our knowledge of how the surface and deep nitrogen cycles have evolved over geologic time. Here, we discuss the current understanding (or lack thereof) for how the unique interaction of biological innovation, geodynamics, and mantle petrology has acted to regulate Earth's nitrogen cycle over geologic timescales. In particular, we explore how temporal variations in the external (biosphere and atmosphere) and internal (crust and mantle) nitrogen cycles could have regulated atmospheric pN 2 . We consider three potential scenarios for the evolution of the geobiological nitrogen cycle over Earth's history: two in which atmospheric pN 2 has changed unidirectionally (increased or decreased) over geologic time and one in which pN 2 could have taken a dramatic deflection following the Great Oxidation Event. It is impossible to discriminate between these scenarios with the currently available models and datasets. However, we are optimistic that this problem can be solved, following a sustained, open-minded, and multidisciplinary effort between surface and deep Earth communities. © 2017 The Authors Geobiology Published by John Wiley & Sons Ltd.

  13. The nitrogen cycle.

    Science.gov (United States)

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A finite world, earth sciences, and public trust.

    Science.gov (United States)

    Narasimhan, T N

    2003-01-01

    The beginning of the 21st century has coincided with our recognition that life-sustaining earth cycles are remarkably fine-tuned, and that humans have developed technological abilities to perturb these cycles. Also, inspired bythe gifts of freedom and democracy, humans have given themselves laws to exploit nature for profit. The upshot is that nature's balance, governed by immutable physical laws, is being confronted by social laws driven by human aspirations. This conflict and its implications to the human relevance of the earth sciences are explored in the context of an extraordinary tradition of European culture known as public trust.

  15. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  16. How did Earth not End up like Venus?

    Science.gov (United States)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  17. Bipolar mood cycles and lunar tidal cycles.

    Science.gov (United States)

    Wehr, T A

    2018-04-01

    In 17 patients with rapid cycling bipolar disorder, time-series analyses detected synchronies between mood cycles and three lunar cycles that modulate the amplitude of the moon's semi-diurnal gravimetric tides: the 14.8-day spring-neap cycle, the 13.7-day declination cycle and the 206-day cycle of perigee-syzygies ('supermoons'). The analyses also revealed shifts among 1:2, 1:3, 2:3 and other modes of coupling of mood cycles to the two bi-weekly lunar cycles. These shifts appear to be responses to the conflicting demands of the mood cycles' being entrained simultaneously to two different bi-weekly lunar cycles with slightly different periods. Measurements of circadian rhythms in body temperature suggest a biological mechanism through which transits of one of the moon's semi-diurnal gravimetric tides might have driven the patients' bipolar cycles, by periodically entraining the circadian pacemaker to its 24.84-h rhythm and altering the pacemaker's phase-relationship to sleep in a manner that is known to cause switches from depression to mania.

  18. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  19. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  20. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  1. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  2. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  3. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  4. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  5. KOH concentration effect on cycle life of nickel-hydrogen cells. III - Cycle life test

    Science.gov (United States)

    Lim, H. S.; Verzwyvelt, S. A.

    1988-01-01

    A cycle life test of Ni/H2 cells containing electrolytes of various KOH concentrations and a sintered type nickel electrode was carried out at 23 C using a 45 min accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. One of three cells containing 26 percent KOH has achieved over 28,000 cycles, and the other two 19,000 cycles, without a sign of failure. Two other cells containing 31 percent KOH electrolyte, which is the concentration presently used in aerospace cells, failed after 2,979 and 3,620 cycles. This result indicates that the cycle life of the present type of Ni/H2 cells may be extended by a factor of 5 to 10 simply by lowering the KOH concentration. Long cycle life of a Ni/H2 battery at high depth-of-discharge operation is desired, particularly for an LEO spacecraft application. Typically, battery life of about 30,000 cycles is required for a five year mission in an LEO. Such a cycle life with presently available cells can be assured only at a very low depth-of-discharge operation. Results of testing already show that the cycle life of an Ni/H2 cell is tremendously improved by simply using an electrolyte of low KOH concentration.

  6. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  7. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  8. Fuel cycle technologies - The next 50 years

    International Nuclear Information System (INIS)

    Chamberlain, L.N.; Ion, S.E.; Patterson, J.

    1997-01-01

    World energy demands are set to increase through the next Millennium. As fossil fuel reserves fall and environmental concerns increase there is likely to be a growing dependence on nuclear and renewable sources for electricity generation. This paper considers some of the desirable attributes of the nuclear fuel cycle in the year 2050 and emphasises the importance of considering the whole of the fuel cycle in an integrated way - the concept of the 'holistic' fuel cycle. We then consider how some sectors of the fuel cycle will develop, through a number of multi- national contributions covering: enrichment, fuel, aqueous reprocessing, non-aqueous reprocessing, P and T, MOX, direct disposal, waste. Finally, we summarize some of the key technical and institutional challenges that lie ahead if nuclear power is going to play its part in ensuring that planet Earth is a safe and hospitable place to live. (author)

  9. The glacial cycles and cosmic rays

    CERN Document Server

    Kirkby, Jasper; Müller, R A

    2004-01-01

    The cause of the glacial cycles remains a mystery. The origin is widely accepted to be astronomical since paleoclimatic archives contain strong spectral components that match the frequencies of Earth's orbital modulation. Milankovitch insolation theory contains similar frequencies and has become established as the standard model of the glacial cycles. However, high precision paleoclimatic data have revealed serious discrepancies with the Milankovitch model that fundamentally challenge its validity and re-open the question of what causes the glacial cycles. We propose here that the ice ages are initially driven not by insolation cycles but by cosmic ray changes, probably through their effect on clouds. This conclusion is based on a wide range of evidence, including results presented here on speleothem growth in caves in Austria and Oman, and on a record of cosmic ray flux over the past 220 kyr obtained from the 10Be composition of deep-ocean sediments.

  10. The geomicrobiology of calcium montmorillonite (Fuller's Earth)

    International Nuclear Information System (INIS)

    Philp, J.C.; Christofi, N.; West, J.M.

    1984-01-01

    Oxfordshire Fuller's Earth contains high populations of aerobic heterotrophic microorganisms and smaller populations of anaerobic heterotrophs. These groups seem to be generally unaffected by depth. The aerobic heterotroph activity in Fuller's Earth extract is continuous indicating that the necessary organic carbon is available. Chemical analysis has shown that all other necessary nutrients are present in the waters sampled. Activity can also be stimulated by the addition of TCA cycle intermediates. It is likely that the carbon dioxide produced by the aerobic heterotrophs could be utilised by autotrophic populations. Similarly, bicarbonate rich groundwaters could also supply inorganic carbon for them. These populations already exist at low levels and include corrosion important microorganisms. The organic carbon thus produced by the autotrophs could be used as a source for further heterotrophic activity. These findings indicate that microbial inhibition would only occur if the availability of organic carbon was controlled. The use of Fuller's Earth as a backfill material in other groundwater environments, especially those rich in bicarbonate, may stimulate various microbial groups and lead to interactions affecting waste isolation. It would thus be prudent to reduce or eliminate the organic carbon content in Fuller's Earth should it be used as a backfill material. (author)

  11. The Earth's Plasmasphere

    Science.gov (United States)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  12. Geochemistry of rare earths in main media of clay formation and sedimentation

    International Nuclear Information System (INIS)

    Bonnot-Courtois, C.

    1981-01-01

    This work aims i) at a better knowledge of rare earth behavior in surface conditions and ii) possible use of rare earth as a marker for argilaceous mineral genesis. Chemical properties of rare earths and geochemistry of these elements in main rocks are recalled. Rare earth behaviour during continental alteration process, experimental hydrolysis of various magmatic materials and rare earth geochemistry in argilaceous minerals in continental shelf are examined. Then some aspects of rare earth behaviour in oceans are studied: alteration of sea bed and hydrothermalism rare earth distribution in pelagic sediments red clays of deep seas and manganese nodules. In conclusion rare earth behaviour in sedimentary processes of the exogenous cycle is summarized [fr

  13. Critical Thresholds in Earth-System Dynamics

    Science.gov (United States)

    Rothman, D.

    2017-12-01

    The history of the Earth system is a story of change. Some changesare gradual and benign, but others, especially those associated withcatastrophic mass extinction, are relatively abrupt and destructive.What sets one group apart from the other? Here I hypothesize thatperturbations of Earth's carbon cycle lead to mass extinction if theyexceed either a critical rate at long time scales or a critical sizeat short time scales. By analyzing 31 carbon-isotopic events duringthe last 542 million years, I identify the critical rate with a limitimposed by mass conservation. Further analysis identifies thecrossover timescale separating fast from slow events with thetimescale of the ocean's homeostatic response to a change in pH. Theproduct of the critical rate and the crossover timescale then yieldsthe critical size. The modern critical size for the marine carboncycle is roughly similar to the mass of carbon that human activitieswill likely have added to the oceans by the year 2100.

  14. Future Satellite Gravimetry and Earth Dynamics

    CERN Document Server

    Flury, Jakob

    2005-01-01

    Currently, a first generation of dedicated satellite missions for the precise mapping of the Earth’s gravity field is in orbit (CHAMP, GRACE, and soon GOCE). The gravity data from these satellite missions provide us with very new information on the dynamics of planet Earth. In particular, on the mass distribution in the Earth’s interior, the entire water cycle (ocean circulation, ice mass balance, continental water masses, and atmosphere), and on changes in the mass distribution. The results are fascinating, but still rough with respect to spatial and temporal resolution. Technical progress in satellite-to-satellite tracking and in gravity gradiometry will allow more detailed results in the future. In this special issue, Earth scientists develop visions of future applications based on follow-on high-precision satellite gravimetry missions.

  15. Essays on economic cycles

    NARCIS (Netherlands)

    Groot, de E.A. (Bert)

    2006-01-01

    Schumpeter’s line of thought of multiple economic cycles is further investigated. The existence of multiple cycles in economic variables is demonstrated. In basic innovations five different cycles are found. Multiple cycle structures are shown in various macro-economic variables from the United

  16. Axial focusing of energy from a hypervelocity impact on earth

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  17. "Galileo Calling Earth..."

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  18. Bones of the Earth

    Science.gov (United States)

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  19. Our bubbling Earth

    NARCIS (Netherlands)

    Schuiling, R.D.

    2005-01-01

    In several places on earth large volumes of gas are seen to escape. These gases are usually dominated by CO2. The emissions are associated with volcanic activity, and are attributed to magma degassing. It will be shown that in the case of Milos this explanation is unacceptable for quantitative

  20. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  1. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  2. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  3. How life shaped Earth.

    Science.gov (United States)

    Gross, Michael

    2015-10-05

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  4. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  5. Earth Science Misconceptions.

    Science.gov (United States)

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  6. The earths innermost core

    International Nuclear Information System (INIS)

    Nanda, J.N.

    1989-01-01

    A new earth model is advanced with a solid innermost core at the centre of the Earth where elements heavier than iron, over and above what can be retained in solution in the iron core, are collected. The innermost core is separated from the solid iron-nickel core by a shell of liquid copper. The innermost core has a natural vibration measured on the earth's surface as the long period 26 seconds microseisms. The earth was formed initially as a liquid sphere with a relatively thin solid crust above the Byerly discontinuity. The trace elements that entered the innermost core amounted to only 0.925 ppm of the molten mass. Gravitational differentiation must have led to the separation of an explosive thickness of pure 235 U causing a fission explosion that could expel beyond the Roche limit a crustal scab which would form the centre piece of the moon. A reservoir of helium floats on the liquid copper. A small proportion of helium-3, a relic of the ancient fission explosion present there will spell the exciting magnetic field. The field is stable for thousands of years because of the presence of large quantity of helium-4 which accounts for most of the gaseous collisions that will not disturb the atomic spin of helium-3 atoms. This field is prone to sudden reversals after long periods of stability. (author). 14 refs

  7. Technology thrusts for future Earth science applications

    Science.gov (United States)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  8. Technology Thrust for Future Earth Science Applications

    Science.gov (United States)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5 ... water cycles and predict the effect of climate change on terrestrial ecosystems, it is ... Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri .... Influence of nutrient input on the trophic state of a tropical brackish water lagoon.

  10. Total-dose hardness assurance for low earth orbit

    International Nuclear Information System (INIS)

    Maurer, R.H.; Suter, J.J.

    1987-01-01

    The Low Earth Orbit radiation environment has two significant characteristics that make laboratory simulation exposures difficult: (1) a low dose rate and (2) many cycles of low dose accumulation followed by dose-free annealing. Hardness assurance considerations for this environment are discussed and related to data from the testing of Advanced Low Power Schottky and High-speed CMOS devices

  11. The radioactive earth

    International Nuclear Information System (INIS)

    Plant, J.A.; Saunders, A.D.

    1996-01-01

    Uranium, thorium and potassium are the main elements contributing to natural terrestrial radioactivity. The isotopes 238 U, 235 U, 232 Th and 40 K decay with half-lives so long that significant amounts remain in the earth, providing a continuing source of heat. The slow decay of these isotopes also provides the basis for radiometric age dating and isotopic modelling of the evolution of the earth and its crust. There is a complex interplay between their heat production and the processes involved in crust formation. Phenomena such as volcanism, earthquakes, and large-scale hydrothermal activity associated with ore deposition reflect the dissipation of heat energy from the earth, much of which is derived from natural radioactivity. The higher levels of radioactive elements during the early history of the earth resulted in higher heat flow. All three of the radioactive elements are strongly partitioned into the continental crust, but within the crust their distribution is determined by their different chemical properties. The behaviour of U, which has two commonly occurring oxidation states, is more complex than that of Th and K. Uranium deposits are diverse, and are mostly associated with granites, acid volcanics, or detrital sedimentary rocks. The most important U deposits economically are unconformity-type ores of Proterozoic age, in which U is enriched by up to 5 x 10 6 with respect to bulk earth values. In some cases natural radioactivity can be of environmental concern. The most significant risk is posed by accumulations of radon, the gaseous daughter product of U. (author)

  12. Nuclear power fuel cycle

    International Nuclear Information System (INIS)

    Havelka, S.; Jakesova, L.

    1982-01-01

    Economic problems are discussed of the fuel cycle (cost of the individual parts of the fuel cycle and the share of the fuel cycle in the price of 1 kWh), the technological problems of the fuel cycle (uranium ore mining and processing, uranium isotope enrichment, the manufacture of fuel elements, the building of long-term storage sites for spent fuel, spent fuel reprocessing, liquid and gaseous waste processing), and the ecologic aspects of the fuel cycle. (H.S.)

  13. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  14. Stereo and Solar Cycle 24

    Science.gov (United States)

    Kaise,r Michael L.

    2008-01-01

    The twin STEREO spacecrafi, launched in October 2006, are in heliocentric orbits near 4 AU with one spacecraft (Ahead) leading Earth in its orbit around the Sun and the other (Behind) trailing Earth. As viewed from the Sun, the STEREO spacecraft are continually separating from one another at about 45 degrees per year with Earth biseding the angle. At present, th@spaser=raft are a bit more than 45 degrees apart, thus they are able to each 'vie@ ground the limb's of the Sun by about 23 degrees, corresponding to about 1.75 days of solar rotation. Both spameraft contain an identical set of instruments including an extreme ultraviolet imager, two white light coronagraphs, tws all-sky imagers, a wide selection of energetic particle detectors, a magnetometer and a radio burst tracker. A snapshot of the real time data is continually broadcast to NOW-managed ground stations and this small stream of data is immediately sent to the STEREO Science Center and converted into useful space weather data within 5 minutes of ground receipt. The resulting images, particle, magnetometer and radio astronomy plots are available at j g i t , : gAs timqe conting ues ijnto . g solar cycle 24, the separation angle becomes 90 degrees in early 2009 and 180 degrees in early 201 1 as the activity heads toward maximum. By the time of solar maximum, STEREO will provide for the first time a view of the entire Sun with the mronagraphs and e*reme ultraviolet instruments. This view wilt allow us to follow the evolution of active regions continuously and also detect new active regions long before they pose a space weather threat to Earth. The in situ instruments will be able to provide about 7 days advanced notice of co-rotating structures in the solar wind. During this same intewal near solar maximum, the wide-angle imagers on STEREB will both be ;able to view EarlCP-dirsted CMEs in their plane-oPsky. When combined with Eat-lhorbiting assets available at that time, it seems solar cycle 24 will mark a

  15. Origin of the Earth's Electromagnetic Field Based on the Pulsating Mantle Hypothesis (PMH)

    Science.gov (United States)

    Gholibeigian, Hassan

    2017-11-01

    In PMH, the Earth's Inner Core's Dislocation (ICD) and Outer Core's Bulge (OCB) phenomena are generated by unbalanced gravitational fields of the Sun and Moon on the Earth. Distance between the Earth's center and inner core's center varies permanently in magnitude and direction inside two hemispheres. Geometrical loci of the inner core's center has the shape of back and force spiral cone in each hemisphere. In other words, the inner core is rotating fast in the outer core inverse of the Earth's rotation a round per day. This mechanism speed up the processes inside the core and generates a Large Scale Forced Convection System (LSFCS) inverse of the Earth's rotation in the core. The LSFCS is the origin of the Earth's electromagnetic field. The LSFCS generates huge mass transfer and momentum of inertia inside the Earth too. The inner core's axis which is the Earth's electromagnetic axis doesn't cross the Earth's geophysical axis and rotates around it per day. The mechanism of this LSFCS has diurnal, monthly and yearly cycles. These cycles are sources of the Earth's electromagnetic field variability. Direction of the variable Earth's magnetic field lines from the South Pole (hemisphere) to the sky and 146 seconds/years apparent solar day length variations can be two observable factors for this mechanism. This dynamic system may occurred inside the other planets like the Sun and the Jupiter.

