WorldWideScience

Sample records for series usingbayesian inference

  1. Inferring causality from noisy time series data

    DEFF Research Database (Denmark)

    Mønster, Dan; Fusaroli, Riccardo; Tylén, Kristian

    2016-01-01

    Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CCM fails to infer accurate coupling strength...... and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise...

  2. Indirect inference with time series observed with error

    DEFF Research Database (Denmark)

    Rossi, Eduardo; Santucci de Magistris, Paolo

    estimation. We propose to solve this inconsistency by jointly estimating the nuisance and the structural parameters. Under standard assumptions, this estimator is consistent and asymptotically normal. A condition for the identification of ARMA plus noise is obtained. The proposed methodology is used......We analyze the properties of the indirect inference estimator when the observed series are contaminated by measurement error. We show that the indirect inference estimates are asymptotically biased when the nuisance parameters of the measurement error distribution are neglected in the indirect...... to estimate the parameters of continuous-time stochastic volatility models with auxiliary specifications based on realized volatility measures. Monte Carlo simulations shows the bias reduction of the indirect estimates obtained when the microstructure noise is explicitly modeled. Finally, an empirical...

  3. Inference of gene regulatory networks from time series by Tsallis entropy

    Directory of Open Access Journals (Sweden)

    de Oliveira Evaldo A

    2011-05-01

    Full Text Available Abstract Background The inference of gene regulatory networks (GRNs from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information, a new criterion function is here proposed. Results In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5

  4. A Review of Some Aspects of Robust Inference for Time Series.

    Science.gov (United States)

    1984-09-01

    REVIEW OF SOME ASPECTSOF ROBUST INFERNCE FOR TIME SERIES by Ad . Dougla Main TE "iAL REPOW No. 63 Septermber 1984 Department of Statistics University of ...clear. One cannot hope to have a good method for dealing with outliers in time series by using only an instantaneous nonlinear transformation of the data...AI.49 716 A REVIEWd OF SOME ASPECTS OF ROBUST INFERENCE FOR TIME 1/1 SERIES(U) WASHINGTON UNIV SEATTLE DEPT OF STATISTICS R D MARTIN SEP 84 TR-53

  5. Evaluation of artificial time series microarray data for dynamic gene regulatory network inference.

    Science.gov (United States)

    Xenitidis, P; Seimenis, I; Kakolyris, S; Adamopoulos, A

    2017-08-07

    High-throughput technology like microarrays is widely used in the inference of gene regulatory networks (GRNs). We focused on time series data since we are interested in the dynamics of GRNs and the identification of dynamic networks. We evaluated the amount of information that exists in artificial time series microarray data and the ability of an inference process to produce accurate models based on them. We used dynamic artificial gene regulatory networks in order to create artificial microarray data. Key features that characterize microarray data such as the time separation of directly triggered genes, the percentage of directly triggered genes and the triggering function type were altered in order to reveal the limits that are imposed by the nature of microarray data on the inference process. We examined the effect of various factors on the inference performance such as the network size, the presence of noise in microarray data, and the network sparseness. We used a system theory approach and examined the relationship between the pole placement of the inferred system and the inference performance. We examined the relationship between the inference performance in the time domain and the true system parameter identification. Simulation results indicated that time separation and the percentage of directly triggered genes are crucial factors. Also, network sparseness, the triggering function type and noise in input data affect the inference performance. When two factors were simultaneously varied, it was found that variation of one parameter significantly affects the dynamic response of the other. Crucial factors were also examined using a real GRN and acquired results confirmed simulation findings with artificial data. Different initial conditions were also used as an alternative triggering approach. Relevant results confirmed that the number of datasets constitutes the most significant parameter with regard to the inference performance. Copyright © 2017 Elsevier

  6. On statistical inference in time series analysis of the evolution of road safety.

    Science.gov (United States)

    Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora

    2013-11-01

    Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel

    Using theory on (conditionally) Gaussian processes with stationary increments developed in Barndorff-Nielsen et al. (2009, 2011), this paper presents a general semiparametric approach to conducting inference on the fractal index, α, of a time series. Our setup encompasses a large class of Gaussian...

  8. Travel Cost Inference from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models

    DEFF Research Database (Denmark)

    Yang, Bin; Guo, Chenjuan; Jensen, Christian S.

    2013-01-01

    of such time series offers insight into the underlying system and enables prediction of system behavior. While the techniques presented in the paper apply more generally, we consider the case of transportation systems and aim to predict travel cost from GPS tracking data from probe vehicles. Specifically, each...... road segment has an associated travel-cost time series, which is derived from GPS data. We use spatio-temporal hidden Markov models (STHMM) to model correlations among different traffic time series. We provide algorithms that are able to learn the parameters of an STHMM while contending...... with the sparsity, spatio-temporal correlation, and heterogeneity of the time series. Using the resulting STHMM, near future travel costs in the transportation network, e.g., travel time or greenhouse gas emissions, can be inferred, enabling a variety of routing services, e.g., eco-routing. Empirical studies...

  9. A novel mutual information-based Boolean network inference method from time-series gene expression data.

    Directory of Open Access Journals (Sweden)

    Shohag Barman

    Full Text Available Inferring a gene regulatory network from time-series gene expression data in systems biology is a challenging problem. Many methods have been suggested, most of which have a scalability limitation due to the combinatorial cost of searching a regulatory set of genes. In addition, they have focused on the accurate inference of a network structure only. Therefore, there is a pressing need to develop a network inference method to search regulatory genes efficiently and to predict the network dynamics accurately.In this study, we employed a Boolean network model with a restricted update rule scheme to capture coarse-grained dynamics, and propose a novel mutual information-based Boolean network inference (MIBNI method. Given time-series gene expression data as an input, the method first identifies a set of initial regulatory genes using mutual information-based feature selection, and then improves the dynamics prediction accuracy by iteratively swapping a pair of genes between sets of the selected regulatory genes and the other genes. Through extensive simulations with artificial datasets, MIBNI showed consistently better performance than six well-known existing methods, REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN in terms of both structural and dynamics prediction accuracy. We further tested the proposed method with two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network, and also observed better results using MIBNI compared to the six other methods.Taken together, MIBNI is a promising tool for predicting both the structure and the dynamics of a gene regulatory network.

  10. CauseMap: fast inference of causality from complex time series.

    Science.gov (United States)

    Maher, M Cyrus; Hernandez, Ryan D

    2015-01-01

    Background. Establishing health-related causal relationships is a central pursuit in biomedical research. Yet, the interdependent non-linearity of biological systems renders causal dynamics laborious and at times impractical to disentangle. This pursuit is further impeded by the dearth of time series that are sufficiently long to observe and understand recurrent patterns of flux. However, as data generation costs plummet and technologies like wearable devices democratize data collection, we anticipate a coming surge in the availability of biomedically-relevant time series data. Given the life-saving potential of these burgeoning resources, it is critical to invest in the development of open source software tools that are capable of drawing meaningful insight from vast amounts of time series data. Results. Here we present CauseMap, the first open source implementation of convergent cross mapping (CCM), a method for establishing causality from long time series data (≳25 observations). Compared to existing time series methods, CCM has the advantage of being model-free and robust to unmeasured confounding that could otherwise induce spurious associations. CCM builds on Takens' Theorem, a well-established result from dynamical systems theory that requires only mild assumptions. This theorem allows us to reconstruct high dimensional system dynamics using a time series of only a single variable. These reconstructions can be thought of as shadows of the true causal system. If reconstructed shadows can predict points from opposing time series, we can infer that the corresponding variables are providing views of the same causal system, and so are causally related. Unlike traditional metrics, this test can establish the directionality of causation, even in the presence of feedback loops. Furthermore, since CCM can extract causal relationships from times series of, e.g., a single individual, it may be a valuable tool to personalized medicine. We implement CCM in Julia, a

  11. CauseMap: fast inference of causality from complex time series

    Directory of Open Access Journals (Sweden)

    M. Cyrus Maher

    2015-03-01

    Full Text Available Background. Establishing health-related causal relationships is a central pursuit in biomedical research. Yet, the interdependent non-linearity of biological systems renders causal dynamics laborious and at times impractical to disentangle. This pursuit is further impeded by the dearth of time series that are sufficiently long to observe and understand recurrent patterns of flux. However, as data generation costs plummet and technologies like wearable devices democratize data collection, we anticipate a coming surge in the availability of biomedically-relevant time series data. Given the life-saving potential of these burgeoning resources, it is critical to invest in the development of open source software tools that are capable of drawing meaningful insight from vast amounts of time series data.Results. Here we present CauseMap, the first open source implementation of convergent cross mapping (CCM, a method for establishing causality from long time series data (≳25 observations. Compared to existing time series methods, CCM has the advantage of being model-free and robust to unmeasured confounding that could otherwise induce spurious associations. CCM builds on Takens’ Theorem, a well-established result from dynamical systems theory that requires only mild assumptions. This theorem allows us to reconstruct high dimensional system dynamics using a time series of only a single variable. These reconstructions can be thought of as shadows of the true causal system. If reconstructed shadows can predict points from opposing time series, we can infer that the corresponding variables are providing views of the same causal system, and so are causally related. Unlike traditional metrics, this test can establish the directionality of causation, even in the presence of feedback loops. Furthermore, since CCM can extract causal relationships from times series of, e.g., a single individual, it may be a valuable tool to personalized medicine. We implement

  12. Quasi-Maximum Likelihood Estimation and Bootstrap Inference in Fractional Time Series Models with Heteroskedasticity of Unknown Form

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Nielsen, Morten Ørregaard; Taylor, Robert

    We consider the problem of conducting estimation and inference on the parameters of univariate heteroskedastic fractionally integrated time series models. We first extend existing results in the literature, developed for conditional sum-of squares estimators in the context of parametric fractional...... time series models driven by conditionally homoskedastic shocks, to allow for conditional and unconditional heteroskedasticity both of a quite general and unknown form. Global consistency and asymptotic normality are shown to still obtain; however, the covariance matrix of the limiting distribution...... of the estimator now depends on nuisance parameters derived both from the weak dependence and heteroskedasticity present in the shocks. We then investigate classical methods of inference based on the Wald, likelihood ratio and Lagrange multiplier tests for linear hypotheses on either or both of the long and short...

  13. Prewhitening of hydroclimatic time series? Implications for inferred change and variability across time scales

    Science.gov (United States)

    Razavi, Saman; Vogel, Richard

    2018-02-01

    Prewhitening, the process of eliminating or reducing short-term stochastic persistence to enable detection of deterministic change, has been extensively applied to time series analysis of a range of geophysical variables. Despite the controversy around its utility, methodologies for prewhitening time series continue to be a critical feature of a variety of analyses including: trend detection of hydroclimatic variables and reconstruction of climate and/or hydrology through proxy records such as tree rings. With a focus on the latter, this paper presents a generalized approach to exploring the impact of a wide range of stochastic structures of short- and long-term persistence on the variability of hydroclimatic time series. Through this approach, we examine the impact of prewhitening on the inferred variability of time series across time scales. We document how a focus on prewhitened, residual time series can be misleading, as it can drastically distort (or remove) the structure of variability across time scales. Through examples with actual data, we show how such loss of information in prewhitened time series of tree rings (so-called "residual chronologies") can lead to the underestimation of extreme conditions in climate and hydrology, particularly droughts, reconstructed for centuries preceding the historical period.

  14. Inferring Weighted Directed Association Networks from Multivariate Time Series with the Small-Shuffle Symbolic Transfer Entropy Spectrum Method

    Directory of Open Access Journals (Sweden)

    Yanzhu Hu

    2016-09-01

    Full Text Available Complex network methodology is very useful for complex system exploration. However, the relationships among variables in complex systems are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a method, named small-shuffle symbolic transfer entropy spectrum (SSSTES, for inferring association networks from multivariate time series. The method can solve four problems for inferring association networks, i.e., strong correlation identification, correlation quantification, direction identification and temporal relation identification. The method can be divided into four layers. The first layer is the so-called data layer. Data input and processing are the things to do in this layer. In the second layer, we symbolize the model data, original data and shuffled data, from the previous layer and calculate circularly transfer entropy with different time lags for each pair of time series variables. Thirdly, we compose transfer entropy spectrums for pairwise time series with the previous layer’s output, a list of transfer entropy matrix. We also identify the correlation level between variables in this layer. In the last layer, we build a weighted adjacency matrix, the value of each entry representing the correlation level between pairwise variables, and then get the weighted directed association network. Three sets of numerical simulated data from a linear system, a nonlinear system and a coupled Rossler system are used to show how the proposed approach works. Finally, we apply SSSTES to a real industrial system and get a better result than with two other methods.

  15. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    Full Text Available The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  16. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota.

    Science.gov (United States)

    Stein, Richard R; Bucci, Vanni; Toussaint, Nora C; Buffie, Charlie G; Rätsch, Gunnar; Pamer, Eric G; Sander, Chris; Xavier, João B

    2013-01-01

    The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-resolved metagenomics. This method extends generalized Lotka-Volterra dynamics to account for external perturbations. Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-resolution ecological time-series data to infer community structure and response to external stimuli.

  17. Statistical inference approach to structural reconstruction of complex networks from binary time series

    Science.gov (United States)

    Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng

    2018-02-01

    Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.

  18. Time series modeling, computation, and inference

    CERN Document Server

    Prado, Raquel

    2010-01-01

    The authors systematically develop a state-of-the-art analysis and modeling of time series. … this book is well organized and well written. The authors present various statistical models for engineers to solve problems in time series analysis. Readers no doubt will learn state-of-the-art techniques from this book.-Hsun-Hsien Chang, Computing Reviews, March 2012My favorite chapters were on dynamic linear models and vector AR and vector ARMA models.-William Seaver, Technometrics, August 2011… a very modern entry to the field of time-series modelling, with a rich reference list of the current lit

  19. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data.

    Science.gov (United States)

    Huynh-Thu, Vân Anh; Geurts, Pierre

    2018-02-21

    The elucidation of gene regulatory networks is one of the major challenges of systems biology. Measurements about genes that are exploited by network inference methods are typically available either in the form of steady-state expression vectors or time series expression data. In our previous work, we proposed the GENIE3 method that exploits variable importance scores derived from Random forests to identify the regulators of each target gene. This method provided state-of-the-art performance on several benchmark datasets, but it could however not specifically be applied to time series expression data. We propose here an adaptation of the GENIE3 method, called dynamical GENIE3 (dynGENIE3), for handling both time series and steady-state expression data. The proposed method is evaluated extensively on the artificial DREAM4 benchmarks and on three real time series expression datasets. Although dynGENIE3 does not systematically yield the best performance on each and every network, it is competitive with diverse methods from the literature, while preserving the main advantages of GENIE3 in terms of scalability.

  20. Inferring interdependencies from short time series

    Indian Academy of Sciences (India)

    Abstract. Complex networks provide an invaluable framework for the study of interlinked dynamical systems. In many cases, such networks are constructed from observed time series by first estimating the ...... does not quantify causal relations (unlike IOTA, or .... Africa_map_regions.svg, which is under public domain.

  1. A time series approach to inferring groundwater recharge using the water table fluctuation method

    Science.gov (United States)

    Crosbie, Russell S.; Binning, Philip; Kalma, Jetse D.

    2005-01-01

    The water table fluctuation method for determining recharge from precipitation and water table measurements was originally developed on an event basis. Here a new multievent time series approach is presented for inferring groundwater recharge from long-term water table and precipitation records. Additional new features are the incorporation of a variable specific yield based upon the soil moisture retention curve, proper accounting for the Lisse effect on the water table, and the incorporation of aquifer drainage so that recharge can be detected even if the water table does not rise. A methodology for filtering noise and non-rainfall-related water table fluctuations is also presented. The model has been applied to 2 years of field data collected in the Tomago sand beds near Newcastle, Australia. It is shown that gross recharge estimates are very sensitive to time step size and specific yield. Properly accounting for the Lisse effect is also important to determining recharge.

  2. A Comparative Analysis of Fuzzy Inference Engines in Context of ...

    African Journals Online (AJOL)

    Fuzzy inference engine has found successful applications in a wide variety of fields, such as automatic control, data classification, decision analysis, expert engines, time series prediction, robotics, pattern recognition, etc. This paper presents a comparative analysis of three fuzzy inference engines, max-product, max-min ...

  3. Quasi-Experimental Designs for Causal Inference

    Science.gov (United States)

    Kim, Yongnam; Steiner, Peter

    2016-01-01

    When randomized experiments are infeasible, quasi-experimental designs can be exploited to evaluate causal treatment effects. The strongest quasi-experimental designs for causal inference are regression discontinuity designs, instrumental variable designs, matching and propensity score designs, and comparative interrupted time series designs. This…

  4. A New Modified Histogram Matching Normalization for Time Series Microarray Analysis.

    Science.gov (United States)

    Astola, Laura; Molenaar, Jaap

    2014-07-01

    Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.

  5. Working memory supports inference learning just like classification learning.

    Science.gov (United States)

    Craig, Stewart; Lewandowsky, Stephan

    2013-08-01

    Recent research has found a positive relationship between people's working memory capacity (WMC) and their speed of category learning. To date, only classification-learning tasks have been considered, in which people learn to assign category labels to objects. It is unknown whether learning to make inferences about category features might also be related to WMC. We report data from a study in which 119 participants undertook classification learning and inference learning, and completed a series of WMC tasks. Working memory capacity was positively related to people's classification and inference learning performance.

  6. Inferring a Drive-Response Network from Time Series of Topological Measures in Complex Networks with Transfer Entropy

    Directory of Open Access Journals (Sweden)

    Xinbo Ai

    2014-11-01

    Full Text Available Topological measures are crucial to describe, classify and understand complex networks. Lots of measures are proposed to characterize specific features of specific networks, but the relationships among these measures remain unclear. Taking into account that pulling networks from different domains together for statistical analysis might provide incorrect conclusions, we conduct our investigation with data observed from the same network in the form of simultaneously measured time series. We synthesize a transfer entropy-based framework to quantify the relationships among topological measures, and then to provide a holistic scenario of these measures by inferring a drive-response network. Techniques from Symbolic Transfer Entropy, Effective Transfer Entropy, and Partial Transfer Entropy are synthesized to deal with challenges such as time series being non-stationary, finite sample effects and indirect effects. We resort to kernel density estimation to assess significance of the results based on surrogate data. The framework is applied to study 20 measures across 2779 records in the Technology Exchange Network, and the results are consistent with some existing knowledge. With the drive-response network, we evaluate the influence of each measure by calculating its strength, and cluster them into three classes, i.e., driving measures, responding measures and standalone measures, according to the network communities.

  7. A New Modified Histogram Matching Normalization for Time Series Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Laura Astola

    2014-07-01

    Full Text Available Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.

  8. Bayesian methods for hackers probabilistic programming and Bayesian inference

    CERN Document Server

    Davidson-Pilon, Cameron

    2016-01-01

    Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples a...

  9. Statistical inferences for bearings life using sudden death test

    Directory of Open Access Journals (Sweden)

    Morariu Cristin-Olimpiu

    2017-01-01

    Full Text Available In this paper we propose a calculus method for reliability indicators estimation and a complete statistical inferences for three parameters Weibull distribution of bearings life. Using experimental values regarding the durability of bearings tested on stands by the sudden death tests involves a series of particularities of the estimation using maximum likelihood method and statistical inference accomplishment. The paper detailing these features and also provides an example calculation.

  10. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  11. Causal strength induction from time series data.

    Science.gov (United States)

    Soo, Kevin W; Rottman, Benjamin M

    2018-04-01

    One challenge when inferring the strength of cause-effect relations from time series data is that the cause and/or effect can exhibit temporal trends. If temporal trends are not accounted for, a learner could infer that a causal relation exists when it does not, or even infer that there is a positive causal relation when the relation is negative, or vice versa. We propose that learners use a simple heuristic to control for temporal trends-that they focus not on the states of the cause and effect at a given instant, but on how the cause and effect change from one observation to the next, which we call transitions. Six experiments were conducted to understand how people infer causal strength from time series data. We found that participants indeed use transitions in addition to states, which helps them to reach more accurate causal judgments (Experiments 1A and 1B). Participants use transitions more when the stimuli are presented in a naturalistic visual format than a numerical format (Experiment 2), and the effect of transitions is not driven by primacy or recency effects (Experiment 3). Finally, we found that participants primarily use the direction in which variables change rather than the magnitude of the change for estimating causal strength (Experiments 4 and 5). Collectively, these studies provide evidence that people often use a simple yet effective heuristic for inferring causal strength from time series data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks.

    Science.gov (United States)

    Wang, Yi Kan; Hurley, Daniel G; Schnell, Santiago; Print, Cristin G; Crampin, Edmund J

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data.

  13. A Bayesian method for characterizing distributed micro-releases: II. inference under model uncertainty with short time-series data.

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef; Fast P. (Lawrence Livermore National Laboratory, Livermore, CA); Kraus, M. (Peterson AFB, CO); Ray, J. P.

    2006-01-01

    Terrorist attacks using an aerosolized pathogen preparation have gained credibility as a national security concern after the anthrax attacks of 2001. The ability to characterize such attacks, i.e., to estimate the number of people infected, the time of infection, and the average dose received, is important when planning a medical response. We address this question of characterization by formulating a Bayesian inverse problem predicated on a short time-series of diagnosed patients exhibiting symptoms. To be of relevance to response planning, we limit ourselves to 3-5 days of data. In tests performed with anthrax as the pathogen, we find that these data are usually sufficient, especially if the model of the outbreak used in the inverse problem is an accurate one. In some cases the scarcity of data may initially support outbreak characterizations at odds with the true one, but with sufficient data the correct inferences are recovered; in other words, the inverse problem posed and its solution methodology are consistent. We also explore the effect of model error-situations for which the model used in the inverse problem is only a partially accurate representation of the outbreak; here, the model predictions and the observations differ by more than a random noise. We find that while there is a consistent discrepancy between the inferred and the true characterizations, they are also close enough to be of relevance when planning a response.

  14. Efficient Bayesian inference for ARFIMA processes

    Science.gov (United States)

    Graves, T.; Gramacy, R. B.; Franzke, C. L. E.; Watkins, N. W.

    2015-03-01

    Many geophysical quantities, like atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long-range dependence (LRD). LRD means that these quantities experience non-trivial temporal memory, which potentially enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LRD. In this paper we present a modern and systematic approach to the inference of LRD. Rather than Mandelbrot's fractional Gaussian noise, we use the more flexible Autoregressive Fractional Integrated Moving Average (ARFIMA) model which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LRD, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g. short memory effects) can be integrated over in order to focus on long memory parameters, and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data, with favorable comparison to the standard estimators.

  15. Graphical models for inferring single molecule dynamics

    Directory of Open Access Journals (Sweden)

    Gonzalez Ruben L

    2010-10-01

    Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

  16. Bayesian structural inference for hidden processes

    Science.gov (United States)

    Strelioff, Christopher C.; Crutchfield, James P.

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  17. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines.

    Science.gov (United States)

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance.

  18. Automatic physical inference with information maximizing neural networks

    Science.gov (United States)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    Compressing large data sets to a manageable number of summaries that are informative about the underlying parameters vastly simplifies both frequentist and Bayesian inference. When only simulations are available, these summaries are typically chosen heuristically, so they may inadvertently miss important information. We introduce a simulation-based machine learning technique that trains artificial neural networks to find nonlinear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). In test cases where the posterior can be derived exactly, likelihood-free inference based on automatically derived IMNN summaries produces nearly exact posteriors, showing that these summaries are good approximations to sufficient statistics. In a series of numerical examples of increasing complexity and astrophysical relevance we show that IMNNs are robustly capable of automatically finding optimal, nonlinear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima. We anticipate that the automatic physical inference method described in this paper will be essential to obtain both accurate and precise cosmological parameter estimates from complex and large astronomical data sets, including those from LSST and Euclid.

  19. Estimating uncertainty of inference for validation

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Jane M [Los Alamos National Laboratory; Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Ross, Timothy J [UNM

    2010-09-30

    first in a series of inference uncertainty estimations. While the methods demonstrated are primarily statistical, these do not preclude the use of nonprobabilistic methods for uncertainty characterization. The methods presented permit accurate determinations for validation and eventual prediction. It is a goal that these methods establish a standard against which best practice may evolve for determining degree of validation.

  20. Indian Academy of Sciences Conference Series | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Indian Academy of Sciences Conference Series. BEDARTHA GOSWAMI. Articles written in Indian Academy of Sciences Conference Series. Volume 1 Issue 1 December 2017 pp 51-60 Proceedings of the Conference on Perspectives in Nonlinear Dynamics - 2016. Inferring interdependencies from short ...

  1. Bayesian inference in probabilistic risk assessment-The current state of the art

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Smith, Curtis L.

    2009-01-01

    Markov chain Monte Carlo (MCMC) approaches to sampling directly from the joint posterior distribution of aleatory model parameters have led to tremendous advances in Bayesian inference capability in a wide variety of fields, including probabilistic risk analysis. The advent of freely available software coupled with inexpensive computing power has catalyzed this advance. This paper examines where the risk assessment community is with respect to implementing modern computational-based Bayesian approaches to inference. Through a series of examples in different topical areas, it introduces salient concepts and illustrates the practical application of Bayesian inference via MCMC sampling to a variety of important problems

  2. Bayesian Inference for Functional Dynamics Exploring in fMRI Data

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2016-01-01

    Full Text Available This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM, Bayesian Connectivity Change Point Model (BCCPM, and Dynamic Bayesian Variable Partition Model (DBVPM, and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  3. Indian Academy of Sciences Conference Series | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Indian Academy of Sciences Conference Series. NORBERT MARWAN. Articles written in Indian Academy of Sciences Conference Series. Volume 1 Issue 1 December 2017 pp 51-60 Proceedings of the Conference on Perspectives in Nonlinear Dynamics - 2016. Inferring interdependencies from short time ...

  4. Indian Academy of Sciences Conference Series | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Indian Academy of Sciences Conference Series. PAUL SCHULTZ. Articles written in Indian Academy of Sciences Conference Series. Volume 1 Issue 1 December 2017 pp 51-60 Proceedings of the Conference on Perspectives in Nonlinear Dynamics - 2016. Inferring interdependencies from short time ...

  5. Statistical inference for financial engineering

    CERN Document Server

    Taniguchi, Masanobu; Ogata, Hiroaki; Taniai, Hiroyuki

    2014-01-01

    This monograph provides the fundamentals of statistical inference for financial engineering and covers some selected methods suitable for analyzing financial time series data. In order to describe the actual financial data, various stochastic processes, e.g. non-Gaussian linear processes, non-linear processes, long-memory processes, locally stationary processes etc. are introduced and their optimal estimation is considered as well. This book also includes several statistical approaches, e.g., discriminant analysis, the empirical likelihood method, control variate method, quantile regression, realized volatility etc., which have been recently developed and are considered to be powerful tools for analyzing the financial data, establishing a new bridge between time series and financial engineering. This book is well suited as a professional reference book on finance, statistics and statistical financial engineering. Readers are expected to have an undergraduate-level knowledge of statistics.

  6. Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory

    Science.gov (United States)

    2016-05-12

    Distribution Unlimited UU UU UU UU 12-05-2016 15-May-2014 14-Feb-2015 Final Report: Statistical Inference on Memory Structure of Processes and Its Applications ...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mathematical statistics ; time series; Markov chains; random...journals: Final Report: Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory Report Title Three areas

  7. Bayesian inference for psychology. Part I : Theoretical advantages and practical ramifications

    NARCIS (Netherlands)

    Wagenmakers, E.-J.; Marsman, M.; Jamil, T.; Ly, A.; Verhagen, J.; Love, J.; Selker, R.; Gronau, Q.F.; Šmíra, M.; Epskamp, S.; Matzke, D.; Rouder, J.N.; Morey, R.D.

    2018-01-01

    Bayesian parameter estimation and Bayesian hypothesis testing present attractive alternatives to classical inference using confidence intervals and p values. In part I of this series we outline ten prominent advantages of the Bayesian approach. Many of these advantages translate to concrete

  8. A new modified histogram matching normalization for time series microarray analysis

    NARCIS (Netherlands)

    Astola, L.J.; Molenaar, J.

    2014-01-01

    Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on

  9. Automated adaptive inference of phenomenological dynamical models

    Science.gov (United States)

    Daniels, Bryan

    Understanding the dynamics of biochemical systems can seem impossibly complicated at the microscopic level: detailed properties of every molecular species, including those that have not yet been discovered, could be important for producing macroscopic behavior. The profusion of data in this area has raised the hope that microscopic dynamics might be recovered in an automated search over possible models, yet the combinatorial growth of this space has limited these techniques to systems that contain only a few interacting species. We take a different approach inspired by coarse-grained, phenomenological models in physics. Akin to a Taylor series producing Hooke's Law, forgoing microscopic accuracy allows us to constrain the search over dynamical models to a single dimension. This makes it feasible to infer dynamics with very limited data, including cases in which important dynamical variables are unobserved. We name our method Sir Isaac after its ability to infer the dynamical structure of the law of gravitation given simulated planetary motion data. Applying the method to output from a microscopically complicated but macroscopically simple biological signaling model, it is able to adapt the level of detail to the amount of available data. Finally, using nematode behavioral time series data, the method discovers an effective switch between behavioral attractors after the application of a painful stimulus.

  10. Detection of increased series losses in PV arrays using Fuzzy Inference Systems

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2012-01-01

    There are well-defined methods to measure the (increased) series resistance of PV panels in controlled laboratory conditions. However, the presence of various irradiance levels and partial shadows, in case of an outdoor installation, may affect the series resistance estimation. This paper focuses...

  11. Inferring topologies of complex networks with hidden variables.

    Science.gov (United States)

    Wu, Xiaoqun; Wang, Weihan; Zheng, Wei Xing

    2012-10-01

    Network topology plays a crucial role in determining a network's intrinsic dynamics and function, thus understanding and modeling the topology of a complex network will lead to greater knowledge of its evolutionary mechanisms and to a better understanding of its behaviors. In the past few years, topology identification of complex networks has received increasing interest and wide attention. Many approaches have been developed for this purpose, including synchronization-based identification, information-theoretic methods, and intelligent optimization algorithms. However, inferring interaction patterns from observed dynamical time series is still challenging, especially in the absence of knowledge of nodal dynamics and in the presence of system noise. The purpose of this work is to present a simple and efficient approach to inferring the topologies of such complex networks. The proposed approach is called "piecewise partial Granger causality." It measures the cause-effect connections of nonlinear time series influenced by hidden variables. One commonly used testing network, two regular networks with a few additional links, and small-world networks are used to evaluate the performance and illustrate the influence of network parameters on the proposed approach. Application to experimental data further demonstrates the validity and robustness of our method.

  12. A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Santra, Tapesh, E-mail: tapesh.santra@ucd.ie [Systems Biology Ireland, University College Dublin, Dublin (Ireland)

    2014-05-20

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein–protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.

  13. A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks

    International Nuclear Information System (INIS)

    Santra, Tapesh

    2014-01-01

    Reconstruction of gene regulatory networks (GRNs) from experimental data is a fundamental challenge in systems biology. A number of computational approaches have been developed to infer GRNs from mRNA expression profiles. However, expression profiles alone are proving to be insufficient for inferring GRN topologies with reasonable accuracy. Recently, it has been shown that integration of external data sources (such as gene and protein sequence information, gene ontology data, protein–protein interactions) with mRNA expression profiles may increase the reliability of the inference process. Here, I propose a new approach that incorporates transcription factor binding sites (TFBS) and physical protein interactions (PPI) among transcription factors (TFs) in a Bayesian variable selection (BVS) algorithm which can infer GRNs from mRNA expression profiles subjected to genetic perturbations. Using real experimental data, I show that the integration of TFBS and PPI data with mRNA expression profiles leads to significantly more accurate networks than those inferred from expression profiles alone. Additionally, the performance of the proposed algorithm is compared with a series of least absolute shrinkage and selection operator (LASSO) regression-based network inference methods that can also incorporate prior knowledge in the inference framework. The results of this comparison suggest that BVS can outperform LASSO regression-based method in some circumstances.

  14. Inferring time derivatives including cell growth rates using Gaussian processes

    Science.gov (United States)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  15. A novel gene network inference algorithm using predictive minimum description length approach.

    Science.gov (United States)

    Chaitankar, Vijender; Ghosh, Preetam; Perkins, Edward J; Gong, Ping; Deng, Youping; Zhang, Chaoyang

    2010-05-28

    Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold which defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we proposed a new inference algorithm which incorporated mutual information (MI), conditional mutual information (CMI) and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm was evaluated using both synthetic time series data sets and a biological time series data set for the yeast Saccharomyces cerevisiae. The benchmark quantities precision and recall were used as performance measures. The results show that the proposed algorithm produced less false edges and significantly improved the precision, as compared to the existing algorithm. For further analysis the performance of the algorithms was observed over different sizes of data. We have proposed a new algorithm that implements the PMDL principle for inferring gene regulatory networks from time series DNA microarray data that eliminates the need of a fine tuning parameter. The evaluation results obtained from both synthetic and actual biological data sets show that the

  16. Permutation entropy of finite-length white-noise time series.

    Science.gov (United States)

    Little, Douglas J; Kane, Deb M

    2016-08-01

    Permutation entropy (PE) is commonly used to discriminate complex structure from white noise in a time series. While the PE of white noise is well understood in the long time-series limit, analysis in the general case is currently lacking. Here the expectation value and variance of white-noise PE are derived as functions of the number of ordinal pattern trials, N, and the embedding dimension, D. It is demonstrated that the probability distribution of the white-noise PE converges to a χ^{2} distribution with D!-1 degrees of freedom as N becomes large. It is further demonstrated that the PE variance for an arbitrary time series can be estimated as the variance of a related metric, the Kullback-Leibler entropy (KLE), allowing the qualitative N≫D! condition to be recast as a quantitative estimate of the N required to achieve a desired PE calculation precision. Application of this theory to statistical inference is demonstrated in the case of an experimentally obtained noise series, where the probability of obtaining the observed PE value was calculated assuming a white-noise time series. Standard statistical inference can be used to draw conclusions whether the white-noise null hypothesis can be accepted or rejected. This methodology can be applied to other null hypotheses, such as discriminating whether two time series are generated from different complex system states.

  17. Functional neuroanatomy of intuitive physical inference.

    Science.gov (United States)

    Fischer, Jason; Mikhael, John G; Tenenbaum, Joshua B; Kanwisher, Nancy

    2016-08-23

    To engage with the world-to understand the scene in front of us, plan actions, and predict what will happen next-we must have an intuitive grasp of the world's physical structure and dynamics. How do the objects in front of us rest on and support each other, how much force would be required to move them, and how will they behave when they fall, roll, or collide? Despite the centrality of physical inferences in daily life, little is known about the brain mechanisms recruited to interpret the physical structure of a scene and predict how physical events will unfold. Here, in a series of fMRI experiments, we identified a set of cortical regions that are selectively engaged when people watch and predict the unfolding of physical events-a "physics engine" in the brain. These brain regions are selective to physical inferences relative to nonphysical but otherwise highly similar scenes and tasks. However, these regions are not exclusively engaged in physical inferences per se or, indeed, even in scene understanding; they overlap with the domain-general "multiple demand" system, especially the parts of that system involved in action planning and tool use, pointing to a close relationship between the cognitive and neural mechanisms involved in parsing the physical content of a scene and preparing an appropriate action.

  18. Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data.

    Science.gov (United States)

    Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger

    2017-01-01

    Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.

  19. An algebra-based method for inferring gene regulatory networks.

    Science.gov (United States)

    Vera-Licona, Paola; Jarrah, Abdul; Garcia-Puente, Luis David; McGee, John; Laubenbacher, Reinhard

    2014-03-26

    The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also predicting several of the

  20. Drought Forecasting Using Adaptive Neuro-Fuzzy Inference Systems (ANFIS, Drought Time Series and Climate Indices For Next Coming Year, (Case Study: Zahedan

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinpour Niknam

    2012-07-01

    Full Text Available In this research in order to forecast drought for the next coming year in Zahedan, using previous Standardized Precipitation Index (SPI data and 19 other climate indices were used.  For this purpose Adaptive Neuro-Fuzzy Inference System (ANFIS was applied to build the predicting model and SPI drought index for drought quantity.  At first calculating correlation approach for analysis between droughts and climate indices was used and the most suitable indices were selected. In the next stage drought prediction for period of 12 months was done. Different combinations among input variables in ANFIS models were entered. SPI drought index was the output of the model.  The results showed that just using time series like the previous year drought SPI index in forecasting the 12 month drought was effective. However among all climate indices that were used, Nino4 showed the most suitable results.

  1. Path-space variational inference for non-equilibrium coarse-grained systems

    International Nuclear Information System (INIS)

    Harmandaris, Vagelis; Kalligiannaki, Evangelia; Katsoulakis, Markos; Plecháč, Petr

    2016-01-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  2. Path-space variational inference for non-equilibrium coarse-grained systems

    Energy Technology Data Exchange (ETDEWEB)

    Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion (Greece); Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Katsoulakis, Markos, E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts at Amherst (United States); Plecháč, Petr, E-mail: plechac@math.udel.edu [Department of Mathematical Sciences, University of Delaware, Newark, Delaware (United States)

    2016-06-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  3. Predictive minimum description length principle approach to inferring gene regulatory networks.

    Science.gov (United States)

    Chaitankar, Vijender; Zhang, Chaoyang; Ghosh, Preetam; Gong, Ping; Perkins, Edward J; Deng, Youping

    2011-01-01

    Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold that defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we propose a new inference algorithm that incorporates mutual information (MI), conditional mutual information (CMI), and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm is evaluated using both synthetic time series data sets and a biological time series data set (Saccharomyces cerevisiae). The results show that the proposed algorithm produced fewer false edges and significantly improved the precision when compared to existing MDL algorithm.

  4. Inferring the Clonal Structure of Viral Populations from Time Series Sequencing.

    Directory of Open Access Journals (Sweden)

    Donatien F Chedom

    2015-11-01

    Full Text Available RNA virus populations will undergo processes of mutation and selection resulting in a mixed population of viral particles. High throughput sequencing of a viral population subsequently contains a mixed signal of the underlying clones. We would like to identify the underlying evolutionary structures. We utilize two sources of information to attempt this; within segment linkage information, and mutation prevalence. We demonstrate that clone haplotypes, their prevalence, and maximum parsimony reticulate evolutionary structures can be identified, although the solutions may not be unique, even for complete sets of information. This is applied to a chain of influenza infection, where we infer evolutionary structures, including reassortment, and demonstrate some of the difficulties of interpretation that arise from deep sequencing due to artifacts such as template switching during PCR amplification.

  5. The Accuracy of Inference in Small Samples of Dynamic Panel Data Models

    NARCIS (Netherlands)

    Bun, M.J.G.; Kiviet, J.F.

    2001-01-01

    Through Monte Carlo experiments the small sample behavior is examined of various inference techniques for dynamic panel data models when both the time-series and cross-section dimensions of the data set are small. The LSDV technique and corrected versions of it are compared with IV and GMM

  6. Clinical and epidemiological rounds. Time series

    Directory of Open Access Journals (Sweden)

    León-Álvarez, Alba Luz

    2016-07-01

    Full Text Available Analysis of time series is a technique that implicates the study of individuals or groups observed in successive moments in time. This type of analysis allows the study of potential causal relationships between different variables that change over time and relate to each other. It is the most important technique to make inferences about the future, predicting, on the basis or what has happened in the past and it is applied in different disciplines of knowledge. Here we discuss different components of time series, the analysis technique and specific examples in health research.

  7. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran

  8. Detecting dynamic causal inference in nonlinear two-phase fracture flow

    Science.gov (United States)

    Faybishenko, Boris

    2017-08-01

    Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.

  9. Results and assessment of uranium series dating of vertebrate fossils from Quaternary alluvium in Colorado

    Science.gov (United States)

    Szabo, B. J.

    1980-01-01

    An average uranium-series age of 102,000 ± 14,000 yr for bones from Louviers Alluvium, near Denver, Colorado, is compatible with the inferred geologic age of from 120,000 to 150,000 yr. A uranium-series date of about 190,000 yr for a bone from Slocum Alluvium, near Canon City, Colorado, is consistent with the inferred geologic age of from 150,000 to 260,000 yr. Age determinations for the Broadway Alluvium are inconsistent but its geologic age is considered to be 15,000 to 30,000 yr BP.

  10. Characterizing and estimating noise in InSAR and InSAR time series with MODIS

    Science.gov (United States)

    Barnhart, William D.; Lohman, Rowena B.

    2013-01-01

    InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.

  11. Inferring Stop-Locations from WiFi.

    Directory of Open Access Journals (Sweden)

    David Kofoed Wind

    Full Text Available Human mobility patterns are inherently complex. In terms of understanding these patterns, the process of converting raw data into series of stop-locations and transitions is an important first step which greatly reduces the volume of data, thus simplifying the subsequent analyses. Previous research into the mobility of individuals has focused on inferring 'stop locations' (places of stationarity from GPS or CDR data, or on detection of state (static/active. In this paper we bridge the gap between the two approaches: we introduce methods for detecting both mobility state and stop-locations. In addition, our methods are based exclusively on WiFi data. We study two months of WiFi data collected every two minutes by a smartphone, and infer stop-locations in the form of labelled time-intervals. For this purpose, we investigate two algorithms, both of which scale to large datasets: a greedy approach to select the most important routers and one which uses a density-based clustering algorithm to detect router fingerprints. We validate our results using participants' GPS data as well as ground truth data collected during a two month period.