  16. In search of future earths: assessing the possibility of finding Earth analogues in the later stages of their habitable lifetimes.

    Science.gov (United States)

    O'Malley-James, Jack T; Greaves, Jane S; Raven, John A; Cockell, Charles S

    2015-05-01

    Earth will become uninhabitable within 2-3 Gyr as a result of the increasing luminosity of the Sun changing the boundaries of the habitable zone (HZ). Predictions about the future of habitable conditions on Earth include declining species diversity and habitat extent, ocean loss, and changes to geochemical cycles. Testing these predictions is difficult, but the discovery of a planet that is an analogue to future Earth could provide the means to test them. This planet would need to have an Earth-like biosphere history and to be approaching the inner edge of the HZ at present. Here, we assess the possibility of finding such a planet and discuss the benefits of analyzing older Earths. Finding an old-Earth analogue in nearby star systems would be ideal, because this would allow for atmospheric characterization. Hence, as an illustrative example, G stars within 10 pc of the Sun are assessed as potential old-Earth-analog hosts. Six of these represent good potential hosts. For each system, a hypothetical Earth analogue is placed at locations within the continuously habitable zone (CHZ) that would allow enough time for Earth-like biosphere development. Surface temperature evolution over the host star's main sequence lifetime (assessed by using a simple climate model) is used to determine whether the planet would be in the right stage of its late-habitable lifetime to exhibit detectable biosignatures. The best candidate, in terms of the chances of planet formation in the CHZ and of biosignature detection, is 61 Virginis. However, planet formation studies suggest that only a small fraction (0.36%) of G stars in the solar neighborhood could host an old-Earth analogue. If the development of Earth-like biospheres is rare, requiring a sequence of low-probability events to occur, biosphere evolution models suggest they are rarer still, with only thousands being present in the Galaxy as a whole.

  17. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  18. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  19. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  20. Proliferation in cycle

    Energy Technology Data Exchange (ETDEWEB)

    Piao Yunsong [College of Physical Sciences, Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: yspiao@gucas.ac.cn

    2009-06-15

    In the contracting phase with w{approx_equal}0, the scale invariant spectrum of curvature perturbation is given by the increasing mode of metric perturbation. In this Letter, it is found that if the contracting phase with w{approx_equal}0 is included in each cycle of a cycle universe, since the metric perturbation is amplified on super horizon scale cycle by cycle, after each cycle the universe will be inevitably separated into many parts independent of one another, each of which corresponds to a new universe and evolves up to next cycle, and then is separated again. In this sense, a cyclic multiverse scenario is actually presented, in which the universe proliferates cycle by cycle. We estimate the number of new universes proliferated in each cycle, and discuss the implications of this result.

  1. Proliferation in cycle

    International Nuclear Information System (INIS)

    Piao Yunsong

    2009-01-01

    In the contracting phase with w≅0, the scale invariant spectrum of curvature perturbation is given by the increasing mode of metric perturbation. In this Letter, it is found that if the contracting phase with w≅0 is included in each cycle of a cycle universe, since the metric perturbation is amplified on super horizon scale cycle by cycle, after each cycle the universe will be inevitably separated into many parts independent of one another, each of which corresponds to a new universe and evolves up to next cycle, and then is separated again. In this sense, a cyclic multiverse scenario is actually presented, in which the universe proliferates cycle by cycle. We estimate the number of new universes proliferated in each cycle, and discuss the implications of this result.

  2. Advanced fuel cycles in CANDU reactors

    International Nuclear Information System (INIS)

    Green, R.E.; Boczar, P.G.

    1990-04-01

    This paper re-examines the rationale for advanced nuclear fuel cycles in general, and for CANDU advanced fuel cycles in particular. The traditional resource-related arguments for more uranium nuclear fuel cycles are currently clouded by record-low prices for uranium. However, the total known conventional uranium resources can support projected uranium requirements for only another 50 years or so, less if a major revival of the nuclear option occurs as part of the solution to the world's environmental problems. While the extent of the uranium resource in the earth's crust and oceans is very large, uncertainty in the availability and price of uranium is the prime resource-related motivation for advanced fuel cycles. There are other important reasons for pursuing advanced fuel cycles. The three R's of the environmental movement, reduce, recycle, reuse, can be achieved in nuclear energy production through the employment of advanced fuel cycles. The adoption of more uranium-conserving fuel cycles would reduce the amount of uranium which needs to be mined, and the environmental impact of that mining. Environmental concerns over the back end of the fuel cycle can be mitigated as well. Higher fuel burnup reduces the volume of spent fuels which needs to be disposed of. The transmutation of actinides and long-lived fission products into short-lived fission products would reduce the radiological hazard of the waste from thousands to hundreds of years. Recycling of uranium and/or plutonium in spent fuel reuses valuable fissile material, leaving only true waste to be disposed of. Advanced fuel cycles have an economical benefit as well, enabling a ceiling to be put on fuel cycle costs, which are

  3. Physics of the Earth

    Science.gov (United States)

    Stacey, Frank D.; Davis, Paul M.

    he fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.

  4. Alkaline earth metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The beryllium ion has a relatively small ionic radius. As a consequence of this small size, its hydrolysis reactions begin to occur at a relatively low pH. To determine the stability and solubility constants, however, the Gibbs energy of the beryllium ion is required. In aqueous solution calcium, like the other alkaline earth metals, only exists as a divalent cation. The size of the alkaline earth cations increases with increasing atomic number, and the calcium ion is bigger than the magnesium ion. The hydrolysis of barium(II) is weaker than that of strontium(II) and also occurs in quite alkaline pH solutions, and similarly, only the species barium hydroxide has been detected. There is only a single experimental study on the hydrolysis of radium. As with the stability constant trend, it would be expected that the enthalpy of radium would be lower than that of barium due to the larger ionic radius.

  5. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  6. Earth before life

    OpenAIRE

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-01

    Background A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Results Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome i...

  7. Electromagnetic compatibility and earths

    International Nuclear Information System (INIS)

    Duque Henao, Alan; Casas Ospina, Favio

    2001-01-01

    It is such the increment of applications of electric and electronic equipment in the modern companies that the lack of control of the electromagnetic perturbations, brings, get big losses and difficulties in the normal operations. The paper contribute to ago with base in the challenges that day-by-day are confronting, where the settings to earth, to be the foundation of the electric building, are fundamental for a good coexistence among the different equipment s

  8. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  9. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  10. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  11. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  12. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  13. Proterozoic Milankovitch cycles and the history of the solar system.

    Science.gov (United States)

    Meyers, Stephen R; Malinverno, Alberto

    2018-06-19

    The geologic record of Milankovitch climate cycles provides a rich conceptual and temporal framework for evaluating Earth system evolution, bestowing a sharp lens through which to view our planet's history. However, the utility of these cycles for constraining the early Earth system is hindered by seemingly insurmountable uncertainties in our knowledge of solar system behavior (including Earth-Moon history), and poor temporal control for validation of cycle periods (e.g., from radioisotopic dates). Here we address these problems using a Bayesian inversion approach to quantitatively link astronomical theory with geologic observation, allowing a reconstruction of Proterozoic astronomical cycles, fundamental frequencies of the solar system, the precession constant, and the underlying geologic timescale, directly from stratigraphic data. Application of the approach to 1.4-billion-year-old rhythmites indicates a precession constant of 85.79 ± 2.72 arcsec/year (2σ), an Earth-Moon distance of 340,900 ± 2,600 km (2σ), and length of day of 18.68 ± 0.25 hours (2σ), with dominant climatic precession cycles of ∼14 ky and eccentricity cycles of ∼131 ky. The results confirm reduced tidal dissipation in the Proterozoic. A complementary analysis of Eocene rhythmites (∼55 Ma) illustrates how the approach offers a means to map out ancient solar system behavior and Earth-Moon history using the geologic archive. The method also provides robust quantitative uncertainties on the eccentricity and climatic precession periods, and derived astronomical timescales. As a consequence, the temporal resolution of ancient Earth system processes is enhanced, and our knowledge of early solar system dynamics is greatly improved.

  14. Cycling in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Alexis Zander

    2013-01-01

    Full Text Available Introduction. Cycling can be an enjoyable way to meet physical activity recommendations and is suitable for older people; however cycling participation by older Australians is low. This qualitative study explored motivators, enablers, and barriers to cycling among older people through an age-targeted cycling promotion program. Methods. Seventeen adults who aged 50–75 years participated in a 12-week cycling promotion program which included a cycling skills course, mentor, and resource pack. Semistructured interviews at the beginning and end of the program explored motivators, enablers, and barriers to cycling. Results. Fitness and recreation were the primary motivators for cycling. The biggest barrier was fear of cars and traffic, and the cycling skills course was the most important enabler for improving participants’ confidence. Reported outcomes from cycling included improved quality of life (better mental health, social benefit, and empowerment and improved physical health. Conclusions. A simple cycling program increased cycling participation among older people. This work confirms the importance of improving confidence in this age group through a skills course, mentors, and maps and highlights additional strategies for promoting cycling, such as ongoing improvement to infrastructure and advertising.

  15. Life cycle assessment (LCA)

    DEFF Research Database (Denmark)

    Thrane, Mikkel; Schmidt, Jannick Andresen

    2004-01-01

    The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards.......The chapter introduces Life Cycle Assessment (LCA) and its application according to the ISO 1404043 standards....

  16. Thorium fuel cycle management

    International Nuclear Information System (INIS)

    Zajac, R.; Darilek, P.; Breza, J.; Necas, V.

    2010-01-01

    In this presentation author deals with the thorium fuel cycle management. Description of the thorium fuels and thorium fuel cycle benefits and challenges as well as thorium fuel calculations performed by the computer code HELIOS are presented.

  17. Chords in longest cycles

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2017-01-01

    If a graph G is 3-connected and has minimum degree at least 4, then some longest cycle in G has a chord. If G is 2-connected and cubic, then every longest cycle in G has a chord.......If a graph G is 3-connected and has minimum degree at least 4, then some longest cycle in G has a chord. If G is 2-connected and cubic, then every longest cycle in G has a chord....

  18. Discover Earth: an earth system science program for libraries and their communities

    Science.gov (United States)

    Dusenbery, P.

    2011-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public's understanding of Earth's physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The Space Science Institute's National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. STAR-Net includes two exhibitions: Discover Earth and Discover Tech. The Discover Earth exhibition will focus on local earth science topics-such as weather, water cycle, and ecosystem changes-as well as a global view of our changing planet. The main take-away message (or Big Idea) for this exhibition is that the global environment changes - and is changed by - the host community's local environment. The project team is testing whether this approach will be a good strategy for engaging the public, especially in rural America. This presentation will provide an overview of the Discover Earth project and how it is integrating climate change ideas into the exhibit

  19. Denatured fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This paper traces the history of the denatured fuel concept and discusses the characteristics of fuel cycles based on the concept. The proliferation resistance of denatured fuel cycles, the reactor types they involve, and the limitations they place on energy generation potential are discussed. The paper concludes with some remarks on the outlook for such cycles

  20. Life Cycle Management

    DEFF Research Database (Denmark)

    Bey, Niki

    2018-01-01

    This chapter gives an overview of Life Cycle Management (LCM)—a discipline that deals with the managerial tasks related to practicing sustainable development in an organisation . Just as Life Cycle Assessment, LCM advocates the life cycle perspective , and it applies this perspective in decision...

  1. Termination of cycle rewriting

    NARCIS (Netherlands)

    Zantema, H.; König, B.; Bruggink, H.J.S.; Dowek, G.

    2014-01-01

    String rewriting can not only be applied on strings, but also on cycles and even on general graphs. In this paper we investigate termination of string rewriting applied on cycles, shortly denoted as cycle rewriting, which is a strictly stronger requirement than termination on strings. Most

  2. Exploring Earth Systems Through STEM

    Science.gov (United States)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to

  3. Chemical Oceanography and the Marine Carbon Cycle

    Science.gov (United States)

    Emerson, Steven; Hedges, John

    The principles of chemical oceanography provide insight into the processes regulating the marine carbon cycle. The text offers a background in chemical oceanography and a description of how chemical elements in seawater and ocean sediments are used as tracers of physical, biological, chemical and geological processes in the ocean. The first seven chapters present basic topics of thermodynamics, isotope systematics and carbonate chemistry, and explain the influence of life on ocean chemistry and how it has evolved in the recent (glacial-interglacial) past. This is followed by topics essential to understanding the carbon cycle, including organic geochemistry, air-sea gas exchange, diffusion and reaction kinetics, the marine and atmosphere carbon cycle and diagenesis in marine sediments. Figures are available to download from www.cambridge.org/9780521833134. Ideal as a textbook for upper-level undergraduates and graduates in oceanography, environmental chemistry, geochemistry and earth science and a valuable reference for researchers in oceanography.

  4. Glacial cycles: exogenous orbital changes vs. endogenous climate dynamics

    Science.gov (United States)

    Kaufmann, R. K.; Juselius, K.

    2010-04-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed to simulate glacial cycles accurately. Also, results suggest that non-linear dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles.

  5. Rare Earth Polyoxometalates.

    Science.gov (United States)

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  6. GCM simulations of cold dry Snowball Earth atmospheres

    Science.gov (United States)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  7. Bones of the Earth

    Directory of Open Access Journals (Sweden)

    Jose Miguel Correa

    2014-06-01

    Full Text Available The film Bones of the Earth (Riglin, Cunninham & Correa, 2014 is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective creation is built. A sense of community, on-going inquiry, connections and social commitment inform the creative process. As a result, the video’s nearly five intense minutes are a metaphor for the search for personal meaning, connection with nature and intersubjective positioning in a world that undergoes constant change.

  8. The Solid Earth

    Science.gov (United States)

    Fowler, C. M. R.

    2005-02-01

    The second edition of this acclaimed textbook has been brought fully up-to-date to reflect the latest advances in geophysical research. It is designed for students in introductory geophysics courses who have a general background in the physical sciences, including introductory calculus. New to this edition are a section of color plates and separate sections on the earth's mantle and core. The book also contains an extensive glossary of terms, and includes numerous exercises for which solutions are available to instructors from solutions@cambridge.org. First Edition Hb (1990): 0-521-37025-6 First Edition Pb (1990): 0-521-38590-3

  9. Between Earth and Sky

    DEFF Research Database (Denmark)

    Carter, Adrian

    2009-01-01

    to rescue architecture from the sterile impasse of late-modernism. In his works the basic elements of lived space become present: the earth, the sky and the `between` of human existence." Jørn Utzon's architecture ranges from the modest to the monumental; from the Kingo courtyard houses, the finest...... of form, material and function, motivated by social values. To this essentially regional response, Utzon combines a fascination for the architectural legacies of foreign cultures. These influences include the architecture of the ancient Mayan civilisation, as well as the Islamic world, China and Japan...

  10. Climate in Earth history

    Science.gov (United States)

    Berger, W. H.; Crowell, J. C.

    1982-01-01

    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  11. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  12. Simulating the Earth System Response to Negative Emissions

    Science.gov (United States)

    Jackson, R. B.; Milne, J.; Littleton, E. W.; Jones, C.; Canadell, J.; Peters, G. P.; van Vuuren, D.; Davis, S. J.; Jonas, M.; Smith, P.; Ciais, P.; Rogelj, J.; Torvanger, A.; Shrestha, G.

    2016-12-01

    The natural carbon sinks of the land and oceans absorb approximately half the anthropogenic CO2 emitted every year. The CO2 that is not absorbed accumulates in the Earth's atmosphere and traps the suns rays causing an increase in the global mean temperature. Removing this left over CO2 using negative emissions technologies (NETs) has been proposed as a strategy to lessen the accumulating CO2 and avoid dangerous climate change. Using CMIP5 Earth system model simulations this study assessed the impact on the global carbon cycle, and how the Earth system might respond, to negative emissions strategies applied to low emissions scenarios, over different times horizons from the year 2000 to 2300. The modeling results suggest that using NETs to remove atmospheric CO2 over five 50-year time horizons has varying effects at different points in time. The effects of anthropogenic and natural sources and sinks, can result in positive or negative changes in atmospheric CO2 concentration. Results show that historic emissions and the current state of the Earth System have impacts on the behavior of atmospheric CO2, as do instantaneous anthropogenic emissions. Indeed, varying background scenarios seemed to have a greater effect on atmospheric CO2 than the actual amount and timing of NETs. These results show how NETs interact with the physical climate-carbon cycle system and highlight the need for more research on earth-system dynamics as they relate to carbon sinks and sources and anthropogenic perturbations.

  13. Indian monsoon cycles through the last twelve million years

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    the planets depict forward drag (backward pull) effect of conjoined planets on Earth’s speed due to synod phenomenon that increases/decreases the length of summer/winter depending on the season of conjunction event. Also shown are the Kuiper meteoritic belt... cycles by amplitude modulation shown as incomplete envelops of larger cycles at ~600-, 5000-, and 8000 years. Synod effect on Earth: The gravitational pull/push of the planets like Venus, Mars, Jupiter, Saturn, Neptune, and the Trans Neptune...

  14. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  15. Destiny's Earth Observation Window

    Science.gov (United States)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  16. Mapping Earth's electromagnetic dimensionality

    Science.gov (United States)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  17. Is dying the earth?

    International Nuclear Information System (INIS)

    Morales Garzon, Gustavo

    1994-01-01

    December 21 of 1968, on board the capsule Apollo 8, three astronauts, James A. Lovell, Frank Borman and William Anders, went toward what would be the first orbital flight around the moon. That experience like Lovell said, it makes us realize the insignificant that we are in comparison with the vastness of the universe. With the revolution lovelockiane, the life doesn't already consist on a group of organisms only adapted to its atmosphere by a certain action for external laws. The terrestrial environment, instead of being a physical world regulated by own autonomous laws, is part of an evolutionary system that contains the life and that it should to the phenomena vital part of its rules, its mechanisms and components. The alive beings connected to each other and to the atmosphere they manufacture and they maintain of continuous their atmosphere forming an everything at planetary level, according to Ricard Guerrero (1988). The theory of the earth then, he says, it has found their owner Darwin in James lovelock. The document treats topics like the science concept that it is the life, the earth and the contemporary environment

  18. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  19. School, Earth and Imagination

    Science.gov (United States)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina

    2015-04-01

    Geology needs to be explained and narrated to the people, focusing on the goal of making that big change of mindset that will allow individuals and the entire community to tune into the timing and the ways in which the Earth evolves. In order to achieve these important goals it is necessary to educate children from an early age so that they learn to live an environmentally friendly life. With the project "School, Earth and imagination" we introduce, with a fun and new way, notions and topics in geological and environmental sciences in schools at all levels with the final goal of improving both knowledge and sensibility for these topics into the community. Through this project we start from the children (kindergarten and primary school, ages between 3 and 8 years) because they are the foundation of our society, and without foundations nothing can be built. The "School, Earth and imagination" project wants to give the children a real opportunity to approach reality and in general the surrounding environment, for the first time even before the traditional scholastic experience, with a scientific point of view, experimenting some basic physical concepts like temperature, weight, hardness and so on directly through their body. The project is structured and developed in modules that provide a high flexibility in order to meet needs and requirements of different schools in different situations. Each module is part of the journey of Mariolino, a character that represents a very curious child who introduces basic concepts associating them to geological processes. The Journey of Mariolino, as each module, follows an insistent scheme that starts from the presentation of the problem, follows with its discussion through direct questions and ends with experimentation of the hypotheses that children have proposed to validate the solution of the problem. Each module is independent and never ends without giving children a solution and is always structured with a practical activity

  20. Peculiarities of rare-earth-element distribution in environmental objects

    International Nuclear Information System (INIS)

    Gorbunov, A.V.; Onischenko, T.L.; Gundorina, S.F.; Frontasyeva, M.V.

    1993-01-01

    The effect of the production of phosphorus fertilizers on the pollution of the environment by rare-earth elements is reviewed. The main sources of rare-earth element pollution in the environment are described. The levels of REEs in components of the environment - atmosphere, snow, different types of soil, native and agricultural types of vegetation - that provide evidence for their participation in the biological cycle of plants are considered. The high values of the correlation coefficients lead one to think that the REE distribution in vegetation occurs under specific laws true for this family of elements. (author) 9 refs.; 6 figs.; 5 tabs

  1. The origin of neap-spring tidal cycles

    Science.gov (United States)

    Kvale, E.P.

    2006-01-01

    The origin of oceanic tides is a basic concept taught in most introductory college-level sedimentology/geology, oceanography, and astronomy courses. Tides are typically explained in the context of the equilibrium tidal theory model. Yet this model does not take into account real tides in many parts of the world. Not only does the equilibrium tidal model fail to explicate amphidromic circulation, it also does not explain diurnal tides in low latitude positions. It likewise fails to explain the existence of tide-dominated areas where neap-spring cycles are synchronized with the 27.32-day orbital cycle of the Moon (tropical month), rather than with the more familiar 29.52-day cycle of lunar phases (synodic month). Both types of neap-spring cycles can be recognized in the rock record. A complete explanation of the origin of tides should include a discussion of dynamic tidal theory. In the dynamic tidal model, tides resulting from the motions of the Moon in its orbit around the Earth and the Earth in its orbit around the Sun are modeled as products of the combined effects of a series of phantom satellites. The movement of each of these satellites, relative to the Earth's equator, creates its own tidal wave that moves around an amphidromic point. Each of these waves is referred to as a tidal constituent. The geometries of the ocean basins determine which of these constituents are amplified. Thus, the tide-raising potential for any locality on Earth can be conceptualized as the result of a series of tidal constituents specific to that region. A better understanding of tidal cycles opens up remarkable opportunities for research on tidal deposits with implications for, among other things, a more complete understanding of the tidal dynamics responsible for sediment transport and deposition, changes in Earth-Moon distance through time, and the possible influences tidal cycles may exert on organisms. ?? 2006 Elsevier B.V. All rights reserved.

  2. The Krebs Uric Acid Cycle: A Forgotten Krebs Cycle.

    Science.gov (United States)

    Salway, Jack G

    2018-05-25

    Hans Kornberg wrote a paper entitled 'Krebs and his trinity of cycles' commenting that every school biology student knows of the Krebs cycle, but few know that Krebs discovered two other cycles. These are (i) the ornithine cycle (urea cycle), (ii) the citric acid cycle (tricarboxylic acid or TCA cycle), and (iii) the glyoxylate cycle that was described by Krebs and Kornberg. Ironically, Kornberg, codiscoverer of the 'glyoxylate cycle', overlooked a fourth Krebs cycle - (iv) the uric acid cycle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Driving and engine cycles

    CERN Document Server

    Giakoumis, Evangelos G

    2017-01-01

    This book presents in detail the most important driving and engine cycles used for the certification and testing of new vehicles and engines around the world. It covers chassis and engine-dynamometer cycles for passenger cars, light-duty vans, heavy-duty engines, non-road engines and motorcycles, offering detailed historical information and critical review. The book also provides detailed examples from SI and diesel engines and vehicles operating during various cycles, with a focus on how the engine behaves during transients and how this is reflected in emitted pollutants, CO2 and after-treatment systems operation. It describes the measurement methods for the testing of new vehicles and essential information on the procedure for creating a driving cycle. Lastly, it presents detailed technical specifications on the most important chassis-dynamometer cycles around the world, together with a direct comparison of those cycles.

  4. Rare earth superlattices

    International Nuclear Information System (INIS)

    McMorrow, D.F.

    1997-01-01

    A review is given of recent experiments on the magnetism of rare earth superlattices. Early experiments in this field were concerned mainly with systems formed by combining a magnetic and a non-magnetic element in a superlattice structure. From results gathered on a variety of systems it has been established that the propagation of magnetic order through the non-magnetic spacer can be understood mostly on the basis of an RKKY-like model, where the strength and range of the coupling depends on the details of the conduction electron susceptibility of the spacer. Recent experiments on more complex systems indicate that this model does not provide a complete description. Examples include superlattices where the constituents can either be both magnetic, adopt different crystal structures (Fermi surfaces), or where one of the constituents has a non-magnetic singlet ground state. The results from such systems are presented and discussed in the context of the currently accepted model. (au)

  5. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...... research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and space observations, and on state-of-the-art empirical models and physics-based simulations. Thus, it provides an in-depth overview over recent achievements, current limitations and challenges, and future opportunities in the field of geomagnetism and space sciences....

  6. Rare earth (3) pivalates

    International Nuclear Information System (INIS)

    Kuz'mina, N.P.; Martynenko, L.I.; Zoan An' Tu; Ch'eu Tkhi Nguet; Troyanov, S.I.; Rykov, A.N.; Korenev, Yu.M.

    1994-01-01

    Depending on synthesis conditions rare earth pivalates can be obtained in the form of either adducts NPiv·HPiv or hydrates MPiv 3 ·mH 2 O. Adducts are the most stable form of pivalates. Heating of adducts result in formation of corresponding MPiv 3 . MPiv 3 ·nHPiv compounds are characterized by IR-spectroscopy and thermal analysis data. Behaviour of MPiv 3 was studied in the regime of vacuum sublemation. Using mass spectroscopy of NdPiv 3 it was shown that gaseous phase above MPiv 3 had complex composition and contained ligomer fragments. X-ray structure analysis of [NdPiv 3 ·3HPiv] was conducted

  7. One Day on Earth

    CERN Multimedia

    2011-01-01

    In collaboration with the CineGlobe Film Festival, the One Day on Earth global film project invites you to share your story of scientific inspiration, scientific endeavors and technological advancement on 11 November 2011 (11.11.11).   Technology in the 21st century continuously inspires us to re-imagine the world. From outer-space to cyberspace, new ideas that we hope will improve the lives of future generations keep us in a state of change. However, these new technologies may alter the nature of our shared existence in ways not yet known. On 11.11.11, we invite you to record the exciting ways that science is a part of your life, together with people around the world who will be documenting their lives on this day of global creation. See www.onedayonearth.org for details on how to participate.

  8. Earth's radiation belts

    International Nuclear Information System (INIS)

    Moslehi Fard, M.

    1984-01-01

    The theory of trapped particles in a magnetic field of approximated dipole is described completely in the first part. Second part contains experimental results. The mechanism of radiation belt source ''albedo neutrons'' and also types of dissipation mechanism about radiation belt is explained. The trapped protons and electrons by radiation belt is discussed and the life-time of trapped particles are presented. Finally the magnetic fields of Moon, Venus, Mars, and Saturn, measured by passengers Mariner 4,10 and pioneer 10,11 are indicated. The experimental and theoretical results for the explanation of trapped plasma around the earth which is looked like two internal and external belt have almost good correspondence

  9. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  10. Axial focusing of energy from a hypervelocity impact on earth

    International Nuclear Information System (INIS)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-01-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth's surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth's interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes

  11. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  12. Theory of Earth

    Science.gov (United States)

    Anderson, D. L.

    2014-12-01

    Earth is an isolated, cooling planet that obeys the 2nd law. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy has confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad passive, and cool, ridge feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes' principle, and kinetics (rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the TZ where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration). Canonical chemical geodynamic models are the exact opposite of physics and thermodynamic based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base, and a thin mobile D" layer that is an unlikely plume generation zone. Accounting for the physics that is overlooked, or violated (2nd law), in canonical models, plus modern seismology, undermines the assumptions and conclusions of these

  13. International Business Cycle

    OpenAIRE

    Marek Lubiński

    2007-01-01

    Prime stylized facts of international business cycle theory refer to positive correlation in the cyclical components of important macroeconomic variables across countries. However a number of indicators of business cycle synchronization do not point to clear trends. It can be ascribed to the fact that different forces influence level of business cycle correlation. When investigating into the forces behind the commonness in aggregate fluctuations economic research seems to have pointed in two ...

  14. Fast breeder fuel cycle

    International Nuclear Information System (INIS)

    1978-09-01

    Basic elements of the ex-reactor part of the fuel cycle (reprocessing, fabrication, waste handling and transportation) are described. Possible technical and proliferation measures are evaluated, including current methods of accountability, surveillance and protection. The reference oxide based cycle and advanced cycles based on carbide and metallic fuels are considered utilizing conventional processes; advanced nonaqueous reprocessing is also considered. This contribution provides a comprehensive data base for evaluation of proliferation risks

  15. [Cycling in Zagreb].

    Science.gov (United States)

    Matos, Stipan; Krapac, Ladislav; Krapac, Josip

    2007-01-01

    Cycling in Zagreb, as means of urban transport inside and outside the city, has a bright past, hazy presence but a promising future. Every day, aggressive citizens who lack urban traffic culture mistreat many cyclists but also many pedestrians. Sedentary way of living, unhealthy eating habits and inadequate recreation would surely be reduced if Zagreb had a network of cycling tracks (190 cm) or lanes (80 cm). Main city roads were constructed at the beginning of the 20th century. Today, the lack of cycling tracks is particularly evident in terms of missing connections between northern and southern parts of the city. Transportation of bikes in public vehicles, parking of bikes as well as cycling along the foot of the mountains Medvednica and Zumberacko gorje is not adequately organized. Better organization is necessary not only because of the present young generation but also because of the young who will shortly become citizens of the EU, where cycling is enormously popular. Cycling tourism is not known in Zagreb, partly due to inadequate roads. The surroundings of Zagreb are more suitable for cycling tourism and attractive brochures and tourist guides offer information to tourists on bikes. Professional, acrobatic and sports cycling do not have a tradition in Zagreb and in Croatia. The same holds true for recreational cycling and indoor exercise cycling. The authors discuss the impact of popularization of cycling using print and electronic media. The role of district and local self-government in the construction and improvement of traffic roads in Zagreb is very important. It is also significant for the implementation of legal regulations that must be obeyed by all traffic participants in order to protect cyclists, the most vulnerable group of traffic participants besides passengers. Multidisciplinary action of all benevolent experts would surely increase safety and pleasure of cycling in the city and its surroundings. This would also help reduce daily stress and

  16. Measuring Business Cycle Time.

    OpenAIRE

    Stock, James H

    1987-01-01

    The business cycle analysis of Arthur F. Burns and Wesley C. Mitchell and the National Bureau of Economic Research presumed that aggregate economic variables evolve on a time scale defined by business cycle turning points rather than by months or quarters. Do macroeconomic variables appear to evolve on an economic rather than a calendar time scale? Evidence presented here suggests that they do. However, the estimated economic time scales are only weakly related to business cycle time scales, ...

  17. Thorium cycles and proliferation

    International Nuclear Information System (INIS)

    Lovins, A.B.

    1979-01-01

    This paper analyzes several prevalent misconceptions about nuclear fuel cycles that breed fissile uranium-233 from thorium. Its main conclusions are: U-233, despite the gamma radioactivity of associated isotopes, is a rather attractive material for making fission bombs, and is a credible material for subnational as well as national groups to use for this purpose; (2) pure thorium cycles, which in effect merely substitute U-233 for Pu, would take many decades and much U to establish, and offer no significant safeguards advantage over Pu, cycles; (3) denatured Th-U cycles, which dilute the U-233 with inert U-238 to a level not directly usable in bombs, are not an effective safeguard even against subnational bomb-making; (4) several other features of mixed Th-U cycles are rather unattractive from a safeguards point of view; (5) thus, Th cycles of any kind are not a technical fix for proliferation (national or subnational) and, though probably more safeguardable than Pu cycles, are less so than once-through U cycles that entail no reprocessing; (6) while thorium cycles have some potential technical advantages, including flexibility, they cannot provide major savings in nuclear fuel resources compared to simpler ways of saving neutrons and U; and (7) while advocates of nuclear power may find Th cycles worth exploring, such cycles do not differ fundamentally from U cycles in any of the respects--including safeguards and fuel resources--that are relevant to the broader nuclear debate, and should not be euphorically embraced as if they did

  18. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Penn, W.J.

    1979-05-01

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  19. Edgeworth cycles revisited

    International Nuclear Information System (INIS)

    Doyle, Joseph; Muehlegger, Erich; Samphantharak, Krislert

    2010-01-01

    Some gasoline markets exhibit remarkable price cycles, where price spikes are followed by a series of small price declines: a pattern consistent with a model of Edgeworth cycles described by Maskin and Tirole. We extend the model and empirically test its predictions with a new dataset of daily station-level prices in 115 US cities. Consistent with the theory, and often in contrast with previous empirical work, we find the least and most concentrated markets are much less likely to exhibit cycling behavior both within and across cities; areas with more independent convenience-store gas stations are also more likely to cycle. (author)

  20. Investigators share improved understanding of the North American carbon cycle

    Science.gov (United States)

    Richard A. Birdsey; Robert Cook; Scott Denning; Peter Griffith; Beverly Law; Jeffrey Masek; Anna Michalak; Stephen Ogle; Dennis Ojima; Yude Pan; Christopher Sabine; Edwin Sheffner; Eric Sundquist

    2007-01-01

    The U.S. North American Carbon Program (NACP) sponsored an "all-scientist" meeting to review progress in understanding the dynamics of the carbon cycle of North American and adjacent oceans, and to chart a course for improved integration across scientifi c disciplines, scales, and Earth system boundaries. The meeting participants also addressed the need for...

  1. Cycle Transport in Cities – Best Practices versus Brno

    Czech Academy of Sciences Publication Activity Database

    Kallabová, Eva; Navrátil, Josef; Zemanová, V.

    2009-01-01

    Roč. 17, č. 2 (2009), s. 16-27 ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : cycle transport, Brno * good examples * questionnaire survey * Czech Republic Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.scopus.com/record/display.url?eid=2-s2.0-70449368206&origin=resultslist&sort

  2. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  3. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  4. Next-generation digital earth

    NARCIS (Netherlands)

    Goodchild, M.F.; Guo, H.; Annoni, A.; Bian, L.; Bie, de K.; Campbell, F.; Craglia, M.; Ehlers, M.; Genderen, van J.; Skidmore, A.K.; Wang, C.; Woodgate, P.

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google

  5. LIMNOLOGICAL OPTOMETRY: EXAMINING EARTH'S EYE

    Science.gov (United States)

    In Thoreau's Walden, a lake is described as the landscape's most expressive feature and the earth's eye. Collectively, scientists are charged by society to assess, monitor, and remedy maladies of earth's eye in the same way optometrists maintain the health of the human eye. This ...

  6. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  7. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  8. Teaching Waves with Google Earth

    Science.gov (United States)

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  9. Life cycle management (LCM)

    DEFF Research Database (Denmark)

    Remmen, Arne; Thrane, Mikkel

    2004-01-01

    The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels.......The chapter gives an introduction to Life Cycle Management (LCM) and shows how LCM can be practiced in different contexts and at different ambition levels....