  12. Statistical inference for classification of RRIM clone series using near IR reflectance properties

    Science.gov (United States)

    Ismail, Faridatul Aima; Madzhi, Nina Korlina; Hashim, Hadzli; Abdullah, Noor Ezan; Khairuzzaman, Noor Aishah; Azmi, Azrie Faris Mohd; Sampian, Ahmad Faiz Mohd; Harun, Muhammad Hafiz

    2015-08-01

    RRIM clone is a rubber breeding series produced by RRIM (Rubber Research Institute of Malaysia) through "rubber breeding program" to improve latex yield and producing clones attractive to farmers. The objective of this work is to analyse measurement of optical sensing device on latex of selected clone series. The device using transmitting NIR properties and its reflectance is converted in terms of voltage. The obtained reflectance index value via voltage was analyzed using statistical technique in order to find out the discrimination among the clones. From the statistical results using error plots and one-way ANOVA test, there is an overwhelming evidence showing discrimination of RRIM 2002, RRIM 2007 and RRIM 3001 clone series with p value = 0.000. RRIM 2008 cannot be discriminated with RRIM 2014; however both of these groups are distinct from the other clones.

  13. Automated Bayesian model development for frequency detection in biological time series

    Directory of Open Access Journals (Sweden)

    Oldroyd Giles ED

    2011-06-01

    Full Text Available Abstract Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and

  14. Automated Bayesian model development for frequency detection in biological time series.

    Science.gov (United States)

    Granqvist, Emma; Oldroyd, Giles E D; Morris, Richard J

    2011-06-24

    A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time

  15. Event-related potential correlates of emergent inference in human arbitrary relational learning.

    Science.gov (United States)

    Wang, Ting; Dymond, Simon

    2013-01-01

    Two experiments investigated the functional-anatomical correlates of cognition supporting untrained, emergent relational inference in a stimulus equivalence task. In Experiment 1, after learning a series of conditional relations involving words and pseudowords, participants performed a relatedness task during which EEG was recorded. Behavioural performance was faster and more accurate on untrained, indirectly related symmetry (i.e., learn AB and infer BA) and equivalence trials (i.e., learn AB and AC and infer CB) than on unrelated trials, regardless of whether or not a formal test for stimulus equivalence relations had been conducted. Consistent with previous results, event related potentials (ERPs) evoked by trained and emergent trials at parietal and occipital sites differed only for those participants who had not received a prior equivalence test. Experiment 2 further replicated and extended these behavioural and ERP findings using arbitrary symbols as stimuli and demonstrated time and frequency differences for trained and untrained relatedness trials. Overall, the findings demonstrate convincingly the ERP correlates of intra-experimentally established stimulus equivalence relations consisting entirely of arbitrary symbols and offer support for a contemporary cognitive-behavioural model of symbolic categorisation and relational inference. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Inference for local autocorrelations in locally stationary models.

    Science.gov (United States)

    Zhao, Zhibiao

    2015-04-01

    For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.

  17. Entropic Inference

    Science.gov (United States)

    Caticha, Ariel

    2011-03-01

    In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEnt and Bayes' rule, and therefore unifies the two themes of these workshops—the Maximum Entropy and the Bayesian methods—into a single general inference scheme.

  18. Comparative study of discretization methods of microarray data for inferring transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Ji Wei

    2010-10-01

    Full Text Available Abstract Background Microarray data discretization is a basic preprocess for many algorithms of gene regulatory network inference. Some common discretization methods in informatics are used to discretize microarray data. Selection of the discretization method is often arbitrary and no systematic comparison of different discretization has been conducted, in the context of gene regulatory network inference from time series gene expression data. Results In this study, we propose a new discretization method "bikmeans", and compare its performance with four other widely-used discretization methods using different datasets, modeling algorithms and number of intervals. Sensitivities, specificities and total accuracies were calculated and statistical analysis was carried out. Bikmeans method always gave high total accuracies. Conclusions Our results indicate that proper discretization methods can consistently improve gene regulatory network inference independent of network modeling algorithms and datasets. Our new method, bikmeans, resulted in significant better total accuracies than other methods.

  19. Bayesian Inference of Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design

    Science.gov (United States)

    2016-03-01

    each IDF curve and subsequently used to force a calibrated and validated precipitation - runoff model. Probability-based, risk-informed hydrologic...ERDC/CHL CHETN-X-2 March 2016 Approved for public release; distribution is unlimited. Bayesian Inference of Nonstationary Precipitation Intensity...based means by which to develop local precipitation Intensity-Duration-Frequency (IDF) curves using historical rainfall time series data collected for

  20. Inference of financial networks using the normalised mutual information rate

    Science.gov (United States)

    2018-01-01

    In this paper, we study data from financial markets, using the normalised Mutual Information Rate. We show how to use it to infer the underlying network structure of interrelations in the foreign currency exchange rates and stock indices of 15 currency areas. We first present the mathematical method and discuss its computational aspects, and apply it to artificial data from chaotic dynamics and to correlated normal-variates data. We then apply the method to infer the structure of the financial system from the time-series of currency exchange rates and stock indices. In particular, we study and reveal the interrelations among the various foreign currency exchange rates and stock indices in two separate networks, of which we also study their structural properties. Our results show that both inferred networks are small-world networks, sharing similar properties and having differences in terms of assortativity. Importantly, our work shows that global economies tend to connect with other economies world-wide, rather than creating small groups of local economies. Finally, the consistent interrelations depicted among the 15 currency areas are further supported by a discussion from the viewpoint of economics. PMID:29420644

  1. Inference of financial networks using the normalised mutual information rate.

    Science.gov (United States)

    Goh, Yong Kheng; Hasim, Haslifah M; Antonopoulos, Chris G

    2018-01-01

    In this paper, we study data from financial markets, using the normalised Mutual Information Rate. We show how to use it to infer the underlying network structure of interrelations in the foreign currency exchange rates and stock indices of 15 currency areas. We first present the mathematical method and discuss its computational aspects, and apply it to artificial data from chaotic dynamics and to correlated normal-variates data. We then apply the method to infer the structure of the financial system from the time-series of currency exchange rates and stock indices. In particular, we study and reveal the interrelations among the various foreign currency exchange rates and stock indices in two separate networks, of which we also study their structural properties. Our results show that both inferred networks are small-world networks, sharing similar properties and having differences in terms of assortativity. Importantly, our work shows that global economies tend to connect with other economies world-wide, rather than creating small groups of local economies. Finally, the consistent interrelations depicted among the 15 currency areas are further supported by a discussion from the viewpoint of economics.

  2. More than one kind of inference: re-examining what's learned in feature inference and classification.

    Science.gov (United States)

    Sweller, Naomi; Hayes, Brett K

    2010-08-01

    Three studies examined how task demands that impact on attention to typical or atypical category features shape the category representations formed through classification learning and inference learning. During training categories were learned via exemplar classification or by inferring missing exemplar features. In the latter condition inferences were made about missing typical features alone (typical feature inference) or about both missing typical and atypical features (mixed feature inference). Classification and mixed feature inference led to the incorporation of typical and atypical features into category representations, with both kinds of features influencing inferences about familiar (Experiments 1 and 2) and novel (Experiment 3) test items. Those in the typical inference condition focused primarily on typical features. Together with formal modelling, these results challenge previous accounts that have characterized inference learning as producing a focus on typical category features. The results show that two different kinds of inference learning are possible and that these are subserved by different kinds of category representations.

  3. Perceptual inference.

    Science.gov (United States)

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. SEMANTIC PATCH INFERENCE

    DEFF Research Database (Denmark)

    Andersen, Jesper

    2009-01-01

    Collateral evolution the problem of updating several library-using programs in response to API changes in the used library. In this dissertation we address the issue of understanding collateral evolutions by automatically inferring a high-level specification of the changes evident in a given set ...... specifications inferred by spdiff in Linux are shown. We find that the inferred specifications concisely capture the actual collateral evolution performed in the examples....

  5. Evaluation of recent GRACE monthly solution series with an ice sheet perspective

    Science.gov (United States)

    Horwath, Martin; Groh, Andreas

    2016-04-01

    GRACE monthly global gravity field solutions have undergone a remarkable evolution, leading to the latest (Release 5) series by CSR, GFZ, and JPL, to new series by other processing centers, such as ITSG and AIUB, as well as to efforts to derive combined solutions, particularly by the EGSIEM (European Gravity Service for Improved Emergency Management) project. For applications, such as GRACE inferences on ice sheet mass balance, the obvious question is on what GRACE solution series to base the assessment. Here we evaluate different GRACE solution series (including the ones listed above) in a unified framework. We concentrate on solutions expanded up to degree 90 or higher, since this is most appropriate for polar applications. We empirically assess the error levels in the spectral as well as in the spatial domain based on the month-to-month scatter in the high spherical harmonic degrees. We include empirical assessment of error correlations. We then apply all series to infer Antarctic and Greenland mass change time series and compare the results in terms of apparent signal content and noise level. We find that the ITSG solutions show lowest noise level in the high degrees (above 60). A preliminary combined solution from the EGSIEM project shows lowest noise in the degrees below 60. This virtue maps into the derived ice mass time series, where the EGSIEM-based results show the lowest noise in most cases. Meanwhile, there is no indication that any of the considered series systematically dampens actual geophysical signals.

  6. Multimodel inference and adaptive management

    Science.gov (United States)

    Rehme, S.E.; Powell, L.A.; Allen, Craig R.

    2011-01-01

    Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study’s inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.

  7. LASSIM-A network inference toolbox for genome-wide mechanistic modeling.

    Directory of Open Access Journals (Sweden)

    Rasmus Magnusson

    2017-06-01

    Full Text Available Recent technological advancements have made time-resolved, quantitative, multi-omics data available for many model systems, which could be integrated for systems pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM, which is a novel mathematical tool for performing large-scale inference using mechanistically defined ordinary differential equations (ODE for gene regulatory networks (GRNs. LASSIM integrates structural knowledge about regulatory interactions and non-linear equations with multiple steady state and dynamic response expression datasets. The rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of core genes that are assumed to regulate all other gene transcription events in the network. The LASSIM method is implemented as a general-purpose toolbox using the PyGMO Python package to make the most of multicore computers and high performance clusters, and is available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM works in two steps, where it first infers a non-linear ODE system of the pre-specified core gene expression. Second, LASSIM in parallel optimizes the parameters that model the regulation of peripheral genes by core system genes. We showed the usefulness of this method by applying LASSIM to infer a large-scale non-linear model of naïve Th2 cell differentiation, made possible by integrating Th2 specific bindings, time-series together with six public and six novel siRNA-mediated knock-down experiments. ChIP-seq showed significant overlap for all tested transcription factors. Next, we performed novel time-series measurements of total T-cells during differentiation towards Th2 and verified that our LASSIM model could monitor those data significantly better than comparable models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to a new type of model-based data analysis that combines the strengths of reliable mechanistic models

  8. Inference for Ecological Dynamical Systems: A Case Study of Two Endemic Diseases

    Directory of Open Access Journals (Sweden)

    Daniel A. Vasco

    2012-01-01

    Full Text Available A Bayesian Markov chain Monte Carlo method is used to infer parameters for an open stochastic epidemiological model: the Markovian susceptible-infected-recovered (SIR model, which is suitable for modeling and simulating recurrent epidemics. This allows exploring two major problems of inference appearing in many mechanistic population models. First, trajectories of these processes are often only partly observed. For example, during an epidemic the transmission process is only partly observable: one cannot record infection times. Therefore, one only records cases (infections as the observations. As a result some means of imputing or reconstructing individuals in the susceptible cases class must be accomplished. Second, the official reporting of observations (cases in epidemiology is typically done not as they are actually recorded but at some temporal interval over which they have been aggregated. To address these issues, this paper investigates the following problems. Parameter inference for a perfectly sampled open Markovian SIR is first considered. Next inference for an imperfectly observed sample path of the system is studied. Although this second problem has been solved for the case of closed epidemics, it has proven quite difficult for the case of open recurrent epidemics. Lastly, application of the statistical theory is made to measles and pertussis epidemic time series data from 60 UK cities.

  9. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    Science.gov (United States)

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  10. Quasi-experimental study designs series-paper 7: assessing the assumptions.

    Science.gov (United States)

    Bärnighausen, Till; Oldenburg, Catherine; Tugwell, Peter; Bommer, Christian; Ebert, Cara; Barreto, Mauricio; Djimeu, Eric; Haber, Noah; Waddington, Hugh; Rockers, Peter; Sianesi, Barbara; Bor, Jacob; Fink, Günther; Valentine, Jeffrey; Tanner, Jeffrey; Stanley, Tom; Sierra, Eduardo; Tchetgen, Eric Tchetgen; Atun, Rifat; Vollmer, Sebastian

    2017-09-01

    Quasi-experimental designs are gaining popularity in epidemiology and health systems research-in particular for the evaluation of health care practice, programs, and policy-because they allow strong causal inferences without randomized controlled experiments. We describe the concepts underlying five important quasi-experimental designs: Instrumental Variables, Regression Discontinuity, Interrupted Time Series, Fixed Effects, and Difference-in-Differences designs. We illustrate each of the designs with an example from health research. We then describe the assumptions required for each of the designs to ensure valid causal inference and discuss the tests available to examine the assumptions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Optimal inference with suboptimal models: Addiction and active Bayesian inference

    Science.gov (United States)

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl

    2015-01-01

    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321

  12. Inference rule and problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Goto, S

    1982-04-01

    Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.

  13. Knowledge and inference

    CERN Document Server

    Nagao, Makoto

    1990-01-01

    Knowledge and Inference discusses an important problem for software systems: How do we treat knowledge and ideas on a computer and how do we use inference to solve problems on a computer? The book talks about the problems of knowledge and inference for the purpose of merging artificial intelligence and library science. The book begins by clarifying the concept of """"knowledge"""" from many points of view, followed by a chapter on the current state of library science and the place of artificial intelligence in library science. Subsequent chapters cover central topics in the artificial intellig

  14. Geometric statistical inference

    International Nuclear Information System (INIS)

    Periwal, Vipul

    1999-01-01

    A reparametrization-covariant formulation of the inverse problem of probability is explicitly solved for finite sample sizes. The inferred distribution is explicitly continuous for finite sample size. A geometric solution of the statistical inference problem in higher dimensions is outlined

  15. Statistical inference of seabed sound-speed structure in the Gulf of Oman Basin.

    Science.gov (United States)

    Sagers, Jason D; Knobles, David P

    2014-06-01

    Addressed is the statistical inference of the sound-speed depth profile of a thick soft seabed from broadband sound propagation data recorded in the Gulf of Oman Basin in 1977. The acoustic data are in the form of time series signals recorded on a sparse vertical line array and generated by explosive sources deployed along a 280 km track. The acoustic data offer a unique opportunity to study a deep-water bottom-limited thickly sedimented environment because of the large number of time series measurements, very low seabed attenuation, and auxiliary measurements. A maximum entropy method is employed to obtain a conditional posterior probability distribution (PPD) for the sound-speed ratio and the near-surface sound-speed gradient. The multiple data samples allow for a determination of the average error constraint value required to uniquely specify the PPD for each data sample. Two complicating features of the statistical inference study are addressed: (1) the need to develop an error function that can both utilize the measured multipath arrival structure and mitigate the effects of data errors and (2) the effect of small bathymetric slopes on the structure of the bottom interacting arrivals.

  16. Estimation of tool wear length in finish milling using a fuzzy inference algorithm

    Science.gov (United States)

    Ko, Tae Jo; Cho, Dong Woo

    1993-10-01

    The geometric accuracy and surface roughness are mainly affected by the flank wear at the minor cutting edge in finish machining. A fuzzy estimator obtained by a fuzzy inference algorithm with a max-min composition rule to evaluate the minor flank wear length in finish milling is introduced. The features sensitive to minor flank wear are extracted from the dispersion analysis of a time series AR model of the feed directional acceleration of the spindle housing. Linguistic rules for fuzzy estimation are constructed using these features, and then fuzzy inferences are carried out with test data sets under various cutting conditions. The proposed system turns out to be effective for estimating minor flank wear length, and its mean error is less than 12%.

  17. MODIS and GIMMS Inferred Northern Hemisphere Spring Greenup in Responses to Preseason Climate

    Science.gov (United States)

    Xu, X.; Riley, W. J.; Koven, C.; Jia, G.

    2017-12-01

    We compare the discrepancies in Normalized Difference Vegetation Index (NDVI) inferred spring greenup (SG) between Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) instruments carried by the Global Inventory Monitoring and Modeling Studies (GIMMS) in North Hemisphere. The interannual variation of SG inferred by MODIS and GIMMS NDVI is well correlated in the mid to high latitudes. However, the presence of NDVI discrepancies leads to discrepancies in SG with remarkable latitudinal characteristics. MODIS NDVI inferred later SG in the high latitude while earlier SG in the mid to low latitudes, in comparison to GIMMS NDVI inferred SG. MODIS NDVI inferred SG is better correlated to preseason climate. Interannual variation of SG is only sensitive to preseason temperature. The GIMMS SG to temperature sensitivity over two periods implied that the inter-biome SG to temperature sensitivity is relatively stable, but SG to temperature sensitivity decreased over time. Over the same period, MODIS SG to temperature sensitivity is much higher than GIMMS. This decreased sensitivity demonstrated the findings from previous studies with continuous GIMMS NDVI analysis that vegetation growth (indicated by growing season NDVI) to temperature sensitivity is reduced over time and SG advance trend ceased after 2000s. Our results also explained the contradictive findings that SG advance accelerated after 2000s according to the merged GIMMS and MODIS NDVI time series. Despite the found discrepancies, without ground data support, the quality of NDVI and its inferred SG cannot be effectively evaluated. The discrepancies and uncertainties in different NDVI products and its inferred SG may bias the scientific significance of climate-vegetation relationship. The different NDVI products when used together should be first evaluated and harmonized.

  18. Inferring network topology from complex dynamics

    International Nuclear Information System (INIS)

    Shandilya, Srinivas Gorur; Timme, Marc

    2011-01-01

    Inferring the network topology from dynamical observations is a fundamental problem pervading research on complex systems. Here, we present a simple, direct method for inferring the structural connection topology of a network, given an observation of one collective dynamical trajectory. The general theoretical framework is applicable to arbitrary network dynamical systems described by ordinary differential equations. No interference (external driving) is required and the type of dynamics is hardly restricted in any way. In particular, the observed dynamics may be arbitrarily complex; stationary, invariant or transient; synchronous or asynchronous and chaotic or periodic. Presupposing a knowledge of the functional form of the dynamical units and of the coupling functions between them, we present an analytical solution to the inverse problem of finding the network topology from observing a time series of state variables only. Robust reconstruction is achieved in any sufficiently long generic observation of the system. We extend our method to simultaneously reconstructing both the entire network topology and all parameters appearing linear in the system's equations of motion. Reconstruction of network topology and system parameters is viable even in the presence of external noise that distorts the original dynamics substantially. The method provides a conceptually new step towards reconstructing a variety of real-world networks, including gene and protein interaction networks and neuronal circuits.

  19. Goal inferences about robot behavior : goal inferences and human response behaviors

    NARCIS (Netherlands)

    Broers, H.A.T.; Ham, J.R.C.; Broeders, R.; De Silva, P.; Okada, M.

    2014-01-01

    This explorative research focused on the goal inferences human observers draw based on a robot's behavior, and the extent to which those inferences predict people's behavior in response to that robot. Results show that different robot behaviors cause different response behavior from people.

  20. A local non-parametric model for trade sign inference

    Science.gov (United States)

    Blazejewski, Adam; Coggins, Richard

    2005-03-01

    We investigate a regularity in market order submission strategies for 12 stocks with large market capitalization on the Australian Stock Exchange. The regularity is evidenced by a predictable relationship between the trade sign (trade initiator), size of the trade, and the contents of the limit order book before the trade. We demonstrate this predictability by developing an empirical inference model to classify trades into buyer-initiated and seller-initiated. The model employs a local non-parametric method, k-nearest neighbor, which in the past was used successfully for chaotic time series prediction. The k-nearest neighbor with three predictor variables achieves an average out-of-sample classification accuracy of 71.40%, compared to 63.32% for the linear logistic regression with seven predictor variables. The result suggests that a non-linear approach may produce a more parsimonious trade sign inference model with a higher out-of-sample classification accuracy. Furthermore, for most of our stocks the observed regularity in market order submissions seems to have a memory of at least 30 trading days.

  1. Entropic Inference

    OpenAIRE

    Caticha, Ariel

    2010-01-01

    In this tutorial we review the essential arguments behing entropic inference. We focus on the epistemological notion of information and its relation to the Bayesian beliefs of rational agents. The problem of updating from a prior to a posterior probability distribution is tackled through an eliminative induction process that singles out the logarithmic relative entropy as the unique tool for inference. The resulting method of Maximum relative Entropy (ME), includes as special cases both MaxEn...

  2. Integrating external biological knowledge in the construction of regulatory networks from time-series expression data

    Directory of Open Access Journals (Sweden)

    Lo Kenneth

    2012-08-01

    Full Text Available Abstract Background Inference about regulatory networks from high-throughput genomics data is of great interest in systems biology. We present a Bayesian approach to infer gene regulatory networks from time series expression data by integrating various types of biological knowledge. Results We formulate network construction as a series of variable selection problems and use linear regression to model the data. Our method summarizes additional data sources with an informative prior probability distribution over candidate regression models. We extend the Bayesian model averaging (BMA variable selection method to select regulators in the regression framework. We summarize the external biological knowledge by an informative prior probability distribution over the candidate regression models. Conclusions We demonstrate our method on simulated data and a set of time-series microarray experiments measuring the effect of a drug perturbation on gene expression levels, and show that it outperforms leading regression-based methods in the literature.

  3. Learning Convex Inference of Marginals

    OpenAIRE

    Domke, Justin

    2012-01-01

    Graphical models trained using maximum likelihood are a common tool for probabilistic inference of marginal distributions. However, this approach suffers difficulties when either the inference process or the model is approximate. In this paper, the inference process is first defined to be the minimization of a convex function, inspired by free energy approximations. Learning is then done directly in terms of the performance of the inference process at univariate marginal prediction. The main ...

  4. The challenges to inferring the regulators of biodiversity in deep time.

    Science.gov (United States)

    Ezard, Thomas H G; Quental, Tiago B; Benton, Michael J

    2016-04-05

    Attempts to infer the ecological drivers of macroevolution in deep time have long drawn inspiration from work on extant systems, but long-term evolutionary and geological changes complicate the simple extrapolation of such theory. Recent efforts to incorporate a more informed ecology into macroevolution have moved beyond the descriptive, seeking to isolate generating mechanisms and produce testable hypotheses of how groups of organisms usurp each other or coexist over vast timespans. This theme issue aims to exemplify this progress, providing a series of case studies of how novel modelling approaches are helping infer the regulators of biodiversity in deep time. In this Introduction, we explore the challenges of these new approaches. First, we discuss how our choices of taxonomic units have implications for the conclusions drawn. Second, we emphasize the need to embrace the interdependence of biotic and abiotic changes, because no living organism ignores its environment. Third, in the light of parts 1 and 2, we discuss the set of dynamic signatures that we might expect to observe in the fossil record. Finally, we ask whether these dynamics represent the most ecologically informative foci for research efforts aimed at inferring the regulators of biodiversity in deep time. The papers in this theme issue contribute in each of these areas. © 2016 The Author(s).

  5. Probabilistic inductive inference: a survey

    OpenAIRE

    Ambainis, Andris

    2001-01-01

    Inductive inference is a recursion-theoretic theory of learning, first developed by E. M. Gold (1967). This paper surveys developments in probabilistic inductive inference. We mainly focus on finite inference of recursive functions, since this simple paradigm has produced the most interesting (and most complex) results.

  6. LAIT: a local ancestry inference toolkit.

    Science.gov (United States)

    Hui, Daniel; Fang, Zhou; Lin, Jerome; Duan, Qing; Li, Yun; Hu, Ming; Chen, Wei

    2017-09-06

    Inferring local ancestry in individuals of mixed ancestry has many applications, most notably in identifying disease-susceptible loci that vary among different ethnic groups. Many software packages are available for inferring local ancestry in admixed individuals. However, most of these existing software packages require specific formatted input files and generate output files in various types, yielding practical inconvenience. We developed a tool set, Local Ancestry Inference Toolkit (LAIT), which can convert standardized files into software-specific input file formats as well as standardize and summarize inference results for four popular local ancestry inference software: HAPMIX, LAMP, LAMP-LD, and ELAI. We tested LAIT using both simulated and real data sets and demonstrated that LAIT provides convenience to run multiple local ancestry inference software. In addition, we evaluated the performance of local ancestry software among different supported software packages, mainly focusing on inference accuracy and computational resources used. We provided a toolkit to facilitate the use of local ancestry inference software, especially for users with limited bioinformatics background.

  7. Bayesian statistical inference

    Directory of Open Access Journals (Sweden)

    Bruno De Finetti

    2017-04-01

    Full Text Available This work was translated into English and published in the volume: Bruno De Finetti, Induction and Probability, Biblioteca di Statistica, eds. P. Monari, D. Cocchi, Clueb, Bologna, 1993.Bayesian statistical Inference is one of the last fundamental philosophical papers in which we can find the essential De Finetti's approach to the statistical inference.

  8. Convergent cross-mapping and pairwise asymmetric inference.

    Science.gov (United States)

    McCracken, James M; Weigel, Robert S

    2014-12-01

    Convergent cross-mapping (CCM) is a technique for computing specific kinds of correlations between sets of times series. It was introduced by Sugihara et al. [Science 338, 496 (2012).] and is reported to be "a necessary condition for causation" capable of distinguishing causality from standard correlation. We show that the relationships between CCM correlations proposed by Sugihara et al. do not, in general, agree with intuitive concepts of "driving" and as such should not be considered indicative of causality. It is shown that the fact that the CCM algorithm implies causality is a function of system parameters for simple linear and nonlinear systems. For example, in a circuit containing a single resistor and inductor, both voltage and current can be identified as the driver depending on the frequency of the source voltage. It is shown that the CCM algorithm, however, can be modified to identify relationships between pairs of time series that are consistent with intuition for the considered example systems for which CCM causality analysis provided nonintuitive driver identifications. This modification of the CCM algorithm is introduced as "pairwise asymmetric inference" (PAI) and examples of its use are presented.

  9. Is there a hierarchy of social inferences? The likelihood and speed of inferring intentionality, mind, and personality.

    Science.gov (United States)

    Malle, Bertram F; Holbrook, Jess

    2012-04-01

    People interpret behavior by making inferences about agents' intentionality, mind, and personality. Past research studied such inferences 1 at a time; in real life, people make these inferences simultaneously. The present studies therefore examined whether 4 major inferences (intentionality, desire, belief, and personality), elicited simultaneously in response to an observed behavior, might be ordered in a hierarchy of likelihood and speed. To achieve generalizability, the studies included a wide range of stimulus behaviors, presented them verbally and as dynamic videos, and assessed inferences both in a retrieval paradigm (measuring the likelihood and speed of accessing inferences immediately after they were made) and in an online processing paradigm (measuring the speed of forming inferences during behavior observation). Five studies provide evidence for a hierarchy of social inferences-from intentionality and desire to belief to personality-that is stable across verbal and visual presentations and that parallels the order found in developmental and primate research. (c) 2012 APA, all rights reserved.

  10. New Bayesian inference method using two steps of Markov chain Monte Carlo and its application to shock tube experiment data of Furan oxidation

    KAUST Repository

    Kim, Daesang

    2016-01-06

    A new Bayesian inference method has been developed and applied to Furan shock tube experimental data for efficient statistical inferences of the Arrhenius parameters of two OH radical consumption reactions. The collected experimental data, which consist of time series signals of OH radical concentrations of 14 shock tube experiments, may require several days for MCMC computations even with the support of a fast surrogate of the combustion simulation model, while the new method reduces it to several hours by splitting the process into two steps of MCMC: the first inference of rate constants and the second inference of the Arrhenius parameters. Each step has low dimensional parameter spaces and the second step does not need the executions of the combustion simulation. Furthermore, the new approach has more flexibility in choosing the ranges of the inference parameters, and the higher speed and flexibility enable the more accurate inferences and the analyses of the propagation of errors in the measured temperatures and the alignment of the experimental time to the inference results.

  11. A likelihood-based time series modeling approach for application in dendrochronology to examine the growth-climate relations and forest disturbance history

    Science.gov (United States)

    A time series intervention analysis (TSIA) of dendrochronological data to infer the tree growth-climate-disturbance relations and forest disturbance history is described. Maximum likelihood is used to estimate the parameters of a structural time series model with components for ...

  12. INFERENCE BUILDING BLOCKS

    Science.gov (United States)

    2018-02-15

    expressed a variety of inference techniques on discrete and continuous distributions: exact inference, importance sampling, Metropolis-Hastings (MH...without redoing any math or rewriting any code. And although our main goal is composable reuse, our performance is also good because we can use...control paths. • The Hakaru language can express mixtures of discrete and continuous distributions, but the current disintegration transformation

  13. Practical Bayesian Inference

    Science.gov (United States)

    Bailer-Jones, Coryn A. L.

    2017-04-01

    Preface; 1. Probability basics; 2. Estimation and uncertainty; 3. Statistical models and inference; 4. Linear models, least squares, and maximum likelihood; 5. Parameter estimation: single parameter; 6. Parameter estimation: multiple parameters; 7. Approximating distributions; 8. Monte Carlo methods for inference; 9. Parameter estimation: Markov chain Monte Carlo; 10. Frequentist hypothesis testing; 11. Model comparison; 12. Dealing with more complicated problems; References; Index.

  14. Logical inference and evaluation

    International Nuclear Information System (INIS)

    Perey, F.G.

    1981-01-01

    Most methodologies of evaluation currently used are based upon the theory of statistical inference. It is generally perceived that this theory is not capable of dealing satisfactorily with what are called systematic errors. Theories of logical inference should be capable of treating all of the information available, including that not involving frequency data. A theory of logical inference is presented as an extension of deductive logic via the concept of plausibility and the application of group theory. Some conclusions, based upon the application of this theory to evaluation of data, are also given

  15. The Heuristic Value of p in Inductive Statistical Inference

    Directory of Open Access Journals (Sweden)

    Joachim I. Krueger

    2017-06-01

    Full Text Available Many statistical methods yield the probability of the observed data – or data more extreme – under the assumption that a particular hypothesis is true. This probability is commonly known as ‘the’ p-value. (Null Hypothesis Significance Testing ([NH]ST is the most prominent of these methods. The p-value has been subjected to much speculation, analysis, and criticism. We explore how well the p-value predicts what researchers presumably seek: the probability of the hypothesis being true given the evidence, and the probability of reproducing significant results. We also explore the effect of sample size on inferential accuracy, bias, and error. In a series of simulation experiments, we find that the p-value performs quite well as a heuristic cue in inductive inference, although there are identifiable limits to its usefulness. We conclude that despite its general usefulness, the p-value cannot bear the full burden of inductive inference; it is but one of several heuristic cues available to the data analyst. Depending on the inferential challenge at hand, investigators may supplement their reports with effect size estimates, Bayes factors, or other suitable statistics, to communicate what they think the data say.

  16. The Heuristic Value of p in Inductive Statistical Inference.

    Science.gov (United States)

    Krueger, Joachim I; Heck, Patrick R

    2017-01-01

    Many statistical methods yield the probability of the observed data - or data more extreme - under the assumption that a particular hypothesis is true. This probability is commonly known as 'the' p -value. (Null Hypothesis) Significance Testing ([NH]ST) is the most prominent of these methods. The p -value has been subjected to much speculation, analysis, and criticism. We explore how well the p -value predicts what researchers presumably seek: the probability of the hypothesis being true given the evidence, and the probability of reproducing significant results. We also explore the effect of sample size on inferential accuracy, bias, and error. In a series of simulation experiments, we find that the p -value performs quite well as a heuristic cue in inductive inference, although there are identifiable limits to its usefulness. We conclude that despite its general usefulness, the p -value cannot bear the full burden of inductive inference; it is but one of several heuristic cues available to the data analyst. Depending on the inferential challenge at hand, investigators may supplement their reports with effect size estimates, Bayes factors, or other suitable statistics, to communicate what they think the data say.

  17. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    (This text written by Jesper Møller, Aalborg University, is submitted for the collection ‘Stochastic Geometry: Highlights, Interactions and New Perspectives', edited by Wilfrid S. Kendall and Ilya Molchanov, to be published by ClarendonPress, Oxford, and planned to appear as Section 4.1 with the ......(This text written by Jesper Møller, Aalborg University, is submitted for the collection ‘Stochastic Geometry: Highlights, Interactions and New Perspectives', edited by Wilfrid S. Kendall and Ilya Molchanov, to be published by ClarendonPress, Oxford, and planned to appear as Section 4.......1 with the title ‘Inference'.) This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods using Markov chain Monte Carlo (MCMC) simulations. Due to space limitations the focus...

  18. Lower complexity bounds for lifted inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2015-01-01

    instances of the model. Numerous approaches for such “lifted inference” techniques have been proposed. While it has been demonstrated that these techniques will lead to significantly more efficient inference on some specific models, there are only very recent and still quite restricted results that show...... the feasibility of lifted inference on certain syntactically defined classes of models. Lower complexity bounds that imply some limitations for the feasibility of lifted inference on more expressive model classes were established earlier in Jaeger (2000; Jaeger, M. 2000. On the complexity of inference about...... that under the assumption that NETIME≠ETIME, there is no polynomial lifted inference algorithm for knowledge bases of weighted, quantifier-, and function-free formulas. Further strengthening earlier results, this is also shown to hold for approximate inference and for knowledge bases not containing...

  19. Variations on Bayesian Prediction and Inference

    Science.gov (United States)

    2016-05-09

    inference 2.2.1 Background There are a number of statistical inference problems that are not generally formulated via a full probability model...problem of inference about an unknown parameter, the Bayesian approach requires a full probability 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...the problem of inference about an unknown parameter, the Bayesian approach requires a full probability model/likelihood which can be an obstacle

  20. Inferring animal social networks and leadership: applications for passive monitoring arrays.

    Science.gov (United States)

    Jacoby, David M P; Papastamatiou, Yannis P; Freeman, Robin

    2016-11-01

    Analyses of animal social networks have frequently benefited from techniques derived from other disciplines. Recently, machine learning algorithms have been adopted to infer social associations from time-series data gathered using remote, telemetry systems situated at provisioning sites. We adapt and modify existing inference methods to reveal the underlying social structure of wide-ranging marine predators moving through spatial arrays of passive acoustic receivers. From six months of tracking data for grey reef sharks (Carcharhinus amblyrhynchos) at Palmyra atoll in the Pacific Ocean, we demonstrate that some individuals emerge as leaders within the population and that this behavioural coordination is predicted by both sex and the duration of co-occurrences between conspecifics. In doing so, we provide the first evidence of long-term, spatially extensive social processes in wild sharks. To achieve these results, we interrogate simulated and real tracking data with the explicit purpose of drawing attention to the key considerations in the use and interpretation of inference methods and their impact on resultant social structure. We provide a modified translation of the GMMEvents method for R, including new analyses quantifying the directionality and duration of social events with the aim of encouraging the careful use of these methods more widely in less tractable social animal systems but where passive telemetry is already widespread. © 2016 The Authors.

  1. Statistical inference of the generation probability of T-cell receptors from sequence repertoires.

    Science.gov (United States)

    Murugan, Anand; Mora, Thierry; Walczak, Aleksandra M; Callan, Curtis G

    2012-10-02

    Stochastic rearrangement of germline V-, D-, and J-genes to create variable coding sequence for certain cell surface receptors is at the origin of immune system diversity. This process, known as "VDJ recombination", is implemented via a series of stochastic molecular events involving gene choices and random nucleotide insertions between, and deletions from, genes. We use large sequence repertoires of the variable CDR3 region of human CD4+ T-cell receptor beta chains to infer the statistical properties of these basic biochemical events. Because any given CDR3 sequence can be produced in multiple ways, the probability distribution of hidden recombination events cannot be inferred directly from the observed sequences; we therefore develop a maximum likelihood inference method to achieve this end. To separate the properties of the molecular rearrangement mechanism from the effects of selection, we focus on nonproductive CDR3 sequences in T-cell DNA. We infer the joint distribution of the various generative events that occur when a new T-cell receptor gene is created. We find a rich picture of correlation (and absence thereof), providing insight into the molecular mechanisms involved. The generative event statistics are consistent between individuals, suggesting a universal biochemical process. Our probabilistic model predicts the generation probability of any specific CDR3 sequence by the primitive recombination process, allowing us to quantify the potential diversity of the T-cell repertoire and to understand why some sequences are shared between individuals. We argue that the use of formal statistical inference methods, of the kind presented in this paper, will be essential for quantitative understanding of the generation and evolution of diversity in the adaptive immune system.

  2. Adaptive Inference on General Graphical Models

    OpenAIRE

    Acar, Umut A.; Ihler, Alexander T.; Mettu, Ramgopal; Sumer, Ozgur

    2012-01-01

    Many algorithms and applications involve repeatedly solving variations of the same inference problem; for example we may want to introduce new evidence to the model or perform updates to conditional dependencies. The goal of adaptive inference is to take advantage of what is preserved in the model and perform inference more rapidly than from scratch. In this paper, we describe techniques for adaptive inference on general graphs that support marginal computation and updates to the conditional ...

  3. Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust.

    Science.gov (United States)

    Cun, Yupeng; Yang, Tsun-Po; Achter, Viktor; Lang, Ulrich; Peifer, Martin

    2018-06-01

    The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.

  4. Statistical inference for noisy nonlinear ecological dynamic systems.

    Science.gov (United States)

    Wood, Simon N

    2010-08-26

    Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.

  5. Model-free information-theoretic approach to infer leadership in pairs of zebrafish.

    Science.gov (United States)

    Butail, Sachit; Mwaffo, Violet; Porfiri, Maurizio

    2016-04-01

    Collective behavior affords several advantages to fish in avoiding predators, foraging, mating, and swimming. Although fish schools have been traditionally considered egalitarian superorganisms, a number of empirical observations suggest the emergence of leadership in gregarious groups. Detecting and classifying leader-follower relationships is central to elucidate the behavioral and physiological causes of leadership and understand its consequences. Here, we demonstrate an information-theoretic approach to infer leadership from positional data of fish swimming. In this framework, we measure social interactions between fish pairs through the mathematical construct of transfer entropy, which quantifies the predictive power of a time series to anticipate another, possibly coupled, time series. We focus on the zebrafish model organism, which is rapidly emerging as a species of choice in preclinical research for its genetic similarity to humans and reduced neurobiological complexity with respect to mammals. To overcome experimental confounds and generate test data sets on which we can thoroughly assess our approach, we adapt and calibrate a data-driven stochastic model of zebrafish motion for the simulation of a coupled dynamical system of zebrafish pairs. In this synthetic data set, the extent and direction of the coupling between the fish are systematically varied across a wide parameter range to demonstrate the accuracy and reliability of transfer entropy in inferring leadership. Our approach is expected to aid in the analysis of collective behavior, providing a data-driven perspective to understand social interactions.

  6. The inference from a single case: moral versus scientific inferences in implementing new biotechnologies.

    Science.gov (United States)

    Hofmann, B

    2008-06-01

    Are there similarities between scientific and moral inference? This is the key question in this article. It takes as its point of departure an instance of one person's story in the media changing both Norwegian public opinion and a brand-new Norwegian law prohibiting the use of saviour siblings. The case appears to falsify existing norms and to establish new ones. The analysis of this case reveals similarities in the modes of inference in science and morals, inasmuch as (a) a single case functions as a counter-example to an existing rule; (b) there is a common presupposition of stability, similarity and order, which makes it possible to reason from a few cases to a general rule; and (c) this makes it possible to hold things together and retain order. In science, these modes of inference are referred to as falsification, induction and consistency. In morals, they have a variety of other names. Hence, even without abandoning the fact-value divide, there appear to be similarities between inference in science and inference in morals, which may encourage communication across the boundaries between "the two cultures" and which are relevant to medical humanities.

  7. Generalized least squares and empirical Bayes estimation in regional partial duration series index-flood modeling

    DEFF Research Database (Denmark)

    Madsen, Henrik; Rosbjerg, Dan

    1997-01-01

    parameters is inferred from regional data using generalized least squares (GLS) regression. Two different Bayesian T-year event estimators are introduced: a linear estimator that requires only some moments of the prior distributions to be specified and a parametric estimator that is based on specified......A regional estimation procedure that combines the index-flood concept with an empirical Bayes method for inferring regional information is introduced. The model is based on the partial duration series approach with generalized Pareto (GP) distributed exceedances. The prior information of the model...

  8. Introductory statistical inference

    CERN Document Server

    Mukhopadhyay, Nitis

    2014-01-01

    This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of dist

  9. Active inference, communication and hermeneutics.

    Science.gov (United States)

    Friston, Karl J; Frith, Christopher D

    2015-07-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Belief propagation and loop series on planar graphs

    International Nuclear Information System (INIS)

    Chertkov, Michael; Teodorescu, Razvan; Chernyak, Vladimir Y

    2008-01-01

    We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed

  11. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    Science.gov (United States)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  12. Optimization methods for logical inference

    CERN Document Server

    Chandru, Vijay

    2011-01-01

    Merging logic and mathematics in deductive inference-an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though ""solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs."" Presenting powerful, proven optimization techniques for logic in

  13. Inference in `poor` languages

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, S.

    1996-10-01

    Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.

  14. Directed partial correlation: inferring large-scale gene regulatory network through induced topology disruptions.

    Directory of Open Access Journals (Sweden)

    Yinyin Yuan

    Full Text Available Inferring regulatory relationships among many genes based on their temporal variation in transcript abundance has been a popular research topic. Due to the nature of microarray experiments, classical tools for time series analysis lose power since the number of variables far exceeds the number of the samples. In this paper, we describe some of the existing multivariate inference techniques that are applicable to hundreds of variables and show the potential challenges for small-sample, large-scale data. We propose a directed partial correlation (DPC method as an efficient and effective solution to regulatory network inference using these data. Specifically for genomic data, the proposed method is designed to deal with large-scale datasets. It combines the efficiency of partial correlation for setting up network topology by testing conditional independence, and the concept of Granger causality to assess topology change with induced interruptions. The idea is that when a transcription factor is induced artificially within a gene network, the disruption of the network by the induction signifies a genes role in transcriptional regulation. The benchmarking results using GeneNetWeaver, the simulator for the DREAM challenges, provide strong evidence of the outstanding performance of the proposed DPC method. When applied to real biological data, the inferred starch metabolism network in Arabidopsis reveals many biologically meaningful network modules worthy of further investigation. These results collectively suggest DPC is a versatile tool for genomics research. The R package DPC is available for download (http://code.google.com/p/dpcnet/.