  10. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  11. Life Cycle Impact Assessment

    DEFF Research Database (Denmark)

    Rosenbaum, Ralph K.; Hauschild, Michael Zwicky; Boulay, Anne-Marie

    2018-01-01

    This chapter is dedicated to the third phase of an LCA study, the Life Cycle Impact Assessment (LCIA) where the life cycle inventory’s information on elementary flows is translated into environmental impact scores. In contrast to the three other LCA phases, LCIA is in practice largely automated...

  12. Universal cycle periods

    NARCIS (Netherlands)

    Groot, de E.A. (Bert); Franses, P.H.P.H.

    2009-01-01

    We present a meta-analysis of cycles in historical economic data. The literature on stochastic and deterministic cycles in variables such as the consumer price index, employment, interest rates, commodity prices, and GDP is huge and scattered, but our meta-analysis reveals various communalities. Our

  13. Stability through cycles

    NARCIS (Netherlands)

    E.A. de Groot (Bert); Ph.H.B.F. Franses (Philip Hans)

    2006-01-01

    textabstractEconomic variables like GDP growth, employment, interest rates and consumption show signs of cyclical behavior. Many variables display multiple cycles, with lengths ranging in between 5 to even up to 100 years. We argue that multiple cycles can be associated with long-run stability of

  14. Observing the Global Water Cycle from Space

    Science.gov (United States)

    Hildebrand, P. H.

    2004-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  15. The thermal limits to life on Earth

    Science.gov (United States)

    Clarke, Andrew

    2014-04-01

    Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above ~60 °C and most not above 40 °C. The lower thermal limit for growth in bacteria, archaea, unicellular eukaryotes where ice is present appears to be set by vitrification of the cell interior, and lies at ~-20 °C. Lichens appear to be able to grow down to ~-10 °C. Higher plants and invertebrates living at high latitudes can survive down to ~-70 °C, but the lower limit for completion of the life cycle in multicellular organisms appears to be ~-2 °C.

  16. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  17. Emergence of Life on Earth: A Physicochemical Jigsaw Puzzle.

    Science.gov (United States)

    Spitzer, Jan

    2017-01-01

    We review physicochemical factors and processes that describe how cellular life can emerge from prebiotic chemical matter; they are: (1) prebiotic Earth is a multicomponent and multiphase reservoir of chemical compounds, to which (2) Earth-Moon rotations deliver two kinds of regular cycling energies: diurnal electromagnetic radiation and seawater tides. (3) Emerging colloidal phases cyclically nucleate and agglomerate in seawater and consolidate as geochemical sediments in tidal zones, creating a matrix of microspaces. (4) Some microspaces persist and retain memory from past cycles, and others re-dissolve and re-disperse back into the Earth's chemical reservoir. (5) Proto-metabolites and proto-biopolymers coevolve with and within persisting microspaces, where (6) Macromolecular crowding and other non-covalent molecular forces govern the evolution of hydrophilic, hydrophobic, and charged molecular surfaces. (7) The matrices of microspaces evolve into proto-biofilms of progenotes with rudimentary but evolving replication, transcription, and translation, enclosed in unstable cell envelopes. (8) Stabilization of cell envelopes 'crystallizes' bacteria-like genetics and metabolism with low horizontal gene transfer-life 'as we know it.' These factors and processes constitute the 'working pieces' of the jigsaw puzzle of life's emergence. They extend the concept of progenotes as the first proto-cellular life, connected backward in time to the cycling chemistries of the Earth-Moon planetary system, and forward to the ancient cell cycle of first bacteria-like organisms. Supra-macromolecular models of 'compartments first' are preferred: they facilitate macromolecular crowding-a key abiotic/biotic transition toward living states. Evolutionary models of metabolism or genetics 'first' could not have evolved in unconfined and uncrowded environments because of the diffusional drift to disorder mandated by the second law of thermodynamics.

  18. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  19. Earth Observations for Global Water Security

    Science.gov (United States)

    Lawford, Richard; Strauch, Adrian; Toll, David; Fekete, Balazs; Cripe, Douglas

    2013-01-01

    The combined effects of population growth, increasing demands for water to support agriculture, energy security, and industrial expansion, and the challenges of climate change give rise to an urgent need to carefully monitor and assess trends and variations in water resources. Doing so will ensure that sustainable access to adequate quantities of safe and useable water will serve as a foundation for water security. Both satellite and in situ observations combined with data assimilation and models are needed for effective, integrated monitoring of the water cycle's trends and variability in terms of both quantity and quality. On the basis of a review of existing observational systems, we argue that a new integrated monitoring capability for water security purposes is urgently needed. Furthermore, the components for this capability exist and could be integrated through the cooperation of national observational programmes. The Group on Earth Observations should play a central role in the design, implementation, management and analysis of this system and its products.

  20. Rapid thermal cycling of new technology solar array blanket coupons

    Science.gov (United States)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  1. Changes in earth's dipole.

    Science.gov (United States)

    Olson, Peter; Amit, Hagay

    2006-11-01

    The dipole moment of Earth's magnetic field has decreased by nearly 9% over the past 150 years and by about 30% over the past 2,000 years according to archeomagnetic measurements. Here, we explore the causes and the implications of this rapid change. Maps of the geomagnetic field on the core-mantle boundary derived from ground-based and satellite measurements reveal that most of the present episode of dipole moment decrease originates in the southern hemisphere. Weakening and equatorward advection of normal polarity magnetic field by the core flow, combined with proliferation and growth of regions where the magnetic polarity is reversed, are reducing the dipole moment on the core-mantle boundary. Growth of these reversed flux regions has occurred over the past century or longer and is associated with the expansion of the South Atlantic Anomaly, a low-intensity region in the geomagnetic field that presents a radiation hazard at satellite altitudes. We address the speculation that the present episode of dipole moment decrease is a precursor to the next geomagnetic polarity reversal. The paleomagnetic record contains a broad spectrum of dipole moment fluctuations with polarity reversals typically occurring during dipole moment lows. However, the dipole moment is stronger today than its long time average, indicating that polarity reversal is not likely unless the current episode of moment decrease continues for a thousand years or more.

  2. When the earth shudders

    Energy Technology Data Exchange (ETDEWEB)

    Maltese, G.

    The enormous damage that can be caused by earthquakes (500,000 deaths in Tangshan, China, 1976) makes the art and science of earthquake predicting one of the principal objectives of modern geophysics. In this review of the state-of-the-art in earthquake predicting, brief notes are given on several topics: plate tectonics theory, geographic distribution of earthquakes, elastic potential energy storage of rocks, seismic wave typology, comparison of Mercalli and Richter scales, pre-warning signs in nature (strange behaviour of animals, preliminary reduction of seismic wave velocity, variations in local micro-seismicity and physical properties of rocks, etc.), comparison of earthquake energy release models, historical origin of the science of earthquake predicting, implication of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, the time element in prediction making, analysis of examples of correct predictions, pattern recognition instrumentation, earthquake intensity control through fluid injection, correlations between water reservoir level and seismicity, the creation of government programs for the monitoring of the earth's crust and seismic data acquisition, comparison of earthquake prediction and preparedness approaches in Japan and the USA.

  3. Our sustainable Earth

    International Nuclear Information System (INIS)

    Orbach, Raymond L

    2011-01-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as oceans are slow to respond to atmospheric temperature changes. Atmospheric CO 2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880, and can be associated with the industrial revolution. The climactic consequences of this human dominated increase in atmospheric CO 2 define a geologic epoch that has been termed the 'Anthropocene.' The issue is whether this is a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. Eight 'myths' that posit the former are examined in light of known data. The analysis strongly suggests the latter. In order to stabilize global temperatures, sharp reductions in CO 2 emissions are required: an 80% reduction beginning in 2050. Two examples of economically sustainable CO 2 emission reduction demonstrate that technological innovation has the potential to maintain our standard of living while stabilizing global temperatures.

  4. Space sickness on earth

    Science.gov (United States)

    Nooij, S. A. E.; Bos, J. E.; Groen, E. L.; Bles, W.; Ockels, W. J.

    2007-09-01

    During the first days in space, i.e., after a transition from 1G to 0G, more than 50% of the astro- (and cosmonauts) suffer from the Space Adaptation Syndrome (SAS).The symptoms of SAS, like nausea and dizziness, are especially provoked by head movements. Astronauts have mentioned close similarities between the symptoms of SAS and the symptoms they experienced after a 1 hour centrifuge run on Earth, i.e., after a transition from 3G to 1G (denoted by Sickness Induced by Centrifugation, SIC). During several space missions, we related susceptibility to SAS and to SIC in 11 astronauts and found 4 of them being susceptible to both SIC and SAS, and 7 being not susceptible to SIC nor to SAS. This correspondence in susceptibility suggests that SIC and SAS share the same underlying mechanism. To further study this mechanism, several vestibular parameters have been investigated (e.g. postural stability, vestibularly driven eye movements, subjective vertical). We found some striking changes in individual cases that are possibly due to the centrifuge run. However, the variability between subjects generally is very large, making physiological links to SIC and SAS still hard to find.

  5. Redox State of the Neoarchean Earth Environment

    Science.gov (United States)

    Zerkle, Aubrey L.; Claire, Mark W.; Domagal-Goldman, Shawn; Farquhar, James; Poulton, Simon W.

    2011-01-01

    A Titan-like organic haze has been hypothesized for Earth's atmosphere prior to widespread surface oxygenation approx.2.45 billion years ago (Ga). We present a high-resolution record of quadruple sulfur isotopes, carbon isotopes, and Fe speciation from the approx.2.65-2.5 Ga Ghaap Group, South Africa, which suggest a linkage between organic haze and the biogeochemical cycling of carbon, sulfur, oxygen, and iron on the Archean Earth. These sediments provide evidence for oxygen production in microbial mats and localized oxygenation of surface waters. However, this oxygen production occurred under a reduced atmosphere which existed in multiple distinct redox states that correlate to changes in carbon and sulfur isotopes. The data are corroborated by photochemical model results that suggest bi-stable transitions between organic haze and haze-free atmospheric conditions in the Archean. These geochemical correlations also extend to other datasets, indicating that variations in the character of anomalous sulfur fractionation could provide insight into the role of carbon-bearing species in the reducing Archean atmosphere.

  6. Global biogeochemical cycle of vanadium.

    Science.gov (United States)

    Schlesinger, William H; Klein, Emily M; Vengosh, Avner

    2017-12-26

    Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 10 9 g V/y) and extraction and combustion of fossil fuels (600 × 10 9 g V/y), humans are the predominant force in the geochemical cycle of V at Earth's surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced-with about 40 × 10 9 g V/y to 50 × 10 9 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.

  7. Two Quantum Polytropic Cycles

    Science.gov (United States)

    Arias-Hernández, L. A.; Morales-Serrano, A. F.

    2002-11-01

    In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.

  8. Fuel cycle management

    International Nuclear Information System (INIS)

    Herbin, H.C.

    1977-01-01

    The fuel cycle management is more and more dependent on the management of the generation means among the power plants tied to the grid. This is due mainly because of the importance taken by the nuclear power plants within the power system. The main task of the fuel cycle management is to define the refuelling pattern of the new and irradiated fuel assemblies to load in the core as a function of: 1) the differences which exist between the actual conditions of the core and what was expected for the present cycle, 2) the operating constraints and the reactor availability, 3) the technical requirements in safety and the technological limits of the fuel, 4) the economics. Three levels of fuel cycle management can be considered: 1) a long term management: determination of enrichments and expected cycle lengths, 2) a mid term management whose aim corresponds to the evaluation of the batch to load within the core as a function of both: the next cycle length to achieve and the integrated power history of all the cycles up to the present one, 3) a short term management which deals with the updating of the loaded fuel utilisations to take into account the operation perturbations, or with the alteration of the loading pattern of the next batch to respect unexpected conditions. (orig.) [de

  9. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    Science.gov (United States)

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  10. On approximating restricted cycle covers

    NARCIS (Netherlands)

    Manthey, Bodo

    2008-01-01

    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An $L$-cycle cover is a cycle cover in which the length of every cycle is in the set $L$. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close to

  11. Future fuel cycles

    International Nuclear Information System (INIS)

    Archinoff, G.H.

    1980-01-01

    A fuel cycle must offer both financial and resource savings if it is to be considered for introduction into Ontario's nuclear system. The most promising alternative CANDU fuel cycles are examined in the context of both of these factors over a wide range of installed capacity growth rates and economic assumptions, in order to determine which fuel cycle, or cycles, should be introduced, and when. It is concluded that the optimum path for the long term begins with the prompt introduction of the low-enriched-uranium fuel cycle. For a wide range of conditions, this cycle remains the optimum throughout the very long term. Conditions of rapid nuclear growth and very high uranium price escalation rates warrant the supersedure of the low-enriched-uranium cycle by either a plutonium-topped thorium cycle or plutonium recycle, beginning between 2010 and 2025. It is also found that the uranium resource position is sound in terms of both known resources and production capability. Moreover, introduction of the low-enriched-uranium fuel cycle and 1250 MWe reactor units will assure the economic viability of nuclear power until at least 2020, even if uranium prices increase at a rate of 3.5% above inflation. The interrelationship between these two conclusions lies in the tremendous incentive for exploration which will occur if the real uranium price escalation rate is high. From a competitive viewpoint, nuclear power can withstand increases in the price of uranium. However, such increases will likely further expand the resource base, making nuclear an even more reliable energy source. (auth)

  12. Radiation environment of the earth

    International Nuclear Information System (INIS)

    Furukawa, Masahide

    2003-01-01

    The radiation environment of the earth consists of natural and artificial radiation. This paper explains the distribution and some exposure examples of natural radiation and the relation between life and natural radiation. The earth was born before about 46 hundreds of millions of years. In the present earth, there are some natural radiations with long half-life originated by the earth. They are 232 Th (141 hundreds of millions of years of half-life), 238 U (45 hundreds of millions of years of half-life) and 40 K (13 hundreds of millions of years of half-life). Natural radiation (α-, β-, and γ-ray) from natural radionuclides exists everywhere in the earth. Natural radio nuclides are heat source of the earth, which is about 0.035 μcal/g/y. γ-ray from them is called as ''the earth's crust γ-ray'', which is about 55 nGy/h average of the world and about 50 nGy/h in Japan. The distribution of γ-ray is depended on the kinds of soil and rock. 222 Rn and 230 Rn are rare gases and the concentration of them in a room is larger than outside. Natural radiations originated from the cosmos are proton, ionizing components, neutron component with muon and electron, 3 H, 14 C and 10 Be. Effect of cosmic rays on birth of life, change of temperature, amount of cloud and ultra resistant cell are stated. (S.Y.)

  13. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  14. International Business Cycle Accounting

    OpenAIRE

    Keisuke Otsu

    2009-01-01

    In this paper, I extend the business cycle accounting method a la Chari, Kehoe and McGrattan (2007) to a two-country international business cycle model and quantify the effect of the disturbances in relevant markets on the business cycle correlation between Japan and the US over the 1980-2008 period. This paper finds that disturbances in the labor market and production efficiency are important in accounting for the recent increase in the cross-country output correlation. If international fina...

  15. Life Cycle Sustainability Dashboard

    DEFF Research Database (Denmark)

    Traverso, Marzia; Finkbeiner, Matthias; Jørgensen, Andreas

    2012-01-01

    One method to assess the sustainability performance of products is life cycle sustainability assessment (LCSA), which assesses product performance considering the environmental,economic, and social dimensions of the life cycle. The results of LCSA can be used to compare different products...... of sustainability is the communicability of the results by means of a graphical representation (a cartogram), characterized by a suitable chromatic scale and ranking score. The integration of LCSA and the dashboard of sustainability into a so-called Life Cycle Sustainability Dashboard (LCSD) is described here...

  16. Our Sustainable Earth

    Science.gov (United States)

    Orbach, Raymond L.

    2013-03-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as the upper levels of the ocean are slow to respond to atmospheric temperature changes. Atmospheric CO2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880. They can be associated with the use of coal ecause of the spread of the industrial revolution from Great Britain to the European continent and beyond. The climactic consequence of this human-dominated increase in atmospheric CO2 has been suggested to define a geologic epoch, termed the ``Anthropocene.'' This could be a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. In order to stabilize global temperatures, sharp reductions in CO2 emissions are required: an 80% reduction beginning in 2050. U.S. emissions have declined sharply recently because of market conditions leading to the substitution of natural gas for coal for electricity generation. Whether this is the best use for this resource may be questioned, but it nevertheless reduces CO2 production by 67% from a coal-fired power plant, well on the way to the 80% reduction required for global temperature stabilization. Current methods for CO2 capture and storage are not cost effective, and have been slow (if not absent) to introduce at scale. This paper describes research into some potentially economically feasible approaches: cost-effective capture and storage of CO2 from injection of flue gas into subterranean methane-saturated aquifers at the surface; fuels from sunlight without CO2 production; and large-scale electrical energy storage for intermittent (and even constant) electricity generating sources.

  17. Earth - South America (first frame of Earth Spin Movie)

    Science.gov (United States)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  18. Challenges in implementing a Planetary Boundaries based Life-Cycle Impact Assessment methodology

    DEFF Research Database (Denmark)

    Ryberg, Morten; Owsianiak, Mikolaj; Richardson, Katherine

    2016-01-01

    of resolving the challenges and developing such methodology is discussed. The challenges are related to technical issues, i.e., modelling and including the Earth System processes and their control variables as impact categories in Life-Cycle Impact Assessment and to theoretical considerations with respect...... to the interpretation and use of Life-Cycle Assessment results in accordance with the Planetary Boundary framework. The identified challenges require additional research before a Planetary Boundaries based Life-Cycle Impact Assessment method can be developed. Research on modelling the impacts on Earth System processes......Impacts on the environment from human activities are now threatening to exceed thresholds for central Earth System processes, potentially moving the Earth System out of the Holocene state. To avoid such consequences, the concept of Planetary Boundaries was defined in 2009, and updated in 2015...

  19. TRI HITA KARANA AND HYDROLIC CYCLE BASED ON VEDA

    Directory of Open Access Journals (Sweden)

    A.A. Kade Sri Yudari

    2015-10-01

    Full Text Available Hydrologic cycle refers to the route of water cycle or the journey made by water on the earth’s surface. Water can change in form, and flows in various places before finally it gets back to the biggest source, that is, the ocean. Approximately 71% of the earth is covered with the ocean. Talking about the hydrologic cycle cannot be separated from talking about the sun and the ocean, that is, the impact of the rise and fall of the tides. In Veda, the traditional geography, in general, and in Tatwa and Purana, in particular, it is stated that the earth is divided into two parts; they are the main land and the ocean. The question is how deep the Hindu theology and philosophy about the hydrologic cycle is. The water on the earth’s surface evaporates, resulting from the hot ray radiated by the sun. In Reg. Veda Samhita.I.164.51, it is strongly stated that “the water on the earth’s surface rises due to evaporation”. After evaporation, water changes into water drops or fine dews referred to as clouds. There are many types and forms of clouds which may lead to storms; however, some have no impact. When such clouds are already formed, they are brought to every area of the earth’s surface. When they reach the saturation point, a natural phenomenon appears which is referred to as rain. The falling water makes the earth wet, fills up dams, flows along rivers, and fertilize every type of life on earth. Rain measures how the hydrologic cycle takes place. Therefore, it should be recognized that it is important to maintain the hydrologic cycle, which determines that the earth’s fertility and prosperity will not be disturbed. The Hindu teaching is rich in such a philosophy referred to as Tri Hita Karana. Even in very religious ritual water is always mainly used for purification. The sources of water such as wells, rivers, lakes, showers, and oceans are made to be physically and spiritually sacred. The concepts of balance and harmony are easily found

  20. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  1. Sun-Earth Day, 2001

    Science.gov (United States)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  2. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  3. The nuclear fuel cycle, an overview

    International Nuclear Information System (INIS)

    Ballery, J.L.; Cazalet, J.; Hagemann, R.

    1995-01-01

    Because uranium is widely distributed on the face of the Earth, nuclear energy has a very large potential as an energy source in view of future depletion of fossil fuel reserves. Also future energy requirements will be very sizeable as populations of developing countries are often growing and make the energy question one of the major challenges for the coming decades. Today, nuclear contributes some 340 GWe to the energy requirements of the world. Present and future nuclear programs require an adequate fuel cycle industry, from mining, refining, conversion, enrichment, fuel fabrication, fuel reprocessing and the storage of the resulting wastes. The commercial fuel cycle activities amount to an annual business in the 7-8 billions of US Dollars in the hands of a large number of industrial operators. This paper gives details about companies and countries involved in each step of the fuel cycle and about the national strategies and options chosen regarding the back end of the fuel cycle (waste storage and reprocessing). These options are illustrated by considering the policy adopted in three countries (France, United Kingdom, Japan) versed in reprocessing. (J.S.). 13 figs., 2 tabs

  4. The Heliosphere through the Solar Activity Cycle

    CERN Document Server

    Balogh, André; Suess, Steven T

    2008-01-01

    Understanding how the Sun changes though its 11-year sunspot cycle and how these changes affect the vast space around the Sun – the heliosphere – has been one of the principal objectives of space research since the advent of the space age. This book presents the evolution of the heliosphere through an entire solar activity cycle. The last solar cycle (cycle 23) has been the best observed from both the Earth and from a fleet of spacecraft. Of these, the joint ESA-NASA Ulysses probe has provided continuous observations of the state of the heliosphere since 1990 from a unique vantage point, that of a nearly polar orbit around the Sun. Ulysses’ results affect our understanding of the heliosphere from the interior of the Sun to the interstellar medium - beyond the outer boundary of the heliosphere. Written by scientists closely associated with the Ulysses mission, the book describes and explains the many different aspects of changes in the heliosphere in response to solar activity. In particular, the authors...

  5. STUDYING BUSINESS CYCLES SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    N. Servetnyk

    2014-06-01

    Full Text Available The paper researches business cycles synchronization. The fluctuations in post-Soviet countries are considered. The study examines different measures of synchronization in groups of countries according to some criteria.

  6. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive owing to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Rapidly increasing uranium prices, public reluctance for widespread Pu recycling and expected delays for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, problems associated with reprocessing and waste handling, particularly with re-fabrication by remote handling of 233 U, are certainly not appreciably more difficult than for Pu recycling. To divert from uranium as a nuclear energy source it seems worth while intensifying future efforts for closing the Th/ 233 U fuel cycle. HTGRs are particularly promising for economic application. However, further research and development activities should not concentrate on this reactor type alone. Light- and heavy-water-moderated reactors, and even future fast breeders, may just as well take advantage of a demonstrated thorium fuel cycle. (author)

  7. Educational Business Cycles

    DEFF Research Database (Denmark)

    Tepe, Markus; Vanhuysse, Pieter

    Strong institutional constraints and better-informed voters may lead re-election seeking incumbents to shift the use of political business cycle mechanisms away from monetary and fiscal policy towards other policy domains that are more easily manipulable, targetable, and timeable. We investigate...... teacher employment patterns at the state level in Germany and find strong evidence of cycling mechanisms, in the form of electioneering and honeymooning. Against a backdrop of a continuously shrinking total teachers' pool, German state-level incumbents accelerate the hiring of new teachers during election...... periods and partly reverse this during politically safer points in the electoral cycle. Cycles are mediated by issue salience: heightened attention to German public schooling after the notorious PISA-2000 tests further strengthens the manipulation of new teacher hiring for electoral purposes....

  8. Educational Business Cycles

    DEFF Research Database (Denmark)

    Tepe, Markus; Vanhuysse, Pieter

    2009-01-01

    Strong institutional constraints and better-informed voters may lead re-election seeking incumbents to shift the use of political business cycle mechanisms away from monetary and fiscal policy towards other policy domains that are more easily manipulable, targetable, and timeable. We investigate...... teacher employment patterns at the state level in Germany and find strong evidence of cycling mechanisms, in the form of electioneering and honeymooning. Against a backdrop of a continuously shrinking total teachers' pool, German state-level incumbents accelerate the hiring of new teachers during election...... periods and partly reverse this during politically safer points in the electoral cycle. Cycles are mediated by issue salience: heightened attention to German public schooling after the notorious PISA-2000 tests further strengthens the manipulation of new teacher hiring for electoral purposes....

  9. Cycles in graphs

    CERN Document Server

    Alspach, BR

    1985-01-01

    This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.

  10. The Rock Cycle

    Science.gov (United States)

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  11. Extended fuel cycle length

    International Nuclear Information System (INIS)

    Bruyere, M.; Vallee, A.; Collette, C.

    1986-09-01

    Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated

  12. Fuel cycle studies

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Programs are being conducted in the following areas: advanced solvent extraction techniques, accident consequences, fuel cycles for nonproliferation, pyrochemical and dry processes, waste encapsulation, radionuclide transport in geologic media, hull treatment, and analytical support for LWBR

  13. Traffic Signal Cycle Lengths

    Data.gov (United States)

    Town of Chapel Hill, North Carolina — Traffic signal location list for the town of Chapel Hill. This data set includes light cycle information as well as as intersection information.The Town of Chapel...

  14. Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    Science.gov (United States)

    Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will

    2018-05-01

    Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.

  15. The soil life cycle

    NARCIS (Netherlands)

    Leeuwen, van J.P.

    2016-01-01

    Soil is one of the most important natural resource for life on Earth and provides important ecosystem services, such as food production, carbon sequestration, water regulation and contaminant attenuation. Soil quality, defined as the soil’s ability to provide these services, is drastically

  16. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  17. International Real Business Cycles

    OpenAIRE

    Mario J. Crucini

    2006-01-01

    This paper is a non-technical review of research developments in the international real business cycle literature. International business cycle facts are summarize with particular attention to the sources of output variance from the expenditure side of the NIPA and the production side, using a familiar neoclassical production function. Theoretical developments focus on the how consumption smoothing and investment dynamics shape the current account; the search for sources and propagation mecha...

  18. IFR fuel cycle

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Lineberry, M.J.; Phipps, R.D.

    1992-01-01

    The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase, which includes completion of facility modifications and installation and cold checkout of process equipment. This paper reviews the development of the electrorefining pyroprocess, the design and construction of the facility for the hot demonstration, the design and fabrication of the equipment, and the schedule and initial plan for its operation

  19. Hat cycle dynamic simulation

    International Nuclear Information System (INIS)

    Trucco, A.; Corallo, C.; Pini Prato, A.; Porro, S.

    1999-01-01

    Among the innovative cycle recently proposed in literature, the Humid Air Turbine Cycle - Hat better seems to fulfil the main energy market requirements of today: High efficiency in a large power ranger, low pollution, low specific capital cost. The previous results of an analysis at partial load and transient conditions are here presented, where the Hat plant has been simulated using the original model implemented in LEGO environment [it

  20. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  1. Earth System Stability Through Geologic Time

    Science.gov (United States)

    Rothman, D.; Bowring, S. A.

    2015-12-01

    Five times in the past 500 million years, mass extinctions haveresulted in the loss of greater than three-fourths of living species.Each of these events is associated with significant environmentalchange recorded in the carbon-isotopic composition of sedimentaryrocks. There are also many such environmental events in the geologicrecord that are not associated with mass extinctions. What makes themdifferent? Two factors appear important: the size of theenvironmental perturbation, and the time scale over which it occurs.We show that the natural perturbations of Earth's carbon cycle during thepast 500 million years exhibit a characteristic rate of change overtwo orders of magnitude in time scale. This characteristic rate isconsistent with the maximum rate that limits quasistatic (i.e., nearsteady-state) evolution of the carbon cycle. We identify this rate withmarginal stability, and show that mass extinctions occur on the fast,unstable side of the stability boundary. These results suggest thatthe great extinction events of the geologic past, and potentially a"sixth extinction" associated with modern environmental change, arecharacterized by common mechanisms of instability.

  2. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  3. Quantifying the Adaptive Cycle.

    Directory of Open Access Journals (Sweden)

    David G Angeler

    Full Text Available The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011 data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  4. The Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    2011-08-01

    This brochure describes the nuclear fuel cycle, which is an industrial process involving various activities to produce electricity from uranium in nuclear power reactors. The cycle starts with the mining of uranium and ends with the disposal of nuclear waste. The raw material for today's nuclear fuel is uranium. It must be processed through a series of steps to produce an efficient fuel for generating electricity. Used fuel also needs to be taken care of for reuse and disposal. The nuclear fuel cycle includes the 'front end', i.e. preparation of the fuel, the 'service period' in which fuel is used during reactor operation to generate electricity, and the 'back end', i.e. the safe management of spent nuclear fuel including reprocessing and reuse and disposal. If spent fuel is not reprocessed, the fuel cycle is referred to as an 'open' or 'once-through' fuel cycle; if spent fuel is reprocessed, and partly reused, it is referred to as a 'closed' nuclear fuel cycle.

  5. Thorium fuel cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1980-07-01

    Systems analysis of the thorium cycle, a nuclear fuel cycle accomplished by using thorium, is reported in this paper. Following a brief review on the history of the thorium cycle development, analysis is made on the three functions of the thorium cycle; (1) auxiliary system of U-Pu cycle to save uranium consumption, (2) thermal breeder system to exert full capacity of the thorium resource, (3) symbiotic system to utilize special features of /sup 233/U and neutron sources. The effects of the thorium loading in LWR (Light Water Reactor), HWR (Heavy Water Reactor) and HTGR (High Temperature Gas-cooled Reactor) are considered for the function of auxiliary system of U-Pu cycle. Analysis is made to find how much uranium is saved by /sup 233/U recycling and how the decrease in Pu production influences the introduction of FBR (Fast Breeder Reactor). Study on thermal breeder system is carried out in the case of MSBR (Molten Salt Breeder Reactor). Under a certain amount of fissile material supply, the potential system expansion rate of MSBR, which is determined by fissile material balance, is superior to that of FBR because of the smaller specific fissile inventory of MSBR. For symbiotic system, three cases are treated; i) nuclear heat supply system using HTGR, ii) denatured fuel supply system for nonproliferation purpose, and iii) hybrid system utilizing neutron sources other than fission reactor.

  6. Cycles and Common Cycles in Property and Related Sectors

    OpenAIRE

    Peijie Wang

    2003-01-01

    This paper examines cycles and common cycles in the property market and the economy. While focusing on common cycles, the study also incorporates common trends in the meantime, so it covers the whole spectrum of dynamic analysis. It has been found that property shares common cycles, particularly with those sectors that are the user markets of property. The mechanisms of common cycles and the relative magnitudes of cycles of the sectors related to property are discussed to shed light on proper...

  7. Children's knowledge of the Earth

    Science.gov (United States)

    Siegal, Michael; Nobes, Gavin; Panagiotaki, Georgia

    2011-03-01

    Children everywhere are fascinated by the sky, stars and Sun. Emerging evidence from cultures throughout the world suggests that even young children can acquire knowledge of the Earth and its place in the Universe.

  8. Encyclopedia of earth system science

    National Research Council Canada - National Science Library

    Nierenberg, William Aaron

    1992-01-01

    .... The very diversity of the articles attests to the complexity of earth system science as a unique interdisciplinary venture to place humanity in a position to move wisely to protect the global habitat...

  9. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  10. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  11. The Search for Another Earth

    Indian Academy of Sciences (India)

    2016-08-26

    /fulltext/reso/021/07/0641-0652. Keywords. Stars, planets, planetary systems, detection. Abstract. Is there life anywhere else in the vast cosmos?Are there planets similar to the Earth? For centuries,these questions baffled ...

  12. Earth Charter and nuclear energy

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter presents Earth Charter, where are listed the principles in 4 sections: 1) respect and take care of the life community; 2) environmental integrity; social and economic welfare; 4) democracy, no-violence and peace

  13. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  14. A umbrella for the Earth

    International Nuclear Information System (INIS)

    Kunzig, R.

    2009-01-01

    In front of the global warming threat, the 'geo-engineers' foresee some solutions to change the climate of the Earth, like for instance, by hiding part of the solar radiation. Among the solutions one can notice: the injection of sulfur dioxide in the stratosphere, the artificial generation of clouds using sea fog generators, or the putting into orbit of disc-shape screens creating a 100000 km x 12000 km elliptical 'umbrella' between the sun and the Earth. (J.S.)

  15. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  16. Rare earth metal alloy magnets

    International Nuclear Information System (INIS)

    Harris, I.R.; Evans, J.M.; Nyholm, P.S.

    1979-01-01

    This invention relates to rare earth metal alloy magnets and to methods for their production. The technique is based on the fact that rare earth metal alloys (for e.g. cerium or yttrium) which have been crumbled to form a powder by hydride formation and decomposition can be used for the fabrication of magnets without the disadvantages inherent in alloy particle size reduction by mechanical milling. (UK)

  17. Rare-earth elements

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are

  18. Greenhouse Earth: A Traveling Exhibition

    International Nuclear Information System (INIS)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ''demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ''satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change

  19. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  20. Biological catalysis of the hydrological cycle: life's thermodynamic function

    Science.gov (United States)

    Michaelian, K.

    2011-01-01

    Darwinian theory depicts life as being overwhelmingly consumed by a fight for survival in a hostile environment. However, from a thermodynamic perspective, life is a dynamic out of equilibrium process, stabilizing and coevolving in concert with its abiotic environment. The living component of the biosphere on the surface of the Earth of greatest biomass, the plants and cyanobacteria, are involved in the transpiration of a vast amount of water. Transpiration is part of the global water cycle, and it is this cycle that distinguishes Earth from its apparently life barren neighboring planets, Venus and Mars. The dissipation of sunlight into heat by organic molecules in the biosphere and its coupling to the water cycle (as well as other abiotic processes), is by far the greatest entropy producing process occurring on Earth. Life, from this perspective, can be viewed as performing an important thermodynamic function; acting as a dynamic catalyst by aiding irreversible abiotic process such as the water cycle, hurricanes, and ocean and wind currents to produce entropy. The role of animals in this view is that of unwitting but dedicated servants of the plants and cyanobacteria, helping them to grow and to spread into initially inhospitable areas.

  1. Multiparameter Cell Cycle Analysis.

    Science.gov (United States)

    Jacobberger, James W; Sramkoski, R Michael; Stefan, Tammy; Woost, Philip G

    2018-01-01

    Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.

  2. Scaling of Convection and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Valencia, D. C.; O'Connell, R. J.; Sasselov, D. D.