  15. EI: A Program for Ecological Inference

    Directory of Open Access Journals (Sweden)

    Gary King

    2004-09-01

    Full Text Available The program EI provides a method of inferring individual behavior from aggregate data. It implements the statistical procedures, diagnostics, and graphics from the book A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data (King 1997. Ecological inference, as traditionally defined, is the process of using aggregate (i.e., "ecological" data to infer discrete individual-level relationships of interest when individual-level data are not available. Ecological inferences are required in political science research when individual-level surveys are unavailable (e.g., local or comparative electoral politics, unreliable (racial politics, insufficient (political geography, or infeasible (political history. They are also required in numerous areas of ma jor significance in public policy (e.g., for applying the Voting Rights Act and other academic disciplines ranging from epidemiology and marketing to sociology and quantitative history.

  16. On the criticality of inferred models

    Science.gov (United States)

    Mastromatteo, Iacopo; Marsili, Matteo

    2011-10-01

    Advanced inference techniques allow one to reconstruct a pattern of interaction from high dimensional data sets, from probing simultaneously thousands of units of extended systems—such as cells, neural tissues and financial markets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to singular values of parameters, akin to critical points in physics where phase transitions occur. These are points where the response of physical systems to external perturbations, as measured by the susceptibility, is very large and diverges in the limit of infinite size. We show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher information) are directly related to the susceptibility of the inferred model. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. This region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time scales naturally yield models which are close to criticality.

  17. On the criticality of inferred models

    International Nuclear Information System (INIS)

    Mastromatteo, Iacopo; Marsili, Matteo

    2011-01-01

    Advanced inference techniques allow one to reconstruct a pattern of interaction from high dimensional data sets, from probing simultaneously thousands of units of extended systems—such as cells, neural tissues and financial markets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to singular values of parameters, akin to critical points in physics where phase transitions occur. These are points where the response of physical systems to external perturbations, as measured by the susceptibility, is very large and diverges in the limit of infinite size. We show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher information) are directly related to the susceptibility of the inferred model. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. This region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time scales naturally yield models which are close to criticality

  18. An Inference Language for Imaging

    DEFF Research Database (Denmark)

    Pedemonte, Stefano; Catana, Ciprian; Van Leemput, Koen

    2014-01-01

    We introduce iLang, a language and software framework for probabilistic inference. The iLang framework enables the definition of directed and undirected probabilistic graphical models and the automated synthesis of high performance inference algorithms for imaging applications. The iLang framewor...

  19. From GPS tracks to context: Inference of high-level context information through spatial clustering

    OpenAIRE

    Moreira, Adriano; Santos, Maribel Yasmina

    2005-01-01

    Location-aware applications use the location of users to adapt their behaviour and to select the relevant information for users in a particular situation. This location information is obtained through a set of location sensors, or from network-based location services, and is often used directly, without any further processing, as a parameter in a selection process. In this paper we propose a method to infer high-level context information from a series of position records obtained from a GPS r...

  20. Inference

    DEFF Research Database (Denmark)

    Møller, Jesper

    2010-01-01

    Chapter 9: This contribution concerns statistical inference for parametric models used in stochastic geometry and based on quick and simple simulation free procedures as well as more comprehensive methods based on a maximum likelihood or Bayesian approach combined with markov chain Monte Carlo...... (MCMC) techniques. Due to space limitations the focus is on spatial point processes....

  1. Feature Inference Learning and Eyetracking

    Science.gov (United States)

    Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.

    2009-01-01

    Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…

  2. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D

    2004-10-01

    Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and

  3. Forward and backward inference in spatial cognition.

    Directory of Open Access Journals (Sweden)

    Will D Penny

    Full Text Available This paper shows that the various computations underlying spatial cognition can be implemented using statistical inference in a single probabilistic model. Inference is implemented using a common set of 'lower-level' computations involving forward and backward inference over time. For example, to estimate where you are in a known environment, forward inference is used to optimally combine location estimates from path integration with those from sensory input. To decide which way to turn to reach a goal, forward inference is used to compute the likelihood of reaching that goal under each option. To work out which environment you are in, forward inference is used to compute the likelihood of sensory observations under the different hypotheses. For reaching sensory goals that require a chaining together of decisions, forward inference can be used to compute a state trajectory that will lead to that goal, and backward inference to refine the route and estimate control signals that produce the required trajectory. We propose that these computations are reflected in recent findings of pattern replay in the mammalian brain. Specifically, that theta sequences reflect decision making, theta flickering reflects model selection, and remote replay reflects route and motor planning. We also propose a mapping of the above computational processes onto lateral and medial entorhinal cortex and hippocampus.

  4. Time series analysis of nuclear instrumentation in EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.

    1996-01-01

    Results of a time series analysis of the scaler count data from the 3 wide range nuclear detectors in the Experimental Breeder Reactor-II are presented. One of the channels was replaced, and it was desired to determine if there was any statistically significant change (ie, improvement) in the channel's response after the replacement. Data were collected from all 3 channels for 16-day periods before and after detector replacement. Time series analysis and statistical tests showed that there was no significant change after the detector replacement. Also, there were no statistically significant differences among the 3 channels, either before or after the replacement. Finally, it was determined that errors in the reactivity change inferred from subcritical count monitoring during fuel handling would be on the other of 20-30 cents for single count intervals

  5. A Local Poisson Graphical Model for inferring networks from sequencing data.

    Science.gov (United States)

    Allen, Genevera I; Liu, Zhandong

    2013-09-01

    Gaussian graphical models, a class of undirected graphs or Markov Networks, are often used to infer gene networks based on microarray expression data. Many scientists, however, have begun using high-throughput sequencing technologies such as RNA-sequencing or next generation sequencing to measure gene expression. As the resulting data consists of counts of sequencing reads for each gene, Gaussian graphical models are not optimal for this discrete data. In this paper, we propose a novel method for inferring gene networks from sequencing data: the Local Poisson Graphical Model. Our model assumes a Local Markov property where each variable conditional on all other variables is Poisson distributed. We develop a neighborhood selection algorithm to fit our model locally by performing a series of l1 penalized Poisson, or log-linear, regressions. This yields a fast parallel algorithm for estimating networks from next generation sequencing data. In simulations, we illustrate the effectiveness of our methods for recovering network structure from count data. A case study on breast cancer microRNAs (miRNAs), a novel application of graphical models, finds known regulators of breast cancer genes and discovers novel miRNA clusters and hubs that are targets for future research.

  6. A formal model of interpersonal inference

    Directory of Open Access Journals (Sweden)

    Michael eMoutoussis

    2014-03-01

    Full Text Available Introduction: We propose that active Bayesian inference – a general framework for decision-making – can equally be applied to interpersonal exchanges. Social cognition, however, entails special challenges. We address these challenges through a novel formulation of a formal model and demonstrate its psychological significance. Method: We review relevant literature, especially with regards to interpersonal representations, formulate a mathematical model and present a simulation study. The model accommodates normative models from utility theory and places them within the broader setting of Bayesian inference. Crucially, we endow people's prior beliefs, into which utilities are absorbed, with preferences of self and others. The simulation illustrates the model's dynamics and furnishes elementary predictions of the theory. Results: 1. Because beliefs about self and others inform both the desirability and plausibility of outcomes, in this framework interpersonal representations become beliefs that have to be actively inferred. This inference, akin to 'mentalising' in the psychological literature, is based upon the outcomes of interpersonal exchanges. 2. We show how some well-known social-psychological phenomena (e.g. self-serving biases can be explained in terms of active interpersonal inference. 3. Mentalising naturally entails Bayesian updating of how people value social outcomes. Crucially this includes inference about one’s own qualities and preferences. Conclusion: We inaugurate a Bayes optimal framework for modelling intersubject variability in mentalising during interpersonal exchanges. Here, interpersonal representations are endowed with explicit functional and affective properties. We suggest the active inference framework lends itself to the study of psychiatric conditions where mentalising is distorted.

  7. Effective network inference through multivariate information transfer estimation

    Science.gov (United States)

    Dahlqvist, Carl-Henrik; Gnabo, Jean-Yves

    2018-06-01

    Network representation has steadily gained in popularity over the past decades. In many disciplines such as finance, genetics, neuroscience or human travel to cite a few, the network may not directly be observable and needs to be inferred from time-series data, leading to the issue of separating direct interactions between two entities forming the network from indirect interactions coming through its remaining part. Drawing on recent contributions proposing strategies to deal with this problem such as the so-called "global silencing" approach of Barzel and Barabasi or "network deconvolution" of Feizi et al. (2013), we propose a novel methodology to infer an effective network structure from multivariate conditional information transfers. Its core principal is to test the information transfer between two nodes through a step-wise approach by conditioning the transfer for each pair on a specific set of relevant nodes as identified by our algorithm from the rest of the network. The methodology is model free and can be applied to high-dimensional networks with both inter-lag and intra-lag relationships. It outperforms state-of-the-art approaches for eliminating the redundancies and more generally retrieving simulated artificial networks in our Monte-Carlo experiments. We apply the method to stock market data at different frequencies (15 min, 1 h, 1 day) to retrieve the network of US largest financial institutions and then document how bank's centrality measurements relate to bank's systemic vulnerability.

  8. Distributional Inference

    NARCIS (Netherlands)

    Kroese, A.H.; van der Meulen, E.A.; Poortema, Klaas; Schaafsma, W.

    1995-01-01

    The making of statistical inferences in distributional form is conceptionally complicated because the epistemic 'probabilities' assigned are mixtures of fact and fiction. In this respect they are essentially different from 'physical' or 'frequency-theoretic' probabilities. The distributional form is

  9. Continuous Integrated Invariant Inference, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will develop a new technique for invariant inference and embed this and other current invariant inference and checking techniques in an...

  10. An econometric time-series analysis of global CO2 concentrations and emissions

    International Nuclear Information System (INIS)

    Cohen, B.C.; Labys, W.C.; Eliste, P.

    2001-01-01

    This paper extends previous work on the econometric modelling of CO 2 concentrations and emissions. The importance of such work rests in the fact that models of the Cohen-Labys variety represent the only alternative to scientific or physical models of CO 2 accumulations whose parameters are inferred rather than estimated. The stimulation for this study derives from the recent discovery of oscillations and cycles in the net biospheric flux of CO 2 . A variety of time series tests is thus used to search for the presence of normality, stationarity, cyclicality and stochastic processes in global CO 2 emissions and concentrations series. Given the evidence for cyclicality of a short-run nature in the spectra of these series, both structural time series and error correction model are applied to confirm the frequency and amplitude of these cycles. Our results suggest new possibilities for determining equilibrium levels of CO 2 concentrations and subsequently revising stabilization policies. (Author)

  11. Quantum-Like Representation of Non-Bayesian Inference

    Science.gov (United States)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  12. Bayesian Inference Methods for Sparse Channel Estimation

    DEFF Research Database (Denmark)

    Pedersen, Niels Lovmand

    2013-01-01

    This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...

  13. Statistical inference an integrated Bayesianlikelihood approach

    CERN Document Server

    Aitkin, Murray

    2010-01-01

    Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct Bayesian counterparts of frequentist t-tests and other standard statistical methods for hypothesis testing.After an overview of the competing theories of statistical inference, the book introduces the Bayes/likelihood approach used throughout. It pre

  14. Comparison Groups in Short Interrupted Time-Series: An Illustration Evaluating No Child Left Behind

    Science.gov (United States)

    Wong, Manyee; Cook, Thomas D.; Steiner, Peter M.

    2009-01-01

    Interrupted time-series (ITS) are often used to assess the causal effect of a planned or even unplanned shock introduced into an on-going process. The pre-intervention slope is supposed to index the causal counterfactual, and deviations from it in mean, slope or variance are used to indicate an effect. However, a secure causal inference is only…

  15. Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows

    Directory of Open Access Journals (Sweden)

    F. Laio

    2004-01-01

    Full Text Available Several methods exist for the detection of nonlinearity in univariate time series. In the present work we consider riverflow time series to infer the dynamical characteristics of the rainfall-runoff transformation. It is shown that the non-Gaussian nature of the driving force (rainfall can distort the results of such methods, in particular when surrogate data techniques are used. Deterministic versus stochastic (DVS plots, conditionally applied to the decay phases of the time series, are instead proved to be a suitable tool to detect nonlinearity in processes driven by non-Gaussian (Poissonian noise. An application to daily discharges from three Italian rivers provides important clues to the presence of nonlinearity in the rainfall-runoff transformation.

  16. Inference Attacks and Control on Database Structures

    Directory of Open Access Journals (Sweden)

    Muhamed Turkanovic

    2015-02-01

    Full Text Available Today’s databases store information with sensitivity levels that range from public to highly sensitive, hence ensuring confidentiality can be highly important, but also requires costly control. This paper focuses on the inference problem on different database structures. It presents possible treats on privacy with relation to the inference, and control methods for mitigating these treats. The paper shows that using only access control, without any inference control is inadequate, since these models are unable to protect against indirect data access. Furthermore, it covers new inference problems which rise from the dimensions of new technologies like XML, semantics, etc.

  17. Type Inference with Inequalities

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff

    1991-01-01

    of (monotonic) inequalities on the types of variables and expressions. A general result about systems of inequalities over semilattices yields a solvable form. We distinguish between deciding typability (the existence of solutions) and type inference (the computation of a minimal solution). In our case, both......Type inference can be phrased as constraint-solving over types. We consider an implicitly typed language equipped with recursive types, multiple inheritance, 1st order parametric polymorphism, and assignments. Type correctness is expressed as satisfiability of a possibly infinite collection...

  18. Methods for obtaining sorption data from uranium-series disequilibria

    International Nuclear Information System (INIS)

    Finnegan, D.L.; Bryant, E.A.

    1987-12-01

    Two possible methods have been identified for obtaining in situ retardation factors from measurements of uranium-series disequilibria at Yucca Mountain. The first method would make use of the enhanced 234 U/ 238 U ratio in groundwater to derive a signature for exchangeable uranium sorbed on the rock; the exchangeable uranium would be leached and assayed. The second method would use the ratio of 222 Rn to 234 U in solution, corrected for weathering, to infer the retardation factor for uranium. Similar methods could be applied to thorium and radium

  19. Inference in models with adaptive learning

    NARCIS (Netherlands)

    Chevillon, G.; Massmann, M.; Mavroeidis, S.

    2010-01-01

    Identification of structural parameters in models with adaptive learning can be weak, causing standard inference procedures to become unreliable. Learning also induces persistent dynamics, and this makes the distribution of estimators and test statistics non-standard. Valid inference can be

  20. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  1. Dynamical Bayesian inference of time-evolving interactions: From a pair of coupled oscillators to networks of oscillators

    Science.gov (United States)

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  2. Kernel methods and flexible inference for complex stochastic dynamics

    Science.gov (United States)

    Capobianco, Enrico

    2008-07-01

    Approximation theory suggests that series expansions and projections represent standard tools for random process applications from both numerical and statistical standpoints. Such instruments emphasize the role of both sparsity and smoothness for compression purposes, the decorrelation power achieved in the expansion coefficients space compared to the signal space, and the reproducing kernel property when some special conditions are met. We consider these three aspects central to the discussion in this paper, and attempt to analyze the characteristics of some known approximation instruments employed in a complex application domain such as financial market time series. Volatility models are often built ad hoc, parametrically and through very sophisticated methodologies. But they can hardly deal with stochastic processes with regard to non-Gaussianity, covariance non-stationarity or complex dependence without paying a big price in terms of either model mis-specification or computational efficiency. It is thus a good idea to look at other more flexible inference tools; hence the strategy of combining greedy approximation and space dimensionality reduction techniques, which are less dependent on distributional assumptions and more targeted to achieve computationally efficient performances. Advantages and limitations of their use will be evaluated by looking at algorithmic and model building strategies, and by reporting statistical diagnostics.

  3. Fiducial inference - A Neyman-Pearson interpretation

    NARCIS (Netherlands)

    Salome, D; VonderLinden, W; Dose,; Fischer, R; Preuss, R

    1999-01-01

    Fisher's fiducial argument is a tool for deriving inferences in the form of a probability distribution on the parameter space, not based on Bayes's Theorem. Lindley established that in exceptional situations fiducial inferences coincide with posterior distributions; in the other situations fiducial

  4. Uncertainty in prediction and in inference

    NARCIS (Netherlands)

    Hilgevoord, J.; Uffink, J.

    1991-01-01

    The concepts of uncertainty in prediction and inference are introduced and illustrated using the diffraction of light as an example. The close re-lationship between the concepts of uncertainty in inference and resolving power is noted. A general quantitative measure of uncertainty in

  5. In search of functional association from time-series microarray data based on the change trend and level of gene expression

    Directory of Open Access Journals (Sweden)

    Zeng An-Ping

    2006-02-01

    Full Text Available Abstract Background The increasing availability of time-series expression data opens up new possibilities to study functional linkages of genes. Present methods used to infer functional linkages between genes from expression data are mainly based on a point-to-point comparison. Change trends between consecutive time points in time-series data have been so far not well explored. Results In this work we present a new method based on extracting main features of the change trend and level of gene expression between consecutive time points. The method, termed as trend correlation (TC, includes two major steps: 1, calculating a maximal local alignment of change trend score by dynamic programming and a change trend correlation coefficient between the maximal matched change levels of each gene pair; 2, inferring relationships of gene pairs based on two statistical extraction procedures. The new method considers time shifts and inverted relationships in a similar way as the local clustering (LC method but the latter is merely based on a point-to-point comparison. The TC method is demonstrated with data from yeast cell cycle and compared with the LC method and the widely used Pearson correlation coefficient (PCC based clustering method. The biological significance of the gene pairs is examined with several large-scale yeast databases. Although the TC method predicts an overall lower number of gene pairs than the other two methods at a same p-value threshold, the additional number of gene pairs inferred by the TC method is considerable: e.g. 20.5% compared with the LC method and 49.6% with the PCC method for a p-value threshold of 2.7E-3. Moreover, the percentage of the inferred gene pairs consistent with databases by our method is generally higher than the LC method and similar to the PCC method. A significant number of the gene pairs only inferred by the TC method are process-identity or function-similarity pairs or have well-documented biological

  6. Polynomial Chaos Surrogates for Bayesian Inference

    KAUST Repository

    Le Maitre, Olivier

    2016-01-06

    The Bayesian inference is a popular probabilistic method to solve inverse problems, such as the identification of field parameter in a PDE model. The inference rely on the Bayes rule to update the prior density of the sought field, from observations, and derive its posterior distribution. In most cases the posterior distribution has no explicit form and has to be sampled, for instance using a Markov-Chain Monte Carlo method. In practice the prior field parameter is decomposed and truncated (e.g. by means of Karhunen- Lo´eve decomposition) to recast the inference problem into the inference of a finite number of coordinates. Although proved effective in many situations, the Bayesian inference as sketched above faces several difficulties requiring improvements. First, sampling the posterior can be a extremely costly task as it requires multiple resolutions of the PDE model for different values of the field parameter. Second, when the observations are not very much informative, the inferred parameter field can highly depends on its prior which can be somehow arbitrary. These issues have motivated the introduction of reduced modeling or surrogates for the (approximate) determination of the parametrized PDE solution and hyperparameters in the description of the prior field. Our contribution focuses on recent developments in these two directions: the acceleration of the posterior sampling by means of Polynomial Chaos expansions and the efficient treatment of parametrized covariance functions for the prior field. We also discuss the possibility of making such approach adaptive to further improve its efficiency.

  7. Interactive Instruction in Bayesian Inference

    DEFF Research Database (Denmark)

    Khan, Azam; Breslav, Simon; Hornbæk, Kasper

    2018-01-01

    An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction. These pri......An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction....... These principles concern coherence, personalization, signaling, segmenting, multimedia, spatial contiguity, and pretraining. Principles of self-explanation and interactivity are also applied. Four experiments on the Mammography Problem showed that these principles help participants answer the questions...... that an instructional approach to improving human performance in Bayesian inference is a promising direction....

  8. Inferring Phylogenetic Networks Using PhyloNet.

    Science.gov (United States)

    Wen, Dingqiao; Yu, Yun; Zhu, Jiafan; Nakhleh, Luay

    2018-07-01

    PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates. Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented. Maximum parsimony is based on an extension of the "minimizing deep coalescences" criterion to phylogenetic networks, whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard, PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the results of the various analyzes and generates phylogenetic networks in the extended Newick format that is readily viewable by existing visualization software.

  9. Active inference and learning.

    Science.gov (United States)

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O Doherty, John; Pezzulo, Giovanni

    2016-09-01

    This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Value-Based Standards Guide Sexism Inferences for Self and Others.

    Science.gov (United States)

    Mitamura, Chelsea; Erickson, Lynnsey; Devine, Patricia G

    2017-09-01

    People often disagree about what constitutes sexism, and these disagreements can be both socially and legally consequential. It is unclear, however, why or how people come to different conclusions about whether something or someone is sexist. Previous research on judgments about sexism has focused on the perceiver's gender and attitudes, but neither of these variables identifies comparative standards that people use to determine whether any given behavior (or person) is sexist. Extending Devine and colleagues' values framework (Devine, Monteith, Zuwerink, & Elliot, 1991; Plant & Devine, 1998), we argue that, when evaluating others' behavior, perceivers rely on the morally-prescriptive values that guide their own behavior toward women. In a series of 3 studies we demonstrate that (1) people's personal standards for sexism in their own and others' behavior are each related to their values regarding sexism, (2) these values predict how much behavioral evidence people need to infer sexism, and (3) people with stringent, but not lenient, value-based standards get angry and try to regulate a sexist perpetrator's behavior to reduce sexism. Furthermore, these personal values are related to all outcomes in the present work above and beyond other person characteristics previously used to predict sexism inferences. We discuss the implications of differing value-based standards for explaining and reconciling disputes over what constitutes sexist behavior.

  11. Active Inference, homeostatic regulation and adaptive behavioural control.

    Science.gov (United States)

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-11-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Generative Inferences Based on Learned Relations

    Science.gov (United States)

    Chen, Dawn; Lu, Hongjing; Holyoak, Keith J.

    2017-01-01

    A key property of relational representations is their "generativity": From partial descriptions of relations between entities, additional inferences can be drawn about other entities. A major theoretical challenge is to demonstrate how the capacity to make generative inferences could arise as a result of learning relations from…

  13. Parametric statistical inference basic theory and modern approaches

    CERN Document Server

    Zacks, Shelemyahu; Tsokos, C P

    1981-01-01

    Parametric Statistical Inference: Basic Theory and Modern Approaches presents the developments and modern trends in statistical inference to students who do not have advanced mathematical and statistical preparation. The topics discussed in the book are basic and common to many fields of statistical inference and thus serve as a jumping board for in-depth study. The book is organized into eight chapters. Chapter 1 provides an overview of how the theory of statistical inference is presented in subsequent chapters. Chapter 2 briefly discusses statistical distributions and their properties. Chapt

  14. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    Science.gov (United States)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  15. Variational inference & deep learning: A new synthesis

    OpenAIRE

    Kingma, D.P.

    2017-01-01

    In this thesis, Variational Inference and Deep Learning: A New Synthesis, we propose novel solutions to the problems of variational (Bayesian) inference, generative modeling, representation learning, semi-supervised learning, and stochastic optimization.

  16. Variational inference & deep learning : A new synthesis

    NARCIS (Netherlands)

    Kingma, D.P.

    2017-01-01

    In this thesis, Variational Inference and Deep Learning: A New Synthesis, we propose novel solutions to the problems of variational (Bayesian) inference, generative modeling, representation learning, semi-supervised learning, and stochastic optimization.

  17. Ensemble stacking mitigates biases in inference of synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Brendan Chambers

    2018-03-01

    Full Text Available A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches. Mapping the routing of spikes through local circuitry is crucial for understanding neocortical computation. Under appropriate experimental conditions, these maps can be used to infer likely patterns of synaptic recruitment, linking activity to underlying anatomical connections. Such inferences help to reveal the synaptic implementation of population dynamics and computation. We compare a number of standard functional measures to infer underlying connectivity. We find that regularization impacts measures

  18. Constraint Satisfaction Inference : Non-probabilistic Global Inference for Sequence Labelling

    NARCIS (Netherlands)

    Canisius, S.V.M.; van den Bosch, A.; Daelemans, W.; Basili, R.; Moschitti, A.

    2006-01-01

    We present a new method for performing sequence labelling based on the idea of using a machine-learning classifier to generate several possible output sequences, and then applying an inference procedure to select the best sequence among those. Most sequence labelling methods following a similar

  19. Reasoning about Informal Statistical Inference: One Statistician's View

    Science.gov (United States)

    Rossman, Allan J.

    2008-01-01

    This paper identifies key concepts and issues associated with the reasoning of informal statistical inference. I focus on key ideas of inference that I think all students should learn, including at secondary level as well as tertiary. I argue that a fundamental component of inference is to go beyond the data at hand, and I propose that statistical…

  20. Meta-learning framework applied in bioinformatics inference system design.

    Science.gov (United States)

    Arredondo, Tomás; Ormazábal, Wladimir

    2015-01-01

    This paper describes a meta-learner inference system development framework which is applied and tested in the implementation of bioinformatic inference systems. These inference systems are used for the systematic classification of the best candidates for inclusion in bacterial metabolic pathway maps. This meta-learner-based approach utilises a workflow where the user provides feedback with final classification decisions which are stored in conjunction with analysed genetic sequences for periodic inference system training. The inference systems were trained and tested with three different data sets related to the bacterial degradation of aromatic compounds. The analysis of the meta-learner-based framework involved contrasting several different optimisation methods with various different parameters. The obtained inference systems were also contrasted with other standard classification methods with accurate prediction capabilities observed.

  1. Statistical inference and Aristotle's Rhetoric.

    Science.gov (United States)

    Macdonald, Ranald R

    2004-11-01

    Formal logic operates in a closed system where all the information relevant to any conclusion is present, whereas this is not the case when one reasons about events and states of the world. Pollard and Richardson drew attention to the fact that the reasoning behind statistical tests does not lead to logically justifiable conclusions. In this paper statistical inferences are defended not by logic but by the standards of everyday reasoning. Aristotle invented formal logic, but argued that people mostly get at the truth with the aid of enthymemes--incomplete syllogisms which include arguing from examples, analogies and signs. It is proposed that statistical tests work in the same way--in that they are based on examples, invoke the analogy of a model and use the size of the effect under test as a sign that the chance hypothesis is unlikely. Of existing theories of statistical inference only a weak version of Fisher's takes this into account. Aristotle anticipated Fisher by producing an argument of the form that there were too many cases in which an outcome went in a particular direction for that direction to be plausibly attributed to chance. We can therefore conclude that Aristotle would have approved of statistical inference and there is a good reason for calling this form of statistical inference classical.

  2. Children's and adults' judgments of the certainty of deductive inferences, inductive inferences, and guesses.

    Science.gov (United States)

    Pillow, Bradford H; Pearson, Raeanne M; Hecht, Mary; Bremer, Amanda

    2010-01-01

    Children and adults rated their own certainty following inductive inferences, deductive inferences, and guesses. Beginning in kindergarten, participants rated deductions as more certain than weak inductions or guesses. Deductions were rated as more certain than strong inductions beginning in Grade 3, and fourth-grade children and adults differentiated strong inductions, weak inductions, and informed guesses from pure guesses. By Grade 3, participants also gave different types of explanations for their deductions and inductions. These results are discussed in relation to children's concepts of cognitive processes, logical reasoning, and epistemological development.

  3. fastBMA: scalable network inference and transitive reduction.

    Science.gov (United States)

    Hung, Ling-Hong; Shi, Kaiyuan; Wu, Migao; Young, William Chad; Raftery, Adrian E; Yeung, Ka Yee

    2017-10-01

    Inferring genetic networks from genome-wide expression data is extremely demanding computationally. We have developed fastBMA, a distributed, parallel, and scalable implementation of Bayesian model averaging (BMA) for this purpose. fastBMA also includes a computationally efficient module for eliminating redundant indirect edges in the network by mapping the transitive reduction to an easily solved shortest-path problem. We evaluated the performance of fastBMA on synthetic data and experimental genome-wide time series yeast and human datasets. When using a single CPU core, fastBMA is up to 100 times faster than the next fastest method, LASSO, with increased accuracy. It is a memory-efficient, parallel, and distributed application that scales to human genome-wide expression data. A 10 000-gene regulation network can be obtained in a matter of hours using a 32-core cloud cluster (2 nodes of 16 cores). fastBMA is a significant improvement over its predecessor ScanBMA. It is more accurate and orders of magnitude faster than other fast network inference methods such as the 1 based on LASSO. The improved scalability allows it to calculate networks from genome scale data in a reasonable time frame. The transitive reduction method can improve accuracy in denser networks. fastBMA is available as code (M.I.T. license) from GitHub (https://github.com/lhhunghimself/fastBMA), as part of the updated networkBMA Bioconductor package (https://www.bioconductor.org/packages/release/bioc/html/networkBMA.html) and as ready-to-deploy Docker images (https://hub.docker.com/r/biodepot/fastbma/). © The Authors 2017. Published by Oxford University Press.

  4. Deep Learning for Population Genetic Inference.

    Science.gov (United States)

    Sheehan, Sara; Song, Yun S

    2016-03-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  5. Co-Inheritance Analysis within the Domains of Life Substantially Improves Network Inference by Phylogenetic Profiling.

    Directory of Open Access Journals (Sweden)

    Junha Shin

    Full Text Available Phylogenetic profiling, a network inference method based on gene inheritance profiles, has been widely used to construct functional gene networks in microbes. However, its utility for network inference in higher eukaryotes has been limited. An improved algorithm with an in-depth understanding of pathway evolution may overcome this limitation. In this study, we investigated the effects of taxonomic structures on co-inheritance analysis using 2,144 reference species in four query species: Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens. We observed three clusters of reference species based on a principal component analysis of the phylogenetic profiles, which correspond to the three domains of life-Archaea, Bacteria, and Eukaryota-suggesting that pathways inherit primarily within specific domains or lower-ranked taxonomic groups during speciation. Hence, the co-inheritance pattern within a taxonomic group may be eroded by confounding inheritance patterns from irrelevant taxonomic groups. We demonstrated that co-inheritance analysis within domains substantially improved network inference not only in microbe species but also in the higher eukaryotes, including humans. Although we observed two sub-domain clusters of reference species within Eukaryota, co-inheritance analysis within these sub-domain taxonomic groups only marginally improved network inference. Therefore, we conclude that co-inheritance analysis within domains is the optimal approach to network inference with the given reference species. The construction of a series of human gene networks with increasing sample sizes of the reference species for each domain revealed that the size of the high-accuracy networks increased as additional reference species genomes were included, suggesting that within-domain co-inheritance analysis will continue to expand human gene networks as genomes of additional species are sequenced. Taken together, we propose that co

  6. Using Alien Coins to Test Whether Simple Inference Is Bayesian

    Science.gov (United States)

    Cassey, Peter; Hawkins, Guy E.; Donkin, Chris; Brown, Scott D.

    2016-01-01

    Reasoning and inference are well-studied aspects of basic cognition that have been explained as statistically optimal Bayesian inference. Using a simplified experimental design, we conducted quantitative comparisons between Bayesian inference and human inference at the level of individuals. In 3 experiments, with more than 13,000 participants, we…

  7. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  8. A comparison of various forecasting techniques applied to mean hourly wind speed time series

    Energy Technology Data Exchange (ETDEWEB)

    Sfetsos, A. [7 Pirsou Street, Athens (Greece)

    2000-09-01

    This paper presents a comparison of various forecasting approaches, using time series analysis, on mean hourly wind speed data. In addition to the traditional linear (ARMA) models and the commonly used feed forward and recurrent neural networks, other approaches are also examined including the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Neural Logic Networks. The developed models are evaluated for their ability to produce accurate and fast forecasts. (Author)

  9. mSieve: Differential Behavioral Privacy in Time Series of Mobile Sensor Data.

    Science.gov (United States)

    Saleheen, Nazir; Chakraborty, Supriyo; Ali, Nasir; Mahbubur Rahman, Md; Hossain, Syed Monowar; Bari, Rummana; Buder, Eugene; Srivastava, Mani; Kumar, Santosh

    2016-09-01

    Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. But the accuracy requirement on inferences drawn from physiological data, together with well-established limits within which these data values occur, render traditional privacy mechanisms inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 participants and demonstrate that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors.

  10. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Chavira, Mark; Darwiche, Adnan

    2004-01-01

    We describe a system for exact inference with relational Bayesian networks as defined in the publicly available \\primula\\ tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference by evaluating...

  11. Causal inference in economics and marketing.

    Science.gov (United States)

    Varian, Hal R

    2016-07-05

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.

  12. Inferring relationships between pairs of individuals from locus heterozygosities

    Directory of Open Access Journals (Sweden)

    Spinetti Isabella

    2002-11-01

    Full Text Available Abstract Background The traditional exact method for inferring relationships between individuals from genetic data is not easily applicable in all situations that may be encountered in several fields of applied genetics. This study describes an approach that gives affordable results and is easily applicable; it is based on the probabilities that two individuals share 0, 1 or both alleles at a locus identical by state. Results We show that these probabilities (zi depend on locus heterozygosity (H, and are scarcely affected by variation of the distribution of allele frequencies. This allows us to obtain empirical curves relating zi's to H for a series of common relationships, so that the likelihood ratio of a pair of relationships between any two individuals, given their genotypes at a locus, is a function of a single parameter, H. Application to large samples of mother-child and full-sib pairs shows that the statistical power of this method to infer the correct relationship is not much lower than the exact method. Analysis of a large database of STR data proves that locus heterozygosity does not vary significantly among Caucasian populations, apart from special cases, so that the likelihood ratio of the more common relationships between pairs of individuals may be obtained by looking at tabulated zi values. Conclusions A simple method is provided, which may be used by any scientist with the help of a calculator or a spreadsheet to compute the likelihood ratios of common alternative relationships between pairs of individuals.

  13. Uncertainty in prediction and in inference

    International Nuclear Information System (INIS)

    Hilgevoord, J.; Uffink, J.

    1991-01-01

    The concepts of uncertainty in prediction and inference are introduced and illustrated using the diffraction of light as an example. The close relationship between the concepts of uncertainty in inference and resolving power is noted. A general quantitative measure of uncertainty in inference can be obtained by means of the so-called statistical distance between probability distributions. When applied to quantum mechanics, this distance leads to a measure of the distinguishability of quantum states, which essentially is the absolute value of the matrix element between the states. The importance of this result to the quantum mechanical uncertainty principle is noted. The second part of the paper provides a derivation of the statistical distance on the basis of the so-called method of support

  14. Nonparametric predictive inference in statistical process control

    NARCIS (Netherlands)

    Arts, G.R.J.; Coolen, F.P.A.; Laan, van der P.

    2000-01-01

    New methods for statistical process control are presented, where the inferences have a nonparametric predictive nature. We consider several problems in process control in terms of uncertainties about future observable random quantities, and we develop inferences for these random quantities hased on

  15. Compiling Relational Bayesian Networks for Exact Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred; Darwiche, Adnan; Chavira, Mark

    2006-01-01

    We describe in this paper a system for exact inference with relational Bayesian networks as defined in the publicly available PRIMULA tool. The system is based on compiling propositional instances of relational Bayesian networks into arithmetic circuits and then performing online inference...

  16. Making inference from wildlife collision data: inferring predator absence from prey strikes

    Directory of Open Access Journals (Sweden)

    Peter Caley

    2017-02-01

    Full Text Available Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application.

  17. Making inference from wildlife collision data: inferring predator absence from prey strikes.

    Science.gov (United States)

    Caley, Peter; Hosack, Geoffrey R; Barry, Simon C

    2017-01-01

    Wildlife collision data are ubiquitous, though challenging for making ecological inference due to typically irreducible uncertainty relating to the sampling process. We illustrate a new approach that is useful for generating inference from predator data arising from wildlife collisions. By simply conditioning on a second prey species sampled via the same collision process, and by using a biologically realistic numerical response functions, we can produce a coherent numerical response relationship between predator and prey. This relationship can then be used to make inference on the population size of the predator species, including the probability of extinction. The statistical conditioning enables us to account for unmeasured variation in factors influencing the runway strike incidence for individual airports and to enable valid comparisons. A practical application of the approach for testing hypotheses about the distribution and abundance of a predator species is illustrated using the hypothesized red fox incursion into Tasmania, Australia. We estimate that conditional on the numerical response between fox and lagomorph runway strikes on mainland Australia, the predictive probability of observing no runway strikes of foxes in Tasmania after observing 15 lagomorph strikes is 0.001. We conclude there is enough evidence to safely reject the null hypothesis that there is a widespread red fox population in Tasmania at a population density consistent with prey availability. The method is novel and has potential wider application.

  18. Causal inference in biology networks with integrated belief propagation.

    Science.gov (United States)

    Chang, Rui; Karr, Jonathan R; Schadt, Eric E

    2015-01-01

    Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.

  19. Everyday conversation requires cognitive inference: neural bases of comprehending implicated meanings in conversations.

    Science.gov (United States)

    Jang, Gijeong; Yoon, Shin-ae; Lee, Sung-Eun; Park, Haeil; Kim, Joohan; Ko, Jeong Hoon; Park, Hae-Jeong

    2013-11-01

    In ordinary conversations, literal meanings of an utterance are often quite different from implicated meanings and the inference about implicated meanings is essentially required for successful comprehension of the speaker's utterances. Inference of finding implicated meanings is based on the listener's assumption that the conversational partner says only relevant matters according to the maxim of relevance in Grice's theory of conversational implicature. To investigate the neural correlates of comprehending implicated meanings under the maxim of relevance, a total of 23 participants underwent an fMRI task with a series of conversational pairs, each consisting of a question and an answer. The experimental paradigm was composed of three conditions: explicit answers, moderately implicit answers, and highly implicit answers. Participants were asked to decide whether the answer to the Yes/No question meant 'Yes' or 'No'. Longer reaction time was required for the highly implicit answers than for the moderately implicit answers without affecting the accuracy. The fMRI results show that the left anterior temporal lobe, left angular gyrus, and left posterior middle temporal gyrus had stronger activation in both moderately and highly implicit conditions than in the explicit condition. Comprehension of highly implicit answers had increased activations in additional regions including the left inferior frontal gyrus, left medial prefrontal cortex, left posterior cingulate cortex and right anterior temporal lobe. The activation results indicate involvement of these regions in the inference process to build coherence between literally irrelevant but pragmatically associated utterances under the maxim of relevance. Especially, the left anterior temporal lobe showed high sensitivity to the level of implicitness and showed increased activation for highly versus moderately implicit conditions, which imply its central role in inference such as semantic integration. The right

  20. Deep Learning for Population Genetic Inference.

    Directory of Open Access Journals (Sweden)

    Sara Sheehan

    2016-03-01

    Full Text Available Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data to the output (e.g., population genetic parameters of interest. We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history. Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme.

  1. Deep Learning for Population Genetic Inference

    Science.gov (United States)

    Sheehan, Sara; Song, Yun S.

    2016-01-01

    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statistics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Interestingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme. PMID:27018908

  2. A Bayesian Network Schema for Lessening Database Inference

    National Research Council Canada - National Science Library

    Chang, LiWu; Moskowitz, Ira S

    2001-01-01

    .... The authors introduce a formal schema for database inference analysis, based upon a Bayesian network structure, which identifies critical parameters involved in the inference problem and represents...

  3. Type Inference for Session Types in the Pi-Calculus

    DEFF Research Database (Denmark)

    Graversen, Eva Fajstrup; Harbo, Jacob Buchreitz; Huttel, Hans

    2014-01-01

    In this paper we present a direct algorithm for session type inference for the π-calculus. Type inference for session types has previously been achieved by either imposing limitations and restriction on the π-calculus, or by reducing the type inference problem to that for linear types. Our approach...

  4. Time Series Modeling of Nano-Gold Immunochromatographic Assay via Expectation Maximization Algorithm.

    Science.gov (United States)

    Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Cao, Jie; Liu, Xiaohui

    2013-12-01

    In this paper, the expectation maximization (EM) algorithm is applied to the modeling of the nano-gold immunochromatographic assay (nano-GICA) via available time series of the measured signal intensities of the test and control lines. The model for the nano-GICA is developed as the stochastic dynamic model that consists of a first-order autoregressive stochastic dynamic process and a noisy measurement. By using the EM algorithm, the model parameters, the actual signal intensities of the test and control lines, as well as the noise intensity can be identified simultaneously. Three different time series data sets concerning the target concentrations are employed to demonstrate the effectiveness of the introduced algorithm. Several indices are also proposed to evaluate the inferred models. It is shown that the model fits the data very well.

  5. Explanatory Preferences Shape Learning and Inference.

    Science.gov (United States)

    Lombrozo, Tania

    2016-10-01

    Explanations play an important role in learning and inference. People often learn by seeking explanations, and they assess the viability of hypotheses by considering how well they explain the data. An emerging body of work reveals that both children and adults have strong and systematic intuitions about what constitutes a good explanation, and that these explanatory preferences have a systematic impact on explanation-based processes. In particular, people favor explanations that are simple and broad, with the consequence that engaging in explanation can shape learning and inference by leading people to seek patterns and favor hypotheses that support broad and simple explanations. Given the prevalence of explanation in everyday cognition, understanding explanation is therefore crucial to understanding learning and inference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Grammatical inference algorithms, routines and applications

    CERN Document Server

    Wieczorek, Wojciech

    2017-01-01

    This book focuses on grammatical inference, presenting classic and modern methods of grammatical inference from the perspective of practitioners. To do so, it employs the Python programming language to present all of the methods discussed. Grammatical inference is a field that lies at the intersection of multiple disciplines, with contributions from computational linguistics, pattern recognition, machine learning, computational biology, formal learning theory and many others. Though the book is largely practical, it also includes elements of learning theory, combinatorics on words, the theory of automata and formal languages, plus references to real-world problems. The listings presented here can be directly copied and pasted into other programs, thus making the book a valuable source of ready recipes for students, academic researchers, and programmers alike, as well as an inspiration for their further development.>.