    2006-12-01

    The discovery of three Super-Earths around different stars, possible only in the last year, prompts us to study the characteristics of our planet within a general context. The Earth, being the most massive terrestrial object in the solar system is the only planet that exhibits plate tectonics. We think this might not be a coincidence and explore the role that mass plays in determining the mode of convection. We use the scaling of convective vigor with Rayleigh number commonly used in parameterized convection. We study how the parameters controlling convection: Rayleigh number (Ra), boundary layer thickness (δ), internal temperature (T_i) and convective velocities (u) scale with mass. This is possible from the scaling of heat flux, mantle density, size and gravity with mass which we reported in Valencia, et. al 2006. The extrapolation to massive rocky planets is done from our knowledge of the Earth. Even though uncertainties arise from extrapolation and assumptions are needed we consider this simple scaling to be a first adequate step. As the mass of a planet increases, Ra increases, yielding a decrease in δ and an increase in u, while T_i increases very slightly. This is true for an isoviscous case and is more accentuated in a temperature dependent viscosity scenario. In a planet with vigorous convection (high u), a thin lithosphere (low δ) is easier to subduct and hence, initiate plate tectonics. The lithosphere also has to be dense enough (cold and thick) to have the bouyancy necessary for subduction. We calculate that a convective cycle for an isoviscous planet is τ ~ M^{-0.3} considering whole mantle convection. Meaning that if these planets have continents, the timescale for continental rearrangement is shorter (about half the Earth's for a 5 earth-mass planet). Additionally, we explore the negative feedback cycle between convection and temperature dependent viscosity and estimate a timescale for this effect.

  3. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  4. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  5. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  6. First Principles Analysis of Convection in the Earth's Mantle, Eustatic Sea Level and Earth Volume

    Science.gov (United States)

    Kinsland, G. L.

    2011-12-01

    Steady state convection (convection whereby heat leaving the mantle at the top is equal to the heat entering the mantle across the core mantle boundary and that created within the mantle) of the Earth's mantle is, to a very good approximation, both a constant mass and constant volume process. Mass or volume which moves to one place; e.g., an oceanic ridge; must be accompanied by mass or volume removed from another place. The location of removal, whether from underneath of an ocean or a continent, determines the relationship between oceanic ridge volume and eustatic sea level. If all of the volume entering a ridge were to come from under an oceanic basin then the size of the ridge would not affect eustatic sea level as it would be compensated by a lowering of the sea floor elsewhere. If the volume comes from under a continent then the hypsometry of the continent becomes important. Thus, eustatic sea level is not simply related to convection rate and oceanic ridge volume as posited by Hays and Pitman(1973). Non-steady state convection is still a constant mass process but is not a constant volume process. The mantle experiences a net gain of heat, warms and expands during periods of relatively slow convection (that being convection rate which is less than that necessary to transport incoming and internally created heat to the surface). Conversely, the mantle has a net loss of heat, cools and contracts during periods of relatively rapid convection. The Earth itself expands and contracts as the mantle does. During rapid convection more volume is delivered from the interior of the mantle to the Earth's ridge system than during slow convection. The integral of the difference of ridge system volume between fast and slow convection over a fast-slow convection cycle is a measure of the difference in volume of the mantle over a cycle. The magnitude of the Earth's volume expansion and contraction as calculated from published values for the volume of ocean ridges and is about

  7. Observation of the nearly diurnal resonance of the earth using a laser strainmeter

    Science.gov (United States)

    Levine, J.

    1978-01-01

    The response of the Earth to the diurnal and semidiurnal tidal excitations was studied. Results show that there is significant structure in the response of the earth to tidal excitations near one cycle/sidereal day. This structure agrees with the resonance behavior predicted from the calculations of the forced elasticgravitational response of an elliptical, rotating earth with a liquid outer core. The data is used to test for possible preferred frames and spatial anisotropies. Upper bounds on the parameterized post-Newtonian (PPN) parameters were examined.

  8. Historicising the Hydrosocial Cycle

    Directory of Open Access Journals (Sweden)

    Jeremy J. Schmidt

    2014-02-01

    Full Text Available This paper examines the historical claims made in support of the hydrosocial cycle. In particular, it considers how arguments advancing the hydrosocial cycle make historical claims regarding modernist conceptions of what water is (i.e. H2O and its fit with society. The paper gives special emphasis to the society/nature dualism and to the notion of agency as key sites of contest in arguments regarding the hydrosocial cycle. It finds that, while several versions of the hydrosocial cycle seek to advance a political ecology more sensitive to non-human actions, these same accounts often do not address the robust account of non-human agency in the historical record. Evidence is presented regarding water’s agency amongst late 19th and early 20th century architects of key water management norms in the United States. This evidence troubles accounts of the hydrosocial cycle that critique the US experience and suggests new directions for rethinking the role of historical and institutional norms in water policy.

  9. A Free-Return Earth-Moon Cycler Orbit for an Interplanetary Cruise Ship

    Science.gov (United States)

    Genova, Anthony L.; Aldrin, Buzz

    2015-01-01

    A periodic circumlunar orbit is presented that can be used by an interplanetary cruise ship for regular travel between Earth and the Moon. This Earth-Moon cycler orbit was revealed by introducing solar gravity and modest phasing maneuvers (average of 39 m/s per month) which yields close-Earth encounters every 7 or 10 days. Lunar encounters occur every 26 days and offer the chance for a smaller craft to depart the cycler and enter lunar orbit, or head for a Lagrange point (e.g., EM-L2 halo orbit), distant retrograde orbit (DRO), or interplanetary destination such as a near-Earth object (NEO) or Mars. Additionally, return-to-Earth abort options are available from many points along the cycling trajectory.

  10. A possible interrelation between Earth rotation and climatic variability at decadal time-scale

    Directory of Open Access Journals (Sweden)

    Leonid Zotov

    2016-05-01

    Full Text Available Using multichannel singular spectrum analysis (MSSA we decomposed climatic time series into principal components, and compared them with Earth rotation parameters. The global warming trends were initially subtracted. Similar quasi 60 and 20 year periodic oscillations have been found in the global mean Earth temperature anomaly (HadCRUT4 and global mean sea level (GMSL. Similar cycles were also found in Earth rotation variation. Over the last 160 years multi-decadal change of Earth's rotation velocity is correlated with the 60-year temperature anomaly, and Chandler wobble envelope reproduces the form of the 60-year oscillation noticed in GMSL. The quasi 20-year oscillation observed in GMSL is correlated with the Chandler wobble excitation. So, we assume that Earth's rotation and climate indexes are connected. Despite of all the clues hinting this connection, no sound conclusion can be done as far as ocean circulation modelling is not able to correctly catch angular momentum of the oscillatory modes.

  11. Prediction of solar cycle 24 using fourier series analysis

    International Nuclear Information System (INIS)

    Khalid, M.; Sultana, M.; Zaidi, F.

    2014-01-01

    Predicting the behavior of solar activity has become very significant. It is due to its influence on Earth and the surrounding environment. Apt predictions of the amplitude and timing of the next solar cycle will aid in the estimation of the several results of Space Weather. In the past, many prediction procedures have been used and have been successful to various degrees in the field of solar activity forecast. In this study, Solar cycle 24 is forecasted by the Fourier series method. Comparative analysis has been made by auto regressive integrated moving averages method. From sources, January 2008 was the minimum preceding solar cycle 24, the amplitude and shape of solar cycle 24 is approximate on monthly number of sunspots. This forecast framework approximates a mean solar cycle 24, with the maximum appearing during May 2014 (+- 8 months), with most sunspot of 98 +- 10. Solar cycle 24 will be ending in June 2020 (+- 7 months). The difference between two consecutive peak values of solar cycles (i.e. solar cycle 23 and 24 ) is 165 months(+- 6 months). (author)

  12. High-conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1976-01-01

    The high-temperature reactors using graphite as structural core material and helium as coolant represent thermal reactor designs with a very high degree of neutron economy which, when using the thorium fuel cycle, offer, at least theoretically, the possibility of thermal breeding. Though this was already known from previous studies, the economic climate at that time was such that the achievement of high conversion ratios conflicted with the incentive for low fuel cycle costs. Consequently, thorium cycle conversion ratios of around 0.6 were found optimum, and the core and fuel element layout followed from the economic ground rules. The recent change in attitude, brought about partly by the slow process of realization of the limits to the earth's accessible high-grade uranium ore resources and more dramatically by the oil crisis, makes it necessary to concentrate attention again on the high conversion fuel cycles. This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilization of the high conversion potential are compared with others that aim at easier reprocessing and the ''environmental'' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (author)

  13. Superfluid thermodynamic cycle refrigerator

    Science.gov (United States)

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  14. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Patarin, L.

    2002-01-01

    This book treats of the different aspects of the industrial operations linked with the nuclear fuel, before and after its use in nuclear reactors. The basis science of this nuclear fuel cycle is chemistry. Thus a recall of the elementary notions of chemistry is given in order to understand the phenomena involved in the ore processing, in the isotope enrichment, in the fabrication of fuel pellets and rods (front-end of the cycle), in the extraction of recyclable materials (residual uranium and plutonium), and in the processing and conditioning of wastes (back-end of the fuel cycle). Nuclear reactors produce about 80% of the French electric power and the Cogema group makes 40% of its turnover at the export. Thus this book contains also some economic and geopolitical data in order to clearly position the stakes. The last part, devoted to the management of wastes, presents the solutions already operational and also the research studies in progress. (J.S.)

  15. Fuel cycle based safeguards

    International Nuclear Information System (INIS)

    De Montmollin, J.M.; Higinbotham, W.A.; Gupta, D.

    1985-07-01

    In NPT safeguards the same model approach and absolute-quantity inspection goals are applied at present to all similar facilities, irrespective of the State's fuel cycle. There is a continuing interest and activity on the part of the IAEA in new NPT safeguards approaches that more directly address a State's nuclear activities as a whole. This fuel cycle based safeguards system is expected to a) provide a statement of findings for the entire State rather than only for individual facilities; b) allocate inspection efforts so as to reflect more realistically the different categories of nuclear materials in the different parts of the fuel cycle and c) provide more timely and better coordinated information on the inputs, outputs and inventories of nuclear materials in a State. (orig./RF) [de

  16. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    This chapter explains the distinction between fissile and fertile materials, examines briefly the processes involved in fuel manufacture and management, describes the alternative nuclear fuel cycles and considers their advantages and disadvantages. Fuel management is usually divided into three stages; the front end stage of production and fabrication, the back end stage which deals with the fuel after it is removed from the reactor (including reprocessing and waste treatment) and the stage in between when the fuel is actually in the reactor. These stages are illustrated and explained in detail. The plutonium fuel cycle and thorium-uranium-233 fuel cycle are explained. The differences between fuels for thermal reactors and fast reactors are explained. (U.K.)

  17. CO2 cycle

    Science.gov (United States)

    Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.

    2017-01-01

    This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.

  18. Political Budget Cycles

    DEFF Research Database (Denmark)

    Aaskoven, Lasse; Lassen, David Dreyer

    2017-01-01

    The political budget cycle—how elections affect government fiscal policy—is one of the most studied subjects in political economy and political science. The key theoretical question is whether incumbent governments can time or structure public finances in ways that improve their chances of reelec......The political budget cycle—how elections affect government fiscal policy—is one of the most studied subjects in political economy and political science. The key theoretical question is whether incumbent governments can time or structure public finances in ways that improve their chances...... on political budget cycles have recently focused on conditions under which such cycles are likely to obtain. Much recent research focuses on subnational settings, allowing comparisons of governments in similar institutional environments, and a consensus on the presences of cycles in public finances...

  19. Theory of limit cycles

    CERN Document Server

    Ye, Yan-Qian; Lo, Chi Y

    1986-01-01

    Over the past two decades the theory of limit cycles, especially for quadratic differential systems, has progressed dramatically in China as well as in other countries. This monograph, updating the 1964 first edition, includes these recent developments, as revised by eight of the author's colleagues in their own areas of expertise. The first part of the book deals with limit cycles of general plane stationary systems, including their existence, nonexistence, stability, and uniqueness. The second section discusses the global topological structure of limit cycles and phase-portraits of quadratic systems. Finally, the last section collects important results that could not be included under the subject matter of the previous two sections or that have appeared in the literature very recently. The book as a whole serves as a reference for college seniors, graduate students, and researchers in mathematics and physics.

  20. The thorium fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1977-01-01

    The utilization of the thorium fuel cycle has long since been considered attractive due to the excellent neutronic characteristics of 233 U, and the widespread and cheap thorium resources. Although the uranium ore as well as the separative work requirements are usually lower for any thorium-based fuel cycle in comparison to present uranium-plutonium fuel cycles of thermal water reactors, interest by nuclear industry has hitherto been marginal. Fast increasing uranium prices, public reluctance against widespread Pu-recycling and expected retardations for the market penetration of fast breeders have led to a reconsideration of the thorium fuel cycle merits. In addition, it could be learned in the meantime that problems associated with reprocessing and waste handling, but particularly with a remote refabrication of 233 U are certainly not appreciably more difficult than for Pu-recycling. This may not only be due to psychological constraints but be based upon technological as well as economical facts, which have been mostly neglected up till now. In order to diversify from uranium as a nuclear energy source it seems to be worthwhile to greatly intensify efforts in the future for closing the Th/ 233 U fuel cycle. HTGR's are particularly promising for economic application. However, further R and D activites should not be solely focussed on this reactor type alone. Light and heavy-water moderated reactors, as well as even fast breeders later on, may just as well take advantage of a demonstrated thorium fuel cycle. A summary is presented of the state-of-the-art of Th/ 233 U-recycling technology and the efforts still necessary to demonstrate this technology all the way through to its industrial application

  1. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  2. Life Cycle Environmental Management

    DEFF Research Database (Denmark)

    Pedersen, Claus Stig; Jørgensen, Jørgen; Pedersen, Morten Als

    1996-01-01

    A precondition for environmentally conscious management is the awareness of the environmental impact potentials created by an industrial company. There is an obvious need for management tools to support the implementation of relevant environmental criteria into the industrial decision making...... processes. The discipline of life cycle environmental management (LCEM) focuses on the incorporation of environmental criteria from the life cycles of products and other company activities into the company management processes. This paper introduces the concept of LCEM as an important element...... of the complete set of environmental objects in an industrial manufacturing company....

  3. Resurrecting Equilibria Through Cycles

    DEFF Research Database (Denmark)

    Barnett, Richard C.; Bhattacharya, Joydeep; Bunzel, Helle

    equilibria because they asymptotically violate some economic restriction of the model. The literature has always ruled out such paths. This paper studies a pure-exchange monetary overlapping generations economy in which real balances cycle forever between momentary equilibrium points. The novelty is to show...... that segments of the offer curve that have been previously ignored, can in fact be used to produce asymptotically valid cyclical paths. Indeed, a cycle can bestow dynamic validity on momentary equilibrium points that had erstwhile been classified as dynamically invalid....

  4. 24-month fuel cycles

    International Nuclear Information System (INIS)

    Rosenstein, R.G.; Sipes, D.E.; Beall, R.H.; Donovan, E.J.

    1986-01-01

    Twenty-four month reload cycles can potentially lessen total power generation costs. While 24-month cores increase purchased fuel costs, the longer cycles reduce the number of refueling outages and thus enhance plant availability; men-rem exposure to site personnel and other costs associated with reload core design and licensing are also reduced. At dual unit sites an operational advantage can be realized by refueling each plant alternately on a 1-year offset basis. This results in a single outage per site per year which can be scheduled for off-peak periods or when replacement power costs are low

  5. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  6. Rare earth industry in India

    International Nuclear Information System (INIS)

    Singh, D.S.

    2016-01-01

    Rare Earths (RE) comprises of 17 elements i.e. elements from atomic No. 57-71 (lanthanide series) along with yttrium (atomic No. 39) and scandium (atomic No. 21). They exhibit special electronic, magnetic, optical and catalytic properties. The first 7 elements in the lanthanide series from atomic Nos. 57 to 63 (La to Eu) are called Light Rare Earths (LRE), while the remaining elements from atomic Nos. 64 to 71 (Gd to Lu) are grouped as Heavy Rare Earths (HRE). Scandium and Yttrium have properties similar to HRE. The concentration of the REs in the earth's crust is as high as some other elements including that of copper. The only difference is that REs do not occur as separate minerals amenable for easy exploration and mining and are widely distributed across the earth's surface, hence they are called as REs. Resources In India, monazite has been the principal source of RE. It occurs in association with other heavy minerals, such as ilmenite, rutile, zircon etc. in the beach sands and inland placer deposits. The monazite content in this assemblage varies from negligible quantity to as high as 5%. As per AMD resource estimation, the reported resource of monazite in India is about 11.93 million tons which corresponds with about 6.9 million tons of RE oxides. Although India possesses large deposits of monazite, the heavier RE are not present in sufficient quantities in this mineral. (author)

  7. Smarter Earth Science Data System

    Science.gov (United States)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  8. Linkages between the Urban Environment and Earth's Climate System

    Science.gov (United States)

    Shepherd, J. Marshall; Jin, Menglin

    2003-01-01

    Urbanization is one of the extreme cases of land use change. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025 60% of the world s population will live in cities (UNFP, 1999). Though urban areas are local in scale, human activity in urban environments has impacts at local, to global scale by changing atmospheric composition; impacting components of the water cycle; and modifying the carbon cycle 2nd ecosystems. For example, urban dwellers are undoubtedly familiar with "high" ozone pollution days, flash flooding in city streets, or heat stress on summer days. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s weather, oceans, and land work together and the influence of the urban environment on this climate system is critical. This paper highlights some of the major and current issues involving interactions between urban environments and the Earth's climate system. It also captures some of the most current thinking and findings of the authors and key experts in the field.

  9. Syndication of the earth system: the future of geoscience?

    International Nuclear Information System (INIS)

    Elliott, Scott M.; Hanson, Howard P.

    2003-01-01

    Current global change policy debate reverberates around the polarized extremes of civilization-level cooperation through treaties as a mitigation tactic, on the one hand, and a wait-and-see approach that may lead to a climatic tragedy of the commons, on the other. Meanwhile, energy technology research is rapidly generating a perception that it will be possible to tune the earth system via carbon sequestration and other types of biogeochemical engineering. The consequences of this potential for planetary management, based on provincial self-interest, include the transition of the earth sciences into a security industry involving proprietary scientific knowledge bases of biogeochemical cycling and the evolution of a climate-design brokerage dominated by military/industrial interests. As the dominant political powers perceive the potential for planetary engineering and consider implementation, the global economy will adjust to exploit new opportunities, perceptions of which will be determined by the quality of system simulations. The growth of a viable international climate-design community will profoundly influence the trajectory of the earth system by providing either the illusion or the reality of predictability. Although this process will be chaotic at first, the probability of stabilization will ultimately be enhanced because the vast resources of the military/industrial sector will become involved. These concepts are disturbingly familiar in that they acknowledge the pervasion of competition and conflict in human technological affairs. However, they are consistent with approaches used in thermodynamics, ecological energetics, behavioral evolution, economics, and interdisciplinary climate science to describe collectively the evolution of the earth system. This paper argues that the perception that the climate can be regulated inexpensively will create an economic driving force for international cartel-style management of the total earth system. That is, the earth

  10. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  11. Revolutions that made the earth

    CERN Document Server

    Lenton, Tim

    2013-01-01

    The Earth that sustains us today was born out of a few remarkable, near-catastrophic revolutions, started by biological innovations and marked by global environmental consequences. The revolutions have certain features in common, such as an increase in the complexity, energy utilization, and information processing capabilities of life. This book describes these revolutions, showing the fundamental interdependence of the evolution of life and its non-living environment. We would not exist unless these upheavals had led eventually to 'successful' outcomes - meaning that after each one, at length, a new stable world emerged. The current planet-reshaping activities of our species may be the start of another great Earth system revolution, but there is no guarantee that this one will be successful. This book explains what a successful transition through it might look like, if we are wise enough to steer such a course. This book places humanity in context as part of the Earth system, using a new scientific synthe...

  12. Menstrual cycle pattern and fertility

    DEFF Research Database (Denmark)

    Kolstad, Henrik A.; Bonde, Jens Peter; Hjøllund, Niels Henrik

    1999-01-01

    To characterize how the menstrual cycle pattern relates to fertility regardless of potential biases caused by inappropriate coital timing during the menstrual cycle or early embryonal loss.......To characterize how the menstrual cycle pattern relates to fertility regardless of potential biases caused by inappropriate coital timing during the menstrual cycle or early embryonal loss....

  13. Entrepreneurship and the business cycle

    NARCIS (Netherlands)

    Koellinger, Philipp D.; Thurik, A. Roy

    2012-01-01

    We find new empirical regularities in the business cycle in a cross-country panel of 22 OECD countries for the period 1972 to 2007; entrepreneurship Granger-causes the cycles of the world economy. Furthermore, the entrepreneurial cycle is positively affected by the national unemployment cycle. We

  14. World nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    A coloured pull-out wall chart is presented showing the fuel cycle interests of the world. Place names are marked and symbols are used to indicate regions associated with uranium or thorium deposits, mining, milling, enrichment, reprocessing and fabrication. (UK)

  15. Deuterium in atmospheric cycle

    International Nuclear Information System (INIS)

    Pontikis, M.C.

    Interest of the study concerning the deuterium content variation (HDO) in the atmospheric water. Standards and measurement methods. Molecule HDO cycle in the atmospheric water. Application to the study of hail-generating cumulus-nimbus and of the mantle of snow [fr

  16. Nuclear fuel cycle

    International Nuclear Information System (INIS)

    1993-01-01

    Status of different nuclear fuel cycle phases in 1992 is discussed including the following issues: uranium exploration, resources, supply and demand, production, market prices, conversion, enrichment; reactor fuel technology; spent fuel management, as well as trends of these phases development up to the year 2010. 10 refs, 11 figs, 15 tabs

  17. Life Cycle Inventory Analysis

    DEFF Research Database (Denmark)

    Bjørn, Anders; Moltesen, Andreas; Laurent, Alexis

    2018-01-01

    of different sources. The output is a compiled inventory of elementary flows that is used as basis of the subsequent life cycle impact assessment phase. This chapter teaches how to carry out this task through six steps: (1) identifying processes for the LCI model of the product system; (2) planning...

  18. Fuel cycle centres

    International Nuclear Information System (INIS)

    Hagen, M.

    1977-01-01

    The concept of co-locating and integrating fuel cycle facilities at one site is discussed. This concept offers considerable advantages, especially in minimizing the amount of radioactive material to be transported on public roads. Safeguards and physical protection as relating to such an integrated system of facilities are analysed in detail, also industrial and commercial questions. An overall risk-benefit evaluation turns out to be in favour of fuel cycle centres. These centres seem to be specifically attractive with regard to the back end of the fuel cycle, including on-site disposal of radioactive wastes. The respective German approach is presented as an example. Special emphasis is given to the site selection procedures in this case. Time scale and cost for the implementation of this concept are important factors to be looked at. Since participation of governmental institutions in these centres seems to be indispensable their respective roles as compared to industry must be clearly defined. The idea of adjusting fuel cycle centres to regional rather than national use might be an attractive option, depending on the specific parameters in the region, though results of existing multinational ventures are inconclusive in this respect. Major difficulties might be expected e.g. because of different national safety regulations and standards as well as commercial conditions among partner countries. Public acceptance in the host country seems to be another stumbling block for the realization of this type of multinational facilities

  19. Life Cycle Collection Management

    Directory of Open Access Journals (Sweden)

    Helen Shenton

    2003-09-01

    Full Text Available Life cycle collection management is a way of taking a long-term approach to the responsible stewardship of the British Library's collections and is one of the Library's strategic strands. It defines the different stages in a collection item's existence over time. These stages range from selection and acquisitions processing, cataloguing and press marking, through to preventive conservation, storage and retrieval. Life cycle collection management seeks to identify the costs of each stage in order to show the economic interdependencies between the phases over time. It thereby aims to demonstrate the long-term consequences of what the library takes into its collections, by making explicit the financial and other implications of decisions made at the beginning of the life cycle for the next 100 plus years. This paper describes the work over the past year at the British Library on this complex and complicated subject. It presents the emerging findings and suggests how it can be used for practical reasons (by individual curators and selectors and for economic, governance and political purposes. The paper describes the next steps in the project, for example, on a predictive data model. The British Library is seeking to benchmark itself against comparable organisations in this area. It intends to work with others on specific comparison for example, of life cycle costing of electronic and paper journals, as a prelude to eliding digital and 'traditional' formats.

  20. Boundedly rational credit cycles

    OpenAIRE

    Sáez, María

    1996-01-01

    We propose an evolutionary model of a credit market. We show that the economy exhibits credit cycles. The model predicts dynamics which are consistent with some evidence about the Great Depression. Real shocks trigger episodes of credit--crunch which are observed in the process of adjustment towards the post shock equilibrium.

  1. 90-Day Cycle Handbook

    Science.gov (United States)

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  2. Mosquito Life Cycle

    Science.gov (United States)

    Knowing the stages of the mosquito's life will help you prevent mosquitoes around your home and help you choose the right pesticides for your needs, if you decide to use them. All mosquito species go through four distinct stages during their live cycle.

  3. Reasoning with Causal Cycles

    Science.gov (United States)

    Rehder, Bob

    2017-01-01

    This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…

  4. Skills, sunspots and cycles

    DEFF Research Database (Denmark)

    Busato, Francesco; Marchetti, Enrico

    This paper explores the ability of a class of one-sector,multi-input models to generate indeterminate equilibrium paths, andendogenous cycles, without relying on factors' hoarding. The modelpresents a novel theoretical economic mechanism that supportssunspot-driven expansions without requiring...

  5. WLTP Random Cycle Generator

    NARCIS (Netherlands)

    Kooijman, D.G.; Balau, A.E.; Wilkins, S.; Ligterink, N.; Cuelenaere, R.

    2015-01-01

    European light duty vehicle emission legislation is gradually shifting the focus from test procedures with merely static test cycles, towards procedures including Real Driving Emissions (RDE), as they are a mean to achieve the European (NOx) emission reduction target. Hence a RDE trip must represent

  6. WLTP random cycle generator

    NARCIS (Netherlands)

    Kooijman, D.G.; Balau, A.E.; Wilkins, S.; Ligterink, N.; Cuelenaere, R.

    2015-01-01

    European light duty vehicle emission legislation is gradually shifting the focus from test procedures with merely static test cycles, towards procedures including Real Driving Emissions (RDE), as they are a mean to achieve the European (NOx) emission reduction target. Hence a RDE trip must represent

  7. Combined-cycle plants

    International Nuclear Information System (INIS)

    Valenti, M.

    1991-01-01

    This paper reports that as tougher emissions standards take hold throughout the industrialized world, manufacturers such as GE, Siemens, Foster Wheeler, and Asea Brown Boveri are designing advanced combined-cycle equipment that offers improved environmental performance without sacrificing power efficiency

  8. ITER fuel cycle

    International Nuclear Information System (INIS)

    Leger, D.; Dinner, P.; Yoshida, H.

    1991-01-01

    Resulting from the Conceptual Design Activities (1988-1990) by the parties involved in the International Thermonuclear Experimental Reactor (ITER) project, this document summarizes the design requirements and the Conceptual Design Descriptions for each of the principal subsystems and design options of the ITER Fuel Cycle conceptual design. The ITER Fuel Cycle system provides for the handling of all tritiated water and gas mixtures on ITER. The system is subdivided into subsystems for fuelling, primary (torus) vacuum pumping, fuel processing, blanket tritium recovery, and common processes (including isotopic separation, fuel management and storage, and processes for detritiation of solid, liquid, and gaseous wastes). After an introduction describing system function and conceptual design procedure, a summary of the design is presented including a discussion of scope and main parameters, and the fuel design options for fuelling, plasma chamber vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary and common processes. Design requirements are defined and design descriptions are given for the various subsystems (fuelling, plasma vacuum pumping, fuel cleanup, blanket tritium recovery, and auxiliary/common processes). The document ends with sections on fuel cycle design integration, fuel cycle building layout, safety considerations, a summary of the research and development programme, costing, and conclusions. Refs, figs and tabs

  9. Understanding Solar Cycle Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. H.; Schüssler, M., E-mail: cameron@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-07-10

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to a generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock–Leighton-type dynamo model confirm the validity of the normal-mode approach.

  10. The plutonium fuel cycles

    International Nuclear Information System (INIS)

    Pigford, T.H.; Ang, K.P.

    1975-01-01

    The quantities of plutonium and other fuel actinides have been calculated for equilibrium fuel cycles for 1000-MW water reactors fueled with slightly enriched uranium, water reactors fueled with plutonium and natural uranium, fast-breder reactors, gas-cooled reactors fueled with thorium and highly enriched uranium, and gas-cooled reactors fueled with thorium, plutonium and recycled uranium. The radioactivity quantities of plutonium, americium and curium processed yearly in these fuel cycles are greatest for the water reactors fueled with natural uranium and recycled plutonium. The total amount of actinides processed is calculated for the predicted future growth of the U.S. nuclear power industry. For the same total installed nuclear power capacity, the introduction of the plutonium breeder has little effect upon the total amount of plutonium in this century. The estimated amount of plutonium in the low-level process wastes in the plutonium fuel cycles is comparable to the amount of plutonium in the high-level fission product wastes. The amount of plutonium processed in the nuclear fuel cycles can be considerably reduced by using gas-cooled reactors to consume plutonium produced in uranium-fueled water reactors. These, and other reactors dedicated for plutonium utilization, could be co-located with facilities for fuel reprocessing ad fuel fabrication to eliminate the off-site transport of separated plutonium. (author)

  11. Fuel cycle oriented approach

    International Nuclear Information System (INIS)

    Petit, A.

    1987-01-01

    The term fuel cycle oriented approach is currently used to designate two quite different things: the attempt to consider all or part of a national fuel cycle as one material balance area (MBA) or to consider individual MBAs existing in a state while designing a unique safeguards approach for each and applying the principle of nondiscrimination to fuel cycles as a whole, rather than to individual facilities. The merits of such an approach are acceptability by the industry and comparison with the contemplated establishment of long-term criteria. The following points concern the acceptability by the industry: (1) The main interest of the industry is to keep an open international market and therefore, to have effective and efficient safeguards. (2) The main concerns of the industry regarding international safeguards are economic burden, intrusiveness, and discrimination. Answers to these legitimate concerns, which retain the benefits of a fuel cycle oriented approach, are needed. More specifically, the problem of reimbursing the operator the costs that he has incurred for the safeguards must be considered

  12. Climate Change and Expected Impacts on the Global Water Cycle

    Science.gov (United States)

    Rind, David; Hansen, James E. (Technical Monitor)

    2002-01-01

    How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.

  13. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  14. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  15. Life Cycle Assessment of Completely Recyclable Concrete.

    Science.gov (United States)

    De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele

    2014-08-21

    Since the construction sector uses 50% of the Earth's raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  16. Commercialization of nuclear fuel cycle business

    International Nuclear Information System (INIS)

    Yakabe, Hideo

    1998-01-01

    Japan depends on foreign countries almost for establishing nuclear fuel cycle. Accordingly, uranium enrichment, spent fuel reprocessing and the safe treatment and disposal of radioactive waste in Japan is important for securing energy. By these means, the stable supply of enriched uranium, the rise of utilization efficiency of uranium and making nuclear power into home-produced energy can be realized. Also this contributes to the protection of earth resources and the preservation of environment. Japan Nuclear Fuel Co., Ltd. operates four business commercially in Rokkasho, Aomori Prefecture, aiming at the completion of nuclear fuel cycle by the technologies developed by Power Reactor and Nuclear Fuel Development Corporation and the introduction of technologies from foreign countries. The conditions of location of nuclear fuel cycle facilities and the course of the location in Rokkasho are described. In the site of about 740 hectares area, uranium enrichment, burying of low level radioactive waste, fuel reprocessing and high level waste control have been carried out, and three businesses except reprocessing already began the operation. The state of operation of these businesses is reported. Hereafter, efforts will be exerted to the securing of safety through trouble-free operation and cost reduction. (K.I.)

  17. Setting to earth for computer

    International Nuclear Information System (INIS)

    Gallego V, Luis Eduardo; Montana Ch, Johny Hernan; Tovar P, Andres Fernando; Amortegui, Francisco

    2000-01-01

    The program GMT allows the analysis of setting to earth for tensions DC and AC (of low frequency) of diverse configurations composed by cylindrical electrodes interconnected, in a homogeneous land or stratified (two layers). This analysis understands among other aspects: calculation of the setting resistance to earth, elevation of potential of the system (GPR), calculation of current densities in the conductors, potentials calculation in which point on the land surface (profile and surfaces), tensions calculation in passing and of contact, also, it carries out the interpretation of resistivity measures for Wenner and Schlumberger methods, finding a model of two layers

  18. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  19. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  20. Recovery of uranium and of rare earths from Moroccan phosphates

    International Nuclear Information System (INIS)

    Ezahr, I.; El Houari, A.; Smani, S.M.

    1984-01-01

    The contents of uranium and of rare earths in Moroccan phosphates vary from 75 to 250 ppm and from 900 to 1500 ppm, respectively. The phosphates produced in Morocco contain therefore about 2500 t of uranium and 25 000 t of rare earths, compared with annual productions of uranium and of rare earths of 43 000 t and 33 000 t, respectively. During the sulphuric leaching of the phosphate ores, uranium is found to 80-90% in the phosphoric acid. Research into the extraction of uranium has shown that for the phosphoric acids produced at Safi the coefficient of extraction: is not very sensitive to the P 2 O 5 concentration on the 28-30% region; is not affected by the sulphur level up to the concentration of 4%; is very sensitive to the fluorine content beyond 1%. On the level of the first cycle of the process in Depa-Topo, four extraction stages permit a yield of between 92 and 98% to be reached. The addition of an oxidizing agent to the phosphoric acids under examination was not necessary, as their potential level is high. The purity of the yellow-cakes obtained varies from 94 to 99%. The overall recovery efficiency lies between 67 and 71%. In a second part, this paper deals with the recovery of the rare earths [fr

  1. Seasonal Nitrogen Cycles on Pluto

    Science.gov (United States)

    Hansen, Candice J.; Paige, David A.

    1996-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model was used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters. Volatile transport was confirmed to have a significant effect on Pluto's climate as nitrogen moved around on a seasonal time scale between hemispheres, and sublimed into and condensed out of the atmosphere. Pluto's high obliquity was found to have a significant effect on the distribution of frost on its surface. Conditions that would lead to permanent polar caps on Triton were found to lead to permanent zonal frost bands on Pluto. In some instances, frost sublimed from the middle of a seasonal cap outward, resulting in a "polar bald spot". Frost which was darker than the substrate did not satisfy observables on Pluto, in contrast to our findings for Triton. Bright frost (brighter than the substrate) came closer to matching observables. Atmospheric pressure varied seasonally. The amplitudes, and to a lesser extent the phase, of the variation depended significantly on frost and substrate properties. Atmospheric pressure was found to be determined both by Pluto's distance from the sun and by the subsolar latitude. In most cases two peaks in atmospheric pressure were observed annually: a greater one associated with the sublimation of the north polar cap just as Pluto receded from perihelion, and a lesser one associated with the sublimation of the south polar cap as Pluto approached perihelion. Our model predicted frost-free dark substrate surface temperatures in the 50 to 60 K range, while frost temperatures typically ranged between 30 to 40 K. Temporal changes in frost coverage illustrated by our results, and changes in the viewing geometry of Pluto from the Earth, may be important for interpretation of ground-based measurements of Pluto's thermal emission.