  7. A neuro-fuzzy computing technique for modeling hydrological time series

    Science.gov (United States)

    Nayak, P. C.; Sudheer, K. P.; Rangan, D. M.; Ramasastri, K. S.

    2004-05-01

    Intelligent computing tools such as artificial neural network (ANN) and fuzzy logic approaches are proven to be efficient when applied individually to a variety of problems. Recently there has been a growing interest in combining both these approaches, and as a result, neuro-fuzzy computing techniques have evolved. This approach has been tested and evaluated in the field of signal processing and related areas, but researchers have only begun evaluating the potential of this neuro-fuzzy hybrid approach in hydrologic modeling studies. This paper presents the application of an adaptive neuro fuzzy inference system (ANFIS) to hydrologic time series modeling, and is illustrated by an application to model the river flow of Baitarani River in Orissa state, India. An introduction to the ANFIS modeling approach is also presented. The advantage of the method is that it does not require the model structure to be known a priori, in contrast to most of the time series modeling techniques. The results showed that the ANFIS forecasted flow series preserves the statistical properties of the original flow series. The model showed good performance in terms of various statistical indices. The results are highly promising, and a comparative analysis suggests that the proposed modeling approach outperforms ANNs and other traditional time series models in terms of computational speed, forecast errors, efficiency, peak flow estimation etc. It was observed that the ANFIS model preserves the potential of the ANN approach fully, and eases the model building process.

  8. BagReg: Protein inference through machine learning.

    Science.gov (United States)

    Zhao, Can; Liu, Dao; Teng, Ben; He, Zengyou

    2015-08-01

    Protein inference from the identified peptides is of primary importance in the shotgun proteomics. The target of protein inference is to identify whether each candidate protein is truly present in the sample. To date, many computational methods have been proposed to solve this problem. However, there is still no method that can fully utilize the information hidden in the input data. In this article, we propose a learning-based method named BagReg for protein inference. The method firstly artificially extracts five features from the input data, and then chooses each feature as the class feature to separately build models to predict the presence probabilities of proteins. Finally, the weak results from five prediction models are aggregated to obtain the final result. We test our method on six public available data sets. The experimental results show that our method is superior to the state-of-the-art protein inference algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    Science.gov (United States)

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  10. Modeling time-series data from microbial communities.

    Science.gov (United States)

    Ridenhour, Benjamin J; Brooker, Sarah L; Williams, Janet E; Van Leuven, James T; Miller, Aaron W; Dearing, M Denise; Remien, Christopher H

    2017-11-01

    As sequencing technologies have advanced, the amount of information regarding the composition of bacterial communities from various environments (for example, skin or soil) has grown exponentially. To date, most work has focused on cataloging taxa present in samples and determining whether the distribution of taxa shifts with exogenous covariates. However, important questions regarding how taxa interact with each other and their environment remain open thus preventing in-depth ecological understanding of microbiomes. Time-series data from 16S rDNA amplicon sequencing are becoming more common within microbial ecology, but methods to infer ecological interactions from these longitudinal data are limited. We address this gap by presenting a method of analysis using Poisson regression fit with an elastic-net penalty that (1) takes advantage of the fact that the data are time series; (2) constrains estimates to allow for the possibility of many more interactions than data; and (3) is scalable enough to handle data consisting of thousands of taxa. We test the method on gut microbiome data from white-throated woodrats (Neotoma albigula) that were fed varying amounts of the plant secondary compound oxalate over a period of 22 days to estimate interactions between OTUs and their environment.

  11. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  12. Russell and Humean Inferences

    Directory of Open Access Journals (Sweden)

    João Paulo Monteiro

    2001-12-01

    Full Text Available Russell's The Problems of Philosophy tries to establish a new theory of induction, at the same time that Hume is there accused of an irrational/ scepticism about induction". But a careful analysis of the theory of knowledge explicitly acknowledged by Hume reveals that, contrary to the standard interpretation in the XXth century, possibly influenced by Russell, Hume deals exclusively with causal inference (which he never classifies as "causal induction", although now we are entitled to do so, never with inductive inference in general, mainly generalizations about sensible qualities of objects ( whether, e.g., "all crows are black" or not is not among Hume's concerns. Russell's theories are thus only false alternatives to Hume's, in (1912 or in his (1948.

  13. Efficient algorithms for conditional independence inference

    Czech Academy of Sciences Publication Activity Database

    Bouckaert, R.; Hemmecke, R.; Lindner, S.; Studený, Milan

    2010-01-01

    Roč. 11, č. 1 (2010), s. 3453-3479 ISSN 1532-4435 R&D Projects: GA ČR GA201/08/0539; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : conditional independence inference * linear programming approach Subject RIV: BA - General Mathematics Impact factor: 2.949, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/studeny-efficient algorithms for conditional independence inference.pdf

  14. State-Space Inference and Learning with Gaussian Processes

    OpenAIRE

    Turner, R; Deisenroth, MP; Rasmussen, CE

    2010-01-01

    18.10.13 KB. Ok to add author version to spiral, authors hold copyright. State-space inference and learning with Gaussian processes (GPs) is an unsolved problem. We propose a new, general methodology for inference and learning in nonlinear state-space models that are described probabilistically by non-parametric GP models. We apply the expectation maximization algorithm to iterate between inference in the latent state-space and learning the parameters of the underlying GP dynamics model. C...

  15. Enhancing Transparency and Control When Drawing Data-Driven Inferences About Individuals.

    Science.gov (United States)

    Chen, Daizhuo; Fraiberger, Samuel P; Moakler, Robert; Provost, Foster

    2017-09-01

    Recent studies show the remarkable power of fine-grained information disclosed by users on social network sites to infer users' personal characteristics via predictive modeling. Similar fine-grained data are being used successfully in other commercial applications. In response, attention is turning increasingly to the transparency that organizations provide to users as to what inferences are drawn and why, as well as to what sort of control users can be given over inferences that are drawn about them. In this article, we focus on inferences about personal characteristics based on information disclosed by users' online actions. As a use case, we explore personal inferences that are made possible from "Likes" on Facebook. We first present a means for providing transparency into the information responsible for inferences drawn by data-driven models. We then introduce the "cloaking device"-a mechanism for users to inhibit the use of particular pieces of information in inference. Using these analytical tools we ask two main questions: (1) How much information must users cloak to significantly affect inferences about their personal traits? We find that usually users must cloak only a small portion of their actions to inhibit inference. We also find that, encouragingly, false-positive inferences are significantly easier to cloak than true-positive inferences. (2) Can firms change their modeling behavior to make cloaking more difficult? The answer is a definitive yes. We demonstrate a simple modeling change that requires users to cloak substantially more information to affect the inferences drawn. The upshot is that organizations can provide transparency and control even into complicated, predictive model-driven inferences, but they also can make control easier or harder for their users.

  16. Boosting Bayesian parameter inference of nonlinear stochastic differential equation models by Hamiltonian scale separation.

    Science.gov (United States)

    Albert, Carlo; Ulzega, Simone; Stoop, Ruedi

    2016-04-01

    Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.

  17. Inferring the role of transcription factors in regulatory networks

    Directory of Open Access Journals (Sweden)

    Le Borgne Michel

    2008-05-01

    Full Text Available Abstract Background Expression profiles obtained from multiple perturbation experiments are increasingly used to reconstruct transcriptional regulatory networks, from well studied, simple organisms up to higher eukaryotes. Admittedly, a key ingredient in developing a reconstruction method is its ability to integrate heterogeneous sources of information, as well as to comply with practical observability issues: measurements can be scarce or noisy. In this work, we show how to combine a network of genetic regulations with a set of expression profiles, in order to infer the functional effect of the regulations, as inducer or repressor. Our approach is based on a consistency rule between a network and the signs of variation given by expression arrays. Results We evaluate our approach in several settings of increasing complexity. First, we generate artificial expression data on a transcriptional network of E. coli extracted from the literature (1529 nodes and 3802 edges, and we estimate that 30% of the regulations can be annotated with about 30 profiles. We additionally prove that at most 40.8% of the network can be inferred using our approach. Second, we use this network in order to validate the predictions obtained with a compendium of real expression profiles. We describe a filtering algorithm that generates particularly reliable predictions. Finally, we apply our inference approach to S. cerevisiae transcriptional network (2419 nodes and 4344 interactions, by combining ChIP-chip data and 15 expression profiles. We are able to detect and isolate inconsistencies between the expression profiles and a significant portion of the model (15% of all the interactions. In addition, we report predictions for 14.5% of all interactions. Conclusion Our approach does not require accurate expression levels nor times series. Nevertheless, we show on both data, real and artificial, that a relatively small number of perturbation experiments are enough to determine

  18. Fused Regression for Multi-source Gene Regulatory Network Inference.

    Directory of Open Access Journals (Sweden)

    Kari Y Lam

    2016-12-01

    Full Text Available Understanding gene regulatory networks is critical to understanding cellular differentiation and response to external stimuli. Methods for global network inference have been developed and applied to a variety of species. Most approaches consider the problem of network inference independently in each species, despite evidence that gene regulation can be conserved even in distantly related species. Further, network inference is often confined to single data-types (single platforms and single cell types. We introduce a method for multi-source network inference that allows simultaneous estimation of gene regulatory networks in multiple species or biological processes through the introduction of priors based on known gene relationships such as orthology incorporated using fused regression. This approach improves network inference performance even when orthology mapping and conservation are incomplete. We refine this method by presenting an algorithm that extracts the true conserved subnetwork from a larger set of potentially conserved interactions and demonstrate the utility of our method in cross species network inference. Last, we demonstrate our method's utility in learning from data collected on different experimental platforms.

  19. HIERARCHICAL PROBABILISTIC INFERENCE OF COSMIC SHEAR

    International Nuclear Information System (INIS)

    Schneider, Michael D.; Dawson, William A.; Hogg, David W.; Marshall, Philip J.; Bard, Deborah J.; Meyers, Joshua; Lang, Dustin

    2015-01-01

    Point estimators for the shearing of galaxy images induced by gravitational lensing involve a complex inverse problem in the presence of noise, pixelization, and model uncertainties. We present a probabilistic forward modeling approach to gravitational lensing inference that has the potential to mitigate the biased inferences in most common point estimators and is practical for upcoming lensing surveys. The first part of our statistical framework requires specification of a likelihood function for the pixel data in an imaging survey given parameterized models for the galaxies in the images. We derive the lensing shear posterior by marginalizing over all intrinsic galaxy properties that contribute to the pixel data (i.e., not limited to galaxy ellipticities) and learn the distributions for the intrinsic galaxy properties via hierarchical inference with a suitably flexible conditional probabilitiy distribution specification. We use importance sampling to separate the modeling of small imaging areas from the global shear inference, thereby rendering our algorithm computationally tractable for large surveys. With simple numerical examples we demonstrate the improvements in accuracy from our importance sampling approach, as well as the significance of the conditional distribution specification for the intrinsic galaxy properties when the data are generated from an unknown number of distinct galaxy populations with different morphological characteristics

  20. Inverse Ising inference with correlated samples

    International Nuclear Information System (INIS)

    Obermayer, Benedikt; Levine, Erel

    2014-01-01

    Correlations between two variables of a high-dimensional system can be indicative of an underlying interaction, but can also result from indirect effects. Inverse Ising inference is a method to distinguish one from the other. Essentially, the parameters of the least constrained statistical model are learned from the observed correlations such that direct interactions can be separated from indirect correlations. Among many other applications, this approach has been helpful for protein structure prediction, because residues which interact in the 3D structure often show correlated substitutions in a multiple sequence alignment. In this context, samples used for inference are not independent but share an evolutionary history on a phylogenetic tree. Here, we discuss the effects of correlations between samples on global inference. Such correlations could arise due to phylogeny but also via other slow dynamical processes. We present a simple analytical model to address the resulting inference biases, and develop an exact method accounting for background correlations in alignment data by combining phylogenetic modeling with an adaptive cluster expansion algorithm. We find that popular reweighting schemes are only marginally effective at removing phylogenetic bias, suggest a rescaling strategy that yields better results, and provide evidence that our conclusions carry over to the frequently used mean-field approach to the inverse Ising problem. (paper)

  1. The Impact of Disablers on Predictive Inference

    Science.gov (United States)

    Cummins, Denise Dellarosa

    2014-01-01

    People consider alternative causes when deciding whether a cause is responsible for an effect (diagnostic inference) but appear to neglect them when deciding whether an effect will occur (predictive inference). Five experiments were conducted to test a 2-part explanation of this phenomenon: namely, (a) that people interpret standard predictive…

  2. Inference as Prediction

    Science.gov (United States)

    Watson, Jane

    2007-01-01

    Inference, or decision making, is seen in curriculum documents as the final step in a statistical investigation. For a formal statistical enquiry this may be associated with sophisticated tests involving probability distributions. For young students without the mathematical background to perform such tests, it is still possible to draw informal…

  3. cDREM: inferring dynamic combinatorial gene regulation.

    Science.gov (United States)

    Wise, Aaron; Bar-Joseph, Ziv

    2015-04-01

    Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.

  4. Problem solving and inference mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, K; Nakajima, R; Yonezawa, A; Goto, S; Aoyama, A

    1982-01-01

    The heart of the fifth generation computer will be powerful mechanisms for problem solving and inference. A deduction-oriented language is to be designed, which will form the core of the whole computing system. The language is based on predicate logic with the extended features of structuring facilities, meta structures and relational data base interfaces. Parallel computation mechanisms and specialized hardware architectures are being investigated to make possible efficient realization of the language features. The project includes research into an intelligent programming system, a knowledge representation language and system, and a meta inference system to be built on the core. 30 references.

  5. Inference of topology and the nature of synapses, and the flow of information in neuronal networks

    Science.gov (United States)

    Borges, F. S.; Lameu, E. L.; Iarosz, K. C.; Protachevicz, P. R.; Caldas, I. L.; Viana, R. L.; Macau, E. E. N.; Batista, A. M.; Baptista, M. S.

    2018-02-01

    The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by which nonadjacent neurons do "understand" each other (positive mutual information), however, this exchange of information is not capable of causing effect (zero transfer entropy). Remarkably, inhibitory connections, responsible for enhancing synchronization, transfer more information than excitatory connections, known to enhance entropy in the network. We also demonstrate that our methodology can be used to correctly infer directionality of synapses even in the presence of dynamic and observational Gaussian noise, and is also successful in providing the effective directionality of intermodular connectivity, when only mean fields can be measured.

  6. Elements of Causal Inference: Foundations and Learning Algorithms

    DEFF Research Database (Denmark)

    Peters, Jonas Martin; Janzing, Dominik; Schölkopf, Bernhard

    A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning......A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning...

  7. The Role of Working Memory in the Probabilistic Inference of Future Sensory Events.

    Science.gov (United States)

    Cashdollar, Nathan; Ruhnau, Philipp; Weisz, Nathan; Hasson, Uri

    2017-05-01

    The ability to represent the emerging regularity of sensory information from the external environment has been thought to allow one to probabilistically infer future sensory occurrences and thus optimize behavior. However, the underlying neural implementation of this process is still not comprehensively understood. Through a convergence of behavioral and neurophysiological evidence, we establish that the probabilistic inference of future events is critically linked to people's ability to maintain the recent past in working memory. Magnetoencephalography recordings demonstrated that when visual stimuli occurring over an extended time series had a greater statistical regularity, individuals with higher working-memory capacity (WMC) displayed enhanced slow-wave neural oscillations in the θ frequency band (4-8 Hz.) prior to, but not during stimulus appearance. This prestimulus neural activity was specifically linked to contexts where information could be anticipated and influenced the preferential sensory processing for this visual information after its appearance. A separate behavioral study demonstrated that this process intrinsically emerges during continuous perception and underpins a realistic advantage for efficient behavioral responses. In this way, WMC optimizes the anticipation of higher level semantic concepts expected to occur in the near future. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Fisher information framework for time series modeling

    Science.gov (United States)

    Venkatesan, R. C.; Plastino, A.

    2017-08-01

    A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.

  9. Causal inference in econometrics

    CERN Document Server

    Kreinovich, Vladik; Sriboonchitta, Songsak

    2016-01-01

    This book is devoted to the analysis of causal inference which is one of the most difficult tasks in data analysis: when two phenomena are observed to be related, it is often difficult to decide whether one of them causally influences the other one, or whether these two phenomena have a common cause. This analysis is the main focus of this volume. To get a good understanding of the causal inference, it is important to have models of economic phenomena which are as accurate as possible. Because of this need, this volume also contains papers that use non-traditional economic models, such as fuzzy models and models obtained by using neural networks and data mining techniques. It also contains papers that apply different econometric models to analyze real-life economic dependencies.

  10. Assessment of network inference methods: how to cope with an underdetermined problem.

    Directory of Open Access Journals (Sweden)

    Caroline Siegenthaler

    Full Text Available The inference of biological networks is an active research area in the field of systems biology. The number of network inference algorithms has grown tremendously in the last decade, underlining the importance of a fair assessment and comparison among these methods. Current assessments of the performance of an inference method typically involve the application of the algorithm to benchmark datasets and the comparison of the network predictions against the gold standard or reference networks. While the network inference problem is often deemed underdetermined, implying that the inference problem does not have a (unique solution, the consequences of such an attribute have not been rigorously taken into consideration. Here, we propose a new procedure for assessing the performance of gene regulatory network (GRN inference methods. The procedure takes into account the underdetermined nature of the inference problem, in which gene regulatory interactions that are inferable or non-inferable are determined based on causal inference. The assessment relies on a new definition of the confusion matrix, which excludes errors associated with non-inferable gene regulations. For demonstration purposes, the proposed assessment procedure is applied to the DREAM 4 In Silico Network Challenge. The results show a marked change in the ranking of participating methods when taking network inferability into account.

  11. Probability and Statistical Inference

    OpenAIRE

    Prosper, Harrison B.

    2006-01-01

    These lectures introduce key concepts in probability and statistical inference at a level suitable for graduate students in particle physics. Our goal is to paint as vivid a picture as possible of the concepts covered.

  12. Fuzzy logic controller using different inference methods

    International Nuclear Information System (INIS)

    Liu, Z.; De Keyser, R.

    1994-01-01

    In this paper the design of fuzzy controllers by using different inference methods is introduced. Configuration of the fuzzy controllers includes a general rule-base which is a collection of fuzzy PI or PD rules, the triangular fuzzy data model and a centre of gravity defuzzification algorithm. The generalized modus ponens (GMP) is used with the minimum operator of the triangular norm. Under the sup-min inference rule, six fuzzy implication operators are employed to calculate the fuzzy look-up tables for each rule base. The performance is tested in simulated systems with MATLAB/SIMULINK. Results show the effects of using the fuzzy controllers with different inference methods and applied to different test processes

  13. PREFACE: ELC International Meeting on Inference, Computation, and Spin Glasses (ICSG2013)

    Science.gov (United States)

    Kabashima, Yoshiyuki; Hukushima, Koji; Inoue, Jun-ichi; Tanaka, Toshiyuki; Watanabe, Osamu

    2013-12-01

    The close relationship between probability-based inference and statistical mechanics of disordered systems has been noted for some time. This relationship has provided researchers with a theoretical foundation in various fields of information processing for analytical performance evaluation and construction of efficient algorithms based on message-passing or Monte Carlo sampling schemes. The ELC International Meeting on 'Inference, Computation, and Spin Glasses (ICSG2013)', was held in Sapporo 28-30 July 2013. The meeting was organized as a satellite meeting of STATPHYS25 in order to offer a forum where concerned researchers can assemble and exchange information on the latest results and newly established methodologies, and discuss future directions of the interdisciplinary studies between statistical mechanics and information sciences. Financial support from Grant-in-Aid for Scientific Research on Innovative Areas, MEXT, Japan 'Exploring the Limits of Computation (ELC)' is gratefully acknowledged. We are pleased to publish 23 papers contributed by invited speakers of ICSG2013 in this volume of Journal of Physics: Conference Series. We hope that this volume will promote further development of this highly vigorous interdisciplinary field between statistical mechanics and information/computer science. Editors and ICSG2013 Organizing Committee: Koji Hukushima Jun-ichi Inoue (Local Chair of ICSG2013) Yoshiyuki Kabashima (Editor-in-Chief) Toshiyuki Tanaka Osamu Watanabe (General Chair of ICSG2013)

  14. Statistical inference based on divergence measures

    CERN Document Server

    Pardo, Leandro

    2005-01-01

    The idea of using functionals of Information Theory, such as entropies or divergences, in statistical inference is not new. However, in spite of the fact that divergence statistics have become a very good alternative to the classical likelihood ratio test and the Pearson-type statistic in discrete models, many statisticians remain unaware of this powerful approach.Statistical Inference Based on Divergence Measures explores classical problems of statistical inference, such as estimation and hypothesis testing, on the basis of measures of entropy and divergence. The first two chapters form an overview, from a statistical perspective, of the most important measures of entropy and divergence and study their properties. The author then examines the statistical analysis of discrete multivariate data with emphasis is on problems in contingency tables and loglinear models using phi-divergence test statistics as well as minimum phi-divergence estimators. The final chapter looks at testing in general populations, prese...

  15. Active inference, sensory attenuation and illusions.

    Science.gov (United States)

    Brown, Harriet; Adams, Rick A; Parees, Isabel; Edwards, Mark; Friston, Karl

    2013-11-01

    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference

  16. Bayesian Inference and Online Learning in Poisson Neuronal Networks.

    Science.gov (United States)

    Huang, Yanping; Rao, Rajesh P N

    2016-08-01

    Motivated by the growing evidence for Bayesian computation in the brain, we show how a two-layer recurrent network of Poisson neurons can perform both approximate Bayesian inference and learning for any hidden Markov model. The lower-layer sensory neurons receive noisy measurements of hidden world states. The higher-layer neurons infer a posterior distribution over world states via Bayesian inference from inputs generated by sensory neurons. We demonstrate how such a neuronal network with synaptic plasticity can implement a form of Bayesian inference similar to Monte Carlo methods such as particle filtering. Each spike in a higher-layer neuron represents a sample of a particular hidden world state. The spiking activity across the neural population approximates the posterior distribution over hidden states. In this model, variability in spiking is regarded not as a nuisance but as an integral feature that provides the variability necessary for sampling during inference. We demonstrate how the network can learn the likelihood model, as well as the transition probabilities underlying the dynamics, using a Hebbian learning rule. We present results illustrating the ability of the network to perform inference and learning for arbitrary hidden Markov models.

  17. Contingency inferences driven by base rates: Valid by sampling

    Directory of Open Access Journals (Sweden)

    Florian Kutzner

    2011-04-01

    Full Text Available Fiedler et al. (2009, reviewed evidence for the utilization of a contingency inference strategy termed pseudocontingencies (PCs. In PCs, the more frequent levels (and, by implication, the less frequent levels are assumed to be associated. PCs have been obtained using a wide range of task settings and dependent measures. Yet, the readiness with which decision makers rely on PCs is poorly understood. A computer simulation explored two potential sources of subjective validity of PCs. First, PCs are shown to perform above chance level when the task is to infer the sign of moderate to strong population contingencies from a sample of observations. Second, contingency inferences based on PCs and inferences based on cell frequencies are shown to partially agree across samples. Intriguingly, this criterion and convergent validity are by-products of random sampling error, highlighting the inductive nature of contingency inferences.

  18. Reinforcement and inference in cross-situational word learning.

    Science.gov (United States)

    Tilles, Paulo F C; Fontanari, José F

    2013-01-01

    Cross-situational word learning is based on the notion that a learner can determine the referent of a word by finding something in common across many observed uses of that word. Here we propose an adaptive learning algorithm that contains a parameter that controls the strength of the reinforcement applied to associations between concurrent words and referents, and a parameter that regulates inference, which includes built-in biases, such as mutual exclusivity, and information of past learning events. By adjusting these parameters so that the model predictions agree with data from representative experiments on cross-situational word learning, we were able to explain the learning strategies adopted by the participants of those experiments in terms of a trade-off between reinforcement and inference. These strategies can vary wildly depending on the conditions of the experiments. For instance, for fast mapping experiments (i.e., the correct referent could, in principle, be inferred in a single observation) inference is prevalent, whereas for segregated contextual diversity experiments (i.e., the referents are separated in groups and are exhibited with members of their groups only) reinforcement is predominant. Other experiments are explained with more balanced doses of reinforcement and inference.

  19. Data-driven inference for the spatial scan statistic.

    Science.gov (United States)

    Almeida, Alexandre C L; Duarte, Anderson R; Duczmal, Luiz H; Oliveira, Fernando L P; Takahashi, Ricardo H C

    2011-08-02

    Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  20. Evidence cross-validation and Bayesian inference of MAST plasma equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nessi, G. T. von; Hole, M. J. [Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Svensson, J. [Max-Planck-Institut fuer Plasmaphysik, D-17491 Greifswald (Germany); Appel, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2012-01-15

    In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlled Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.

  1. Evidence cross-validation and Bayesian inference of MAST plasma equilibria

    International Nuclear Information System (INIS)

    Nessi, G. T. von; Hole, M. J.; Svensson, J.; Appel, L.

    2012-01-01

    In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlled Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.

  2. Eight challenges in phylodynamic inference

    Directory of Open Access Journals (Sweden)

    Simon D.W. Frost

    2015-03-01

    Full Text Available The field of phylodynamics, which attempts to enhance our understanding of infectious disease dynamics using pathogen phylogenies, has made great strides in the past decade. Basic epidemiological and evolutionary models are now well characterized with inferential frameworks in place. However, significant challenges remain in extending phylodynamic inference to more complex systems. These challenges include accounting for evolutionary complexities such as changing mutation rates, selection, reassortment, and recombination, as well as epidemiological complexities such as stochastic population dynamics, host population structure, and different patterns at the within-host and between-host scales. An additional challenge exists in making efficient inferences from an ever increasing corpus of sequence data.

  3. Using adaptive network based fuzzy inference system to forecast regional electricity loads

    International Nuclear Information System (INIS)

    Ying, L.-C.; Pan, M.-C.

    2008-01-01

    Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads

  4. Using adaptive network based fuzzy inference system to forecast regional electricity loads

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Li-Chih [Department of Marketing Management, Central Taiwan University of Science and Technology, 11, Pu-tzu Lane, Peitun, Taichung City 406 (China); Pan, Mei-Chiu [Graduate Institute of Management Sciences, Nanhua University, 32, Chung Keng Li, Dalin, Chiayi 622 (China)

    2008-02-15

    Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads. (author)

  5. Human Inferences about Sequences: A Minimal Transition Probability Model.

    Directory of Open Access Journals (Sweden)

    Florent Meyniel

    2016-12-01

    Full Text Available The brain constantly infers the causes of the inputs it receives and uses these inferences to generate statistical expectations about future observations. Experimental evidence for these expectations and their violations include explicit reports, sequential effects on reaction times, and mismatch or surprise signals recorded in electrophysiology and functional MRI. Here, we explore the hypothesis that the brain acts as a near-optimal inference device that constantly attempts to infer the time-varying matrix of transition probabilities between the stimuli it receives, even when those stimuli are in fact fully unpredictable. This parsimonious Bayesian model, with a single free parameter, accounts for a broad range of findings on surprise signals, sequential effects and the perception of randomness. Notably, it explains the pervasive asymmetry between repetitions and alternations encountered in those studies. Our analysis suggests that a neural machinery for inferring transition probabilities lies at the core of human sequence knowledge.

  6. Making Type Inference Practical

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Oxhøj, Nicholas; Palsberg, Jens

    1992-01-01

    We present the implementation of a type inference algorithm for untyped object-oriented programs with inheritance, assignments, and late binding. The algorithm significantly improves our previous one, presented at OOPSLA'91, since it can handle collection classes, such as List, in a useful way. Abo......, the complexity has been dramatically improved, from exponential time to low polynomial time. The implementation uses the techniques of incremental graph construction and constraint template instantiation to avoid representing intermediate results, doing superfluous work, and recomputing type information....... Experiments indicate that the implementation type checks as much as 100 lines pr. second. This results in a mature product, on which a number of tools can be based, for example a safety tool, an image compression tool, a code optimization tool, and an annotation tool. This may make type inference for object...

  7. Examples in parametric inference with R

    CERN Document Server

    Dixit, Ulhas Jayram

    2016-01-01

    This book discusses examples in parametric inference with R. Combining basic theory with modern approaches, it presents the latest developments and trends in statistical inference for students who do not have an advanced mathematical and statistical background. The topics discussed in the book are fundamental and common to many fields of statistical inference and thus serve as a point of departure for in-depth study. The book is divided into eight chapters: Chapter 1 provides an overview of topics on sufficiency and completeness, while Chapter 2 briefly discusses unbiased estimation. Chapter 3 focuses on the study of moments and maximum likelihood estimators, and Chapter 4 presents bounds for the variance. In Chapter 5, topics on consistent estimator are discussed. Chapter 6 discusses Bayes, while Chapter 7 studies some more powerful tests. Lastly, Chapter 8 examines unbiased and other tests. Senior undergraduate and graduate students in statistics and mathematics, and those who have taken an introductory cou...

  8. Causal Effect Inference with Deep Latent-Variable Models

    NARCIS (Netherlands)

    Louizos, C; Shalit, U.; Mooij, J.; Sontag, D.; Zemel, R.; Welling, M.

    2017-01-01

    Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from observational data is the handling of

  9. Causal inference in survival analysis using pseudo-observations

    DEFF Research Database (Denmark)

    Andersen, Per K; Syriopoulou, Elisavet; Parner, Erik T

    2017-01-01

    Causal inference for non-censored response variables, such as binary or quantitative outcomes, is often based on either (1) direct standardization ('G-formula') or (2) inverse probability of treatment assignment weights ('propensity score'). To do causal inference in survival analysis, one needs ...

  10. Statistical Inference at Work: Statistical Process Control as an Example

    Science.gov (United States)

    Bakker, Arthur; Kent, Phillip; Derry, Jan; Noss, Richard; Hoyles, Celia

    2008-01-01

    To characterise statistical inference in the workplace this paper compares a prototypical type of statistical inference at work, statistical process control (SPC), with a type of statistical inference that is better known in educational settings, hypothesis testing. Although there are some similarities between the reasoning structure involved in…

  11. On quantum statistical inference

    NARCIS (Netherlands)

    Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E.

    2003-01-01

    Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have

  12. Statistical inference

    CERN Document Server

    Rohatgi, Vijay K

    2003-01-01

    Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth

  13. The Impact of Contextual Clue Selection on Inference

    Directory of Open Access Journals (Sweden)

    Leila Barati

    2010-05-01

    Full Text Available Linguistic information can be conveyed in the form of speech and written text, but it is the content of the message that is ultimately essential for higher-level processes in language comprehension, such as making inferences and associations between text information and knowledge about the world. Linguistically, inference is the shovel that allows receivers to dig meaning out from the text with selecting different embedded contextual clues. Naturally, people with different world experiences infer similar contextual situations differently. Lack of contextual knowledge of the target language can present an obstacle to comprehension (Anderson & Lynch, 2003. This paper tries to investigate how true contextual clue selection from the text can influence listener’s inference. In the present study 60 male and female teenagers (13-19 and 60 male and female young adults (20-26 were selected randomly based on Oxford Placement Test (OPT. During the study two fiction and two non-fiction passages were read to the participants in the experimental and control groups respectively and they were given scores according to Lexile’s Score (LS[1] based on their correct inference and logical thinking ability. In general the results show that participants’ clue selection based on their personal schematic references and background knowledge differ between teenagers and young adults and influence inference and listening comprehension. [1]- This is a framework for reading and listening which matches the appropriate score to each text based on degree of difficulty of text and each text was given a Lexile score from zero to four.

  14. Nonparametric predictive inference for reliability of a k-out-of-m:G system with multiple component types

    International Nuclear Information System (INIS)

    Aboalkhair, Ahmad M.; Coolen, Frank P.A.; MacPhee, Iain M.

    2014-01-01

    Nonparametric predictive inference for system reliability has recently been presented, with specific focus on k-out-of-m:G systems. The reliability of systems is quantified by lower and upper probabilities of system functioning, given binary test results on components, taking uncertainty about component functioning and indeterminacy due to limited test information explicitly into account. Thus far, systems considered were series configurations of subsystems, with each subsystem i a k i -out-of-m i :G system which consisted of only one type of components. Key results are briefly summarized in this paper, and as an important generalization new results are presented for a single k-out-of-m:G system consisting of components of multiple types. The important aspects of redundancy and diversity for such systems are discussed. - Highlights: • New results on nonparametric predictive inference for system reliability. • Prediction of system reliability based on test data for components. • New insights on system redundancy optimization and diversity. • Components that appear inferior in tests may be included to enhance redundancy

  15. Inferring Demographic History Using Two-Locus Statistics.

    Science.gov (United States)

    Ragsdale, Aaron P; Gutenkunst, Ryan N

    2017-06-01

    Population demographic history may be learned from contemporary genetic variation data. Methods based on aggregating the statistics of many single loci into an allele frequency spectrum (AFS) have proven powerful, but such methods ignore potentially informative patterns of linkage disequilibrium (LD) between neighboring loci. To leverage such patterns, we developed a composite-likelihood framework for inferring demographic history from aggregated statistics of pairs of loci. Using this framework, we show that two-locus statistics are more sensitive to demographic history than single-locus statistics such as the AFS. In particular, two-locus statistics escape the notorious confounding of depth and duration of a bottleneck, and they provide a means to estimate effective population size based on the recombination rather than mutation rate. We applied our approach to a Zambian population of Drosophila melanogaster Notably, using both single- and two-locus statistics, we inferred a substantially lower ancestral effective population size than previous works and did not infer a bottleneck history. Together, our results demonstrate the broad potential for two-locus statistics to enable powerful population genetic inference. Copyright © 2017 by the Genetics Society of America.

  16. Statistical Inference on the Canadian Middle Class

    Directory of Open Access Journals (Sweden)

    Russell Davidson

    2018-03-01

    Full Text Available Conventional wisdom says that the middle classes in many developed countries have recently suffered losses, in terms of both the share of the total population belonging to the middle class, and also their share in total income. Here, distribution-free methods are developed for inference on these shares, by means of deriving expressions for their asymptotic variances of sample estimates, and the covariance of the estimates. Asymptotic inference can be undertaken based on asymptotic normality. Bootstrap inference can be expected to be more reliable, and appropriate bootstrap procedures are proposed. As an illustration, samples of individual earnings drawn from Canadian census data are used to test various hypotheses about the middle-class shares, and confidence intervals for them are computed. It is found that, for the earlier censuses, sample sizes are large enough for asymptotic and bootstrap inference to be almost identical, but that, in the twenty-first century, the bootstrap fails on account of a strange phenomenon whereby many presumably different incomes in the data are rounded to one and the same value. Another difference between the centuries is the appearance of heavy right-hand tails in the income distributions of both men and women.

  17. The importance of learning when making inferences

    Directory of Open Access Journals (Sweden)

    Jorg Rieskamp

    2008-03-01

    Full Text Available The assumption that people possess a repertoire of strategies to solve the inference problems they face has been made repeatedly. The experimental findings of two previous studies on strategy selection are reexamined from a learning perspective, which argues that people learn to select strategies for making probabilistic inferences. This learning process is modeled with the strategy selection learning (SSL theory, which assumes that people develop subjective expectancies for the strategies they have. They select strategies proportional to their expectancies, which are updated on the basis of experience. For the study by Newell, Weston, and Shanks (2003 it can be shown that people did not anticipate the success of a strategy from the beginning of the experiment. Instead, the behavior observed at the end of the experiment was the result of a learning process that can be described by the SSL theory. For the second study, by Br"oder and Schiffer (2006, the SSL theory is able to provide an explanation for why participants only slowly adapted to new environments in a dynamic inference situation. The reanalysis of the previous studies illustrates the importance of learning for probabilistic inferences.

  18. Bayesian inference of substrate properties from film behavior

    International Nuclear Information System (INIS)

    Aggarwal, R; Demkowicz, M J; Marzouk, Y M

    2015-01-01

    We demonstrate that by observing the behavior of a film deposited on a substrate, certain features of the substrate may be inferred with quantified uncertainty using Bayesian methods. We carry out this demonstration on an illustrative film/substrate model where the substrate is a Gaussian random field and the film is a two-component mixture that obeys the Cahn–Hilliard equation. We construct a stochastic reduced order model to describe the film/substrate interaction and use it to infer substrate properties from film behavior. This quantitative inference strategy may be adapted to other film/substrate systems. (paper)

  19. Brain Imaging, Forward Inference, and Theories of Reasoning

    Science.gov (United States)

    Heit, Evan

    2015-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities. PMID:25620926

  20. Brain imaging, forward inference, and theories of reasoning.

    Science.gov (United States)

    Heit, Evan

    2014-01-01

    This review focuses on the issue of how neuroimaging studies address theoretical accounts of reasoning, through the lens of the method of forward inference (Henson, 2005, 2006). After theories of deductive and inductive reasoning are briefly presented, the method of forward inference for distinguishing between psychological theories based on brain imaging evidence is critically reviewed. Brain imaging studies of reasoning, comparing deductive and inductive arguments, comparing meaningful versus non-meaningful material, investigating hemispheric localization, and comparing conditional and relational arguments, are assessed in light of the method of forward inference. Finally, conclusions are drawn with regard to future research opportunities.

  1. Data-driven inference for the spatial scan statistic

    Directory of Open Access Journals (Sweden)

    Duczmal Luiz H

    2011-08-01

    Full Text Available Abstract Background Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. Results A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. Conclusions A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  2. Statistical inference an integrated approach

    CERN Document Server

    Migon, Helio S; Louzada, Francisco

    2014-01-01

    Introduction Information The concept of probability Assessing subjective probabilities An example Linear algebra and probability Notation Outline of the bookElements of Inference Common statistical modelsLikelihood-based functions Bayes theorem Exchangeability Sufficiency and exponential family Parameter elimination Prior Distribution Entirely subjective specification Specification through functional forms Conjugacy with the exponential family Non-informative priors Hierarchical priors Estimation Introduction to decision theoryBayesian point estimation Classical point estimation Empirical Bayes estimation Comparison of estimators Interval estimation Estimation in the Normal model Approximating Methods The general problem of inference Optimization techniquesAsymptotic theory Other analytical approximations Numerical integration methods Simulation methods Hypothesis Testing Introduction Classical hypothesis testingBayesian hypothesis testing Hypothesis testing and confidence intervalsAsymptotic tests Prediction...

  3. Statistical learning and selective inference.

    Science.gov (United States)

    Taylor, Jonathan; Tibshirani, Robert J

    2015-06-23

    We describe the problem of "selective inference." This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have "cherry-picked"--searched for the strongest associations--means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis.

  4. Time Series

    DEFF Research Database (Denmark)

    Johansen, Søren

    2015-01-01

    An overview of results for the cointegrated VAR model for nonstationary I(1) variables is given. The emphasis is on the analysis of the model and the tools for asymptotic inference. These include: formulation of criteria on the parameters, for the process to be nonstationary and I(1), formulation...... of hypotheses of interest on the rank, the cointegrating relations and the adjustment coefficients. A discussion of the asymptotic distribution results that are used for inference. The results are illustrated by a few examples. A number of extensions of the theory are pointed out....

  5. OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks.

    Science.gov (United States)

    Lim, Néhémy; Senbabaoglu, Yasin; Michailidis, George; d'Alché-Buc, Florence

    2013-06-01

    Reverse engineering of gene regulatory networks remains a central challenge in computational systems biology, despite recent advances facilitated by benchmark in silico challenges that have aided in calibrating their performance. A number of approaches using either perturbation (knock-out) or wild-type time-series data have appeared in the literature addressing this problem, with the latter using linear temporal models. Nonlinear dynamical models are particularly appropriate for this inference task, given the generation mechanism of the time-series data. In this study, we introduce a novel nonlinear autoregressive model based on operator-valued kernels that simultaneously learns the model parameters, as well as the network structure. A flexible boosting algorithm (OKVAR-Boost) that shares features from L2-boosting and randomization-based algorithms is developed to perform the tasks of parameter learning and network inference for the proposed model. Specifically, at each boosting iteration, a regularized Operator-valued Kernel-based Vector AutoRegressive model (OKVAR) is trained on a random subnetwork. The final model consists of an ensemble of such models. The empirical estimation of the ensemble model's Jacobian matrix provides an estimation of the network structure. The performance of the proposed algorithm is first evaluated on a number of benchmark datasets from the DREAM3 challenge and then on real datasets related to the In vivo Reverse-Engineering and Modeling Assessment (IRMA) and T-cell networks. The high-quality results obtained strongly indicate that it outperforms existing approaches. The OKVAR-Boost Matlab code is available as the archive: http://amis-group.fr/sourcecode-okvar-boost/OKVARBoost-v1.0.zip. Supplementary data are available at Bioinformatics online.

  6. Monitoring Farmland Loss Caused by Urbanization in Beijing from Modis Time Series Using Hierarchical Hidden Markov Model

    Science.gov (United States)

    Yuan, Y.; Meng, Y.; Chen, Y. X.; Jiang, C.; Yue, A. Z.

    2018-04-01

    In this study, we proposed a method to map urban encroachment onto farmland using satellite image time series (SITS) based on the hierarchical hidden Markov model (HHMM). In this method, the farmland change process is decomposed into three hierarchical levels, i.e., the land cover level, the vegetation phenology level, and the SITS level. Then a three-level HHMM is constructed to model the multi-level semantic structure of farmland change process. Once the HHMM is established, a change from farmland to built-up could be detected by inferring the underlying state sequence that is most likely to generate the input time series. The performance of the method is evaluated on MODIS time series in Beijing. Results on both simulated and real datasets demonstrate that our method improves the change detection accuracy compared with the HMM-based method.

  7. Object-Oriented Type Inference

    DEFF Research Database (Denmark)

    Schwartzbach, Michael Ignatieff; Palsberg, Jens

    1991-01-01

    We present a new approach to inferring types in untyped object-oriented programs with inheritance, assignments, and late binding. It guarantees that all messages are understood, annotates the program with type information, allows polymorphic methods, and can be used as the basis of an op...

  8. The Probabilistic Convolution Tree: Efficient Exact Bayesian Inference for Faster LC-MS/MS Protein Inference

    Science.gov (United States)

    Serang, Oliver

    2014-01-01

    Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234

  9. Similarity estimators for irregular and age uncertain time series

    Science.gov (United States)

    Rehfeld, K.; Kurths, J.

    2013-09-01

    Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many datasets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age uncertain time series. We compare the Gaussian-kernel based cross correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity

  10. Similarity estimators for irregular and age-uncertain time series

    Science.gov (United States)

    Rehfeld, K.; Kurths, J.

    2014-01-01

    Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suitable for the comparison of many data sets at a time, the latter introduces interpolation bias, and both face difficulties if the underlying dependencies are nonlinear. In this paper we investigate similarity estimators that could be suitable for the quantitative investigation of dependencies in irregular and age-uncertain time series. We compare the Gaussian-kernel-based cross-correlation (gXCF, Rehfeld et al., 2011) and mutual information (gMI, Rehfeld et al., 2013) against their interpolation-based counterparts and the new event synchronization function (ESF). We test the efficiency of the methods in estimating coupling strength and coupling lag numerically, using ensembles of synthetic stalagmites with short, autocorrelated, linear and nonlinearly coupled proxy time series, and in the application to real stalagmite time series. In the linear test case, coupling strength increases are identified consistently for all estimators, while in the nonlinear test case the correlation-based approaches fail. The lag at which the time series are coupled is identified correctly as the maximum of the similarity functions in around 60-55% (in the linear case) to 53-42% (for the nonlinear processes) of the cases when the dating of the synthetic stalagmite is perfectly precise. If the age uncertainty increases beyond 5% of the time series length, however, the true coupling lag is not identified more often than the others for which the similarity function was estimated. Age uncertainty contributes up to half of the uncertainty in the similarity estimation process. Time series irregularity

  11. Reward inference by primate prefrontal and striatal neurons.

    Science.gov (United States)

    Pan, Xiaochuan; Fan, Hongwei; Sawa, Kosuke; Tsuda, Ichiro; Tsukada, Minoru; Sakagami, Masamichi

    2014-01-22

    The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Importantly, these LPFC neurons could predict the reward value of a stimulus using transitive inference even when the monkeys had not yet learned the stimulus-reward association directly; whereas these striatal neurons did not show such an ability. Nevertheless, because there were two set amounts of reward (large and small), the selected striatal neurons were able to exclusively infer the reward value (e.g., large) of one novel stimulus from a pair after directly experiencing the alternative stimulus with the other reward value (e.g., small). Our results suggest that although neurons that predict reward value for old stimuli in the LPFC could also do so for new stimuli via transitive inference, those in the striatum could only predict reward for new stimuli via exclusive inference. Moreover, the striatum showed more complex functions than was surmised previously for model-free learning.

  12. Quasi-experimental study designs series-paper 1: introduction: two historical lineages.

    Science.gov (United States)

    Bärnighausen, Till; Røttingen, John-Arne; Rockers, Peter; Shemilt, Ian; Tugwell, Peter

    2017-09-01

    The objective of this study was to contrast the historical development of experiments and quasi-experiments and provide the motivation for a journal series on quasi-experimental designs in health research. A short historical narrative, with concrete examples, and arguments based on an understanding of the practice of health research and evidence synthesis. Health research has played a key role in developing today's gold standard for causal inference-the randomized controlled multiply blinded trial. Historically, allocation approaches developed from convenience and purposive allocation to alternate and, finally, to random allocation. This development was motivated both by concerns for manipulation in allocation as well as statistical and theoretical developments demonstrating the power of randomization in creating counterfactuals for causal inference. In contrast to the sequential development of experiments, quasi-experiments originated at very different points in time, from very different scientific perspectives, and with frequent and long interruptions in their methodological development. Health researchers have only recently started to recognize the value of quasi-experiments for generating novel insights on causal relationships. While quasi-experiments are unlikely to replace experiments in generating the efficacy and safety evidence required for clinical guidelines and regulatory approval of medical technologies, quasi-experiments can play an important role in establishing the effectiveness of health care practice, programs, and policies. The papers in this series describe and discuss a range of important issues in utilizing quasi-experimental designs for primary research and quasi-experimental results for evidence synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Bootstrap inference when using multiple imputation.

    Science.gov (United States)

    Schomaker, Michael; Heumann, Christian

    2018-04-16

    Many modern estimators require bootstrapping to calculate confidence intervals because either no analytic standard error is available or the distribution of the parameter of interest is nonsymmetric. It remains however unclear how to obtain valid bootstrap inference when dealing with multiple imputation to address missing data. We present 4 methods that are intuitively appealing, easy to implement, and combine bootstrap estimation with multiple imputation. We show that 3 of the 4 approaches yield valid inference, but that the performance of the methods varies with respect to the number of imputed data sets and the extent of missingness. Simulation studies reveal the behavior of our approaches in finite samples. A topical analysis from HIV treatment research, which determines the optimal timing of antiretroviral treatment initiation in young children, demonstrates the practical implications of the 4 methods in a sophisticated and realistic setting. This analysis suffers from missing data and uses the g-formula for inference, a method for which no standard errors are available. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Evolutionary inference via the Poisson Indel Process.

    Science.gov (United States)

    Bouchard-Côté, Alexandre; Jordan, Michael I

    2013-01-22

    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classic evolutionary process, the TKF91 model [Thorne JL, Kishino H, Felsenstein J (1991) J Mol Evol 33(2):114-124] is a continuous-time Markov chain model composed of insertion, deletion, and substitution events. Unfortunately, this model gives rise to an intractable computational problem: The computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The Poisson Indel Process is closely related to the TKF91 model, differing only in its treatment of insertions, but it has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared with separate inference of phylogenies and alignments.

  15. Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.

    Science.gov (United States)

    Venkataraman, Vinay; Turaga, Pavan

    2016-12-01

    This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.

  16. System Support for Forensic Inference

    Science.gov (United States)

    Gehani, Ashish; Kirchner, Florent; Shankar, Natarajan

    Digital evidence is playing an increasingly important role in prosecuting crimes. The reasons are manifold: financially lucrative targets are now connected online, systems are so complex that vulnerabilities abound and strong digital identities are being adopted, making audit trails more useful. If the discoveries of forensic analysts are to hold up to scrutiny in court, they must meet the standard for scientific evidence. Software systems are currently developed without consideration of this fact. This paper argues for the development of a formal framework for constructing “digital artifacts” that can serve as proxies for physical evidence; a system so imbued would facilitate sound digital forensic inference. A case study involving a filesystem augmentation that provides transparent support for forensic inference is described.

  17. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    Science.gov (United States)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  18. Geostatistical inference using crosshole ground-penetrating radar

    DEFF Research Database (Denmark)

    Looms, Majken C; Hansen, Thomas Mejer; Cordua, Knud Skou

    2010-01-01

    of the subsurface are used to evaluate the uncertainty of the inversion estimate. We have explored the full potential of the geostatistical inference method using several synthetic models of varying correlation structures and have tested the influence of different assumptions concerning the choice of covariance...... reflection profile. Furthermore, the inferred values of the subsurface global variance and the mean velocity have been corroborated with moisturecontent measurements, obtained gravimetrically from samples collected at the field site....

  19. Statistical inference for stochastic processes

    National Research Council Canada - National Science Library

    Basawa, Ishwar V; Prakasa Rao, B. L. S

    1980-01-01

    The aim of this monograph is to attempt to reduce the gap between theory and applications in the area of stochastic modelling, by directing the interest of future researchers to the inference aspects...

  20. Inference of Large Phylogenies Using Neighbour-Joining

    DEFF Research Database (Denmark)

    Simonsen, Martin; Mailund, Thomas; Pedersen, Christian Nørgaard Storm

    2011-01-01

    The neighbour-joining method is a widely used method for phylogenetic reconstruction which scales to thousands of taxa. However, advances in sequencing technology have made data sets with more than 10,000 related taxa widely available. Inference of such large phylogenies takes hours or days using...... the Neighbour-Joining method on a normal desktop computer because of the O(n^3) running time. RapidNJ is a search heuristic which reduce the running time of the Neighbour-Joining method significantly but at the cost of an increased memory consumption making inference of large phylogenies infeasible. We present...... two extensions for RapidNJ which reduce the memory requirements and \\makebox{allows} phylogenies with more than 50,000 taxa to be inferred efficiently on a desktop computer. Furthermore, an improved version of the search heuristic is presented which reduces the running time of RapidNJ on many data...

  1. Statistical causal inferences and their applications in public health research

    CERN Document Server

    Wu, Pan; Chen, Ding-Geng

    2016-01-01

    This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may implement it directly. The book brings together experts engaged in causal inference research to present and discuss recent issues in causal inference methodological development. This is also a timely look at causal inference applied to scenarios that range from clinical trials to mediation and public health research more broadly. In an academic setting, this book will serve as a reference and guide to a course in causal inference at the graduate level (Master's or Doctorate). It is particularly relevant for students pursuing degrees in Statistics, Biostatistics and Computational Biology. Researchers and data analysts in public health and biomedical research will also find this book to be an important reference.

  2. The anatomy of choice: active inference and agency

    Directory of Open Access Journals (Sweden)

    Karl eFriston

    2013-09-01

    Full Text Available This paper considers agency in the setting of embodied or active inference. In brief, we associate a sense of agency with prior beliefs about action and ask what sorts of beliefs underlie optimal behaviour. In particular, we consider prior beliefs that action minimises the Kullback-Leibler divergence between desired states and attainable states in the future. This allows one to formulate bounded rationality as approximate Bayesian inference that optimises a free energy bound on model evidence. We show that constructs like expected utility, exploration bonuses, softmax choice rules and optimism bias emerge as natural consequences of this formulation. Previous accounts of active inference have focused on predictive coding and Bayesian filtering schemes for minimising free energy. Here, we consider variational Bayes as an alternative scheme that provides formal constraints on the computational anatomy of inference and action – constraints that are remarkably consistent with neuroanatomy. Furthermore, this scheme contextualises optimal decision theory and economic (utilitarian formulations as pure inference problems. For example, expected utility theory emerges as a special case of free energy minimisation, where the sensitivity or inverse temperature (of softmax functions and quantal response equilibria has a unique and Bayes-optimal solution – that minimises free energy. This sensitivity corresponds to the precision of beliefs about behaviour, such that attainable goals are afforded a higher precision or confidence. In turn, this means that optimal behaviour entails a representation of confidence about outcomes that are under an agent's control.

  3. The anatomy of choice: active inference and agency.

    Science.gov (United States)

    Friston, Karl; Schwartenbeck, Philipp; Fitzgerald, Thomas; Moutoussis, Michael; Behrens, Timothy; Dolan, Raymond J

    2013-01-01

    This paper considers agency in the setting of embodied or active inference. In brief, we associate a sense of agency with prior beliefs about action and ask what sorts of beliefs underlie optimal behavior. In particular, we consider prior beliefs that action minimizes the Kullback-Leibler (KL) divergence between desired states and attainable states in the future. This allows one to formulate bounded rationality as approximate Bayesian inference that optimizes a free energy bound on model evidence. We show that constructs like expected utility, exploration bonuses, softmax choice rules and optimism bias emerge as natural consequences of this formulation. Previous accounts of active inference have focused on predictive coding and Bayesian filtering schemes for minimizing free energy. Here, we consider variational Bayes as an alternative scheme that provides formal constraints on the computational anatomy of inference and action-constraints that are remarkably consistent with neuroanatomy. Furthermore, this scheme contextualizes optimal decision theory and economic (utilitarian) formulations as pure inference problems. For example, expected utility theory emerges as a special case of free energy minimization, where the sensitivity or inverse temperature (of softmax functions and quantal response equilibria) has a unique and Bayes-optimal solution-that minimizes free energy. This sensitivity corresponds to the precision of beliefs about behavior, such that attainable goals are afforded a higher precision or confidence. In turn, this means that optimal behavior entails a representation of confidence about outcomes that are under an agent's control.

  4. Universal Darwinism As a Process of Bayesian Inference.

    Science.gov (United States)

    Campbell, John O

    2016-01-01

    Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment." Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

  5. sick: The Spectroscopic Inference Crank

    Science.gov (United States)

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  6. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Andrew R., E-mail: arc@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambdridge, CB3 0HA (United Kingdom)

    2016-03-15

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  7. SICK: THE SPECTROSCOPIC INFERENCE CRANK

    International Nuclear Information System (INIS)

    Casey, Andrew R.

    2016-01-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  8. On principles of inductive inference

    OpenAIRE

    Kostecki, Ryszard Paweł

    2011-01-01

    We propose an intersubjective epistemic approach to foundations of probability theory and statistical inference, based on relative entropy and category theory, and aimed to bypass the mathematical and conceptual problems of existing foundational approaches.

  9. Model averaging, optimal inference and habit formation

    Directory of Open Access Journals (Sweden)

    Thomas H B FitzGerald

    2014-06-01

    Full Text Available Postulating that the brain performs approximate Bayesian inference generates principled and empirically testable models of neuronal function – the subject of much current interest in neuroscience and related disciplines. Current formulations address inference and learning under some assumed and particular model. In reality, organisms are often faced with an additional challenge – that of determining which model or models of their environment are the best for guiding behaviour. Bayesian model averaging – which says that an agent should weight the predictions of different models according to their evidence – provides a principled way to solve this problem. Importantly, because model evidence is determined by both the accuracy and complexity of the model, optimal inference requires that these be traded off against one another. This means an agent’s behaviour should show an equivalent balance. We hypothesise that Bayesian model averaging plays an important role in cognition, given that it is both optimal and realisable within a plausible neuronal architecture. We outline model averaging and how it might be implemented, and then explore a number of implications for brain and behaviour. In particular, we propose that model averaging can explain a number of apparently suboptimal phenomena within the framework of approximate (bounded Bayesian inference, focussing particularly upon the relationship between goal-directed and habitual behaviour.

  10. Bootstrapping phylogenies inferred from rearrangement data

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2012-08-01

    Full Text Available Abstract Background Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. Results We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Conclusions Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its

  11. Bootstrapping phylogenies inferred from rearrangement data.

    Science.gov (United States)

    Lin, Yu; Rajan, Vaibhav; Moret, Bernard Me

    2012-08-29

    Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver

  12. Classification versus inference learning contrasted with real-world categories.

    Science.gov (United States)

    Jones, Erin L; Ross, Brian H

    2011-07-01

    Categories are learned and used in a variety of ways, but the research focus has been on classification learning. Recent work contrasting classification with inference learning of categories found important later differences in category performance. However, theoretical accounts differ on whether this is due to an inherent difference between the tasks or to the implementation decisions. The inherent-difference explanation argues that inference learners focus on the internal structure of the categories--what each category is like--while classification learners focus on diagnostic information to predict category membership. In two experiments, using real-world categories and controlling for earlier methodological differences, inference learners learned more about what each category was like than did classification learners, as evidenced by higher performance on a novel classification test. These results suggest that there is an inherent difference between learning new categories by classifying an item versus inferring a feature.

  13. Statistical inference via fiducial methods

    OpenAIRE

    Salomé, Diemer

    1998-01-01

    In this thesis the attention is restricted to inductive reasoning using a mathematical probability model. A statistical procedure prescribes, for every theoretically possible set of data, the inference about the unknown of interest. ... Zie: Summary

  14. Information-Theoretic Inference of Large Transcriptional Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Meyer Patrick

    2007-01-01

    Full Text Available The paper presents MRNET, an original method for inferring genetic networks from microarray data. The method is based on maximum relevance/minimum redundancy (MRMR, an effective information-theoretic technique for feature selection in supervised learning. The MRMR principle consists in selecting among the least redundant variables the ones that have the highest mutual information with the target. MRNET extends this feature selection principle to networks in order to infer gene-dependence relationships from microarray data. The paper assesses MRNET by benchmarking it against RELNET, CLR, and ARACNE, three state-of-the-art information-theoretic methods for large (up to several thousands of genes network inference. Experimental results on thirty synthetically generated microarray datasets show that MRNET is competitive with these methods.

  15. Information-Theoretic Inference of Large Transcriptional Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Patrick E. Meyer

    2007-06-01

    Full Text Available The paper presents MRNET, an original method for inferring genetic networks from microarray data. The method is based on maximum relevance/minimum redundancy (MRMR, an effective information-theoretic technique for feature selection in supervised learning. The MRMR principle consists in selecting among the least redundant variables the ones that have the highest mutual information with the target. MRNET extends this feature selection principle to networks in order to infer gene-dependence relationships from microarray data. The paper assesses MRNET by benchmarking it against RELNET, CLR, and ARACNE, three state-of-the-art information-theoretic methods for large (up to several thousands of genes network inference. Experimental results on thirty synthetically generated microarray datasets show that MRNET is competitive with these methods.

  16. IMAGINE: Interstellar MAGnetic field INference Engine

    Science.gov (United States)

    Steininger, Theo

    2018-03-01

    IMAGINE (Interstellar MAGnetic field INference Engine) performs inference on generic parametric models of the Galaxy. The modular open source framework uses highly optimized tools and technology such as the MultiNest sampler (ascl:1109.006) and the information field theory framework NIFTy (ascl:1302.013) to create an instance of the Milky Way based on a set of parameters for physical observables, using Bayesian statistics to judge the mismatch between measured data and model prediction. The flexibility of the IMAGINE framework allows for simple refitting for newly available data sets and makes state-of-the-art Bayesian methods easily accessible particularly for random components of the Galactic magnetic field.

  17. Inferring epidemic network topology from surveillance data.

    Directory of Open Access Journals (Sweden)

    Xiang Wan

    Full Text Available The transmission of infectious diseases can be affected by many or even hidden factors, making it difficult to accurately predict when and where outbreaks may emerge. One approach at the moment is to develop and deploy surveillance systems in an effort to detect outbreaks as timely as possible. This enables policy makers to modify and implement strategies for the control of the transmission. The accumulated surveillance data including temporal, spatial, clinical, and demographic information, can provide valuable information with which to infer the underlying epidemic networks. Such networks can be quite informative and insightful as they characterize how infectious diseases transmit from one location to another. The aim of this work is to develop a computational model that allows inferences to be made regarding epidemic network topology in heterogeneous populations. We apply our model on the surveillance data from the 2009 H1N1 pandemic in Hong Kong. The inferred epidemic network displays significant effect on the propagation of infectious diseases.

  18. A Learning Algorithm for Multimodal Grammar Inference.

    Science.gov (United States)

    D'Ulizia, A; Ferri, F; Grifoni, P

    2011-12-01

    The high costs of development and maintenance of multimodal grammars in integrating and understanding input in multimodal interfaces lead to the investigation of novel algorithmic solutions in automating grammar generation and in updating processes. Many algorithms for context-free grammar inference have been developed in the natural language processing literature. An extension of these algorithms toward the inference of multimodal grammars is necessary for multimodal input processing. In this paper, we propose a novel grammar inference mechanism that allows us to learn a multimodal grammar from its positive samples of multimodal sentences. The algorithm first generates the multimodal grammar that is able to parse the positive samples of sentences and, afterward, makes use of two learning operators and the minimum description length metrics in improving the grammar description and in avoiding the over-generalization problem. The experimental results highlight the acceptable performances of the algorithm proposed in this paper since it has a very high probability of parsing valid sentences.

  19. Mathematical inference and control of molecular networks from perturbation experiments

    Science.gov (United States)

    Mohammed-Rasheed, Mohammed

    in order to affect the time evolution of molecular activity in a desirable manner. In this proposal, we address both the inference and control problems of GRNs. In the first part of the thesis, we consider the control problem. We assume that we are given a general topology network structure, whose dynamics follow a discrete-time Markov chain model. We subsequently develop a comprehensive framework for optimal perturbation control of the network. The aim of the perturbation is to drive the network away from undesirable steady-states and to force it to converge to a unique desirable steady-state. The proposed framework does not make any assumptions about the topology of the initial network (e.g., ergodicity, weak and strong connectivity), and is thus applicable to general topology networks. We define the optimal perturbation as the minimum-energy perturbation measured in terms of the Frobenius norm between the initial and perturbed networks. We subsequently demonstrate that there exists at most one optimal perturbation that forces the network into the desirable steady-state. In the event where the optimal perturbation does not exist, we construct a family of sub-optimal perturbations that approximate the optimal solution arbitrarily closely. In the second part of the thesis, we address the inference problem of GRNs from time series data. We model the dynamics of the molecules using a system of ordinary differential equations corrupted by additive white noise. For large-scale networks, we formulate the inference problem as a constrained maximum likelihood estimation problem. We derive the molecular interactions that maximize the likelihood function while constraining the network to be sparse. We further propose a procedure to recover weak interactions based on the Bayesian information criterion. For small-size networks, we investigated the inference of a globally stable 7-gene melanoma genetic regulatory network from genetic perturbation experiments. We considered five

  20. Mobile sensing of point-source fugitive methane emissions using Bayesian inference: the determination of the likelihood function

    Science.gov (United States)

    Zhou, X.; Albertson, J. D.

    2016-12-01

    Natural gas is considered as a bridge fuel towards clean energy due to its potential lower greenhouse gas emission comparing with other fossil fuels. Despite numerous efforts, an efficient and cost-effective approach to monitor fugitive methane emissions along the natural gas production-supply chain has not been developed yet. Recently, mobile methane measurement has been introduced which applies a Bayesian approach to probabilistically infer methane emission rates and update estimates recursively when new measurements become available. However, the likelihood function, especially the error term which determines the shape of the estimate uncertainty, is not rigorously defined and evaluated with field data. To address this issue, we performed a series of near-source (using a specialized vehicle mounted with fast response methane analyzers and a GPS unit. Methane concentrations were measured at two different heights along mobile traversals downwind of the sources, and concurrent wind and temperature data are recorded by nearby 3-D sonic anemometers. With known methane release rates, the measurements were used to determine the functional form and the parameterization of the likelihood function in the Bayesian inference scheme under different meteorological conditions.

  1. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    Science.gov (United States)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  2. Hybrid Optical Inference Machines

    Science.gov (United States)

    1991-09-27

    with labels. Now, events. a set of facts cal be generated in the dyadic form "u, R 1,2" Eichmann and Caulfield (19] consider the same type of and can...these enceding-schemes. These architectures are-based pri- 19. G. Eichmann and H. J. Caulfield, "Optical Learning (Inference)marily on optical inner

  3. A probabilistic method for the estimation of ocean surface currents from short time series of HF radar data

    Science.gov (United States)

    Guérin, Charles-Antoine; Grilli, Stéphan T.

    2018-01-01

    We present a new method for inverting ocean surface currents from beam-forming HF radar data. In contrast with the classical method, which inverts radial currents based on shifts of the main Bragg line in the radar Doppler spectrum, the method works in the temporal domain and inverts currents from the amplitude modulation of the I and Q radar time series. Based on this principle, we propose a Maximum Likelihood approach, which can be combined with a Bayesian inference method assuming a prior current distribution, to infer values of the radial surface currents. We assess the method performance by using synthetic radar signal as well as field data, and systematically comparing results with those of the Doppler method. The new method is found advantageous for its robustness to noise at long range, its ability to accommodate shorter time series, and the possibility to use a priori information to improve the estimates. Limitations are related to current sign errors at far-ranges and biased estimates for small current values and very short samples. We apply the new technique to a data set from a typical 13.5 MHz WERA radar, acquired off of Vancouver Island, BC, and show that it can potentially improve standard synoptic current mapping.

  4. A Network Inference Workflow Applied to Virulence-Related Processes in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C.; Singhal, Mudita; Weller, Jennifer B.; Khoshnevis, Saeed; Shi, Liang; McDermott, Jason E.

    2009-04-20

    Inference of the structure of mRNA transcriptional regulatory networks, protein regulatory or interaction networks, and protein activation/inactivation-based signal transduction networks are critical tasks in systems biology. In this article we discuss a workflow for the reconstruction of parts of the transcriptional regulatory network of the pathogenic bacterium Salmonella typhimurium based on the information contained in sets of microarray gene expression data now available for that organism, and describe our results obtained by following this workflow. The primary tool is one of the network inference algorithms deployed in the Software Environment for BIological Network Inference (SEBINI). Specifically, we selected the algorithm called Context Likelihood of Relatedness (CLR), which uses the mutual information contained in the gene expression data to infer regulatory connections. The associated analysis pipeline automatically stores the inferred edges from the CLR runs within SEBINI and, upon request, transfers the inferred edges into either Cytoscape or the plug-in Collective Analysis of Biological of Biological Interaction Networks (CABIN) tool for further post-analysis of the inferred regulatory edges. The following article presents the outcome of this workflow, as well as the protocols followed for microarray data collection, data cleansing, and network inference. Our analysis revealed several interesting interactions, functional groups, metabolic pathways, and regulons in S. typhimurium.

  5. Bayesian or Laplacien inference, entropy and information theory and information geometry in data and signal processing

    Science.gov (United States)

    Mohammad-Djafari, Ali

    2015-01-01

    The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries. This review is focused mainly on the ways these tools have been used in data, signal and image processing. After a short introduction of the different quantities related to the Bayes rule, the entropy and the Maximum Entropy Principle (MEP), relative entropy and the Kullback-Leibler divergence, Fisher information, we will study their use in different fields of data and signal processing such as: entropy in source separation, Fisher information in model order selection, different Maximum Entropy based methods in time series spectral estimation and finally, general linear inverse problems.

  6. Training Inference Making Skills Using a Situation Model Approach Improves Reading Comprehension

    Directory of Open Access Journals (Sweden)

    Lisanne eBos

    2016-02-01

    Full Text Available This study aimed to enhance third and fourth graders’ text comprehension at the situation model level. Therefore, we tested a reading strategy training developed to target inference making skills, which are widely considered to be pivotal to situation model construction. The training was grounded in contemporary literature on situation model-based inference making and addressed the source (text-based versus knowledge-based, type (necessary versus unnecessary for (re-establishing coherence, and depth of an inference (making single lexical inferences versus combining multiple lexical inferences, as well as the type of searching strategy (forward versus backward. Results indicated that, compared to a control group (n = 51, children who followed the experimental training (n = 67 improved their inference making skills supportive to situation model construction. Importantly, our training also resulted in increased levels of general reading comprehension and motivation. In sum, this study showed that a ‘level of text representation’-approach can provide a useful framework to teach inference making skills to third and fourth graders.

  7. Robust Demographic Inference from Genomic and SNP Data

    Science.gov (United States)

    Excoffier, Laurent; Dupanloup, Isabelle; Huerta-Sánchez, Emilia; Sousa, Vitor C.; Foll, Matthieu

    2013-01-01

    We introduce a flexible and robust simulation-based framework to infer demographic parameters from the site frequency spectrum (SFS) computed on large genomic datasets. We show that our composite-likelihood approach allows one to study evolutionary models of arbitrary complexity, which cannot be tackled by other current likelihood-based methods. For simple scenarios, our approach compares favorably in terms of accuracy and speed with , the current reference in the field, while showing better convergence properties for complex models. We first apply our methodology to non-coding genomic SNP data from four human populations. To infer their demographic history, we compare neutral evolutionary models of increasing complexity, including unsampled populations. We further show the versatility of our framework by extending it to the inference of demographic parameters from SNP chips with known ascertainment, such as that recently released by Affymetrix to study human origins. Whereas previous ways of handling ascertained SNPs were either restricted to a single population or only allowed the inference of divergence time between a pair of populations, our framework can correctly infer parameters of more complex models including the divergence of several populations, bottlenecks and migration. We apply this approach to the reconstruction of African demography using two distinct ascertained human SNP panels studied under two evolutionary models. The two SNP panels lead to globally very similar estimates and confidence intervals, and suggest an ancient divergence (>110 Ky) between Yoruba and San populations. Our methodology appears well suited to the study of complex scenarios from large genomic data sets. PMID:24204310

  8. Universal Darwinism as a process of Bayesian inference

    Directory of Open Access Journals (Sweden)

    John Oberon Campbell

    2016-06-01

    Full Text Available Many of the mathematical frameworks describing natural selection are equivalent to Bayes’ Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians. As Bayesian inference can always be cast in terms of (variational free energy minimization, natural selection can be viewed as comprising two components: a generative model of an ‘experiment’ in the external world environment, and the results of that 'experiment' or the 'surprise' entailed by predicted and actual outcomes of the ‘experiment’. Minimization of free energy implies that the implicit measure of 'surprise' experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

  9. Behavior Intention Derivation of Android Malware Using Ontology Inference

    Directory of Open Access Journals (Sweden)

    Jian Jiao

    2018-01-01

    Full Text Available Previous researches on Android malware mainly focus on malware detection, and malware’s evolution makes the process face certain hysteresis. The information presented by these detected results (malice judgment, family classification, and behavior characterization is limited for analysts. Therefore, a method is needed to restore the intention of malware, which reflects the relation between multiple behaviors of complex malware and its ultimate purpose. This paper proposes a novel description and derivation model of Android malware intention based on the theory of intention and malware reverse engineering. This approach creates ontology for malware intention to model the semantic relation between behaviors and its objects and automates the process of intention derivation by using SWRL rules transformed from intention model and Jess inference engine. Experiments on 75 typical samples show that the inference system can perform derivation of malware intention effectively, and 89.3% of the inference results are consistent with artificial analysis, which proves the feasibility and effectiveness of our theory and inference system.

  10. Genealogical and evolutionary inference with the human Y chromosome.

    Science.gov (United States)

    Stumpf, M P; Goldstein, D B

    2001-03-02

    Population genetics has emerged as a powerful tool for unraveling human history. In addition to the study of mitochondrial and autosomal DNA, attention has recently focused on Y-chromosome variation. Ambiguities and inaccuracies in data analysis, however, pose an important obstacle to further development of the field. Here we review the methods available for genealogical inference using Y-chromosome data. Approaches can be divided into those that do and those that do not use an explicit population model in genealogical inference. We describe the strengths and weaknesses of these model-based and model-free approaches, as well as difficulties associated with the mutation process that affect both methods. In the case of genealogical inference using microsatellite loci, we use coalescent simulations to show that relatively simple generalizations of the mutation process can greatly increase the accuracy of genealogical inference. Because model-free and model-based approaches have different biases and limitations, we conclude that there is considerable benefit in the continued use of both types of approaches.

  11. SDG multiple fault diagnosis by real-time inverse inference

    International Nuclear Information System (INIS)

    Zhang Zhaoqian; Wu Chongguang; Zhang Beike; Xia Tao; Li Anfeng

    2005-01-01

    In the past 20 years, one of the qualitative simulation technologies, signed directed graph (SDG) has been widely applied in the field of chemical fault diagnosis. However, the assumption of single fault origin was usually used by many former researchers. As a result, this will lead to the problem of combinatorial explosion and has limited SDG to the realistic application on the real process. This is mainly because that most of the former researchers used forward inference engine in the commercial expert system software to carry out the inverse diagnosis inference on the SDG model which violates the internal principle of diagnosis mechanism. In this paper, we present a new SDG multiple faults diagnosis method by real-time inverse inference. This is a method of multiple faults diagnosis from the genuine significance and the inference engine use inverse mechanism. At last, we give an example of 65t/h furnace diagnosis system to demonstrate its applicability and efficiency

  12. SDG multiple fault diagnosis by real-time inverse inference

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhaoqian; Wu Chongguang; Zhang Beike; Xia Tao; Li Anfeng

    2005-02-01

    In the past 20 years, one of the qualitative simulation technologies, signed directed graph (SDG) has been widely applied in the field of chemical fault diagnosis. However, the assumption of single fault origin was usually used by many former researchers. As a result, this will lead to the problem of combinatorial explosion and has limited SDG to the realistic application on the real process. This is mainly because that most of the former researchers used forward inference engine in the commercial expert system software to carry out the inverse diagnosis inference on the SDG model which violates the internal principle of diagnosis mechanism. In this paper, we present a new SDG multiple faults diagnosis method by real-time inverse inference. This is a method of multiple faults diagnosis from the genuine significance and the inference engine use inverse mechanism. At last, we give an example of 65t/h furnace diagnosis system to demonstrate its applicability and efficiency.

  13. Functional networks inference from rule-based machine learning models.

    Science.gov (United States)

    Lazzarini, Nicola; Widera, Paweł; Williamson, Stuart; Heer, Rakesh; Krasnogor, Natalio; Bacardit, Jaume

    2016-01-01

    Functional networks play an important role in the analysis of biological processes and systems. The inference of these networks from high-throughput (-omics) data is an area of intense research. So far, the similarity-based inference paradigm (e.g. gene co-expression) has been the most popular approach. It assumes a functional relationship between genes which are expressed at similar levels across different samples. An alternative to this paradigm is the inference of relationships from the structure of machine learning models. These models are able to capture complex relationships between variables, that often are different/complementary to the similarity-based methods. We propose a protocol to infer functional networks from machine learning models, called FuNeL. It assumes, that genes used together within a rule-based machine learning model to classify the samples, might also be functionally related at a biological level. The protocol is first tested on synthetic datasets and then evaluated on a test suite of 8 real-world datasets related to human cancer. The networks inferred from the real-world data are compared against gene co-expression networks of equal size, generated with 3 different methods. The comparison is performed from two different points of view. We analyse the enriched biological terms in the set of network nodes and the relationships between known disease-associated genes in a context of the network topology. The comparison confirms both the biological relevance and the complementary character of the knowledge captured by the FuNeL networks in relation to similarity-based methods and demonstrates its potential to identify known disease associations as core elements of the network. Finally, using a prostate cancer dataset as a case study, we confirm that the biological knowledge captured by our method is relevant to the disease and consistent with the specialised literature and with an independent dataset not used in the inference process. The

  14. Causal inference based on counterfactuals

    Directory of Open Access Journals (Sweden)

    Höfler M

    2005-09-01

    Full Text Available Abstract Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.

  15. Implementing and analyzing the multi-threaded LP-inference

    Science.gov (United States)

    Bolotova, S. Yu; Trofimenko, E. V.; Leschinskaya, M. V.

    2018-03-01

    The logical production equations provide new possibilities for the backward inference optimization in intelligent production-type systems. The strategy of a relevant backward inference is aimed at minimization of a number of queries to external information source (either to a database or an interactive user). The idea of the method is based on the computing of initial preimages set and searching for the true preimage. The execution of each stage can be organized independently and in parallel and the actual work at a given stage can also be distributed between parallel computers. This paper is devoted to the parallel algorithms of the relevant inference based on the advanced scheme of the parallel computations “pipeline” which allows to increase the degree of parallelism. The author also provides some details of the LP-structures implementation.

  16. MgH Rydberg series: Transition energies from electron propagator theory and oscillator strengths from the molecular quantum defect orbital method

    Science.gov (United States)

    Corzo, H. H.; Velasco, A. M.; Lavín, C.; Ortiz, J. V.

    2018-02-01

    Vertical excitation energies belonging to several Rydberg series of MgH have been inferred from 3+ electron-propagator calculations of the electron affinities of MgH+ and are in close agreement with experiment. Many electronically excited states with n > 3 are reported for the first time and new insight is given on the assignment of several Rydberg series. Valence and Rydberg excited states of MgH are distinguished respectively by high and low pole strengths corresponding to Dyson orbitals of electron attachment to the cation. By applying the Molecular Quantum Defect Orbital method, oscillator strengths for electronic transitions involving Rydberg states also have been determined.

  17. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  18. Time series modeling of live-cell shape dynamics for image-based phenotypic profiling.

    Science.gov (United States)

    Gordonov, Simon; Hwang, Mun Kyung; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A; Bathe, Mark

    2016-01-01

    Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new computational procedures are needed to characterize and classify the temporal dynamics of individual cells. For this purpose, here we present the general experimental-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov modeling is used to infer and annotate morphological state and state-switching properties from image-derived cell shape measurements. Time series modeling is performed on each cell individually, making the approach broadly useful for analyzing asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton-regulatory signaling pathways. Results are compared with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate that time series modeling captures heterogeneous dynamic cellular responses that can improve drug classification and offer additional important insight into mechanisms of drug action. The software is available at http://saphire-hcs.org.

  19. International Conference on Trends and Perspectives in Linear Statistical Inference

    CERN Document Server

    Rosen, Dietrich

    2018-01-01

    This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference. .

  20. Packaging design as communicator of product attributes: Effects on consumers’ attribute inferences

    NARCIS (Netherlands)

    van Ooijen, I.

    2016-01-01

    This dissertation will focus on two types of attribute inferences that result from packaging design cues. First, the effects of product packaging design on quality related inferences are investigated. Second, the effects of product packaging design on healthiness related inferences are examined (See

  1. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-06

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  2. Fast and scalable inference of multi-sample cancer lineages.

    KAUST Repository

    Popic, Victoria; Salari, Raheleh; Hajirasouliha, Iman; Kashef-Haghighi, Dorna; West, Robert B; Batzoglou, Serafim

    2015-01-01

    Somatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution), a novel method that automates the phylogenetic inference of cancer progression from multiple somatic samples. LICHeE uses variant allele frequencies of somatic single nucleotide variants obtained by deep sequencing to reconstruct multi-sample cell lineage trees and infer the subclonal composition of the samples. LICHeE is open source and available at http://viq854.github.io/lichee .

  3. Fast and scalable inference of multi-sample cancer lineages.

    KAUST Repository

    Popic, Victoria

    2015-05-06

    Somatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution), a novel method that automates the phylogenetic inference of cancer progression from multiple somatic samples. LICHeE uses variant allele frequencies of somatic single nucleotide variants obtained by deep sequencing to reconstruct multi-sample cell lineage trees and infer the subclonal composition of the samples. LICHeE is open source and available at http://viq854.github.io/lichee .

  4. Surrogate based approaches to parameter inference in ocean models

    KAUST Repository

    Knio, Omar

    2016-01-01

    This talk discusses the inference of physical parameters using model surrogates. Attention is focused on the use of sampling schemes to build suitable representations of the dependence of the model response on uncertain input data. Non-intrusive spectral projections and regularized regressions are used for this purpose. A Bayesian inference formalism is then applied to update the uncertain inputs based on available measurements or observations. To perform the update, we consider two alternative approaches, based on the application of Markov Chain Monte Carlo methods or of adjoint-based optimization techniques. We outline the implementation of these techniques to infer dependence of wind drag, bottom drag, and internal mixing coefficients.

  5. Probabilistic inference of ecohydrological parameters using observations from point to satellite scales

    Science.gov (United States)

    Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.

    2018-06-01

    Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.

  6. Temperature variability over the past millennium inferred from Northwestern Alaska tree rings

    Energy Technology Data Exchange (ETDEWEB)

    D' Arrigo, Rosanne; Mashig, Erika; Jacoby, Gordon [Lamont-Doherty Earth Observatory, Tree-Ring Laboratory, Palisades, NY (United States); Frank, David [WSL, Birmensdorf (Switzerland); Wilson, Rob [University of Edinburgh, School of Geosciences, Grant Institute, Edinburgh (United Kingdom)

    2005-02-01

    We describe a new tree-ring width data set of 14 white spruce chronologies for the Seward Peninsula (SP), Alaska, based on living and subfossil wood dating from 1358 to 2001 AD. A composite chronology derived from these data correlates positively and significantly with summer temperatures at Nome from 1910 to 1970, after which there is some loss of positive temperature response. There is inferred cooling during periods within the Little Ice Age (LIA) from the early to middle 1600s and late 1700s to middle 1800s; and warming from the middle 1600s to early 1700s. We also present a larger composite data set covering 978-2001 AD, utilizing the SP ring-width data in combination with archaeological wood measurements and other recent collections from northwestern Alaska. The Regional Curve Standardization (RCS) method was employed to maximize potential low-frequency information in this data set. The RCS chronology shows intervals of persistent above-average growth around the time of the Medieval Warm Period (MWP) early in the millennium, which are comparable to growth levels in recent centuries. There is a more sustained cold interval during the LIA inferred from the RCS record as compared to the SP ring-width series. The chronologies correlate significantly with Bering and Chukchi Sea sea surface temperatures and with the Pacific Decadal Oscillation index. These atmosphere-ocean linkages probably account for the differences between these records and large-scale reconstructions of Arctic and Northern Hemisphere temperatures based largely on continental interior proxy data. (orig.)

  7. Perturbation Biology: Inferring Signaling Networks in Cellular Systems

    Science.gov (United States)

    Miller, Martin L.; Gauthier, Nicholas P.; Jing, Xiaohong; Kaushik, Poorvi; He, Qin; Mills, Gordon; Solit, David B.; Pratilas, Christine A.; Weigt, Martin; Braunstein, Alfredo; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2013-01-01

    We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology. PMID:24367245

  8. Making Inferences in Adulthood: Falling Leaves Mean It's Fall.

    Science.gov (United States)

    Zandi, Taher; Gregory, Monica E.

    1988-01-01

    Assessed age differences in making inferences from prose. Older adults correctly answered mean of 10 questions related to implicit information and 8 related to explicit information. Young adults answered mean of 7 implicit and 12 explicit information questions. In spite of poorer recall of factual details, older subjects made inferences to greater…

  9. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    Science.gov (United States)

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  10. Near Real Time Change-Point detection in Optical and Thermal Infrared Time Series Using Bayesian Inference over the Dry Chaco Forest

    Science.gov (United States)

    Barraza Bernadas, V.; Grings, F.; Roitberg, E.; Perna, P.; Karszenbaum, H.

    2017-12-01

    The Dry Chaco region (DCF) has the highest absolute deforestation rates of all Argentinian forests. The most recent report indicates a current deforestation rate of 200,000 Ha year-1. In order to better monitor this process, DCF was chosen to implement an early warning program for illegal deforestation. Although the area is intensively studied using medium resolution imagery (Landsat), the products obtained have a yearly pace and therefore unsuited for an early warning program. In this paper, we evaluated the performance of an online Bayesian change-point detection algorithm for MODIS Enhanced Vegetation Index (EVI) and Land Surface Temperature (LST) datasets. The goal was to to monitor the abrupt changes in vegetation dynamics associated with deforestation events. We tested this model by simulating 16-day EVI and 8-day LST time series with varying amounts of seasonality, noise, length of the time series and by adding abrupt changes with different magnitudes. This model was then tested on real satellite time series available through the Google Earth Engine, over a pilot area in DCF, where deforestation was common in the 2004-2016 period. A comparison with yearly benchmark products based on Landsat images is also presented (REDAF dataset). The results shows the advantages of using an automatic model to detect a changepoint in the time series than using only visual inspection techniques. Simulating time series with varying amounts of seasonality and noise, and by adding abrupt changes at different times and magnitudes, revealed that this model is robust against noise, and is not influenced by changes in amplitude of the seasonal component. Furthermore, the results compared favorably with REDAF dataset (near 65% of agreement). These results show the potential to combine LST and EVI to identify deforestation events. This work is being developed within the frame of the national Forest Law for the protection and sustainable development of Native Forest in Argentina in

  11. Mixed normal inference on multicointegration

    NARCIS (Netherlands)

    Boswijk, H.P.

    2009-01-01

    Asymptotic likelihood analysis of cointegration in I(2) models, see Johansen (1997, 2006), Boswijk (2000) and Paruolo (2000), has shown that inference on most parameters is mixed normal, implying hypothesis test statistics with an asymptotic 2 null distribution. The asymptotic distribution of the

  12. Baselines and test data for cross-lingual inference

    DEFF Research Database (Denmark)

    Agic, Zeljko; Schluter, Natalie

    2018-01-01

    The recent years have seen a revival of interest in textual entailment, sparked by i) the emergence of powerful deep neural network learners for natural language processing and ii) the timely development of large-scale evaluation datasets such as SNLI. Recast as natural language inference......, the problem now amounts to detecting the relation between pairs of statements: they either contradict or entail one another, or they are mutually neutral. Current research in natural language inference is effectively exclusive to English. In this paper, we propose to advance the research in SNLI-style natural...... language inference toward multilingual evaluation. To that end, we provide test data for four major languages: Arabic, French, Spanish, and Russian. We experiment with a set of baselines. Our systems are based on cross-lingual word embeddings and machine translation. While our best system scores an average...

  13. Bayesian inference with ecological applications

    CERN Document Server

    Link, William A

    2009-01-01

    This text is written to provide a mathematically sound but accessible and engaging introduction to Bayesian inference specifically for environmental scientists, ecologists and wildlife biologists. It emphasizes the power and usefulness of Bayesian methods in an ecological context. The advent of fast personal computers and easily available software has simplified the use of Bayesian and hierarchical models . One obstacle remains for ecologists and wildlife biologists, namely the near absence of Bayesian texts written specifically for them. The book includes many relevant examples, is supported by software and examples on a companion website and will become an essential grounding in this approach for students and research ecologists. Engagingly written text specifically designed to demystify a complex subject Examples drawn from ecology and wildlife research An essential grounding for graduate and research ecologists in the increasingly prevalent Bayesian approach to inference Companion website with analyt...

  14. Nonparametric Bayesian inference in biostatistics

    CERN Document Server

    Müller, Peter

    2015-01-01

    As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters c...

  15. Intracranial EEG correlates of implicit relational inference within the hippocampus.

    Science.gov (United States)

    Reber, T P; Do Lam, A T A; Axmacher, N; Elger, C E; Helmstaedter, C; Henke, K; Fell, J

    2016-01-01

    Drawing inferences from past experiences enables adaptive behavior in future situations. Inference has been shown to depend on hippocampal processes. Usually, inference is considered a deliberate and effortful mental act which happens during retrieval, and requires the focus of our awareness. Recent fMRI studies hint at the possibility that some forms of hippocampus-dependent inference can also occur during encoding and possibly also outside of awareness. Here, we sought to further explore the feasibility of hippocampal implicit inference, and specifically address the temporal evolution of implicit inference using intracranial EEG. Presurgical epilepsy patients with hippocampal depth electrodes viewed a sequence of word pairs, and judged the semantic fit between two words in each pair. Some of the word pairs entailed a common word (e.g., "winter-red," "red-cat") such that an indirect relation was established in following word pairs (e.g., "winter-cat"). The behavioral results suggested that drawing inference implicitly from past experience is feasible because indirect relations seemed to foster "fit" judgments while the absence of indirect relations fostered "do not fit" judgments, even though the participants were unaware of the indirect relations. A event-related potential (ERP) difference emerging 400 ms post-stimulus was evident in the hippocampus during encoding, suggesting that indirect relations were already established automatically during encoding of the overlapping word pairs. Further ERP differences emerged later post-stimulus (1,500 ms), were modulated by the participants' responses and were evident during encoding and test. Furthermore, response-locked ERP effects were evident at test. These ERP effects could hence be a correlate of the interaction of implicit memory with decision-making. Together, the data map out a time-course in which the hippocampus automatically integrates memories from discrete but related episodes to implicitly influence future

  16. Feature inference with uncertain categorization: Re-assessing Anderson's rational model.

    Science.gov (United States)

    Konovalova, Elizaveta; Le Mens, Gaël

    2017-09-18

    A key function of categories is to help predictions about unobserved features of objects. At the same time, humans are often in situations where the categories of the objects they perceive are uncertain. In an influential paper, Anderson (Psychological Review, 98(3), 409-429, 1991) proposed a rational model for feature inferences with uncertain categorization. A crucial feature of this model is the conditional independence assumption-it assumes that the within category feature correlation is zero. In prior research, this model has been found to provide a poor fit to participants' inferences. This evidence is restricted to task environments inconsistent with the conditional independence assumption. Currently available evidence thus provides little information about how this model would fit participants' inferences in a setting with conditional independence. In four experiments based on a novel paradigm and one experiment based on an existing paradigm, we assess the performance of Anderson's model under conditional independence. We find that this model predicts participants' inferences better than competing models. One model assumes that inferences are based on just the most likely category. The second model is insensitive to categories but sensitive to overall feature correlation. The performance of Anderson's model is evidence that inferences were influenced not only by the more likely category but also by the other candidate category. Our findings suggest that a version of Anderson's model which relaxes the conditional independence assumption will likely perform well in environments characterized by within-category feature correlation.

  17. Integrating distributed Bayesian inference and reinforcement learning for sensor management

    NARCIS (Netherlands)

    Grappiolo, C.; Whiteson, S.; Pavlin, G.; Bakker, B.

    2009-01-01

    This paper introduces a sensor management approach that integrates distributed Bayesian inference (DBI) and reinforcement learning (RL). DBI is implemented using distributed perception networks (DPNs), a multiagent approach to performing efficient inference, while RL is used to automatically

  18. Reliability of dose volume constraint inference from clinical data

    Science.gov (United States)

    Lutz, C. M.; Møller, D. S.; Hoffmann, L.; Knap, M. M.; Alber, M.

    2017-04-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an ‘ideal’ cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a ‘non-ideal’ cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates  >85 % were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.

  19. Inference in {open_quotes}poor{close_quotes} languages

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, S. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    Languages with a solvable implication problem but without complete and consistent systems of inference rules ({open_quote}poor{close_quote} languages) are considered. The problem of existence of a finite, complete, and consistent inference rule system for a {open_quotes}poor{close_quotes} language is stated independently of the language or the rule syntax. Several properties of the problem are proved. An application of the results to the language of join dependencies is given.

  20. Inference of beliefs and emotions in patients with Alzheimer's disease.

    Science.gov (United States)

    Zaitchik, Deborah; Koff, Elissa; Brownell, Hiram; Winner, Ellen; Albert, Marilyn

    2006-01-01

    The present study compared 20 patients with mild to moderate Alzheimer's disease with 20 older controls (ages 69-94 years) on their ability to make inferences about emotions and beliefs in others. Six tasks tested their ability to make 1st-order and 2nd-order inferences as well as to offer explanations and moral evaluations of human action by appeal to emotions and beliefs. Results showed that the ability to infer emotions and beliefs in 1st-order tasks remains largely intact in patients with mild to moderate Alzheimer's. Patients were able to use mental states in the prediction, explanation, and moral evaluation of behavior. Impairment on 2nd-order tasks involving inference of mental states was equivalent to impairment on control tasks, suggesting that patients' difficulty is secondary to their cognitive impairments. ((c) 2006 APA, all rights reserved).

  1. Inference method using bayesian network for diagnosis of pulmonary nodules

    International Nuclear Information System (INIS)

    Kawagishi, Masami; Iizuka, Yoshio; Yamamoto, Hiroyuki; Yakami, Masahiro; Kubo, Takeshi; Fujimoto, Koji; Togashi, Kaori

    2010-01-01

    This report describes the improvements of a naive Bayes model that infers the diagnosis of pulmonary nodules in chest CT images based on the findings obtained when a radiologist interprets the CT images. We have previously introduced an inference model using a naive Bayes classifier and have reported its clinical value based on evaluation using clinical data. In the present report, we introduce the following improvements to the original inference model: the selection of findings based on correlations and the generation of a model using only these findings, and the introduction of classifiers that integrate several simple classifiers each of which is specialized for specific diagnosis. These improvements were found to increase the inference accuracy by 10.4% (p<.01) as compared to the original model in 100 cases (222 nodules) based on leave-one-out evaluation. (author)

  2. Generative inference for cultural evolution.

    Science.gov (United States)

    Kandler, Anne; Powell, Adam

    2018-04-05

    One of the major challenges in cultural evolution is to understand why and how various forms of social learning are used in human populations, both now and in the past. To date, much of the theoretical work on social learning has been done in isolation of data, and consequently many insights focus on revealing the learning processes or the distributions of cultural variants that are expected to have evolved in human populations. In population genetics, recent methodological advances have allowed a greater understanding of the explicit demographic and/or selection mechanisms that underlie observed allele frequency distributions across the globe, and their change through time. In particular, generative frameworks-often using coalescent-based simulation coupled with approximate Bayesian computation (ABC)-have provided robust inferences on the human past, with no reliance on a priori assumptions of equilibrium. Here, we demonstrate the applicability and utility of generative inference approaches to the field of cultural evolution. The framework advocated here uses observed population-level frequency data directly to establish the likely presence or absence of particular hypothesized learning strategies. In this context, we discuss the problem of equifinality and argue that, in the light of sparse cultural data and the multiplicity of possible social learning processes, the exclusion of those processes inconsistent with the observed data might be the most instructive outcome. Finally, we summarize the findings of generative inference approaches applied to a number of case studies.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).

  3. Inferring Domain Plans in Question-Answering

    National Research Council Canada - National Science Library

    Pollack, Martha E

    1986-01-01

    The importance of plan inference in models of conversation has been widely noted in the computational-linguistics literature, and its incorporation in question-answering systems has enabled a range...

  4. Bayesian inference for hybrid discrete-continuous stochastic kinetic models

    International Nuclear Information System (INIS)

    Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S

    2014-01-01

    We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)

  5. Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation

    DEFF Research Database (Denmark)

    Brouwer, Thomas; Frellsen, Jes; Liò, Pietro

    2017-01-01

    In this paper, we study the trade-offs of different inference approaches for Bayesian matrix factorisation methods, which are commonly used for predicting missing values, and for finding patterns in the data. In particular, we consider Bayesian nonnegative variants of matrix factorisation and tri......-factorisation, and compare non-probabilistic inference, Gibbs sampling, variational Bayesian inference, and a maximum-a-posteriori approach. The variational approach is new for the Bayesian nonnegative models. We compare their convergence, and robustness to noise and sparsity of the data, on both synthetic and real...

  6. Multi-Agent Inference in Social Networks: A Finite Population Learning Approach.

    Science.gov (United States)

    Fan, Jianqing; Tong, Xin; Zeng, Yao

    When people in a society want to make inference about some parameter, each person may want to use data collected by other people. Information (data) exchange in social networks is usually costly, so to make reliable statistical decisions, people need to trade off the benefits and costs of information acquisition. Conflicts of interests and coordination problems will arise in the process. Classical statistics does not consider people's incentives and interactions in the data collection process. To address this imperfection, this work explores multi-agent Bayesian inference problems with a game theoretic social network model. Motivated by our interest in aggregate inference at the societal level, we propose a new concept, finite population learning , to address whether with high probability, a large fraction of people in a given finite population network can make "good" inference. Serving as a foundation, this concept enables us to study the long run trend of aggregate inference quality as population grows.

  7. Role of Utility and Inference in the Evolution of Functional Information

    Science.gov (United States)

    Sharov, Alexei A.

    2009-01-01

    Functional information means an encoded network of functions in living organisms from molecular signaling pathways to an organism’s behavior. It is represented by two components: code and an interpretation system, which together form a self-sustaining semantic closure. Semantic closure allows some freedom between components because small variations of the code are still interpretable. The interpretation system consists of inference rules that control the correspondence between the code and the function (phenotype) and determines the shape of the fitness landscape. The utility factor operates at multiple time scales: short-term selection drives evolution towards higher survival and reproduction rate within a given fitness landscape, and long-term selection favors those fitness landscapes that support adaptability and lead to evolutionary expansion of certain lineages. Inference rules make short-term selection possible by shaping the fitness landscape and defining possible directions of evolution, but they are under control of the long-term selection of lineages. Communication normally occurs within a set of agents with compatible interpretation systems, which I call communication system. Functional information cannot be directly transferred between communication systems with incompatible inference rules. Each biological species is a genetic communication system that carries unique functional information together with inference rules that determine evolutionary directions and constraints. This view of the relation between utility and inference can resolve the conflict between realism/positivism and pragmatism. Realism overemphasizes the role of inference in evolution of human knowledge because it assumes that logic is embedded in reality. Pragmatism substitutes usefulness for truth and therefore ignores the advantage of inference. The proposed concept of evolutionary pragmatism rejects the idea that logic is embedded in reality; instead, inference rules are

  8. Possible Sediment Mixing and the Disparity between Field Measurements and Paleolimnological Inferences in Shallow Iowa Lakes in the Midwestern United States

    Directory of Open Access Journals (Sweden)

    Roger W. Bachmann

    2018-01-01

    Full Text Available Field measurements of water quality in Iowa lakes contradict paleolimnological studies that used 210Pb dating techniques in 33 lakes to infer accelerating eutrophication and sediment accumulation in recent decades. We tested this hypothesis by analyzing a series of water quality measurements taken in 24 of these lakes during the period 1972–2010. There was little change in the trophic state variables. Total phosphorus and algal chlorophylls did not increase, and Secchi depths did not decrease with no evidence that the lakes had become more eutrophic. Changes in daily sediment loads in the Raccoon River also did not match the paleolimnological inferred rates of soil erosion for the period 1905–2005, and an independent estimate of soil erosion rates showed a decline of 40% in the 1977 to 2012 period rather than an increase. We hypothesized that sediment mixing by benthivorous fish could be responsible for violating the basic assumption of 210Pb sediment dating that the sediments are not disturbed once they are laid down. We developed a mathematical model that demonstrated that sediment mixing could lead to false inferences about sediment dates and sediment burial rates. This study raises the possibility that sediment mixing in Iowa lakes and similar shallow, eutrophic lakes with benthivorous fish may cause significant sediment mixing that can compromise dating using 210Pb dating of sediment cores.

  9. Inference for shared-frailty survival models with left-truncated data

    NARCIS (Netherlands)

    van den Berg, G.J.; Drepper, B.

    2016-01-01

    Shared-frailty survival models specify that systematic unobserved determinants of duration outcomes are identical within groups of individuals. We consider random-effects likelihood-based statistical inference if the duration data are subject to left-truncation. Such inference with left-truncated

  10. Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach

    Directory of Open Access Journals (Sweden)

    Martin M Monti

    2011-03-01

    Full Text Available Functional Magnetic Resonance Imaging (fMRI is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a General Linear Model (GLM approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making.

  11. Parametric inference for biological sequence analysis.

    Science.gov (United States)

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.

  12. Improved Inference of Heteroscedastic Fixed Effects Models

    Directory of Open Access Journals (Sweden)

    Afshan Saeed

    2016-12-01

    Full Text Available Heteroscedasticity is a stern problem that distorts estimation and testing of panel data model (PDM. Arellano (1987 proposed the White (1980 estimator for PDM with heteroscedastic errors but it provides erroneous inference for the data sets including high leverage points. In this paper, our attempt is to improve heteroscedastic consistent covariance matrix estimator (HCCME for panel dataset with high leverage points. To draw robust inference for the PDM, our focus is to improve kernel bootstrap estimators, proposed by Racine and MacKinnon (2007. The Monte Carlo scheme is used for assertion of the results.

  13. Inference of neuronal network spike dynamics and topology from calcium imaging data

    Directory of Open Access Journals (Sweden)

    Henry eLütcke

    2013-12-01

    Full Text Available Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP occurrence ('spike trains' from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties.

  14. Cortical hierarchies perform Bayesian causal inference in multisensory perception.

    Directory of Open Access Journals (Sweden)

    Tim Rohe

    2015-02-01

    Full Text Available To form a veridical percept of the environment, the brain needs to integrate sensory signals from a common source but segregate those from independent sources. Thus, perception inherently relies on solving the "causal inference problem." Behaviorally, humans solve this problem optimally as predicted by Bayesian Causal Inference; yet, the underlying neural mechanisms are unexplored. Combining psychophysics, Bayesian modeling, functional magnetic resonance imaging (fMRI, and multivariate decoding in an audiovisual spatial localization task, we demonstrate that Bayesian Causal Inference is performed by a hierarchy of multisensory processes in the human brain. At the bottom of the hierarchy, in auditory and visual areas, location is represented on the basis that the two signals are generated by independent sources (= segregation. At the next stage, in posterior intraparietal sulcus, location is estimated under the assumption that the two signals are from a common source (= forced fusion. Only at the top of the hierarchy, in anterior intraparietal sulcus, the uncertainty about the causal structure of the world is taken into account and sensory signals are combined as predicted by Bayesian Causal Inference. Characterizing the computational operations of signal interactions reveals the hierarchical nature of multisensory perception in human neocortex. It unravels how the brain accomplishes Bayesian Causal Inference, a statistical computation fundamental for perception and cognition. Our results demonstrate how the brain combines information in the face of uncertainty about the underlying causal structure of the world.

  15. Memory-Based Simple Heuristics as Attribute Substitution: Competitive Tests of Binary Choice Inference Models

    Science.gov (United States)

    Honda, Hidehito; Matsuka, Toshihiko; Ueda, Kazuhiro

    2017-01-01

    Some researchers on binary choice inference have argued that people make inferences based on simple heuristics, such as recognition, fluency, or familiarity. Others have argued that people make inferences based on available knowledge. To examine the boundary between heuristic and knowledge usage, we examine binary choice inference processes in…

  16. Hierarchical Active Inference: A Theory of Motivated Control.

    Science.gov (United States)

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl J

    2018-04-01

    Motivated control refers to the coordination of behaviour to achieve affectively valenced outcomes or goals. The study of motivated control traditionally assumes a distinction between control and motivational processes, which map to distinct (dorsolateral versus ventromedial) brain systems. However, the respective roles and interactions between these processes remain controversial. We offer a novel perspective that casts control and motivational processes as complementary aspects - goal propagation and prioritization, respectively - of active inference and hierarchical goal processing under deep generative models. We propose that the control hierarchy propagates prior preferences or goals, but their precision is informed by the motivational context, inferred at different levels of the motivational hierarchy. The ensuing integration of control and motivational processes underwrites action and policy selection and, ultimately, motivated behaviour, by enabling deep inference to prioritize goals in a context-sensitive way. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. SPEEDY: An Eclipse-based IDE for invariant inference

    Directory of Open Access Journals (Sweden)

    David R. Cok

    2014-04-01

    Full Text Available SPEEDY is an Eclipse-based IDE for exploring techniques that assist users in generating correct specifications, particularly including invariant inference algorithms and tools. It integrates with several back-end tools that propose invariants and will incorporate published algorithms for inferring object and loop invariants. Though the architecture is language-neutral, current SPEEDY targets C programs. Building and using SPEEDY has confirmed earlier experience demonstrating the importance of showing and editing specifications in the IDEs that developers customarily use, automating as much of the production and checking of specifications as possible, and showing counterexample information directly in the source code editing environment. As in previous work, automation of specification checking is provided by back-end SMT solvers. However, reducing the effort demanded of software developers using formal methods also requires a GUI design that guides users in writing, reviewing, and correcting specifications and automates specification inference.

  18. Efficient Exact Inference With Loss Augmented Objective in Structured Learning.

    Science.gov (United States)

    Bauer, Alexander; Nakajima, Shinichi; Muller, Klaus-Robert

    2016-08-19

    Structural support vector machine (SVM) is an elegant approach for building complex and accurate models with structured outputs. However, its applicability relies on the availability of efficient inference algorithms--the state-of-the-art training algorithms repeatedly perform inference to compute a subgradient or to find the most violating configuration. In this paper, we propose an exact inference algorithm for maximizing nondecomposable objectives due to special type of a high-order potential having a decomposable internal structure. As an important application, our method covers the loss augmented inference, which enables the slack and margin scaling formulations of structural SVM with a variety of dissimilarity measures, e.g., Hamming loss, precision and recall, Fβ-loss, intersection over union, and many other functions that can be efficiently computed from the contingency table. We demonstrate the advantages of our approach in natural language parsing and sequence segmentation applications.

  19. A general Bayes weibull inference model for accelerated life testing

    International Nuclear Information System (INIS)

    Dorp, J. Rene van; Mazzuchi, Thomas A.

    2005-01-01

    This article presents the development of a general Bayes inference model for accelerated life testing. The failure times at a constant stress level are assumed to belong to a Weibull distribution, but the specification of strict adherence to a parametric time-transformation function is not required. Rather, prior information is used to indirectly define a multivariate prior distribution for the scale parameters at the various stress levels and the common shape parameter. Using the approach, Bayes point estimates as well as probability statements for use-stress (and accelerated) life parameters may be inferred from a host of testing scenarios. The inference procedure accommodates both the interval data sampling strategy and type I censored sampling strategy for the collection of ALT test data. The inference procedure uses the well-known MCMC (Markov Chain Monte Carlo) methods to derive posterior approximations. The approach is illustrated with an example

  20. Lithospheric deformation inferred from electrical anisotropy of magnetotelluric data

    Science.gov (United States)

    Yin, Y.; Wei, W.; Jin, S.; Ye, G.; Unsworth, M. J.; Zhang, L.

    2013-12-01

    In our research, a comprehensive procedure of analyzing and modeling electrical anisotropy for MT data is suggested, based on the field examples of the Great Slave Lake shear zone (GSLsz) in western Canada, the North China Craton (NCC) and the Altyn Tagh fault in northern Tibet. Diverse dimensionality tools are used to distinguish heterogeneity and anisotropy from MT data. In addition to the phase splits and phase tensor polarizations, a combination of the phase tensor and induction arrows is applied to judge anisotropy. The skin depths of specific period band are considered to determine whether these features result from anisotropy or heterogeneity. Specific resistivity structures in the 2-D isotropic inversion models can indicate electrical anisotropy as well, like the dike-like media or a series of conductive ';blobs' can be observed in the 2-D isotropic inversion models of the GSLsz and NCC data. Anisotropic inversions can be undertaken using an improved inversion code based on isotropic code but incorporating a trade-off parameter for electrical anisotropy named anisotropic tau. A series of anisotropic tau have been applied to test its effect and to get a best trade-off between anisotropy and heterogeneity. Then, 2-D and 3-D forward modeling works are undertaken to test the robustness of the major anisotropic features. The anisotropic structures inferred from the inversion models are replaced by various alternating isotropic or anisotropic structures to see if they are required. The fitting of the response curves compared with the field data and corresponding r.m.s misfits can help us choose the best model that can generally illustrate the underground structure. Finally, the analysis and modeling result of the MT data from North China Craton is taken as an example to demonstrate how the electrical anisotropy can be linked with the lithospheric deformation. According to the reliable models we got, there may be an anisotropic layer at the mid-lower crustal to

  1. Fourier series

    CERN Document Server

    Tolstov, Georgi P

    1962-01-01

    Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie

  2. A linear programming model for protein inference problem in shotgun proteomics.

    Science.gov (United States)

    Huang, Ting; He, Zengyou

    2012-11-15

    Assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is an important issue in shotgun proteomics. The objective of protein inference is to find a subset of proteins that are truly present in the sample. Although many methods have been proposed for protein inference, several issues such as peptide degeneracy still remain unsolved. In this article, we present a linear programming model for protein inference. In this model, we use a transformation of the joint probability that each peptide/protein pair is present in the sample as the variable. Then, both the peptide probability and protein probability can be expressed as a formula in terms of the linear combination of these variables. Based on this simple fact, the protein inference problem is formulated as an optimization problem: minimize the number of proteins with non-zero probabilities under the constraint that the difference between the calculated peptide probability and the peptide probability generated from peptide identification algorithms should be less than some threshold. This model addresses the peptide degeneracy issue by forcing some joint probability variables involving degenerate peptides to be zero in a rigorous manner. The corresponding inference algorithm is named as ProteinLP. We test the performance of ProteinLP on six datasets. Experimental results show that our method is competitive with the state-of-the-art protein inference algorithms. The source code of our algorithm is available at: https://sourceforge.net/projects/prolp/. zyhe@dlut.edu.cn. Supplementary data are available at Bioinformatics Online.

  3. Statistical inference on residual life

    CERN Document Server

    Jeong, Jong-Hyeon

    2014-01-01

    This is a monograph on the concept of residual life, which is an alternative summary measure of time-to-event data, or survival data. The mean residual life has been used for many years under the name of life expectancy, so it is a natural concept for summarizing survival or reliability data. It is also more interpretable than the popular hazard function, especially for communications between patients and physicians regarding the efficacy of a new drug in the medical field. This book reviews existing statistical methods to infer the residual life distribution. The review and comparison includes existing inference methods for mean and median, or quantile, residual life analysis through medical data examples. The concept of the residual life is also extended to competing risks analysis. The targeted audience includes biostatisticians, graduate students, and PhD (bio)statisticians. Knowledge in survival analysis at an introductory graduate level is advisable prior to reading this book.

  4. Bayesian inference on proportional elections.

    Directory of Open Access Journals (Sweden)

    Gabriel Hideki Vatanabe Brunello

    Full Text Available Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software.

  5. Probability biases as Bayesian inference

    Directory of Open Access Journals (Sweden)

    Andre; C. R. Martins

    2006-11-01

    Full Text Available In this article, I will show how several observed biases in human probabilistic reasoning can be partially explained as good heuristics for making inferences in an environment where probabilities have uncertainties associated to them. Previous results show that the weight functions and the observed violations of coalescing and stochastic dominance can be understood from a Bayesian point of view. We will review those results and see that Bayesian methods should also be used as part of the explanation behind other known biases. That means that, although the observed errors are still errors under the be understood as adaptations to the solution of real life problems. Heuristics that allow fast evaluations and mimic a Bayesian inference would be an evolutionary advantage, since they would give us an efficient way of making decisions. %XX In that sense, it should be no surprise that humans reason with % probability as it has been observed.

  6. Gaussian process inference for estimating pharmacokinetic parameters of dynamic contrast-enhanced MR images.

    Science.gov (United States)

    Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M

    2012-01-01

    In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.

  7. Phylogenetic Inference of HIV Transmission Clusters

    Directory of Open Access Journals (Sweden)

    Vlad Novitsky

    2017-10-01

    Full Text Available Better understanding the structure and dynamics of HIV transmission networks is essential for designing the most efficient interventions to prevent new HIV transmissions, and ultimately for gaining control of the HIV epidemic. The inference of phylogenetic relationships and the interpretation of results rely on the definition of the HIV transmission cluster. The definition of the HIV cluster is complex and dependent on multiple factors, including the design of sampling, accuracy of sequencing, precision of sequence alignment, evolutionary models, the phylogenetic method of inference, and specified thresholds for cluster support. While the majority of studies focus on clusters, non-clustered cases could also be highly informative. A new dimension in the analysis of the global and local HIV epidemics is the concept of phylogenetically distinct HIV sub-epidemics. The identification of active HIV sub-epidemics reveals spreading viral lineages and may help in the design of targeted interventions.HIVclustering can also be affected by sampling density. Obtaining a proper sampling density may increase statistical power and reduce sampling bias, so sampling density should be taken into account in study design and in interpretation of phylogenetic results. Finally, recent advances in long-range genotyping may enable more accurate inference of HIV transmission networks. If performed in real time, it could both inform public-health strategies and be clinically relevant (e.g., drug-resistance testing.

  8. Causal inference of asynchronous audiovisual speech

    Directory of Open Access Journals (Sweden)

    John F Magnotti

    2013-11-01

    Full Text Available During speech perception, humans integrate auditory information from the voice with visual information from the face. This multisensory integration increases perceptual precision, but only if the two cues come from the same talker; this requirement has been largely ignored by current models of speech perception. We describe a generative model of multisensory speech perception that includes this critical step of determining the likelihood that the voice and face information have a common cause. A key feature of the model is that it is based on a principled analysis of how an observer should solve this causal inference problem using the asynchrony between two cues and the reliability of the cues. This allows the model to make predictions abut the behavior of subjects performing a synchrony judgment task, predictive power that does not exist in other approaches, such as post hoc fitting of Gaussian curves to behavioral data. We tested the model predictions against the performance of 37 subjects performing a synchrony judgment task viewing audiovisual speech under a variety of manipulations, including varying asynchronies, intelligibility, and visual cue reliability. The causal inference model outperformed the Gaussian model across two experiments, providing a better fit to the behavioral data with fewer parameters. Because the causal inference model is derived from a principled understanding of the task, model parameters are directly interpretable in terms of stimulus and subject properties.

  9. General Purpose Probabilistic Programming Platform with Effective Stochastic Inference

    Science.gov (United States)

    2018-04-01

    REFERENCES 74 LIST OF ACRONYMS 80 ii List of Figures Figure 1. The problem of inferring curves from data while simultaneously choosing the...bottom path) as the inverse problem to computer graphics (top path). ........ 18 Figure 18. An illustration of generative probabilistic graphics for 3D...Building these systems involves simultaneously developing mathematical models, inference algorithms and optimized software implementations. Small changes

  10. Causal inference in survival analysis using pseudo-observations.

    Science.gov (United States)

    Andersen, Per K; Syriopoulou, Elisavet; Parner, Erik T

    2017-07-30

    Causal inference for non-censored response variables, such as binary or quantitative outcomes, is often based on either (1) direct standardization ('G-formula') or (2) inverse probability of treatment assignment weights ('propensity score'). To do causal inference in survival analysis, one needs to address right-censoring, and often, special techniques are required for that purpose. We will show how censoring can be dealt with 'once and for all' by means of so-called pseudo-observations when doing causal inference in survival analysis. The pseudo-observations can be used as a replacement of the outcomes without censoring when applying 'standard' causal inference methods, such as (1) or (2) earlier. We study this idea for estimating the average causal effect of a binary treatment on the survival probability, the restricted mean lifetime, and the cumulative incidence in a competing risks situation. The methods will be illustrated in a small simulation study and via a study of patients with acute myeloid leukemia who received either myeloablative or non-myeloablative conditioning before allogeneic hematopoetic cell transplantation. We will estimate the average causal effect of the conditioning regime on outcomes such as the 3-year overall survival probability and the 3-year risk of chronic graft-versus-host disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Sensorimotor Network Crucial for Inferring Amusement from Smiles.

    Science.gov (United States)

    Paracampo, Riccardo; Tidoni, Emmanuele; Borgomaneri, Sara; di Pellegrino, Giuseppe; Avenanti, Alessio

    2017-11-01

    Understanding whether another's smile reflects authentic amusement is a key challenge in social life, yet, the neural bases of this ability have been largely unexplored. Here, we combined transcranial magnetic stimulation (TMS) with a novel empathic accuracy (EA) task to test whether sensorimotor and mentalizing networks are critical for understanding another's amusement. Participants were presented with dynamic displays of smiles and explicitly requested to infer whether the smiling individual was feeling authentic amusement or not. TMS over sensorimotor regions representing the face (i.e., in the inferior frontal gyrus (IFG) and ventral primary somatosensory cortex (SI)), disrupted the ability to infer amusement authenticity from observed smiles. The same stimulation did not affect performance on a nonsocial task requiring participants to track the smiling expression but not to infer amusement. Neither TMS over prefrontal and temporo-parietal areas supporting mentalizing, nor peripheral control stimulations, affected performance on either task. Thus, motor and somatosensory circuits for controlling and sensing facial movements are causally essential for inferring amusement from another's smile. These findings highlight the functional relevance of IFG and SI to amusement understanding and suggest that EA abilities may be grounded in sensorimotor networks for moving and feeling the body. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Nonparametric statistical inference

    CERN Document Server

    Gibbons, Jean Dickinson

    2010-01-01

    Overall, this remains a very fine book suitable for a graduate-level course in nonparametric statistics. I recommend it for all people interested in learning the basic ideas of nonparametric statistical inference.-Eugenia Stoimenova, Journal of Applied Statistics, June 2012… one of the best books available for a graduate (or advanced undergraduate) text for a theory course on nonparametric statistics. … a very well-written and organized book on nonparametric statistics, especially useful and recommended for teachers and graduate students.-Biometrics, 67, September 2011This excellently presente

  13. Inference of gene-phenotype associations via protein-protein interaction and orthology.

    Directory of Open Access Journals (Sweden)

    Panwen Wang

    Full Text Available One of the fundamental goals of genetics is to understand gene functions and their associated phenotypes. To achieve this goal, in this study we developed a computational algorithm that uses orthology and protein-protein interaction information to infer gene-phenotype associations for multiple species. Furthermore, we developed a web server that provides genome-wide phenotype inference for six species: fly, human, mouse, worm, yeast, and zebrafish. We evaluated our inference method by comparing the inferred results with known gene-phenotype associations. The high Area Under the Curve values suggest a significant performance of our method. By applying our method to two human representative diseases, Type 2 Diabetes and Breast Cancer, we demonstrated that our method is able to identify related Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. The web server can be used to infer functions and putative phenotypes of a gene along with the candidate genes of a phenotype, and thus aids in disease candidate gene discovery. Our web server is available at http://jjwanglab.org/PhenoPPIOrth.

  14. Utilitarian Moral Judgment Exclusively Coheres with Inference from Is to Ought.

    Science.gov (United States)

    Elqayam, Shira; Wilkinson, Meredith R; Thompson, Valerie A; Over, David E; Evans, Jonathan St B T

    2017-01-01

    Faced with moral choice, people either judge according to pre-existing obligations ( deontological judgment), or by taking into account the consequences of their actions ( utilitarian judgment). We propose that the latter coheres with a more general cognitive mechanism - deontic introduction , the tendency to infer normative ('deontic') conclusions from descriptive premises (is-ought inference). Participants were presented with vignettes that allowed either deontological or utilitarian choice, and asked to draw a range of deontic conclusions, as well as judge the overall moral rightness of each choice separately. We predicted and found a selective defeasibility pattern, in which manipulations that suppressed deontic introduction also suppressed utilitarian moral judgment, but had little effect on deontological moral judgment. Thus, deontic introduction coheres with utilitarian moral judgment almost exclusively. We suggest a family of norm-generating informal inferences, in which normative conclusions are drawn from descriptive (although value-laden) premises. This family includes deontic introduction and utilitarian moral judgment as well as other informal inferences. We conclude with a call for greater integration of research in moral judgment and research into deontic reasoning and informal inference.

  15. Believing What You're Told: Politeness and Scalar Inferences

    Directory of Open Access Journals (Sweden)

    Diana Mazzarella

    2018-06-01

    Full Text Available The experimental pragmatics literature has extensively investigated the ways in which distinct contextual factors affect the computation of scalar inferences, whose most studied example is the one that allows “Some X-ed” to mean Not all X-ed. Recent studies from Bonnefon et al. (2009, 2011 investigate the effect of politeness on the interpretation of scalar utterances. They argue that when the scalar utterance is face-threatening (“Some people hated your speech” (i the scalar inference is less likely to be derived, and (ii the semantic interpretation of “some” (at least some is arrived at slowly and effortfully. This paper re-evaluates the role of politeness in the computation of scalar inferences by drawing on the distinction between “comprehension” and “epistemic assessment” of communicated information. In two experiments, we test the hypothesis that, in these face-threatening contexts, scalar inferences are largely derived but are less likely to be accepted as true. In line with our predictions, we find that slowdowns in the face-threatening condition are attributable to longer reaction times at the (latter epistemic assessment stage, but not at the comprehension stage.

  16. Inferring ontology graph structures using OWL reasoning

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies\\' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies\\' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph .Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  17. Inferring ontology graph structures using OWL reasoning.

    Science.gov (United States)

    Rodríguez-García, Miguel Ángel; Hoehndorf, Robert

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  18. Entropy, Information Theory, Information Geometry and Bayesian Inference in Data, Signal and Image Processing and Inverse Problems

    Directory of Open Access Journals (Sweden)

    Ali Mohammad-Djafari

    2015-06-01

    Full Text Available The main content of this review article is first to review the main inference tools using Bayes rule, the maximum entropy principle (MEP, information theory, relative entropy and the Kullback–Leibler (KL divergence, Fisher information and its corresponding geometries. For each of these tools, the precise context of their use is described. The second part of the paper is focused on the ways these tools have been used in data, signal and image processing and in the inverse problems, which arise in different physical sciences and engineering applications. A few examples of the applications are described: entropy in independent components analysis (ICA and in blind source separation, Fisher information in data model selection, different maximum entropy-based methods in time series spectral estimation and in linear inverse problems and, finally, the Bayesian inference for general inverse problems. Some original materials concerning the approximate Bayesian computation (ABC and, in particular, the variational Bayesian approximation (VBA methods are also presented. VBA is used for proposing an alternative Bayesian computational tool to the classical Markov chain Monte Carlo (MCMC methods. We will also see that VBA englobes joint maximum a posteriori (MAP, as well as the different expectation-maximization (EM algorithms as particular cases.

  19. Learning about the internal structure of categories through classification and feature inference.

    Science.gov (United States)

    Jee, Benjamin D; Wiley, Jennifer

    2014-01-01

    Previous research on category learning has found that classification tasks produce representations that are skewed toward diagnostic feature dimensions, whereas feature inference tasks lead to richer representations of within-category structure. Yet, prior studies often measure category knowledge through tasks that involve identifying only the typical features of a category. This neglects an important aspect of a category's internal structure: how typical and atypical features are distributed within a category. The present experiments tested the hypothesis that inference learning results in richer knowledge of internal category structure than classification learning. We introduced several new measures to probe learners' representations of within-category structure. Experiment 1 found that participants in the inference condition learned and used a wider range of feature dimensions than classification learners. Classification learners, however, were more sensitive to the presence of atypical features within categories. Experiment 2 provided converging evidence that classification learners were more likely to incorporate atypical features into their representations. Inference learners were less likely to encode atypical category features, even in a "partial inference" condition that focused learners' attention on the feature dimensions relevant to classification. Overall, these results are contrary to the hypothesis that inference learning produces superior knowledge of within-category structure. Although inference learning promoted representations that included a broad range of category-typical features, classification learning promoted greater sensitivity to the distribution of typical and atypical features within categories.

  20. Psychotic Experiences and Overhasty Inferences Are Related to Maladaptive Learning.

    Directory of Open Access Journals (Sweden)

    Heiner Stuke

    2017-01-01

    Full Text Available Theoretical accounts suggest that an alteration in the brain's learning mechanisms might lead to overhasty inferences, resulting in psychotic symptoms. Here, we sought to elucidate the suggested link between maladaptive learning and psychosis. Ninety-eight healthy individuals with varying degrees of delusional ideation and hallucinatory experiences performed a probabilistic reasoning task that allowed us to quantify overhasty inferences. Replicating previous results, we found a relationship between psychotic experiences and overhasty inferences during probabilistic reasoning. Computational modelling revealed that the behavioral data was best explained by a novel computational learning model that formalizes the adaptiveness of learning by a non-linear distortion of prediction error processing, where an increased non-linearity implies a growing resilience against learning from surprising and thus unreliable information (large prediction errors. Most importantly, a decreased adaptiveness of learning predicted delusional ideation and hallucinatory experiences. Our current findings provide a formal description of the computational mechanisms underlying overhasty inferences, thereby empirically substantiating theories that link psychosis to maladaptive learning.

  1. seXY: a tool for sex inference from genotype arrays.

    Science.gov (United States)

    Qian, David C; Busam, Jonathan A; Xiao, Xiangjun; O'Mara, Tracy A; Eeles, Rosalind A; Schumacher, Frederick R; Phelan, Catherine M; Amos, Christopher I

    2017-02-15

    Checking concordance between reported sex and genotype-inferred sex is a crucial quality control measure in genome-wide association studies (GWAS). However, limited insights exist regarding the true accuracy of software that infer sex from genotype array data. We present seXY, a logistic regression model trained on both X chromosome heterozygosity and Y chromosome missingness, that consistently demonstrated >99.5% sex inference accuracy in cross-validation for 889 males and 5,361 females enrolled in prostate cancer and ovarian cancer GWAS. Compared to PLINK, one of the most popular tools for sex inference in GWAS that assesses only X chromosome heterozygosity, seXY achieved marginally better male classification and 3% more accurate female classification. https://github.com/Christopher-Amos-Lab/seXY. Christopher.I.Amos@dartmouth.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Statistical inference from imperfect photon detection

    International Nuclear Information System (INIS)

    Audenaert, Koenraad M R; Scheel, Stefan

    2009-01-01

    We consider the statistical properties of photon detection with imperfect detectors that exhibit dark counts and less than unit efficiency, in the context of tomographic reconstruction. In this context, the detectors are used to implement certain positive operator-valued measures (POVMs) that would allow us to reconstruct the quantum state or quantum process under consideration. Here we look at the intermediate step of inferring outcome probabilities from measured outcome frequencies, and show how this inference can be performed in a statistically sound way in the presence of detector imperfections. Merging outcome probabilities for different sets of POVMs into a consistent quantum state picture has been treated elsewhere (Audenaert and Scheel 2009 New J. Phys. 11 023028). Single-photon pulsed measurements as well as continuous wave measurements are covered.

  3. Role of Speaker Cues in Attention Inference

    Directory of Open Access Journals (Sweden)

    Jin Joo Lee

    2017-10-01

    Full Text Available Current state-of-the-art approaches to emotion recognition primarily focus on modeling the nonverbal expressions of the sole individual without reference to contextual elements such as the co-presence of the partner. In this paper, we demonstrate that the accurate inference of listeners’ social-emotional state of attention depends on accounting for the nonverbal behaviors of their storytelling partner, namely their speaker cues. To gain a deeper understanding of the role of speaker cues in attention inference, we conduct investigations into real-world interactions of children (5–6 years old storytelling with their peers. Through in-depth analysis of human–human interaction data, we first identify nonverbal speaker cues (i.e., backchannel-inviting cues and listener responses (i.e., backchannel feedback. We then demonstrate how speaker cues can modify the interpretation of attention-related backchannels as well as serve as a means to regulate the responsiveness of listeners. We discuss the design implications of our findings toward our primary goal of developing attention recognition models for storytelling robots, and we argue that social robots can proactively use speaker cues to form more accurate inferences about the attentive state of their human partners.

  4. Early detection of metabolic and energy disorders by thermal time series stochastic complexity analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lutaif, N.A. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil); Palazzo, R. Jr [Departamento de Telemática, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, Campinas, SP (Brazil); Gontijo, J.A.R. [Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP (Brazil)

    2014-01-17

    Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.

  5. Early detection of metabolic and energy disorders by thermal time series stochastic complexity analysis

    International Nuclear Information System (INIS)

    Lutaif, N.A.; Palazzo, R. Jr; Gontijo, J.A.R.

    2014-01-01

    Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile

  6. Likelihood inference for unions of interacting discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisová, Katarina

    To the best of our knowledge, this is the first paper which discusses likelihood inference or a random set using a germ-grain model, where the individual grains are unobservable edge effects occur, and other complications appear. We consider the case where the grains form a disc process modelled...... is specified with respect to a given marked Poisson model (i.e. a Boolean model). We show how edge effects and other complications can be handled by considering a certain conditional likelihood. Our methodology is illustrated by analyzing Peter Diggle's heather dataset, where we discuss the results...... of simulation-based maximum likelihood inference and the effect of specifying different reference Poisson models....

  7. Likelihood inference for unions of interacting discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisova, K.

    2010-01-01

    This is probably the first paper which discusses likelihood inference for a random set using a germ-grain model, where the individual grains are unobservable, edge effects occur and other complications appear. We consider the case where the grains form a disc process modelled by a marked point...... process, where the germs are the centres and the marks are the associated radii of the discs. We propose to use a recent parametric class of interacting disc process models, where the minimal sufficient statistic depends on various geometric properties of the random set, and the density is specified......-based maximum likelihood inference and the effect of specifying different reference Poisson models....

  8. Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote.

    Science.gov (United States)

    Strakova, Eva; Zikova, Alice; Vohradsky, Jiri

    2014-01-01

    A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.

  9. Development of the Bayesian method for unavailability inference. The new inferential theory and the examples of inference using BWR outage data in Japan

    International Nuclear Information System (INIS)

    Nakamura, Makoto

    2009-01-01

    It is important for Level 1 PSA to quantify input reliability parameters and their uncertainty. Bayesian methods for inference of system/component unavailability, however, are not well studied. At present practitioners allocate the uncertainty (i.e. error factor) of the unavailability based on engineering judgment. Systematic methods based on Bayesian statistics are needed for quantification of such uncertainty. In this study we have developed a new method for Bayesian inference of unavailability, where the posterior of system/component unavailability is described by the inverted gamma distribution. We show that the average of the posterior comes close to the point estimate of the unavailability as the number of outages goes to infinity. That indicates validity of the new method. Using plant data recorded in NUCIA, we have applied the new method to inference of system unavailability under unplanned outages due to violations of LCO at BWRs in Japan. According to the inference results, the unavailability is populated in the order of 10 -5 -10 -4 and the error factor is within 1-2. Thus, the new Bayesian method allows one to quantify magnitudes and widths (i.e. error factor) of uncertainty distributions of unavailability. (author)

  10. Simultaneous inference for model averaging of derived parameters

    DEFF Research Database (Denmark)

    Jensen, Signe Marie; Ritz, Christian

    2015-01-01

    Model averaging is a useful approach for capturing uncertainty due to model selection. Currently, this uncertainty is often quantified by means of approximations that do not easily extend to simultaneous inference. Moreover, in practice there is a need for both model averaging and simultaneous...... inference for derived parameters calculated in an after-fitting step. We propose a method for obtaining asymptotically correct standard errors for one or several model-averaged estimates of derived parameters and for obtaining simultaneous confidence intervals that asymptotically control the family...

  11. `Indoor` series vending machines; `Indoor` series jido hanbaiki

    Energy Technology Data Exchange (ETDEWEB)

    Gensui, T.; Kida, A. [Fuji Electric Co. Ltd., Tokyo (Japan); Okumura, H. [Fuji Denki Reiki Co. Ltd., Tokyo (Japan)

    1996-07-10

    This paper introduces three series of vending machines that were designed to match the interior of an office building. The three series are vending machines for cups, paper packs, cans, and tobacco. Among the three series, `Interior` series has a symmetric design that was coated in a grain pattern. The inside of the `Interior` series is coated by laser satin to ensure a sense of superior quality and a refined style. The push-button used for product selection is hot-stamped on the plastic surface to ensure the hair-line luster. `Interior Phase II` series has a bay window design with a sense of superior quality and lightness. The inside of the `Interior Phase II` series is coated by laser satin. `Interior 21` series is integrated with the wall except the sales operation panel. The upper and lower dress panels can be detached and attached. The door lock is a wire-type structure with high operativity. The operation block is coated by titanium color. The dimensions of three series are standardized. 6 figs., 1 tab.

  12. Congested Link Inference Algorithms in Dynamic Routing IP Network

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2017-01-01

    Full Text Available The performance descending of current congested link inference algorithms is obviously in dynamic routing IP network, such as the most classical algorithm CLINK. To overcome this problem, based on the assumptions of Markov property and time homogeneity, we build a kind of Variable Structure Discrete Dynamic Bayesian (VSDDB network simplified model of dynamic routing IP network. Under the simplified VSDDB model, based on the Bayesian Maximum A Posteriori (BMAP and Rest Bayesian Network Model (RBNM, we proposed an Improved CLINK (ICLINK algorithm. Considering the concurrent phenomenon of multiple link congestion usually happens, we also proposed algorithm CLILRS (Congested Link Inference algorithm based on Lagrangian Relaxation Subgradient to infer the set of congested links. We validated our results by the experiments of analogy, simulation, and actual Internet.

  13. Inference of population history and patterns from molecular data

    DEFF Research Database (Denmark)

    Tataru, Paula

    , the existing mathematical models and computational methods need to be reformulated. I address this from an inference perspective in two areas of bioinformatics. Population genetics studies the influence exerted by various factors on the dynamics of a population's genetic variation. These factors cover...... evolutionary forces, such as mutation and selection, but also changes in population size. The aim in population genetics is to untangle the history of a population from observed genetic variation. This subject is dominated by two dual models, the Wright-Fisher and coalescent. I first introduce a new...... approximation to the Wright-Fisher model, which I show to accurately infer split times between populations. This approximation can potentially be applied for inference of mutation rates and selection coefficients. I then illustrate how the coalescent process is the natural framework for detecting traces...

  14. Modeling and control of an unstable system using probabilistic fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Sozhamadevi N.

    2015-09-01

    Full Text Available A new type Fuzzy Inference System is proposed, a Probabilistic Fuzzy Inference system which model and minimizes the effects of statistical uncertainties. The blend of two different concepts, degree of truth and probability of truth in a unique framework leads to this new concept. This combination is carried out both in Fuzzy sets and Fuzzy rules, which gives rise to Probabilistic Fuzzy Sets and Probabilistic Fuzzy Rules. Introducing these probabilistic elements, a distinctive probabilistic fuzzy inference system is developed and this involves fuzzification, inference and output processing. This integrated approach accounts for all of the uncertainty like rule uncertainties and measurement uncertainties present in the systems and has led to the design which performs optimally after training. In this paper a Probabilistic Fuzzy Inference System is applied for modeling and control of a highly nonlinear, unstable system and also proved its effectiveness.

  15. Illusory inferences from a disjunction of conditionals: a new mental models account.

    Science.gov (United States)

    Barrouillet, P; Lecas, J F

    2000-08-14

    (Johnson-Laird, P.N., & Savary, F. (1999, Illusory inferences: a novel class of erroneous deductions. Cognition, 71, 191-229.) have recently presented a mental models account, based on the so-called principle of truth, for the occurrence of inferences that are compelling but invalid. This article presents an alternative account of the illusory inferences resulting from a disjunction of conditionals. In accordance with our modified theory of mental models of the conditional, we show that the way individuals represent conditionals leads them to misinterpret the locus of the disjunction and prevents them from drawing conclusions from a false conditional, thus accounting for the compelling character of the illusory inference.

  16. Statistical Inference and Patterns of Inequality in the Global North

    Science.gov (United States)

    Moran, Timothy Patrick

    2006-01-01

    Cross-national inequality trends have historically been a crucial field of inquiry across the social sciences, and new methodological techniques of statistical inference have recently improved the ability to analyze these trends over time. This paper applies Monte Carlo, bootstrap inference methods to the income surveys of the Luxembourg Income…

  17. A Comparative Analysis of Fuzzy Inference Engines in Context of ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    Fuzzy Inference engine is an important part of reasoning systems capable of extracting correct conclusions from ... is known as the inference, or rule definition portion, of fuzzy .... minimal set of decision rules based on input- ... The study uses Mamdani FIS model and. Sugeno FIS ... control of induction motor drive. [18] study.

  18. Bayesian inference for partially identified models exploring the limits of limited data

    CERN Document Server

    Gustafson, Paul

    2015-01-01

    Introduction Identification What Is against Us? What Is for Us? Some Simple Examples of Partially Identified ModelsThe Road Ahead The Structure of Inference in Partially Identified Models Bayesian Inference The Structure of Posterior Distributions in PIMs Computational Strategies Strength of Bayesian Updating, Revisited Posterior MomentsCredible Intervals Evaluating the Worth of Inference Partial Identification versus Model Misspecification The Siren Call of Identification Comp

  19. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin; Zhang, Zhihua; Wong, Ka-Chun; Zhang, Xiangliang; Keyes, David E.

    2017-01-01

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference

  20. Efficient fuzzy Bayesian inference algorithms for incorporating expert knowledge in parameter estimation

    Science.gov (United States)

    Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad

    2016-05-01

    Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert

  1. Assessing school-aged children's inference-making: the effect of story test format in listening comprehension.

    Science.gov (United States)

    Freed, Jenny; Cain, Kate

    2017-01-01

    Comprehension is critical for classroom learning and educational success. Inferences are integral to good comprehension: successful comprehension requires the listener to generate local coherence inferences, which involve integrating information between clauses, and global coherence inferences, which involve integrating textual information with background knowledge to infer motivations, themes, etc. A central priority for the diagnosis of comprehension difficulties and our understanding of why these difficulties arise is the development of valid assessment instruments. We explored typically developing children's ability to make local and global coherence inferences using a novel assessment of listening comprehension. The aims were to determine whether children were more likely to make the target inferences when these were asked during story presentation versus after presentation of the story, and whether there were any age differences between conditions. Children in Years 3 (n = 29) and 5 (n = 31) listened to short stories presented either in a segmented format, in which questions to assess local and global coherence inferences were asked at specific points during story presentation, or in a whole format, when all the questions were asked after the story had been presented. There was developmental progression between age groups for both types of inference question. Children also scored higher on the global coherence inference questions than the local coherence inference questions. There was a benefit of the segmented format for younger children, particularly for the local inference questions. The results suggest that children are more likely to make target inferences if prompted during presentation of the story, and that this format is particularly facilitative for younger children and for local coherence inferences. This has implications for the design of comprehension assessments as well as for supporting children with comprehension difficulties in the classroom

  2. Deontic Introduction: A Theory of Inference from Is to Ought

    Science.gov (United States)

    Elqayam, Shira; Thompson, Valerie A.; Wilkinson, Meredith R.; Evans, Jonathan St. B. T.; Over, David E.

    2015-01-01

    Humans have a unique ability to generate novel norms. Faced with the knowledge that there are hungry children in Somalia, we easily and naturally infer that we ought to donate to famine relief charities. Although a contentious and lively issue in metaethics, such inference from "is" to "ought" has not been systematically…

  3. Image-Data Compression Using Edge-Optimizing Algorithm for WFA Inference.

    Science.gov (United States)

    Culik, Karel II; Kari, Jarkko

    1994-01-01

    Presents an inference algorithm that produces a weighted finite automata (WFA), in particular, the grayness functions of graytone images. Image-data compression results based on the new inference algorithm produces a WFA with a relatively small number of edges. Image-data compression results alone and in combination with wavelets are discussed.…

  4. Causal learning and inference as a rational process: the new synthesis.

    Science.gov (United States)

    Holyoak, Keith J; Cheng, Patricia W

    2011-01-01

    Over the past decade, an active line of research within the field of human causal learning and inference has converged on a general representational framework: causal models integrated with bayesian probabilistic inference. We describe this new synthesis, which views causal learning and inference as a fundamentally rational process, and review a sample of the empirical findings that support the causal framework over associative alternatives. Causal events, like all events in the distal world as opposed to our proximal perceptual input, are inherently unobservable. A central assumption of the causal approach is that humans (and potentially nonhuman animals) have been designed in such a way as to infer the most invariant causal relations for achieving their goals based on observed events. In contrast, the associative approach assumes that learners only acquire associations among important observed events, omitting the representation of the distal relations. By incorporating bayesian inference over distributions of causal strength and causal structures, along with noisy-logical (i.e., causal) functions for integrating the influences of multiple causes on a single effect, human judgments about causal strength and structure can be predicted accurately for relatively simple causal structures. Dynamic models of learning based on the causal framework can explain patterns of acquisition observed with serial presentation of contingency data and are consistent with available neuroimaging data. The approach has been extended to a diverse range of inductive tasks, including category-based and analogical inferences.

  5. Utilitarian Moral Judgment Exclusively Coheres with Inference from Is to Ought

    Directory of Open Access Journals (Sweden)

    Shira Elqayam

    2017-06-01

    Full Text Available Faced with moral choice, people either judge according to pre-existing obligations (deontological judgment, or by taking into account the consequences of their actions (utilitarian judgment. We propose that the latter coheres with a more general cognitive mechanism – deontic introduction, the tendency to infer normative (‘deontic’ conclusions from descriptive premises (is-ought inference. Participants were presented with vignettes that allowed either deontological or utilitarian choice, and asked to draw a range of deontic conclusions, as well as judge the overall moral rightness of each choice separately. We predicted and found a selective defeasibility pattern, in which manipulations that suppressed deontic introduction also suppressed utilitarian moral judgment, but had little effect on deontological moral judgment. Thus, deontic introduction coheres with utilitarian moral judgment almost exclusively. We suggest a family of norm-generating informal inferences, in which normative conclusions are drawn from descriptive (although value-laden premises. This family includes deontic introduction and utilitarian moral judgment as well as other informal inferences. We conclude with a call for greater integration of research in moral judgment and research into deontic reasoning and informal inference.

  6. New developments of a knowledge based system (VEG) for inferring vegetation characteristics

    Science.gov (United States)

    Kimes, D. S.; Harrison, P. A.; Harrison, P. R.

    1992-01-01

    An extraction technique for inferring physical and biological surface properties of vegetation using nadir and/or directional reflectance data as input has been developed. A knowledge-based system (VEG) accepts spectral data of an unknown target as input, determines the best strategy for inferring the desired vegetation characteristic, applies the strategy to the target data, and provides a rigorous estimate of the accuracy of the inference. Progress in developing the system is presented. VEG combines methods from remote sensing and artificial intelligence, and integrates input spectral measurements with diverse knowledge bases. VEG has been developed to (1) infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; (2) test and develop new extraction techniques on an internal spectral database; (3) browse, plot, or analyze directional reflectance data in the system's spectral database; (4) discriminate between user-defined vegetation classes using spectral and directional reflectance relationships; and (5) infer unknown view angles from known view angles (known as view angle extension).

  7. Multi-Modal Inference in Animacy Perception for Artificial Object

    Directory of Open Access Journals (Sweden)

    Kohske Takahashi

    2011-10-01

    Full Text Available Sometimes we feel animacy for artificial objects and their motion. Animals usually interact with environments through multiple sensory modalities. Here we investigated how the sensory responsiveness of artificial objects to the environment would contribute to animacy judgment for them. In a 90-s trial, observers freely viewed four objects moving in a virtual 3D space. The objects, whose position and motion were determined following Perlin-noise series, kept drifting independently in the space. Visual flashes, auditory bursts, or synchronous flashes and bursts appeared with 1–2 s intervals. The first object abruptly accelerated their motion just after visual flashes, giving an impression of responding to the flash. The second object responded to bursts. The third object responded to synchronous flashes and bursts. The forth object accelerated at a random timing independent of flashes and bursts. The observers rated how strongly they felt animacy for each object. The results showed that the object responding to the auditory bursts was rated as having weaker animacy compared to the other objects. This implies that sensory modality through which an object interacts with the environment may be a factor for animacy perception in the object and may serve as the basis of multi-modal and cross-modal inference of animacy.

  8. Inferring influenza global transmission networks without complete phylogenetic information.

    Science.gov (United States)

    Aris-Brosou, Stéphane

    2014-03-01

    Influenza is one of the most severe respiratory infections affecting humans throughout the world, yet the dynamics of its global transmission network are still contentious. Here, I describe a novel combination of phylogenetics, time series, and graph theory to analyze 14.25 years of data stratified in space and in time, focusing on the main target of the human immune response, the hemagglutinin gene. While bypassing the complete phylogenetic inference of huge data sets, the method still extracts information suggesting that waves of genetic or of nucleotide diversity circulate continuously around the globe for subtypes that undergo sustained transmission over several seasons, such as H3N2 and pandemic H1N1/09, while diversity of prepandemic H1N1 viruses had until 2009 a noncontinuous transmission pattern consistent with a source/sink model. Irrespective of the shift in the structure of H1N1 diversity circulation with the emergence of the pandemic H1N1/09 strain, US prevalence peaks during the winter months when genetic diversity is at its lowest. This suggests that a dominant strain is generally responsible for epidemics and that monitoring genetic and/or nucleotide diversity in real time could provide public health agencies with an indirect estimate of prevalence.

  9. Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models.

    Directory of Open Access Journals (Sweden)

    Richard R Stein

    2015-07-01

    Full Text Available Maximum entropy-based inference methods have been successfully used to infer direct interactions from biological datasets such as gene expression data or sequence ensembles. Here, we review undirected pairwise maximum-entropy probability models in two categories of data types, those with continuous and categorical random variables. As a concrete example, we present recently developed inference methods from the field of protein contact prediction and show that a basic set of assumptions leads to similar solution strategies for inferring the model parameters in both variable types. These parameters reflect interactive couplings between observables, which can be used to predict global properties of the biological system. Such methods are applicable to the important problems of protein 3-D structure prediction and association of gene-gene networks, and they enable potential applications to the analysis of gene alteration patterns and to protein design.

  10. Using forecast modelling to evaluate treatment effects in single-group interrupted time series analysis.

    Science.gov (United States)

    Linden, Ariel

    2018-05-11

    Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied serially over time and the intervention is expected to "interrupt" the level and/or trend of that outcome. ITSA is commonly evaluated using methods which may produce biased results if model assumptions are violated. In this paper, treatment effects are alternatively assessed by using forecasting methods to closely fit the preintervention observations and then forecast the post-intervention trend. A treatment effect may be inferred if the actual post-intervention observations diverge from the forecasts by some specified amount. The forecasting approach is demonstrated using the effect of California's Proposition 99 for reducing cigarette sales. Three forecast models are fit to the preintervention series-linear regression (REG), Holt-Winters (HW) non-seasonal smoothing, and autoregressive moving average (ARIMA)-and forecasts are generated into the post-intervention period. The actual observations are then compared with the forecasts to assess intervention effects. The preintervention data were fit best by HW, followed closely by ARIMA. REG fit the data poorly. The actual post-intervention observations were above the forecasts in HW and ARIMA, suggesting no intervention effect, but below the forecasts in the REG (suggesting a treatment effect), thereby raising doubts about any definitive conclusion of a treatment effect. In a single-group ITSA, treatment effects are likely to be biased if the model is misspecified. Therefore, evaluators should consider using forecast models to accurately fit the preintervention data and generate plausible counterfactual forecasts, thereby improving causal inference of treatment effects in single-group ITSA studies. © 2018 John Wiley & Sons, Ltd.

  11. Generic patch inference

    DEFF Research Database (Denmark)

    Andersen, Jesper; Lawall, Julia

    2010-01-01

    A key issue in maintaining Linux device drivers is the need to keep them up to date with respect to evolutions in Linux internal libraries. Currently, there is little tool support for performing and documenting such changes. In this paper we present a tool, spdiff, that identifies common changes...... developers can use it to extract an abstract representation of the set of changes that others have made. Our experiments on recent changes in Linux show that the inferred generic patches are more concise than the corresponding patches found in commits to the Linux source tree while being safe with respect...

  12. Inferring time-varying network topologies from gene expression data.

    Science.gov (United States)

    Rao, Arvind; Hero, Alfred O; States, David J; Engel, James Douglas

    2007-01-01

    Most current methods for gene regulatory network identification lead to the inference of steady-state networks, that is, networks prevalent over all times, a hypothesis which has been challenged. There has been a need to infer and represent networks in a dynamic, that is, time-varying fashion, in order to account for different cellular states affecting the interactions amongst genes. In this work, we present an approach, regime-SSM, to understand gene regulatory networks within such a dynamic setting. The approach uses a clustering method based on these underlying dynamics, followed by system identification using a state-space model for each learnt cluster--to infer a network adjacency matrix. We finally indicate our results on the mouse embryonic kidney dataset as well as the T-cell activation-based expression dataset and demonstrate conformity with reported experimental evidence.

  13. Network Model-Assisted Inference from Respondent-Driven Sampling Data.

    Science.gov (United States)

    Gile, Krista J; Handcock, Mark S

    2015-06-01

    Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population.

  14. Models for probability and statistical inference theory and applications

    CERN Document Server

    Stapleton, James H

    2007-01-01

    This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readersModels for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses mo...

  15. Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback.

    Science.gov (United States)

    Orhan, A Emin; Ma, Wei Ji

    2017-07-26

    Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sublinearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Behavioural tasks often require probability distributions to be inferred about task specific variables. Here, the authors demonstrate that generic neural networks can be trained using a simple error-based learning rule to perform such probabilistic computations efficiently without any need for task specific operations.

  16. Cortical information flow during inferences of agency

    Directory of Open Access Journals (Sweden)

    Myrthel eDogge

    2014-08-01

    Full Text Available Building on the recent finding that agency experiences do not merely rely on sensorimotor information but also on cognitive cues, this exploratory study uses electroencephalographic recordings to examine functional connectivity during agency inference processing in a setting where action and outcome are independent. Participants completed a computerized task in which they pressed a button followed by one of two color words (red or blue and rated their experienced agency over producing the color. Before executing the action, a matching or mismatching color word was pre-activated by explicitly instructing participants to produce the color (goal condition or by briefly presenting the color word (prime condition. In both conditions, experienced agency was higher in matching versus mismatching trials. Furthermore, increased electroencephalography (EEG-based connectivity strength was observed between parietal and frontal nodes and within the (prefrontal cortex when color-outcomes matched with goals and participants reported high agency. This pattern of increased connectivity was not identified in trials where outcomes were pre-activated through primes. These results suggest that different connections are involved in the experience and in the loss of agency, as well as in inferences of agency resulting from different types of pre-activation. Moreover, the findings provide novel support for the involvement of a fronto-parietal network in agency inferences.

  17. Massive optimal data compression and density estimation for scalable, likelihood-free inference in cosmology

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin; Feeney, Stephen

    2018-03-01

    Many statistical models in cosmology can be simulated forwards but have intractable likelihood functions. Likelihood-free inference methods allow us to perform Bayesian inference from these models using only forward simulations, free from any likelihood assumptions or approximations. Likelihood-free inference generically involves simulating mock data and comparing to the observed data; this comparison in data-space suffers from the curse of dimensionality and requires compression of the data to a small number of summary statistics to be tractable. In this paper we use massive asymptotically-optimal data compression to reduce the dimensionality of the data-space to just one number per parameter, providing a natural and optimal framework for summary statistic choice for likelihood-free inference. Secondly, we present the first cosmological application of Density Estimation Likelihood-Free Inference (DELFI), which learns a parameterized model for joint distribution of data and parameters, yielding both the parameter posterior and the model evidence. This approach is conceptually simple, requires less tuning than traditional Approximate Bayesian Computation approaches to likelihood-free inference and can give high-fidelity posteriors from orders of magnitude fewer forward simulations. As an additional bonus, it enables parameter inference and Bayesian model comparison simultaneously. We demonstrate Density Estimation Likelihood-Free Inference with massive data compression on an analysis of the joint light-curve analysis supernova data, as a simple validation case study. We show that high-fidelity posterior inference is possible for full-scale cosmological data analyses with as few as ˜104 simulations, with substantial scope for further improvement, demonstrating the scalability of likelihood-free inference to large and complex cosmological datasets.

  18. Ontological Constraints in Children's Inductive Inferences: Evidence From a Comparison of Inferences Within Animals and Vehicles.

    Science.gov (United States)

    Tarlowski, Andrzej

    2018-01-01

    There is a lively debate concerning the role of conceptual and perceptual information in young children's inductive inferences. While most studies focus on the role of basic level categories in induction the present research contributes to the debate by asking whether children's inductions are guided by ontological constraints. Two studies use a novel inductive paradigm to test whether young children have an expectation that all animals share internal commonalities that do not extend to perceptually similar inanimates. The results show that children make category-consistent responses when asked to project an internal feature from an animal to either a dissimilar animal or a similar toy replica. However, the children do not have a universal preference for category-consistent responses in an analogous task involving vehicles and vehicle toy replicas. The results also show the role of context and individual factors in inferences. Children's early reliance on ontological commitments in induction cannot be explained by perceptual similarity or by children's sensitivity to the authenticity of objects.

  19. Processing of Scalar Inferences by Mandarin Learners of English: An Online Measure.

    Directory of Open Access Journals (Sweden)

    Yowyu Lin

    Full Text Available Scalar inferences represent the condition when a speaker uses a weaker expression such as some in a pragmatic scale like , and s/he has the intention to reject the stronger use of the other word like all in the utterance. Considerable disagreement has arisen concerning how interlocutors derive the inferences. The study presented here tries to address this issue by examining online scalar inferences among Mandarin learners of English. To date, Default Inference and Relevance Theory have made different predictions regarding how people process scalar inferences. Findings from recently emerging first language studies did not fully resolved the debate but led to even more heated debates. The current three online psycholinguistic experiments reported here tried to address the processing of scalar inferences from second language perspective. Results showed that Mandarin learners of English showed faster reaction times and a higher acceptance rate when interpreting some as some but not all and this was true even when subjects were under time pressure, which was manifested in Experiment 2. Overall, the results of the experiments supported Default Theory. In addition, Experiment 3 also found that working memory capacity plays a critical role during scalar inference processing. High span readers were faster in accepting the some but not all interpretation than low span readers. However, compared with low span readers, high span readers were more likely to accept the some and possibly all condition, possibly due to their working memory capacity to generate scenarios to fit the interpretation.

  20. Probabilistic Decision Graphs - Combining Verification and AI Techniques for Probabilistic Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2004-01-01

    We adopt probabilistic decision graphs developed in the field of automated verification as a tool for probabilistic model representation and inference. We show that probabilistic inference has linear time complexity in the size of the probabilistic decision graph, that the smallest probabilistic ...

  1. Bayesian Modelling of fMRI Time Series

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward

    2000-01-01

    We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...... Carlo (MCMC) sampling techniques. The advantage of this method is that detection of short time learning effects between repeated trials is possible since inference is based only on single trial experiments....

  2. Ignorability in Statistical and Probabilistic Inference

    DEFF Research Database (Denmark)

    Jaeger, Manfred

    2005-01-01

    When dealing with incomplete data in statistical learning, or incomplete observations in probabilistic inference, one needs to distinguish the fact that a certain event is observed from the fact that the observed event has happened. Since the modeling and computational complexities entailed...

  3. Inferring probabilistic stellar rotation periods using Gaussian processes

    Science.gov (United States)

    Angus, Ruth; Morton, Timothy; Aigrain, Suzanne; Foreman-Mackey, Daniel; Rajpaul, Vinesh

    2018-02-01

    Variability in the light curves of spotted, rotating stars is often non-sinusoidal and quasi-periodic - spots move on the stellar surface and have finite lifetimes, causing stellar flux variations to slowly shift in phase. A strictly periodic sinusoid therefore cannot accurately model a rotationally modulated stellar light curve. Physical models of stellar surfaces have many drawbacks preventing effective inference, such as highly degenerate or high-dimensional parameter spaces. In this work, we test an appropriate effective model: a Gaussian Process with a quasi-periodic covariance kernel function. This highly flexible model allows sampling of the posterior probability density function of the periodic parameter, marginalizing over the other kernel hyperparameters using a Markov Chain Monte Carlo approach. To test the effectiveness of this method, we infer rotation periods from 333 simulated stellar light curves, demonstrating that the Gaussian process method produces periods that are more accurate than both a sine-fitting periodogram and an autocorrelation function method. We also demonstrate that it works well on real data, by inferring rotation periods for 275 Kepler stars with previously measured periods. We provide a table of rotation periods for these and many more, altogether 1102 Kepler objects of interest, and their posterior probability density function samples. Because this method delivers posterior probability density functions, it will enable hierarchical studies involving stellar rotation, particularly those involving population modelling, such as inferring stellar ages, obliquities in exoplanet systems, or characterizing star-planet interactions. The code used to implement this method is available online.

  4. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  5. Inferences on Children’s Reading Groups

    Directory of Open Access Journals (Sweden)

    Javier González García

    2009-05-01

    Full Text Available This article focuses on the non-literal information of a text, which can be inferred from key elements or clues offered by the text itself. This kind of text is called implicit text or inference, due to the thinking process that it stimulates. The explicit resources that lead to information retrieval are related to others of implicit information, which have increased their relevance. In this study, during two courses, how two teachers interpret three stories and how they establish a debate dividing the class into three student groups, was analyzed. The sample was formed by two classes of two urban public schools of Burgos capital (Spain, and two of public schools of Tampico (Mexico. This allowed us to observe an increasing percentage value of the group focused in text comprehension, and a lesser percentage of the group perceiving comprehension as a secondary objective.

  6. Completion is an Instance of Abstract Canonical System Inference

    OpenAIRE

    Burel , Guillaume; Kirchner , Claude

    2006-01-01

    http://www.springerlink.com/content/u222753gl333221p/; Abstract canonical systems and inference (ACSI) were introduced to formalize the intuitive notions of good proof and good inference appearing typically in first-order logic or in Knuth-Bendix like completion procedures. Since this abstract framework is intended to be generic, it is of fundamental interest to show its adequacy to represent the main systems of interest. This has been done for ground completion (where all equational axioms a...

  7. On Thinking First and Responding Fast: Flexibility in Social Inference Processes.

    Science.gov (United States)

    Krull, Douglas S.; Dill, Jody C.

    1996-01-01

    Investigates the order in which dispositional and situational information is considered. Results indicate that perceivers are flexible in their inference processes: they are able to draw either dispositional or situational inferences initially. Greater understanding of the mechanisms and determinants of social judgments has important implications…

  8. Network Model-Assisted Inference from Respondent-Driven Sampling Data

    Science.gov (United States)

    Gile, Krista J.; Handcock, Mark S.

    2015-01-01

    Summary Respondent-Driven Sampling is a widely-used method for sampling hard-to-reach human populations by link-tracing over their social networks. Inference from such data requires specialized techniques because the sampling process is both partially beyond the control of the researcher, and partially implicitly defined. Therefore, it is not generally possible to directly compute the sampling weights for traditional design-based inference, and likelihood inference requires modeling the complex sampling process. As an alternative, we introduce a model-assisted approach, resulting in a design-based estimator leveraging a working network model. We derive a new class of estimators for population means and a corresponding bootstrap standard error estimator. We demonstrate improved performance compared to existing estimators, including adjustment for an initial convenience sample. We also apply the method and an extension to the estimation of HIV prevalence in a high-risk population. PMID:26640328

  9. Inferring Human Mobility from Sparse Low Accuracy Mobile Sensing Data

    DEFF Research Database (Denmark)

    Cuttone, Andrea; Jørgensen, Sune Lehmann; Larsen, Jakob Eg

    2014-01-01

    Understanding both collective and personal human mobility is a central topic in Computational Social Science. Smartphone sensing data is emerging as a promising source for studying human mobility. However, most literature focuses on high-precision GPS positioning and high-frequency sampling, which...... is not always feasible in a longitudinal study or for everyday applications because location sensing has a high battery cost. In this paper we study the feasibility of inferring human mobility from sparse, low accuracy mobile sensing data. We validate our results using participants' location diaries......, and analyze the inferred geographical networks, the time spent at different places, and the number of unique places over time. Our results suggest that low resolution data allows accurate inference of human mobility patterns....

  10. Inference in hybrid Bayesian networks

    DEFF Research Database (Denmark)

    Lanseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael

    2009-01-01

    Since the 1980s, Bayesian Networks (BNs) have become increasingly popular for building statistical models of complex systems. This is particularly true for boolean systems, where BNs often prove to be a more efficient modelling framework than traditional reliability-techniques (like fault trees...... decade's research on inference in hybrid Bayesian networks. The discussions are linked to an example model for estimating human reliability....

  11. Bayesian inference for Markov jump processes with informative observations.

    Science.gov (United States)

    Golightly, Andrew; Wilkinson, Darren J

    2015-04-01

    In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis.

  12. Inference of directional selection and mutation parameters assuming equilibrium.

    Science.gov (United States)

    Vogl, Claus; Bergman, Juraj

    2015-12-01

    In a classical study, Wright (1931) proposed a model for the evolution of a biallelic locus under the influence of mutation, directional selection and drift. He derived the equilibrium distribution of the allelic proportion conditional on the scaled mutation rate, the mutation bias and the scaled strength of directional selection. The equilibrium distribution can be used for inference of these parameters with genome-wide datasets of "site frequency spectra" (SFS). Assuming that the scaled mutation rate is low, Wright's model can be approximated by a boundary-mutation model, where mutations are introduced into the population exclusively from sites fixed for the preferred or unpreferred allelic states. With the boundary-mutation model, inference can be partitioned: (i) the shape of the SFS distribution within the polymorphic region is determined by random drift and directional selection, but not by the mutation parameters, such that inference of the selection parameter relies exclusively on the polymorphic sites in the SFS; (ii) the mutation parameters can be inferred from the amount of polymorphic and monomorphic preferred and unpreferred alleles, conditional on the selection parameter. Herein, we derive maximum likelihood estimators for the mutation and selection parameters in equilibrium and apply the method to simulated SFS data as well as empirical data from a Madagascar population of Drosophila simulans. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. New insights into soil temperature time series modeling: linear or nonlinear?

    Science.gov (United States)

    Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram

    2018-03-01

    Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and

  14. [Social exchange and inference: an experimental study with the Wason selection task].

    Science.gov (United States)

    Hayashi, N

    2001-04-01

    Social contract theory (Cosmides, 1989) posits that the human mind was equipped with inference faculty specialized for cheater detection. Cosmides (1989) conducted a series of experiments employing the Wason selection task to demonstrate that her social contract theory could account for the content effects reported in the literature. The purpose of this study was to investigate the possibility that the results were due to experimental artifacts. In the current experiment, the subject was given two versions of the Wason task that contained no social exchange context, but included an instruction implying him/her to look for something, together with the cassava root and the abstract versions used by Cosmides (1989). Results showed that the two versions with no social exchange context produced the same response pattern observed in the original study. It may be concluded that the subject's perception of the rule as a social contract was not necessary to obtain the original results, and that an instruction implying that he/she should look for something was sufficient.

  15. Inferring uncertainty from interval estimates: Effects of alpha level and numeracy

    Directory of Open Access Journals (Sweden)

    Luke F. Rinne

    2013-05-01

    Full Text Available Interval estimates are commonly used to descriptively communicate the degree of uncertainty in numerical values. Conventionally, low alpha levels (e.g., .05 ensure a high probability of capturing the target value between interval endpoints. Here, we test whether alpha levels and individual differences in numeracy influence distributional inferences. In the reported experiment, participants received prediction intervals for fictitious towns' annual rainfall totals (assuming approximately normal distributions. Then, participants estimated probabilities that future totals would be captured within varying margins about the mean, indicating the approximate shapes of their inferred probability distributions. Results showed that low alpha levels (vs. moderate levels; e.g., .25 more frequently led to inferences of over-dispersed approximately normal distributions or approximately uniform distributions, reducing estimate accuracy. Highly numerate participants made more accurate estimates overall, but were more prone to inferring approximately uniform distributions. These findings have important implications for presenting interval estimates to various audiences.

  16. Processing inferences at the semantics/pragmatics frontier: disjunctions and free choice.

    Science.gov (United States)

    Chemla, Emmanuel; Bott, Lewis

    2014-03-01

    Linguistic inferences have traditionally been studied and categorized in several categories, such as entailments, implicatures or presuppositions. This typology is mostly based on traditional linguistic means, such as introspective judgments about phrases occurring in different constructions, in different conversational contexts. More recently, the processing properties of these inferences have also been studied (see, e.g., recent work showing that scalar implicatures is a costly phenomenon). Our focus is on free choice permission, a phenomenon by which conjunctive inferences are unexpectedly added to disjunctive sentences. For instance, a sentence such as "Mary is allowed to eat an ice-cream or a cake" is normally understood as granting permission both for eating an ice-cream and for eating a cake. We provide data from four processing studies, which show that, contrary to arguments coming from the theoretical literature, free choice inferences are different from scalar implicatures. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Inferring facts from fiction: reading correct and incorrect information affects memory for related information.

    Science.gov (United States)

    Butler, Andrew C; Dennis, Nancy A; Marsh, Elizabeth J

    2012-07-01

    People can acquire both true and false knowledge about the world from fictional stories. The present study explored whether the benefits and costs of learning about the world from fictional stories extend beyond memory for directly stated pieces of information. Of interest was whether readers would use correct and incorrect story references to make deductive inferences about related information in the story, and then integrate those inferences into their knowledge bases. Participants read stories containing correct, neutral, and misleading references to facts about the world; each reference could be combined with another reference that occurred in a later sentence to make a deductive inference. Later they answered general knowledge questions that tested for these deductive inferences. The results showed that participants generated and retained the deductive inferences regardless of whether the inferences were consistent or inconsistent with world knowledge, and irrespective of whether the references were placed consecutively in the text or separated by many sentences. Readers learn more than what is directly stated in stories; they use references to the real world to make both correct and incorrect inferences that are integrated into their knowledge bases.

  18. Emotional inferences by pragmatics

    OpenAIRE

    Iza-Miqueleiz, Mauricio

    2017-01-01

    It has for long been taken for granted that, along the course of reading a text, world knowledge is often required in order to establish coherent links between sentences (McKoon & Ratcliff 1992, Iza & Ezquerro 2000). The content grasped from a text turns out to be strongly dependent upon the reader’s additional knowledge that allows a coherent interpretation of the text as a whole. The world knowledge directing the inference may be of distinctive nature. Gygax et al. (2007) showed that m...

  19. Intelligent machines in the twenty-first century: foundations of inference and inquiry.

    Science.gov (United States)

    Knuth, Kevin H

    2003-12-15

    The last century saw the application of Boolean algebra to the construction of computing machines, which work by applying logical transformations to information contained in their memory. The development of information theory and the generalization of Boolean algebra to Bayesian inference have enabled these computing machines, in the last quarter of the twentieth century, to be endowed with the ability to learn by making inferences from data. This revolution is just beginning as new computational techniques continue to make difficult problems more accessible. Recent advances in our understanding of the foundations of probability theory have revealed implications for areas other than logic. Of relevance to intelligent machines, we recently identified the algebra of questions as the free distributive algebra, which will now allow us to work with questions in a way analogous to that which Boolean algebra enables us to work with logical statements. In this paper, we examine the foundations of inference and inquiry. We begin with a history of inferential reasoning, highlighting key concepts that have led to the automation of inference in modern machine-learning systems. We then discuss the foundations of inference in more detail using a modern viewpoint that relies on the mathematics of partially ordered sets and the scaffolding of lattice theory. This new viewpoint allows us to develop the logic of inquiry and introduce a measure describing the relevance of a proposed question to an unresolved issue. Last, we will demonstrate the automation of inference, and discuss how this new logic of inquiry will enable intelligent machines to ask questions. Automation of both inference and inquiry promises to allow robots to perform science in the far reaches of our solar system and in other star systems by enabling them not only to make inferences from data, but also to decide which question to ask, which experiment to perform, or which measurement to take given what they have

  20. Towards Bayesian Inference of the Fast-Ion Distribution Function

    DEFF Research Database (Denmark)

    Stagner, L.; Heidbrink, W.W.; Salewski, Mirko

    2012-01-01

    sensitivity of the measurements are incorporated into Bayesian likelihood probabilities, while prior probabilities enforce physical constraints. As an initial step, this poster uses Bayesian statistics to infer the DIII-D electron density profile from multiple diagnostic measurements. Likelihood functions....... However, when theory and experiment disagree (for one or more diagnostics), it is unclear how to proceed. Bayesian statistics provides a framework to infer the DF, quantify errors, and reconcile discrepant diagnostic measurements. Diagnostic errors and ``weight functions" that describe the phase space...

  1. IERIAS: inference engine for reactor accident diagnostic system using knowledge engineering technique

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Yoshida, Kazuo; Kohsaka, Atsuo; Yamamoto, Minoru.

    1984-11-01

    This report describes an inference engine IERIAS which has been devoloped for a diagnostic system to identify the cause and type of an abnormal transient of a reactor plant. This system using knowledge engineering technique consists of a knowledge base and an inference engine. The inference engine IERIAS is designed so as to treat time-varying data of a plant. The major features of IERIAS are ; (1) histroy of transients can be treated, (2) knowledge base can be divided into some knowledge units, (3) program language UTILISP is used which is suitable for symbolic data manipulation. Inference was made using IERIAS with a knowledge base which was created from simulated results of various transients by a PWR plant simulator. The results showed a good applicability of IERIAS for reactor diagnosis. (author)

  2. Inference in partially identified models with many moment inequalities using Lasso

    DEFF Research Database (Denmark)

    Bugni, Federico A.; Caner, Mehmet; Kock, Anders Bredahl

    This paper considers the problem of inference in a partially identified moment (in)equality model with possibly many moment inequalities. Our contribution is to propose a novel two-step new inference method based on the combination of two ideas. On the one hand, our test statistic and critical...

  3. Inferring microRNA regulation of mRNA with partially ordered samples of paired expression data and exogenous prediction algorithms.

    Directory of Open Access Journals (Sweden)

    Brian Godsey

    Full Text Available MicroRNAs (miRs are known to play an important role in mRNA regulation, often by binding to complementary sequences in "target" mRNAs. Recently, several methods have been developed by which existing sequence-based target predictions can be combined with miR and mRNA expression data to infer true miR-mRNA targeting relationships. It has been shown that the combination of these two approaches gives more reliable results than either by itself. While a few such algorithms give excellent results, none fully addresses expression data sets with a natural ordering of the samples. If the samples in an experiment can be ordered or partially ordered by their expected similarity to one another, such as for time-series or studies of development processes, stages, or types, (e.g. cell type, disease, growth, aging, there are unique opportunities to infer miR-mRNA interactions that may be specific to the underlying processes, and existing methods do not exploit this. We propose an algorithm which specifically addresses [partially] ordered expression data and takes advantage of sample similarities based on the ordering structure. This is done within a Bayesian framework which specifies posterior distributions and therefore statistical significance for each model parameter and latent variable. We apply our model to a previously published expression data set of paired miR and mRNA arrays in five partially ordered conditions, with biological replicates, related to multiple myeloma, and we show how considering potential orderings can improve the inference of miR-mRNA interactions, as measured by existing knowledge about the involved transcripts.

  4. On Sums of Numerical Series and Fourier Series

    Science.gov (United States)

    Pavao, H. Germano; de Oliveira, E. Capelas

    2008-01-01

    We discuss a class of trigonometric functions whose corresponding Fourier series, on a conveniently chosen interval, can be used to calculate several numerical series. Particular cases are presented and two recent results involving numerical series are recovered. (Contains 1 note.)

  5. Assessing children's inference generation: what do tests of reading comprehension measure?

    Science.gov (United States)

    Bowyer-Crane, Claudine; Snowling, Margaret J

    2005-06-01

    Previous research suggests that children with specific comprehension difficulties have problems with the generation of inferences. This raises important questions as to whether poor comprehenders have poor comprehension skills generally, or whether their problems are confined to specific inference types. The main aims of the study were (a) using two commonly used tests of reading comprehension to classify the questions requiring the generation of inferences, and (b) to investigate the relative performance of skilled and less-skilled comprehenders on questions tapping different inference types. The performance of 10 poor comprehenders (mean age 110.06 months) was compared with the performance of 10 normal readers (mean age 112.78 months) on two tests of reading comprehension. A qualitative analysis of the NARA II (form 1) and the WORD comprehension subtest was carried out. Participants were then administered the NARA II, WORD comprehension subtest and a test of non-word reading. The NARA II was heavily reliant on the generation of knowledge-based inferences, while the WORD comprehension subtest was biased towards the retention of literal information. Children identified by the NARA II as having comprehension difficulties performed in the normal range on the WORD comprehension subtests. Further, children with comprehension difficulties performed poorly on questions requiring the generation of knowledge-based and elaborative inferences. However, they were able to answer questions requiring attention to literal information or use of cohesive devices at a level comparable to normal readers. Different reading tests tap different types of inferencing skills. Lessskilled comprehenders have particular difficulty applying real-world knowledge to a text during reading, and this has implications for the formulation of effective intervention strategies.

  6. Generating inferences from knowledge structures based on general automata

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, E C

    1983-01-01

    The author shows that the model for knowledge structures for computers based on general automata accommodates procedures for establishing inferences. Algorithms are presented which generate inferences as output of a computer when its sentence input names appropriate knowledge elements contained in an associated knowledge structure already stored in the memory of the computer. The inferences are found to have either a single graph tuple or more than one graph tuple of associated knowledge. Six algorithms pertain to a single graph tuple and a seventh pertains to more than one graph tuple of associated knowledge. A named term is either the automaton, environment, auxiliary receptor, principal receptor, auxiliary effector, or principal effector. The algorithm pertaining to more than one graph tuple requires that the input sentence names the automaton, transformation response, and environment of one of the tuples of associated knowledge in a sequence of tuples. Interaction with the computer may be either in a conversation or examination mode. The algorithms are illustrated by an example. 13 references.

  7. Evidence Accumulation and Change Rate Inference in Dynamic Environments.

    Science.gov (United States)

    Radillo, Adrian E; Veliz-Cuba, Alan; Josić, Krešimir; Kilpatrick, Zachary P

    2017-06-01

    In a constantly changing world, animals must account for environmental volatility when making decisions. To appropriately discount older, irrelevant information, they need to learn the rate at which the environment changes. We develop an ideal observer model capable of inferring the present state of the environment along with its rate of change. Key to this computation is an update of the posterior probability of all possible change point counts. This computation can be challenging, as the number of possibilities grows rapidly with time. However, we show how the computations can be simplified in the continuum limit by a moment closure approximation. The resulting low-dimensional system can be used to infer the environmental state and change rate with accuracy comparable to the ideal observer. The approximate computations can be performed by a neural network model via a rate-correlation-based plasticity rule. We thus show how optimal observers accumulate evidence in changing environments and map this computation to reduced models that perform inference using plausible neural mechanisms.

  8. An emergent approach to analogical inference

    Science.gov (United States)

    Thibodeau, Paul H.; Flusberg, Stephen J.; Glick, Jeremy J.; Sternberg, Daniel A.

    2013-03-01

    In recent years, a growing number of researchers have proposed that analogy is a core component of human cognition. According to the dominant theoretical viewpoint, analogical reasoning requires a specific suite of cognitive machinery, including explicitly coded symbolic representations and a mapping or binding mechanism that operates over these representations. Here we offer an alternative approach: we find that analogical inference can emerge naturally and spontaneously from a relatively simple, error-driven learning mechanism without the need to posit any additional analogy-specific machinery. The results also parallel findings from the developmental literature on analogy, demonstrating a shift from an initial reliance on surface feature similarity to the use of relational similarity later in training. Variants of the model allow us to consider and rule out alternative accounts of its performance. We conclude by discussing how these findings can potentially refine our understanding of the processes that are required to perform analogical inference.

  9. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  10. Infinite series

    CERN Document Server

    Hirschman, Isidore Isaac

    2014-01-01

    This text for advanced undergraduate and graduate students presents a rigorous approach that also emphasizes applications. Encompassing more than the usual amount of material on the problems of computation with series, the treatment offers many applications, including those related to the theory of special functions. Numerous problems appear throughout the book.The first chapter introduces the elementary theory of infinite series, followed by a relatively complete exposition of the basic properties of Taylor series and Fourier series. Additional subjects include series of functions and the app

  11. Kernel learning at the first level of inference.

    Science.gov (United States)

    Cawley, Gavin C; Talbot, Nicola L C

    2014-05-01

    Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. PhySIC_IST: cleaning source trees to infer more informative supertrees.

    Science.gov (United States)

    Scornavacca, Celine; Berry, Vincent; Lefort, Vincent; Douzery, Emmanuel J P; Ranwez, Vincent

    2008-10-04

    Supertree methods combine phylogenies with overlapping sets of taxa into a larger one. Topological conflicts frequently arise among source trees for methodological or biological reasons, such as long branch attraction, lateral gene transfers, gene duplication/loss or deep gene coalescence. When topological conflicts occur among source trees, liberal methods infer supertrees containing the most frequent alternative, while veto methods infer supertrees not contradicting any source tree, i.e. discard all conflicting resolutions. When the source trees host a significant number of topological conflicts or have a small taxon overlap, supertree methods of both kinds can propose poorly resolved, hence uninformative, supertrees. To overcome this problem, we propose to infer non-plenary supertrees, i.e. supertrees that do not necessarily contain all the taxa present in the source trees, discarding those whose position greatly differs among source trees or for which insufficient information is provided. We detail a variant of the PhySIC veto method called PhySIC_IST that can infer non-plenary supertrees. PhySIC_IST aims at inferring supertrees that satisfy the same appealing theoretical properties as with PhySIC, while being as informative as possible under this constraint. The informativeness of a supertree is estimated using a variation of the CIC (Cladistic Information Content) criterion, that takes into account both the presence of multifurcations and the absence of some taxa. Additionally, we propose a statistical preprocessing step called STC (Source Trees Correction) to correct the source trees prior to the supertree inference. STC is a liberal step that removes the parts of each source tree that significantly conflict with other source trees. Combining STC with a veto method allows an explicit trade-off between veto and liberal approaches, tuned by a single parameter.Performing large-scale simulations, we observe that STC+PhySIC_IST infers much more informative

  13. A neuro-fuzzy inference system for sensor monitoring

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the information of other sensors. The paramters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors

  14. Bayesian inference on genetic merit under uncertain paternity

    Directory of Open Access Journals (Sweden)

    Tempelman Robert J

    2003-09-01

    Full Text Available Abstract A hierarchical animal model was developed for inference on genetic merit of livestock with uncertain paternity. Fully conditional posterior distributions for fixed and genetic effects, variance components, sire assignments and their probabilities are derived to facilitate a Bayesian inference strategy using MCMC methods. We compared this model to a model based on the Henderson average numerator relationship (ANRM in a simulation study with 10 replicated datasets generated for each of two traits. Trait 1 had a medium heritability (h2 for each of direct and maternal genetic effects whereas Trait 2 had a high h2 attributable only to direct effects. The average posterior probabilities inferred on the true sire were between 1 and 10% larger than the corresponding priors (the inverse of the number of candidate sires in a mating pasture for Trait 1 and between 4 and 13% larger than the corresponding priors for Trait 2. The predicted additive and maternal genetic effects were very similar using both models; however, model choice criteria (Pseudo Bayes Factor and Deviance Information Criterion decisively favored the proposed hierarchical model over the ANRM model.

  15. Grouping preprocess for haplotype inference from SNP and CNV data

    International Nuclear Information System (INIS)

    Shindo, Hiroyuki; Chigira, Hiroshi; Nagaoka, Tomoyo; Inoue, Masato; Kamatani, Naoyuki

    2009-01-01

    The method of statistical haplotype inference is an indispensable technique in the field of medical science. The authors previously reported Hardy-Weinberg equilibrium-based haplotype inference that could manage single nucleotide polymorphism (SNP) data. We recently extended the method to cover copy number variation (CNV) data. Haplotype inference from mixed data is important because SNPs and CNVs are occasionally in linkage disequilibrium. The idea underlying the proposed method is simple, but the algorithm for it needs to be quite elaborate to reduce the calculation cost. Consequently, we have focused on the details on the algorithm in this study. Although the main advantage of the method is accuracy, in that it does not use any approximation, its main disadvantage is still the calculation cost, which is sometimes intractable for large data sets with missing values.

  16. Grouping preprocess for haplotype inference from SNP and CNV data

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Hiroyuki; Chigira, Hiroshi; Nagaoka, Tomoyo; Inoue, Masato [Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Kamatani, Naoyuki, E-mail: masato.inoue@eb.waseda.ac.j [Institute of Rheumatology, Tokyo Women' s Medical University, 10-22, Kawada-cho, Shinjuku-ku, Tokyo 162-0054 (Japan)

    2009-12-01

    The method of statistical haplotype inference is an indispensable technique in the field of medical science. The authors previously reported Hardy-Weinberg equilibrium-based haplotype inference that could manage single nucleotide polymorphism (SNP) data. We recently extended the method to cover copy number variation (CNV) data. Haplotype inference from mixed data is important because SNPs and CNVs are occasionally in linkage disequilibrium. The idea underlying the proposed method is simple, but the algorithm for it needs to be quite elaborate to reduce the calculation cost. Consequently, we have focused on the details on the algorithm in this study. Although the main advantage of the method is accuracy, in that it does not use any approximation, its main disadvantage is still the calculation cost, which is sometimes intractable for large data sets with missing values.

  17. Times Series

    DEFF Research Database (Denmark)

    Johansen, Søren

    An overvies of results for the cointegrated VAR model for nonstationary I (1) variables is given. The emphasis is on the analysis of the model and the tools for asymptotic inference. These include: formulation of criteria on the parameters, for the process to be nonstationary and I (1), formulation...

  18. On Quantum Statistical Inference, II

    OpenAIRE

    Barndorff-Nielsen, O. E.; Gill, R. D.; Jupp, P. E.

    2003-01-01

    Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, theoretical developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and inte...

  19. Identifikasi Gangguan Neurologis Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS

    Directory of Open Access Journals (Sweden)

    Jani Kusanti

    2015-07-01

    Abstract             The use of Adaptive Neuro Fuzzy Inference System (ANFIS methods in the process of identifying one of neurological disorders in the head, known in medical terms ischemic stroke from the ct scan of the head in order to identify the location of ischemic stroke. The steps are performed in the extraction process of identifying, among others, the image of the ct scan of the head by using a histogram. Enhanced image of the intensity histogram image results using Otsu threshold to obtain results pixels rated 1 related to the object while pixel rated 0 associated with the measurement background. The result used for image clustering process, to process image clusters used fuzzy c-mean (FCM clustering result is a row of the cluster center, the results of the data used to construct a fuzzy inference system (FIS. Fuzzy inference system applied is fuzzy inference model of Takagi-Sugeno-Kang. In this study ANFIS is used to optimize the results of the determination of the location of the blockage ischemic stroke. Used recursive least squares estimator (RLSE for learning. RMSE results obtained in the training process of 0.0432053, while in the process of generated test accuracy rate of 98.66%   Keywords— Stroke Ischemik, Global threshold, Fuzzy Inference System model Sugeno, ANFIS, RMSE

  20. F-OWL: An Inference Engine for Semantic Web

    Science.gov (United States)

    Zou, Youyong; Finin, Tim; Chen, Harry

    2004-01-01

    Understanding and using the data and knowledge encoded in semantic web documents requires an inference engine. F-OWL is an inference engine for the semantic web language OWL language based on F-logic, an approach to defining frame-based systems in logic. F-OWL is implemented using XSB and Flora-2 and takes full advantage of their features. We describe how F-OWL computes ontology entailment and compare it with other description logic based approaches. We also describe TAGA, a trading agent environment that we have used as a test bed for F-OWL and to explore how multiagent systems can use semantic web concepts and technology.

  1. Inference with constrained hidden Markov models in PRISM

    DEFF Research Database (Denmark)

    Christiansen, Henning; Have, Christian Theil; Lassen, Ole Torp

    2010-01-01

    A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference. De......_different are integrated. We experimentally validate our approach on the biologically motivated problem of global pairwise alignment.......A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference...

  2. 几何分布高阶原点矩的递推公式及推论%Recursive Formula and Inference of High - order Origin Moments of Geometric Distribution

    Institute of Scientific and Technical Information of China (English)

    韩建玲

    2012-01-01

    利用幂级数逐项积分性质给出几何分布高阶原点矩的递推公式,并得到推论,使得计算高阶原点矩更为简捷方便.%In this paper, the recursive formula and inference of high -order origin moments of geometric distribution are given by using the nature of power series.

  3. An associative model of adaptive inference for learning word-referent mappings.

    Science.gov (United States)

    Kachergis, George; Yu, Chen; Shiffrin, Richard M

    2012-04-01

    People can learn word-referent pairs over a short series of individually ambiguous situations containing multiple words and referents (Yu & Smith, 2007, Cognition 106: 1558-1568). Cross-situational statistical learning relies on the repeated co-occurrence of words with their intended referents, but simple co-occurrence counts cannot explain the findings. Mutual exclusivity (ME: an assumption of one-to-one mappings) can reduce ambiguity by leveraging prior experience to restrict the number of word-referent pairings considered but can also block learning of non-one-to-one mappings. The present study first trained learners on one-to-one mappings with varying numbers of repetitions. In late training, a new set of word-referent pairs were introduced alongside pretrained pairs; each pretrained pair consistently appeared with a new pair. Results indicate that (1) learners quickly infer new pairs in late training on the basis of their knowledge of pretrained pairs, exhibiting ME; and (2) learners also adaptively relax the ME bias and learn two-to-two mappings involving both pretrained and new words and objects. We present an associative model that accounts for both results using competing familiarity and uncertainty biases.

  4. AD-LIBS: inferring ancestry across hybrid genomes using low-coverage sequence data.

    Science.gov (United States)

    Schaefer, Nathan K; Shapiro, Beth; Green, Richard E

    2017-04-04

    Inferring the ancestry of each region of admixed individuals' genomes is useful in studies ranging from disease gene mapping to speciation genetics. Current methods require high-coverage genotype data and phased reference panels, and are therefore inappropriate for many data sets. We present a software application, AD-LIBS, that uses a hidden Markov model to infer ancestry across hybrid genomes without requiring variant calling or phasing. This approach is useful for non-model organisms and in cases of low-coverage data, such as ancient DNA. We demonstrate the utility of AD-LIBS with synthetic data. We then use AD-LIBS to infer ancestry in two published data sets: European human genomes with Neanderthal ancestry and brown bear genomes with polar bear ancestry. AD-LIBS correctly infers 87-91% of ancestry in simulations and produces ancestry maps that agree with published results and global ancestry estimates in humans. In brown bears, we find more polar bear ancestry than has been published previously, using both AD-LIBS and an existing software application for local ancestry inference, HAPMIX. We validate AD-LIBS polar bear ancestry maps by recovering a geographic signal within bears that mirrors what is seen in SNP data. Finally, we demonstrate that AD-LIBS is more effective than HAPMIX at inferring ancestry when preexisting phased reference data are unavailable and genomes are sequenced to low coverage. AD-LIBS is an effective tool for ancestry inference that can be used even when few individuals are available for comparison or when genomes are sequenced to low coverage. AD-LIBS is therefore likely to be useful in studies of non-model or ancient organisms that lack large amounts of genomic DNA. AD-LIBS can therefore expand the range of studies in which admixture mapping is a viable tool.

  5. Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study.

    Science.gov (United States)

    Heron, Elizabeth A; Finkenstädt, Bärbel; Rand, David A

    2007-10-01

    In this study, we address the problem of estimating the parameters of regulatory networks and provide the first application of Markov chain Monte Carlo (MCMC) methods to experimental data. As a case study, we consider a stochastic model of the Hes1 system expressed in terms of stochastic differential equations (SDEs) to which rigorous likelihood methods of inference can be applied. When fitting continuous-time stochastic models to discretely observed time series the lengths of the sampling intervals are important, and much of our study addresses the problem when the data are sparse. We estimate the parameters of an autoregulatory network providing results both for simulated and real experimental data from the Hes1 system. We develop an estimation algorithm using MCMC techniques which are flexible enough to allow for the imputation of latent data on a finer time scale and the presence of prior information about parameters which may be informed from other experiments as well as additional measurement error.

  6. Cultural effects on the association between election outcomes and face-based trait inferences

    Science.gov (United States)

    Adolphs, Ralph; Alvarez, R. Michael

    2017-01-01

    How competent a politician looks, as assessed in the laboratory, is correlated with whether the politician wins in real elections. This finding has led many to investigate whether the association between candidate appearances and election outcomes transcends cultures. However, these studies have largely focused on European countries and Caucasian candidates. To the best of our knowledge, there are only four cross-cultural studies that have directly investigated how face-based trait inferences correlate with election outcomes across Caucasian and Asian cultures. These prior studies have provided some initial evidence regarding cultural differences, but methodological problems and inconsistent findings have complicated our understanding of how culture mediates the effects of candidate appearances on election outcomes. Additionally, these four past studies have focused on positive traits, with a relative neglect of negative traits, resulting in an incomplete picture of how culture may impact a broader range of trait inferences. To study Caucasian-Asian cultural effects with a more balanced experimental design, and to explore a more complete profile of traits, here we compared how Caucasian and Korean participants’ inferences of positive and negative traits correlated with U.S. and Korean election outcomes. Contrary to previous reports, we found that inferences of competence (made by participants from both cultures) correlated with both U.S. and Korean election outcomes. Inferences of open-mindedness and threat, two traits neglected in previous cross-cultural studies, were correlated with Korean but not U.S. election outcomes. This differential effect was found in trait judgments made by both Caucasian and Korean participants. Interestingly, the faster the participants made face-based trait inferences, the more strongly those inferences were correlated with real election outcomes. These findings provide new insights into cultural effects and the difficult question of

  7. Cultural effects on the association between election outcomes and face-based trait inferences.

    Science.gov (United States)

    Lin, Chujun; Adolphs, Ralph; Alvarez, R Michael

    2017-01-01

    How competent a politician looks, as assessed in the laboratory, is correlated with whether the politician wins in real elections. This finding has led many to investigate whether the association between candidate appearances and election outcomes transcends cultures. However, these studies have largely focused on European countries and Caucasian candidates. To the best of our knowledge, there are only four cross-cultural studies that have directly investigated how face-based trait inferences correlate with election outcomes across Caucasian and Asian cultures. These prior studies have provided some initial evidence regarding cultural differences, but methodological problems and inconsistent findings have complicated our understanding of how culture mediates the effects of candidate appearances on election outcomes. Additionally, these four past studies have focused on positive traits, with a relative neglect of negative traits, resulting in an incomplete picture of how culture may impact a broader range of trait inferences. To study Caucasian-Asian cultural effects with a more balanced experimental design, and to explore a more complete profile of traits, here we compared how Caucasian and Korean participants' inferences of positive and negative traits correlated with U.S. and Korean election outcomes. Contrary to previous reports, we found that inferences of competence (made by participants from both cultures) correlated with both U.S. and Korean election outcomes. Inferences of open-mindedness and threat, two traits neglected in previous cross-cultural studies, were correlated with Korean but not U.S. election outcomes. This differential effect was found in trait judgments made by both Caucasian and Korean participants. Interestingly, the faster the participants made face-based trait inferences, the more strongly those inferences were correlated with real election outcomes. These findings provide new insights into cultural effects and the difficult question of

  8. Inference of population splits and mixtures from genome-wide allele frequency data.

    Directory of Open Access Journals (Sweden)

    Joseph K Pickrell

    Full Text Available Many aspects of the historical relationships between populations in a species are reflected in genetic data. Inferring these relationships from genetic data, however, remains a challenging task. In this paper, we present a statistical model for inferring the patterns of population splits and mixtures in multiple populations. In our model, the sampled populations in a species are related to their common ancestor through a graph of ancestral populations. Using genome-wide allele frequency data and a Gaussian approximation to genetic drift, we infer the structure of this graph. We applied this method to a set of 55 human populations and a set of 82 dog breeds and wild canids. In both species, we show that a simple bifurcating tree does not fully describe the data; in contrast, we infer many migration events. While some of the migration events that we find have been detected previously, many have not. For example, in the human data, we infer that Cambodians trace approximately 16% of their ancestry to a population ancestral to other extant East Asian populations. In the dog data, we infer that both the boxer and basenji trace a considerable fraction of their ancestry (9% and 25%, respectively to wolves subsequent to domestication and that East Asian toy breeds (the Shih Tzu and the Pekingese result from admixture between modern toy breeds and "ancient" Asian breeds. Software implementing the model described here, called TreeMix, is available at http://treemix.googlecode.com.

  9. ShinyKGode: an Interactive Application for ODE Parameter Inference Using Gradient Matching.

    Science.gov (United States)

    Wandy, Joe; Niu, Mu; Giurghita, Diana; Daly, Rónán; Rogers, Simon; Husmeier, Dirk

    2018-02-27

    Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approximate parameter inference methods based on gradient matching (which do not require performing computationally expensive numerical integration of the ODEs) have been getting popular in recent years, but many implementations are difficult to run without expert knowledge. Here we introduce ShinyKGode, an interactive web application to perform fast parameter inference on ODEs using gradient matching. ShinyKGode can be used to infer ODE parameters on simulated and observed data using gradient matching. Users can easily load their own models in Systems Biology Markup Language format, and a set of pre-defined ODE benchmark models are provided in the application. Inferred parameters are visualised alongside diagnostic plots to assess convergence. The R package for ShinyKGode can be installed through the Comprehensive R Archive Network (CRAN). Installation instructions, as well as tutorial videos and source code are available at https://joewandy.github.io/shinyKGode. dirk.husmeier@glasgow.ac.uk. None.

  10. Online Emotional Inferences in Written and Auditory Texts: A Study with Children and Adults

    Science.gov (United States)

    Diergarten, Anna Katharina; Nieding, Gerhild

    2016-01-01

    Emotional inferences are conclusions that a reader draws about the emotional state of a story's protagonist. In this study, we examined whether children and adults draw emotional inferences while reading short stories or listening to an aural presentation of short stories. We used an online method that assesses inferences during reading with a…

  11. Ontological Constraints in Children's Inductive Inferences: Evidence From a Comparison of Inferences Within Animals and Vehicles

    Directory of Open Access Journals (Sweden)

    Andrzej Tarlowski

    2018-04-01

    Full Text Available There is a lively debate concerning the role of conceptual and perceptual information in young children's inductive inferences. While most studies focus on the role of basic level categories in induction the present research contributes to the debate by asking whether children's inductions are guided by ontological constraints. Two studies use a novel inductive paradigm to test whether young children have an expectation that all animals share internal commonalities that do not extend to perceptually similar inanimates. The results show that children make category-consistent responses when asked to project an internal feature from an animal to either a dissimilar animal or a similar toy replica. However, the children do not have a universal preference for category-consistent responses in an analogous task involving vehicles and vehicle toy replicas. The results also show the role of context and individual factors in inferences. Children's early reliance on ontological commitments in induction cannot be explained by perceptual similarity or by children's sensitivity to the authenticity of objects.

  12. Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction

    Science.gov (United States)

    Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.

    2005-03-01

    We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.

  13. Inferring the conservative causal core of gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Emmert-Streib Frank

    2010-09-01

    Full Text Available Abstract Background Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically. Results In this paper, we introduce a novel gene regulatory network inference (GRNI algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently. Conclusions For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

  14. Inferring the conservative causal core of gene regulatory networks.

    Science.gov (United States)

    Altay, Gökmen; Emmert-Streib, Frank

    2010-09-28

    Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically. In this paper, we introduce a novel gene regulatory network inference (GRNI) algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently. For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

  15. Negativity and positivity effects in person perception and inference: Ability versus morality

    NARCIS (Netherlands)

    Martijn, A.C.; Spears, R.; van der Pligt, J.; Jakobs, E.

    1992-01-01

    Examined, in 2 experiments involving 190 undergraduates, negativity and positivity effects in trait inferences and impression formation. In Exp 1, Ss made trait inferences of actors in different behavioral instances. Results support the prediction that negative behavior is more informative for

  16. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    Science.gov (United States)

    Almog, Assaf; Garlaschelli, Diego

    2014-09-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.

  17. Binary versus non-binary information in real time series: empirical results and maximum-entropy matrix models

    International Nuclear Information System (INIS)

    Almog, Assaf; Garlaschelli, Diego

    2014-01-01

    The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information. (paper)

  18. A grammar inference approach for predicting kinase specific phosphorylation sites.

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  19. A Grammar Inference Approach for Predicting Kinase Specific Phosphorylation Sites

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner. PMID:25886273

  20. Reliability of dose volume constraint inference from clinical data

    DEFF Research Database (Denmark)

    Lutz, C M; Møller, D S; Hoffmann, L

    2017-01-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background...... was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an 'ideal' cohort was generated where the most predictive model was equal to the postulated model. A bootstrap...

  1. Paradoxical versus modulated conditional inferences: An explanation from the Stoicism

    Directory of Open Access Journals (Sweden)

    Miguel López-Astorga

    Full Text Available Abstract According to standard propositional logic, the inferences in which the conditional introduction rule is used are absolutely correct. However, people do not always accept inferences of that kind. Orenes and Johnson-Laird carried out interesting experiments in this way and, based on the general framework of the mental models theory, explained clearly in which cases and under which circumstances such inferences are accepted and rejected. The goals of this paper are both to better understand some aspects of Stoic logic and to check whether or not that very logic can also offer an account on this issue. My conclusions are that, indeed, this later logic can do that, and that the results obtained by Orenes and Johnson-Laird can be explained based on the information that the sources provide on Stoic logic.

  2. Technical Note: How to use Winbugs to infer animal models

    DEFF Research Database (Denmark)

    Damgaard, Lars Holm

    2007-01-01

    This paper deals with Bayesian inferences of animal models using Gibbs sampling. First, we suggest a general and efficient method for updating additive genetic effects, in which the computational cost is independent of the pedigree depth and increases linearly only with the size of the pedigree....... Second, we show how this approach can be used to draw inferences from a wide range of animal models using the computer package Winbugs. Finally, we illustrate the approach in a simulation study, in which the data are generated and analyzed using Winbugs according to a linear model with i.i.d errors...... having Student's t distributions. In conclusion, Winbugs can be used to make inferences in small-sized, quantitative, genetic data sets applying a wide range of animal models that are not yet standard in the animal breeding literature...

  3. Design of uav robust autopilot based on adaptive neuro-fuzzy inference system

    Directory of Open Access Journals (Sweden)

    Mohand Achour Touat

    2008-04-01

    Full Text Available  This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This data were obtained from the modeling of a ”crisp” robust control system. The synthesis of this system is based on the separation theorem, which defines the structure and parameters of LQG-optimal controller, and further - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of proposed design procedure.

  4. Interest, Inferences, and Learning from Texts

    Science.gov (United States)

    Clinton, Virginia; van den Broek, Paul

    2012-01-01

    Topic interest and learning from texts have been found to be positively associated with each other. However, the reason for this positive association is not well understood. The purpose of this study is to examine a cognitive process, inference generation, that could explain the positive association between interest and learning from texts. In…

  5. Inferring Stop-Locations from WiFi

    DEFF Research Database (Denmark)

    Wind, David Kofoed; Sapiezynski, Piotr; Furman, Magdalena Anna

    2016-01-01

    methods are based exclusively on WiFi data. We study two months of WiFi data collected every two minutes by a smartphone, and infer stop-locations in the form of labelled time-intervals. For this purpose, we investigate two algorithms, both of which scale to large datasets: a greedy approach to select...

  6. Inference and the Introductory Statistics Course

    Science.gov (United States)

    Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross

    2011-01-01

    This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its…

  7. A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data

    Science.gov (United States)

    Gallopin, Mélina; Rau, Andrea; Jaffrézic, Florence

    2013-01-01

    Gene network inference from transcriptomic data is an important methodological challenge and a key aspect of systems biology. Although several methods have been proposed to infer networks from microarray data, there is a need for inference methods able to model RNA-seq data, which are count-based and highly variable. In this work we propose a hierarchical Poisson log-normal model with a Lasso penalty to infer gene networks from RNA-seq data; this model has the advantage of directly modelling discrete data and accounting for inter-sample variance larger than the sample mean. Using real microRNA-seq data from breast cancer tumors and simulations, we compare this method to a regularized Gaussian graphical model on log-transformed data, and a Poisson log-linear graphical model with a Lasso penalty on power-transformed data. For data simulated with large inter-sample dispersion, the proposed model performs better than the other methods in terms of sensitivity, specificity and area under the ROC curve. These results show the necessity of methods specifically designed for gene network inference from RNA-seq data. PMID:24147011

  8. A feedback framework for protein inference with peptides identified from tandem mass spectra

    Directory of Open Access Journals (Sweden)

    Shi Jinhong

    2012-11-01

    Full Text Available Abstract Background Protein inference is an important computational step in proteomics. There exists a natural nest relationship between protein inference and peptide identification, but these two steps are usually performed separately in existing methods. We believe that both peptide identification and protein inference can be improved by exploring such nest relationship. Results In this study, a feedback framework is proposed to process peptide identification reports from search engines, and an iterative method is implemented to exemplify the processing of Sequest peptide identification reports according to the framework. The iterative method is verified on two datasets with known validity of proteins and peptides, and compared with ProteinProphet and PeptideProphet. The results have shown that not only can the iterative method infer more true positive and less false positive proteins than ProteinProphet, but also identify more true positive and less false positive peptides than PeptideProphet. Conclusions The proposed iterative method implemented according to the feedback framework can unify and improve the results of peptide identification and protein inference.

  9. I know why you voted for Trump: (Over)inferring motives based on choice.

    Science.gov (United States)

    Barasz, Kate; Kim, Tami; Evangelidis, Ioannis

    2018-05-10

    People often speculate about why others make the choices they do. This paper investigates how such inferences are formed as a function of what is chosen. Specifically, when observers encounter someone else's choice (e.g., of political candidate), they use the chosen option's attribute values (e.g., a candidate's specific stance on a policy issue) to infer the importance of that attribute (e.g., the policy issue) to the decision-maker. Consequently, when a chosen option has an attribute whose value is extreme (e.g., an extreme policy stance), observers infer-sometimes incorrectly-that this attribute disproportionately motivated the decision-maker's choice. Seven studies demonstrate how observers use an attribute's value to infer its weight-the value-weight heuristic-and identify the role of perceived diagnosticity: more extreme attribute values give observers the subjective sense that they know more about a decision-maker's preferences, and in turn, increase the attribute's perceived importance. The paper explores how this heuristic can produce erroneous inferences and influence broader beliefs about decision-makers. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A multi-criteria inference approach for anti-desertification management.

    Science.gov (United States)

    Tervonen, Tommi; Sepehr, Adel; Kadziński, Miłosz

    2015-10-01

    We propose an approach for classifying land zones into categories indicating their resilience against desertification. Environmental management support is provided by a multi-criteria inference method that derives a set of value functions compatible with the given classification examples, and applies them to define, for the rest of the zones, their possible classes. In addition, a representative value function is inferred to explain the relative importance of the criteria to the stakeholders. We use the approach for classifying 28 administrative regions of the Khorasan Razavi province in Iran into three equilibrium classes: collapsed, transition, and sustainable zones. The model is parameterized with enhanced vegetation index measurements from 2005 to 2012, and 7 other natural and anthropogenic indicators for the status of the region in 2012. Results indicate that grazing density and land use changes are the main anthropogenic factors affecting desertification in Khorasan Razavi. The inference procedure suggests that the classification model is underdetermined in terms of attributes, but the approach itself is promising for supporting the management of anti-desertification efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Causal Inference and Explaining Away in a Spiking Network

    Science.gov (United States)

    Moreno-Bote, Rubén; Drugowitsch, Jan

    2015-01-01

    While the brain uses spiking neurons for communication, theoretical research on brain computations has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve complex computations, such as object probabilistic inference, is largely unknown. Here we demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity constraints can be solved exactly and efficiently by a network of spiking neurons. The network naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, and uses simple operations, such as linear synapses with realistic time constants, and neural spike generation and reset non-linearities. The network infers the set of most likely causes from an observation using explaining away, which is dynamically implemented by spike-based, tuned inhibition. The algorithm performs remarkably well even when the network intrinsically generates variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is mistuned. This type of network might underlie tasks such as odor identification and classification. PMID:26621426

  12. Connectivity inference from neural recording data: Challenges, mathematical bases and research directions.

    Science.gov (United States)

    Magrans de Abril, Ildefons; Yoshimoto, Junichiro; Doya, Kenji

    2018-06-01

    This article presents a review of computational methods for connectivity inference from neural activity data derived from multi-electrode recordings or fluorescence imaging. We first identify biophysical and technical challenges in connectivity inference along the data processing pipeline. We then review connectivity inference methods based on two major mathematical foundations, namely, descriptive model-free approaches and generative model-based approaches. We investigate representative studies in both categories and clarify which challenges have been addressed by which method. We further identify critical open issues and possible research directions. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Trend Estimation and Regression Analysis in Climatological Time Series: An Application of Structural Time Series Models and the Kalman Filter.

    Science.gov (United States)

    Visser, H.; Molenaar, J.

    1995-05-01

    The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of

  14. Comparison of Urban Human Movements Inferring from Multi-Source Spatial-Temporal Data

    Science.gov (United States)

    Cao, Rui; Tu, Wei; Cao, Jinzhou; Li, Qingquan

    2016-06-01

    The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ) level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  15. COMPARISON OF URBAN HUMAN MOVEMENTS INFERRING FROM MULTI-SOURCE SPATIAL-TEMPORAL DATA

    Directory of Open Access Journals (Sweden)

    R. Cao

    2016-06-01

    Full Text Available The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  16. Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.

    Science.gov (United States)

    Pecevski, Dejan; Maass, Wolfgang

    2016-01-01

    Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.

  17. Probabilistic Inference of Biological Networks via Data Integration

    Directory of Open Access Journals (Sweden)

    Mark F. Rogers

    2015-01-01

    Full Text Available There is significant interest in inferring the structure of subcellular networks of interaction. Here we consider supervised interactive network inference in which a reference set of known network links and nonlinks is used to train a classifier for predicting new links. Many types of data are relevant to inferring functional links between genes, motivating the use of data integration. We use pairwise kernels to predict novel links, along with multiple kernel learning to integrate distinct sources of data into a decision function. We evaluate various pairwise kernels to establish which are most informative and compare individual kernel accuracies with accuracies for weighted combinations. By associating a probability measure with classifier predictions, we enable cautious classification, which can increase accuracy by restricting predictions to high-confidence instances, and data cleaning that can mitigate the influence of mislabeled training instances. Although one pairwise kernel (the tensor product pairwise kernel appears to work best, different kernels may contribute complimentary information about interactions: experiments in S. cerevisiae (yeast reveal that a weighted combination of pairwise kernels applied to different types of data yields the highest predictive accuracy. Combined with cautious classification and data cleaning, we can achieve predictive accuracies of up to 99.6%.

  18. Subjective randomness as statistical inference.

    Science.gov (United States)

    Griffiths, Thomas L; Daniels, Dylan; Austerweil, Joseph L; Tenenbaum, Joshua B

    2018-06-01

    Some events seem more random than others. For example, when tossing a coin, a sequence of eight heads in a row does not seem very random. Where do these intuitions about randomness come from? We argue that subjective randomness can be understood as the result of a statistical inference assessing the evidence that an event provides for having been produced by a random generating process. We show how this account provides a link to previous work relating randomness to algorithmic complexity, in which random events are those that cannot be described by short computer programs. Algorithmic complexity is both incomputable and too general to capture the regularities that people can recognize, but viewing randomness as statistical inference provides two paths to addressing these problems: considering regularities generated by simpler computing machines, and restricting the set of probability distributions that characterize regularity. Building on previous work exploring these different routes to a more restricted notion of randomness, we define strong quantitative models of human randomness judgments that apply not just to binary sequences - which have been the focus of much of the previous work on subjective randomness - but also to binary matrices and spatial clustering. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Inferring Fitness Effects from Time-Resolved Sequence Data with a Delay-Deterministic Model.

    Science.gov (United States)

    Nené, Nuno R; Dunham, Alistair S; Illingworth, Christopher J R

    2018-05-01

    A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However, recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error, and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its performance in quantifying the extent of selection acting within that system. We further consider the application of our model to sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model. Copyright © 2018 Nené et al.

  20. Naima: a Python package for inference of particle distribution properties from nonthermal spectra

    Science.gov (United States)

    Zabalza, V.

    2015-07-01

    The ultimate goal of the observation of nonthermal emission from astrophysical sources is to understand the underlying particle acceleration and evolution processes, and few tools are publicly available to infer the particle distribution properties from the observed photon spectra from X-ray to VHE gamma rays. Here I present naima, an open source Python package that provides models for nonthermal radiative emission from homogeneous distribution of relativistic electrons and protons. Contributions from synchrotron, inverse Compton, nonthermal bremsstrahlung, and neutral-pion decay can be computed for a series of functional shapes of the particle energy distributions, with the possibility of using user-defined particle distribution functions. In addition, naima provides a set of functions that allow to use these models to fit observed nonthermal spectra through an MCMC procedure, obtaining probability distribution functions for the particle distribution parameters. Here I present the models and methods available in naima and an example of their application to the understanding of a galactic nonthermal source. naima's documentation, including how to install the package, is available at http://naima.readthedocs.org.