  2. Energy basis of disasters and the cycles of order and disorder

    International Nuclear Information System (INIS)

    Alexander, J.F. Jr.

    1978-01-01

    A quantitative theory of cycles order and disorder was applied to the earth and evaluated to form an energy basis for the global cycles, surges, and disasters. Energy circuit language was used to diagram the world system and show a common pattern in the order--disorder processes. Storms, floods, forest fires, volcanic eruptions, earthquakes, urban fires, and wars were modeled as the catastrophic release of energy previously converged and stored. Released energy disordered and recycled material available to stimulate a new cycle of growth. Cascading of catastrophic processes of disasters was modeled with a world web. The feedback in the global energy web was provided by the control action of disaster pulses. The global model was presented in both diagrammatic and differential equation form with the energy flows and storages evaluated. Order--disorder models of the atmospheric, oceanic, biological, geological, and urban systems of earth were connected to form an energy convergence network. The global energy model was used to calculate energy quality factors (ratio of energy of one type generating energy of another type) for the earth's major energy transformations. The theory provided suggestions for land-use policy. Energy ratios that provide a quantitative basis for disaster planning can be developed for a local environment of pulsing energy. Possibilities were considered that cycles of order and disorder of the earth are synchronized by cycles of sunspots. Energy quality and pulse amplifier ratios of solar flares may be high enough to control many global cycles

  3. Glacial cycles:exogenous orbital changes vs. endogenous climate dynamics

    OpenAIRE

    Kaufmann, R. K.; Juselius, Katarina

    2010-01-01

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduc...

  4. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    Science.gov (United States)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  5. Two-way feedback between biology and deep Earth processes

    DEFF Research Database (Denmark)

    Sleep, Norman; Bird, Dennis K.; Pope, Emily Catherine

    The presence of the metamorphic products of banded iron formation and black shale indicate that the Earth teemed with life by the time of the earliest preserved rocks, ca. 3.85 Ga. Iron and sulfur-based anoxygenic photosynthesis with full carbon cycles was present by this time. The pH of the ocean...... was ~8. The lack of older rock record cloaks pre-biotic evolution and the origin of life. Nascent and early life obtained energy from chemical disequilibria in rocks rather than sunlight. Appraising putative rock pre-biological environments is difficult in that life has modified the composition...... of the atmosphere, the hydrosphere, and sedimentary rocks. It has greatly affected the composition of crystalline crustal rocks and measurably modified the mantle. Conversely, hard crustal rocks and the mantle likely sequester a very ancient record of last resort. Theory provides additional insight. The Earth...

  6. The Greatest Show on Earth

    Indian Academy of Sciences (India)

    Darwin and Alfred Russel Wallace: life on earth had evolved ... over long epochs, the pace of change was infinitesimal. ... Thanks to the work of the Japanese theoreti- cian Motoo ... pleasure-minus-expenditure balance is posi- tive. This way of ...

  7. Earth Pressure on Tunnel Crown

    DEFF Research Database (Denmark)

    Andersen, Lars

    Two different analyses have been carried out in order to find the vertical earth pressure, or overburden pressure, at the crown of a tunnel going through a dike. Firstly, a hand calculation is performed using a simple dispersion of the stresses over depth. Secondly, the finite‐element program...

  8. Earth Day 2012: Greening Government

    Centers for Disease Control (CDC) Podcasts

    2012-04-19

    This podcast describes sustainability efforts at CDC in relation to Earth Day celebrations and details agency greenhouse gas reduction strategies and successes.  Created: 4/19/2012 by Office of the Chief Operating Officer (OCOO)/ Chief Sustainability Office (CSO).   Date Released: 4/23/2012.

  9. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  10. Studying the Earth from space

    Science.gov (United States)

    ,

    1981-01-01

    Space age technology contains a key to increased knowledge about the Earth's resources; this key is remote sensing detecting the nature or condition of something without actually touching it. An early and still most useful form of remote sensing is photography which records the

  11. A journey through Earth climates

    International Nuclear Information System (INIS)

    Ramstein, Gilles; Brunet, Michel

    2015-01-01

    The author proposes a history of climates all along Earth's history, describes how cold and warm periods have been alternating during these billions of years. He also tries to highlight lessons learned from this long evolution of climate in order to better understand the current global warming. He discusses whether this disruption is unique in Earth's history, and how it threatens our environment and therefore our survival. The chapters describe how Earth could escape a global glaciation, the thermal regulation by greenhouse effect gases in a world without oxygen, the empowerment of oxygen and the first thermal accident, a new oxygenated and warm world, the second accident or how Earth entered and escaped from periods of total glaciation, the possible stabilisation, the succession of deregulations, crisis and extinctions, the slow way down to the cold, the various paleo-indicators during the Quaternary, the high frequency oscillations of climate during the last million of years, and the uncertain projections

  12. The Earth as a Polder

    Indian Academy of Sciences (India)

    that the resources of the earth as a whole will .... tion of land and underground water sources as a ... oil; the different visions and desires of old and .... the world, one showing its political hot spots, ... Guns, Germs, and Steel, and The Rise and.

  13. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  14. Lessons from Earth's Deep Time

    Science.gov (United States)

    Soreghan, G. S.

    2005-01-01

    Earth is a repository of data on climatic changes from its deep-time history. Article discusses the collection and study of these data to predict future climatic changes, the need to create national study centers for the purpose, and the necessary cooperation between different branches of science in climatic research.

  15. Refresher Course on Earth Sciences

    Indian Academy of Sciences (India)

    Information and Announcements ... Introduction: Geoscience education in India is in the throes of a serious crisis and any paradigm ... considerations: geology needs to be taught as an earth system science, linked with cognate ... viable and employment-generating management of natural resources: the global trend of.

  16. Paleoseismology: evidence of earth activity

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucie

    2016-01-01

    Roč. 105, č. 5 (2016), 1467-1469 ISSN 1437-3254 Institutional support: RVO:67985891 Keywords : Paleoseismology * Colluvial wedge * White Creek Fault _ * Greendale Fault * San Andreas Fault * Paganica Fault Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.283, year: 2016

  17. The two earths of Eratosthenes.

    Science.gov (United States)

    Carman, Christián Carlos; Evans, James

    2015-03-01

    In the third century B.C.E., Eratosthenes of Cyrene made a famous measurement of the circumference of the Earth. This was not the first such measurement, but it is the earliest for which significant details are preserved. Cleomedes gives a short account of Eratosthenes' method, his numerical assumptions, and the final result of 250,000 stades. However, many ancient sources attribute to Eratosthenes a result of 252,000 stades. Historians have attempted to explain the second result by supposing that Eratosthenes later made better measurements and revised his estimate or that the original result was simply rounded to 252,000 to have a number conveniently divisible by 60 or by 360. These explanations are speculative and untestable. However, Eratosthenes' estimates of the distances of the Sun and Moon from the Earth are preserved in the doxographical literature. This essay shows that Eratosthenes' result of 252,000 stades for the Earth's circumference follows from a solar distance that is attributed to him. Thus it appears that Eratosthenes computed not only a lower limit for the size of the Earth, based on the assumption that the Sun is at infinity, but also an upper limit, based on the assumption that the Sun is at a finite distance. The essay discusses the consequences for our understanding of his program.

  18. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  19. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  20. The human dimension of fire regimes on Earth.

    Science.gov (United States)

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-12-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding

  1. The human dimension of fire regimes on Earth

    Science.gov (United States)

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Michelle, Mack; Moritz, Max A.; Pyne, Stephen; Roos, Christopher I.; Scott, Andrew C.; Sodhi, Navjot S.; Swetnam, Thomas W.

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding

  2. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    Science.gov (United States)

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  3. Riding the cycle

    Energy Technology Data Exchange (ETDEWEB)

    Webster, G. [Canadian Association of Petroleum Producers, Calgary, AB (Canada)

    2001-07-01

    The current state of the Canadian oil and natural gas industry is reviewed as part of a discussion of economic cycles focusing in particular on the most recent cycle and the impact it has had on the industry. The review of the state of the industry includes discussion of production, exports, commodity prices, the stimulating effect of price increases on the number of oil and natural gas wells drilled, drilling rig operating days. Also discussed are the effect of foreign exchange rates, capital spending, industry financial performance in terms of return on capital employed, the impact of oil and gas prices on Alberta provincial revenues, estimates of Canada's ultimate crude oil and natural gas resources potential, pipelines and pipeline proposals for northern gas, and projection of crude oil and natural gas production in Canada to 2010.

  4. Fuel cycle services

    International Nuclear Information System (INIS)

    Gruber, Gerhard J.

    1990-01-01

    TRIGA reactor operators are increasingly concerned about the back end of their Fuel Cycle due to a new environmental policy in the USA. The question how to close the Fuel Cycle will have to be answered by all operators sooner or later. Reprocessing of the TRIGA fuel elements is not available. Only long term storage and final disposal can be considered. But for such a storage or disposal a special treatment of the fuel elements and of course a final depository is necessary. NUKEM plans to undertake efforts to assist the TRIGA operators in this area. For that reason we need to know your special needs for today and tomorrow - so that potential processors can consider whether to offer these services on the market. (orig.)

  5. Riding the cycle

    International Nuclear Information System (INIS)

    Webster, G.

    2001-01-01

    The current state of the Canadian oil and natural gas industry is reviewed as part of a discussion of economic cycles focusing in particular on the most recent cycle and the impact it has had on the industry. The review of the state of the industry includes discussion of production, exports, commodity prices, the stimulating effect of price increases on the number of oil and natural gas wells drilled, drilling rig operating days. Also discussed are the effect of foreign exchange rates, capital spending, industry financial performance in terms of return on capital employed, the impact of oil and gas prices on Alberta provincial revenues, estimates of Canada's ultimate crude oil and natural gas resources potential, pipelines and pipeline proposals for northern gas, and projection of crude oil and natural gas production in Canada to 2010

  6. Application of AMS radiocarbon in earth system science studies

    International Nuclear Information System (INIS)

    Kang, Dong Jin; Park, Mi Kyung; Kim, Kyung Ryul

    2001-01-01

    Radiocarbon, a cosmic ray-produced isotope, is one of the most important tracers in Earth system sciences. The strong involvement of carbon in the biosphere and its half life of 5720 years are reflected in appropriate applications in archeology, as well as in the Earth system sciences. Radiocarbon dating had an important turning point in 1977 with the discovery that mass spectrometry with tandem acceleration could be used to measure C-14. This new technique, known as AMS or accelerator mass spectrometry reduced the required sample size to the order of mg, three orders of magnitude smaller than for conventional techniques, thus opening the range of applicability of C-14 studies to a much wider range of samples. However, the application has been complicated by two major activities of human beings on a global scale: the extensive usage of fossil fuel since the industrial revolution and nuclear testing in the atmosphere, which have influenced the natural balance of radiocarbon in the atmosphere. However, the separation of bomb-produced carbon from natural background carbon has produced a very fruitful understanding of the global carbon cycle and the conveyor belt system in the ocean, which will be essential for understanding global environmental problems, such as global warming, in the coming century. Carbon cycle studies in Korea have been made since the early 1990s. The studies include monitoring of CO 2 concentrations in the atmosphere, stable isotope studies, and carbon cycle studies in the sea around Korea. The opening of ths AMS facility at Seoul National University (SNU) will enhance carbon studies in Earth system sciences greatly in the future

  7. Behaviour of Rare Earth Elements during the Earth's core formation

    Science.gov (United States)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  8. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    Science.gov (United States)

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  9. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2010-01-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  10. Assessing Cycling Participation in Australia

    Directory of Open Access Journals (Sweden)

    Chris Rissel

    2013-01-01

    Full Text Available Planning and evaluating cycling programs at a national or state level requires accurate measures of cycling participation. However, recent reports of cycling participation have produced very different estimates. This paper examines the reported rates of cycling in five recent population surveys of cycling. Three surveys (one national and two from Sydney asking respondents when they last rode a bicycle generated cycling participation (cycled in the past year estimates of 29.7%, 34.1% and 28.9%. Two other national surveys which asked participants to recall (unprompted any physical activity done for exercise, recreation or sport in the previous 12 months, estimated cycling in the past year as 11.1% and 6.5%. While unprompted recall of cycling as a type of physical activity generates lower estimates of cycling participation than specific recall questions, both assessment approaches produced similar patterns of cycling by age and sex with both approaches indicating fewer women and older adults cycling. The different question styles most likely explain the substantial discrepancies between the estimates of cycling participation. Some differences are to be expected due to sampling variability, question differences, and regional variation in cycling.

  11. Forests and water cycle

    Directory of Open Access Journals (Sweden)

    Iovino F

    2009-06-01

    Full Text Available Based on a comprehensive literature analysis, a review on factors that control water cycle and water use in Mediterranean forest ecosystems is presented, including environmental variables and silvicultural treatments. This important issue is considered in the perspective of sustainable forest management of Mediterranean forests, with special regard to crucial environmental hazards such as forest fires and desertification risks related to climate change.

  12. Stirling cycle engine

    Science.gov (United States)

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  13. The nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing. (U.K.)

  14. Nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    1975-12-01

    The papers presented at the International Conference on The Nuclear Fuel Cycle, held at Stockholm, 28 to 31 October 1975, are reviewed. The meeting, organised by the U.S. Atomic Industrial Forum, and the Swedish Nuclear Forum, was concerned more particularly with economic, political, social and commercial aspects than with tecnology. The papers discussed were considered under the subject heading of current status, uranium resources, enrichment, and reprocessing.

  15. Alternative nuclear fuel cycles

    International Nuclear Information System (INIS)

    Till, C.E.

    1979-01-01

    This diffuse subject involves value judgments that are political as well as technical, and is best understood in that context. The four questions raised here, however, are mostly from the technical viewpoints: (1) what are alternative nuclear fuel cycles; (2) what generalizations are possible about their characteristics; (3) what are the major practical considerations; and (4) what is the present situation and what can be said about the outlook for the future

  16. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  17. The urea cycle disorders.

    Science.gov (United States)

    Helman, Guy; Pacheco-Colón, Ileana; Gropman, Andrea L

    2014-07-01

    The urea cycle is the primary nitrogen-disposal pathway in humans. It requires the coordinated function of six enzymes and two mitochondrial transporters to catalyze the conversion of a molecule of ammonia, the α-nitrogen of aspartate, and bicarbonate into urea. Whereas ammonia is toxic, urea is relatively inert, soluble in water, and readily excreted by the kidney in the urine. Accumulation of ammonia and other toxic intermediates of the cycle lead to predominantly neurologic sequelae. The disorders may present at any age from the neonatal period to adulthood, with the more severely affected patients presenting earlier in life. Patients are at risk for metabolic decompensation throughout life, often triggered by illness, fasting, surgery and postoperative states, peripartum, stress, and increased exogenous protein load. Here the authors address neurologic presentations of ornithine transcarbamylase deficiency in detail, the most common of the urea cycle disorders, neuropathology, neurophysiology, and our studies in neuroimaging. Special attention to late-onset presentations is given. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. International Business Cycle

    Directory of Open Access Journals (Sweden)

    Marek Lubiński

    2007-04-01

    Full Text Available Prime stylized facts of international business cycle theory refer to positive correlation in the cyclical components of important macroeconomic variables across countries. However a number of indicators of business cycle synchronization do not point to clear trends. It can be ascribed to the fact that different forces influence level of business cycle correlation. When investigating into the forces behind the commonness in aggregate fluctuations economic research seems to have pointed in two directions. One strand of the literature examines the idea of common exogenous shocks that affect economies simultaneously. In addition to that economic interdependencies such as trade in goods and services or capital account transactions may serve as the channels through which disturbances spill over across countries.The observed degree of output co movement reflects both the nature of the shocks that have occurred and the degree of economic interdependence. In the periods when common shocks prevail level of synchronization is usually higher than in times of transmission dominance.

  19. Closing the fuel cycle

    International Nuclear Information System (INIS)

    Aycoberry, C.; Rougeau, J.P.

    1987-01-01

    The progressive implementation of some key nuclear fuel cycle capecities in a country corresponds to a strategy for the acquisition of an independant energy source, France, Japan, and some European countries are engaged in such strategic programs. In France, COGEMA, the nuclear fuel company, has now completed the industrial demonstration of the closed fuel cycle. Its experience covers every step of the front-end and of the back-end: transportation of spent fuels, storage, reprocessing, wastes conditioning. The La Hague reprocessing plant smooth operation, as well as the large investment program under active progress can testify of full mastering of this industry. Together with other French and European companies, COGEMA is engaged in the recycling industry, both for uranium through conversion of uranyl nitrate for its further reeichment, and for plutonium through MOX fuel fabrication. Reprocessing and recycling offer the optimum solution for a complete, economic, safe and future-oriented fuel cycle, hence contributing to the necessary development of nuclear energy. (author)

  20. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional