WorldWideScience

Sample records for series connected electrochemical

  1. Analysis of Different Series-Parallel Connection Modules for Dye-Sensitized Solar Cell by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jung-Chuan Chou

    2016-01-01

    Full Text Available The internal impedances of different dye-sensitized solar cell (DSSC models were analyzed by electrochemical impedance spectrometer (EIS with an equivalent circuit model. The Nyquist plot was built to simulate the redox reaction of internal device at the heterojunction. It was useful to analyze the component structure and promote photovoltaic conversion efficiency of DSSC. The impedance of DSSC was investigated and the externally connected module assembly was constructed utilizing single cells on the scaled-up module. According to the experiment results, the impedance was increased with increasing cells connected in series. On the contrary, the impedance was decreased with increasing cells connected in parallel.

  2. Analysis of series resonant converter with series-parallel connection

    Science.gov (United States)

    Lin, Bor-Ren; Huang, Chien-Lan

    2011-02-01

    In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.

  3. Multifractal analysis of visibility graph-based Ito-related connectivity time series.

    Science.gov (United States)

    Czechowski, Zbigniew; Lovallo, Michele; Telesca, Luciano

    2016-02-01

    In this study, we investigate multifractal properties of connectivity time series resulting from the visibility graph applied to normally distributed time series generated by the Ito equations with multiplicative power-law noise. We show that multifractality of the connectivity time series (i.e., the series of numbers of links outgoing any node) increases with the exponent of the power-law noise. The multifractality of the connectivity time series could be due to the width of connectivity degree distribution that can be related to the exit time of the associated Ito time series. Furthermore, the connectivity time series are characterized by persistence, although the original Ito time series are random; this is due to the procedure of visibility graph that, connecting the values of the time series, generates persistence but destroys most of the nonlinear correlations. Moreover, the visibility graph is sensitive for detecting wide "depressions" in input time series.

  4. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.

    Science.gov (United States)

    Thompson, William Hedley; Fransson, Peter

    2016-12-01

    Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.

  5. Performance of Series Connected GaAs Photovoltaic Converters under Multimode Optical Fiber Illumination

    Directory of Open Access Journals (Sweden)

    Tiqiang Shan

    2014-01-01

    Full Text Available In many military and industrial applications, GaAs photovoltaic (PV converters are connected in series in order to generate the required voltage compatible with most common electronics. Multimode optical fibers are usually used to carry high-intensity laser and illuminate the series connected GaAs PV converters in real time. However, multimode optical fiber illumination has a speckled intensity pattern. The series connected PV array is extremely sensitive to nonuniform illumination; its performance is limited severely by the converter that is illuminated the least. This paper quantifies the effects of multimode optical fiber illumination on the performance of series connected GaAs PV converters, analyzes the loss mechanisms due to speckles, and discusses the maximum illumination efficiency. In order to describe the illumination dependent behavior detailedly, modeling of the series connected PV array is accomplished based on the equivalent circuit for PV cells. Finally, a series of experiments are carried out to demonstrate the theory analysis.

  6. Correlations between electrochemical and spectrochemical parameters of ruthenium sulfoxides series with N-heterocyclic

    International Nuclear Information System (INIS)

    Oliveira, D. de; Toma, H.E.

    1990-01-01

    A systematic study of Ru Cl sub(2) (DMSO) sub(2) L sub(2) derivates, where L = N-heterocyclic base is described, contributing for a best understanding of chemical behaviour and electronic structure of the ruthenium sulfoxides. The correlations between the electrochemical and the spectroscopical parameters of the serie are presented with more emphasis. (author)

  7. Analysis of an array of piezoelectric energy harvesters connected in series

    International Nuclear Information System (INIS)

    Lin, H C; Wu, P H; Lien, I C; Shu, Y C

    2013-01-01

    This paper investigates the electrical response of a series connection of piezoelectric energy harvesters (PEHs) attached to various interface electronics, including standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits. In contrast to the case of parallel connection of multiple oscillators, the system response is determined by the matrix formulation of charging on a capacitance. In addition, the adoption of an equivalent impedance approach shows that the capacitance matrix can be explicitly expressed in terms of the relevant load impedance. A model problem is proposed for performance evaluation of harvested power under different choices of interface circuits. The result demonstrates that the parallel-SSHI array system exhibits higher power output with moderate bandwidth improvement, while the series-SSHI system delivers a pronounced wideband at the cost of peak harvested power. The standard array system shows a mild ability in power harvesting between these two SSHI systems. Finally, comparisons between the series and parallel connection of oscillators are made, showing the striking contrast of these two cases. (paper)

  8. Development of Simulink-Based SiC MOSFET Modeling Platform for Series Connected Devices

    DEFF Research Database (Denmark)

    Tsolaridis, Georgios; Ilves, Kalle; Reigosa, Paula Diaz

    2016-01-01

    A new MATLAB/Simulink-based modeling platform has been developed for SiC MOSFET power modules. The modeling platform describes the electrical behavior f a single 1.2 kV/ 350 A SiC MOSFET power module, as well as the series connection of two of them. A fast parameter initialization is followed...... by an optimization process to facilitate the extraction of the model’s parameters in a more automated way relying on a small number of experimental waveforms. Through extensive experimental work, it is shown that the model accurately predicts both static and dynamic performances. The series connection of two Si......C power modules has been investigated through the validation of the static and dynamic conditions. Thanks to the developed model, a better understanding of the challenges introduced by uneven voltage balance sharing among series connected devices is possible....

  9. Current Control of Grid Converters Connected with Series AC Capacitor

    DEFF Research Database (Denmark)

    Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    The series ac capacitor has recently been used with the transformerless grid-connected converters in the distribution power grids. The capacitive characteristic of the resulting series LC filter restricts the use of conventional synchronous integral or stationary resonant current controllers. Thus...... this paper proposes a fourth-order resonant controller in the stationary frame, which guarantees a zero steady-state current tracking error for the grid converters with series LC filter. This method is then implemented in a three-phase experimental system for verification, where the current harmonics below...... the LC filter resonance frequency are effectively eliminated. Experimental results confirm the validity of the proposed current control scheme....

  10. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells

    Directory of Open Access Journals (Sweden)

    Subhash Chander

    2015-11-01

    Full Text Available This paper presents a study on impact of temperature on the performance of series and parallel connected mono-crystalline silicon (mono-Si solar cell employing solar simulator. The experiment was carried out at constant light intensity 550 W/m2with cell temperature in the range 25–60 oC for single, series and parallel connected mono-Si solar cells. The performance parameters like open circuit voltage, maximum power, fill factor and efficiency are found to decrease with cell temperature while the short circuit current is observed to increase. The experimental results reveal that silicon solar cells connected in series and parallel combinations follow the Kirchhoff’s laws and the temperature has a significant effect on the performance parameters of solar cell.

  11. Excellent nonlinearity of a selection device based on anti-series connected Zener diodes for ultrahigh-density bipolar RRAM arrays

    International Nuclear Information System (INIS)

    Li, Yingtao; Li, Rongrong; Wang, Yang; Tao, Chunlan; Fu, Liping; Gao, Xiaoping

    2015-01-01

    A crossbar array is usually used for the high-density application of a resistive random access memory (RRAM) device. However, the cross-talk interference limits the increase in the integration density. In this paper, anti-series connected Zener diodes as a selection device are proposed for bipolar RRAM arrays. Simulation results show that, by using the anti-series connected Zener diodes as a selection device, the readout margin is sufficiently improved compared to that obtained without a selection device or with anti-parallel connected diodes as the selection device. The maximum size of the crossbar arrays with anti-series connected Zener diodes as a selection device over 1 TB is estimated by theoretical simulation. In addition, the feasibility of using the anti-series connected Zener diodes as a selection device for bipolar RRAM is demonstrated experimentally. These results indicate that anti-series connected Zener diodes as a selection device opens up great opportunities to realize ultrahigh-density bipolar RRAM arrays. (paper)

  12. A Fast Multi-layer Subnetwork Connection Method for Time Series InSAR Technique

    Directory of Open Access Journals (Sweden)

    WU Hong'an

    2016-10-01

    Full Text Available Nowadays, times series interferometric synthetic aperture radar (InSAR technique has been widely used in ground deformation monitoring, especially in urban areas where lots of stable point targets can be detected. However, in standard time series InSAR technique, affected by atmospheric correlation distance and the threshold of linear model coherence, the Delaunay triangulation for connecting point targets can be easily separated into many discontinuous subnetworks. Thus it is difficult to retrieve ground deformation in non-urban areas. In order to monitor ground deformation in large areas efficiently, a novel multi-layer subnetwork connection (MLSC method is proposed for connecting all subnetworks. The advantage of the method is that it can quickly reduce the number of subnetworks with valid edges layer-by-layer. This method is compared with the existing complex network connecting mehod. The experimental results demonstrate that the data processing time of the proposed method is only 32.56% of the latter one.

  13. Electrochemical gating in scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ahonen, P.; Ruiz, V.; Kontturi, K.; Liljeroth, P.; Quinn, B.M.

    2008-01-01

    We demonstrate that scanning electrochemical microscopy (SECM) can be used to determine the conductivity of nanoparticle assemblies as a function of assembly potential. In contrast to conventional electron transport measurements, this method is unique in that electrical connection to the film is not

  14. Electrochemical assessment of some titanium and stainless steel impact dental alloys

    International Nuclear Information System (INIS)

    Echavarria, A.; Arroyave, C.

    2003-01-01

    Commercially pure titanium alloy, Ti-6Al-4V alloy and stainless steel screw implants were evaluated in both Ringer and synthetic saliva physiological solutions at body temperature by EIS (Electrochemical Impedance Spectroscopy) with immersion times of 30 d. Results were simulated as a sandwich system composed by four capacitors-resistances connected in series with the solution resistance. A model explaining the results in terms of the porosity and thickness of four different layers, was proposed. (Author) 22 refs

  15. Bussing Structure In An Electrochemical Cell

    Science.gov (United States)

    Romero, Antonio L.

    2001-06-12

    A bussing structure for bussing current within an electrochemical cell. The bussing structure includes a first plate and a second plate, each having a central aperture therein. Current collection tabs, extending from an electrode stack in the electrochemical cell, extend through the central aperture in the first plate, and are then sandwiched between the first plate and second plate. The second plate is then connected to a terminal on the outside of the case of the electrochemical cell. Each of the first and second plates includes a second aperture which is positioned beneath a safety vent in the case of the electrochemical cell to promote turbulent flow of gasses through the vent upon its opening. The second plate also includes protrusions for spacing the bussing structure from the case, as well as plateaus for connecting the bussing structure to the terminal on the case of the electrochemical cell.

  16. Improved Short-Circuit Protection for Power Cells in Series

    Science.gov (United States)

    Davies, Francis

    2008-01-01

    A scheme for protection against short circuits has been devised for series strings of lithium electrochemical cells that contain built-in short-circuit protection devices, which go into a high-resistance, current-limiting state when heated by excessive current. If cells are simply connected in a long series string to obtain a high voltage and a short circuit occurs, whichever short-circuit protection device trips first is exposed to nearly the full string voltage, which, typically, is large enough to damage the device. Depending on the specific cell design, the damage can defeat the protective function, cause a dangerous internal short circuit in the affected cell, and/or cascade to other cells. In the present scheme, reverse diodes rated at a suitably high current are connected across short series sub-strings, the lengths of which are chosen so that when a short-circuit protection device is tripped, the voltage across it does not exceed its rated voltage. This scheme preserves the resetting properties of the protective devices. It provides for bypassing of cells that fail open and limits cell reversal, though not as well as does the more-expensive scheme of connecting a diode across every cell.

  17. Ripple gate drive circuit for fast operation of series connected IGBTs

    Science.gov (United States)

    Rockot, Joseph H.; Murray, Thomas W.; Bass, Kevin C.

    2005-09-20

    A ripple gate drive circuit includes a plurality of transistors having their power terminals connected in series across an electrical potential. A plurality of control circuits, each associated with one of the transistors, is provided. Each control circuit is responsive to a control signal and an optical signal received from at least one other control circuit for controlling the conduction of electrical current through the power terminals of the associated transistor. The control circuits are responsive to a first state of the control circuit for causing each transistor in series to turn on sequentially and responsive to a second state of the control signal for causing each transistor in series to turn off sequentially.

  18. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays

    International Nuclear Information System (INIS)

    Zou, Yi; Zhu, Liang; Chen, Ray T.; Chakravarty, Swapnajit

    2014-01-01

    We experimentally demonstrate an efficient and robust method for series connection of photonic crystal microcavities that are coupled to photonic crystal waveguides in the slow light transmission regime. We demonstrate that group index taper engineering provides excellent optical impedance matching between the input and output strip waveguides and the photonic crystal waveguide, a nearly flat transmission over the entire guided mode spectrum and clear multi-resonance peaks corresponding to individual microcavities that are connected in series. Series connected photonic crystal microcavities are further multiplexed in parallel using cascaded multimode interference power splitters to generate a high density silicon nanophotonic microarray comprising 64 photonic crystal microcavity sensors, all of which are interrogated simultaneously at the same instant of time

  19. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yi, E-mail: yzou@utexas.edu; Zhu, Liang; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States)

    2014-04-07

    We experimentally demonstrate an efficient and robust method for series connection of photonic crystal microcavities that are coupled to photonic crystal waveguides in the slow light transmission regime. We demonstrate that group index taper engineering provides excellent optical impedance matching between the input and output strip waveguides and the photonic crystal waveguide, a nearly flat transmission over the entire guided mode spectrum and clear multi-resonance peaks corresponding to individual microcavities that are connected in series. Series connected photonic crystal microcavities are further multiplexed in parallel using cascaded multimode interference power splitters to generate a high density silicon nanophotonic microarray comprising 64 photonic crystal microcavity sensors, all of which are interrogated simultaneously at the same instant of time.

  20. Design, operation and control of series-connected power converters for offshore wind parks

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Alejandro Garces

    2012-07-01

    Offshore wind farms need to develop technologies that fulfill three main objectives:Efficiency, power density and reliability. The purpose of this thesis is to study an HVDC transmission system based on series connection of the turbines which theoretically meet these three objectives. A new topology of matrix converter operated at high frequency is proposed. This converter is studied using different modulation algorithms. Simulation and experimental results demonstrated that the converter can be operated as a current source converter with high efficiency. An optimal control based on a linear quadratic regulator is propose dto control the matrix converter as well as the converter placed on shore. Results demonstrated the high performance of this type of control and its simplicity for implementation. An stationary state study based on non-linear programming and Montecarlo simulation was carried out to determine the performance of the concept for long-term operation. Series connection is an efficient technology if and only if the differences in the effective wind velocity are small. This aspect limits the number of wind turbines that can be connected in series, since a numerous number of turbines will lead to high covariances in the distribution of the wind. A complementary study about active filter and reactive power compensation was carried out using an optimization-based algorithm. (Author)

  1. A voltage control method for an active capacitive DC-link module with series-connected circuit

    DEFF Research Database (Denmark)

    Wang, Haoran; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    Many efforts have been made to improve the performance of power electronic systems with active capacitive DC-link module in terms of power density as well as reliability. One of the attractive solution is an active capacitive DC-link with the series-connected circuit because of handling small......-rated power. However, in the existing control method of this circuit, the DC-link current of the backward-stage or forward-stage need to be sensed for extracting the ripple components, which limits the flexibility of the active DC-link module. Thus, in this paper, a voltage control method of an active...... capacitive DC-link module is proposed. Current sensor at the DC-link will be cancel from the circuit. The controller of the series-connected circuit requires internal voltage signals of the DC-link module only, making it possible to be fully independent without any additional connection to the main circuit...

  2. Cogeneration using small sized series connected units: Feasibility study

    International Nuclear Information System (INIS)

    Tondelli, F.; Bergamini, G.

    1992-01-01

    This paper evidences the technical/economic feasibility of the use of methane fuelled modular cogeneration systems based on small series connected Otto or Diesel cycle engines delivering from 20 to 90 kW of power. Ample reference is made to the successful application of modular cogeneration systems to supply low temperature thermal energy to hospitals, hotels, food processing firms, etc., in Italy. The cost benefit analysis covers many aspects: design, manufacturing, operation, performance, maintenance and safety. Suggestions are also made as to optimum contractual arrangements for equipment service and maintenance, as well as, for the exchange of power with local utilities

  3. Online Reliable Peak Charge/Discharge Power Estimation of Series-Connected Lithium-Ion Battery Packs

    Directory of Open Access Journals (Sweden)

    Bo Jiang

    2017-03-01

    Full Text Available The accurate peak power estimation of a battery pack is essential to the power-train control of electric vehicles (EVs. It helps to evaluate the maximum charge and discharge capability of the battery system, and thus to optimally control the power-train system to meet the requirement of acceleration, gradient climbing and regenerative braking while achieving a high energy efficiency. A novel online peak power estimation method for series-connected lithium-ion battery packs is proposed, which considers the influence of cell difference on the peak power of the battery packs. A new parameter identification algorithm based on adaptive ratio vectors is designed to online identify the parameters of each individual cell in a series-connected battery pack. The ratio vectors reflecting cell difference are deduced strictly based on the analysis of battery characteristics. Based on the online parameter identification, the peak power estimation considering cell difference is further developed. Some validation experiments in different battery aging conditions and with different current profiles have been implemented to verify the proposed method. The results indicate that the ratio vector-based identification algorithm can achieve the same accuracy as the repetitive RLS (recursive least squares based identification while evidently reducing the computation cost, and the proposed peak power estimation method is more effective and reliable for series-connected battery packs due to the consideration of cell difference.

  4. Short-circuit testing of monofilar Bi-2212 coils connected in series and in parallel

    International Nuclear Information System (INIS)

    Polasek, A; Dias, R; Serra, E T; Filho, O O; Niedu, D

    2010-01-01

    Superconducting Fault Current Limiters (SCFCL's) are one of the most promising technologies for fault current limitation. In the present work, resistive SCFCL components based on Bi-2212 monofilar coils are subjected to short-circuit testing. These SCFCL components can be easily connected in series and/or in parallel by using joints and clamps. This allows a considerable flexibility to developing larger SCFCL devices, since the configuration and size of the whole device can be easily adapted to the operational conditions. The single components presented critical current (Ic) values of 240-260 A, at 77 K. Short-circuits during 40-120 ms were applied. A single component can withstand a voltage drop of 126-252 V (0.3-0.6 V/cm). Components connected in series withstand higher voltage levels, whereas parallel connection allows higher rated currents during normal operation, but the limited current is also higher. Prospective currents as high as 10-40 kA (peak value) were limited to 3-9 kA (peak value) in the first half cycle.

  5. Voltage balancing strategies for serial connection of microbial fuel cells

    Science.gov (United States)

    Khaled, Firas; Ondel, Olivier; Allard, Bruno; Buret, François

    2015-07-01

    The microbial fuel cell (MFC) converts electrochemically organic matter into electricity by means of metabolisms of bacteria. The MFC power output is limited by low voltage and low current characteristics in the range of microwatts or milliwatts per litre. In order to produce a sufficient voltage level (>1.5 V) and sufficient power to supply real applications such as autonomous sensors, it is necessary to either scale-up one single unit or to connect multiple units together. Many topologies of connection are possible as the serial association to improve the output voltage, or the parallel connection to improve the output current or the series/parallel connection to step-up both voltage and current. The association of MFCs in series is a solution to increase the voltage to an acceptable value and to mutualize the unit's output power. The serial association of a large number of MFCs presents several issues. The first one is the hydraulic coupling among MFCs when they share the same substrate. The second one is the dispersion between generators that lead to a non-optimal stack efficiency because the maximum power point (MPP) operation of all MFCs is not permitted. Voltage balancing is a solution to compensate non-uniformities towards MPP. This paper presents solutions to improve the efficiency of a stack of serially connected MFCs through a voltage-balancing circuit. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek

  6. Connected to TV series: Quantifying series watching engagement.

    Science.gov (United States)

    Tóth-Király, István; Bőthe, Beáta; Tóth-Fáber, Eszter; Hága, Győző; Orosz, Gábor

    2017-12-01

    Background and aims Television series watching stepped into a new golden age with the appearance of online series. Being highly involved in series could potentially lead to negative outcomes, but the distinction between highly engaged and problematic viewers should be distinguished. As no appropriate measure is available for identifying such differences, a short and valid measure was constructed in a multistudy investigation: the Series Watching Engagement Scale (SWES). Methods In Study 1 (N Sample1  = 740 and N Sample2  = 740), exploratory structural equation modeling and confirmatory factor analysis were used to identify the most important facets of series watching engagement. In Study 2 (N = 944), measurement invariance of the SWES was investigated between males and females. In Study 3 (N = 1,520), latent profile analysis (LPA) was conducted to identify subgroups of viewers. Results Five factors of engagement were identified in Study 1 that are of major relevance: persistence, identification, social interaction, overuse, and self-development. Study 2 supported the high levels of equivalence between males and females. In Study 3, three groups of viewers (low-, medium-, and high-engagement viewers) were identified. The highly engaged at-risk group can be differentiated from the other two along key variables of watching time and personality. Discussion The present findings support the overall validity, reliability, and usefulness of the SWES and the results of the LPA showed that it might be useful to identify at-risk viewers before the development of problematic use.

  7. Enhanced terahertz detection using multiple GaAs HEMTs connected in series

    KAUST Repository

    Elkhatib, Tamer A.; Veksler, Dmitry B.; Salama, Khaled N.; Zhang, Xi-C.; Shur, Michael S.

    2012-01-01

    We report here, for the first time, on enhanced nonresonant detection of terahertz radiation using multiple InGaAs/GaAs high-electron-mobility transistors (HEMTs) connected in series and biased by a direct drain current. A 1.63 THz (184 mum) response is proportional to the number of detecting transistors operating in saturation region at the same gate-source bias voltage. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by radiation in channels of devices.

  8. Enhanced terahertz detection using multiple GaAs HEMTs connected in series

    KAUST Repository

    Elkhatib, Tamer A.

    2012-07-28

    We report here, for the first time, on enhanced nonresonant detection of terahertz radiation using multiple InGaAs/GaAs high-electron-mobility transistors (HEMTs) connected in series and biased by a direct drain current. A 1.63 THz (184 mum) response is proportional to the number of detecting transistors operating in saturation region at the same gate-source bias voltage. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by radiation in channels of devices.

  9. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.

    Science.gov (United States)

    Gao, Jun; Chen, Shulun; AlTal, Faleh; Hu, Shiyu; Bouffier, Laurent; Wantz, Guillaume

    2017-09-20

    A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.

  10. Series-Connected High Frequency Converters in a DC Microgrid System for DC Light Rail Transit

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-01-01

    Full Text Available This paper studies and presents a series-connected high frequency DC/DC converter connected to a DC microgrid system to provide auxiliary power for lighting, control and communication in a DC light rail vehicle. Three converters with low voltage and current stresses of power devices are series-connected with single transformers to convert a high voltage input to a low voltage output for a DC light rail vehicle. Thus, Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs with a low voltage rating and a turn-on resistance are adopted in the proposed circuit topology in order to decrease power losses on power switches and copper losses on transformer windings. A duty cycle control with an asymmetric pulse-width modulation is adopted to control the output voltage at the desired voltage level. It is also adopted to reduce switching losses on MOSFETs due to the resonant behavior from a leakage inductor of an isolated transformer and output capacitor of MOSFETs at the turn-on instant. The feasibility and effectiveness of the proposed circuit have been verified by a laboratory prototype with a 760 V input and a 24 V/60 A output.

  11. Implementation of Four-Phase Interleaved Balance Charger for Series-Connected Batteries with Power Factor Correction

    Science.gov (United States)

    Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.

    2017-11-01

    A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.

  12. Correlation of Spectral and Electrochemical Properties of a Series of Ferrocene Derivatives

    Science.gov (United States)

    Hepp, Aloysius F.; Wrighton, Mark S.

    2016-01-01

    Charge-transfer-to-solvent (CTTS) bands are observed in the UV/VIS spectra of a series of ferrocene derivatives (ferrocene; 1,1'-dimethyl; 1,2,3,4,5-pentamethyl; 1,2,3,4,l',2',3',4'-octamethyl; and decamethyl) by the addition of increasing amounts of CCl4 to ethanol solutions. A linear correlation (slope = 8540 cm-1/V) was found between the redox potential and the energy of the CTTS band, consistent with electrochemical and photochemical oxidation by removal of an electron from the same molecular orbital. Inclusion of literature data for ruthenocene and [(?5-C5H5)Fe(CO)]4 results in a line with a slope of 8140 cm-1/V, within 1 percent of the wavenumber to electron volt conversion factor. Calculation of association constants (K) shows a slight decrease (1.2 to 0.7 mole fraction-1) as the bulkiness of the cyclopentadienyl ring increases, consistent with either a steric or a repulsive electronic effect. The extinction coefficient of the CTTS absorption was constant at approximately 1700/M/cm.

  13. High efficiency graphene coated copper based thermocells connected in series

    Science.gov (United States)

    Sindhuja, Mani; Indubala, Emayavaramban; Sudha, Venkatachalam; Harinipriya, Seshadri

    2018-04-01

    Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2W/m2 for normalized cross sectional electrode area is obtained at 60ºC of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  14. Enrichment of heavy water in thermal-diffusion columns connected in series

    International Nuclear Information System (INIS)

    Yeh, Ho-Ming; Chen, Liu Yi

    2009-01-01

    The separation equations for enrichment of heavy water from water isotope mixture by thermal diffusion in multiple columns connected in series, have been derived based on one column design developed in previous work. The improvement in separation is achievable by operating in a double-column device, instead of in a single-column device, with the same total column length. It is also found that further improvement in separation is obtainable if a triple-column device is employed, except for operating under small total column length and low flow rate.

  15. Experimental Behavior Evaluation of Series and Parallel Connected Constant Phase Elements

    KAUST Repository

    Tsirimokou, Georgia

    2017-01-28

    Fractional-order capacitors are the core building blocks for implementing fractional-order circuits. Due to the absence of their commercial availability, they can be approximated through appropriately configured passive or active integer-order element topologies. Such a topology, constructed using Operational Transconductance Amplifiers (OTAs) and capacitors has been implemented in monolithic form through the AMS 0.35μm CMOS process, and the fabricated chips are employed here for the experimental evaluation of the behavior of networks constructed from fractional-order capacitors connected in series or in parallel.

  16. Influence of Time-Series Normalization, Number of Nodes, Connectivity and Graph Measure Selection on Seizure-Onset Zone Localization from Intracranial EEG.

    Science.gov (United States)

    van Mierlo, Pieter; Lie, Octavian; Staljanssens, Willeke; Coito, Ana; Vulliémoz, Serge

    2018-04-26

    We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.

  17. An adaptive state of charge estimation approach for lithium-ion series-connected battery system

    Science.gov (United States)

    Peng, Simin; Zhu, Xuelai; Xing, Yinjiao; Shi, Hongbing; Cai, Xu; Pecht, Michael

    2018-07-01

    Due to the incorrect or unknown noise statistics of a battery system and its cell-to-cell variations, state of charge (SOC) estimation of a lithium-ion series-connected battery system is usually inaccurate or even divergent using model-based methods, such as extended Kalman filter (EKF) and unscented Kalman filter (UKF). To resolve this problem, an adaptive unscented Kalman filter (AUKF) based on a noise statistics estimator and a model parameter regulator is developed to accurately estimate the SOC of a series-connected battery system. An equivalent circuit model is first built based on the model parameter regulator that illustrates the influence of cell-to-cell variation on the battery system. A noise statistics estimator is then used to attain adaptively the estimated noise statistics for the AUKF when its prior noise statistics are not accurate or exactly Gaussian. The accuracy and effectiveness of the SOC estimation method is validated by comparing the developed AUKF and UKF when model and measurement statistics noises are inaccurate, respectively. Compared with the UKF and EKF, the developed method shows the highest SOC estimation accuracy.

  18. Experimental temperature analysis of simple & hybrid earth air tunnel heat exchanger in series connection at Bikaner Rajasthan India

    Science.gov (United States)

    Jakhar, O. P.; Sharma, Chandra Shekhar; Kukana, Rajendra

    2018-05-01

    The Earth Air Tunnel Heat Exchanger System is a passive air-conditioning system which has no side effect on earth climate and produces better cooling effect and heating effect comfortable to human body. It produces heating effect in winter and cooling effect in summer with the minimum power consumption of energy as compare to other air-conditioning devices. In this research paper Temperature Analysis was done on the two systems of Earth Air Tunnel Heat Exchanger experimentally for summer cooling purpose. Both the system was installed at Mechanical Engineering Department Government Engineering College Bikaner Rajasthan India. Experimental results concludes that the Average Air Temperature Difference was found as 11.00° C and 16.27° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Maximum Air Temperature Difference was found as 18.10° C and 23.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Minimum Air Temperature Difference was found as 5.20° C and 11.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively.

  19. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  20. High Efficiency Graphene Coated Copper Based Thermocells Connected in Series

    Directory of Open Access Journals (Sweden)

    Mani Sindhuja

    2018-04-01

    Full Text Available Conversion of low-grade waste heat into electricity had been studied employing single thermocell or flowcells so far. Graphene coated copper electrodes based thermocells connected in series displayed relatively high efficiency of thermal energy harvesting. The maximum power output of 49.2 W/m2 for normalized cross sectional electrode area is obtained at 60°C of inter electrode temperature difference. The relative carnot efficiency of 20.2% is obtained from the device. The importance of reducing the mass transfer and ion transfer resistance to improve the efficiency of the device is demonstrated. Degradation studies confirmed mild oxidation of copper foil due to corrosion caused by the electrolyte.

  1. Periodic fluctuations in correlation-based connectivity density time series: Application to wind speed-monitoring network in Switzerland

    Science.gov (United States)

    Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail

    2018-02-01

    In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.

  2. A series connection architecture for large-area organic photovoltaic modules with a 7.5% module efficiency.

    Science.gov (United States)

    Hong, Soonil; Kang, Hongkyu; Kim, Geunjin; Lee, Seongyu; Kim, Seok; Lee, Jong-Hoon; Lee, Jinho; Yi, Minjin; Kim, Junghwan; Back, Hyungcheol; Kim, Jae-Ryoung; Lee, Kwanghee

    2016-01-05

    The fabrication of organic photovoltaic modules via printing techniques has been the greatest challenge for their commercial manufacture. Current module architecture, which is based on a monolithic geometry consisting of serially interconnecting stripe-patterned subcells with finite widths, requires highly sophisticated patterning processes that significantly increase the complexity of printing production lines and cause serious reductions in module efficiency due to so-called aperture loss in series connection regions. Herein we demonstrate an innovative module structure that can simultaneously reduce both patterning processes and aperture loss. By using a charge recombination feature that occurs at contacts between electron- and hole-transport layers, we devise a series connection method that facilitates module fabrication without patterning the charge transport layers. With the successive deposition of component layers using slot-die and doctor-blade printing techniques, we achieve a high module efficiency reaching 7.5% with area of 4.15 cm(2).

  3. Bidirectional Flyback Converter with Multiple Series Connected Outputs for High Voltage Capacitive Charge and Discharge Applications

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2015-01-01

    is limited by the parasitics of the high voltage active components, which also prevent full utilization of valley switching during discharge process. A second implementation is therefore proposed, where the secondary of flyback transformer winding is split into multiple windings which are connected in series...

  4. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  5. Current leads cooling for the series-connected hybrid magnets

    Science.gov (United States)

    Bai, Hongyu; Marshall, William S.; Bird, Mark D.; Gavrilin, Andrew V.; Weijers, Hubertus W.

    2014-01-01

    Two Series-Connected Hybrid (SCH) magnets are being developed at the National High Magnetic Field Laboratory. Both SCH magnets combine a set of resistive Florida-Bitter coils with a superconducting outsert coil constructed of the cable-in-conduit conductor (CICC). The outsert coils of the two magnets employ 20 kA BSCCO HTS current leads for the power supply although they have different designs and cooling methods. The copper heat exchangers of the HTS current leads for the HZB SCH are cooled with forced flow helium at a supply temperature of 44 K, while the copper heat exchangers of HTS current leads for NHMFL SCH are cooled with liquid nitrogen at a temperature of 78 K in a self-demand boil-off mode. This paper presents the two cooling methods and their impacts on cryogenic systems. Their efficiencies and costs are compared and presented.

  6. Micropatterning on cylindrical surfaces via electrochemical etching using laser masking

    International Nuclear Information System (INIS)

    Cho, Chull Hee; Shin, Hong Shik; Chu, Chong Nam

    2014-01-01

    Highlights: • Various micropatterns were fabricated on the cylindrical surface of a stainless steel shaft. • Selective electrochemical dissolution was achieved via a series process of laser masking and electrochemical etching. • Laser masking characteristics on the non-planar surface were investigated. • A uniform mask layer was formed on the cylindrical surface via synchronized laser line scanning with a rotary system. • The characteristics of electrochemical etching on the non-planar surface were investigated. - Abstract: This paper proposes a method of selective electrochemical dissolution on the cylindrical surfaces of stainless steel shafts. Selective electrochemical dissolution was achieved via electrochemical etching using laser masking. A micropatterned recast layer was formed on the surface via ytterbium-doped pulsed fiber laser irradiation. The micropatterned recast layer could be used as a mask layer during the electrochemical etching process. Laser masking condition to form adequate mask layer on the planar surface for etching cannot be used directly on the non-planar surface. Laser masking condition changes depending on the morphological surface. The laser masking characteristics were investigated in order to form a uniform mask layer on the cylindrical surface. To minimize factors causing non-uniformity in the mask layer on the cylindrical surface, synchronized laser line scanning with a rotary system was applied during the laser masking process. Electrochemical etching characteristics were also investigated to achieve deeper etched depth, without collapsing the recast layer. Consequently, through a series process of laser masking and electrochemical etching, various micropatternings were successfully performed on the cylindrical surfaces

  7. A series of nickel(II complexes derived from hydrazide derivatives, electrochemical, thermal and spectral studies

    Directory of Open Access Journals (Sweden)

    Gamil A.A. Al-Hazmi

    2017-02-01

    Full Text Available A series of Ni(II–hydrazide complexes were prepared using derivatives of hydrazide ligands. The variation of organic ligand elaborates the mode of coordination of the organic compound referring to the addition of coordinating sites besides the NH–NH–CO group. The octahedral configuration is the major form proposed with most isolated complexes. Mass spectra were used to assure the molecular formula proposed based on the elemental analysis data for most investigated compounds. Thermal analysis as well as kinetic data supports the formula of all investigated complexes especially the presence of coordinating water molecules with most of them. Electrochemical measurements assert the stability of Ni(II oxidation state during the complexation which may be affected during the coordination reaction. pH metric studies as well as the molecular modeling optimization reflect a shadow on the stability of the isolated complexes in solution or in solid state, respectively.

  8. A highly sensitive BTX sensor based on electrochemically derived wall connected TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, K. [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Lu, Chia-Wei [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Ho, Mon-Shu [Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan (China); Bhattacharyya, P., E-mail: pb_etc_besu@yahoo.com [Nano-Thin Films and Solid State Gas Sensor Devices Laboratory, Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2015-11-01

    Highlights: • Electrochemically synthesized TiO{sub 2} nanotube array for sensing benzene, toluene, and xylene (BTX) with enhanced sensitivity at relatively low temperature is reported. • Structural characterizations (XRD, FESEM, and AFM), have revealed that variation of the H{sub 2}O concentrations in mixed electrolyte comprising ethylene glycol and ammonium fluoride (NH{sub 4}F + EG) resulted in the formation of four distinct TiO{sub 2} nanoforms. • Photo luminescence spectra (PL spectra) analysis has revealed distinctly different stoichiometry of the four anodized sample. • Among the various nanoforms, the wall connected TiO{sub 2} nanotube array has been found to be the most efficient one for BTX sensing in the concentration range 20–400 ppm at relatively lower operating temperature (50–200 °C). • Among the three target species, benzene was found to offer the highest response magnitude followed by toluene and xylene at all the concentrations. - Abstract: This paper concerns development of electrochemically synthesized titanium dioxide (TiO{sub 2}) nanotube array for sensing the carcinogenic aromatic hydrocarbons like benzene, toluene, and xylene (BTX) with enhanced sensitivity achievable at relatively low temperature. Structural characterizations (XRD, FESEM), revealed that variation of the H{sub 2}O concentrations (1%, 2%, 5%, 8%, 10%, and 100% by volume) in mixed electrolyte, comprising of ethylene glycol (EG) and ammonium fluoride (NH{sub 4}F), resulted in the formation of six distinctly different TiO{sub 2} nanoforms. Photo luminescence spectra (PL spectra) analysis authenticated different stoichiometry of these six samples. Besides, the X-ray photoelectron spectroscopy (XPS) was carried out to investigate the defect states. The XPS study enables to correlate the oxygen vacancy concentration with the anodization parameters. Among the various nanoforms, the wall connected TiO{sub 2} nanotube array was found to be the most efficient one for BTX

  9. Electrochemical Biosensors - Sensor Principles and Architectures

    Science.gov (United States)

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  10. Series-, Parallel-, and Inter-Connection of Solid-State Arbitrary Fractional-Order Capacitors: Theoretical Study and Experimental Verification

    KAUST Repository

    Kartci, Aslihan; Agambayev, Agamyrat; Herencsar, Norbert; Salama, Khaled N.

    2018-01-01

    units of the FoCs connected in series and parallel are derived. A MATLAB open access source code is given in Appendix sec:append for easy calculation of the equivalent FoC magnitude and phase. The experimental results are in good agreement

  11. Investigation and optimization of series connection of thin-film silicon solar modules; Untersuchung und Optimierung der Serienverschaltung von Silizium-Duennschicht-Solarmodulen

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Stefan

    2010-07-01

    The integrated series connection is an important and elementary part of a thin-film silicon solar module. The series connection leads to a reduction of Ohmic losses and an increase of the module voltage. After their deposition the different functional layers of a solar module must be patterned selectively to form a series connection. First the front contact, then the absorber, and finally the back contact is locally removed. The first step and the last step are needed to separate the contact layers (isolation step), the absorber patterning is used to expose the front contact and prepare the series interconnection. Usually laser ablation is used for patterning. The patterning of the front contact is overall a noncritical step. Therefore, this thesis exclusively investigates mechanisms that limit the process window of the absorber patterning and the back contact patterning. Especially for the absorber patterning on SnO{sub 2}-substrates the process window is very narrow. As too high pulse energies create a barrier layer on the SnO{sub 2}-window layer, which restricts the current flow in a series connected module. This barrier layer probably consists of SiO{sub 2} or an alloy of (Sn,Si)O{sub 2}. It arrises from redeposition of evaporated silicon. Ablation of the absorber without creating a barrier layer is only possible, when the silicon is not evaporated. Here the ablation is induced by the explosive out-diffusion of hydrogen from the silicon layer. On ZnO-substrates no significant barrier formation occurs. For this reason the process window is very broad. Patterning the back contact is the last isolation step. It is mainly restricted by an unavoidable deterioration of the absorber as well as a possible ablation of the window layer. The deterioration of the absorber in the vicinity of the patterning groove leads to parasitic dark currents for amorphous and for microcrystalline solar cells. The parasitic dark currents decrease the efficiency {eta} of a patterned

  12. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  13. NMR spectroscopy up to 35.2T using a series-connected hybrid magnet.

    Science.gov (United States)

    Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M; Gor'kov, Peter L; Brey, William W; Lendi, Pietro; Schiano, Jeffrey L; Bird, Mark D; Dixon, Iain R; Toth, Jack; Boebinger, Gregory S; Cross, Timothy A

    2017-11-01

    The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48mm magnet bore and 42mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1ppm homogeneity over a cylindrical volume of 1cm diameter and height. The magnetic field is regulated within 0.2ppm using an external 7 Li lock sample doped with paramagnetic MnCl 2 . The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1 H frequencies of 1.0, 1.2 and 1.5GHz. NMR at 1.5GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Turner, A.D.; Pottinger, J.S.; Lain, M.J.; Dawson, R.K.; Neville, M.D.; Junkison, A.R.

    1988-01-01

    The paper concerns the development and evaluation of remote electrochemical decontamination systems for metal surfaces, in connection with the decommissioning of nuclear installations. Two types of technique based on the electrochemical dissolution of thin surface layers of the substrate were investigated: immersion of small items in tanks for electroetching and in situ electropolishing. A description is given of the work programme, the progress of work and the results obtained. (U.K.)

  15. Series-, Parallel-, and Inter-Connection of Solid-State Arbitrary Fractional-Order Capacitors: Theoretical Study and Experimental Verification

    KAUST Repository

    Kartci, Aslihan

    2018-02-26

    In the paper, general analytical formulas are introduced for the determination of equivalent impedance, magnitude, and phase, i.e. order, for n arbitrary fractional-order capacitors (FoCs) connected in series, parallel, and their interconnection. The approach presented helps to evaluate these relevant quantities in the fractional domain since the order of each element has a significant effect on the impedance of each FoC and their equivalent capacitance cannot be considered. Three types of solid-state fractional-order passive capacitors of different orders, using ferroelectric polymer and reduced Graphene Oxide-percolated P(VDF-TrFE-CFE) composite structures, are fabricated and characterized. Using an impedance analyzer, the behavior of the devices was found to be stable in the frequency range 0.2MHz–20MHz, with a phase angle deviation of ±4 degrees. Multiple numerical and experimental case studies are given, in particular for two and three connected FoCs. The fundamental issues of the measurement units of the FoCs connected in series and parallel are derived. A MATLAB open access source code is given in Appendix sec:append for easy calculation of the equivalent FoC magnitude and phase. The experimental results are in good agreement with the theoretical assumptions.

  16. Development of a microfabricated electrochemical-cantilever hybrid platform

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie; Pedersen, Christoffer; Elkjær, Karl

    2011-01-01

    The design and fabrication of a combined electrochemical-cantilever microfluidic system is described. A chip integrating cantilevers with electrodes into a microchannel is presented with the accompanying polymer flow cell. Issues such as electrical and fluid connections are addressed......, electromechanical behavior in ionic solution is investigated, and two uses of the system are demonstrated. First, all cantilevers are functionalized with cysteine, to facilitate detection of Cu2+ ions, then one cantilever is electrochemically cleaned in situ to generate a reference cantilever for differential...

  17. Charge Equalization Controller Algorithm for Series-Connected Lithium-Ion Battery Storage Systems: Modeling and Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2017-09-01

    Full Text Available This study aims to develop an accurate model of a charge equalization controller (CEC that manages individual cell monitoring and equalizing by charging and discharging series-connected lithium-ion (Li-ion battery cells. In this concept, an intelligent control algorithm is developed to activate bidirectional cell switches and control direct current (DC–DC converter switches along with pulse width modulation (PWM generation. Individual models of an electric vehicle (EV-sustainable Li-ion battery, optimal power rating, a bidirectional flyback DC–DC converter, and charging and discharging controllers are integrated to develop a small-scale CEC model that can be implemented for 10 series-connected Li-ion battery cells. Results show that the charge equalization controller operates at 91% efficiency and performs well in equalizing both overdischarged and overcharged cells on time. Moreover, the outputs of the CEC model show that the desired balancing level occurs at 2% of state of charge difference and that all cells are operated within a normal range. The configuration, execution, control, power loss, cost, size, and efficiency of the developed CEC model are compared with those of existing controllers. The proposed model is proven suitable for high-tech storage systems toward the advancement of sustainable EV technologies and renewable source of applications.

  18. Gas recombination assembly for electrochemical cells

    Science.gov (United States)

    Levy, Isaac; Charkey, Allen

    1989-01-01

    An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

  19. A Novel Series Connected Batteries State of High Voltage Safety Monitor System for Electric Vehicle Application

    Directory of Open Access Journals (Sweden)

    Qiang Jiaxi

    2013-01-01

    Full Text Available Batteries, as the main or assistant power source of EV (Electric Vehicle, are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS, the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  20. A novel series connected batteries state of high voltage safety monitor system for electric vehicle application.

    Science.gov (United States)

    Jiaxi, Qiang; Lin, Yang; Jianhui, He; Qisheng, Zhou

    2013-01-01

    Batteries, as the main or assistant power source of EV (Electric Vehicle), are usually connected in series with high voltage to improve the drivability and energy efficiency. Today, more and more batteries are connected in series with high voltage, if there is any fault in high voltage system (HVS), the consequence is serious and dangerous. Therefore, it is necessary to monitor the electric parameters of HVS to ensure the high voltage safety and protect personal safety. In this study, a high voltage safety monitor system is developed to solve this critical issue. Four key electric parameters including precharge, contact resistance, insulation resistance, and remaining capacity are monitored and analyzed based on the equivalent models presented in this study. The high voltage safety controller which integrates the equivalent models and control strategy is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated, and the online electric parameters monitor strategy is analyzed and discussed. The test results indicate that the high voltage safety monitor system designed in this paper is suitable for EV application.

  1. EXERGY AND CARBON CREDITS FOR SERIES CONNECTED N PHOTOVOLTAIC THERMAL - COMPOUND PARABOLIC CONCENTRATOR (PVT-CPC) COLLECTOR: AT CONSTANT OUTLET TEMPERATURE

    OpenAIRE

    Rohit Tripathi 1,*, G. N. Tiwari 2

    2017-01-01

    In the present study, overall energy and exergy performance of partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) (25% covered by glass to glass PV module) collector connected in series have been carried out at constant outlet temperature mode. Further, comparison in performance for partially covered N photovoltaic thermal - compound parabolic concentrators (PVT-CPC) [case (i)] and N compound parabolic concentrators (CPC) collector [case (ii)] connected in s...

  2. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    Science.gov (United States)

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  3. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wei; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-30

    Highlights: • PPy/CFs have been fabricated by electrodepositing polypyrrole on carbon fibers. • The electrolytes in deposition solution have effect on PPy/CFs’ capacitive behavior. • Cells of PPy/CFs obtained from NaH{sub 2}PO{sub 4} electrolyte has good stability in PVA/H{sub 3}PO{sub 4}. - Abstract: In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H{sub 3}PO{sub 4}/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH{sub 2}PO{sub 4}·2H{sub 2}O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  4. Electrochemical energy storage device based on carbon dioxide as electroactive species

    Science.gov (United States)

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  5. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.; Kachorovskiǐ, Valentin Yu; Stillman, William J.; Veksler, Dmitry B.; Salama, Khaled N.; Zhang, Xicheng; Shur, Michael S.

    2010-01-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  6. Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series

    KAUST Repository

    Elkhatib, Tamer A.

    2010-02-01

    We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.

  7. Voltage equilibration for reactive atomistic simulations of electrochemical processes

    International Nuclear Information System (INIS)

    Onofrio, Nicolas; Strachan, Alejandro

    2015-01-01

    We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices

  8. Thermophysical and Electrochemical Properties of Ethereal Functionalised Cyclic Alkylammonium-based Ionic Liquids as Potential Electrolytes for Electrochemical Applications.

    Science.gov (United States)

    Neale, Alex R; Murphy, Sinead; Goodrich, Peter; Hardacre, Christopher; Jacquemin, Johan

    2017-08-05

    A series of hydrophobic room temperature ionic liquids (ILs) based on ethereal functionalised pyrrolidinium, piperidinium and azepanium cations bearing the bis[(trifluoromethyl)sulfonyl]imide, [TFSI] - , anion were synthesized and characterized. Their physicochemical properties such as density, viscosity and electrolytic conductivity, and thermal properties including phase transition behaviour and decomposition temperature have been measured. All of the ILs showed low melting point, low viscosity and good conductivity and the latter properties have been discussed in terms of the IL fragility, an important electrolyte feature of the transport properties of glass-forming ILs. Furthermore, the studied [TFSI] - -based ILs generally exhibit good electrochemical stabilities and, by coupling electrochemical experiments and DFT calculations, the effect of ether functionalisation at the IL cation on the electrochemical stability of the IL is discussed. Preliminary investigations into the Li-redox chemistry at a Cu working electrode are also reported as a function of ether-functionality within the pyrrolidinium-based IL family. Overall, the results show that these ionic liquids are suitable for electrochemical devices such as battery systems, fuel cells or supercapacitors. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. New Ways in Teaching Connected Speech. New Ways Series

    Science.gov (United States)

    Brown, James Dean, Ed.

    2012-01-01

    Connected speech is based on a set of rules used to modify pronunciations so that words connect and flow more smoothly in natural speech (hafta versus have to). Native speakers of English tend to feel that connected speech is friendlier, more natural, more sympathetic, and more personal. Is there any reason why learners of English would prefer to…

  10. Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods

    Science.gov (United States)

    Liu, Yinghui; Soucaze-Guillous, Benoît; Taberna, Pierre-Louis; Simon, Patrice

    2017-10-01

    In order to shed light on ageing mechanisms of Electrochemical Double Layer Capacitor (EDLC), two kinds of activated carbons are studied in tetraethyl ammonium tetrafluoroborate (Et4NBF4) in acetonitrile. In floating mode, it turns out that two different ageing mechanisms are observed, depending on the activated carbon electrode materials used. On one hand, carbon A exhibits a continuous capacitance and series resistance fall-off; on the other hand, for carbon B, only the series resistance degrades after ageing while the capacitance keeps unchanged. Additional electrochemical characterizations (Electrochemical Impedance Spectroscopy - EIS - and diffusion coefficient calculations) were carried out showing that carbon A's ageing behavior is suspected to be primarily related to the carbon degradation while for carbon B a passivation occurs leading to the formation of a Solid Electrolyte Interphase-Like (SEI-L) film. These hypotheses are supported by TG-IR and Raman spectroscopy analysis. The outcome forms the latter is an increase of carbon defects on carbon A on positive electrode.

  11. A practical approach to harmonic compensation in power systems-series connection of passive and active filters

    OpenAIRE

    Fujita, Hideaki; Akagi, Hirofumi

    1991-01-01

    The authors present a combined system with a passive filter and a small-rated active filter, both connected in series with each other. The passive filter removes load produced harmonics just as a conventional filter does. The active filter plays a role in improving the filtering characteristics of the passive filter. This results in a great reduction of the required rating of the active filter and in eliminating all the limitations faced by using only the passive filter, leading to a practica...

  12. Series vs parallel connected organic tandem solar cells : cell performance and impact on the design and operation of functional modules

    NARCIS (Netherlands)

    Etxebarriaa, I.; Furlan, A.; Ajuria, J.; Fecher, F.W.; Voigt, de M.J.A.; Brabecd, C.J.; Wienk, M.M.; Slooff, L.H.; Veenstra, S.; Gilot, J.; Pacios, R.

    2014-01-01

    Tandem solar cells are the best approach to maximize the light harvesting and adjust the overall absorption of the cell to the solar irradiance spectrum. Usually, the front and back subcells are connected in series in two-terminal device (2T) designs which require a current matching between both

  13. Application of alternating current for dimensionally electrochemical machining

    International Nuclear Information System (INIS)

    Kacheev, M.K.; Kovalev, L.M.

    1978-01-01

    The results of comparative experimental investigations in dimensionally electrochemical machining of 1Kh18N9T steel using alternating and direct currents are presented. The effect of the electrolyte rate in the inter-electrode clearance, electrode voltage and oscillation amplitude of the electrode-tool on the metal output from the electrodes and the relief of the machined surface is studied. It is shown that the a.c. electrochemical machining permits to achieve the greater dimensional accuracy than the d.c. machining when choosing the proper voltage and electrolyte composition. It is connected with the fact that the prevailing part of the metal output is obtained in the impulse-asymmetrical regime when the inter-electrode clearance is minimum

  14. A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3 thin film array electrically connected in series

    International Nuclear Information System (INIS)

    Kobayashi, T; Okada, H; Maeda, R; Itoh, T; Masuda, T

    2010-01-01

    A digital output piezoelectric accelerometer is proposed to realize an ultra-low power consumption wireless sensor node. The accelerometer has patterned piezoelectric thin films (piezoelectric plates) electrically connected in series accompanied by CMOS switches at the end of some of the piezoelectric plates. The connected piezoelectric plates amplify the output voltage without the use of amplifiers. The CMOS switches turn on when the output voltage of the piezoelectric plates is higher than the CMOS threshold voltage. The piezoelectric accelerometer converts the acceleration into a number of on-state CMOS switches, which can be called the digital output. The proposed digital output piezoelectric accelerometer, using Pb(Zr, Ti)O 3 (PZT) thin films as the piezoelectric material, was fabricated through a microelectromechanical system (MEMS) microfabrication process. The output voltage was found to be amplified by the number of connected piezoelectric plates. The DC output voltage obtained by using an AC to DC conversion circuit is proportional to the number of connections. The results show the potential for realizing the proposed digital output piezoelectric accelerometer

  15. Evaluation of the aniline chemical oxidation process using multiple simultaneous electrochemical responses

    International Nuclear Information System (INIS)

    Cristovan, Fernando H.; Lemos, Sherlan G.; Santos, Janaina S.; Trivinho-Strixino, Francisco; Pereira, Ernesto C.; Mattoso, Luiz H.C.; Kulkarni, Rashmi; Manohar, Sanjeev K.

    2010-01-01

    In this paper we show the simultaneous evaluation of the electrochemical impedance, the open circuit potential and the mass variation of the polyaniline deposited on a metal substrate during chemical oxidation of aniline. We detected that the final properties of the polymer could be practically defined after the inflection point of the potential profile. Considering a series connection of R and C, impedance Z was decomposed into the resistive and capacitive components. The resistivity and permittivity show a slight change after the inflection point in the potential profile. Impedance data and mass changes during synthesis also contributed to a better definition of the induction period. We described the system as whole, which relates to an electronic transport and to an electronic charge storage process. Although very simple, this model helps us to interpret and correlate different techniques to explain the results. In addition, we demonstrated that the in situ evaluation of the parameters described above offers new insights on the chemical synthesis mechanism of polyaniline.

  16. Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2015-12-01

    Full Text Available The electrochemical reduction process has been used to reduce spent oxide fuel to a metallic form using pyroprocessing technology for a closed fuel cycle in combination with a metal-fuel fast reactor. In the electrochemical reduction process, oxides fuels are loaded at the cathode basket in molten Li2O–LiCl salt and electrochemically reduced to the metal form. Various approaches based on thermodynamic calculations and experimental studies have been used to understand the electrode reaction and efficiently treat spent fuels. The factors that affect the speed of the electrochemical reduction have been determined to optimize the process and scale-up the electrolysis cell. In addition, demonstrations of the integrated series of processes (electrorefining and salt distillation with the electrochemical reduction have been conducted to realize the oxide fuel cycle. This overview provides insight into the current status of and issues related to the electrochemical processing of spent nuclear fuels.

  17. Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

    OpenAIRE

    Rohit Tripathi; Sumit Tiwari; G. N. Tiwari

    2016-01-01

    In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, Ind...

  18. Electrochemical assessment of some titanium and stainless steel implant dental alloys

    Directory of Open Access Journals (Sweden)

    Echevarría, A.

    2003-12-01

    Full Text Available Commercially pure titanium alloy, Ti-6Al-4V alloy and stainless steel screw implants were evaluated in both Ringer and synthetic saliva physiological solutions at body temperature by EIS (Electrochemical Impedance Spectroscopy with immersion times of 30 d. Results were simulated as a "sandwich system" composed by four capacitors-resistances connected in series with the solution resistance. A model explaining the results in terms of the porosity and thickness of four different layers, was proposed.

    Se utilizó la técnica de la Espectroscopia de Impedancia Electroquímica para evaluar en soluciones fisiológicas artificiales (Ringer y saliva sintética muestras extraídas de tornillos de implantes dentales certificados de titanio comercialmente puro, aleación Ti-6Al-W y acero inoxidable a temperatura corporal, con tiempos de inmersión hasta de 30 d. Los resultados se simularon mediante un modelo del tipo sandwich de cuatro elementos RC, conectados en serie con una resistencia de la solución. A partir de de esta simulación, se propone un modelo que explica los resultados obtenidos en términos de la evolución de la porosidad y el espesor de cuatro diferentes capas que se desarrollan en la superficie de los materiales evaluados.

  19. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    Science.gov (United States)

    Chung, D. C.; Choi, H. S.; Lee, N. Y.; Nam, G. Y.; Cho, Y. S.; Sung, T. H.; Han, Y. H.; Kim, B. S.; Lim, S. H.

    2007-10-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 × 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 × 2 MFCL module and a 3 × 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m × n MFCL.

  20. Optimum design of matrix fault current limiters using the series resistance connected with shunt coil

    International Nuclear Information System (INIS)

    Chung, D.C.; Choi, H.S.; Lee, N.Y.; Nam, G.Y.; Cho, Y.S.; Sung, T.H.; Han, Y.H.; Kim, B.S.; Lim, S.H.

    2007-01-01

    In this paper we described the improved design for the matrix fault current limiters (MFCL). To do this, we used thin film-type superconducting elements. therefore it means that we can make the MFCL with minimized size and high switching speed because of the high current density and the high indexing value of superconducting thin film. Also we could minimize the bulky shunt coil using the connection of a series resistance with a shunt coil. Also we could effectively block up a leakage current in shunt coils under no-fault condition and simply control total impedances of a current-limiting part using this method. After we designed an appropriated 1 x 2 basic MFCL module with an applied voltage of 160 V, we enlarged it to a 2 x 2 MFCL module and a 3 x 2 MFCL module where applied voltages were 320 V and 480 V, respectively. Experimental results for our MFCL were reported in terms of various fault currents, variation of series resistance and so on. We think that these methods will be useful in the optimum design of an m x n MFCL

  1. New analytical portable instrument for microchip electrophoresis with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Pozo-Ayuso, Diego F; Castaño-Alvarez, Mario

    2010-08-01

    A new portable instrument that includes a high voltage power supply, a bipotentiostat, and a chip holder has been especially developed for using microchips electrophoresis with electrochemical detection. The main unit of the instrument has dimensions of 150 x 165 x 70 mm (wxdxh) and consists of a four-outputs high voltage power supply with a maximum voltage of +/-3 KV and an acquisition system with two channels for dual amperometric (DC or pulsed amperometric detection) detection. Electrochemical detection has been selected as signal transduction method because it is relatively easily implemented, since nonoptical elements are required. The system uses a lithium-ion polymer battery and it is controlled from a desktop or laptop PC with a graphical user interface based on LabVIEW connected by serial RS232 or Bluetooth. The last part of the system consists of a reusable chip holder for housing the microchips, which contain all the electrical connections and reservoirs for making the work with microchips easy. The performance of the new instrument has been evaluated and compared with other commercially available apparatus using single- and dual-channel pyrex microchips for the separation of the neurotransmitters dopamine, epinephrine, and 3,4-dihydroxy-L-phenyl-alanine. The reduction of the size of the instrument has not affected the good performance of the separation and detection using microchips electrophoresis with electrochemical detection. Moreover, the new portable instrument paves the way for in situ analysis making the use of microchips electrophoresis easier.

  2. Electrochemical characterization of alternate conducting carbazole-bisthiophene units

    Energy Technology Data Exchange (ETDEWEB)

    Lapkowski, Mieczyslaw; Data, Przemyslaw [Silesian University of Technology, Department of Chemistry, Strzody 9, 44-100 Gliwice (Poland); Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, Sowinskiego 5, 44-100 Gliwice (Poland); Nowakowska-Oleksy, Anna [Wroclaw University of Technology, Faculty of Chemistry, Department of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Soloducho, Jadwiga, E-mail: jadwiga.soloducho@pwr.wroc.pl [Wroclaw University of Technology, Faculty of Chemistry, Department of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Roszak, Szczepan [Wroclaw University of Technology, Institute of Physical and Theoretical Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Molecular structures and electronic properties of monomer influence every step of polymerization and shape the polymer. Black-Right-Pointing-Pointer The electroactivity of carbazole-bithiophene polymer depends on thickness of film. Black-Right-Pointing-Pointer Total electroconductivity of polymer is connected with electrode potential sufficient to oxidize bithiophene mers. Black-Right-Pointing-Pointer There was observed non-typical behavior of conducting polymers. Black-Right-Pointing-Pointer Achieved material is characterized by mixed conductivity redox and electron one. - Abstract: An electrochemical and theoretical character of alternate copolymer of carbazole and bithiophene units was investigated. Polymerization is processed as two steps bielectronic oxidation of molecule. With monoelectronic oxidation is connected stable radical cation with spin located mainly on carbazole. The electrochemical properties of polymer are dependent on thickness of film deposited on electrode. In case of the thin layers one it is observed characteristic redox couple of carbazole oxidation to radical cation. Analysis of polymer behavior and results of spectrochemical measurements indicate on mixed type of electroconductivity. Molecular structures, HOMO-LUMO gaps and nature of highest occupied and lowest unoccupied molecular orbitals were also studied in presented work for oligomers ranging from monomer to octamer. The studies applied density functional theory (DFT).

  3. Electrochemical Biosensors - Sensor Principles and Architectures

    Directory of Open Access Journals (Sweden)

    Erik Reimhult

    2008-03-01

    Full Text Available Quantification of biological or biochemical processes are of utmost importancefor medical, biological and biotechnological applications. However, converting the biologicalinformation to an easily processed electronic signal is challenging due to the complexity ofconnecting an electronic device directly to a biological environment. Electrochemical biosensorsprovide an attractive means to analyze the content of a biological sample due to thedirect conversion of a biological event to an electronic signal. Over the past decades severalsensing concepts and related devices have been developed. In this review, the most commontraditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry,impedance spectroscopy, and various field-effect transistor based methods are presented alongwith selected promising novel approaches, such as nanowire or magnetic nanoparticle-basedbiosensing. Additional measurement techniques, which have been shown useful in combinationwith electrochemical detection, are also summarized, such as the electrochemical versionsof surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry,quartz crystal microbalance, and scanning probe microscopy.The signal transduction and the general performance of electrochemical sensors are often determinedby the surface architectures that connect the sensing element to the biological sampleat the nanometer scale. The most common surface modification techniques, the various electrochemicaltransduction mechanisms, and the choice of the recognition receptor moleculesall influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches,such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymesinto vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities forsignal amplification.In particular, this review highlights the importance of the precise control over the

  4. Nanotubular surface modification of metallic implants via electrochemical anodization technique.

    Science.gov (United States)

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.

  5. Synthesis and Thermophysical Properties of Ether-Functionalized Sulfonium Ionic Liquids as Potential Electrolytes for Electrochemical Applications.

    Science.gov (United States)

    Coadou, Erwan; Goodrich, Peter; Neale, Alex R; Timperman, Laure; Hardacre, Christopher; Jacquemin, Johan; Anouti, Mérièm

    2016-12-05

    During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis{(trifluoromethyl)sulfonyl}imide, [NTf 2 ] - anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window, along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity, and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices. ©2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Series asymmetric supercapacitors based on free-standing inner-connection electrodes for high energy density and high output voltage

    Science.gov (United States)

    Tao, Jiayou; Liu, Nishuang; Rao, Jiangyu; Ding, Longwei; Al Bahrani, Majid Raissan; Li, Luying; Su, Jun; Gao, Yihua

    2014-11-01

    Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high output voltage.Asymmetric supercapacitors (ASCs) based on free-standing membranes with high energy density and high output voltage are reported. MnO2 nanowire/carbon nanotube (CNT) composites and MoO3 nanobelt/CNT composites are selected as the anode and the cathode materials of the devices, respectively. The ASC has a high volumetric capacitance of 50.2 F cm-3 at a scan rate of 2 mV s-1 and a high operation voltage window of 2.0 V. Especially, after a middle layer with an inner-connection structure was inserted between the anode and the cathode, the output voltage of the whole device can achieve 4.0 V. The full cell of series ASCs (SASC) with an inner-connection middle layer has a high energy density of 28.6 mW h cm-3 at a power density of 261.4 mW cm-3, and exhibits excellent cycling performance of 99.6% capacitance retention over 10 000 cycles. This strategy of designing the hybridized structure for SASCs provides a promising route for next-generation SCs with high energy density and high

  7. Development of electrochemical sensor for the determination of toxic gases

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Monitoring release of flue and toxic gases and vapours of volatile organic toxic substances into the atmosphere is one of the most important problems in environmental pollution control studies particularly in industrial installations in order to avoid poisoning and other health hazards. In industrial areas continuous monitoring of toxic gases and vapours is required for the safety of workers and for this purpose different types of sensors and available such as thermal sensors mass sensors, biosensors, optical sensors and electrochemical sensors. Among all of these sensors electrochemical sensors are most cost-effective, accurate and very good for continuous monitoring. They can be categorized into potentiometric, conductometric, amperometric and voltammetric sensors. Applications of different types of electrochemical sensors are briefly reviewed. Development of polymer membrane and conducting polymers are most important for fabrication of electrochemical sensors, which can analyse up to twenty two gases and vapours simultaneously. Some of the commercially used electrochemical sensors are described. For the determination of hydrogen sulfide an electrochemical sensor was developed. Teflon based conduction polymer membrane was treated with some electrolytes and then silver metal was deposited on one side of the membrane. Metal part side was exposed to gases and the other side was deposited on one side of the membrane metal part side was exposed to gasses and the other side was connected with two electrodes including reference and counter electrodes, whereas metal part acted as working electrode. This system can also me used for the analysis of their gases like SO/sub 2/ etc; because they react at different potentials with the metal to generate the signals. (author)

  8. Series Transmission Line Transformer

    Science.gov (United States)

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  9. Electrochemical Noise Chaotic Analysis of NiCoAg Alloy in Hank Solution

    Directory of Open Access Journals (Sweden)

    D. Bahena

    2011-01-01

    Full Text Available The potential and current oscillations during corrosion of NiCoAg alloy in Hank solution were studied. Detailed nonlinear fractal analyses were used to characterize complex time series clearly showing that the irregularity in these time series corresponds to deterministic chaos rather than to random noise. The chaotic oscillations were characterized by power spectral densities, phase space, and Lyapunov exponents. Electrochemical impedance was also applied the fractal dimensions for the corroded surface was obtained, and a corrosion mechanism was proposed.

  10. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  11. Three level MV converter using series connected IGBT's

    DEFF Research Database (Denmark)

    Munk-Nielsen, Stig; Vaerens, M.C.P.; Sundvall, J.

    2009-01-01

    A simple method of serial connecting IGBT's is applied and standard low voltage IGBT modules are used in the MV test inverter to evaluate the method. The dc link voltage is 2.4 kV and the RMS output line to line voltage is 1.7kV. The method works and test experiences are presented in paper....

  12. A simplified in-situ electrochemical decontamination of lead from polluted soil (abstract)

    International Nuclear Information System (INIS)

    Ansari, T.M.; Ahmad, I.; Khan, Q.M.; Chaudhry, A.H.

    2011-01-01

    This paper reports a simplified In-Situ electrochemical method for remediation of field soil contaminated with lead. A series of electrochemical decontamination experiments including variable conditions such as operating duration and application of enhancement reagent were performed to demonstrate the efficiency of lead removal from spiked and polluted soil samples collected from Lahore, Pakistan. The results showed that the efficiency of lead removal from the contaminated soil increased with increasing the operating duration under a set of experimental conditions. The reagent used as complexing and solubilizing agent i.e. EDTA was found to be efficient in removing lead from the polluted soil. After 15 days duration, 85 % lead removal efficiency was observed in spiked soil under enhanced conditions , however, 63 % lead removal was achieved from the polluted soil samples by the simplified In-situ electrochemical decontamination method. The method is simple, rapid, cheaper and suitable for soil remediation purposes. (author)

  13. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  14. Electrochemical stability and transformations of fluorinated poly(2,6-dimethyl-1,4-phenylene oxide)

    NARCIS (Netherlands)

    Pud, A.A.; Rogalsky, S.P.; Ghapoval, G.S.; Kharitonov, A.P.; Kemperman, Antonius J.B.

    2000-01-01

    Fluorination of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) leads to narrowing of its window of electrochemical stability in a cathodic range of potentials. It is found this is connected with appearance of both perfluorinated and incompletely fluorinated units in the polymer. The former units are

  15. Coherence-based Time Series Clustering for Brain Connectivity Visualization

    KAUST Repository

    Euan, Carolina

    2017-11-19

    We develop the hierarchical cluster coherence (HCC) method for brain signals, a procedure for characterizing connectivity in a network by clustering nodes or groups of channels that display high level of coordination as measured by

  16. Coherence-based Time Series Clustering for Brain Connectivity Visualization

    KAUST Repository

    Euan, Carolina; Sun, Ying; Ombao, Hernando

    2017-01-01

    We develop the hierarchical cluster coherence (HCC) method for brain signals, a procedure for characterizing connectivity in a network by clustering nodes or groups of channels that display high level of coordination as measured by

  17. Wideband energy harvesting based on mixed connection of piezoelectric oscillators

    Science.gov (United States)

    Wu, P. H.; Chen, Y. J.; Li, B. Y.; Shu, Y. C.

    2017-09-01

    An approach for wideband energy harvesting together with power enhancement is proposed by integrating multiple piezoelectric oscillators with mixed parallel-series connection. This gives rise to the feasibility of shifting the operation frequency band to the dominant frequency domain of ambient excitations. There are two types of connection patterns discussed here: the p-type (s-type) is the parallel (series) connection of all sets of oscillators where some of them may be connected in series (parallel). In addition, the standard interface circuit used for electric rectification is adopted here. The analytic estimates of output power are derived and explicitly expressed in terms of different matrix formulations for these two connection patterns. They are subsequently validated and are found in good agreement with numerical simulations and experimental observations. Finally, the experimental results from the mixed connection of 4 piezoelectric oscillators show that the peak power of each array is about 3.4 times higher than that generated by a single piezoelectric oscillator. In addition, the bandwidth of the array capable of switching connection patterns is around 2.8 times wider than that based on a single array configuration. Hence, the effective bandwidth is enlarged without the loss of peak power.

  18. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications

    International Nuclear Information System (INIS)

    He, Linghao; Wang, Hongfang; Xia, Guangmei; Sun, Jing; Song, Rui

    2014-01-01

    Graphical abstract: Nanocomposites by introducing graphene oxide (GO) into chitosan (CS) matrix were prepared and the effect of GO on the crystallization, thermal stability and mechanical properties of the films were investigated. In addition, the electrochemical behavior of the CS/GO modified electrode was comparatively studied with that of the neat CS-modified electrode. - Highlights: • Graphene oxide (GO) with well dispersion in the biopolymer chitosan (CS) matrix. • Detectable interactions do exist between the GO nanosheets and CS segments. • The addition of minor GO can improve the electrochemical activity of the neat CS. - Abstract: A series of chitosan (CS) nanocomposites incorporated with graphene oxide (GO) nanosheets were facilely prepared by sonochemical method. Characterized by scanning electron microscopy, the obtained nanocomposites showed fine dispersion of GO in the CS matrix. Meanwhile, a marked interfacial interaction was also revealed as the values of glass transition temperature, the decomposition temperature and the storage modulus were significantly increased with the addition of GO. Furthermore, the well dispersed GO nanosheets could significantly improve the electrochemical activity of the CS as demonstrated by the electrochemical behaviors of pure CS and the GO/CS composite electrodes. Hence, the GO/CS nanocomposites film could be a promising candidate in the fabrication of electrochemical biosensors

  19. Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Ashworth, Leanne; Remón, Ian Natanael

    2008-01-01

    The work presented in this paper examines the use of pure hydrogen fuelled high temperature polymer electrolyte membrane (HTPEM) fuel cell stacks in an electrical car, charging a Li-ion battery pack. The car is equipped with two branches of two series coupled 1 kW fuel cell stacks which...... are connected directly parallel to the battery pack during operation. This enables efficient charging of the batteries for increased driving range. With no power electronics used, the fuel cell stacks follow the battery pack voltage, and charge the batteries passively. This saves the electrical and economical...... losses related to these components and their added system complexity. The new car battery pack consists of 23 Li-ion battery cells and the charging and discharging are monitored by a battery management system (BMS) which ensures safe operating conditions for the batteries. The direct connection...

  20. Constructing networks from a dynamical system perspective for multivariate nonlinear time series.

    Science.gov (United States)

    Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael

    2016-03-01

    We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.

  1. Distributed electrochemical sensors: recent advances and barriers to market adoption.

    Science.gov (United States)

    Hoekstra, Rafael; Blondeau, Pascal; Andrade, Francisco J

    2018-07-01

    Despite predictions of their widespread application in healthcare and environmental monitoring, electrochemical sensors are yet to be distributed at scale, instead remaining largely confined to R&D labs. This contrasts sharply with the situation for physical sensors, which are now ubiquitous and seamlessly embedded in the mature ecosystem provided by electronics and connectivity protocols. Although chemical sensors could be integrated into the same ecosystem, there are fundamental issues with these sensors in the three key areas of analytical performance, usability, and affordability. Nevertheless, advances are being made in each of these fields, leading to hope that the deployment of automated and user-friendly low-cost electrochemical sensors is on the horizon. Here, we present a brief survey of key challenges and advances in the development of distributed electrochemical sensors for liquid samples, geared towards applications in healthcare and wellbeing, environmental monitoring, and homeland security. As will be seen, in many cases the analytical performance of the sensor is acceptable; it is usability that is the major barrier to commercial viability at this moment. Were this to be overcome, the issue of affordability could be addressed. Graphical Abstract ᅟ.

  2. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes

    Science.gov (United States)

    Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.

    2013-01-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes. PMID:23563856

  3. Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes

    OpenAIRE

    Kumar, Amit; Arruda, Thomas M.; Tselev, Alexander; Ivanov, Ilia N.; Lawton, Jamie S.; Zawodzinski, Thomas A.; Butyaev, Oleg; Zayats, Sergey; Jesse, Stephen; Kalinin, Sergei V.

    2013-01-01

    Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing technique...

  4. Conductivity and electrochemical characterization of PrFe1-xNixO3-δ at high temperature

    DEFF Research Database (Denmark)

    Hashimoto, Shin-Ichi; Kammer Hansen, Kent; Poulsen, Finn Willy

    2007-01-01

    PrFe(1-x)NixO(3)- (x=0.4-0.6) compounds were synthesized and characterized by powder XRD, electrical conductivity and electrochemical impedance spectroscopy on point electrodes on a Ce0.9Gd0.1O2-delta (CGO10) electrolyte. As a reference, the electrochemical performance of LaFe(0.4)AM(0.6)O(3-delta......) was also measured. The main phase in the PrFe1-xNixO3-delta series was perovskite-type structure and belonged to the orthorhombic crystal system. The conductivities are fairly high, e.g. around 220 S cm(-1) at 873 K for the x = 0.4 compound. The electrochemical performance of the PrFe(1-x)NixO(3-delta...

  5. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Pech, David; Brunet, Magali; Fabre, Norbert; Mesnilgrente, Fabien; Conedera, Veronique; Durou, Hugo [LAAS-CNRS, Universite de Toulouse, 7 av. du Colonel Roche, F-31077 Toulouse (France); Taberna, Pierre-Louis; Simon, Patrice [CIRIMAT-CNRS, Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse (France)

    2010-02-15

    Carbon-based micro-supercapacitors dedicated to energy storage in self-powered modules were fabricated with inkjet printing technology on silicon substrate. An ink was first prepared by mixing an activated carbon powder with a PTFE polymer binder in ethylene glycol stabilized with a surfactant then deposited by inkjet on patterned gold current collectors with the substrate heated at 140 C in order to assure a good homogeneity. Electrochemical micro-capacitors with electrodes in an interdigital configuration were fabricated, and characterized using electrochemical techniques in 1 M Et{sub 4}NBF{sub 4} propylene carbonate electrolyte. These micro-devices show an excellent capacitive behavior over a wide potential range of 2.5 V for a cell capacitance of 2.1 mF cm{sup -2}. The newly developed technology will allow the integration of the storage device as close as possible to the MEMS-based energy harvesting device, minimizing power losses through connections. (author)

  6. Diophantine approximation and Dirichlet series

    CERN Document Server

    Queffélec, Hervé

    2013-01-01

    This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of anal...

  7. Performance of a multipurpose research electrochemical reactor

    International Nuclear Information System (INIS)

    Henquin, E.R.; Bisang, J.M.

    2011-01-01

    Highlights: → For this reactor configuration the current distribution is uniform. → For this reactor configuration with bipolar connection the leakage current is small. → The mass-transfer conditions are closely uniform along the electrode. → The fluidodynamic behaviour can be represented by the dispersion model. → This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of ±10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  8. Spectro-electrochemical and DFT study of tenoxicam metabolites formed by electrochemical oxidation

    International Nuclear Information System (INIS)

    Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Galano, A.; Rojas-Hernández, A.; Corona-Avendaño, S.; Romero-Romo, M.; Palomar-Pardavé, M.

    2013-01-01

    Highlights: • Tenoxicam deprotonation and electrochemical oxidation were studied. • Both spectro-electrochemical and theoretical DFT studies were considered. • It was found that the ampholitic species of tenoxicam is a zwitterion. • Electrochemical oxidation of tenoxicam yields two non-electroactive products. • The nature of these fragments was further confirmed by a chromatography study. -- Abstract: From experimental (spectro-electrochemical) and theoretical (DFT) studies, the mechanisms of tenoxicam deprotonation and electrochemical oxidation were assessed. From these studies, new insights on the nature of the ampholitic species involved during tenoxicam's deprotonation in aqueous solution are presented; see scheme A. Moreover, it is shown that, after the analysis of two different reaction schemes that involve up to 10 different molecules and 12 reaction paths, the electrochemical oxidation of tenoxicam, yields two non-electroactive products that are predominately formed by its fragmentation, after the loss of two electrons. The nature of these fragments was further confirmed by a chromatography study

  9. A Hybrid Cascade Converter Topology With Series-Connected Symmetrical and Asymmetrical Diode-Clamped H-Bridge Cells

    DEFF Research Database (Denmark)

    Nami, Alireza; Zare, Firuz; Ghosh, Arindam

    2011-01-01

    to approach a very low total harmonic distortion of voltage and current, which leads to the possible elimination of the output filter. Regarding the proposed configuration, a new cascade inverter is verified by cascading an asymmetrical diode-clamped inverter, in which 19 levels can be synthesized in output......A novel H-bridge multilevel pulsewidth modulation converter topology based on a series connection of a high-voltage diode-clamped inverter and a low-voltage conventional inverter is proposed in this paper. A dc link voltage arrangement for the new hybrid and asymmetric solution is presented to have...... voltage with the same number of components. To balance the dc link capacitor voltages for the maximum output voltage resolution as well as synthesize asymmetrical dc link combination, a new multi-output boost converter is utilized at the dc link voltage of a seven-level H-bridge diode-clamped inverter...

  10. Electrochemical oxidation of selective estrogen receptor modulator raloxifene

    International Nuclear Information System (INIS)

    Li, Xi-Qian; He, Jian-Bo; Liu, Lu; Cui, Ting

    2013-01-01

    Highlights: ► Application and analysis of in situ thin-layer spectroelectrochemistry. ► Cyclic voltabsorptometry used for a drug study. ► Highly pH-dependent oxidative metabolism of raloxifene. ► A complex parallel-consecutive mechanism proposed for oxidation of raloxifene. -- Abstract: Raloxifene is a selective estrogen receptor modulator that may produce toxic oxidative species in metabolism. The oxidation mechanism of raloxifene with different pH values was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), in situ UV–vis spectral analysis and cyclic voltabsorptometry based on a long optical-path thin-layer electrochemical cell. Time-derivative cyclic voltabsorptograms were obtained for comparative discussion with the corresponding cyclic voltammograms. Raloxifene was initially oxidized to reactive phenoxyl radicals, followed by a series of transformation steps leading to different final products in different pH media. A parallel-consecutive reaction mechanism was proposed for the pH-dependent formation of 7-hydroxyraloxifene, raloxifene 6,7-o-quinone and two raloxifene dimers, each pathway following a complex electrochemical-chemical mechanism. Both raloxifene diquinone methide and its N-oxides were not detected by in situ UV–vis spectroscopy and XPS analysis. This work provides an electrochemical viewpoint and comparable information for better understanding of the oxidative metabolism and chemical toxicology of raloxifene under physiological conditions in vivo or in vitro

  11. Monolithic blue LED series arrays for high-voltage AC operation

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Jin-Ping [Satellite Venture Business Laboratory, University of Tokushima, Tokushima 770-8506 (Japan); Sato, Hisao; Mizobuchi, Takashi; Morioka, Kenji; Kawano, Shunsuke; Muramoto, Yoshihiko; Sato, Daisuke; Sakai, Shiro [Nitride Semiconductor Co. Ltd., Naruto, Tokushima 771-0360 (Japan); Lee, Young-Bae; Ohno, Yasuo [Department of Electrical and Electronic Engineering, University of Tokushima, Tokushima 770-8506 (Japan)

    2002-12-16

    Design and fabrication of monolithic blue LED series arrays that can be operated under high ac voltage are described. Several LEDs, such as 3, 7, and 20, are connected in series and in parallel to meet ac operation. The chip size of a single device is 150 {mu}m x 120 {mu}m and the total size is 1.1 mm x 1 mm for a 40(20+20) LED array. Deep dry etching was performed as device isolation. Two-layer interconnection and air bridge are utilized to connect the devices in an array. The monolithic series array exhibit the expected operation function under dc and ac bias. The output power and forward voltage are almost proportional to LED numbers connected in series. On-wafer measurement shows that the output power is 40 mW for 40(20+20) LED array under ac 72 V. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  12. Exponential Hilbert series of equivariant embeddings

    OpenAIRE

    Johnson, Wayne A.

    2018-01-01

    In this article, we study properties of the exponential Hilbert series of a $G$-equivariant projective variety, where $G$ is a semisimple, simply-connected complex linear algebraic group. We prove a relationship between the exponential Hilbert series and the degree and dimension of the variety. We then prove a combinatorial identity for the coefficients of the polynomial representing the exponential Hilbert series. This formula is used in examples to prove further combinatorial identities inv...

  13. Use of electrochemical techniques to study the corrosion of metals in model fluoride melts

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, S. [EDF R and D, Département MMC, Groupe Chimie et Corrosion, 77818 Moret-sur-Loing Cedex (France); Cabet, C., E-mail: celine.cabet@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Cassayre, L.; Chamelot, P. [Université Toulouse, INPT, UPS, Laboratoire de Génie Chimique, Département Procédés Electrochimiques, F-31062 Toulouse Cedex 09 (France); Delepech, S. [ENSCP, Laboratoire d’Électrochimie, de Chimie des Interface et Modélisation pour l’Energie, UMR 7575, 11 rue Pierre et Marie Curie, 75232 Paris Cedex 5 (France); Finne, J. [EDF R and D, Département MMC, Groupe Chimie et Corrosion, 77818 Moret-sur-Loing Cedex (France); Massot, L. [Université Toulouse, INPT, UPS, Laboratoire de Génie Chimique, Département Procédés Electrochimiques, F-31062 Toulouse Cedex 09 (France); Noel, D. [EDF R and D, Département MMC, Groupe Chimie et Corrosion, 77818 Moret-sur-Loing Cedex (France)

    2013-10-15

    Molten fluorides are appealing coolants for innovative nuclear systems but structural alloys may undergo corrosion at high temperature. Because corrosion primarily occurs via electrochemical reactions, electrochemical techniques are ideal for the study of corrosion thermochemistry and kinetics. Examples are given. An electrochemical series was established using voltammetry in LiF–NaF at 1173 K. Stability increases in the following order: Na, Cr, Fe, Ni, Mo/W, Ag, Au. Various alloys were also classified according to their oxidation resistance. A cathodic protection method was developed to curb the intergranular attack of some nickel alloys in molten LiF–CaF{sub 2}–MgF{sub 2}–ZrF{sub 4} containing tellurium vapor at 953 K. Voltammetry and polarization resistance measurement were used to estimate the rate of chromium selective dissolution for nickel base alloys immersed in LiF–NaF at 1073 K and 1173 K.

  14. Electrochemical Oxidation of Propene with a LSF15/CGO10 Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 (LSF) as electrode and Ce0.9Gd0.1O1.95 (CGO) as electrolyte, was studied for the electrochemical oxidation of propene over a wide range of temperatures. Polarization was found to enhance propene oxidation rate. Ce0.9Gd0.1O1.95 was used...... as infiltration material to enhance the effect of polarization on propene oxidation rate, especially at low temperatures. The influence of infiltrated material, as a function of heat treatment, on the reactor electrochemical behavior has been evaluated by using electrochemical impedance spectroscopy...... in suppressing the competing oxygen evolution reaction and promoting the oxidation of propene under polarization, with faradaic efficiencies above 70% at 250◦C. © 2014 The Electrochemical Society....

  15. A Modularized Discharge-Type Balancing Topology for Series-Connected Super Capacitor String

    Directory of Open Access Journals (Sweden)

    Shaogui Fan

    2018-06-01

    Full Text Available This paper proposed a modularized discharge-type topology for the voltage balance of series-connected super capacitor (SC string. The proposed topology consists of cascaded converter modules and a boost converter. The cascaded converter modules discharge the higher voltage SCs directly with the ideal output current to realize a fast balancing speed and the boost converter feedbacks the extra energy from the higher voltage SCs to the super capacitor energy storage system (SCESS. The modular design of the cascaded converter modules makes the balancing system suitable for different voltage levels of SCESS. Unlike the charge-type topologies which discharge the higher voltage SCs indirectly, the proposed topology discharges the higher voltage SCs directly with a big current, and the over voltage phenomenon of SCs is then avoided, which means the reliability of the SCESS can be improved. The voltage stress of the switches inside the cascaded converter modules is low, which is different from the existing modularized discharge-type balancing topology. What is more, the control of cascaded converter modules and the boost converter can be implemented by analog devices which will simplify the control of the whole system. The control degree of freedom is high and the voltage of each cell can be controlled. An in-depth comparison analysis with the charge-type balancing topology is performed from the perspective of balancing speed and round-trip energy efficiency. The proposed topology and the balancing performance are confirmed by experimental results.

  16. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    Science.gov (United States)

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  17. Involvement of reactive oxygen species in the electrochemical inhibition of barnacle (Amphibalanus amphitrite) settlement

    Science.gov (United States)

    Rodolfo E. Perez-Roa; Marc A. Anderson; Dan Rittschof; Christopher G. Hunt; Daniel R. Noguera

    2009-01-01

    The role of reactive oxygen species (ROS) in electrochemical biofouling inhibition was investigated using a series of abiotic tests and settlement experiments with larvae of the barnacle Amphibalanus amphitrite, a cosmopolitan fouler. Larval settlement, a measure of biofouling potential, was reduced from 43% ± 14% to 5% ± 6% upon the application of...

  18. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties.

    Science.gov (United States)

    Gerngross, Mark-Daniel; Carstensen, Jürgen; Föll, Helmut

    2014-01-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor (RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires.

  19. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  20. AC impedance electrochemical modeling of lithium-ion positive electrodes

    International Nuclear Information System (INIS)

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF 6 dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes (1). Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley (2). The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation (3). The resulting system of differential equations was solved

  1. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review

    International Nuclear Information System (INIS)

    Tang, Juan; Tang, Dianping

    2015-01-01

    Electrochemical immunodetection has attracted considerable attention due to its high sensitivity, low cost and simplicity. Large efforts have recently made in order to design ultrasensitive assays. Noble metal nanoparticles (NM-NPs) offer advantages such as high conductivity and large surface-to-volume ratio. NM-NPs therefore are excellent candidates for developing electrochemical platforms for immunodetection and as signal tags. The use of biofunctionalized NM-NPs often results in amplified recognition via stronger loading of signal tags, and also in enhanced signal. This review (with 87 references) gives an overview on the current state in the use of NM-NPs in Non-enzymatic electrochemical immunosensing. We discuss the application of NM-NPs as electrode matrices and as electroactive labels (either as a carrier or as electrocatalytic labels), and compare the materials (mainly nanoparticles of gold, platinum, or of bimetallic materials) in terms of performance (for example by increasing sensitivity via label amplification or via high densities of capture molecules). A conclusion covers current challenges and gives an outlook. Rather than being exhaustive, the review focuses on representative examples that illustrate novel concepts and promising applications. NM-NPs based immunosensing opens a series of concepts for basic research and offers new tools for determination of trace amounts of protein-related analytes in environment and clinical applications. (author)

  2. On p-adic aspects of some perturbation series

    International Nuclear Information System (INIS)

    Dragovic, B.G.

    1993-01-01

    Series with factorial terms, which are of potential interest in quantum field theory and string theory, are considered. Divergent series in the real case are usually p-adic convergent. Using simple and number field invariant methods of summation, rational sums are obtained. Sums of the convergent and divergent counterparts of the same series are connected by adelic summability. 9 refs

  3. Optical cross-connect circuit using hitless wavelength selective switch.

    Science.gov (United States)

    Goebuchi, Yuta; Hisada, Masahiko; Kato, Tomoyuki; Kokubun, Yasuo

    2008-01-21

    We have proposed and demonstrated the basic elements of a full matrix optical switching circuit (cross-connect circuit) using a hitless wavelength selective switch (WSS). The cross-connect circuits are made of a multi-wavelength channel selective switch consisting of cascaded hitless WSSs, and a multi-port switch. These switching elements are realized through the individual Thermo-Optic (TO) tuning of a series-coupled microring resonator, and can switch arbitrary wavelength channels without blocking other wavelength channels during tuning. We demonstrate a four wavelength selective switch using a parallel topology of double series coupled microring resonators and a three wavelength selective switch using a parallel topology of quadruple series coupled microring resonators. Since the spectrum shape of quadruple series coupled microring is much more box-like than the double series, a high extinction ratio of 39.0-46.6 dB and low switching cross talk of 19.3-24.5 dB were achieved.

  4. RUVIVAL Publication Series Volume 3

    OpenAIRE

    Behrendt, Joachim; Fröndhoff, Dario; Munoz Ardila, Andrea; Orlina, Maria Monina; Rueda Morales, Máryeluz; Schaldach, Ruth; Schaldach, Ruth; Otterpohl, Ralf

    2018-01-01

    RUVIVAL Publication Series is a compilation of literature reviews on topics concerned with the revitalisation of rural areas. RUVIVAL Publication Series is part of the e-learning project RUVIVAL and each of the three contributions in this publication is connected to further interactive multimedia material, which can be reached under www.ruvival.de. The first literature review is concerned with urine utilisation as a fertiliser in agriculture. Urine contains four important nutrients for pla...

  5. Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips

    International Nuclear Information System (INIS)

    Zerulla, D.; Isfort, G.; Koelbach, M.; Otto, A.; Schierbaum, K.

    2003-01-01

    The use of electrochemically structured Al surfaces as sensor arrays for combinatorial chemistry and its detection via microscopic laser techniques from very small volumes has been explored. The methodology is based on three different techniques which will be discussed separately: firstly, attenuated total reflection (ATR) is used in connection with surface-plasmon-polariton (SPP) excitation. A thin Al layer, evaporated on sapphire or quartz and covered with a naturally grown oxide layer, provides an optimum enhancement and confinement of the electrical field close to the surface. This is revealed by calculations and experimental data. Secondly, a Raman microscope is applied, enabling chemical spot analysis in the visible and UV range with a lateral resolution close to the diffraction limit. Finally, its application to investigate electrochemically structured Al films is discussed

  6. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  7. Functional connectivity change as shared signal dynamics

    Science.gov (United States)

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  8. Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials

    Science.gov (United States)

    Nakajo, A.; Cocco, A. P.; DeGostin, M. B.; Peracchio, A. A.; Cassenti, B. N.; Cantoni, M.; Van herle, J.; Chiu, W. K. S.

    2016-09-01

    The performance of materials for electrochemical energy conversion and storage depends upon the number of electrocatalytic sites available for reaction and their accessibility by the transport of reactants and products. For solid oxide fuel/electrolysis cell materials, standard 3-D measurements such as connected triple-phase boundary (TPB) length and effective transport properties partially inform on how local geometry and network topology causes variability in TPB accessibility. A new measurement, the accessible TPB, is proposed to quantify these effects in detail and characterize material performance. The approach probes the reticulated pathways to each TPB using an analytical electrochemical fin model applied to a 3-D discrete representation of the heterogeneous structure provided by skeleton-based partitioning. The method is tested on artificial and real structures imaged by 3-D x-ray and electron microscopy. The accessible TPB is not uniform and the pattern varies depending upon the structure. Connected TPBs can be even passivated. The sensitivity to manipulations of the local 3-D geometry and topology that standard measurements cannot capture is demonstrated. The clear presence of preferential pathways showcases a non-uniform utilization of the 3-D structure that potentially affects the performance and the resilience to alterations due to degradation phenomena. The concepts presented also apply to electrochemical energy storage and conversion devices such as other types of fuel cells, electrolyzers, batteries and capacitors.

  9. Improved conversion rates in drug screening applications using miniaturized electrochemical cells with frit channels.

    Science.gov (United States)

    Odijk, Mathieu; Olthuis, Wouter; van den Berg, A; Qiao, Liang; Girault, Hubert

    2012-11-06

    This paper reports a novel design of a miniaturized three-electrode electrochemical cell, the purpose of which is aimed at generating drug metabolites with a high conversion efficiency. The working electrode and the counter electrode are placed in two separate channels to isolate the reaction products generated at both electrodes. The novel design includes connecting channels between these two electrode channels to provide a uniform distribution of the current density over the entire working electrode. In addition, the effect of ohmic drop is decreased. Moreover, two flow resistors are included to ensure an equal flow of analyte through both electrode channels. Total conversion of fast reacting ions is achieved at flow rates up to at least 8 μL/min, while the internal chip volume is only 175 nL. Using this electrochemical chip, the metabolism of mitoxantrone is studied by microchip electrospray ionization-mass spectrometry. At an oxidation potential of 700 mV, all known metabolites from direct oxidation are observed. The electrochemical chip performs equally well, compared to a commercially available cell, but at a 30-fold lower flow of reagents.

  10. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  11. Hydrogen storage material, electrochemically active material, electrochemical cell and electronic equipment

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a hydrogen storage material comprising an alloy of magnesium. The invention further relates to an electrochemically active material and an electrochemical cell provided with at least one electrode comprising such a hydrogen storage material. Also, the invention relates to

  12. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes

    International Nuclear Information System (INIS)

    Rodriguez R, Miriam G.; Mendoza, Victor; Puebla, Hector; Martinez D, Sergio A.

    2009-01-01

    In Mexico, most of the electroplating and textile industries are small facilities and release relatively large amounts of hexavalent chromium (Cr(VI)) in surface waters. In this work, the results obtained during the operation of a batch reactor with a capacity of 170 L, and three electrochemical flow reactors-in-series system with a total capacity of 510 L (both using iron rotating ring electrodes to remove Cr(VI) from wastewaters) are presented. The reactors were scaled up from a laboratory reactor to a semi-industrial level, based on the similarity (dynamical, geometrical and electrochemical). An empirical Cr(VI) removal model was validated in batch and continuous reactors at different operating conditions. Cr(VI) concentration of the industrial wastewaters was reduced from about 500 mg/L to values lower than 0.5 mg/L. A very important parameter that affects the process is the pH, which affects the solubility of the Fe(III). Finally, the electrochemical treated wastewater can be reused

  13. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez R, Miriam G. [Depto. Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico); Mendoza, Victor [Depto. Electronica, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico); Puebla, Hector [Depto. Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico); Martinez D, Sergio A. [Depto. Energia, Universidad Autonoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Azcapotzalco, CP 07740, Mexico D.F. (Mexico)], E-mail: samd@correo.azc.uam.mx

    2009-04-30

    In Mexico, most of the electroplating and textile industries are small facilities and release relatively large amounts of hexavalent chromium (Cr(VI)) in surface waters. In this work, the results obtained during the operation of a batch reactor with a capacity of 170 L, and three electrochemical flow reactors-in-series system with a total capacity of 510 L (both using iron rotating ring electrodes to remove Cr(VI) from wastewaters) are presented. The reactors were scaled up from a laboratory reactor to a semi-industrial level, based on the similarity (dynamical, geometrical and electrochemical). An empirical Cr(VI) removal model was validated in batch and continuous reactors at different operating conditions. Cr(VI) concentration of the industrial wastewaters was reduced from about 500 mg/L to values lower than 0.5 mg/L. A very important parameter that affects the process is the pH, which affects the solubility of the Fe(III). Finally, the electrochemical treated wastewater can be reused.

  14. Graphene-Paper Based Electrochemical Sensors

    DEFF Research Database (Denmark)

    Zhang, Minwei; Halder, Arnab; Cao, Xianyi

    2017-01-01

    in electrochemical sensors and energy technologies amongothers. In this chapter, we present some examples to overview recent advances in theresearch and development of two-dimensional (2D) graphene papers as new materialsfor electrochemical sensors. The chapter covers the design, fabrication, functionalizationand...... functionalization ofgraphene papers with polymer and nanoscale functional building blocks for electrochemical-sensing purposes. In terms of electrochemical-sensing applications, the emphasis ison enzyme-graphene and nanoparticle-graphene paper-based systems for the detectionof glucose. We finally conclude...

  15. Electrochemical Reduction of Oxygen and Nitric Oxide at Low Temperature on La1−xSrxFeO3−δ Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2014-01-01

    A series of six strontium-substituted lanthanum ferrites (La1-xSrxFeO3-delta, x = 0.00, 0.05, 0.15, 0.25, 0.35, and 0.50) were synthesized using the glycine-nitrate process and evaluated as cathodes for the electrochemical reduction of oxygen and nitric oxide in the temperature range 200 to 400...... degrees C, using cone-shaped electrodes and cyclic voltammetry. It was shown that the ferrites had a higher activity towards the electrochemical reduction of nitric oxide than towards the electrochemical reduction of oxygen, in the investigated temperature range. The highest activity towards...... the electrochemical reduction of nitric oxide was found for La0.95Sr0.05FeO3-delta at 400 degrees C. This compound also showed the highest activity towards the electrochemical reduction of oxygen at 400 degrees C. The highest apparent selectivity was found for the compound LaFeO3 at 200 degrees C. The materials...

  16. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells

    KAUST Repository

    Kageshima, Yosuke

    2016-04-18

    A novel “photovoltaics (PV) + electrolyzer” concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named “SPHELAR.” SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm2 (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm2) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs).

  17. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells

    KAUST Repository

    Kageshima, Yosuke; Shinagawa, Tatsuya; Kuwata, Takaaki; Nakata, Josuke; Minegishi, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2016-01-01

    A novel “photovoltaics (PV) + electrolyzer” concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named “SPHELAR.” SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm2 (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm2) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs).

  18. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  19. The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI.

    Science.gov (United States)

    Thompson, William H; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed.

  20. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  1. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  2. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  3. Electrochemically deposited hybrid nickel-cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Safavi, A.; Kazemi, S.H.; Kazemi, H.

    2011-01-01

    Highlights: → Nanostructured hybrid nickel-cobalt hexacyanoferrate is used in supercapacitors. → A high capacitance (765 F g -1 ) is obtained at a specific current of 0.2 A g -1 . → Long cycle-life and excellent stability are demonstrated during 1000 cycles. - Abstract: This study describes the use of electrodeposited nanostructured hybrid nickel-cobalt hexacyanoferrate in electrochemical supercapacitors. Herein, various compositions of nickel and cobalt hexacyanoferrates (Ni/CoHCNFe) nanostructures are electrodeposited on an inexpensive stainless steel substrate using cyclic voltammetric (CV) method. The morphology of the electrodeposited nanostructures is studied using scanning electron microscopy, while their electrochemical characterizations are investigated using CV, galvanostatic charge and discharge and electrochemical impedance spectroscopy. The results show that the nanostructures of hybrid metal cyanoferrate, shows a much higher capacitance (765 F g -1 ) than those obtained with just nickel hexacyanoferrate (379 F g -1 ) or cobalt hexacyanoferrate (277 F g -1 ). Electrochemical impedance spectroscopy results confirm the favorable capacitive behavior of the electrodeposited materials. The columbic efficiency is approximately 95% based on the charge and discharge experiments. Long cycle-life and excellent stability of the nanostructured materials are also demonstrated during 1000 cycles.

  4. Electrochemically deposited hybrid nickel-cobalt hexacyanoferrate nanostructures for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Safavi, A., E-mail: safavi@chem.susc.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Nanotechnology Research Institute, Shiraz University, Shiraz (Iran, Islamic Republic of); Kazemi, S.H., E-mail: habibkazemi@iasbs.ac.ir [Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Kazemi, H. [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2011-10-30

    Highlights: > Nanostructured hybrid nickel-cobalt hexacyanoferrate is used in supercapacitors. > A high capacitance (765 F g{sup -1}) is obtained at a specific current of 0.2 A g{sup -1}. > Long cycle-life and excellent stability are demonstrated during 1000 cycles. - Abstract: This study describes the use of electrodeposited nanostructured hybrid nickel-cobalt hexacyanoferrate in electrochemical supercapacitors. Herein, various compositions of nickel and cobalt hexacyanoferrates (Ni/CoHCNFe) nanostructures are electrodeposited on an inexpensive stainless steel substrate using cyclic voltammetric (CV) method. The morphology of the electrodeposited nanostructures is studied using scanning electron microscopy, while their electrochemical characterizations are investigated using CV, galvanostatic charge and discharge and electrochemical impedance spectroscopy. The results show that the nanostructures of hybrid metal cyanoferrate, shows a much higher capacitance (765 F g{sup -1}) than those obtained with just nickel hexacyanoferrate (379 F g{sup -1}) or cobalt hexacyanoferrate (277 F g{sup -1}). Electrochemical impedance spectroscopy results confirm the favorable capacitive behavior of the electrodeposited materials. The columbic efficiency is approximately 95% based on the charge and discharge experiments. Long cycle-life and excellent stability of the nanostructured materials are also demonstrated during 1000 cycles.

  5. Spot formation of radiation particles by electrochemical etching

    International Nuclear Information System (INIS)

    Nozaki, Tetsuya

    1999-01-01

    An electrochemical etching (ECE) spot formation from the top of chemical etching (CE) spot was confirmed by a series of experiments. One of polycarbonate (Iupilon) could not make the spot, because ECE spot had grown up before the microscope confirming the CE spot. Clear CEC spots by α-ray and neutron were found on Harzlas and Baryotrak, both improvements of CR-39. Under the same etching conditions, the growth of ECE spot on Harzlas was more rapid than Baryotrak, but both spots were almost the same. All CE spot by α-ray produced the CEC spots, but a part of CE circle spot by neutron formed them. (S.Y.)

  6. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  7. Geometry of the Borel - de Siebenthal discrete series

    DEFF Research Database (Denmark)

    Ørsted, Bent; Wolf, Joseph A

    Let G0 be a connected, simply connected real simple Lie group. Suppose that G0 has a compact Cartan subgroup T0, so it has discrete series representations. Relative to T0 there is a distinguished positive root system + for which there is a unique noncompact simple root , the “Borel – de Siebenthal...... system”. There is a lot of fascinating geometry associated to the corresponding “Borel – de Siebenthal discrete series” representations of G0. In this paper we explore some of those geometric aspects and we work out the K0–spectra of the Borel – de Siebenthal discrete series representations. This has...

  8. Improvement in the assessment of direct and facilitated ion transfers by electrochemically induced redox transformations of common molecular probes

    DEFF Research Database (Denmark)

    Zhou, Min; Gan, Shiyu; Zhong, Lijie

    2012-01-01

    A new strategy based on a thick organic film modified electrode allowed us, for the first time, to explore the voltammetric processes for a series of hydrophilic ions by electrochemically induced redox transformations of common molecular probes. During the limited time available for voltammetry, ...

  9. The mean–variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI

    Science.gov (United States)

    Thompson, William H.; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed. PMID:26236216

  10. Electrochemical stabilization as a means of preventing ground failure in railroads

    Science.gov (United States)

    Solntzev, D.I.; Sorkov, V.S.; Sokoloff, V.P.

    1947-01-01

    Laboratory and field data on electrochemical stabilization of clays, by three Russian authors, are here presented in translation. Abstracts of the Russian papers were published in May 1947 issue of the Engineering News Record (pp. 100-101). There exists also a small body of literature, in German and English, dealing with the electrochemical stabilization and related subjects. Elements of the electrochemical process were patented by Casagrande in Germany, shortly before the last war. Results of the Russians and of others, including the German patent, appear to be sound and interesting accordingly. Mechanism of the electrochemical stabilization, however, appears to be surmised rather than established. Unless the mechanism of such stabilization is understood in detail, little progress may be expected in field applications of the electrochemical method. Electroosmosis, a poorly reversible coagulation of the soil colloids, and introduction of exchangeable aluminum into the clay complex have been given credit for the ground-stabilizing effects of direct electrical current. Much remains to be done, as the reader may see, in developing further the theory of the method. A critical study is indicated, in this connection, by agencies or individuals qualified and equipped for basic research in soil physics. Optimum schedules for field treatments need be ascertained with particular care, to suit any given kind of material and environment. A wide range of variation in such schedules, is most certainly to be encountered in dealing with materials as diverse in their composition and properties as are clays. Any generalization on relationships between soil, electrolytes, moisture, and current could be premature if based on the Russian work alone. Stabilization of ground is a major engineering geologic problem of national interest. Needless to say, perhaps, that failures are to be expected, in laboratory and in the field, in this as well as in any other kind of research. To minimize

  11. Functional DNA: Teaching Infinite Series through Genetic Analogy

    Science.gov (United States)

    Kowalski, R. Travis

    2011-01-01

    This article presents an extended analogy that connects infinite sequences and series to the science of genetics, by identifying power series as "DNA for a function." This analogy allows standard topics such as convergence tests or Taylor approximations to be recast in a "forensic" light as mathematical analogs of genetic concepts such as DNA…

  12. Lacunary Fourier Series and a Qualitative Uncertainty Principle for ...

    Indian Academy of Sciences (India)

    We define lacunary Fourier series on a compact connected semisimple Lie group . If f ∈ L 1 ( G ) has lacunary Fourier series and vanishes on a non empty open subset of , then we prove that vanishes identically. This result can be viewed as a qualitative uncertainty principle.

  13. Electrochemical Sensors for Clinic Analysis

    Directory of Open Access Journals (Sweden)

    Guang Li

    2008-03-01

    Full Text Available Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

  14. Preparation of an amide group-connected graphene-polyaniline nanofiber hybrid and its application in supercapacitors.

    Science.gov (United States)

    Jianhua, Liu; Junwei, An; Yecheng, Zhou; Yuxiao, Ma; Mengliu, Li; Mei, Yu; Songmei, Li

    2012-06-27

    Polyaniline (PANI) nanofiber is grafted onto graphene to obtain a novel graphene-polyaniline (GP) hybrid. Graphene is activated using SOCl2 and reacts with PANI to form an amide group that intimately connects graphene and PANI. The existence of the amide group and its anchoring effect in the GP hybrid are confirmed and characterized by SEM, TEM, FT-IR, Raman, XPS and quantum chemistry analyses. Electrochemical tests reveal that the GP hybrid has high capacitance performances of 579.8 and 361.9 F g(-1) at current densities of 0.3 and 1 A g(-1). These values indicate superiority to materials interacted by van der Waals force. Long-term charge/discharge tests at high current densities show that the GP hybrid preserves 96% of its initial capacitance, demonstrating good electrochemical stability. The improved electrochemical performance suggests promising application of the GP hybrid in high-performance supercapacitors.

  15. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Synergetic Fe substitution and carbon connection in LiMn1−xFexPO4/C cathode materials for enhanced electrochemical performances

    International Nuclear Information System (INIS)

    Yan, Su-Yuan; Wang, Cheng-Yang; Gu, Rong-Min; Sun, Shuai; Li, Ming-Wei

    2015-01-01

    Highlights: • LiMn 0.6 Fe 0.4 PO 4 /C cathode material shows enhanced rate capability. • The Fe doped in the partial Mn sites could significantly facilitate the Li ions transfer. • The enhanced Li + ions diffusion contributes to the optimized rate capability of LiMn 0.6 Fe 0.4 PO 4 . • ACM carbonization forms well carbon coating and a 3D carbon network structure. - Abstract: To enhance the rate and cyclic performances of LiMnPO 4 cathode material for lithium-ion batteries, Mn is partially substituted with Fe, and LiMn 1−x Fe x PO 4 (x = 0.2, 0.3, 0.4, 0.5) solid solutions are synthesized and investigated. Amphiphilic carbonaceous material (ACM) forms well carbon coating and connects the LiMn 1−x Fe x PO 4 crystallites by a three-dimensional (3D) carbon network. The synergetic Fe substitution and carbon connection obviously improve the samples’ rate capacities and cyclic stability. The optimized LiMn 0.6 Fe 0.4 PO 4 /C sample delivers discharge capacities of 160 mA h g −1 at 0.05 C, 148 mA h g −1 at 1 C, and 115 mA h g −1 at 20 C. All samples have well capacity retention (>92%) after 50 charge/discharge cycles at 1 C. The enhanced electrochemical properties are mainly attributed to the improvement of Li ion and electron transport in the LiMn 1−x Fe x PO 4 /C samples, respectively mainly resulting from their modified crystal structures caused by Fe substitution and the 3D carbon coating/connection originating from ACM carbonization. LiMn 1−x Fe x PO 4 materials exhibit two discharge plateaus at ∼4.0 and ∼3.5 V (vs. Li + /Li), whose heights respectively reflect the redox potentials of Mn 3+ /Mn 2+ and Fe 3+ /Fe 2+ couples. The plateaus’ lengths correspond to the Mn/Fe ratio in LiMn 1−x Fe x PO 4 and are affected by the kinetic behavior of samples. Though the ∼4.0 V plateau shrinks with increasing discharge rate, the ∼3.5 V plateau may slightly elongate. Moreover, the Fe substituted in the partial Mn sites could significantly improve

  17. Analysis of the thermal balance characteristics for multiple-connected piezoelectric transformers.

    Science.gov (United States)

    Park, Joung-Hu; Cho, Bo-Hyung; Choi, Sung-Jin; Lee, Sang-Min

    2009-08-01

    Because the amount of power that a piezoelectric transformer (PT) can handle is limited, multiple connections of PTs are necessary for the power-capacity improvement of PT-applications. In the connection, thermal imbalance between the PTs should be prevented to avoid the thermal runaway of each PT. The thermal balance of the multiple-connected PTs is dominantly affected by the electrothermal characteristics of individual PTs. In this paper, the thermal balance of both parallel-parallel and parallel-series connections are analyzed by electrical model parameters. For quantitative analysis, the thermal-balance effects are estimated by the simulation of the mechanical loss ratio between the PTs. The analysis results show that with PTs of similar characteristics, the parallel-series connection has better thermal balance characteristics due to the reduced mechanical loss of the higher temperature PT. For experimental verification of the analysis, a hardware-prototype test of a Cs-Lp type 40 W adapter system with radial-vibration mode PTs has been performed.

  18. Improved Electrochemical Performance of Biomass-Derived Nanoporous Carbon/Sulfur Composites Cathode for Lithium-Sulfur Batteries by Nitrogen Doping

    International Nuclear Information System (INIS)

    Geng, Zhen; Xiao, Qiangfeng; Wang, Dabin; Yi, Guanghai; Xu, Zhigang; Li, Bing; Zhang, Cunman

    2016-01-01

    A two-step method with high-efficiency is developed to prepare nitrogen doped activated carbons (NACs) with high surface area and nitrogen content. Based on the method, series of NACs with similar surface area and pore texture but different nitrogen content and nitrogen group species are successfully prepared. The influence of nitrogen doping on electrochemical performance of carbon/sulfur composites cathode is studied deeply under the conditions of similar surface area and pore texture. It presents the directly experimental demonstration that both nitrogen content and nitrogen group species play crucial roles on electrochemical performance of carbon/sulfur composites cathode. NAC/sulfur composites show the much improved cycling performance, which is about 3.5 times as that of nitrogen free carbon. Improved electrochemical performance is due to synergistic effects between nitrogen content and effective nitrogen groups, which enables effective trapping of lithium polysulfides within carbon framework. Besides, it is found that oxygen groups exist in carbon materials obviously influence electrochemical performance of cathode, which could be ignored in most of studies. Based on above, it can be concluded that enhanced chemisorption to lithium polysulfides by functional groups modification is the effective route to improve the electrochemical performance of Li-S battery.

  19. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sumi; Kim, Kyuwon [Incheon National University, Incheon (Korea, Republic of)

    2016-03-15

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  20. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Park, Sumi; Kim, Kyuwon

    2016-01-01

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  1. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide.

    Science.gov (United States)

    Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan

    2013-01-11

    A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.

  2. Energy matrices evaluation and exergoeconomic analysis of series connected N partially covered (glass to glass PV module) concentrated-photovoltaic thermal collector: At constant flow rate mode

    International Nuclear Information System (INIS)

    Tripathi, Rohit; Tiwari, G.N.; Dwivedi, V.K.

    2017-01-01

    Highlights: • Fluid, other than water has been chosen for achieving higher outlet temperature. • Mass flow rate and number of collector have been optimized. • Three PVT systems have been compared for evaluating annual energy and exergy. • Life cycle cost analysis has been evaluated to obtain exergetic cost. • Proposed PVT systems have been compared on the basis of energy matrices. - Abstract: In present analysis, a comparative study has been carried out to evaluate the annual performances of three systems or cases at constant flow rate, namely: case (i): partially covered (25% PV module) N concentrated photovoltaic thermal collectors connected in series, case (ii): fully covered (100% PV module) N concentrated photovoltaic thermal collectors in series and case (iii): N (0% PV module) convectional compound parabolic concentrator collector connected in series. Comparison for three cases has also been carried out by considering fluid namely: ethylene glycol for higher outlet temperature and better thermal performance which can be applicable for heating and steaming or small industry purpose. The embodied energy, energy matrices, uniform annual cost, exergetic cost and carbon credits are also evaluated for same systems. The energy payback time is found to be 5.58 years and energy production factor is to be 0.17 on energy basis for case (iii) which is maximum. The exergetic cost has computed as 17.85 Rs/kW h for 30 years of life time of the system. It is observed that N conventional compound parabolic concentrator collector [case (iii)] is most suitable for steam cooking or space heating but not self-sustainable to run the dc power motor due to unavailability of electrical power.

  3. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  4. An electrochemical procedure coupled with a Schiff base method; application to electroorganic synthesis of new nitrogen-containing heterocycles

    International Nuclear Information System (INIS)

    Dowlati, Bahram; Othman, Mohamed Rozali

    2013-01-01

    The synthesis of Nitrogen-containing heterocycles has been achieved using chemical and electrochemical methods, respectively. The direct chemical synthesis of nucleophiles proceeds through the Schiff base chemical reaction. This procedure offers an alternate reaction between dicarbonyl compounds and diamines leads to the formation of products. The results indicate that the Schiff base chemical method for synthesis of the product has successfully performed in excellent overall yield. In the electrochemical step, a series of Nitrogen-containing compounds were electrosynthesized. Various parameters such as the applied potential, pH of the electrolytic solution, cell configuration and also purification techniques, were carried out to optimize the yields of corresponding products. New Nitrogen-containing heterocycle derivatives were synthesized using an electrochemical procedure coupled with a Schiff base as a facile, efficient and practical method. The products have been characterized after purification by IR, 1 H NMR, 13 C NMR and ESI-MS 2

  5. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  6. Electrochemically fabricated polypyrrole-cobalt-oxygen coordination complex as high-performance lithium-storage materials.

    Science.gov (United States)

    Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan

    2011-12-23

    Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lab-on-a-disc platform for screening of genetically modified E. coli cells via cell-free electrochemical detection of p-Coumaric acid

    DEFF Research Database (Denmark)

    Sanger, Kuldeep; Zor, Kinga; Jendresen, Christian Bille

    2017-01-01

    filtration and electrochemical detection units, the sample filtration was performed by rotating the disc using a programmable closed-loop stepper motor. The electrodes, patterned on plastic substrate, were connected through a printed circuit board to the slip ring using a robust magnetic clamping system...

  8. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  9. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.

    Science.gov (United States)

    Li, Jianfeng; Lee, Eun-Cheol

    2015-09-15

    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Morphological reason for enhancement of electrochemical double layer capacitances of various acetylene blacks by electrochemical polarization

    International Nuclear Information System (INIS)

    Kim, Taegon; Ham, Chulho; Rhee, Choong Kyun; Yoon, Seong-Ho; Tsuji, Masaharu; Mochida, Isao

    2008-01-01

    Enhancement of electrochemical capacitance and morphological variations of various acetylene blacks caused by electrochemical polarization are presented. Acetylene blacks of different mean particle diameters were modified by air-oxidation and heat treatment to diversify the morphologies of the acetylene blacks before electrochemical polarization. The various acetylene blacks were electrochemically oxidized at 1.6 V (vs. Ag/AgCl) for 10 s and the polarization step was repeated until the capacitance values did not change any longer. These polarization steps enhanced the capacitances of the acetylene blacks and the specific enhancement factors range from 2 to 5.5. Such an enhancement is strongly related to morphological modification as revealed by transmission electron microscopic observations. The electrochemical polarization resulted in formation of tiny graphene sheets on the wide graphitic carbon surfaces, which were most responsible for the observed capacitive enhancement. Although the pseudo-capacitance increased after polarization by forming oxygenated species on the surfaces, its contribution to the total capacitance was less than 10%. The mechanism of the formation of the tiny graphene sheets during the electrochemical oxidation is described schematically

  11. Global distribution of grid connected electrical energy storage systems

    Directory of Open Access Journals (Sweden)

    Katja Buss

    2016-06-01

    Full Text Available This article gives an overview of grid connected electrical energy storage systems worldwide, based on public available data. Technologies considered in this study are pumped hydroelectric energy storage (PHES, compressed air energy storage (CAES, sodium-sulfur batteries (NaS, lead-acid batteries, redox-flow batteries, nickel-cadmium batteries (NiCd and lithium-ion batteries. As the research indicates, the worldwide installed capacity of grid connected electrical energy storage systems is approximately 154 GW. This corresponds to a share of 5.5 % of the worldwide installed generation capacity. Furthermore, the article gives an overview of the historical development of installed and used storage systems worldwide. Subsequently, the focus is on each considered technology concerning the current storage size, number of plants and location. In summary it can be stated, PHES is the most commonly used technology worldwide, whereas electrochemical technologies are increasingly gaining in importance. Regarding the distribution of grid connected storage systems reveals the share of installed storage capacity is in Europe and Eastern Asia twice as high as in North America.

  12. Monitoring dynamic electrochemical processes with in situ ptychography

    Science.gov (United States)

    Kourousias, George; Bozzini, Benedetto; Jones, Michael W. M.; Van Riessen, Grant A.; Dal Zilio, Simone; Billè, Fulvio; Kiskinova, Maya; Gianoncelli, Alessandra

    2018-03-01

    The present work reports novel soft X-ray Fresnel CDI ptychography results, demonstrating the potential of this method for dynamic in situ studies. Specifically, in situ ptychography experiments explored the electrochemical fabrication of Co-doped Mn-oxide/polypyrrole nanocomposites for sustainable and cost-effective fuel-cell air-electrodes. Oxygen-reduction catalysts based on Mn-oxides exhibit relatively high activity, but poor durability: doping with Co has been shown to improve both reduction rate and stability. In this study, we examine the chemical state distribution of the catalytically crucial Co dopant to elucidate details of the Co dopant incorporation into the Mn/polymer matrix. The measurements were performed using a custom-made three-electrode thin-layer microcell, developed at the TwinMic beamline of Elettra Synchrotron during a series of experiments that were continued at the SXRI beamline of the Australian Synchrotron. Our time-resolved ptychography-based investigation was carried out in situ after two representative growth steps, controlled by electrochemical bias. In addition to the observation of morphological changes, we retrieved the spectroscopic information, provided by multiple ptychographic energy scans across Co L3-edge, shedding light on the doping mechanism and demonstrating a general approach for the molecular-level investigation complex multimaterial electrodeposition processes.

  13. Electrochemical migration of tin in electronics and microstructure of the dendrites

    Energy Technology Data Exchange (ETDEWEB)

    Minzari, Daniel, E-mail: dmin@mek.dtu.d [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark); Grumsen, Flemming Bjerg; Jellesen, Morten S.; Moller, Per; Ambat, Rajan [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark)

    2011-05-15

    Graphical abstract: The electrochemical migration of tin in electronics forms dendritic structures, consisting of a metallic tin core, which is surrounded by oxide layers having various thickness. Display Omitted Research highlights: Electrochemical migration occurs if two conductors are connected by condensed moisture. Metallic ions are dissolved and grow in a dendritic structure that short circuit the electrodes. The dendrite consists of a metallic tin core with oxide layers of various thickness surrounding. Detailed microstructure of dendrites is investigated using electron microscopy. The dendrite microstructure is heterogeneous along the growth direction. - Abstract: The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb ({approx}2 wt.%) was investigated by scanning electron microscopy and transmission electron microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12 V potential bias in 10 ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic particles embedded in the structure. At certain areas, the dendrite structure was found to be surrounded by an oxide crust, which is believed to be due to unstable growth conditions during the dendrite formation. The oxide layer was found to be of nanocrystalline structure, which is expected to be formed by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.

  14. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.

    Science.gov (United States)

    Manohar, Aswin K; Bretschger, Orianna; Nealson, Kenneth H; Mansfeld, Florian

    2008-04-01

    Electrochemical impedance spectroscopy (EIS) has been used to determine several electrochemical properties of the anode and cathode of a mediator-less microbial fuel cell (MFC) under different operational conditions. These operational conditions included a system with and without the bacterial catalyst and EIS measurements at the open-circuit potential of the anode and the cathode or at an applied cell voltage. In all cases the impedance spectra followed a simple one-time-constant model (OTCM) in which the solution resistance is in series with a parallel combination of the polarization resistance and the electrode capacitance. Analysis of the impedance spectra showed that addition of Shewanella oneidensis MR-1 to a solution of buffer and lactate greatly increased the rate of the lactate oxidation at the anode under open-circuit conditions. The large decrease of open-circuit potential of the anode increased the cell voltage of the MFC and its power output. Measurements of impedance spectra for the MFC at different cell voltages resulted in determining the internal resistance (R(int)) of the MFC and it was found that R(int) is a function of cell voltage. Additionally, R(int) was equal to R(ext) at the cell voltage corresponding to maximum power, where R(ext) is the external resistance that must be applied across the circuit to obtain the maximum power output.

  15. Music Generated by a Zn/Cu Electrochemical Cell, a Lemon Cell, and a Solar Cell: A Demonstration for General Chemistry

    Science.gov (United States)

    Cady, Susan G.

    2014-01-01

    The circuit board found in a commercial musical greeting card is used to supply music for electrochemical cell demonstrations. Similar to a voltmeter, the "modified" musical device is connected to a chemical reaction that produces electricity. The commercial 1 V battery inside the greeting card circuit board can be replaced with an…

  16. Assessing ionospheric activity by long time series of GNSS signals: the search of possible connection with seismicity

    Science.gov (United States)

    Galeandro, Angelo; Mancini, Francesco; De Giglio, Michaela; Barbarella, Maurizio

    2014-05-01

    The modifications of some atmospheric physical properties prior to a high magnitude earthquake were recently debated in the frame of the Lithosphere-Atmosphere-Ionosphere (LAI) Coupling model. Among this variety of phenomena, the ionization of air at the ionospheric levels due to leaking of gases from earth crust through the analysis of long time series of GNSS (Global Navigation Satellite System) signals was investigated in this work. Several authors used the dispersive properties of the ionospheric strata towards the GNSS signals to detect possible ionospheric anomalies over areas affected by earthquakes and some evidences were encountered. However, the spatial scale and temporal domains over which such disturbances come into evidence is still a controversial item. Furthermore, the correspondence by chance between ionospheric disturbances and relevant seismic activity is even more difficult to model whenever the reference time period and spatial extent of investigation are confined. Problems could also arise from phenomena due to solar activity (now at culmination within the 11 years-long solar cycle) because such global effects could reduce the ability to detect disturbances at regional or local spatial scale. In this work, two case studies were investigated. The first one focuses on the M = 6.3 earthquake occurred on April 6, 2009, close to the city of L'Aquila (Abruzzo, Italy). The second concerns the M = 5.9 earthquake occurred on May 20, 2012, between the cities of Ferrara and Modena (Emilia Romagna, Italy). To investigate possible connections between the ionospheric activity and seismicity for such events, a five-year (2008-2012) long series of high resolution ionospheric maps was used. These maps were produced by authors from GNSS data collected by permanent stations uniformly distributed around the epicenters and allowed to assess the ionospheric activity through the analysis of the TEC (Total Electron Content). To avoid the influence of solar activity

  17. Validation method for determination of cholesterol in human urine with electrochemical sensors using gold electrodes

    Science.gov (United States)

    Riyanto, Laksono, Tomy Agung

    2017-12-01

    Electrochemical sensors for the determination of cholesterol with Au as a working electrode (Au) and its application to the analysis of urine have been done. The gold electrode was prepared using gold pure (99.99%), with size 1.0 mm by length and wide respectively, connected with silver wire using silver conductive paint. Validation methods have been investigated in the analysis of cholesterol in human urine using electrochemical sensors or cyclic voltammetry (CV) method. The effect of electrolyte and uric acid concentration has been determined to produce the optimum method. Validation method parameters for cholesterol analysis in human urine using CV are precision, recovery, linearity, limit of detection (LOD) and limit of quantification (LOQ). The result showed the correlation of concentration of cholesterol to anodic peak current is the coefficient determination of R2 = 0.916. The results of the validation method showed the precision, recovery, linearity, LOD, and LOQ are 1.2539%, 144.33%, 0.916, 1.49 × 10-1 mM and 4.96 × 10-1 mM, respectively. As a conclusion is Au electrode is a good electrode for electrochemical sensors to determination of cholesterol in human urine.

  18. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    Science.gov (United States)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  19. Electrochemical energy storage. Vol. 1. Fundamentals, aqueous storage batteries. Elektrochemische Energiespeicher. Bd. 1. Grundlagen, waessrige Akkumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F; Euler, K J

    1984-01-01

    Vol. 1 is a synthesis of electrochemical, battery-technical and energy industry aspects. The role of energy storage systems in the energy industry, e.g. in connection with a hydrogen technology, is discussed along with the thermodynamic, kinetic, materials-technical and process engineering fundamentals. ''Classic'' and new systems are described in full detail for the first time. Cyclisation and technical/economic criteria of selection are discussed. (orig./GG).

  20. On interrelations of recurrences and connectivity trends between stock indices

    Science.gov (United States)

    Goswami, B.; Ambika, G.; Marwan, N.; Kurths, J.

    2012-09-01

    Financial data has been extensively studied for correlations using Pearson's cross-correlation coefficient ρ as the point of departure. We employ an estimator based on recurrence plots - the correlation of probability of recurrence (CPR) - to analyze connections between nine stock indices spread worldwide. We suggest a slight modification of the CPR approach in order to get more robust results. We examine trends in CPR for an approximately 19-month window moved along the time series and compare them to trends in ρ. Binning CPR into three levels of connectedness (strong, moderate, and weak), we extract the trends in number of connections in each bin over time. We also look at the behavior of CPR during the dot-com bubble by shifting the time series to align their peaks. CPR mainly uncovers that the markets move in and out of periods of strong connectivity erratically, instead of moving monotonically towards increasing global connectivity. This is in contrast to ρ, which gives a picture of ever-increasing correlation. CPR also exhibits that time-shifted markets have high connectivity around the dot-com bubble of 2000. We use significance tests using twin surrogates to interpret all the measures estimated in the study.

  1. The Connection between Employee Basic Skills & Productivity. Workforce & Workplace Literacy Series.

    Science.gov (United States)

    BCEL Brief, 1993

    1993-01-01

    The experience of a number of specific local workplace programs indicates a definite connection between the provision of employee basic skills programs and increased worker productivity. One Tennessee company, for example, reports a 95 percent drop in costs resulting from worker mistakes and a doubling of worker productivity since the company…

  2. Kinetic mechanism for modeling of electrochemical reactions.

    Science.gov (United States)

    Cervenka, Petr; Hrdlička, Jiří; Přibyl, Michal; Snita, Dalimil

    2012-04-01

    We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination of electron donors D- and acceptors A+ on electrode surfaces. These mediators are continuously formed in the electrode matter by thermal fluctuations. The mediators D- and A+, chemically equivalent to the electrode metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic mechanism operates only with the surface concentrations of chemical reactants and local electric potentials, which facilitates the study of electrochemical systems with indefinable bulk.

  3. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  4. Verification test for an electric vehicle using capacitor-battery series connection for battery load levelling; Denchi no fuka heijunka no tame no kyapashita to denchi no chokuretsu setsuzoku hoshiki wo saiyoshita denki jidosha no jissho shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyaoka, K.; Takehara, J.; Kato, S. [Chugoku Electric Power Co. Inc., Hiroshima (Japan)

    1998-03-25

    For the prolongation of the distance that an electric vehicle (EV) can cover on a single charge and of the service life of the EV battery unit, a system is developed, in which the battery unit and the capacitor unit are connected in series for the levelling-off of battery peak loads, and the system is tested aboard a running real vehicle. Installed on the real vehicle is a battery unit that is a series connection of 20 12V-38Ah seal-type lead-acid batteries, each battery consisting of two cells connected in parallel. Driving the vehicle is a DC brushless motor capable of a maximum operation of 9000rpm. Also installed is a capacitor unit that is a parallel connection of 40 2.3V-1800F capacitors, each capacitor consisting of two capacitors connected in parallel. Findings are described below. In a 0-400m acceleration test, 22.5 seconds is recorded with the capacitor unit in operation, meaning an improvement of 0.7 seconds. The maximum speed remains unchanged at 110km/h, which agrees with the pre-calculated value. Although the battery peak load reduction rate in a 15-mode drive pattern marks 23%, the distances covered on a single charge in this drive pattern turn out to be almost the same whether the capacitor unit is in operation or not. 3 refs., 15 figs., 3 tabs.

  5. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  6. Fibroblastic connective tissue nevus: a rare cutaneous lesion analyzed in a series of 25 cases.

    Science.gov (United States)

    de Feraudy, Sébastien; Fletcher, Christopher D M

    2012-10-01

    Fibroblastic connective tissue nevus (FCTN) represents a rare and distinct benign cutaneous mesenchymal lesion of fibroblastic/myofibroblastic lineage, which broadens the spectrum of lesions presently recognized as connective tissue nevus. A series of 25 cases of FCTN has been analyzed to further characterize the clinicopathologic spectrum and immunohistochemical features of this entity. Sixteen patients were female (64%) and 9 were male (36%), with age at presentation ranging from 1.5 months to 58 years (median, 10 y). Most patients presented with a solitary, slowly growing, painless plaque-like or nodular skin lesion. Eleven cases (44%) arose on the trunk, 9 (36%) on the head and neck, and 5 (20%) on the limbs. The lesion was present for a median duration of 11.5 months (mean, 13.2 mo). Grossly, the lesions were tan-brown to tan-white, smooth, and firm. Their size ranged from 0.3 to 2.0 cm in greatest dimension (mean size, 0.67 cm; median, 0.6 cm). All tumors showed poor circumscription and were situated primarily in the reticular deep dermis, extending into the superficial subcutis in 13 cases (52%). The lesion was associated with papillomatous epidermis in 17 cases (70%) and the presence of adipose tissue in the reticular dermis in 14 cases (60.9%). All tumors were composed of a proliferation of bland intradermal fibroblastic/myofibroblastic cells with indistinct palely eosinophilic cytoplasm and tapering nuclei, with no significant cytologic atypia or pleomorphism, arranged in short-intersecting fascicles and entrapping appendages. No mitoses were identified. Immunostains showed positivity for CD34 in 20 of 23 cases (87%) and weak focal positivity for smooth muscle actin in 9 of 19 cases (47%). No case stained positively for desmin or S100 protein. Clinical follow-up was obtained for 14 patients (median duration, 4 y). No tumor recurred locally, even when surgical excision was incomplete. No lesion metastasized. FCTN occurs most commonly as a plaque on the

  7. Different strategies for the detection of bioagents using electrochemical and photoelectrochemical genosensors

    Science.gov (United States)

    Voccia, Diego; Bettazi, Francesca; Palchetti, Ilaria

    2015-10-01

    In recent years various kinds of biosensors for the detection of pathogens have been developed. A genosensor consists in the immobilization, onto the surface of a chosen transducer, of an oligonucleotide with a specific base sequence called capture probe. The complementary sequence (the analytical target, i.e. a specific sequence of the DNA/RNA of the pathogen) present in the sample is recognized and captured by the probe through the hybridization reaction. The evaluation of the extent of the hybridization allows one to confirm whether the sample contains the complementary sequence of the probe or not. Electrochemical transducers have received considerable attention in connection with the detection of DNA hybridization. Moreover, recently, with the emergence of novel photoelectrochemically active species and new detection schemes, photoelectrochemistry has resulted in substantial progress in its analytical performance for biosensing applications. In this paper, some examples of electrochemical genosensors for multiplexed pathogen detection are shown. Moreover, the preliminary experiments towards the development of a photoelectrochemical genosensor using a TiO2 - nanocrystal-modified ITO electrode are discussed.

  8. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  9. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  10. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  11. Cobalt-Doped Nickel Phosphite for High Performance of Electrochemical Energy Storage.

    Science.gov (United States)

    Li, Bing; Shi, Yuxin; Huang, Kesheng; Zhao, Mingming; Qiu, Jiaqing; Xue, Huaiguo; Pang, Huan

    2018-03-01

    Compared to single metallic Ni or Co phosphides, bimetallic Ni-Co phosphides own ameliorative properties, such as high electrical conductivity, remarkable rate capability, upper specific capacity, and excellent cycle performance. Here, a simple one-step solvothermal process is proposed for the synthesis of bouquet-like cobalt-doped nickel phosphite (Ni 11 (HPO 3 ) 8 (OH) 6 ), and the effect of the structure on the pseudocapacitive performance is investigated via a series of electrochemical measurements. It is found that when the cobalt content is low, the glycol/deionized water ratio is 1, and the reaction is under 200 °C for 20 h, the morphology of the sample is uniform and has the highest specific surface area. The cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 electrode presents a maximum specific capacitance of 714.8 F g -1 . More significantly, aqueous and solid-state flexible electrochemical energy storage devices are successfully assembled. The aqueous device shows a high energy density of 15.48 mWh cm -2 at the power density of 0.6 KW cm -2 . The solid-state device shows a high energy density of 14.72 mWh cm -2 at the power density of 0.6 KW cm -2 . These excellent performances confirm that the cobalt-doped Ni 11 (HPO 3 ) 8 (OH) 6 are promising materials for applications in electrochemical energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors

    International Nuclear Information System (INIS)

    Lee, Hye-Min; Kwac, Lee-Ku; An, Kay-Hyeok; Park, Soo-Jin; Kim, Byung-Joo

    2016-01-01

    Highlights: • Electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. • Activated carbon fibers showed enhanced specific surface area from 1520 to 3230 m 2 /g. • The increase in the specific capacitance of the samples was determined by charged pore structure during charging and discharging. - Abstract: In the present study, electrode materials for electrochemical capacitors were developed using pitch-based activated carbon fibers with steam activation. The surface and structural characteristics of activated carbon fibers were observed using scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated using N 2 /77 K adsorption isotherms. The activated carbon fibers were applied as electrodes for electrical double-layer capacitors and analyzed in relation to the activation time. The specific surface area and total pore volume of the activated carbon fibers were determined to be 1520–3230 m 2 /g and 0.61–1.87 cm 3 /g, respectively. In addition, when the electrochemical characteristics were analyzed, the specific capacitance was confirmed to have increased from 1.1 F/g to 22.5 F/g. From these results, it is clear that the pore characteristics of pitch-based activated carbon fibers changed considerably in relation to steam activation and charge/discharge cycle; therefore, it was possible to improve the electrochemical characteristics of the activated carbon fibers.

  13. The hydraulic connectivity, perennial warming and relationship to seismicity of the Davis-Schrimpf Seep Field, Salton Trough, California from new and recent temperature time-series

    Science.gov (United States)

    Rao, Amar P.

    The Davis-Schrimpf Seep Field is a cluster of about 50 transtension-related geothermal seeps in the Imperial Valley, southeastern California. Five temperature time-series were collected from four features and compared to one another, against prior time-series, and to local seismicity. Loggers placed in separate vents within one seep returned moderate anti-correlation. Vents may selectively clog and unclog. Clogging frequencies explaining the observed level of negative correlation were given. Loggers placed in the same vent produced 87-92% positive correlation. It is therefore likely that the vast majority of temperature data measured with loggers possesses meaningful accuracy. Loggers placed in separate seeps exhibited correlation close to or greater than the statistically significant 60% threshold. I propose two lineaments provide a hydraulic connection between these seeps. Two Mw>3.0 earthquake swarms, including one Mw>4.0 event, within 24 kilometers showed possible linkage with >5 degree Celsius temperature perturbations. Seepage warmed 14.5-36.8 degrees Celsius over 5-7 years.

  14. Damping Inter-area Oscillations using Static Synchronous Series Compensator (SSSC)

    DEFF Research Database (Denmark)

    Su, Chi; Chen, Zhe

    2011-01-01

    Static synchronous series compensator (SSSC) has the ability to emulate a reactance in series with the connected transmission line. When fed with some supplementary signals from the connected system, SSSC is able to participate in the power system inter-area oscillation damping by changing...... the compensated reactance. This paper analyses the influence of SSSC on power system small signal stability. A SSSC damping controller scheme is presented and discussed. In DIgSILENT PowerFactory software, modal analysis and time-domain simulation are conducted in a single-machine infinite bus system model...... and a four-machine two-area test system model to verify and improve the damping controller scheme....

  15. Electrochemical ion separation in molten salts

    Science.gov (United States)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  16. One-step electrochemical synthesis and photoelectric conversion of a ZnO/Se/RGO composite

    International Nuclear Information System (INIS)

    Wang, Lei; Zhang, Chunyan; Zhang, Shengyi; Niu, Helin; Song, Jiming; Mao, Changjie; Jin, Baokang; Tian, Yupeng

    2015-01-01

    Using Zn(NO 3 ) 2 , H 2 SeO 3 and graphene oxide as precursors, the zinc oxide/selenium/reduced graphene oxide (ZnO/Se/RGO) composite was facilely electrodeposited on the surface of indium tin oxide glass. The conditions for electrochemical synthesis such as electrodeposition potential and electrolyte composition were studied. The morphology and crystallization of the products as-prepared were characterized using scanning electron microscopy (SEM) and x-ray diffractometry (XRD) respectively. The light absorption and conductivity of the products were studied by UV-visible spectroscopy (UV-vis) and electrochemical impedance spectroscopy (EIS). Based on a series of experimental results, the photoelectrical conversion mechanism and effect factors of the products were explored. By means of synergistic action of n-type ZnO, p-type Se and conductive RGO, the ZnO/Se/RGO composite showed excellent photoelectric conversion under visible light irradiation. (paper)

  17. Static inelastic analysis of steel frames with flexible connections

    Directory of Open Access Journals (Sweden)

    Nefovska-Danilović M.

    2004-01-01

    Full Text Available The effects of connection flexibility and material yielding on the behavior of plane steel frames subjected to static (monotonic loads are presented in this paper. Two types of material nonlinearities are considered: flexible nodal connections and material yielding, as well as geometric nonlinearity of the structure. To account for material yielding, a plastic hinge concept is adopted. A flexible connection is idealized by nonlinear rotational spring. Plastic hinge is also idealized by nonlinear rotational spring attached in series with the rotational spring that accounts for connection flexibility. The stiffness matrix for the beam with flexible connections and plastic hinges at its ends is obtained. To illustrate the validity and accuracy of the proposed numerical model, several examples have been conducted.

  18. Power Quality Improvement Using an Enhanced Network-Side-Shunt-Connected Dynamic Voltage Restorer

    Science.gov (United States)

    Fereidouni, Alireza; Masoum, Mohammad A. S.; Moghbel, Moayed

    2015-10-01

    Among the four basic dynamic voltage restorer (DVR) topologies, the network-side shunt-connected DVR (NSSC-DVR) has a relatively poor performance and is investigated in this paper. A new configuration is proposed and implemented for NSSC-DVR to enhance its performance in compensating (un)symmetrical deep and long voltage sags and mitigate voltage harmonics. The enhanced NSSC-DVR model includes a three-phase half-bridge semi-controlled network-side-shunt-connected rectifier and a three-phase full-bridge series-connected inverter implemented with a back-to-back configuration through a bidirectional buck-boost converter. The network-side-shunt-connected rectifier is employed to inject/draw the required energy by NSSC-DVR to restore the load voltage to its pre-fault value under sag/swell conditions. The buck-boost converter is responsible for maintaining the DC-link voltage of the series-connected inverter at its designated value in order to improve the NSSC-DVR capability in compensating deep and long voltage sags/swells. The full-bridge series-connected inverter permits to compensate unbalance voltage sags containing zero-sequence component. The harmonic compensation of the load voltage is achieved by extracting harmonics from the distorted network voltage using an artificial neural network (ANN) method called adaptive linear neuron (Adaline) strategy. Detailed simulations are performed by SIMULINK/MATLAB software for six case studies to verify the highly robustness of the proposed NSSC-DVR model under various conditions.

  19. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    Science.gov (United States)

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. Copyright © 2016. Published by Elsevier B.V.

  20. An integrated electrochemical device based on immunochromatographic test strip and enzyme labels for sensitive detection of disease-related biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhexiang; Wang, Jun; Wang, Hua; Li, Yao Q.; Lin, Yuehe

    2012-05-30

    A novel electrochemical biosensing device that integrates an immunochromatographic test strip and a screen-printed electrode (SPE) connected to a portable electrochemical analyzer was presented for rapid, sensitive, and quantitative detection of disease-related biomarker in human blood samples. The principle of the sensor is based on sandwich immunoreactions between a biomarker and a pair of its antibodies on the test strip, followed by highly sensitive square-wave voltammetry (SWV) detection. Horseradish peroxidase (HRP) was used as a signal reporter for electrochemical readout. Hepatitis B surface antigen (HBsAg) was employed as a model protein biomarker to demonstrate the analytical performance of the sensor in this study. Some critical parameters governing the performance of the sensor were investigated in detail. The sensor was further utilized to detect HBsAg in human plasma with an average recovery of 91.3%. In comparison, a colorimetric immunochromatographic test strip assay (ITSA) was also conducted. The result shows that the SWV detection in the electrochemical sensor is much more sensitive for the quantitative determination of HBsAg than the colorimetric detection, indicating that such a sensor is a promising platform for rapid and sensitive point-of-care testing/screening of disease-related biomarkers in a large population

  1. Context-Aware Writing Support for SNS: Connecting Formal and Informal Learning

    Science.gov (United States)

    Waragai, Ikumi; Kurabayashi, Shuichi; Ohta, Tatsuya; Raindl, Marco; Kiyoki, Yasushi; Tokuda, Hideyuki

    2014-01-01

    This paper presents another stage in a series of research efforts by the authors to develop an experience-connected mobile language learning environment, bridging formal and informal learning. Building on a study in which the authors tried to connect classroom learning (of German in Japan) with learners' real life experiences abroad by having…

  2. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Rivas, G.; Ozsoz, M.; Grant, D.H.; Cai, X.; Parrado, C. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-04-01

    An electrochemical biosensor protocol for the detection of radiation-induced DNA damage is described. The procedure employs a dsDNA-coated screen-printed electrode and relies on changes in the guanine-DNA oxidation signal upon exposure to ultraviolet radiation. The decreased signal is ascribed primarily to conformational changes in the DNA and to the photoconversion of the guanine-DNA moiety to a nonelectroactive monomeric base product. Factors influencing the response of these microfabricated DNA sensors, such as irradiation time, wavelength, and distance, are explored, and future prospects are discussed. Similar results are given for the use of bare strip electrodes in connection with irradiated DNA solutions. 8 refs., 4 figs.

  3. Electrochemical synthesis of nanosized hydroxyapatite by pulsed direct current method

    Energy Technology Data Exchange (ETDEWEB)

    Nur, Adrian; Rahmawati, Alifah; Ilmi, Noor Izzati; Affandi, Samsudin; Widjaja, Arief [Departement of Chemical Engineering, Faculty of Industrial Technology, Sepuluh Nopember Institute of Technology, Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2014-02-24

    Synthesis of nanosized of hydroxyapatite (HA) by electrochemical pulsed direct current (PDC) method has been studied. The aim of this work is to study the influence of various PDC parameters (pH initial, electrode distance, duty cycle, frequency, and amplitude) on particle surface area of HA powders. The electrochemical synthesis was prepared in solution Ca{sup 2+}/EDTA{sup 4−}/PO{sub 4}{sup 3+} at concentration 0.25/0.25/0.15 M for 24 h. The electrochemical cell was consisted of two carbon rectangular electrodes connected to a function generator to produce PDC. There were two treatments for particles after electrosynthesized, namely without aging and aged for 2 days at 40 °C. For both cases, the particles were filtered and washed by demineralized water to eliminate the impurities and unreacted reactants. Then, the particles were dried at 100 °C for 2 days. The dried particles were characterized by X-ray diffraction, surface area analyzer, scanning electron microscopy (SEM), Fourier transform infrared spectra and thermogravimetric and differential thermal analysis. HA particles can be produced when the initial pH > 6. The aging process has significant effect on the produced HA particles. SEM images of HA particles showed that the powders consisted of agglomerates composed of fine crystallites and have morphology plate-like and sphere. The surface area of HA particles is in the range of 25 – 91 m{sup 2}/g. The largest particle surface area of HA was produced at 4 cm electrode distance, 80% cycle duty, frequency 0.1 Hz, amplitude 9 V and with aging process.

  4. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  5. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment...... catalysts based on this. Suited for upper-level high school and first-year university students, this exercise involves using a basic two-cell electrochemical setup to test multiple electrode materials as catalysts at one applied potential, and then constructing a volcano curve with the resulting currents...

  6. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  7. Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.

    Science.gov (United States)

    Zhang, Sheng; Li, Chiang-Shan R

    2017-11-01

    As a key structure to relay and integrate information, the thalamus supports multiple cognitive and affective functions through the connectivity between its subnuclei and cortical and subcortical regions. Although extant studies have largely described thalamic regional functions in anatomical terms, evidence accumulates to suggest a more complex picture of subareal activities and connectivities of the thalamus. In this study, we aimed to parcellate the thalamus and examine whole-brain connectivity of its functional clusters. With resting state functional magnetic resonance imaging data from 96 adults, we used independent component analysis (ICA) to parcellate the thalamus into 10 components. On the basis of the independence assumption, ICA helps to identify how subclusters overlap spatially. Whole brain functional connectivity of each subdivision was computed for independent component's time course (ICtc), which is a unique time series to represent an IC. For comparison, we computed seed-region-based functional connectivity using the averaged time course across all voxels within a thalamic subdivision. The results showed that, at p analysis, ICtc analysis revealed patterns of connectivity that were more distinguished between thalamic clusters. ICtc analysis demonstrated thalamic connectivity to the primary motor cortex, which has eluded the analysis as well as previous studies based on averaged time series, and clarified thalamic connectivity to the hippocampus, caudate nucleus, and precuneus. The new findings elucidate functional organization of the thalamus and suggest that ICA clustering in combination with ICtc rather than seed-region analysis better distinguishes whole-brain connectivities among functional clusters of a brain region.

  8. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  9. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    Science.gov (United States)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  10. Conditionals and inferential connections: A hypothetical inferential theory.

    Science.gov (United States)

    Douven, Igor; Elqayam, Shira; Singmann, Henrik; van Wijnbergen-Huitink, Janneke

    2018-03-01

    Intuition suggests that for a conditional to be evaluated as true, there must be some kind of connection between its component clauses. In this paper, we formulate and test a new psychological theory to account for this intuition. We combined previous semantic and psychological theorizing to propose that the key to the intuition is a relevance-driven, satisficing-bounded inferential connection between antecedent and consequent. To test our theory, we created a novel experimental paradigm in which participants were presented with a soritical series of objects, notably colored patches (Experiments 1 and 4) and spheres (Experiment 2), or both (Experiment 3), and were asked to evaluate related conditionals embodying non-causal inferential connections (such as "If patch number 5 is blue, then so is patch number 4"). All four experiments displayed a unique response pattern, in which (largely determinate) responses were sensitive to parameters determining inference strength, as well as to consequent position in the series, in a way analogous to belief bias. Experiment 3 showed that this guaranteed relevance can be suppressed, with participants reverting to the defective conditional. Experiment 4 showed that this pattern can be partly explained by a measure of inference strength. This pattern supports our theory's "principle of relevant inference" and "principle of bounded inference," highlighting the dual processing characteristics of the inferential connection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Thermodynamics of irreversible electrochemical phenomena

    NARCIS (Netherlands)

    Groot, S.R. de; Mazur, P.; Tolhoek, H.A.

    1953-01-01

    A discussion from first principles is given of the energy and entropy laws in electrochemical systems. It is found that it is possible to clarify such controversial concepts as the form of the second law and the role of the electrochemical potential in the systems concerned.

  12. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    Science.gov (United States)

    Reichner, Philip; Dollard, Walter J.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  13. The concept of floating electrode for contact-less electrochemical measurements: Application to reinforcing steel-bar corrosion in concrete

    International Nuclear Information System (INIS)

    Keddam, M.; Novoa, X.R.; Vivier, V.

    2009-01-01

    The concept of floating electrode is introduced for defining the common electrochemical behaviour of any non-connected, electronically conducting, body immersed in an electrolytic medium. The emphasis is put on both its own polarisation features and its influence on the d.c. and a.c. current and potential across the cell, hence the feasibility, among others, of contact-less electrochemical measurements on floating electrodes. Application to reinforcing steel bars in concrete is investigated by numerical computation of the a.c. current and potential fields in a broad range of concrete resistivity, interfacial resistance and capacitance. Impedance defined in a 4-electrode configuration, when rationalised against the concrete resistivity, is shown to provide, within a realistic range of parameters, a practical mean to access the properties of the bar-concrete interface.

  14. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    Science.gov (United States)

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  15. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  16. Electrical modeling of semiconductor bridge (SCB) BNCP detonators with electrochemical capacitor firing sets

    Energy Technology Data Exchange (ETDEWEB)

    Marx, K.D. [Sandia National Labs., Livermore, CA (United States); Ingersoll, D.; Bickes, R.W. Jr. [Sandia National Labs., Albuquerque, NM (United States)

    1998-11-01

    In this paper the authors describe computer models that simulate the electrical characteristics and hence, the firing characteristics and performance of a semiconductor bridge (SCB) detonator for the initiation of BNCP [tetraammine-cis-bis (5-nitro-2H-tetrazolato-N{sup 2}) cobalt(III) perchlorate]. The electrical data and resultant models provide new insights into the fundamental behavior of SCB detonators, particularly with respect to the initiation mechanism and the interaction of the explosive powder with the SCB. One model developed, the Thermal Feedback Model, considers the total energy budget for the system, including the time evolution of the energy delivered to the powder by the electrical circuit, as well as that released by the ignition and subsequent chemical reaction of the powder. The authors also present data obtained using a new low-voltage firing set which employed an advanced electrochemical capacitor having a nominal capacitance of 350,000 {micro}F at 9 V, the maximum voltage rating for this particular device. A model for this firing set and detonator was developed by making measurements of the intrinsic capacitance and equivalent series resistance (ESR < 10 m{Omega}) of a single device. This model was then used to predict the behavior of BNCP SCB detonators fired alone, as well as in a multishot, parallel-string configuration using a firing set composed of either a single 9 V electrochemical capacitor or two of the capacitors wired in series and charged to 18 V.

  17. Decomposing series-parallel graphs into paths of length 3 and triangles

    DEFF Research Database (Denmark)

    Merker, Martin

    2015-01-01

    An old conjecture by Jünger, Reinelt and Pulleyblank states that every 2-edge-connected planar graph can be decomposed into paths of length 3 and triangles, provided its size is divisible by 3. We prove the conjecture for a class of planar graphs including all 2-edge-connected series-parallel gra...

  18. Electrochemical impedance spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Tiddia, Maria V. [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d' Armi, 09126 Cagliari (Italy)

    2014-04-01

    We present a study of the electrochemical oxidation process of porous silicon. We analyze the effect of the layer thickness (1.25–22 μm) and of the applied current density (1.1–11.1 mA/cm{sup 2}, values calculated with reference to the external samples surface) on the oxidation process by comparing the galvanostatic electrochemical impedance spectroscopy (EIS) measurements and the optical specular reflectivity of the samples. The results of EIS were interpreted using an equivalent circuit to separate the contribution of different sample parts. A different behavior of the electrochemical oxidation process has been found for thin and thick samples: whereas for thin samples the oxidation process is univocally related to current density and thickness, for thicker samples this is no more true. Measurements by Energy Dispersive Spectroscopy using a Scanning Electron Microscopy confirmed that the inhomogeneity of the electrochemical oxidation process is increased by higher thicknesses and higher currents. A possible explanation is proposed to justify the different behavior of thin and thick samples during the electrochemical process. - Highlights: • A multidisciplinary approach on porous Si electrochemical oxidation is proposed. • Electrochemical, optical, and structural characterizations are used. • Layer thickness and oxidation current effects are shown. • An explanation of the observed behavior is proposed.

  19. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  20. The research of SSR which can be restrained by photovoltaic grid connected

    Science.gov (United States)

    Li, Kuan; Liu, Meng; Zheng, Wei; Li, Yudun; Wang, Xin

    2018-02-01

    Utilization of photovoltaic power generation has attracted considerable attention, and it is growing rapidly due to its environmental benefits. The series capacitive compensation is needed to be introduced into the lines which could improve the transmission capacity. However, the series capacitive compensation may lead to sub-synchronous resonance(SSR). This paper proposes a method to restrain the SSR based on photovoltaic grid connected which is caused by series capacitive compensation. Sub-synchronous oscillation damping controller (SSDC) is designed based on complex torque coefficient approach, and the SSDC is added to the PV power station’s main controller to damp SSR. IEEE Second benchmark model is used as simulation model based on PSCAD/EMTDC. The results show that the designed SSDC could restrain SSR and improve stability in PV grid connected effectively.

  1. Charging system and method for multicell storage batteries

    Science.gov (United States)

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  2. An Electrochemical Method to Predict Corrosion Rates in Soils

    Energy Technology Data Exchange (ETDEWEB)

    Dafter, M. R. [Hunter Water Australia Pty Ltd, Newcastle (Australia)

    2016-10-15

    Linear polarization resistance (LPR) testing of soils has been used extensively by a number of water utilities across Australia for many years now to determine the condition of buried ferrous water mains. The LPR test itself is a relatively simple, inexpensive test that serves as a substitute for actual exhumation and physical inspection of buried water mains to determine corrosion losses. LPR testing results (and the corresponding pit depth estimates) in combination with proprietary pipe failure algorithms can provide a useful predictive tool in determining the current and future conditions of an asset{sup 1)}. A number of LPR tests have been developed on soil by various researchers over the years{sup 1)}, but few have gained widespread commercial use, partly due to the difficulty in replicating the results. This author developed an electrochemical cell that was suitable for LPR soil testing and utilized this cell to test a series of soil samples obtained through an extensive program of field exhumations. The objective of this testing was to examine the relationship between short-term electrochemical testing and long-term in-situ corrosion of buried water mains, utilizing an LPR test that could be robustly replicated. Forty-one soil samples and related corrosion data were obtained from ad hoc condition assessments of buried water mains located throughout the Hunter region of New South Wales, Australia. Each sample was subjected to the electrochemical test developed by the author, and the resulting polarization data were compared with long-term pitting data obtained from each water main. The results of this testing program enabled the author to undertake a comprehensive review of the LPR technique as it is applied to soils and to examine whether correlations can be made between LPR testing results and long-term field corrosion.

  3. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    Science.gov (United States)

    Rodriquez, Branelle; Anderson, Molly; Adams, Niklas; Vega, Leticia; Botkin, Douglas

    2013-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle Program, there is a need to develop redundant biocide systems that do not require regular up-mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that a wide variability exists with regards to efficacy in both concentration and exposure time of these disinfectants; therefore, baseline efficacy values were established. This paper describes a series of tests performed to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on the ISS.

  4. Corrosion-electrochemical behavior of metals in alkali solutions

    International Nuclear Information System (INIS)

    Levin, V.A.; Levina, E.Eh.

    1995-01-01

    Results of an investigation into corrosion-electrochemical behaviour of 12Kh18N10T, 10Kh17N13M2T, 08Kh21N6M2T and 15Kh25T steels, 06KhN28MDT and KhN78T alloys as well as NP-2 nickel in sodium, potassium and lithium hydroxide solutions at 95-180 deg C temperatures are considered. It is ascertained, that anode polarization curves of all metals irrespective of hydroxide nature, concentration, temperature, presence of chloride and chlorate additions, are of identic character. The movement of anode polarization curves in the direction of lower current of hydroxide type in NaOH-KOH-LiOH series, temperature and solution concentration reduction at other equal terms. 12 refs.; 6 figs

  5. Photoelectric conversion properties of electrochemically codeposited graphene oxide–ZnO nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiming; Wang, Dian; Li, Wenyou [School of Materials Science and Engineering, Tongji University, Shanghai, 201804 (China); He, Yunqiu, E-mail: heyunqiu@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai, 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai, 201804 (China)

    2015-11-05

    Graphene oxide (GO)–ZnO nanocomposite films were synthesized on Fluorine doped Tin Oxide (FTO) coated glasses by electrochemical codeposition. The films have a laminated architecture with GO and ZnO alternate layers arranged basically parallel to the substrate. The structures of the composites were characterized using XRD, FE-SEM, FT-IR, XPS, Raman, UV–visible, and electrochemical cyclic voltammetry analyses. The results showed that by increasing Zn:C ratio of the suspensions, there is a series of structural evolutions of the composites, and the percentages of the C–O bonds of GO in the composites decreased. The decreased C–O bonds of GO indicate an increase in the reduction degree of GO, with which its energy gap varies from 1.99 eV to 0.89 eV. Moreover, the energy levels of GO and ZnO in the composites were determined. The results of photoelectrochemical measurements of the films indicated the feasibility of using GO in photoelectric conversion as photoabsorbers. A preliminary study on the relationship between the changes in the photocurrent and the structure of the films has provided clues for further studies on improving the photoelectric conversion properties. - Highlights: • Graphene Oxide–ZnO nanocomposite films were obtained by electrochemical codeposition. • The structure of GO varies with the Zn:C ratio of the depositing suspensions. • The feasibility of using GO as photoabsorbers for photoelectric conversion was verified.

  6. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Science.gov (United States)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  7. Spectroscopic and electrochemical study of the polynuclear clusters of ruthenium acetate

    International Nuclear Information System (INIS)

    Cipriano, C.

    1989-01-01

    The chemistry of the trinuclear clusters (Ru 3 O (C H 3 CO 2 ) 4 L 3 ) where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multi site species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltamograms exhibited a series of four or five mono electronic waves ascribed to the successive Ru I V Ru I I I Ru I I I / Ru I I I Ru I I I Ru I I I / ... Ru I I Ru I I Ru I I redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru 3 O centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. (author)

  8. Electrochemical properties of ion implanted silicon

    International Nuclear Information System (INIS)

    Pham minh Tan.

    1979-11-01

    The electrochemical behaviour of ion implanted silicon in contact with hydrofluoric acid solution was investigated. It was shown that the implanted layer on silicon changes profoundly its electrochemical properties (photopotential, interface impedance, rest potential, corrosion, current-potential behaviour, anodic dissolution of silicon, redox reaction). These changes depend strongly on the implantation parameters such as ion dose, ion energy, thermal treatment and ion mass and are weakly dependent on the chemical nature of the implantation ion. The experimental results were evaluated and interpreted in terms of the semiconductor electrochemical concepts taking into account the interaction of energetic ions with the solid surface. The observed effects are thus attributed to the implantation induced damage of silicon lattice and can be used for profiling of the implanted layer and the electrochemical treatment of the silicon surface. (author)

  9. Graphene Nanosheets/Poly(3,4-ethylenedioxythiophene) Nanotubes Composite Materials for Electrochemical Biosensing Applications

    International Nuclear Information System (INIS)

    Huang, Tzu-Yen; Kung, Chung-Wei; Wang, Jen-Yuan; Lee, Min-Han; Chen, Lin-Chi; Chu, Chih-Wei; Ho, Kuo-Chuan

    2015-01-01

    Highlights: • Novel composite materials contain 2D rGO nanosheets and 1D PEDOT nanotubes. • 3D nanocomposite film effectively improved the sensitivity for analyte detection. • The rGO/PEDOT NTs film shows good catalytic activities toward hydrazine and H 2 O 2 . • The rGO/PEDOT NTs film also exhibits high selectivity from the interference test. -- Graphical abstract: Display Omitted -- Abstract: In this study, we developed the novel composite materials containing reduced graphene oxide (rGO) nanosheets and poly(3,4-ethylenedioxythiophene) nanotubes (PEDOT NTs) for electrochemical biosensing applications. Transmission electron microscopy, scanning electron microscopy and atomic force microscopy suggested that the rGO nanosheets cover the substrate uniformly, and the PEDOT NTs act as a conducting bridge to connect the rGO sheets. By combining the two materials, it's expected to enhance the conductivity of the film and improve the surface coverage. We applied the rGO/PEDOT NTs composite for electrochemical detection of hydrazine and hydrogen peroxide; noticeable improvements in electrochemical activity and reactivity were observed compared to those of the pristine rGO and PEDOT NTs electrodes. This may be attributed to the better surface coverage of the rGO/PEDOT NTs modified electrode with superior conductivity. Furthermore, interference tests indicate that the rGO/PEDOT NTs composite film exhibits high selectivity toward the analyte. The rGO/PEDOT NTs composite thus provides a potential platform for biosensing applications

  10. Fast Determination of Distribution-Connected PV Impacts Using a Variable Time-Step Quasi-Static Time-Series Approach: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Mather, Barry

    2017-08-24

    The increasing deployment of distribution-connected photovoltaic (DPV) systems requires utilities to complete complex interconnection studies. Relatively simple interconnection study methods worked well for low penetrations of photovoltaic systems, but more complicated quasi-static time-series (QSTS) analysis is required to make better interconnection decisions as DPV penetration levels increase. Tools and methods must be developed to support this. This paper presents a variable-time-step solver for QSTS analysis that significantly shortens the computational time and effort to complete a detailed analysis of the operation of a distribution circuit with many DPV systems. Specifically, it demonstrates that the proposed variable-time-step solver can reduce the required computational time by as much as 84% without introducing any important errors to metrics, such as the highest and lowest voltage occurring on the feeder, number of voltage regulator tap operations, and total amount of losses realized in the distribution circuit during a 1-yr period. Further improvement in computational speed is possible with the introduction of only modest errors in these metrics, such as a 91 percent reduction with less than 5 percent error when predicting voltage regulator operations.

  11. Electrochemical preparation of technetium hydroxyethylidene diphosphonate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Scott, R.B.

    1984-01-01

    This work describes the liquid chromatographic and electrochemical analysis of electrogenerated technetium hydroxyethylidene diphosphonate (HEDP) complexes, and studies the effectiveness of the resulting bone imaging agents. Anion exchange High Performance Liquid Chromatography is used to separate components, and γ emission is used as the detection mode. The reaction mixtures were prepared at a series of reduction potentials and pH values, at both carrier added and no carrier added technetium levels. The results indicate that all three parameters affect the final complex composition to varying degrees. By optimizing the conditions, a preparation was made which results in a high percentage of a Tc-HEDP complex thought to be a very good home imager. This component was isolated chromatographically and injected into female Sprague-Dawley rats. Comparisons were run on the uptake for seven tissue types at two incubation times. Mercury and Reticulated Vitreous Carbon were used as the working electrode materials, and it is shown how reduced technetium will significantly alter the electrode characteristics, where a conditioned electrode will produce different complexes from those produced at fresh electrode material. By employing coulometric analysis as the preparation was reduced, an n value of 4 was calculated for a particular complex. This procedure involved tracking the radioactive technetium species carefully to account for all electrons used in the system. Finally, an electrochemical detection method for HEDP was explored, utilizing the property of mercury complexation. Anodic sweep Differential Pulse Polarography gives an analytical signal for HEDP at +0.250 V vs Ag/AgCl

  12. Electrochemical Sensors Based on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Md. Aminur Rahman

    2009-03-01

    Full Text Available This review focuses on recent contributions in the development of the electrochemical sensors based on carbon nanotubes (CNTs. CNTs have unique mechanical and electronic properties, combined with chemical stability, and behave electrically as a metal or semiconductor, depending on their structure. For sensing applications, CNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used as electrodes modifier in electrochemical reactions, and easy protein immobilization with retention of its activity for potential biosensors. CNTs play an important role in the performance of electrochemical biosensors, immunosensors, and DNA biosensors. Various methods have been developed for the design of sensors using CNTs in recent years. Herein we summarize the applications of CNTs in the construction of electrochemical sensors and biosensors along with other nanomaterials and conducting polymers.

  13. Synthesis, characterization, magnetic and electrochemical properties of a new 3D hexa-copper-substituted germanotungstate

    International Nuclear Information System (INIS)

    Li, Yanzhou; Luo, Jie; Zhang, Yanting; Zhao, Junwei; Chen, Lijuan; Ma, Pengtao; Niu, Jingyang

    2013-01-01

    An inorganic–organic hybrid hexa-copper-substituted germanotungstate Na 2 [Cu(dap) 2 ] 2 [Cu(dap) 2 ] ([Cu 6 (H 2 O) 2 (dap) 2 ][B-α-GeW 9 O 34 ] 2 )·4H 2 O (1) (dap=1,2-diaminopropane) has been hydrothermally prepared and characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP–AES) analyses, IR spectra, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. 1 displays the six-connected 3D network with the long topological (O′Keefe) vertex symbol is 4·4·6 4 ·4·4·4·4·6 4 ·4·4·4·6 4 ·4·4·4 and the short vertex (Schläfli) symbol of 4 12 6 3 . Magnetic measurements indicate that there are the overall ferromagnetic exchange interactions in the belt-like hexa-Cu II cluster in 1. Furthermore, the electrochemical behavior and electrocatalysis of 1 modified carbon paste electrode (1-CPE) have been studied. The reductions of nitrite, bromate and hydrogen peroxide are principally mediated by the W VI -based wave. - Graphical abstract: A hexa-Cu II sandwiched germanotungstate has been synthesized and structurally characterized. The magnetic, solid-state electrochemical and electrocatalytic properties have been investigated. Display Omitted - Highlights: • Transition-metal substituted polyoxometalates. • Hexa-copper-substituted germanotungstate. • Six-connected 3D network. • Electrocatalytic reduction of nitrite, bromate and hydrogen peroxide

  14. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  15. Ion exchange and electrochemical evaluation of the microporous phosphate Li9Fe7(PO4)10

    International Nuclear Information System (INIS)

    Becht, Gregory A.; Vaughey, John T.; Britt, Robin L.; Eagle, Cassandra T.; Hwu, Shiou-Jyh

    2008-01-01

    A new lithium iron(III) phosphate, Li 9 Fe 7 (PO 4 ) 10 , has been synthesized and is currently under electrochemical evaluation as an anode material for rechargeable lithium-ion battery applications. The sample was prepared via the ion exchange reaction of Cs 5 K 4 Fe 7 (PO 4 ) 10 1 in the 1 M LiNO 3 solution under hydrothermal conditions at 200 deg. C. The fully Li + -exchanged sample Li 9 Fe 7 (PO 4 ) 10 2 cannot yet be synthesized by conventional high-temperature, solid-state methods. The parent compound 1 is a member of the Cs 9-x K x Fe 7 (PO 4 ) 10 series that was previously isolated from a high-temperature (750 deg. C) reaction employing the eutectic CsCl/KCl molten salt. The polycrystalline solid 1 was first prepared in a stoichiometric reaction via conventional solid-state method then followed by ion exchange giving rise to 2. Both compounds adopt three-dimensional structures that consist of orthogonally interconnected channels where electropositive ions reside. It has been demonstrated that the Cs 9-x K x Fe 7 (PO 4 ) 10 series possesses versatile ion exchange capabilities with all the monovalent alkali metal and silver cations due to its facile pathways for ion transport. 1 and 2 were subject to electrochemical analysis and preliminary results suggest that the latter can be considered as an anode material. Electrochemical results indicate that Li 9 Fe 7 (PO 4 ) 10 is reduced below 1 V (vs. Li) to most likely form a Fe(0)/Li 3 PO 4 composite material, which can subsequently be cycled reversibly at relatively low potential. An initial capacity of 250 mAh/g was measured, which is equivalent to the insertion of thirteen Li atoms per Li 9+x Fe 7 (PO 4 ) 10 (x = 13) during the charge/discharge process (Fe 2+ + 2e → Fe 0 ). Furthermore, 2 shows a lower reduction potential (0.9 V), by approximately 200 mV, and much better electrochemical reversibility than iron(III) phosphate, FePO 4 , highlighting the value of improving the ionic conductivity of the sample

  16. FLEXURAL CAPACITY OF THE PRECAST RC BEAM-COLUMN CONNECTION USING CFRP SHEET

    OpenAIRE

    Djamaluddin, Rudy; Rante, Harmonis; Irmawaty, Rita

    2016-01-01

    Precast concrete have advantages in quality and shorter construction time. The connection of a precast concrete structures is important for the successful construction. This paper presents an experimental investigation of the flexural capacity of the portal system beam-column connection of precast concrete using CFRP sheet. The study was conducted to develop a connection system using CFRP sheet on a precast concrete frame of a highway bridges. A series of specimens with parameter of CFRP shee...

  17. Alternative connections for the large MFTF-B solenoids

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    The MFTF-B central-cell solenoids are a set of twelve closely coupled, large superconducting magnets with similar but not exactly equal currents. Alternative methods of connecting them to their power supplies and dump resistors are investigated. The circuits are evaluated for operating conditions and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the current induced in coils that remain superconducting when one or more coils quench. The alternative connections include separate power supplies, combined power supplies, individual dump resistors, series dump resistors and combinations of these. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed in detail

  18. Thermal Capacitive Electrochemical Cycle on Carbon-Based Supercapacitor for Converting Low-grade Heat to Electricity

    Directory of Open Access Journals (Sweden)

    Xun Wang

    2017-11-01

    Full Text Available It is a great challenge to efficiently convert low-grade heat (<100°C to electricity. Currently available heat-to-current converters, such as thermoelectric generators, operating in a low-grade heat regime reach efficiencies no higher than a few percent (<3%. Herein, we illustrated a thermal capacitive electrochemical cycle (TCEC using electrochemical cell, where the connection to the hot or cold reservoirs alternates in a cyclic charging–heating–discharging–cooling mode to convert heat into electricity, which performs as an electrochemical heat engine. TCEC technology is a cost-effective method for exploiting the temperature-dependent electrostatic potential in an electric double layer (EDL at carbon electrode/electrolyte interfaces; it produces net electricity by altering the EDL thickness via heating and cooling. In this paper, TCEC on supercapacitor was confirmed on commercial supercapacitor, which showed a poor conversion efficiency. To improve the performance, we redesigned the cell by employing the pouch cell setup with activated carbon as electrode materials and homemade temperature controlling system, which boosted the efficiency from 0.5% of commercial supercapacitor to 3.05% when cycling between 10 and 65°C. A higher efficiency of 3.95% could be reached by using microwaved exfoliated graphene nanosheets (MEG and nitric acid-treated MEG, which could help in decreasing the energy loss caused by charge leakage.

  19. Electrochemical synthesis of gold nanoparticles onto indium tin oxide glass and application in biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yanling; Song Yan; Wang Yuan; Di Junwei, E-mail: djw@suda.edu.cn

    2011-07-29

    A simple one-step method for the electrochemical deposition of gold nanoparticles (GNPs) onto bare indium tin oxide film coated glass substrate without any template or surfactant was investigated. The effect of electrolysis conditions such as potential range, temperature, concentration and deposition cycles were examined. The connectivity of GNPs was analyzed by UV-Vis absorption spectroscopy and scanning electron microscopy. The nanoparticles were found to connect in pairs or to coalesce in larger numbers. The twin GNPs display a transverse and a longitudinal localized surface plasmon resonance (LSPR) band, which is similar to that of gold nanorods. The presence of longitudinal LSPR band correlates with high refractive index sensitivity. Conjugation of the twin-linked GNPs with albumin bovine serum-biotin was employed for the detection of streptavidin as a model based on the specific binding affinity in biotin/streptavidin pairs. The spectrophotometric sensor showed concentration-dependent binding for streptavidin.

  20. Advances in moment transfering dvw reinforced timber connections : analysis and experimental verification, Part 1

    NARCIS (Netherlands)

    Leijten, A.J.M.; Brandon, D.

    2013-01-01

    Considerable advances in the moment transferring capacity of timber connections are achieved by using densified veneer wood reinforcement and expanded tube fasteners. This study focuses on the rotational stiffness of two dvw reinforced connections joined in series by a steel plate in a splice and

  1. Digital front-end module (DFEM) series; Digital front end module (DFEM) series

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The digital front-end module (DFEM) is a module in which the processes ranging from the reception of digitally modulated radiofrequencies to the output of digital IF (Intermediate Frequency) signals or data streams are integrated. Beginning with a module for the MCNS (Multimedia Cable Network System) cable modem which was the first module in this business field approved by the Cable Labs, U.S., Toshiba has developed a series of DFEMs for various digital media for satellites, ground waves, and CATV (Cable Television) systems. The series is characterized by (1) the serialization of DFEMs compatible with various digital modulation techniques such as 8 PSK (Phase Shift Keying), OFDM (Orthogonal Frequency Division Multiplexing), and 256 QAM (Quadrature Amplitude Modulation), (2) easy connection with digital circuits thanks to the high shielding effect, and (3) the achievement of smaller size, higher performance, and lower power consumption. (translated by NEDO)

  2. Electrochemical performance of 3D porous Ni-Co oxide with electrochemically exfoliated graphene for asymmetric supercapacitor applications

    International Nuclear Information System (INIS)

    Kim, Dae Kyom; Hwang, Minsik; Ko, Dongjin; Kang, Jeongmin; Seong, Kwang-dong; Piao, Yuanzhe

    2017-01-01

    Graphical abstract: The paper reported the Ni-Co oxide/electrochemically exfoliated graphene nanocomposites with 3D porous nano-architectures (NC-EEG) using a simple low temperature solution method combined with a thermal annealing treatment. 3D porous architectures provide large surface areas and shorten electron diffusion pathways for high performance asymmetric supercapacitors. Display Omitted -- Highlights: •A simple low temperature solution method was used for preparing NC-EEG. •Graphene sheets were obtained by electrochemically exfoliation process. •A high capacity of NC-EEG in a three-electrode system, as high as 649 C g −1 , was recorded. •Asymmetric supercapacitor based on NC-EEG exhibited excellent energy density and power density. -- Abstract: Ni-Co oxide, one of the binary metal oxides, has many advantages for use in high-performance supercapacitor electrode materials due to its relatively high electronic conductivity and improved electrochemical performance. In this work, Ni-Co oxide/electrochemically exfoliated graphene nanocomposites (NC-EEG) are successfully synthesized using a simple low temperature solution method combined with a thermal annealing treatment. Graphene sheets are directly obtained by an electrochemical exfoliation process with graphite foil, which is very simple, environmentally friendly, and has a relatively short reaction time. This electrochemically exfoliated graphene (EEG) can improve the electrical conductivity of the Ni-Co oxide nanostructures. The as-prepared NC-EEG nanocomposites have 3D porous architectures that can provide large surface areas and shorten electron diffusion pathways. Electrochemical properties were performed by cyclic voltammetry and galvanostatic charge/discharge in a 6 M KOH electrolyte. The NC-EEG nanocomposites exhibited a high capacity value of 649 C g −1 at a current density of 1.0 A g −1 . The asymmetric supercapacitors, manufactured on the basis of NC-EEG nanocomposites as a positive

  3. Management of processes of electrochemical dimensional processing

    Science.gov (United States)

    Akhmetov, I. D.; Zakirova, A. R.; Sadykov, Z. B.

    2017-09-01

    In different industries a lot high-precision parts are produced from hard-processed scarce materials. Forming such details can only be acting during non-contact processing, or a minimum of effort, and doable by the use, for example, of electro-chemical processing. At the present stage of development of metal working processes are important management issues electrochemical machining and its automation. This article provides some indicators and factors of electrochemical machining process.

  4. A new ductile moment-resisting connection for precast concrete frames in seismic regions: An experimental investigation

    OpenAIRE

    Parastesh, H.; Hajirasouliha, I.; Ramezani, R.

    2014-01-01

    A new ductile moment-resisting beam–column connection is developed for precast reinforced concrete (RC) frames in high seismic zones. The proposed connection provides good structural integrity in the connections and can reduce construction time by eliminating the need for formworks and welding, and minimizing cast-in-place concrete volume. A series of cyclic loading tests were carried out on six full-scale interior and exterior precast connections and two monolithic connections, all designed ...

  5. Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2017-01-01

    community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power......Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial...... density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community...

  6. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  7. Generating series for GUE correlators

    Science.gov (United States)

    Dubrovin, Boris; Yang, Di

    2017-11-01

    We extend to the Toda lattice hierarchy the approach of Bertola et al. (Phys D Nonlinear Phenom 327:30-57, 2016; IMRN, 2016) to computation of logarithmic derivatives of tau-functions in terms of the so-called matrix resolvents of the corresponding difference Lax operator. As a particular application we obtain explicit generating series for connected GUE correlators. On this basis an efficient recursive procedure for computing the correlators in full genera is developed.

  8. Electrochemical properties of proton exchange membranes: the role of composition and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Holdcroft, S.; Beattie, P.D.; Basura, V.I.; Schmeisser, J.; Chuy, C.; Orfino, F.; Ding, J. [Simon Fraser Univ., Burnaby, BC (Canada). Dept. of Chemistry

    2001-06-01

    To measure electrochemical and proton conduction properties of a large variety of different polyelectrolyte membranes that possess a wide array of equivalent weights and water contents, a number of analytical techniques were employed and the results presented in this paper. At the electrocatalyst/polymer electrolyte interface, kinetic and mass transport parameters play an important role in fuel cell operation, the authors used microelectrodes to study the effects of temperature and pressure on the electrochemical reduction of oxygen at platinum/solid polymer electrolyte interfaces in solid polymer electrolytes under controlled humidity. Under conditions of controlled humidity and temperature, proton conductivity was measured transverse and normal to the membrane surface using an alternate current (a.c.) impedance spectroscopy. A wide array of membranes were investigated, including those based on sulfonated polystyrene-block-hydrogenated butadiene, polystyrenesulfonic acid grafted onto ethylenetetrafluoroethylene, sulfonated trifluorostyrene-copolymers, and a novel series of membranes where the internal biphasic morphology is controlled to yield materials with low water and high conductivity and prepared in house. Transmission electron microscopy and small angle X-ray scattering was used for the analysis of the microstructure of selected membranes. Modelling the scattered intensities was used to quantify aspects of the microstructure.

  9. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    International Nuclear Information System (INIS)

    Liu Ling; Zhao Yaomin; Jia Nengqin; Zhou Qin; Zhao Chongjun; Yan Manming; Jiang Zhiyu

    2006-01-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers

  10. Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Liu [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Yaomin, Zhao [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Nengqin, Jia [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Qin, Zhou [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Chongjun, Zhao [Photon Craft Project, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences and Japan Science and Technology Agency, Shanghai 201800 (China); Manming, Yan [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China); Zhiyu, Jiang [Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2006-05-01

    Electrochemically active Polypyrrole (PPy) nano-fiber array device was fabricated via electrochemical deposition method using aluminum anodic oxide (AAO) membrane as template. After alkaline treatment electrochemically active PPy nano-fiber lost electrochemical activity, and became electrochemically inactive PPy. The electronic properties of PPy nano-fiber array devices were measured by means of a simple method. It was found that for an indium-tin oxide/electrochemically inactive PPy nano-fiber device, the conductivity of nano-fiber increased with the increase of voltage applied on the two terminals of nano-fiber. The electrochemical inactive PPy nano-fiber might be used as a nano-fiber switching diode. Both Au/electrochemically active PPy and Au/electrochemically inactive PPy nano-fiber devices demonstrate rectifying behavior, and might have been used for further application as nano-rectifiers.

  11. Service water electrochemical monitoring development at Ontario Hydro

    International Nuclear Information System (INIS)

    Brennenstuhl, A.M.

    1994-01-01

    Ontario Hydro (OH) is currently investigating the feasibility of using electrochemical techniques for the corrosion monitoring of service water systems. To date all evaluations have been carried out in a field simulator. The studies include examining the effects of; system startup after periods of stagnation, sodium hypochlorite injection, and zebra mussel settlement on metallic surfaces. Carbon steel and Type 304L stainless steel have been evaluated. Electrochemical potential noise (EPN), electrochemical current noise (ECN) potential and coupling current were semi-continuously monitored over a period of up to one year. Data obtained from the electrochemical noise monitoring has given OH valuable insights into the mechanisms of degradation in service water systems. The high sensitivity of the electrochemical noise technique, particularly to localized corrosion has proved to be the major attraction of the system

  12. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  13. Electrochemical modification of carbon electrode with benzylphosphonic groups

    International Nuclear Information System (INIS)

    Benjamin, Ossonon Diby; Weissmann, Martin; Bélanger, Daniel

    2014-01-01

    Electrochemical modification of carbon electrodes by aryl groups bearing a phosphonate terminal functionality was carried out by both electrochemical reduction of diazonium ions (diazobenzylphosphonic acid) and electrochemical oxidation of an amine (aminobenzylphosphonic acid). The grafting by electrochemical reduction of aryl diazonium ions was found to be more efficient. The surface concentration of phosphonate groups, estimated by electrochemical reduction of electrostatically bound Pb(II) ions, was found to be about 25% higher for the layer formed by electrochemical reduction of diazonium ions than for the layer formed by oxidation of the amine. The acid–base properties of the grafted films were slightly influenced by the grafting procedure and the difference in the apparent pK a was most likely related to the presence of the substrate –NH-aryl linkage for the film generated by amine oxidation. X-ray photoelectron spectroscopy was used to get some insight on the chemical species present at the carbon electrode surface. For both procedures, the films consist in mixture of at least two different covalently grafted species

  14. Superhydrophobic surfaces by electrochemical processes.

    Science.gov (United States)

    Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic

    2013-03-13

    This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrochemical modeling of hydrogen storage in hydride-forming electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2009-01-01

    An electrochemical kinetic model (EKM) is developed, describing the electrochemical hydrogen storage in hydride-forming materials under equilibrium conditions. This model is based on first principles of electrochemical reaction kinetics and statistical thermodynamics and describes the complex,

  16. Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors

    International Nuclear Information System (INIS)

    Hou Linrui; Yuan Changzhou; Li Diankai; Yang Long; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Highlights: → NiS is synthesized by means of the H 2 O/CS 2 interface under hydrothermal treatment. → NiS itself owns poor electrochemical capacitance in 2 M KOH solution. → NiS is electrochemically induced and transformed into electroactive Ni(OH) 2 . → Ni(OH) 2 is responsible for good energy storage of the NiS in the KOH solution. → The new formed Ni(OH) 2 delivers large energy density at high rates. - Abstract: Nickel sulfide nanoparticles (NPs) are first synthesized by virtue of a unique H 2 O/CS 2 interface under mild hydrothermal treatment. Electrochemical data reveals that the as-synthesized NiS NPs themselves own poor supercapacitive behavior at initial cyclic voltammetry (CV) cycles in 2 M KOH solution, while a specific capacitance of 893 F g -1 can be surprisingly obtained at a current density of 5 A g -1 just after continuous 320 CV cycles. X-ray diffraction and Fourier transform infrared techniques demonstrate that what is really responsible for the good electrochemical capacitance in the KOH aqueous solution is the new electrochemically formed Ni(OH) 2 phase, rather than NiS NPs themselves. The Ni(OH) 2 is slowly formed during the continuous CV cycling process, in which the electrochemically induced phase transformation from NiS to Ni(OH) 2 phase takes place. Furthermore, the new Ni(OH) 2 phase demonstrates the great ability of delivering large specific capacitance at high rates.

  17. The nature and quality of the mathematical connections teachers make

    Directory of Open Access Journals (Sweden)

    Michael K. Mhlolo

    2012-05-01

    Full Text Available Current reforms in mathematics education emphasise the need for pedagogy because it offers learners opportunities to develop their proficiency with complex high-level cognitive processes. One has always associated the ability to make mathematical connections, together with the teacher’s role in teaching them, with deep mathematical understanding. This article examines the nature and quality of the mathematical connections that the teachers’ representations of those connections enabled or constrained. The researchers made video recordings of four Grade 11 teachers as they taught a series of five lessons on algebra-related topics. The results showed that the teachers’ representations of mathematical connections were either faulty or superficial in most cases. It compromised the learners’ opportunities for making meaningful mathematical connections. The researchers concluded by suggesting that helping teachers to build their representation repertoires could increase the effectiveness of their instructional practices.

  18. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  19. Dynamic responses of connections in road safety barriers

    International Nuclear Information System (INIS)

    Bayton, D.A.F.; Long, R.; Fourlaris, G.

    2009-01-01

    Bolted road safety barrier connections utilise slotted holes that are perpendicular to the direction of the safety barrier beam. Due to the clearance between the slotted holes and the bolts, a varying amount of slippage is seen before contact with the edge of the slot is made. The stiffness characteristics of bolted road safety barrier connections have been examined with a representative test coupon that incorporates a full size safety barrier connection slot to industry standard dimensions. Previous research work has successfully determined the stiffness characteristics of the bolted connections at quasi-static strain rates. Representative non-linear finite element models of the bolted test coupons have been constructed. When compared to the laboratory results the initial stiffness, maximum force and displacement of the bolted connections are similar to the finite element model predictions. Current investigations have moved onto strain rates comparable to those observed in actual vehicle crash tests. Explicit dynamic finite element (FE) models have been constructed and validated, using experimental data produced using a series of high strain rate laboratory tests for a number of bolt configurations

  20. Electrochemical surface plasmon spectroscopy-Recent developments and applications

    International Nuclear Information System (INIS)

    Zhang, Nan; Schweiss, Ruediger; Zong, Yun; Knoll, Wolfgang

    2007-01-01

    A survey is given on recent developments and applications of electrochemical techniques combined with surface plasmon resonance (SPR) spectroscopy. Surface plasmon spectroscopy (SPS) and optical waveguide mode spectroscopy make use of evanescent waves on metal-dielectric interfaces and can be conveniently combined with electrochemical methods. Selected examples of applications of high-pressure surface electrochemical plasmon resonance spectroscopy to study supramolecular architectures such as layer-by-layer films of conducting polymers or thin composite films will be presented. Then a combination of SPS with the electrochemical quartz crystal microbalance (EQCM) will be introduced and illustrated with a study on doping/de-doping process of a conducting polymer. This combination allows for simultaneous electrochemical, optical and microgravimetric characterization of interfaces. Finally, new technical developments including integration of SPS into microfluidic devices using a grating coupler and surface plasmon enhanced diffraction will be discussed

  1. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    OpenAIRE

    Fengling Zhang; Tianyi Cai; Liang Ma; Liyuan Zhan; Hong Liu

    2017-01-01

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensin...

  2. Fabrication of Micro Components by Electrochemical Deposition

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    The main issue of this thesis is the combination of electrochemical deposition of metals and micro machining. Processes for electroplating and electroless plating of nickel and nickel alloys have been developed and optimised for compatibility with microelectronics and silicon based micromechanics...... of electrochemical machining and traditional machining is compared to micro machining techniques as performed in the field of microelectronics. Various practical solutions and equipment for electrochemical deposition of micro components are demonstrated, as well as the use and experience obtained utilising...

  3. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-08-31

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.

  4. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation.

    Science.gov (United States)

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Arpád; Ilea, Petru

    2014-05-30

    The present study aims to develop an eco-friendly chemical-electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75kWh/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Electrochemical capacitance of NiO/Ru{sub 0.35}V{sub 0.65}O{sub 2} asymmetric electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chang-Zhou; Gao, Bo; Zhang, Xiao-Gang [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2007-11-08

    A designed asymmetric hybrid electrochemical capacitor was presented where NiO and Ru{sub 0.35}V{sub 0.65}O{sub 2} as the positive and negative electrode, respectively, both stored charge through reversible faradic pseudocapacitive reactions of the anions (OH{sup -}) with electroactive materials. And the two electrodes had been individually tested in 1 M KOH aqueous electrolyte to define the adequate balance of the active materials in the hybrid system as well as the working voltage of the capacitor based on them. The electrochemical tests demonstrated that the maximum specific capacitance and energy density of the asymmetric hybrid electrochemical capacitor were 102.6 F g{sup -1} and 41.2 Wh kg{sup -1}, respectively, delivered at a current density of 7.5 A cm{sup -2}. And the specific energy density decreased to 23.0 Wh kg{sup -1} when the specific power density increased up to 1416.7 W kg{sup -1}. The hybrid electrochemical capacitor also exhibited a good electrochemical stability with 83.5% of the initial capacitance over consecutive 1500 cycle numbers. (author)

  6. Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress.

    Science.gov (United States)

    Li, Xin; Rong, Jiepeng; Wei, Bingqing

    2010-10-26

    The effect of compressive stress on the electrochemical behavior of flexible supercapacitors assembled with single-walled carbon nanotube (SWNT) film electrodes and 1 M aqueous electrolytes with different anions and cations were thoroughly investigated. The under-pressed capacitive and resistive features of the supercapacitors were studied by means of cyclic voltammetry measurements and electrochemical impedance analysis. The results demonstrated that the specific capacitance increased first and saturated in corresponding decreases of the series resistance, the charge-transfer resistance, and the Warburg diffusion resistance under an increased pressure from 0 to 1723.96 kPa. Wettability as well as ion-size effect of different aqueous electrolytes played important roles to determine the pressure dependence behavior of the suerpcapacitors under an applied pressure. An improved high-frequency capacitive response with 1172 Hz knee frequency, which is significantly higher compared to reported values, was observed under the compressive pressure of 1723.96 kPa, indicating an improving and excellent high-power capability of the supercapacitors under the pressure. The experimental results and the thorough analysis described in this work not only provide fundamental insight of pressure effects on supercapacitors but also give an important guideline for future design of next generation flexible/stretchable supercapacitors for industrial and consumer applications.

  7. Social network analysis of character interaction in the Stargate and Star Trek television series

    Science.gov (United States)

    Tan, Melody Shi Ai; Ujum, Ephrance Abu; Ratnavelu, Kuru

    This paper undertakes a social network analysis of two science fiction television series, Stargate and Star Trek. Television series convey stories in the form of character interaction, which can be represented as “character networks”. We connect each pair of characters that exchanged spoken dialogue in any given scene demarcated in the television series transcripts. These networks are then used to characterize the overall structure and topology of each series. We find that the character networks of both series have similar structure and topology to that found in previous work on mythological and fictional networks. The character networks exhibit the small-world effects but found no significant support for power-law. Since the progression of an episode depends to a large extent on the interaction between each of its characters, the underlying network structure tells us something about the complexity of that episode’s storyline. We assessed the complexity using techniques from spectral graph theory. We found that the episode networks are structured either as (1) closed networks, (2) those containing bottlenecks that connect otherwise disconnected clusters or (3) a mixture of both.

  8. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  9. Electrochemical sensors: a powerful tool in analytical chemistry

    Directory of Open Access Journals (Sweden)

    Stradiotto Nelson R.

    2003-01-01

    Full Text Available Potentiometric, amperometric and conductometric electrochemical sensors have found a number of interesting applications in the areas of environmental, industrial, and clinical analyses. This review presents a general overview of the three main types of electrochemical sensors, describing fundamental aspects, developments and their contribution to the area of analytical chemistry, relating relevant aspects of the development of electrochemical sensors in Brazil.

  10. Electrochemical Performance of Ni-MOFs for Supercapacitors

    Science.gov (United States)

    Li, Yujuan; Song, Lili; Han, Yinghui; Wang, Guangyou

    2018-03-01

    In this work, the Ni-MOFs of electrode material has been synthesized, characterized and studied for the electrochemical properties of electrode materials. The effects of the doping amount of Ni, calcination temperature and time were studied in detail. The results suggested that the electrochemical properties were obviously improved by the Ni-MOFs of electrode material and the best preparation conditions can also improve the electrochemical properties of electrode materials. These results open a way for the design of tailored MOFs as electrode materials for supercapacitors.

  11. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Fogarasi, Szabolcs [“Babeş-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Imre-Lucaci, Florica [“Babeş-Bolyai” University, Interdisciplinary Research Institute on Bio-Nano-Sciences, 42 Treboniu Laurian Street, Cluj-Napoca RO-400271 (Romania); Imre-Lucaci, Árpád, E-mail: aimre@chem.ubbcluj.ro [“Babeş-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Ilea, Petru [“Babeş-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania)

    2014-05-01

    Highlights: • We developed a mediated electrochemical process for electronic waste treatment. • We achieved the simultaneous recovery of copper and gold enrichment. • Process scale up was realized based on the optimal values of operating parameters. • The waste does not require mechanical pretreatment in the scaled process. • The process proved to be efficient and eco-friendly as well. - Abstract: The present study aims to develop an eco-friendly chemical–electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04 wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75 kW h/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples.

  12. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation

    International Nuclear Information System (INIS)

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Árpád; Ilea, Petru

    2014-01-01

    Highlights: • We developed a mediated electrochemical process for electronic waste treatment. • We achieved the simultaneous recovery of copper and gold enrichment. • Process scale up was realized based on the optimal values of operating parameters. • The waste does not require mechanical pretreatment in the scaled process. • The process proved to be efficient and eco-friendly as well. - Abstract: The present study aims to develop an eco-friendly chemical–electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04 wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75 kW h/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples

  13. Innovative configurations of electrochemical DNA biosensors (a review)

    OpenAIRE

    Girousi, Stella; Karastogianni, Sofia; Serpi, Constantina

    2011-01-01

    In the field of electrochemical biosensing, transition metal complexes achieved a significant importance as hybridization indicators or electroactive markers of DNA. Their incorporation in electro-chemical DNA biosensors enables to offer a promising perspective in understanding of the biological activity of some chemical compounds. In this context, the development of innovative configurations of electrochemical DNA biosensors applied to life sciences during the last years were reviewed ...

  14. Accounting Issues: An Essay Series Part V--Intangible Assets

    Science.gov (United States)

    Laux, Judy

    2008-01-01

    This article represents the fifth in a series of theoretical essays intended to supplement the introductory financial accounting course and investigates the accounting treatment and related conceptual connections for intangibles. In addition, intangibles present unique accounting issues, conceptual challenges, and measurement dilemmas not found…

  15. Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants

    Directory of Open Access Journals (Sweden)

    Brandy J. Johnson

    2014-06-01

    Full Text Available This effort evaluated the potential of two prototype devices for enhanced electrochemical detection of 2,4,6-trinitrotoluene (TNT and dinitrotoluene (DNT following preconcentration using an organosilicate sorbent. The bench-scale prototype provides adsorption of the targets from aqueous solution followed by elution in a mixture of methanol and potassium chloride (KCl. Following elution, the eluant is diluted using an aqueous KCl solution to provide sufficient electrolyte for electrochemical analysis. Concentrations of methanol greater than 50% were detrimental to sensor performance and lifetime. Calibration of the electrochemical sensor was completed and results of electrochemical analysis were compared to those of HPLC analysis over a range of concentrations and in varied matrices. TNT detection was found to be consistent and detection limits were improved from 200 ppb to 3 ppb depending on the sample volume utilized. DNT detection showed higher variability and significantly greater false response rates. On the basis of these results, a second, more advanced, prototype was developed and utilized in limited field trials with the intention of moving the technology toward in situ applications.

  16. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  17. Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties

    International Nuclear Information System (INIS)

    Yang, Yingchang; Lu, Fang; Zhou, Zhou; Song, Weixin; Chen, Qiyuan; Ji, Xiaobo

    2013-01-01

    Graphical abstract: Electrochemically cathodic exfoliation of graphite into few-layer graphene sheets in room temperature ionic liquids (RTILs) N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N). -- Highlights: • Few-layer graphene sheets were prepared through electrochemically cathodic exfoliation in room temperature ionic liquids. • The mechanism of cathodic exfoliation in ionic liquids was proposed. • The derived activated graphene sheets show enhanced electrochemical properties. -- Abstract: Electrochemically cathodic exfoliation in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N) has been developed for few-layer graphene sheets, demonstrating low levels of oxygen (2.7 at% of O) with a nearly perfect structure (I D /I G 2 N involves the intercalation of ionic liquids cation [BMP] + under highly negatively charge followed by graphite expansion. Porous activated graphene sheets were also obtained by activation of graphene sheets in KOH. Transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to characterize these graphene materials. The electrochemical performances of the graphene sheets and porous activated graphene sheets for lithium-ion battery anode materials were evaluated using cyclic voltammetry, galvanostatic charge–discharge cycling, and electrochemical impedance spectroscopy

  18. Electrochemical desalination of historic Portuguese tiles

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Dias-Ferreira, Celia; Ribeiro, Alexandra B.

    2015-01-01

    Soluble salts cause severe decay of historic Portuguese tiles. Treatment options for removal of the salts to stop the decay are few. The present paper deals with development of a method for electrochemical desalination, where an electric DC field is applied to the tiles. Laboratory experiments were...... the electrochemical treatment. The removal rate was similar for the two anions so the chloride concentration reached the lowest concentration level first. At this point the electric resistance increased, but the removal of nitrate continued unaffected till similar low concentration. The sulfate concentration...... was successful. Based on the obtained results an important step is taken towards development of an electrochemical technique for desalination of tile panels....

  19. Enhancement of Giant Magneto-Impedance in Series Co-Rich Microwires for Low-Field Sensing Applications

    Science.gov (United States)

    Jiang, S. D.; Eggers, T.; Thiabgoh, O.; Xing, D. W.; Fang, W. B.; Sun, J. F.; Srikanth, H.; Phan, M. H.

    2018-02-01

    Two soft ferromagnetic Co68.25Fe4.25Si12.25B15.25 microwires with the same diameter of 50 ± 1 μm but different fabrication processes were placed in series and in parallel circuit configurations to investigate their giant magneto-impedance (GMI) responses in a frequency range of 1-100 MHz for low-field sensing applications. We show that, while the low-field GMI response is significantly reduced in the parallel configuration, it is greatly enhanced in the series connection. These results suggest that a highly sensitive GMI sensor can be designed by arranging multi-wires in a saw-shaped fashion to optimize the sensing area, and soldered together in series connection to maintain the excellent magnetic field sensitivity.

  20. Process for electrochemically gasifying coal using electromagnetism

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  1. Building micro and nanosystems with electrochemical discharges

    International Nuclear Information System (INIS)

    Wuethrich, Rolf; Allagui, Anis

    2010-01-01

    Since the discovery of the electrochemical discharge phenomenon by Fizeau and Foucault, several contributions have expanded the wide range of applications associated with this high current density electrochemical process. The complexity of the phenomenon, from the macroscopic to the microscopic scales, led since then to experimental and theoretical studies from different research fields. This contribution reviews the chemical and electrochemical perspectives where a mechanistic model based on results from radiation chemistry of aqueous solutions is proposed. In addition applications to micro-machining and fabrication of nanoparticles are discussed.

  2. Electrochemical ammonia production on molybdenum nitride nanoclusters

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2013-01-01

    Theoretical investigations of electrochemical production of ammonia at ambient temperature and pressure on nitrogen covered molybdenum nanoparticles are presented. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free...... energy profile for electrochemical protonation of N2 and N adatoms on cuboctahedral Mo13 nanoparticles. Pathways for electrochemical ammonia production via direct protonation of N adatoms and N2 admolecules with an onset potential as low as -0.5 V and generally lower than -0.8 V on both a nitrogen...

  3. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  4. Building micro and nanosystems with electrochemical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Wuethrich, Rolf, E-mail: wuthrich@encs.concordia.c [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada); Allagui, Anis [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada)

    2010-11-30

    Since the discovery of the electrochemical discharge phenomenon by Fizeau and Foucault, several contributions have expanded the wide range of applications associated with this high current density electrochemical process. The complexity of the phenomenon, from the macroscopic to the microscopic scales, led since then to experimental and theoretical studies from different research fields. This contribution reviews the chemical and electrochemical perspectives where a mechanistic model based on results from radiation chemistry of aqueous solutions is proposed. In addition applications to micro-machining and fabrication of nanoparticles are discussed.

  5. NiO nanoparticles supported on graphene 3D network current collector for high-performance electrochemical energy storage

    International Nuclear Information System (INIS)

    Wang, Mingjun; Song, Xuefen; Dai, Shuge; Xu, Weina; Yang, Qi; Liu, Jianlin; Hu, Chenguo; Wei, Dapeng

    2016-01-01

    Owing to the faradaic oxidation and reduction reactions mainly taking place on surface, enlarging the specific surface of redox materials is one of the most effective ways to achieve excellent electrochemical performance. Here we report a binder-free three dimensional (3D) architecture electrode consisting of a graphene 3D network (G3DN) structure growing on flexible carbon paper (CP) by chemical vapor deposition and NiO nanoparticles growing on the G3DN by in-situ thermal decomposition for high rate battery and high-performance electrochemical capacitors. Such a nanostructure provides a large specific surface and fast electronic transmission channels. The unique structure design for this electrode enables outstanding performance, showing high specific capacity of 89.1 mAh cm −2 (119.2 mAh/g) at current density of 0.5 mA cm −2 (0.67 A/g) with the NiO loading of 0.7471 mg cm −2 . Meanwhile the electrode displays excellent rate capability and cycling stability, which keeps 85.48% of initial capacity after 3000 deep-discharge cycles. Furthermore, a solid-state symmetric electrochemical capacitor based on two NiO/G3DN/CP electrodes with an area of 4 cm 2 each is fabricated, and two pieces of them in series can light up 100 green LEDs for 2 min. The architecture of G3DN loaded with NiO might be generally applied to different kinds of nanomaterials for high-rate energy storage to improve their overall electrochemical performance.

  6. Electrochemical Techniques in Textile Processes and Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2012-01-01

    Full Text Available The textile industry uses the electrochemical techniques both in textile processes (such as manufacturing fibers, dyeing processes, and decolorizing fabrics and in wastewaters treatments (color removal. Electrochemical reduction reactions are mostly used in sulfur and vat dyeing, but in some cases, they are applied to effluents discoloration. However, the main applications of electrochemical treatments in the textile sector are based on oxidation reactions. Most of electrochemical oxidation processes involve indirect reactions which imply the generation of hypochlorite or hydroxyl radical in situ. These electrogenerated species are able to bleach indigo-dyed denim fabrics and to degrade dyes in wastewater in order to achieve the effluent color removal. The aim of this paper is to review the electrochemical techniques applied to textile industry. In particular, they are an efficient method to remove color of textile effluents. The reuse of the discolored effluent is possible, which implies an important saving of salt and water (i.e., by means of the “UVEC Cell”.

  7. Application of electrochemical techniques in fuel reprocessing- an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M K; Bajpai, D D; Singh, R K [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    The operating experience and development work over the past several years have considerably improved the wet chemical fuel reprocessing PUREX process and have brought the reprocessing to a stage where it is ready to adopt the introduction of electrochemical technology. Electrochemical processes offer advantages like simplification of reprocessing operation, improved performance of the plant and reduction in waste volume. At Power Reactor Fuel Reprocessing plant, Tarapur, work on development and application of electrochemical processes has been carried out in stages. To achieve plant scale application of these developments, a new electrochemical cycle is being added to PUREX process at PREFRE. This paper describes the electrochemical and membrane cell development activities carried out at PREFRE and their current status. (author). 5 refs., 4 tabs.

  8. Chemical Production of Graphene Catalysts for Electrochemical Energy Conversion

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko

    by scanning tunneling microscopy (STM), to investigate the nature of L-cysteine bonds on Au. Synthesized electrocatalysts were characterized by spectroscopic, microscopic and electrochemical techniques. Electrocatalysis was examined by electrochemical oxidation of formic acid, methanol and ethanol, and oxygen......Recently developed FC technology is among many approaches aiming at solving the global energy challenges. FCs are electrochemical devices that convert chemical energy from fuel molecules into electrical energy via electrochemical reactions. FCs are, however, limited by the scarce and expensive...... was achieved via L-cysteine linker molecules that provided pathways for fast electron transfers during the electrocatalytic reactions. Electrochemical properties of selfassembled L-cysteine monolayers immobilized on single-crystal Au(111) surfaces were studied in ionic liquids and their structures imaged...

  9. Aerobic and Electrochemical Oxidations with N-Oxyl Reagents

    Science.gov (United States)

    Miles, Kelsey C.

    Selective oxidation of organic compounds represents a significant challenge for chemical transformations. Oxidation methods that utilize nitroxyl catalysts have become increasingly attractive and include Cu/nitroxyl and nitroxyl/NO x co-catalyst systems. Electrochemical activation of nitroxyls is also well known and offers an appealing alternative to the use of chemical co-oxidants. However, academic and industrial organic synthetic communities have not widely adopted electrochemical methods. Nitroxyl catalysts facilitate effective and selective oxidation of alcohols and aldehydes to ketones and carboxylic acids. Selective benzylic, allylic, and alpha-heteroatom C-H abstraction can also be achieved with nitroxyls and provides access to oxygenated products when used in combination with molecular oxygen as a radical trap. This thesis reports various chemical and electrochemical oxidation methods that were developed using nitroxyl mediators. Chapter 1 provides a short review on practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NO x systems and emphasizes the utility of bicyclic nitroxyls as co-catalysts. In Chapter 2, the combination of these bicyclic nitroxyls with NOx is explored for development of a mild oxidation of alpha-chiral aryl aldehydes and showcases a sequential asymmetric hydroformylation/oxidation method. Chapter 3 reports the synthesis and characterization of two novel Cu/bicyclic nitroxyl complexes and the electronic structure analysis of these complexes. Chapter 4 highlights the electrochemical activation of various nitroxyls and reports an in-depth study on electrochemical alcohol oxidation and compares the reactivity of nitroxyls under electrochemical or chemical activation. N-oxyls can also participate in selective C-H abstraction, and Chapter 5 reports the chemical and electrochemical activation of N-oxyls for radical-mediated C-H oxygenation of (hetero)arylmethanes. For these electrochemical transformations, the development of

  10. Electrochemical behaviour of carbon paste electrodes enriched with tin oxide nanoparticles using voltammetry and electrochemical impedance spectroscopy.

    Science.gov (United States)

    Muti, Mihrican; Erdem, Arzum; Caliskan, Ayfer; Sınag, Ali; Yumak, Tugrul

    2011-08-01

    The effect of the SnO(2) nanoparticles (SNPs) on the behaviour of voltammetric carbon paste electrodes were studied for possible use of this material in biosensor development. The electrochemical behaviour of SNP modified carbon paste electrodes (CPE) was first investigated by using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The performance of the SNP modified electrodes were compared to those of unmodified ones and the parameters affecting the response of the modified electrode were optimized. The SNP modified electrodes were then tested for the electrochemical sensing of DNA purine base adenine to explore their further development in biosensor applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Ró isí n M.; Berggren, Magnus; Malliaras, George G.

    2018-01-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume

  12. Electrochemical properties and electrochemical impedance spectroscopy of polypyrrole-coated platinum electrodes

    Directory of Open Access Journals (Sweden)

    M. Fall

    2006-12-01

    Full Text Available Polypyrrole (PPy films of different thickness were characterized by electrochemical impedance spectroscopy (EIS measurements in acetonitrile and aqueous solutions, containing 0.1 M NaClO4 or sodium dodecylsulfate as the dopant. The PPy films were electrochemically deposited on Pt, and their electrochemical properties studied by cyclic voltammetry. Impedance spectra were obtained at potentials ranging from 0 to 0.8 V/SCE. The EIS data were fitted using two different equivalent electrical circuits (depending on the nature of the dopant. They involve a diffusive capacitance, which increased with the passing charge during electrosynthesis (i.e. film thickness for ClO4--doped PPy, but was practically unaffected by the film thickness in the case of SDS-doped PPy. Also, a double-layer capacitance was found only in the circuit of ClO4--doped PPy. It increased with the film thickness, and showed a minimum near the open-circuit potential. Finally the charge-transfer resistance (Rct obtained with SDS is nearly 200-fold higher than that obtained with ClO4- in the same solvent (H2O. With the same dopant (ClO4-, Rct is about five times higher in acetonitrile relative to water. All these EIS results of the different types of PPy suggest a relation with the wettability of the polymer.

  13. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    International Nuclear Information System (INIS)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong

    2016-01-01

    Highlights: • A series of Li-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li_1_._2Mn_0_._5_6Ni_0_._1_6Co_0_._0_8O_2 (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g"−"1 at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  14. Effect of calcination temperature on microstructure and electrochemical performance of lithium-rich layered oxide cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Quanxin; Peng, Fangwei; Li, Ruhong; Yin, Shibo; Dai, Changsong, E-mail: changsd@hit.edu.cn

    2016-11-15

    Highlights: • A series of Li-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2}) were successfully synthesized via a two-step synthesis method. • The effects of calcination temperature on the cathode materials were researched in detail. • A well-crystallized layered structure was obtained as the calcination temperature increased. • The samples calcined in a range of 850–900 °C exhibited excellent electrochemical performance. - Abstract: Lithium-rich layered oxide cathode materials (Li{sub 1.2}Mn{sub 0.56}Ni{sub 0.16}Co{sub 0.08}O{sub 2} (LLMO)) were synthesized via a two-step synthesis method involving co-precipitation and high-temperature calcination. The effects of calcination temperature on the cathode materials were studied in detail. Structural and morphological characterizations revealed that a well-crystallized layered structure was obtained at a higher calcination temperature. Electrochemical performance evaluation revealed that a cathode material obtained at a calcination temperature of 850 °C delivered a high initial discharge capacity of 266.8 mAh g{sup −1} at a 0.1 C rate and a capacity retention rate of 95.8% after 100 cycles as well as excellent rate capability. Another sample calcinated at 900 °C exhibited good cycling stability. It is concluded that the structural stability and electrochemical performance of Li-rich layered oxide cathode materials were strongly dependent on calcination temperatures. The results suggest that a calcination temperature in a range of 850–900 °C could promote electrochemical performance of this type of cathode materials.

  15. Dimension reduction of frequency-based direct Granger causality measures on short time series.

    Science.gov (United States)

    Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris

    2017-09-01

    The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  17. Nanomaterials for electrochemical sensing and biosensing

    CERN Document Server

    Pumera, Martin

    2014-01-01

    Part 1: Nanomaterial-Based ElectrodesCarbon Nanotube-Based Electrochemical Sensors and Biosensors, Martin Pumera, National Institute for Materials Science, JapanElectrochemistry on Single Carbon Nanotube, Pat Collier, Caltech, USATheory of Voltammetry at Nanoparticle-Modified Electrodes, Richard G. Compton, Oxford University, UKMetal Oxide Nanoparticle-Modified Electrodes, Frank Marken, University of Bath, UKSemiconductor Quantum Dots for Electrochemical Bioanalysis, Eugenii Katz, Clarkson University, USAN

  18. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...... understanding of the nature of the electrochemical promotion is also presented....

  19. Electrochemical stability of subnanometer Pt clusters

    DEFF Research Database (Denmark)

    Quinson, Jonathan; Röefzaad, Melanie; Deiana, Davide

    2018-01-01

    In the present work, the degradation of size-selected Pt nanoclusters is studied under electrochemical conditions. This model catalyst mimics carbon supported Pt nanoclusters and nanoparticles typically employed in proton exchange membrane fuel cells (PEMFCs). Insight into the early stage...... of degradation is given by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and confirmed by transmission electron microscopy (TEM). In contrast to common assumptions, it is demonstrated that even extremely small Pt clusters exhibit a remarkable stability under electrochemical...... - is observed. In light of the findings reported, developing highly-dispersed subnanometer Pt clusters as catalyst for PEMFCs is a realistic approach provided the operation conditions are suitably adjusted. Furthermore, mitigation strategies to improve the stability of few-atoms catalyst under electrochemical...

  20. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  1. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing.

    Science.gov (United States)

    Zhang, Fengling; Cai, Tianyi; Ma, Liang; Zhan, Liyuan; Liu, Hong

    2017-01-31

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  2. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  3. Reconstruction of network topology using status-time-series data

    Science.gov (United States)

    Pandey, Pradumn Kumar; Badarla, Venkataramana

    2018-01-01

    Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.

  4. Electrochemical study of stress corrosion cracking of copper alloys

    International Nuclear Information System (INIS)

    Malki, Brahim

    1999-01-01

    This work deals with the electrochemical study of stress corrosion of copper alloys in aqueous environment. Selective dissolution and electrochemical oxidation are two key-points of the stress corrosion of these alloys. The first part of this thesis treats of these aspects applied to Cu-Au alloys. Measurements have been performed using classical electrochemical techniques (in potentio-dynamic, potentio-static and galvano-static modes). The conditions of occurrence of an electrochemical noise is analysed using signal processing techniques. The impact on the behavior of Cu 3 Au are discussed. In the second part, the stress corrosion problem is addressed in the case of surface oxide film formation, in particular for Cu-Zn alloys. We have found useful to extend this study to mechanical stress oxidation mechanisms in the presence of an oscillating potential electrochemical system. The aim is to examine the influence of these new electrochemical conditions (galvano-static mode) on the behavior of stressed brass. Finally, the potential distribution at crack tip is calculated in order to compare the different observations [fr

  5. Why the Personal Competencies Matter. Connect: Making Learning Personal

    Science.gov (United States)

    Redding, Sam

    2015-01-01

    This issue in the "Connect" series is a field report that discusses how a student's personal competencies--cognitive, metacognitive, motivational, and social/emotional--propel learning and other forms of goal attainment. These personal competencies are personal to the individual in their shape, size, and effect, but they are enhanced by…

  6. Time-series modeling of long-term weight self-monitoring data.

    Science.gov (United States)

    Helander, Elina; Pavel, Misha; Jimison, Holly; Korhonen, Ilkka

    2015-08-01

    Long-term self-monitoring of weight is beneficial for weight maintenance, especially after weight loss. Connected weight scales accumulate time series information over long term and hence enable time series analysis of the data. The analysis can reveal individual patterns, provide more sensitive detection of significant weight trends, and enable more accurate and timely prediction of weight outcomes. However, long term self-weighing data has several challenges which complicate the analysis. Especially, irregular sampling, missing data, and existence of periodic (e.g. diurnal and weekly) patterns are common. In this study, we apply time series modeling approach on daily weight time series from two individuals and describe information that can be extracted from this kind of data. We study the properties of weight time series data, missing data and its link to individuals behavior, periodic patterns and weight series segmentation. Being able to understand behavior through weight data and give relevant feedback is desired to lead to positive intervention on health behaviors.

  7. Accounting Issues: An Essay Series. Part II--Accounts Receivable

    Science.gov (United States)

    Laux, Judith A.

    2007-01-01

    This is the second in a series of articles designed to help academics refocus the introductory accounting course on the theoretical underpinnings of accounting. Intended as a supplement for the principles course, this article connects the asset Accounts Receivable to the essential theoretical constructs, discusses the inherent tradeoffs and…

  8. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Qin [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Xia, Shanhong; Tong, Jianhua [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing, 100190 (China); Wu, Kangbing, E-mail: kbwu@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2015-08-05

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO{sub 3} nanoparticles (nano-CaCO{sub 3}) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO{sub 3}. The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO{sub 3} weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO{sub 3} weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L{sup −1} for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. - Highlights: • PC samples with different morphology and electrochemical activities were prepared. • Highly sensitive electrochemical sensing platform was developed for food colourants. • The accuracy and practicability was testified to be good by HPLC.

  9. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon

    International Nuclear Information System (INIS)

    Cheng, Qin; Xia, Shanhong; Tong, Jianhua; Wu, Kangbing

    2015-01-01

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO 3 nanoparticles (nano-CaCO 3 ) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO 3 . The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO 3 weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO 3 weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L −1 for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. - Highlights: • PC samples with different morphology and electrochemical activities were prepared. • Highly sensitive electrochemical sensing platform was developed for food colourants. • The accuracy and practicability was testified to be good by HPLC

  10. A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.

    Science.gov (United States)

    Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E

    2018-06-12

    Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.

  11. Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Chung, Hae Geun; Kim, Woong; Min, Byoung Koun; Kim, Hong Gon

    2010-01-01

    We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via waterassisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was 7.1 ± 1.5 nm, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (∼94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ∼20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors

  12. Disease-Related Detection with Electrochemical Biosensors: A Review.

    Science.gov (United States)

    Huang, Ying; Xu, Jin; Liu, Junjie; Wang, Xiangyang; Chen, Bin

    2017-10-17

    Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  13. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    International Nuclear Information System (INIS)

    Holstein, Nils; Krauss, Wolfgang; Konys, Jürgen; Heuer, Simon; Weber, Thomas

    2016-01-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  14. Advanced Electrochemical Machining (ECM) for tungsten surface micro-structuring in blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, Nils, E-mail: nils.holstein@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Krauss, Wolfgang; Konys, Jürgen [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Baden-Württemberg (Germany); Heuer, Simon; Weber, Thomas [Research Center Jülich, Institute of Energy- and Climate Research – Plasma Physics (IEK-4), D-52425 Jülich (Germany)

    2016-11-01

    Highlights: • Electrochemical Machining is an appropriate tool for tungsten shaping. • Progress in shaping achieved by combination of ECM with advanced micro-lithography. • Application in First Wall for connection of plasma facing material to breeder blanket. • Successful development of adhesion promotors by ECM for plasma spraying interlayers. • Microstructure electrochemical manufacturing of tungsten in sizes of 100 μm achieved. - Abstract: Plasma facing components for fusion applications must have to exhibit long-term stability under extreme physical conditions, and therefore any material imperfections caused by mechanical and/or thermal stresses in the shaping processes cannot be tolerated due to a high risk of possible technical failures under fusion conditions. To avoid such defects, the method of Electrochemical Machining (ECM) enables a complete defect-free processing of removal of tungsten material during the desired shaping, also for high penetration depths. Furthermore, supported by lithographic mask pretreatment, three-dimensional distinct geometric structures can be positive-imaged via the directional galvanic dissolution applying M-ECM process into the tungsten bulk material. New required applications for tungsten components, e.g. as adhesion promotors in W-surfaces to enable sure grip and bonding of thick plasma-spraying layers for blanket components, will define the way of further miniaturization of well-established millimeter dimensioned M-ECM shaping processes to dimensions of 100 μm and furthermore down to 50 μm. Besides current M-ECM limits the article describes inevitable needs of further developments for mask resists, mask materials and the resulting ECM parameters, to reach the needed accuracy in tungsten microstructure. The achieved progress and observed correlations of processing parameters will be manifested by produced demonstrators made by the new “μM”-ECM process.

  15. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    Science.gov (United States)

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  16. Electrochemical remediation technologies for soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Doering, F. [Electrochemical Processes I.I. c. Valley Forge, PA (United States)]|[P2 Soil Remediation, Inc. Stuttgart (Germany); Doering, N. [P2 Soil Remediation, Inc. Stuttgart (Germany)

    2001-07-01

    In Direct Current Technologies (DCTs) a direct current electricity is passed between at least two subsurface electrodes in order to effect the remediation of the groundwater and/or the soil. DCTs in line with the U.S.-terminology comprise of the ElectroChemical Remediation Technologies (ECRTs), and GeoKinetics. The primary distinction between ECRTs and ElectroKinetics are the power input, and the mode of operation, which are electrochemical reactions vs. mass transport. ECRTs combine phenomena of colloid (surface) electrochemistry with the phenomena of Induced Polarization (IP). This report focuses on ECRTs, comprising of the ElectroChemical GeoOxidation (ECGO) for the mineralization of organic pollutants to finally carbon dioxide and water, and Induced Complexation (IC), related to the electrochemical conversion of metals enhancing the mobilization and precipitation of heavy metals on both electrodes. Both technologies are based on reduction-oxidation (redox) reactions at the scale of the individual soil particles. (orig.)

  17. Dynamic effective connectivity of inter-areal brain circuits.

    Directory of Open Access Journals (Sweden)

    Demian Battaglia

    Full Text Available Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity, related to the elusive question "Which areas cause the present activity of which others?". Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early

  18. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  19. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  20. Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor.

    Science.gov (United States)

    Tang, Jing; Wang, Jie; Shrestha, Lok Kumar; Hossain, Md Shahriar A; Alothman, Zeid Abdullah; Yamauchi, Yusuke; Ariga, Katsuhiko

    2017-06-07

    A series of porous carbon spheres with precisely adjustable mesopores (4-16 nm), high specific surface area (SSA, ∼2000 m 2 g -1 ), and submicrometer particle size (∼300 nm) was synthesized through a facile coassembly of diblock polymer micelles with a nontoxic dopamine source and a common postactivation process. The mesopore size can be controlled by the diblock polymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templates, and has an almost linear dependence on the square root of the degree of polymerization of the PS blocks. These advantageous structural properties make the product a promising electrode material for electrochemical capacitors. The electrochemical capacitive performance was studied carefully by using symmetrical cells in a typical organic electrolyte of 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEA BF 4 /AN) or in an ionic liquid electrolyte of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF 4 ), displaying a high specific capacitance of 111 and 170 F g -1 at 1 A g -1 , respectively. The impacts of pore size distribution on the capacitance performance were thoroughly investigated. It was revealed that large mesopores and a relatively low ratio of micropores are ideal for realizing high SSA-normalized capacitance. These results provide us with a simple and reliable way to screen future porous carbon materials for electrochemical capacitors and encourage researchers to design porous carbon with high specific surface area, large mesopores, and a moderate proportion of micropores.

  1. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    Directory of Open Access Journals (Sweden)

    Fengling Zhang

    2017-01-01

    Full Text Available We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  2. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. V. Comparison and Properties of Electrochemical and Chemical Rate Constants

    Science.gov (United States)

    Marcus, R. A.

    1962-01-01

    Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)

  3. Synthesis of graphene platelets by chemical and electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, Rajendran; Felix, Sathiyanathan [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Joshi, Girish M. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India); Raghupathy, Bala P.C., E-mail: balapraveen2000@yahoo.com [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Research and Advanced Engineering Division (Materials), Renault Nissan Technology and Business Center India (P) Ltd., Chennai, Tamil Nadu (India); Jeong, Soon Kwan, E-mail: jeongsk@kier.re.kr [Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Grace, Andrews Nirmala, E-mail: anirmalagrace@vit.ac.in [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2013-10-15

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH{sub 4} was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide.

  4. Synthesis of graphene platelets by chemical and electrochemical route

    International Nuclear Information System (INIS)

    Ramachandran, Rajendran; Felix, Sathiyanathan; Joshi, Girish M.; Raghupathy, Bala P.C.; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2013-01-01

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH 4 was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide

  5. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  6. ELECTROCHEMICAL PROMOTED CATALYSIS: TOWARDS PRACTICAL UTILIZATION

    Directory of Open Access Journals (Sweden)

    DIMITRIOS TSIPLAKIDES

    2008-07-01

    Full Text Available Electrochemical promotion (EP of catalysis has already been recognized as “a valuable development in catalytic research” (J. Pritchard, 1990 and as “one of the most remarkable advances in electrochemistry since 1950” (J. O’M. Bockris, 1996. Laboratory studies have clearly elucidated the phenomenology of electrochemical promotion and have proven that EP is a general phenomenon at the interface of catalysis and electrochemistry. The major progress toward practical utilization of EP is surveyed in this paper. The focus is given on the electropromotion of industrial ammonia synthesis catalyst, the bipolar EP and the development of a novel monolithic electropromoted reactor (MEPR in conjunction with the electropromotion of thin sputtered metal films. Future perspectives of electrochemical promotion applications in the field of hydrogen technologies are discussed.

  7. Electrochemical reduction of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lund Traulsen, M.

    2012-04-15

    NO and NO{sub 2} (collectively referred to as NO{sub x}) are air pollutants, and the largest single contributor to NO{sub x} pollution is automotive exhaust. This study investigates electrochemical deNO{sub x}, a technology which aims to remove NO{sub x} from automotive diesel exhaust by electrochemical reduction of NO{sub x} to N{sub 2} and O{sub 2}. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNO{sub x} by addition of NO{sub x} storage compounds to the electrodes. Two different composite electrodes, La{sub 0.85}Sr{sub 0.15}MnO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSM15-CGO10) and La{sub 0.85}Sr{sub 0.15}FeO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSF15-CGO10), have been investigated in combination with three different NO{sub x} storage compounds: BaO, K{sub 2}O and MnO{sub x}. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy and cyclic voltammetry. In addition, infrared spectroscopy has been performed to study how NO{sub x} adsorption on the electrodes is affected by the presence of the aforementioned NO{sub x} storage compounds. Furthermore, non-tested and tested electrode microstructures have been thoroughly evaluated by scanning electron microscopy. The studies reveal addition of MnO{sub x} or K{sub 2}O to the electrodes cause severe degradation problems, and addition of these compounds is thus unsuitable for electrode improvement. In contrast, addition of BaO to LSM15-CGO10 electrodes is shown to have a very positive impact on the NO{sub x} conversion. The increased NO{sub x} conversion, following the BaO addition, is attributed to a combination of 1) a decreased electrode polarisation resistance and 2) an altered NO{sub x} adsorption. The NO{sub x} conversion is observed to increase strongly with polarisation, and during 9 V polarisation of an

  8. Comparative study on current limiting characteristics of flux-lock type SFCL with series or parallel connection of two coils

    International Nuclear Information System (INIS)

    Lim, S.H.

    2008-01-01

    We investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) with series or parallel connection of two coils. These two flux-lock type SFCLs with magnetically coupled two coils have the same operational principle that the fault current can be limited by the magnetic flux generated between two coils of the SFCL when a fault happens. In addition, the inductance ratio and the winding direction of two coils in both the SFCLs are the major design parameters that affect the fault current limiting characteristics of the SFCL. On the other hand, the operational current and the limiting impedance of both the SFCLs under the same design condition have the different tendency, which results from the different winding methods of two coils on an iron core. Therefore, the comparative study for both the SFCLs from the current limiting performance of the SFCL point of view is needed. To compare the current limiting characteristics of both the SFCLs, the operational current and the limiting impedance of the SFCL, which describes the performance of the SFCL, were derived from each SFCL's electrical equivalent circuit. Through the analysis for the fault current limiting experiments of both the SFCLs, the different current limiting characteristics of both the SFCLs were discussed

  9. Learning of time series through neuron-to-neuron instruction

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Y [Department of Physics, Kyoto University, Kyoto 606-8502, (Japan); Kinzel, W [Institut fuer Theoretische Physik, Universitaet Wurzburg, 97074 Wurzburg (Germany); Shinomoto, S [Department of Physics, Kyoto University, Kyoto (Japan)

    2003-02-07

    A model neuron with delayline feedback connections can learn a time series generated by another model neuron. It has been known that some student neurons that have completed such learning under the instruction of a teacher's quasi-periodic sequence mimic the teacher's time series over a long interval, even after instruction has ceased. We found that in addition to such faithful students, there are unfaithful students whose time series eventually diverge exponentially from that of the teacher. In order to understand the circumstances that allow for such a variety of students, the orbit dimension was estimated numerically. The quasi-periodic orbits in question were found to be confined in spaces with dimensions significantly smaller than that of the full phase space.

  10. Learning of time series through neuron-to-neuron instruction

    International Nuclear Information System (INIS)

    Miyazaki, Y; Kinzel, W; Shinomoto, S

    2003-01-01

    A model neuron with delayline feedback connections can learn a time series generated by another model neuron. It has been known that some student neurons that have completed such learning under the instruction of a teacher's quasi-periodic sequence mimic the teacher's time series over a long interval, even after instruction has ceased. We found that in addition to such faithful students, there are unfaithful students whose time series eventually diverge exponentially from that of the teacher. In order to understand the circumstances that allow for such a variety of students, the orbit dimension was estimated numerically. The quasi-periodic orbits in question were found to be confined in spaces with dimensions significantly smaller than that of the full phase space

  11. Disease-Related Detection with Electrochemical Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2017-10-01

    Full Text Available Rapid diagnosis of diseases at their initial stage is critical for effective clinical outcomes and promotes general public health. Classical in vitro diagnostics require centralized laboratories, tedious work and large, expensive devices. In recent years, numerous electrochemical biosensors have been developed and proposed for detection of various diseases based on specific biomarkers taking advantage of their features, including sensitivity, selectivity, low cost and rapid response. This article reviews research trends in disease-related detection with electrochemical biosensors. Focus has been placed on the immobilization mechanism of electrochemical biosensors, and the techniques and materials used for the fabrication of biosensors are introduced in details. Various biomolecules used for different diseases have been listed. Besides, the advances and challenges of using electrochemical biosensors for disease-related applications are discussed.

  12. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V

    2000-07-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX {yields} MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  13. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX → MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  14. Synthesis, characterization, magnetic and electrochemical properties of a new 3D hexa-copper-substituted germanotungstate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanzhou; Luo, Jie; Zhang, Yanting [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Zhao, Junwei, E-mail: zhaojunwei@henu.edu.cn [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Basic Experiment Teaching Center, Henan University, Kaifeng, Henan 475004 (China); Chen, Lijuan, E-mail: ljchen@henu.edu.cn [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Ma, Pengtao; Niu, Jingyang [Institute of Molecular and Crystal Engineering, Henan Key Lab of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2013-09-15

    An inorganic–organic hybrid hexa-copper-substituted germanotungstate Na{sub 2}[Cu(dap){sub 2}]{sub 2}[Cu(dap){sub 2}] ([Cu{sub 6}(H{sub 2}O){sub 2}(dap){sub 2}][B-α-GeW{sub 9}O{sub 34}]{sub 2})·4H{sub 2}O (1) (dap=1,2-diaminopropane) has been hydrothermally prepared and characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP–AES) analyses, IR spectra, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. 1 displays the six-connected 3D network with the long topological (O′Keefe) vertex symbol is 4·4·6{sub 4}·4·4·4·4·6{sub 4}·4·4·4·6{sub 4}·4·4·4 and the short vertex (Schläfli) symbol of 4{sup 12}6{sup 3}. Magnetic measurements indicate that there are the overall ferromagnetic exchange interactions in the belt-like hexa-Cu{sup II} cluster in 1. Furthermore, the electrochemical behavior and electrocatalysis of 1 modified carbon paste electrode (1-CPE) have been studied. The reductions of nitrite, bromate and hydrogen peroxide are principally mediated by the W{sup VI}-based wave. - Graphical abstract: A hexa-Cu{sup II} sandwiched germanotungstate has been synthesized and structurally characterized. The magnetic, solid-state electrochemical and electrocatalytic properties have been investigated. Display Omitted - Highlights: • Transition-metal substituted polyoxometalates. • Hexa-copper-substituted germanotungstate. • Six-connected 3D network. • Electrocatalytic reduction of nitrite, bromate and hydrogen peroxide.

  15. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  16. Spectroscopic and electrochemical study of polynuclear clusters from ruthenium acetate

    International Nuclear Information System (INIS)

    Cipriano, C.

    1989-01-01

    The chemistry of the trinuclear clusters [Ru sub(3) O (CH sub(3) CO sub(2)) sub(4) L sub(3)] where L = imidazole, pyridine or pyrazine type of ligands, was investigated based on spectroscopic and electrochemical techniques. These complexes are of great interest from the point of view of their electronic and redox properties, providing multisite species for electron transfer processes. They were isolated in solid state, and characterized by means of elementary analyses and infrared spectra. The electrochemical behaviour in acetonitrile solution was typically reversible; the cyclic voltammograms exhibited a series of four or five mono electronic waves ascribed to the sucessive Ru sup(IV) Ru sup(III) Ru sup(III) / Ru sup(III) Ru sup(III) Ru sup(III)/ --- Ru sup(II) Ru sup(II) Ru sup(II) redox couples. The differences between the successive redox potentials were about 1 V, indicating strong metal-metal interaction in the trinuclear Ru sub(3) centre. The E values were strongly sensitive to the nature of the N-heterocyclic ligand, increasing with the pi-acceptor properties of the pyridine and pyrazine derivatives, but in a much less pronounced way in the case of the imidazole derivatives. Resonance Raman studies for the pyrazine cluster showed selective intensification of the vibrational modes of the Ru-pyrazine chromophore, and the trinuclear centre, using excitation wavelengths coinciding with the metal-to-pyrazine and metal-metal bands, respectively. (author)

  17. The business case for connectivity

    Science.gov (United States)

    Adams, Dennis; Hirschheim, Rudy

    1991-01-01

    Information systems that provide competitive advantages to organizations can be broadly classified into those that improve the effectiveness of a business function and those that improve the reach of information in the organization. The latter, organizational connectivity systems, can be categorized as intraorganizational and interorganizational systems. Intraorganization systems provide connectivity to function areas within the business, while interorganizational systems support the exchange of business data between independent business units. These system are not confined to a single entity but span organizational boundaries which can be national or international in scope. A series of case studies was undertaken in an effort to better understand the issues and problems associated with providing an increased flow of information within and outside of an organization. Ten issues emerged from this study. In summary, it is necessary for firms to first consider how effective their internal communications systems are before launching projects that tie the organization to external systems.

  18. Domestic wastewater treatment and power generation in continuous flow air-cathode stacked microbial fuel cell: Effect of series and parallel configuration.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Hernández-Romano, Jesús; García-Sánchez, Liliana; Guillén Garcés, Rosa Angélica; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Moeller Chavez, Gabriela Eleonora

    2018-05-15

    In this study, a continuous flow stack consisting of 40 individual air-cathode MFC units was used to determine the performance of stacked MFC during domestic wastewater treatment operated with unconnected individual MFC and in series and parallel configuration. The voltages obtained from individual MFC units were of 0.08-1.1 V at open circuit voltage, while in series connection, the maximum power and current density were 2500 mW/m 2 and 500 mA/m 2 (4.9 V), respectively. In parallel connection, the maximum power and current density was 5.8 mW/m 2 and 24 mA/m 2 , respectively. When the cells were not connected to each other MFC unit, the main bacterial species found in the anode biofilms were Bacillus and Lysinibacillus. After switching from unconnected to series and parallel connections, the most abundant species in the stacked MFC were Pseudomonas aeruginosa, followed by different Bacilli classes. This study demonstrated that when the stacked MFC was switched from unconnected to series and parallel connections, the pollutants removal, performance electricity and microbial community changed significantly. Voltages drops were observed in the stacked MFC, which was mainly limited by the cathodes. These voltages loss indicated high resistances within the stacked MFC, generating a parasitic cross current. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-10-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.

  20. Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

    Science.gov (United States)

    Oakes, Landon; Westover, Andrew; Mares, Jeremy W.; Chatterjee, Shahana; Erwin, William R.; Bardhan, Rizia; Weiss, Sharon M.; Pint, Cary L.

    2013-01-01

    Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10–40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage. PMID:24145684

  1. Electrochemical Power Sources

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Electrochemical Power Sources - Rechargeable Batteries. A K Shukla S K Martha. General Article Volume 6 Issue 7 July 2001 pp 52-63. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. An Enzyme Switch Employing Direct Electrochemical Communication between Horseradish Peroxidase and a Poly(aniline) Film.

    Science.gov (United States)

    Bartlett, P N; Birkin, P R; Wang, J H; Palmisano, F; De Benedetto, G

    1998-09-01

    An enzyme switch, or microelectrochemical enzyme transistor, responsive to hydrogen peroxide was made by connecting two carbon band electrodes (∼10 μm wide, 4.5 mm long separated by a 20-μm gap) with an anodically grown film of poly(aniline). Horseradish peroxidase (EC 1.11.1.7) was either adsorbed onto the poly(aniline) film or immobilized in an insulating poly(1,2-diaminobenzene) polymer grown electrochemically on top of the poly(aniline) film to complete the device. In the completed device, the conductivity of the poly(aniline) film changes from conducting (between - 0.05 and + 0.3 V vs SCE at pH 5) to insulating (>+0.3 V vs SCE at pH 5) on addition of hydrogen peroxide. The change in conductivity is brought about by oxidation of the poly(aniline) film by direct electrochemical communication between the enzyme and the conducting polymer. This was confirmed by measuring the potential of the poly(aniline) film during switching of the conductivity in the presence of hydrogen peroxide. The devices can be reused by rereducing the poly(aniline) electrochemically to a potential below +0.3 V vs SCE. A blind test showed that the device can be used to determine unknown concentrations of H(2)O(2) in solution and that, when used with hydrogen peroxide concentrations below 0.5 mmol dm(-)(3), the same device maybe reused several times. The possible development of devices of this type for use in applications requiring the measurement of low levels of hydrogen peroxide or horseradish peroxidase is discussed.

  3. Fiction series and video games: Transmedia and gamification in Contemporary Audiovisual discourses

    Directory of Open Access Journals (Sweden)

    Francisco Julián Martínez Cano

    2016-05-01

    Full Text Available The connection between fiction series and video games is evident, and this relationship drives to new strategies to generate narratives within transmedia context. In this article we try to revise the connection between the two media through current productions, with the intention of identifying the contributions of the video game in the serial narrative universes. Within the context of the transmedia narrative discourses, strategies usually have emerged from the TV series to the video game. Currently this tendency is turning around, giving birth titles that have been fed from the video game as the primary source to draw up their storyline. Identifying the contributions of the video game to the transmedia ecosystem of contemporary audiovisual entertainment products, offers the chance to generate more attractive and innovative designs for the audience.

  4. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2016-08-01

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenization model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.

  5. Electrochemical characterization of praseodymia doped zircon. Catalytic effect on the electrochemical reduction of molecular oxygen in polar organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio, E-mail: antonio.domenech@uv.es [Departament de Quimica Analitica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain); Montoya, Noemi; Alarcon, Javier [Departament de Quimica Inorganica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain)

    2011-08-01

    Highlights: > Electrochemical characterization of Pr centers in praseodymia-doped zircon. > Study of the catalytic effect on the reduction of peroxide radical anion in nonaqueous solvents. > Assessment of non-uniform distribution of Pr centers in the zircon grains. - Abstract: The voltammetry of microparticles and scanning electrochemical microscopy methodologies are applied to characterize praseodymium centers in praseodymia-doped zircon (Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4}; y + z = x; 0.02 < x < 0.10) specimens prepared via sol-gel synthetic routes. In contact with aqueous electrolytes, two overlapping Pr-centered cathodic processes, attributable to the Pr (IV) to Pr (III) reduction of Pr centers in different sites are obtained. In water-containing, air-saturated acetone and DMSO solutions as solvent, Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} materials produce a significant catalytic effect on the electrochemical reduction of peroxide radical anion electrochemically generated. These electrochemical features denote that most of the Pr centers are originally in its 4+ oxidation state in the parent Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} specimens. The variation of the catalytic performance of such specimens with potential scan rate, water concentration and Pr loading suggests that Pr is not uniformly distributed within the zircon grains, being concentrated in the outer region of such grains.

  6. Electrochemical Chloride extraction using external electrodes?

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    Electrochemical methods for the removal of chloride from concrete have been developed and the methods are primarily designed for situations where corrosion has started due to an increased chloride concentration in the vicinity of the reinforcement. In these methods the reinforcement is used...... as the cathode. However, some unwanted side effects can occur, including alkali-silica reaction and in some cases hydrogen embrittlement. It is also suggested also to use electrochemical chloride extraction in a preventive way in constructions where chloride induced corrosion is likely to be a problem after...... a period of time, i.e. remove the chlorides before the chloride front reaches the reinforcement. If the chlorides are removed from outer few centimetres from the surface, the chloride will not reach the reinforcement and cause damage. By using the electrochemical chloride removal in this preventive way...

  7. Pulse electrochemical meso/micro/nano ultraprecision machining technology.

    Science.gov (United States)

    Lee, Jeong Min; Kim, Young Bin; Park, Jeong Woo

    2013-11-01

    This study demonstrated meso/micro/nano-ultraprecision machining through electrochemical reactions using intermittent DC pulses. The experiment focused on two machining methods: (1) pulse electrochemical polishing (PECP) of stainless steel, and (2) pulse electrochemical nano-patterning (PECNP) on a silicon (Si) surface, using atomic force microscopy (AFM) for fabrication. The dissolution reaction at the stainless steel surface following PECP produced a very clean, smooth workpiece. The advantages of the PECP process included improvements in corrosion resistance, deburring of the sample surface, and removal of hydrogen from the stainless steel surface as verified by time-of-flight secondary-ion mass spectrometry (TOF-SIMS). In PECNP, the electrochemical reaction generated within water molecules produced nanoscale oxide textures on a Si surface. Scanning probe microscopy (SPM) was used to evaluate nanoscale-pattern processing on a Si wafer surface produced by AFM-PECNP For both processes using pulse electrochemical reactions, three-dimensional (3-D) measurements and AFM were used to investigate the changes on the machined surfaces. Preliminary results indicated the potential for advancing surface polishing techniques and localized micro/nano-texturing technology using PECP and PECNP processes.

  8. Electrochemical immunosensors - A powerful tool for analytical applications.

    Science.gov (United States)

    Felix, Fabiana S; Angnes, Lúcio

    2018-04-15

    Immunosensors are biosensors based on interactions between an antibody and antigen on a transducer surface. Either antibody or antigen can be the species immobilized on the transducer to detect antigen or antibody, respectively. Because of the strong binding forces between these biomolecules, immunosensors present high selectivity and very high sensitivity, making them very attractive for many applications in different science fields. Electrochemical immunosensors explore measurements of an electrical signal produced on an electrochemical transductor. This signal can be voltammetric, potentiometric, conductometric or impedimetric. Immunosensors utilizing electrochemical detection have been explored in several analyses since they are specific, simple, portable, and generally disposable and can carry out in situ or automated detection. This review addresses the potential of immunosensors destined for application in food and environmental analysis, and cancer biomarker diagnosis. Emphasis is given to the approaches that have been used for construction of electrochemical immunosensors. Additionally, the fundamentals of immunosensors, technology of transducers and nanomaterials and a general overview of the possible applications of electrochemical immunosensors to the food, environmental and diseases analysis fields are described. Copyright © 2017. Published by Elsevier B.V.

  9. Evaluation of electrochemical ion exchange for cesium elution

    International Nuclear Information System (INIS)

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes

  10. The Strategic Electrochemical Research Center in Denmark

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels

    2011-01-01

    A 6-year strategic electrochemistry research center (SERC) in fundamental and applied aspects of electrochemical cells with a main emphasis on solid oxide cells was started in Denmark on January 1st, 2007 in cooperation with other Danish and Swedish Universities. Furthermore, 8 Danish companies...... are presented. ©2011 COPYRIGHT ECS - The Electrochemical Society...

  11. Carbon Nanostructures for Tagging in Electrochemical Biosensing: A Review

    Directory of Open Access Journals (Sweden)

    Paloma Yáñez-Sedeño

    2017-01-01

    Full Text Available Growing demand for developing ultrasensitive electrochemical bioassays has led to the design of numerous signal amplification strategies. In this context, carbon-based nanomaterials have been demonstrated to be excellent tags for greatly amplifying the transduction of recognition events and simplifying the protocols used in electrochemical biosensing. This relevant role is due to the carbon-nanomaterials’ large surface area, excellent biological compatibility and ease functionalization and, in some cases, intrinsic electrochemistry. These carbon-based nanomaterials involve well-known carbon nanotubes (CNTs and graphene as well as the more recent use of other carbon nanoforms. This paper briefly discusses the advantages of using carbon nanostructures and their hybrid nanocomposites for amplification through tagging in electrochemical biosensing platforms and provides an updated overview of some selected examples making use of labels involving carbon nanomaterials, acting both as carriers for signal elements and as electrochemical tracers, applied to the electrochemical biosensing of relevant (biomarkers.

  12. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  13. Fabrication of Electrochemically Reduced Graphene Oxide Modified Gas Diffusion Electrode for In-situ Electrochemical Advanced Oxidation Process under Mild Conditions

    International Nuclear Information System (INIS)

    Dong, Heng; Su, Huimin; Chen, Ze; Yu, Han; Yu, Hongbing

    2016-01-01

    With aim to develop an efficient heterogeneous metal-free cathodic electrochemical advance oxidation process (CEAOP) for persistent organic pollutants (POPs) removal from wastewater under mild conditions, electrochemically reduced graphene oxide (ERGO)-modified gas diffusion electrode (GDE) was prepared for oxygen-containing radicals production via electrochemical oxygen reduction reaction (ORR). A detailed physical characterization was carried out by SEM, Raman spectroscopy, XRD and XPS. The electrocatalytic behavior for ORR was investigated by electrochemical measurements and electrolysis experiments under constant current density. Bisphenol A (BPA) of 20 mg L −1 was used as a model of POPs to evaluate the performance of the CEAOP with ERGO-modified GDE. The results showed that the defects concentration and electrochemical active sites of the ERGO was increased as the reduction time (30 min, 60 min and 120 min), leading to different catalysis on ORR. ·O 2 generation via one-electron ORR was found under the electrocatalysis of ERGO (60 min and 120 min), contributing to a complete degradation of BPA within 20 min and a mineralization current efficiency (MCE) of 74.60%. An alternative metal-free CEAOP independent of Fenton reaction was established based on ERGO-modified GDE for POPs removal from wastewater under mild conditions.

  14. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Supercapacitive characteristics of electrochemically active porous materials

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-06-01

    Full Text Available The results of an investigation of the capacitive characteristics of sol–gel-processed titanium- and carbon-supported electrochemically active noble metal oxides, as representatives of porous electrode materials, are presented in the lecture. The capacitive properties of these materials were correlated to their composition, the preparation conditions of the oxides and coatings, the properties of the carbon support and to the composition of the electrolyte. The results of the electrochemical test methods, cyclic voltammetry and electrochemical impedance spectroscopy, were employed to resolve the possible physical structures of the mentioned porous materials, which are governed by the controlled conditions of the preparation of the oxide by the sol–gel process.

  16. 3,5-Diamino-1,2,4-triazole@electrochemically reduced graphene oxide film modified electrode for the electrochemical determination of 4-nitrophenol

    International Nuclear Information System (INIS)

    Kumar, Deivasigamani Ranjith; Kesavan, Srinivasan; Baynosa, Marjorie Lara; Shim, Jae-Jin

    2017-01-01

    Highlights: •Triazole film was formed on electrochemically reduced graphene oxide. •pDAT@ERGO/GC was utilized for the electrochemical determination of 4-nitrophenol. •pDAT@ERGO/GC electrode offered wide concentration and nanomolar detection limit. •The fabricated electrode was employed in water sample analyses. -- Abstract: In this study, an eco-friendly benign method for the modification of electrochemically reduced graphene oxide (ERGO) on glassy carbon (GC) surface and electrochemical polymerized 3,5-diamino-1,2,4-triazole (DAT) film composite (pDAT@ERGO/GC) electrode was developed. The surface morphologies of the pDAT@ERGO/GC modified electrode were analyzed by field emission scanning electron microscopy (FESEM). FESEM images indicated that the ERGO supported pDAT has an almost homogeneous morphology structure with a size of 70 to 80 nm. It is due to the water oxidation reaction occurred while pDAT@ERGO/GC fabrication peak at +1.4 V leads to O 2 evolution and oxygen functional group functionalization on ERGO, which confirmed by X-ray photoelectron spectroscopy (XPS). In contrast, the bare GC modified with pDAT showed randomly arranged irregular bulky morphology structure compared to those of pDAT@ERGO/GC. Electrochemical reduction of graphene oxide was confirmed by Raman spectroscopy, XPS, and electrochemical impedance spectroscopy (EIS). The pDAT@ERGO/GC modified electrode was used for the electrochemical determination of 4-nitrophenol (4-NP). The 4-NP oxidation peak was observed at +0.25 V, and the differential pulse voltammetry demonstrated wide concentration range (5–1500 μM), high sensitivity (0.7113 μA μM −1 ), and low limit of detection (37 nM). Moreover, the pDAT@ERGO/GC electrode was applied to real water sample analysis by standard addition method, where in good recoveries (97.8% to 102.4%) were obtained.

  17. Electro-chemical grinding

    Science.gov (United States)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  18. Synthesis and electrochemical properties of tetrathienyl-linked branched polymers with various aromatic cores

    International Nuclear Information System (INIS)

    Idzik, Krzysztof R.; Frydel, Jaroslaw; Beckert, Rainer; Ledwon, Przemyslaw; Lapkowski, Mieczyslaw; Fasting, Carlo; Müller, Carsten; Licha, Tobias

    2012-01-01

    A series of various tris(2,2′-bithiophen-5-yl)-aromatic derivatives were synthesized by Stille cross-coupling procedure. Their structures were characterized by 1 H NMR, 13 C NMR, and elemental analysis. DFT calculations for monomers were also performed. The optical properties of the synthesized materials as well as their energy levels were investigated by UV–vis absorption supported by fluorescence spectra and CV analysis. Oligomers obtained in the process of electropolymerization, possess a tetrathienyl bond with various aromatic and heteroaromatic cores. Electrochemical results confirm that the gained materials can apply successfully for a diversity of organic–electronic devices like organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic solar cells.

  19. Nature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Monika Bakierska

    2016-08-01

    Full Text Available In this work, nanostructured LiMn2O4 (LMO and LiMn2O3.99S0.01 (LMOS1 spinel cathode materials were comprehensively investigated in terms of electrochemical properties. For this purpose, electrochemical impedance spectroscopy (EIS measurements as a function of state of charge (SOC were conducted on a representative charge and discharge cycle. The changes in the electrochemical performance of the stoichiometric and sulphur-substituted lithium manganese oxide spinels were examined, and suggested explanations for the observed dependencies were given. A strong influence of sulphur introduction into the spinel structure on the chemical stability and electrochemical characteristic was observed. It was demonstrated that the significant improvement in coulombic efficiency and capacity retention of lithium cell with LMOS1 active material arises from a more stable solid electrolyte interphase (SEI layer. Based on EIS studies, the Li ion diffusion coefficients in the cathodes were estimated, and the influence of sulphur on Li+ diffusivity in the spinel structure was established. The obtained results support the assumption that sulphur substitution is an effective way to promote chemical stability and the electrochemical performance of LiMn2O4 cathode material.

  20. Topology and Control of Transformerless High Voltage Grid-connected PV System Based on Cascade Step-up Structure

    DEFF Research Database (Denmark)

    Yang, Zilong; Wang, Zhe; Zhang, Ying

    2017-01-01

    -up structure, instead of applying line-frequency step-up transformer, is proposed to connect PV directly to the 10 kV medium voltage grid. This series-connected step-up PV system integrates with multiple functions, including separated maximum power point tracking (MPPT), centralized energy storage, power...

  1. Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors

    KAUST Repository

    Nielsen, Christian B.

    2016-07-22

    The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous envi-ronment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially availa-ble conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore operated in depletion mode. Here, we present a series of semiconducting polymers designed to elucidate important structure-property guidelines required for accumulation mode OECT operation. We discuss key aspects relating to OECT performance such as ion and hole transport, elec-trochromic properties, operational voltage and stability. The demonstration of our molecular design strategy is the fabrication of accumulation mode OECTs that clearly outperform state-of-the-art PEDOT based devices, and show stability under aqueous oper-ation without the need for formulation additives and cross-linkers.

  2. Influence of electrochemical pre-treatment on highly reactive carbon nitride thin films deposited on stainless steel for electrochemical applications

    International Nuclear Information System (INIS)

    Benchikh, A.; Debiemme-Chouvy, C.; Cachet, H.; Pailleret, A.; Saidani, B.; Beaunier, L.; Berger, M.H.

    2012-01-01

    In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have been investigated as electrode materials. While their wide potential window was confirmed as a property shared by boron doped diamond (BDD) electrodes, their electrochemical activity with respect to fast and reversible redox systems, [Ru(NH 3 ) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and [IrCl 6 ] 2−/3− , was assessed by Electrochemical Impedance Spectroscopy (EIS) after cathodic or anodic electrochemical pre-treatments or for as grown samples. It was shown for the three systems that electrochemical reactivity of the a-CNx films was improved after the cathodic pre-treatment and degraded after the anodic one, the apparent heterogeneous rate constant k 0app being decreased by at least one order of magnitude for the latter case. A high k 0app value of 0.11 cm s −1 for [IrCl 6 ] 2−/3− was obtained, close to the highest values found for BDD electrodes.

  3. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  4. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  5. Electrochemical Implications of Defects in Carbon Nanotubes

    Science.gov (United States)

    Hall, Jonathan Peter

    The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multi-walled CNT morphologies. The controlled addition of argon, hydrogen, and chlorine ions in addition to atomic hydrogen and magnesium vapor was used for varying the charge and type of extrinsic defects. To quantify changes in the CNTs upon treatment, Raman spectroscopy and electrochemical techniques were employed. It was indicated from Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and chronopotentiometric experiments that the electrochemical response of hollow type CNTs could be tailored more significantly compared to bamboo type CNTs, which have innately high reactive site densities and are less amenable to modification. Total defect density and edge-plane-like defect concentrations monitored through Raman spectroscopy were used to correlate changes in the electrochemical response of the CNT electrodes as a function of treatment. The implementation of CNT electrodes in a prototypical electrolytic capacitor device was then explored and characterized. Dependencies on source current and redox couple concentration were evaluated, as well as changes in the total capacitance as a function of treatment. Cyclability studies were also performed as a function of source current magnitude to evaluate the longevity of the faradaic currents which typically decrease over time in other similar capacitors. This thesis then concludes with an overall summary of the themes and findings of the research presented in this work.

  6. Connected Lighting System Interoperability Study Part 1: Application Programming Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gaidon, Clement [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poplawski, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-10-31

    First in a series of studies that focuses on interoperability as realized by the use of Application Programming Interfaces (APIs), explores the diversity of such interfaces in several connected lighting systems; characterizes the extent of interoperability that they provide; and illustrates challenges, limitations, and tradeoffs that were encountered during this exploration.

  7. Accounting Issues: An Essay Series Part IV--Property, Plant, & Equipment

    Science.gov (United States)

    Laux, Judy

    2007-01-01

    This fourth article in a series of theoretical essays intended to supplement the introductory financial accounting course is dedicated to the topic of property, plant, and equipment (PP&E), including both the accounting treatment and its related conceptual connections. The paper also addresses the measurement dilemmas, scandalous accounting…

  8. Equipment for electrochemical etching of dielectric track detectors

    International Nuclear Information System (INIS)

    Turek, K.; Novak, M.

    1992-01-01

    The facility is designed for electrochemical etching of solid state track detectors, devised for thicknesses in excess of 200 μm as employed for direct detection of charged particles or neutrons. The device consists of a high-voltage a.c. supply for the electrodes and an assembly whose body consists of a flat tank, on the surface of which is formed a channel for feeding the heating and cooling media. The tank is covered by a gasket, an earthed metal plate for the detector, a mask with holes determining the shape of the etched area, and a pressure plate. The pressure plate is fitted with a system of holes for the etching solution. Needle-shaped high-voltage electrodes are accommodated in the holes of the mask. The underlying principle of the invention consists in the fact that a rubber pad with guide holes for the needle-shaped electrodes lies on the pressure plate. Each electrode is composed of a central tip and an outer jacket, separated by an insulating layer; connection is provided by a light emitting diode. (Z.S.). 2 figs

  9. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes

    KAUST Repository

    Wei, Shuya

    2017-12-11

    research practices makes it difficult to translate promising literature results, underscoring the importance of research designed to reveal principles for good interphase design. This Account considers the fundamental processes involved in interphase formation, stability, and failure and on that basis identifies design principles, synthesis procedures, and characterization methods for enabling stable metal anode–electrolyte interfaces for EES. We first review results from experimental, continuum theoretical, and computational analyses of interfacial transport to identify fundamental connections between the composition of the SEI at metal–electrolyte interfaces and stability. Design principles and tools for creating stable artificial solid–electrolyte interphases (ASEIs) based on polymers, ionic liquids, ceramics, nanoparticles, salts, and their combinations are subsequently discussed. Interphases composed of a second electrochemically active material that stores charge by different processes from the underlying metal electrode emerge as particularly attractive routes toward so-called hybrid electrodes that enable facile scale-up of ASEI designs for commercially relevant EES.

  10. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi, E-mail: tsuyo@cc.tuat.ac.jp

    2015-02-11

    Highlights: • Feline calicivirus was inactivated electrochemically by a factor of >5 log. • The electrochemical treatment was performed at 0.9 V (vs. Ag/AgCl) for 15 min. • Electrochemical treatment caused oxidation of viral proteins. • Oxidation of viral proteins can lead to loss of viral structural integrity. - Abstract: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  11. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    International Nuclear Information System (INIS)

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi; Alanyalıoğlu, Murat

    2014-01-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemical approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene

  12. Electrochemical and spectroscopic study on thiolation of polyaniline

    International Nuclear Information System (INIS)

    Blomquist, Maija; Bobacka, Johan; Ivaska, Ari; Levon, Kalle

    2013-01-01

    Highlights: ► We have thiolated and characterized polyaniline films in order to verify that the thiolation process has taken place. ► Such extensive characterization of thiolation of polyaniline has not previously been reported. ► Thiolation alters the electrochemical properties of polyaniline and the process should be understood. ► Through thiolation many reactive groups may covalently be bound to the polymer backbone. ► Possibility of covalent binding makes polyaniline films an attractive substrate for, e.g., biosensors. -- Abstract: Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopies, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The goal of this work was to confirm the thiolation by spectroscopic methods and to study the impact of thiolation on the electrochemical properties of PANI. Our study showed that thiolated PANI has different electrochemical properties than PANI. Although the thiolation partially reduced the PANI backbone it still remained conductive after the thiolation. Detailed understanding of the thiolation process can be very useful for future applications of PANI

  13. Transition edge sensor series array bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J, E-mail: joern.beyer@ptb.d [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)

    2010-10-15

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  14. Transition edge sensor series array bolometer

    International Nuclear Information System (INIS)

    Beyer, J

    2010-01-01

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  15. Diversity in electrochemical oxidation of dihydroxybenzenes in the ...

    Indian Academy of Sciences (India)

    Abstract. Electrochemical oxidation of some catechol derivatives (1a–e) have been studied in water/ acetonitrile solution containing 1-methylindole (3) as a nucleophile, using cyclic voltammetry and controlled- potential coulometry. An interesting diversity in the mechanisms has been observed in electrochemical oxidation ...

  16. Studies on direct and indirect electrochemical immunoassays

    OpenAIRE

    Buckley, Eileen

    1989-01-01

    Two approaches to electrochemical immunoassay are reported. The first approach was an indirect method, involving an electroactive, enzyme-catalysed, substrate to product reaction. Conditions were optimised for the amperometric detection of para-aminophenol, the electroactive product of the alkaline phosphatase catalysed hydrolysis of a new substrate, p-aminophenylphosphate, after separation by HPLC. The second approach involved the direct electrochemical detection of an immunoglo...

  17. Science and Technology Text Mining: Electrochemical Power

    Science.gov (United States)

    2003-07-14

    electrodes) and improvements based on component materials (glassy carbon, carbon fibers, aerogels , thin films). A focal point of electrochemical capacitor...performance of carbon aerogels ; and the fabrication and application of Cu-carbon composite (prepared from sawdust) to electrochemical capacitor electrodes. xi...applications require decreases in size and weight, especially for space, aircraft , and individual soldier or small team applications. For large volumes

  18. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....... These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter...

  19. A Crossed Pack-to-Cell Equalizer Based on Quasi-Resonant LC Converter with Adaptive Fuzzy Logic Equalization Control for Series-connected Lithium-Ion Battery Strings

    DEFF Research Database (Denmark)

    Shang, Yunlong; Zhang, Chenghui; Cui, Naxin

    2015-01-01

    The equalization speed, efficiency, and control are the key issues of battery equalization. This paper proposes a crossed pack-to-cell equalizer based on quasi-resonant LC converter (QRLCC). The battery string is divided into M modules, and each module consists of N series-connected cells....... The energy can be transferred directly from a battery module to the lowest voltage cell (LVC) in the next adjacent module, which results in an enhancement of equalization efficiency and current. The QRLCC is employed to gain zero-current switching (ZCS), leading to a reduction of power losses......-equalization. A prototype with eight lithiumion battery cells is implemented. Experimental results show the proposed scheme exhibits outstanding balancing performance, and the equalization efficiency is higher than 98%. The proposed AFLC algorithm abridges the total equalization time about 47%, and reduces the switching...

  20. A Comparative Electrochemical-Ozone Treatment for Removal of Phenolphthalein

    Directory of Open Access Journals (Sweden)

    V. M. García-Orozco

    2016-01-01

    Full Text Available The degradation of aqueous solutions containing phenolphthalein was carried out using ozone and electrochemical processes; the two different treatments were performed for 60 min at pH 3, pH 7, and pH 9. The electrochemical oxidation using boron-doped diamond electrodes processes was carried out using three current density values: 3.11 mA·cm−2, 6.22 mA·cm−2, and 9.33 mA·cm−2, whereas the ozone dose was constantly supplied at 5±0.5 mgL−1. An optimal degradation condition for the ozonation treatment is at alkaline pH, while the electrochemical treatment works better at acidic pH. The electrochemical process is twice better compared with ozonation.

  1. Study of rectenna array connection

    Energy Technology Data Exchange (ETDEWEB)

    Miura, T.; Shinohara, N.; Matsumoto, H. [Kyoto Univ., Uji (Japan). Engineering Research Inst.

    1997-11-01

    A study was conducted in which a new rectenna working at 2.45 GHz microwave was developed for ground-to-ground microwave power transmission. The new rectenna consists of an antenna section and a rectifying section. The new design is simple and therefore more accurate than a micro-strip type patch antenna. The efficiency of conversion of microwave power to direct current depends on the mutual dependence of antenna elements and circuit conditions of rectifying sections. A series of experiments were conducted to analyze the rectenna characteristics and a method for efficiently connecting rectenna arrays was proposed. 3 refs., 2 tabs., 15 figs.

  2. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.

    2012-01-01

    application of advanced methods for detailed electrochemical characterisation during operation. An operating stack is subject to steep compositional gradients in the gaseous reactant streams, and significant temperature gradients across each cell and across the stack, which makes it a complex system...... Fuel Cell A/S was characterised in detail using electrochemical impedance spectroscopy. An investigation of the optimal geometrical placement of the current probes and voltage probes was carried out in order to minimise measurement errors caused by stray impedances. Unwanted stray impedances...... are particularly problematic at high frequencies. Stray impedances may be caused by mutual inductance and stray capacitance in the geometrical set-up and do not describe the fuel cell. Three different stack geometries were investigated by electrochemical impedance spectroscopy. Impedance measurements were carried...

  3. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  4. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    Science.gov (United States)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  5. Ordered mesoporous carbon for electrochemical sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ndamanisha, Jean Chrysostome [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Universite du Burundi, Institut de pedagogie appliquee, B.P. 5223, Bujumbura (Burundi); Guo Liping, E-mail: guolp078@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2012-10-17

    Highlights: Black-Right-Pointing-Pointer The preparation and functionalization of ordered mesoporous carbon. Black-Right-Pointing-Pointer Their applications as electrochemical sensors with high electrocatalytic activity. Black-Right-Pointing-Pointer A promising electrode material based on its interesting properties. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters in the mesopore range, ordered mesoporous carbon (OMC) is suitable for applications in catalysis and sensing. We report recent applications of OMC in electrochemical sensors and biosensors. After a brief description of the electrochemical properties, the functionalization of the OMC for improvement of the electrocatalytic properties is then presented. We show how the ordered mesostructure of OMC is very important in those applications. The high density of edge plane-like defective sites (EDSs), oxygen-containing groups and a large surface area on OMC may provide many favorable sites for electron transfer to compounds, which makes OMC a potential novel material for an investigation of the electrochemical behavior of substances. Moreover, the structural capabilities of OMC at the scale of a few nanometers agree with immobilization of other electrocataytic substances. Interesting properties of this material may open up a new approach to study the electrochemical determination of other biomolecules.

  6. Nitrogen-Doped Three Dimensional Graphene for Electrochemical Sensing.

    Science.gov (United States)

    Yan, Jing; Chen, Ruwen; Liang, Qionglin; Li, Jinghong

    2015-07-01

    The rational assembly and doping of graphene play an crucial role in the improvement of electrochemical performance for analytical applications. Covalent assembly of graphene into ordered hierarchical structure provides an interconnected three dimensional conductive network and large specific area beneficial to electrolyte transfer on the electrode surface. Chemical doping with heteroatom is a powerful tool to intrinsically modify the electronic properties of graphene due to the increased free charge-carrier densities. By incorporating covalent assembly and nitrogen doping strategy, a novel nitrogen doped three dimensional reduced graphene oxide nanostructure (3D-N-RGO) was developed with synergetic enhancement in electrochemical behaviors. The as prepared 3D-N-RGO was further applied for catechol detection by differential pulse voltammetry. It exhibits much higher electrocatalytic activity towards catechol with increased peak current and decreased potential difference between the oxidation and reduction peaks. Owing to the improved electro-chemical properties, the response of the electrochemical sensor varies linearly with the catechol concentrations ranging from 5 µM to 100 µM with a detection limit of 2 µM (S/N = 3). This work is promising to open new possibilities in the study of novel graphene nanostructure and promote its potential electrochemical applications.

  7. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.

    Science.gov (United States)

    Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-11-06

    A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.

  8. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-29

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  9. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Yoon, Yeoheung; Lee, Hyoyoung; Lee, Keunsik

    2016-01-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp 2 -bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications. (topical review)

  10. Destructive impact of molecular noise on nanoscale electrochemical oscillators

    Science.gov (United States)

    Cosi, Filippo G.; Krischer, Katharina

    2017-06-01

    We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.

  11. Frumkin–Butler–Volmer Theory and Mass Transfer in Electrochemical Cells1

    NARCIS (Netherlands)

    Van Soestbergen, M.

    2012-01-01

    An accurate mathematical description of the charge transfer rate at electrodes due to an electrochemical reaction is an indispensable component of any electrochemical model. In the current work we use the generalized Frumkin-Butler–Volmer (gFBV) equation to describe electrochemical reactions, an

  12. Progress in the electrochemical modification of graphene-based materials and their applications

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Low, C.T.J.; Brandon, N.P.; Yufit, V.; Hashim, M.A.; Irfan, M.F.; Akhtar, J.; Ruiz-Trejo, E.; Hussain, M.A.

    2013-01-01

    Highlights: • Six means of functionalizing graphene electrochemically is reviewed. • Electrochemical functionalization is relatively new to other standard methods. • The technique is expected to improve graphene's application range considerably. -- Abstract: Graphene is a 2D allotrope of carbon with exciting properties such as extremely high electronic conductivity and superior mechanical strength. It has considerable potential for applications in fields such as bio-sensors, electrochemical energy storage and electronics. In most cases, graphene has been functionalized and modified with other materials to prepare composites. This work reviews the electrochemical modification of graphene. Commencing with a brief history, a summary of several different means of modifying graphene to effect diverse applications is provided. This is followed by a discussion on different composite materials that have been prepared with reduced graphene oxide prior to moving onto a detailed consideration of six different methods of electrochemically modifying graphene to prepare composite materials. These methods involve cathodic reduction of graphene oxide, electrophoretic deposition, electro-deposition techniques, electrospinning, electrochemical doping and electrochemical polymerization. Finally a consideration on the applications of electrochemically modified graphene composite materials in various fields is presented prior to discussing some prospects in enhancing the electrochemical process to realize excellent and economic composite materials in bulk

  13. New Recursive Representations for the Favard Constants with Application to Multiple Singular Integrals and Summation of Series

    Directory of Open Access Journals (Sweden)

    Snezhana Georgieva Gocheva-Ilieva

    2013-01-01

    Full Text Available There are obtained integral form and recurrence representations for some Fourier series and connected with them Favard constants. The method is based on preliminary integration of Fourier series which permits to establish general recursion formulas for Favard constants. This gives the opportunity for effective summation of infinite series and calculation of some classes of multiple singular integrals by the Favard constants.

  14. In-situ hydrothermal synthesis of three-dimensional MnO2-CNT nanocomposites and their electrochemical properties

    International Nuclear Information System (INIS)

    Teng, Fei; Santhanagopalan, Sunand; Wang, Ying; Meng, Dennis Desheng

    2010-01-01

    Three-dimensional (3-D) MnO 2 -carbon nanotube (CNT) nanocomposites were prepared by a simple one-pot hydrothermal method. An electrode was then prepared with these nanocomposites. For comparative investigation, MnO 2 microspheres were also hydrothermally prepared without adding CNTs. The as-synthesized MnO 2 microspheres were then mechanically mixed with CNTs to prepare a subsequent electrode. The samples were characterized by electron microscopy, X-ray diffraction, and electrochemical methods. It has been revealed that a 3-D conductive network of CNTs was formed with microspheres of MnO 2 nanorods interwoven with and connected by CNTs. As a result, the hydrothermally mixed MnO 2 -CNT electrode showed a higher specific capacitance than the mechanically mixed electrode. It has therefore been concluded that the hydrothermal mixing method yields a more homogeneous product that is better suited to take full advantages of both the high capacitance of MnO 2 and the high electrical conductivity of CNTs. The 3-D MnO 2 -CNT nanocomposites reported herein have provided a promising electrode material for supercapacitors and other electrochemical energy storage/conversion devices.

  15. Alternating voltage-induced electrochemical synthesis of colloidal Au nanoicosahedra

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Kevin; Cloud, Jacqueline E.; Yang, Yongan, E-mail: yonyang@mines.edu [Colorado School of Mines, Department of Chemistry and Geochemistry (United States)

    2013-11-15

    A simple method of alternating voltage-induced electrochemical synthesis has been developed to synthesize highly dispersed colloidal Au nanoicosahedra of 14 ± 3 nm in size. This simple and effective method uses a common transformer to apply a zero-offset alternating voltage to a pair of identical Au electrodes that are immersed in an electrolyte solution containing ligands. The obtained Au nanoicosahedra in this work are among the smallest Au icosahedra synthesized in aqueous solutions. A series of experimental conditions have been studied, such as voltage, the electrolyte identity and concentration, stabilizer identity and concentration, and reaction temperature. The mechanistic study indicates that Au nanoicosahedra are produced on electrode surfaces through an intermediate state of AuO{sub x}. The kinetic rate constant of these Au icosahedra in catalyzing the reduction of 4-nitrophenol with sodium borohydride is found much larger than the literature values of similar Au nanocrystals. In addition, the synthesis of Au–Pd-alloyed NCs has also been attempted.Graphical Abstract.

  16. Efficient electrochemical degradation of multiwall carbon nanotubes.

    Science.gov (United States)

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  17. Electrochemical miRNA Biosensors: The Benefits of Nanotechnology

    Directory of Open Access Journals (Sweden)

    Mostafa Azimzadeh

    2017-02-01

    Full Text Available The importance of nanotechnology in medical technologies, especially biomedical diagnostics, is indubitable. By taking advantages of nanomaterials, many medical diagnostics methods have been developed so far, including electrochemical nanobiosensors. They have been used for quantification of different clinical biomarkers for detecting, screening, or follow up a disease. microRNAs (miRNAs are one of the most recent and reliable biomarkers used for biomedical diagnosis of various diseases including different cancer types. In addition, there are many electrochemical nanobiosensors explained in publications, patents, and/or a commercial device which have been fabricated for detection or quantification of valuable miRNAs. The aim of this article is to review the concept of medical diagnostics, biosensors, electrochemical biosensors and to emphasize the role of nanotechnology in nanobiosensor development and performance for application in microRNAs detection for biomedical diagnosis. We have also summarized recent ideas and advancements in the field of electrochemical nanobiosensors for miRNA detection, and the important breakthroughs are also explained.

  18. A note on the nucleation with multiple steps: Parallel and series nucleation

    OpenAIRE

    Iwamatsu, Masao

    2012-01-01

    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized and the extension to the more complex nucleation process is su...

  19. Electrochemical and computational studies, in protic medium, of Morita-Baylis-Hillman adducts and correlation with leishmanicidal activity

    International Nuclear Information System (INIS)

    Paiva, Yen G. de; Pinho Júnior, Waldomiro; Souza, Antonio A. de; Costa, Cícero O.; Silva, Fábio P.L.; Lima-Junior, Cláudio G.; Vasconcellos, Mario L.A.A.; Goulart, Marília O.F.

    2014-01-01

    Highlights: • Twelve Morita-Baylis-Hillman adducts (MBHA) with significant leishmanicidal activity were studied by electrochemical and computational techniques, in protic media. • Ortho compounds for each series showed more negative reduction potentials than their positional isomers. • Less stable hydroxylamines were formed for ortho derivatives. • There is an inverse correlation between electrochemical parameters and bioactivity. - Abstract: Enzymatic bioreduction of nitro groups plays an important role on the activity of biologically active nitroaromatic compounds. Electrochemical methods are useful tools to simulate in vivo metabolic processes. This work presents electrochemical studies, in protic media (EtOH + phosphate buffer 4:6), using cyclic voltammetry (CV) of twelve Morita-Baylis-Hillman adducts (MBHA) with significant leishmanicidal activity. To facilitate the analysis, the molecules were grouped in four classes according to their side chains. Cyclic voltammograms display, in all cases, only one cathodic wave related to the formation of the correspondent hydroxylamines, which suffer further oxidation generating the nitroso derivatives in a sequential cycle. Ortho compounds exhibit more negative reduction potentials compared to the other isomers, in the same chemical class. This phenomenon could be related not only to structural effects but also to the presence of solvation spheres during the electroreduction process and/or stabilization of the resulting hydroxylamine. A proposal to explain the higher leishmanicidal activity of the ortho compounds compared with the meta and para compounds was suggested based on theoretical calculations (HF/6-31 + G */PCM, water, as a calculation level) that indicated lower thermodynamic stability for the ortho, in comparison to the corresponding meta and para hydroxylamines, fact that may suggest the easier transformation of the electrogenerated compounds into reactive electrophilic intermediates or final products

  20. Electrochemical Detection in Stacked Paper Networks.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2015-08-01

    Paper-based electrochemical biosensors are a promising technology that enables rapid, quantitative measurements on an inexpensive platform. However, the control of liquids in paper networks is generally limited to a single sample delivery step. Here, we propose a simple method to automate the loading and delivery of liquid samples to sensing electrodes on paper networks by stacking multiple layers of paper. Using these stacked paper devices (SPDs), we demonstrate a unique strategy to fully immerse planar electrodes by aqueous liquids via capillary flow. Amperometric measurements of xanthine oxidase revealed that electrochemical sensors on four-layer SPDs generated detection signals up to 75% higher compared with those on single-layer paper devices. Furthermore, measurements could be performed with minimal user involvement and completed within 30 min. Due to its simplicity, enhanced automation, and capability for quantitative measurements, stacked paper electrochemical biosensors can be useful tools for point-of-care testing in resource-limited settings. © 2015 Society for Laboratory Automation and Screening.

  1. Nanomaterials application in electrochemical detection of heavy metals

    International Nuclear Information System (INIS)

    Aragay, Gemma; Merkoçi, Arben

    2012-01-01

    Highlights: ► We review the recent trends in the application of nanomaterials for electrochemical detection of heavy metals. ► Different types of nanomaterials including metal nanoparticles, different carbon nanomaterials or nanochannels have been applied on the electrochemical analysis of heavy metals in various sensing formats/configurations. ► The great properties of nanomaterials allow the new devices to show advantages in terms of sensing performance (i.e. increase the sensitivity, decrease the detection limits and improve the stability). ► Between the various electrochemical techniques, voltammetric and potentiometric based ones are particularly taking interesting advantages by the incorporation of new nanomaterials due to the improved electrocatalytic properties beside the increase of the sensor's transducing area. - Abstract: Recent trends in the application of nanomaterials for electrochemical detection of heavy metals are shown. Various nanomaterials such as nanoparticles, nanowires, nanotubes, nanochannels, graphene, etc. have been explored either as modifiers of electrodes or as new electrode materials with interest to be applied in electrochemical stripping analysis, ion-selective detection, field-effect transistors or other indirect heavy metals (bio)detection alternatives. The developed devices have shown increased sensitivity and decreased detection limits between other improvements of analytical performance data. The phenomena behind nanomaterials responses are also discussed and some typical responses data of the developed systems either in standard solutions or in real samples are given. The developed nanomaterials based electrochemical systems are giving new inputs to the existing devices or leading to the development of novel heavy metal detection tools with interest for applications in field such as diagnostics, environmental and safety and security controls or other industries.

  2. First Principle simulations of electrochemical interfaces - a DFT study

    DEFF Research Database (Denmark)

    Ahmed, Rizwan

    for the whole system to qualify as a proper electrochemical interface. I have also contributed to the model, which accounts for pH in the first principle electrode-electrolyte interface simulations. This is an important step forward, since electrochemical reaction rate and barrier for charge transfer can......In this thesis, I have looked beyond the computational hydrogen electrode (CHE) model, and focused on the first principle simulations which treats the electrode-electrolyte interfaces explicitly. Since obtaining a realistic electrode-electrolyte interface was difficult, I aimed to address various...... challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...

  3. Synergetic Fe substitution and carbon connection in LiMn{sub 1−x}Fe{sub x}PO{sub 4}/C cathode materials for enhanced electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Su-Yuan; Wang, Cheng-Yang [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072 (China); Gu, Rong-Min [Department of Chemistry, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072 (China); Sun, Shuai [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072 (China); Li, Ming-Wei, E-mail: mingweili@tju.edu.cn [Department of Chemistry, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineer (Tianjin), Tianjin University, Tianjin 300072 (China)

    2015-04-15

    Highlights: • LiMn{sub 0.6}Fe{sub 0.4}PO{sub 4}/C cathode material shows enhanced rate capability. • The Fe doped in the partial Mn sites could significantly facilitate the Li ions transfer. • The enhanced Li{sup +} ions diffusion contributes to the optimized rate capability of LiMn{sub 0.6}Fe{sub 0.4}PO{sub 4}. • ACM carbonization forms well carbon coating and a 3D carbon network structure. - Abstract: To enhance the rate and cyclic performances of LiMnPO{sub 4} cathode material for lithium-ion batteries, Mn is partially substituted with Fe, and LiMn{sub 1−x}Fe{sub x}PO{sub 4} (x = 0.2, 0.3, 0.4, 0.5) solid solutions are synthesized and investigated. Amphiphilic carbonaceous material (ACM) forms well carbon coating and connects the LiMn{sub 1−x}Fe{sub x}PO{sub 4} crystallites by a three-dimensional (3D) carbon network. The synergetic Fe substitution and carbon connection obviously improve the samples’ rate capacities and cyclic stability. The optimized LiMn{sub 0.6}Fe{sub 0.4}PO{sub 4}/C sample delivers discharge capacities of 160 mA h g{sup −1} at 0.05 C, 148 mA h g{sup −1} at 1 C, and 115 mA h g{sup −1} at 20 C. All samples have well capacity retention (>92%) after 50 charge/discharge cycles at 1 C. The enhanced electrochemical properties are mainly attributed to the improvement of Li ion and electron transport in the LiMn{sub 1−x}Fe{sub x}PO{sub 4}/C samples, respectively mainly resulting from their modified crystal structures caused by Fe substitution and the 3D carbon coating/connection originating from ACM carbonization. LiMn{sub 1−x}Fe{sub x}PO{sub 4} materials exhibit two discharge plateaus at ∼4.0 and ∼3.5 V (vs. Li{sup +}/Li), whose heights respectively reflect the redox potentials of Mn{sup 3+}/Mn{sup 2+} and Fe{sup 3+}/Fe{sup 2+} couples. The plateaus’ lengths correspond to the Mn/Fe ratio in LiMn{sub 1−x}Fe{sub x}PO{sub 4} and are affected by the kinetic behavior of samples. Though the ∼4.0 V plateau shrinks with

  4. Detecting altered connectivity patterns in HIV associated neurocognitive impairment using mutual connectivity analysis

    Science.gov (United States)

    Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    The use of functional Magnetic Resonance Imaging (fMRI) has provided interesting insights into our understanding of the brain. In clinical setups these scans have been used to detect and study changes in the brain network properties in various neurological disorders. A large percentage of subjects infected with HIV present cognitive deficits, which are known as HIV associated neurocognitive disorder (HAND). In this study we propose to use our novel technique named Mutual Connectivity Analysis (MCA) to detect differences in brain networks in subjects with and without HIV infection. Resting state functional MRI scans acquired from 10 subjects (5 HIV+ and 5 HIV-) were subject to standard preprocessing routines. Subsequently, the average time-series for each brain region of the Automated Anatomic Labeling (AAL) atlas are extracted and used with the MCA framework to obtain a graph characterizing the interactions between them. The network graphs obtained for different subjects are then compared using Network-Based Statistics (NBS), which is an approach to detect differences between graphs edges while controlling for the family-wise error rate when mass univariate testing is performed. Applying this approach on the graphs obtained yields a single network encompassing 42 nodes and 65 edges, which is significantly different between the two subject groups. Specifically connections to the regions in and around the basal ganglia are significantly decreased. Also some nodes corresponding to the posterior cingulate cortex are affected. These results are inline with our current understanding of pathophysiological mechanisms of HIV associated neurocognitive disease (HAND) and other HIV based fMRI connectivity studies. Hence, we illustrate the applicability of our novel approach with network-based statistics in a clinical case-control study to detect differences connectivity patterns.

  5. A generative modeling approach to connectivity-Electrical conduction in vascular networks

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav

    2016-01-01

    The physiology of biological structures is inherently dynamic and emerges from the interaction and assembly of large collections of small entities. The extent of coupled entities complicates modeling and increases computational load. Here, microvascular networks are used to present a novel...... to synchronize vessel tone across the vast distances within a network. We hypothesize that electrical conduction capacity is delimited by the size of vascular structures and connectivity of the network. Generation and simulation of series of dynamical models of electrical spread within vascular networks...... of different size and composition showed that (1) Conduction is enhanced in models harboring long and thin endothelial cells that couple preferentially along the longitudinal axis. (2) Conduction across a branch point depends on endothelial connectivity between branches. (3) Low connectivity sub...

  6. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment.

    Science.gov (United States)

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes

    2015-10-01

    Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.

  7. Horizontal stability of connective tissue grafts at the buccal aspect of single implants: a 1-year prospective case series.

    Science.gov (United States)

    De Bruyckere, Thomas; Eghbali, Aryan; Younes, Faris; De Bruyn, Hugo; Cosyn, Jan

    2015-09-01

    To clinically evaluate the horizontal stability of a connective tissue graft (CTG) at the buccal aspect of single implants (1); to compare actual gingival thickness between thin and thick gingival biotype (2). Periodontally healthy non-smoking patients with a single implant in the anterior maxilla (15-25) were selected for a prospective case series. All demonstrated a horizontal alveolar defect and were in need of contour augmentation by means of CTG for aesthetic reasons. Patients were enrolled 3 months after implant surgery and had been provided with a provisional screw-retained crown. CTG was inserted in the buccal mucosa via the envelope technique using one intrasulcular incision. An ultrasonic device was used to evaluate mucosal thickness (MT) at the buccal aspect. MT was assessed at t0 (before CTG), t1 (immediately after CTG), t2 (2 weeks after CTG = suture removal), t3 (3 months after CTG = permanent crown installation) and t4 (1 year after implant placement). The gingival biotype was categorized as thin or thick based on the transparency of a periodontal probe through the soft tissues while probing the buccal sulcus of the contra-lateral tooth. Gingival thickness (GT) was measured at the contra-lateral tooth using the same ultrasonic device. Thirty-seven patients (19 men, 18 women; mean age 38) met the selection criteria and consented to the treatment. Mean soft tissue gain immediately after CTG was on average 1.07 mm (SD 0.49). What remained of this tissue gain after 1 year was on average 0.97 mm (SD 0.48; 90.5%). Hence, mean soft tissue loss amounted to 0.10 mm (SD 0.23; 9.5%; p = 0.015) with no significant difference between patients with a thin or thick biotype (p ≥ 0.290). Patients with a thin biotype had a mean GT of 1.02 mm (SD 0.21), whereas GT was on average 1.32 mm (SD 0.31) in subjects with a thick biotype (p = 0.004). Connective tissue graft substantially thickens the peri-implant mucosa with acceptable stability over a 1-year period. © 2015

  8. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  9. Enhancing electrochemical methods for producing and regenerating alane by using electrochemical catalytic additive

    Science.gov (United States)

    Zidan, Ragaiy

    2017-12-26

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) and other high capacity hydrides is provided. The electrolytic cell uses an electro-catalytic-additive within a polar non-salt containing solvent to solubilize an ionic hydride such as NaAlH.sub.4 or LiAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3 adduct. AlH.sub.3 is obtained from the adduct by heating under vacuum. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 or LiAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  10. Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template

    International Nuclear Information System (INIS)

    Zhao Yanchun; Chen Miao; Liu Xiang; Xu Tao; Liu Weimin

    2005-01-01

    Highly ordered polydiphenylamine (PDPA) nanofibrils arrays have been fabricated within the pores of porous anodic aluminum oxide (AAO) template membrane by electrochemical polymerization. The morphology of PDPA nanofibrils array was observed using transmission electron microscopy (TEM) and its electrochemical behavior and structure were examined by cyclic voltammetry, UV-vis spectroscopy and Fourier transmission infrared spectrum. The result of TEM revealed that the obtained PDPA nanofibrils had uniform and well-aligned array. The UV-vis spectroscopy and electrochemical experimental result indicated that the spatial restraint in the pores of AAO membrane is sufficient to induce the formation of more ordered PDPA chains in the AAO membrane

  11. Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template

    Energy Technology Data Exchange (ETDEWEB)

    Yanchun, Zhao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Miao, Chen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Xiang, Liu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Tao, Xu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Weimin, Liu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2005-06-15

    Highly ordered polydiphenylamine (PDPA) nanofibrils arrays have been fabricated within the pores of porous anodic aluminum oxide (AAO) template membrane by electrochemical polymerization. The morphology of PDPA nanofibrils array was observed using transmission electron microscopy (TEM) and its electrochemical behavior and structure were examined by cyclic voltammetry, UV-vis spectroscopy and Fourier transmission infrared spectrum. The result of TEM revealed that the obtained PDPA nanofibrils had uniform and well-aligned array. The UV-vis spectroscopy and electrochemical experimental result indicated that the spatial restraint in the pores of AAO membrane is sufficient to induce the formation of more ordered PDPA chains in the AAO membrane.

  12. Electrochemical degradation of the chloramphenicol at flow reactor

    International Nuclear Information System (INIS)

    Rezende, Luis Gustavo P.; Prado, Vania M. do; Rocha, Robson S.; Beati, Andre A.G.F.; Sotomayor, Maria del Pilar T.; Lanza, Marcos R.V.

    2010-01-01

    This paper reports a study of electrochemical degradation of the chloramphenicol antibiotic in aqueous medium using a flow-by reactor with DSA anode. The process efficiency was monitored by chloramphenicol concentration analysis with liquid chromatography (HPLC) during the experiments. Analysis of Total Organic Carbon (TOC) was performed to estimate the degradation degree and Ion Chromatography (IC) was performed to determinate inorganic ions formed during the electrochemical degradation process. In electrochemical flow-by reactor, 52% of chloramphenicol was degraded, with 12% TOC reduction. IC analysis showed the production of chloride ions (25 mg L -1 ), nitrate ions (6 mg L -1 ) and nitrite ions (4.5 mg L -1 ). (author)

  13. Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte

    International Nuclear Information System (INIS)

    Ruch, P.W.; Koetz, R.; Wokaun, A.

    2009-01-01

    Single-walled carbon nanotubes (SWCNTs) were investigated by cyclic voltammetry and electrochemical impedance spectroscopy in a non-aqueous electrolyte, 1 M Et 4 NBF 4 in acetonitrile, suitable for supercapacitors. Further, in situ dilatometry and in situ conductance measurements were performed on single electrodes and the results compared to an activated carbon, YP17. Both materials show capacitive behavior characteristic of high surface area electrodes for supercapacitors, with the maximum full cell gravimetric capacitance being 34 F/g for YP17 and 20 F/g for SWCNTs at 2.5 V with respect to the total active electrode mass. The electronic resistance of SWCNTs and activated carbon decreases significantly during charging, showing similarities of the two materials during electrochemical doping. The SWCNT electrode expands irreversibly during the first electrochemical potential sweep as verified by in situ dilatometry, indicative of at least partial debundling of the SWCNTs. A reversible periodic swelling and shrinking during cycling is observed for both materials, with the magnitude of expansion depending on the type of ions forming the double layer.

  14. Classifying the mechanisms of electrochemical shock in ion-intercalation materials

    OpenAIRE

    Woodford, William; Carter, W. Craig; Chiang, Yet-Ming

    2014-01-01

    Electrochemical shock” – the electrochemical cycling-induced fracture of materials – contributes to impedance growth and performance degradation in ion-intercalation batteries, such as lithium-ion. Using a combination of micromechanical models and acoustic emission experiments, the mechanisms of electrochemical shock are identified, classified, and modeled in targeted model systems with different composition and microstructure. A particular emphasis is placed on mechanical degradation occurr...

  15. Putting the “dynamic” back into dynamic functional connectivity

    Directory of Open Access Journals (Sweden)

    Stewart Heitmann

    2018-06-01

    Full Text Available The study of fluctuations in time-resolved functional connectivity is a topic of substantial current interest. As the term “dynamic functional connectivity” implies, such fluctuations are believed to arise from dynamics in the neuronal systems generating these signals. While considerable activity currently attends to methodological and statistical issues regarding dynamic functional connectivity, less attention has been paid toward its candidate causes. Here, we review candidate scenarios for dynamic (functional connectivity that arise in dynamical systems with two or more subsystems; generalized synchronization, itinerancy (a form of metastability, and multistability. Each of these scenarios arises under different configurations of local dynamics and intersystem coupling: We show how they generate time series data with nonlinear and/or nonstationary multivariate statistics. The key issue is that time series generated by coupled nonlinear systems contain a richer temporal structure than matched multivariate (linear stochastic processes. In turn, this temporal structure yields many of the phenomena proposed as important to large-scale communication and computation in the brain, such as phase-amplitude coupling, complexity, and flexibility. The code for simulating these dynamics is available in a freeware software platform, the Brain Dynamics Toolbox. The study of network fluctuations in time-resolved functional connectivity is a topic of substantial current interest. However, the topic remains hotly disputed, with both positive and negative reports. A number of fundamental issues remain disputed, including statistical benchmarks and putative causes of nonstationarities. Dynamic models of large-scale brain activity can play a key role in this field by proposing the types of instabilities and dynamics that may be present. The purpose of the present paper is to employ simple dynamic models to illustrate the basic processes (“primitives” that

  16. Electrochemical attosyringe.

    Science.gov (United States)

    Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V

    2007-07-17

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.

  17. Electrochemical redox reactions in solvated silica sol-gel glass

    International Nuclear Information System (INIS)

    Opallo, M.

    2002-01-01

    The studies of electrochemical redox reactions in solvated silica sol-gel glass were reviewed. The methodology of the experiments with emphasis on the direct preparation of the solid electrolyte and the application ultra microelectrodes was described. Generally, the level of the electrochemical signal is not much below that observed in liquid electrolyte. The current depends on time elapsed after gelation, namely the longer time, the smaller current. The differences between electrochemical behaviour of the redox couples in monoliths and thin layers were described. (author)

  18. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    International Nuclear Information System (INIS)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.; Wit, J.H.W. de; Mol, J.M.C.; Terryn, H.

    2012-01-01

    Highlights: ► Localized electrochemical cell and glow discharge optical emission spectrometry were used. ► An electrochemical depth profile of an aluminum brazing sheet was obtained. ► The electrochemical responses were correlated to the microstructural features. - Abstract: Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1 wt% NaCl solution at pH 2.8 were obtained at different depths from the surface using controlled sputtering in a glow discharge optical emission spectrometer as a sample preparation technique. The anodic and cathodic reactivity of the top surface areas were significantly higher than that of the bulk, thus indicating these areas to be more susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion, while lower sensitivity to these localized attacks were detected toward the brazing sheet core. The results highlight the successful application of the electrochemical depth profiling approach in prediction of the corrosion behavior of the aluminum brazing sheet and the importance of the electrochemical activity of the outer 10 μm in controlling the corrosion performance of the aluminum brazing sheet.

  19. Chip cleaning and regeneration for electrochemical sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, Vijayender [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Carrara, Sandro, E-mail: sandro.carrara@epfl.c [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Stagni, Claudio [Department DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna (Italy); Samori, Bruno [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-04-02

    Sensing systems based on electrochemical detection have generated great interest because electronic readout may replace conventional optical readout in microarray. Moreover, they offer the possibility to avoid labelling for target molecules. A typical electrochemical array consists of many sensing sites. An ideal micro-fabricated sensor-chip should have the same measured values for all the equivalent sensing sites (or spots). To achieve high reliability in electrochemical measurements, high quality in functionalization of the electrodes surface is essential. Molecular probes are often immobilized by using alkanethiols onto gold electrodes. Applying effective cleaning methods on the chip is a fundamental requirement for the formation of densely-packed and stable self-assembly monolayers. However, the available well-known techniques for chip cleaning may not be so reliable. Furthermore, it could be necessary to recycle the chip for reuse. Also in this case, an effective recycling technique is required to re-obtain well cleaned sensing surfaces on the chip. This paper presents experimental results on the efficacy and efficiency of the available techniques for initial cleaning and further recycling of micro-fabricated chips. Piranha, plasma, reductive and oxidative cleaning methods were applied and the obtained results were critically compared. Some interesting results were attained by using commonly considered cleaning methodologies. This study outlines oxidative electrochemical cleaning and recycling as the more efficient cleaning procedure for electrochemical based sensor arrays.

  20. Carbons, ionic liquids and quinones for electrochemical capacitors

    Directory of Open Access Journals (Sweden)

    Raul eDiaz

    2016-04-01

    Full Text Available Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL capacitance and energy density.The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  1. HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity.

    Science.gov (United States)

    Niso, Guiomar; Bruña, Ricardo; Pereda, Ernesto; Gutiérrez, Ricardo; Bajo, Ricardo; Maestú, Fernando; del-Pozo, Francisco

    2013-10-01

    The analysis of the interdependence between time series has become an important field of research in the last years, mainly as a result of advances in the characterization of dynamical systems from the signals they produce, the introduction of concepts such as generalized and phase synchronization and the application of information theory to time series analysis. In neurophysiology, different analytical tools stemming from these concepts have added to the 'traditional' set of linear methods, which includes the cross-correlation and the coherency function in the time and frequency domain, respectively, or more elaborated tools such as Granger Causality.This increase in the number of approaches to tackle the existence of functional (FC) or effective connectivity (EC) between two (or among many) neural networks, along with the mathematical complexity of the corresponding time series analysis tools, makes it desirable to arrange them into a unified-easy-to-use software package. The goal is to allow neuroscientists, neurophysiologists and researchers from related fields to easily access and make use of these analysis methods from a single integrated toolbox.Here we present HERMES ( http://hermes.ctb.upm.es ), a toolbox for the Matlab® environment (The Mathworks, Inc), which is designed to study functional and effective brain connectivity from neurophysiological data such as multivariate EEG and/or MEG records. It includes also visualization tools and statistical methods to address the problem of multiple comparisons. We believe that this toolbox will be very helpful to all the researchers working in the emerging field of brain connectivity analysis.

  2. Electrochemical sensor for detection of carcinoma

    International Nuclear Information System (INIS)

    Thakur, Bhawana; Sawant, Shilpa N.; Jayakumar, S.

    2012-01-01

    Detection of carcinoma in early stage is very important for its effective treatment. Although considerable advancement has been made in its detection and treatment, there is a significant need for rapid, low-cost, sensitive, and selective biosensors for detection of cancer. In recent years, electrochemical detection techniques have received much attention due to their rapid response, high sensitivity, and inherent selectivity. They can provide an inexpensive platform for detection of analytes in clinical diagnostics. Conducting polymers are a versatile material for development of electrochemical biosensors. Due to the conducting nature of these polymers, they act as a transducer to convert the biological signal into electrical signal. These polymers also exhibit good biocompatibility, hence are ideal for immobilisation of biological recognition element during the development of the sensor film. Recently author have demonstrated a whole cell based electrochemical biosensor for detection of the pesticide Lindane at very low concentrations. In the present study, we have tried to develop polyaniline based electrochemical sensor for detection of carcinoma. Polyaniline was deposited on gold interdigitated electrodes by electropolymerization using potentiodynamic method. The polymer film was suitably modified to obtain the sensor film for recognition of the tumour cells. Response of the sensor to various tumour cells such as lung cancer cells, human fibrosarcoma cells, prostate cancer cells, breast cancer cells was studied and was compared to that of normal cells. The sensor electrode could detect tumour cells based on the nature of response obtained

  3. Technical report for fabrication and performance test of electrochemical/spectroscopic measurement system

    International Nuclear Information System (INIS)

    Park, Yong Joon; Cho, Young Hwan; Bae, Sang Eun; Im, Hee Jung; Song, Kyu Seok

    2010-01-01

    Development of evaluation technology of electrochemical reactions is very essential to understand chemical behavior of actinides and lanthanides in molten salt media in relation to the development of Pyrochemical process. The on-line electrochemical/spectroscopic measurement system is to produce electrochemical parameters and thermodynamic parameters of actinides and lanthanides in molten salts by using spectroscopic techniques such as UV-VIS absorption as well as electrochemical in-situ measurement techniques. The on-line electrochemical/spectroscopic measurement system can be applied to understand the chemical reactions and oxidation states of actinides and lanthanides in molten salts eventually for the Pyrochemical process

  4. Electrochemical Characterization of Ni/(Sc)YSZ Electrodes

    DEFF Research Database (Denmark)

    Ramos, Tania; Thydén, Karl Tor Sune; Mogensen, Mogens Bjerg

    2010-01-01

    Investigations of Ni/(Sc)YSZ cermets for solid oxide cells (SOCs) were performed by electrochemical impedance spectroscopy (EIS), under varying experimental conditions and upon redox cycling, using three different designs of symmetric cells. The deconvolution and fitting of the obtained impedance...... parameters. Initial degradation results for both Ni/ScYSZ and Ni/YSZ based anodes under very high steam content are also reported. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  5. Experiences on MIC monitoring by electrochemical techniques

    DEFF Research Database (Denmark)

    Cristiani, P.; Perboni, G.; Hilbert, Lisbeth Rischel

    2002-01-01

    Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper.......Some results of practical experiences on the performances of electrochemical and electric MIC monitoring techniques, coming from the discussion in the Brite-Euram thematic network "MIC of industrial materials", are presented in this paper....

  6. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    International Nuclear Information System (INIS)

    Anglada, Angela; Urtiaga, Ana M.; Ortiz, Inmaculada

    2010-01-01

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m 2 was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  7. Preparation of the electrochemically formed spinel-lithium manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, Katsumi; Wada, Kohei; Kajiki, Yoshiyuki; Yamamoto, Akiko [Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamotokoriyama, Nara 639-1080 (Japan); Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2009-04-01

    Electrochemically formed spinel-lithium manganese oxides were synthesized from manganese hydroxides prepared by a cathodic electrochemical precipitation from various concentrations of manganese nitrate solutions. Two types of manganese hydroxides were formed from diluted and concentrated Mn(NO{sub 3}){sub 2} aqueous solutions. Uniform and equi-sized disk shaped Mn(OH){sub 2} crystals of 0.2-5 {mu}m in diameter were obtained on a Pt substrate after the electrochemical precipitation from lower concentration of ranging from 2 mmol dm{sup -3} to 2 mol dm{sup -3} Mn(NO{sub 3}){sub 2} aq., while the grass blade-like precipitate which is ascribed to manganese hydroxide with 20-80 {mu}m long and 1-5 {mu}m wide were formed from concentrated Mn(NO{sub 3}){sub 2} aq. Both manganese hydroxides gave the electrochemically formed spinel-LiMn{sub 2}O{sub 4} onto a Pt sheet, which is ready for electrochemical measurement, after calcination of the Li incorporated precipitate at 750 C without any additives. While the shape and size of the secondary particle frameworks (aggregates) of the electrochemically formed spinel-LiMn{sub 2}O{sub 4} can be controlled by the electrolysis conditions, the nanostructured primary crystals of 200 nm in diameter were obtained in all cases except that the fiber-like nanostructured spinel-LiMn{sub 2}O{sub 4} crystals with 200 nm in diameter were obtained from concentrated Mn(NO{sub 3}){sub 2} aq. Though these two types of electrochemically formed spinel-LiMn{sub 2}O{sub 4} showed well-shaped CVs even in higher scan rates, it would be suitable for high power density battery applications. These behaviors are assumed to be ascribed to the crystal size and shape of the processed spinel-LiMn{sub 2}O{sub 4}. (author)

  8. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    International Nuclear Information System (INIS)

    Indacochea, J. E.; Gattu, V. K.; Chen, X.; Rahman, T.

    2017-01-01

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviors of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  9. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    Energy Technology Data Exchange (ETDEWEB)

    Indacochea, J. E. [Univ. of Illinois, Chicago, IL (United States); Gattu, V. K. [Univ. of Illinois, Chicago, IL (United States); Chen, X. [Univ. of Illinois, Chicago, IL (United States); Rahman, T. [Univ. of Illinois, Chicago, IL (United States)

    2017-06-15

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviors of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  10. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  11. Electrochemical properties of copper-based compounds with polyanion frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Yoshifumi; Hata, Shoma; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji, E-mail: kanno@echem.titech.ac.jp

    2016-03-15

    The copper-based polyanion compounds Li{sub 6}CuB{sub 4}O{sub 10} and Li{sub 2}CuP{sub 2}O{sub 7} were synthesized using a conventional solid-state reaction, and their electrochemical properties were determined. Li{sub 6}CuB{sub 4}O{sub 10} showed reversible capacity of 340 mA g{sup −1} at the first discharge–charge process, while Li{sub 2}CuP{sub 2}O{sub 7} showed large irreversible capacity and thus low charge capacity. Ex situ X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) measurements revealed that the electrochemical Li{sup +} intercalation/deintercalation reaction in Li{sub 6}CuB{sub 4}O{sub 10} occurred via reversible Cu{sup 2+}/Cu{sup +} reduction/oxidation reaction. These differences in their discharge/charge mechanisms are discussed based on the strength of the Cu–O covalency via their inductive effects. - Graphical abstract: Electrochemical properties for Cu-based polyanion compounds were investigated. The electrochemical reaction mechanisms are strongly affected by their Cu–O covalentcy. - Highlights: • Electrochemical properties of Cu-based polyanion compounds were investigated. • The Li{sup +} intercalation/deintercalation reaction progressed in Li{sub 6}CuB{sub 4}O{sub 10}. • The electrochemical displacement reaction progressed in Li{sub 2}CuP{sub 2}O{sub 7}. • The strength of Cu–O covalency affects the reaction mechanism.

  12. Simulation of electrorefining process using time-dependent multi-component electrochemical model: REFIN

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Gi; Hwang, Il Soon [Seoul National Univ., Seoul (Korea, Republic of)

    1999-10-01

    REFIN model is applied to analyze a series of experiments that had been conducted by Tomczuk, et al. at Argonne National Laboratory (ANL) in the U.S.A.. Predicted results from REFIN model for the electrorefining experiment are compared with the published experimental results. It is demonstrated that REFIN model can predict faradic current of each element and electrochemical potential as a function of time over the entire campaign of the electrorefining experiment. The elemental concentration changes agree with the experimental results well. Elemental concentration changes during an open-circuit equilibration period are revealed to suggest that the electrorefining process could not be adequately described by the equilibrium model often applied for an electrode surface. Surface potential drop is changed according to equilibrium potential of chemical species with high activity in liquid metal.

  13. Application of Electrochemical Process in Removal of Heavy Metals from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Mostafaii Gh.1 PhD,

    2016-08-01

    Full Text Available Aims Municipal landfill leachate contains high concentrations of heavy metals, organics, ammonia. The efficeincy of electrochemically removal of heavy metals from landfill leachate was studied. Materials & Methods The leachate was obtained from Kahrizak landfill in south of Tehran. The experiments were carried out by batch process. The 2liter batch reactor was made of glass. There were eight anodes and cathodes electrodes. The electrodes were placed vertically parallel to each other and they were connected to a digital DC power supply. The pH and conductivity were adjusted to a desirable value using NaOH or H2SO4, and NaCl. All the runs were performed at constant temperature of 25°C. In each run, 1.5liter of the leachate was placed into the electrolytic cell. Samples were extracted every 10min and then filtered through a mixed cellulose acetate membrane (0.42μm. The amount of Lead, Zinc and Nickel removal was measured at pH=7 and in current density of 0.5, 0.75, and 1A. Findings When current density and time reaction increased, removal efficiency of heavy metals such as Lead, Zinc and Nickel increased. At initial pH=7, density 1A and reaction time= 60min, Lead, Nickel and Zinc were removed up to 86, 93 and 95%, respectively. Conclusion Electrochemical process can be proposed as a suitable technique to remove heavy metal from landfill leachate.

  14. Evaluation and improvement of dynamic optimality in electrochemical reactors

    International Nuclear Information System (INIS)

    Vijayasekaran, B.; Basha, C. Ahmed

    2005-01-01

    A systematic approach for the dynamic optimization problem statement to improve the dynamic optimality in electrochemical reactors is presented in this paper. The formulation takes an account of the diffusion phenomenon in the electrode/electrolyte interface. To demonstrate the present methodology, the optimal time-varying electrode potential for a coupled chemical-electrochemical reaction scheme, that maximizes the production of the desired product in a batch electrochemical reactor with/without recirculation are determined. The dynamic optimization problem statement, based upon this approach, is a nonlinear differential algebraic system, and its solution provides information about the optimal policy. Optimal control policy at different conditions is evaluated using the best-known Pontryagin's maximum principle. The two-point boundary value problem resulting from the application of the maximum principle is then solved using the control vector iteration technique. These optimal time-varying profiles of electrode potential are then compared to the best uniform operation through the relative improvements of the performance index. The application of the proposed approach to two electrochemical systems, described by ordinary differential equations, shows that the existing electrochemical process control strategy could be improved considerably when the proposed method is incorporated

  15. Improved Performance of Connected Foundations for Resilient Energy Transmission Infrastructure in Soft Soils

    Directory of Open Access Journals (Sweden)

    Doohyun Kyung

    2015-12-01

    Full Text Available The connected foundation is an effective structural type of foundation that can improve the sustainability of electrical transmission towers in soft soils to serve as a resilient energy supply system. In this study, the performance of electrical transmission towers reinforced with connected beams was investigated using a series of field load tests. Model transmission tower structures were manufactured and adopted into the tests. Based on the load capacity mobilization and failure mechanism, a criterion to define the load carrying capacity for connected foundation was proposed. It was found that the performance of connected foundation varies with the mechanical property of connection beam. The load capacity and differential settlement increased and decreased, respectively, with increasing connection beam stiffness. Such effect of connection beam was more pronounced as the height of load application point or tower height (zh increases. Based on the load test results, a design model was proposed that can be used to evaluate the sustainable performance and load carrying capacity of connected foundations. Field load tests with prototype transmission tower structure models were conducted to check and confirm the performance of connected foundation and the proposed design method.

  16. Electrochemical Applications in Metal Bioleaching.

    Science.gov (United States)

    Tanne, Christoph Kurt; Schippers, Axel

    2017-12-10

    Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified

  17. Considerations of coil protection and electrical connection schemes in large superconducting toroidal magnet system

    International Nuclear Information System (INIS)

    Yeh, H.T.

    1976-03-01

    A preliminary comparison of several different coil protection and electrical connection schemes for large superconducting toroidal magnet systems (STMS) is carried out. The tentative recommendation is to rely on external dump resistors for coil protection and to connect the coils in the toroidal magnet in several parallel loops (e.g., every fourth coil is connected into a single series loop). For the fault condition when a single coil quenches, the quenched coil should be isolated from its loop by switching devices. The magnet, as a whole, should probably be discharged if more than a few coils have quenched

  18. VHF Series-Input Parallel-Output Interleaved Self-Oscillating Resonant SEPIC Converter

    DEFF Research Database (Denmark)

    Kovacevic, Milovan; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    If the switches of two resonant SEPIC converters are capacitively coupled, it is possible to obtain a self-oscillating converter in which the two power stages operate in interleaved mode. This paper describes a topology where the inputs of two SEPIC converters are connected in series, thereby sha...

  19. Electrochemical properties of quaternary ammonium salts for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto; Takeda, Masayuki; Takehara, Masahiro; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-08-01

    The limiting reduction and oxidation potentials and electrolytic conductivities of new quaternary ammonium salts were examined for electrochemical capacitor applications, whose anions have already been tested as lithium salts for lithium battery applications. The anodic stability was in the following order BR{sub 4}{sup {minus}} < ClO{sub 4}{sup {minus}} {le} CF{sub 3}SO{sub 3}{sup {minus}} < (CF{sub 3}SO{sub 2}){sub 2}N{sup {minus}} {le} C{sub 4}F{sub 9}SO{sub 3}{sup {minus}} < BF{sub 4}{sup {minus}} < PF{sub 6}{sup {minus}} {le} AsF{sub 6}{sup {minus}} < SbF{sub 6}{sup {minus}}. The electrolytic conductivities of Me{sub 4{minus}n}Et{sub n}N(CF{sub 3}SO{sub 2}){sub 2}N (n = 0--4) were examined in comparison with Me{sub 4{minus}n}Et{sub n}NBF{sub 4} counterparts. These imide salts showed good solubility, relatively high conductivity, and anodic stability in propylene carbonate. Et{sub 4}N(CF{sub 3}SO{sub 2}){sub 2}N was found to be a good supporting salt for low permittivity organic solvents, and it afforded a highly conductive electrolyte system based on the ethylene carbonate-dimethyl carbonate mixed solvent, which is useful for electrochemical capacitor applications.

  20. Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.

    Science.gov (United States)

    Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng

    2016-02-24

    A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  2. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Hobbs, D.

    1996-01-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  3. Single-Molecule Electrochemical Gating in Ionic Liquids

    DEFF Research Database (Denmark)

    Kay, Nicola J.; Higgins, Simon J.; Jeppesen, Jan O.

    2012-01-01

    The single-molecular conductance of a redox active molecular bridge has been studied in an electrochemical single-molecule transistor configuration in a room-temperature ionic liquid (RTIL). The redox active pyrrolo-tetrathiafulvalene (pTTF) moiety was attached to gold contacts at both ends through...... −(CH2)6S– groups, and gating of the redox state was achieved with the electrochemical potential. The water-free, room-temperature, ionic liquid environment enabled both the monocationic and the previously inaccessible dicationic redox states of the pTTF moiety to be studied in the in situ scanning...... and decreases again as the second redox process is passed. This is described as an “off–on–off–on–off” conductance switching behavior. This molecular conductance vs electrochemical potential relation could be modeled well as a sequential two-step charge transfer process with full or partial vibrational...

  4. Application of ionic liquids in electrochemical sensing systems.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J

    2011-01-15

    Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis

    Directory of Open Access Journals (Sweden)

    Jinxing Deng

    2017-04-01

    Full Text Available To understand the electrochemical capacity fading of the polyaniline (PANI electrodes in supercapacitors, for the first time, their chemical structure change during electrochemical cycles was traced with XPS analysis after the HCl doped PANI electrodes were subjected to the cyclic voltammetry test in 1.0 M H2SO4 electrolyte for different cycle numbers. The results showed that the chlorine disappeared in the electrode surface, while the surface element contents of sulfur and oxygen increased with the electrochemical cycles increased. It demonstrated that the hydrolytic degradation of the PANI chains and exchange of dopant occurred during the electrochemical cycling, causing the fading in the mechanical and electrochemical performance of the PANI electrodes. This understanding should lead to better design of the conductive polymer-based energy storage devices.

  6. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented electrochemical kinetic model, describing the electrochemical hydrogen storage in hydride-forming materials, was extended by the description of the solid/electrolyte interface, i.e., the charge-transfer kinetics and electrical double-layer charging. A complete set of equations

  7. Electrochemical stability of ionic clathrate hydrates and their structural consideration

    International Nuclear Information System (INIS)

    Lee, Wonhee; Lim, Dongwook; Lee, Huen

    2013-01-01

    Although electrochemical stability is an essential factor in relation to the potential applications of ionic clathrate hydrates to solid electrolytes, most studies regarding the proton conductors have focused on their ionic conductivity and thermal stability. Solid electrolytes in various electrochemical devices have to endure the applied potentials; thus, we examined the linear sweep voltammograms of various tetraalkylammonium hydroxide hydrates in order to shed light on the trend of electrochemical stability depending on the hydrate structure. We revealed that the electrochemical stability of Me 4 NOH hydrates is mainly affected by both their ionic concentration and cage occupancy. In particular, the true clathrate structures of β-Me 4 NOH hydrates are more electrochemically stable than their α-forms that possess partially broken hydrogen bonds. We also observed that the binary THF–Pr 4 NOH and pure Bu 4 NOH clathrate hydrates exhibit greater electrochemical stability than those of pure Me 4 NOH hydrates having lower or similar ionic concentrations. These results are considered to arise from the fact that each of the Pr 4 N + and Bu 4 N + ions occupies an extended space comprising four cages, which leads to stabilization of the larger unit, whereas a Me 4 N + ion is completely included only in one cage

  8. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    Science.gov (United States)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  9. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    -friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  10. Influence of oxidation level on capacitance of electrochemical capacitors fabricated with carbon nanotube/carbon paper composites

    International Nuclear Information System (INIS)

    Hsieh, C.-T.; Chen, W.-Y.; Cheng, Y.-S.

    2010-01-01

    Gaseous oxidation of carbon papers (CPs) decorated with carbon nanotubes (CNTs) with varying degrees of oxidation was conducted to investigate the influence of surface oxides on the performance of electrochemical capacitors fabricated with oxidized CNT/CP composites. The oxidation period was found to significantly enhance the O/C atomic ratio on the composites, and the increase in oxygen content upon oxidation is mainly contributed by the formation of C=O and C-O groups. The electrochemical behavior of the capacitors was tested in 1 M H 2 SO 4 within a potential of 0 and 1 V vs. Ag/AgCl. Both superhydrophilicity and specific capacitance of the oxidized CNT/CP composites were found to increase upon oxidation treatment. A linearity increase of capacitance with O/C ratio can be attributed to the increase of the population of surface oxides on CNTs, which imparts excess sites for redox reaction (pseudocapacitance) and for the formation of double-layer (double-layer capacitance). The technique of ac impedance combined with equivalent circuit clearly showed that oxidized CNT/CP capacitor imparts not only enhanced capacitance but also a low equivalent series resistance.

  11. In-situ hydrothermal synthesis of three-dimensional MnO{sub 2}-CNT nanocomposites and their electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Fei; Santhanagopalan, Sunand [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States); Wang, Ying [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Meng, Dennis Desheng, E-mail: dmeng@mtu.ed [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-06-11

    Three-dimensional (3-D) MnO{sub 2}-carbon nanotube (CNT) nanocomposites were prepared by a simple one-pot hydrothermal method. An electrode was then prepared with these nanocomposites. For comparative investigation, MnO{sub 2} microspheres were also hydrothermally prepared without adding CNTs. The as-synthesized MnO{sub 2} microspheres were then mechanically mixed with CNTs to prepare a subsequent electrode. The samples were characterized by electron microscopy, X-ray diffraction, and electrochemical methods. It has been revealed that a 3-D conductive network of CNTs was formed with microspheres of MnO{sub 2} nanorods interwoven with and connected by CNTs. As a result, the hydrothermally mixed MnO{sub 2}-CNT electrode showed a higher specific capacitance than the mechanically mixed electrode. It has therefore been concluded that the hydrothermal mixing method yields a more homogeneous product that is better suited to take full advantages of both the high capacitance of MnO{sub 2} and the high electrical conductivity of CNTs. The 3-D MnO{sub 2}-CNT nanocomposites reported herein have provided a promising electrode material for supercapacitors and other electrochemical energy storage/conversion devices.

  12. Evaluating a steel beam’s rigid connection to a concrete filled tubular column when submitted to dynamic load

    Directory of Open Access Journals (Sweden)

    Maritza Uribe Vallejo

    2009-01-01

    Full Text Available Using prequalified connections during the structural design stage becomes increasingly necessary when developing structural en-gineering projects which include steel elements; this is so that the steel elements’ appropriate behavior can be ensured according to the structural system and seismic demand. Unfortunately, the international entities providing this type of information (i.e. FEMA only have a limit series of prequalified connections and such series do not include rigid connections between steel beams and concrete filled tubular (CFT columns having an extended end plate, which has become a very widespread building practice in Colombia. This paper describes the most important aspects of a study at the Universidad Nacional de Colombia concerning the behavior of a steel beam rigidly connected to a CFT-column, using six physical models having different width-thickness ratio (b/t columns. ANSYS v.10 software was used for studying theoretical models (finite elements analysis for comparative analysis of cyclic test theoretical and experimental results for each specimen presented for the qualification phase. The six tested specimens’ hysteretic curves are presented. Several conclusions are drawn concerning finite element validation for this type of connection and the influence of width-thickness ratio (b/t variation and design recommendations for suitable behavior under dynamic loads when this type of connection was used.

  13. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot...

  14. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  15. Neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Stillwagon, G.B.; Morgan, K.Z.

    1977-01-01

    Registration of α-tracks and fast-neutron-induced recoils tracks by the electrochemical etching technique as applied to sensitive polymer foils (e.g., polycarbonate) provides a simple, sensitive and inexpensive means of fast neutron personnel dosimetry as well as a valuable research tool for microdosimetry. When tracks were amplified by our electrochemical technique and the etching results compared with conventional etching technique a striking difference was noted. The electrochemically etched tracks were of much larger diameter (approx. 100 μm) and gave superior contrast. Two optical devices--the transparency projector and microfiche reader--were adapted to facilitate counting of the tracks appearing on our polycarbonate foils. The projector produced a magnification of 14X for a screen to projector distance of 5.0 meter and read's magnification was 50X. A Poisson distribution was determined for the number of tracks located in a particular area of the foil and experimentally verified by random counting of quarter sections of the microfiche reader screen. Finally, in an effort to determine dose equivalent (rem), a conversion factor is being determined by finding the sensitivity response (tracks/neutron) of recoil particle induced tracks as a function of monoenergetic fast neutrons and comparing results with those obtained by others

  16. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering

    2012-03-01

    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  17. Nucleation and Growth of Porous MnO2 Coatings Prepared on Nickel Foam and Evaluation of Their Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Wenxin Huang

    2018-05-01

    Full Text Available Porous MnO2 was uniformly electrodeposited on nickel foam in MnSO4 solution, which was applied as the electrode of supercapacitors. The nucleation/growth mechanisms of porous MnO2 were investigated firstly. Then two kinds of electrochemical measuring technologies, corresponding to the cycle voltammetry (CV and galvanostatic charge-discharge, were adopted to assess the electrochemical performance of MnO2 electrodes. The results demonstrated that the deposition of MnO2 on nickel foam included four stages. Prior to the deposition, an extremely short incubation period of about 2 s was observed (the first stage. Then the exposed nickel foam was instantly covered by a large number of MnO2 crystal nuclei and crystal nuclei connected with each other in a very short time of about 3 s (the second stage. Nucleation predominated in the second stage. The sharply rise of current was caused by the increase in substrate surface area which due to nucleation of MnO2. Grain boundaries grew preferentially due to their high energy, accompanied with a honeycomb-like structure with the higher surface area was formed. However, accompanied with the electrochemical reactions gradually diffusion-controlled, the current presented the decline trend with increasing the time (the third stage. When the electrochemical reactions were completely diffusion-controlled, the porous MnO2 coating with an approximately constant surface area was formed (the fourth stage. MnO2 coatings deposited for different time (30, 60, 120, 300 s exhibited a similar specific capacitance (CV: about 224 F/g; galvanostatic charge-discharge: about 264 F/g. Comparatively speaking, the value of MnO2 deposited for 600 s was highest (CV: 270 F/g; galvanostatic charge-discharge: 400 F/g.

  18. Tunneling Mode of Scanning Electrochemical Microscopy: Probing Electrochemical Processes at Single Nanoparticles.

    Science.gov (United States)

    Sun, Tong; Wang, Dengchao; Mirkin, Michael V

    2018-06-18

    Electrochemical experiments at individual nanoparticles (NPs) can provide new insights into their structure-activity relationships. By using small nanoelectrodes as tips in a scanning electrochemical microscope (SECM), we recently imaged individual surface-bound 10-50 nm metal NPs. Herein, we introduce a new mode of SECM operation based on tunneling between the tip and a nanoparticle immobilized on the insulating surface. The obtained current vs. distance curves show the transition from the conventional feedback response to electron tunneling between the tip and the NP at separation distances of less than about 3 nm. In addition to high-resolution imaging of the NP topography, the tunneling mode enables measurement of the heterogeneous kinetics at a single NP without making an ohmic contact with it. The developed method should be useful for studying the effects of nanoparticle size and geometry on electrocatalytic activity in real-world applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Belief propagation and loop series on planar graphs

    International Nuclear Information System (INIS)

    Chertkov, Michael; Teodorescu, Razvan; Chernyak, Vladimir Y

    2008-01-01

    We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed

  20. Electrochemical Reactor for Producing Oxygen From Carbon Dioxide, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical reactor is proposed by MicroCell Technologies, LLC to electrochemically reduce carbon dioxide to oxygen. In support of NASA's advanced life...

  1. Towards first principles modeling of electrochemical electrode-electrolyte interfaces

    DEFF Research Database (Denmark)

    Nielsen, Malte; Björketun, Mårten; Hansen, Martin Hangaard

    2015-01-01

    We present a mini-perspective on the development of first principles modeling of electrochemical interfaces. We show that none of the existing methods deal with all the thermodynamic constraints that the electrochemical environment imposes on the structure of the interface. We present two...

  2. Electrochemical single-molecule conductivity of duplex and quadruplex DNA

    DEFF Research Database (Denmark)

    Zhang, Ling; Zhang, Jingdong; Ulstrup, Jens

    2017-01-01

    Photoinduced and electrochemical charge transport in DNA (oligonucleotides, OGNs) and the notions “hopping”, superexchange, polaron, and vibrationally gated charge transport have been in focus over more than two decades. In recent years mapping of electrochemical charge transport of pure and redo...

  3. Intrinsic multistate switching of gold clusters through electrochemical gating

    DEFF Research Database (Denmark)

    Albrecht, Tim; Mertens, S.F.L.; Ulstrup, Jens

    2007-01-01

    The electrochemical behavior of small metal nanoparticles is governed by Coulomb-like charging and equally spaced charge-transfer transitions. Using electrochemical gating at constant bias voltage, we show, for the first time, that individual nanoparticles can be operated as multistate switches i...

  4. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented Electrochemical Kinetic Model (EKM), describing the electrochemical hydrogen storage in hydride-forming materials, has been extended by the description of the solid/electrolyte interface, i.e. the charge transfer kinetics and electrical double layer charging. A complete set of

  5. Modeling of SVM Diode Clamping Three-Level Inverter Connected to Grid

    DEFF Research Database (Denmark)

    Guo, Yougui; Zeng, Ping; Zhu, Jieqiong

    2011-01-01

    PLECS is used to model the diode clamping three-level inverter connected to grid and good results are obtained. First the output voltage SVM is described for diode clamping three-level inverter with loads connected to Y. Then the output voltage SVM of diode clamping three-level inverter is simply...... analyzed with loads connected to △. But it will be further researched in the future. Third, PLECS is briefly introduced. Fourth, the modeling of diode clamping three-level inverter is briefly presented with PLECS. Finally, a series of simulations are carried out. The simulation results tell us PLECS...... is very powerful tool to real power circuits and it is very easy to simulate them. They have also verified that SVM control strategy is feasible to control the diode clamping three-level inverter....

  6. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean

    2013-01-01

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned. PMID:28788349

  7. A note on the nucleation with multiple steps: parallel and series nucleation.

    Science.gov (United States)

    Iwamatsu, Masao

    2012-01-28

    Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized, and the extension to the more complex nucleation process is suggested. © 2012 American Institute of Physics

  8. Technology-base research project for electrochemical storage report for 1981

    Science.gov (United States)

    McLarnon, F.

    1982-06-01

    The technology base research (TBR) project which provides the applied reseach base that supports all electrochemical energy storage applications: electric vehicles, electric load leveling, storage of solar electricity, and energy and resource conservation is described. The TBR identifies electrochemical technologies with the potential to satisfy stringent performance and economic requirements and transfer them to industry for further development and scale up. The TBR project consists of four major elements: electrochemical systems research, supporting research, electrochemical processes, and fuel cells for transportation. Activities in these four project elements during 1981 are summarized. Information is included on: iron-air batteries; aluminum-air batteries; lithium-metal sulfide cells; materials development for various batteries; and the characteristics of an NH3-air alkaline fuel cell in a vehicle.

  9. ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2011-07-01

    Full Text Available The morphological characteristics and electrochemical behavior of nickel metal foil (Ni, nickel-polyvinyl chloride (Ni-PVC and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC electrodes in alkaline solution has been investigated. The morphological characteristics of the electrode surface were studied using SEM and EDS, while the electrochemical behavior of the electrodes was studied using cyclic voltammetry (CV. It was found that composite electrodes (Ni-PVC and Ni-Co-PVC have a porous, irregular and rough surface. In situ studies using electrochemical technique using those three electrodes exhibited electrochemical activity for redox system, as well as selectivity in the electrooxidation of ethanol to acetic acid. The studies also found that an electrokinetics and electrocatalytic activity behaviors of the electrodes prepared were Ni metal foil

  10. Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips

    KAUST Repository

    Khan, Yasser; Al-Falih, Hisham; Ng, Tien Khee; Ooi, Boon S.; Zhang, Yaping

    2012-01-01

    Dynamic electrochemical etching technique is optimized to produce tungsten tips with controllable shape and radius of curvature of less than 10 nm. Nascent features such as dynamic electrochemical etching and reverse biasing after drop-off are utilized, and two-step dynamic electrochemical etching is introduced to produce extremely sharp tips with controllable aspect ratio. Electronic current shut-off time for conventional dc drop-off technique is reduced to ?36 ns using high speed analog electronics. Undesirable variability in tip shape, which is innate to static dc electrochemical etching, is mitigated with novel dynamic electrochemical etching. Overall, we present a facile and robust approach, whereby using a novel etchant level adjustment mechanism, 30° variability in cone angle and 1.5 mm controllability in cone length were achieved, while routinely producing ultra-sharp probes. © 2012 American Institute of Physics.

  11. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  12. Brain connectivity aberrations in anabolic-androgenic steroid users

    Directory of Open Access Journals (Sweden)

    Lars T. Westlye

    2017-01-01

    Full Text Available Sustained anabolic-androgenic steroid (AAS use has adverse behavioral consequences, including aggression, violence and impulsivity. Candidate mechanisms include disruptions of brain networks with high concentrations of androgen receptors and critically involved in emotional and cognitive regulation. Here, we tested the effects of AAS on resting-state functional brain connectivity in the largest sample of AAS-users to date. We collected resting-state functional magnetic resonance imaging (fMRI data from 151 males engaged in heavy resistance strength training. 50 users tested positive for AAS based on the testosterone to epitestosterone (T/E ratio and doping substances in urine. 16 previous users and 59 controls tested negative. We estimated brain network nodes and their time-series using ICA and dual regression and defined connectivity matrices as the between-node partial correlations. In line with the emotional and behavioral consequences of AAS, current users exhibited reduced functional connectivity between key nodes involved in emotional and cognitive regulation, in particular reduced connectivity between the amygdala and default-mode network (DMN and between the dorsal attention network (DAN and a frontal node encompassing the superior and inferior frontal gyri (SFG/IFG and the anterior cingulate cortex (ACC, with further reductions as a function of dependency, lifetime exposure, and cycle state (on/off.

  13. Electrochemical development of particle tracks in CR-39 polymer dosimeter

    International Nuclear Information System (INIS)

    Hadlock, D.E.; Parkhurst, M.A.; Yang, C.S.; Groeger, J.; Johnson, J.R.; Huang, S.J.

    1985-09-01

    Electrochemical etching of CR-39 polymeric track etch neutron detectors results in proton-recoil tracks can be distinguished from background tracks much better than tracks developed solely by chemical etching. A newly designed and constructed electrochemical etching apparatus allows large numbers of dosimeters to be processed simultaneously with consistent results. Many processing systems have been developed for chemical and electrochemical etching of the track etch dosimeters. Three systems specifically show great promise and are being studied extensively

  14. Electrochemical reduction of NiO in a composite electrode

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2013-01-01

    a lower overpotential. Microstructures of NiO with different reduction degrees are shown. Electrochemical impedance spectroscopy is carried out during the reduction process. Electrochemical reduction of NiO may need an induction period. When NiO is reduced at a constant voltage the current initially...

  15. Electrochemical oxidation and detection of sodium urate in alkaline ...

    African Journals Online (AJOL)

    Electrochemical behaviour of copper oxides electrode in the presence of sodium urate was investigated. The correlation between the anodic oxidation and the amperometric detection of sodium urate in the alkaline medium on copper oxides electrode was analysed by cyclic voltammetry (CV) and electrochemical ...

  16. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  17. Stack air-breathing membraneless glucose microfluidic biofuel cell

    International Nuclear Information System (INIS)

    Galindo-de-la-Rosa, J; Moreno-Zuria, A; Vallejo-Becerra, V; Guerra-Balcázar, M; Ledesma-García, J; Arjona, N; Arriaga, L G

    2016-01-01

    A novel stacked microfluidic fuel cell design comprising re-utilization of the anodic and cathodic solutions on the secondary cell is presented. This membraneless microfluidic fuel cell employs porous flow-through electrodes in a “V”-shape cell architecture. Enzymatic bioanodic arrays based on glucose oxidase were prepared by immobilizing the enzyme onto Toray carbon paper electrodes using tetrabutylammonium bromide, Nafion and glutaraldehyde. These electrodes were characterized through the scanning electrochemical microscope technique, evidencing a good electrochemical response due to the electronic transference observed with the presence of glucose over the entire of the electrode. Moreover, the evaluation of this microfluidic fuel cell with an air-breathing system in a double-cell mode showed a performance of 0.8951 mWcm -2 in a series connection (2.2822mAcm -2 , 1.3607V), and 0.8427 mWcm -2 in a parallel connection (3.5786mAcm -2 , 0.8164V). (paper)

  18. Modified porous silicon for electrochemical sensor of para-nitrophenol

    International Nuclear Information System (INIS)

    Belhousse, S.; Belhaneche-Bensemra, N.; Lasmi, K.; Mezaache, I.; Sedrati, T.; Sam, S.; Tighilt, F.-Z.; Gabouze, N.

    2014-01-01

    Highlights: • Hybrid device based on Porous silicon (PSi) and polythiophene (PTh) was prepared. • Three types of PSi/PTh hybrid structures were elaborated: PSi/PTh, oxide/PSi/PTh and Amino-propyltrimethoxysilane (APTMES)/oxide/PSi/PTh. • PTh was grafted on PSi using electrochemical polymerization. • The electrodetection of para-nitrophenol (p-NPh) was performed by cyclic voltammetry. • Oxide/PSi/PTh and APTMES/oxide/PSi/PTh, based electrochemical sensor showed a good response toward p-NPh. - Abstract: Hybrid structures based on polythiophene modified porous silicon was used for the electrochemical detection of para-nitrophenol, which is a toxic derivative of parathion insecticide and it is considered as a major toxic pollutant. The porous silicon was prepared by anodic etching in hydrofluodic acid. Polythiophene films were then grown by electropolymerisation of thiophene monomer on three different surfaces: hydrogenated PSi, oxidized PSi and amine-terminated PSi. The morphology of the obtained structures were observed by scanning electron microscopy and characterized by spectroscopy (FTIR). Cyclic voltammetry was used to study the electrochemical response of proposed structures to para-nitrophenol. The results show a high sensitivity of the sensor and a linearity of the electrochemical response in a large concentration interval ranging from 1.5 × 10 −8 M to the 3 × 10 −4 M

  19. Electrochemomechanics with flexoelectricity and modelling of electrochemical strain microscopy in mixed ionic-electronic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pengfei; Hu, Shuling; Shen, Shengping, E-mail: sshen@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-14

    Recently, a new scanning probe microscopy approach, referred to as electrochemical strain microscopy (ESM), for probing local ionic flows and electrochemical reactions in solids based on the bias-strain coupling was proposed by Morozovska et al. Then, a series of theoretical papers for analyzing the image formation and spectroscopic mechanism of ESM were published within the framework of Fermi-Dirac statistics, the Vegard law, the direct flexoelectric coupling effect, the electrostriction effect, and so on. However, most of the models in these papers are limited to the partial coupling or particular process, and numerically solved by using decoupling approximation. In this paper, to model the ESM measurement with the coupling electrical-chemical-mechanical process, the chemical Gibbs function variational principle for the thermal electrical chemical mechanical fully coupling problem is proposed. The fully coupling governing equations are derived from the variational principle. When the tip concentrates the electric field within a small volume of the material, the inhomogeneous electric field is induced. So, both direct and inverse flexoelectric effects should be taken into account. Here, the bulk defect electrochemical reactions are also taken into account, which are usually omitted in the existing works. This theory can be used to deal with coupling problems in solids, including conductors, semiconductors, and piezoelectric and non-piezoelectric dielectrics. As an application of this work, a developed initial-boundary value problem is solved numerically in a mixed ion-electronic conductor. Numerical results show that it is meaningful and necessary to consider the bulk defect chemical reaction. Besides, the chemical reaction and the flexoelectric effect have an interactive influence on each other. This work can provide theoretical basis for the ESM as well as investigating the bulk chemical reaction process in solids.

  20. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  1. Electrical and Electrochemical Properties of Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Thanh-Hai Le

    2017-04-01

    Full Text Available Conducting polymers (CPs have received much attention in both fundamental and practical studies because they have electrical and electrochemical properties similar to those of both traditional semiconductors and metals. CPs possess excellent characteristics such as mild synthesis and processing conditions, chemical and structural diversity, tunable conductivity, and structural flexibility. Advances in nanotechnology have allowed the fabrication of versatile CP nanomaterials with improved performance for various applications including electronics, optoelectronics, sensors, and energy devices. The aim of this review is to explore the conductivity mechanisms and electrical and electrochemical properties of CPs and to discuss the factors that significantly affect these properties. The size and morphology of the materials are also discussed as key parameters that affect their major properties. Finally, the latest trends in research on electrochemical capacitors and sensors are introduced through an in-depth discussion of the most remarkable studies reported since 2003.

  2. Evaluation of Electrochemical Treatment of Chloride Contaminated Mortar Containing GGBS

    Directory of Open Access Journals (Sweden)

    Ki Hong Lee

    2017-01-01

    Full Text Available The present study concerns the influence of cementitious binder on electrochemical treatment of steel embedded in salt contaminated mortar. As binder, ordinary Portland cement (OPC and ground granulated blast furnace slag (GGBS were used and the current density of 250–750 mA/m2 was applied for 4 weeks to complete electrochemical chloride extraction. To evaluate the effect of electrochemical treatment the chloride profile and corrosion behaviour covering chloride concentration, galvanic current density, linear polarization resistance, open circuit potential, and mass loss were measured. An increase in the applied direct current density resulted in a decrease in the chloride concentration at the vicinity of steel, accompanying the mitigated corrosion damage. The performance of electrochemical treatment was more remarkable in mortar containing GGBS presumably due to binding mechanism. However, corrosion damage was more detrimental in GGBS rather than OPC at a given potential, while GGBS had superior corrosion resistance to a corrosive environment and treatment conditions. Therefore, the electrochemical treatment should be conducted prudently to evaluate the corrosion state of embedded steel depending on binder type.

  3. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  4. Electrochemical Impedance Spectroscopy Of Metal Alloys

    Science.gov (United States)

    Macdowell, L. G.; Calle, L. M.

    1993-01-01

    Report describes use of electrochemical impedance spectroscopy (EIS) to investigate resistances of 19 alloys to corrosion under conditions similar to those of corrosive, chloride-laden seaside environment of Space Transportation System launch site. Alloys investigated: Hastelloy C-4, C-22, C-276, and B-2; Inconel(R) 600, 625, and 825; Inco(R) G-3; Monel 400; Zirconium 702; Stainless Steel 304L, 304LN, 316L, 317L, and 904L; 20Cb-3; 7Mo+N; ES2205; and Ferralium 255. Results suggest electrochemical impedance spectroscopy used to predict corrosion performances of metal alloys.

  5. Webinar: Making the Connection: Linking IAQ, Energy Efficiency and Preventive Maintenance Together for Healthy Schools

    Science.gov (United States)

    A page to register to view the February 22, 2018, Energy Savings Plus Health for Schools Webinar Series Webinar: Making the Connection: Linking IAQ, Energy Efficiency and Preventive Maintenance Together for Healthy Schools

  6. Alternative power supply and dump resistor connections for similar, mutually coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains ''coupling'' resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  7. Alternative power supply and dump resistor connections for similar, mutally coupled, superconducting coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Wang, S.T.

    1983-01-01

    Alternative methods of connecting similar mutually coupled coils to their power supplies and dump resistors are investigated. The circuits are evaluated for both operating and fault conditions. The factors considered are the voltage to ground during a dump, short circuits, open circuits, quenches, and failure of the protection system to detect a quench. Of particular interest are the currents induced in coils that remain superconducting when one or more coils quench. The alternative connections include combined power supplies, individual dump resistors, combined resistors and series and parallel dump resistors. A new circuit that contains coupling resistors is proposed. The coupling resistors do not affect normal fast dumps but reduce the peak induced currents while also reducing the energy rating of the dump resistors. Another novel circuit, the series circuit with diodes, is discussed. The MFTF-B central-cell solenoids are used as an example

  8. Flushing Enhancement with Vibration and Pulsed Current in Electrochemical Machining

    Directory of Open Access Journals (Sweden)

    Zhujian Feng

    2017-12-01

    Full Text Available This research aims to understand flushing of by-products in electrochemical machining (ECM by modeling and experimentally verifying mechanism of particle transport in inter-electrode gap under low frequency vibration. A series of hole were drilled on steel plates to evaluate the effect of vibration on material removal rate and hole quality. Infinite focus optical technique was used to capture and analyze the three-dimensional images of ECM'ed features. Experimental results showed that maximum machining depth and minimum taper angle can be achieved when vibrating the workpiece at 40 Hz and 10 µm amplitude. Simulation results showed that the highest average flushing speed of 0.4 m/s was obtained at this vibration frequency and amplitude. Machining depth and material removal rate has a positive correlation with the average flushing speed. Sharper ECM’ed profile is obtained since the taper angle is favorably reduced at high average flushing speed.

  9. Electrochemical impedance characterization of FeSn2 electrodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Chamas, M.; Lippens, P-E.; Jumas, J-C.; Hassoun, J.; Panero, S.; Scrosati, B.

    2011-01-01

    Highlights: → In this paper we study a tin based, FeSn 2 , high capacity lithium-alloying electrode. → The electrochemical performance of this electrode in lithium batteries is remarkably influenced by the current rate. → This aspect is investigated by electrochemical techniques such as galvanostatic cycling and impedance spectroscopy. → The results demonstrated that the good electrochemical behavior of the electrode at the higher currents is due to the formation of a stable solid electrolyte interphase (SEI) film. - Abstract: This work reports the electrochemical characterization of a micro-scale FeSn 2 electrode in a lithium battery. The electrode is proposed as anode material for advanced lithium ion batteries due to its characteristics of high capacity (500 mAh g -1 ) and low working voltage (0.6 V vs. Li). The electrochemical alloying process is studied by cyclic voltammetry and galvanostatic cycling while the interfacial properties are investigated by electrochemical impedance spectroscopy. The impedance measurements in combination with the galvanostatic cycling tests reveal relatively low overall impedance values and good electrochemical performance for the electrode, both in terms of delivered capacity and cycling stability, even at the higher C-rate regimes.

  10. Metal Oxide Materials and Collector Efficiency in Electrochemical Supercapacitors

    Science.gov (United States)

    2010-12-01

    However, even if thick tita - nium films and/or nanostructured layers were obtained using these methods, they were composed of non-conducting titanium...following electrochemical reduction in LiClO4/acetonitrile. Table 1 reports the electrochemical parameters and the atomic composition of the tita - nium

  11. (Bio)electrochemical ammonia recovery

    NARCIS (Netherlands)

    Kuntke, P.; Sleutels, T.H.J.A.; Rodríguez Arredondo, M.; Georg, S.; Barbosa, S.G.; Heijne, Ter A.; Hamelers, Hubertus V.M.; Buisman, C.J.N.

    2018-01-01

    In recent years, (bio)electrochemical systems (B)ES have emerged as an energy efficient alternative for the recovery of TAN (total ammonia nitrogen, including ammonia and ammonium) from wastewater. In these systems, TAN is removed or concentrated from the wastewater under the influence of an

  12. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  13. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  14. Multifunctional Graphene-based Hybrid Nanomaterials for Electrochemical Energy Storage.

    Science.gov (United States)

    Gupta, Sanju

    Intense research in renewable energy is stimulated by global demand of electric energy. Electrochemical energy storage and conversion systems namely, supercapacitors and batteries, represent the most efficient and environmentally benign technologies. Moreover, controlled nanoscaled architectures and surface chemistry of electrochemical electrodes is enabling emergent next-generation efficient devices approaching theoretical limit of energy and power densities. This talk will present our recent activities to advance design, development and deployment of composition, morphology and microstructure controlled two- and three-dimensional graphene-based hybrids architectures. They are chemically and molecularly bridged with carbon nanotubes, conducting polymers, transition metal oxides and mesoproprous silicon wrapped with graphene nanosheets as engineered electrodes for supercapacitor cathodes and battery anodes. They showed significant enhancement in terms of gravimetric specific capacitance, interfacial capacitance, charging-discharging rate and cyclability. We will also present fundamental physical-chemical interfacial processes (ion transfer kinetics and diffusion), imaging electroactive sites, and topography at electrode/electrolyte interface governing underlying electrochemical mechanisms via scanning electrochemical microscopy. KY NSF EPSCoR.

  15. Water-mediated electrochemical nano-writing on thin ceria films

    International Nuclear Information System (INIS)

    Yang, Nan; Doria, Sandra; Tebano, Antonello; Licoccia, Silvia; Balestrino, Giuseppe; Kumar, Amit; Arruda, Thomas M; Jesse, Stephen; Ivanov, Ilia N; Baddorf, Arthur P; Strelcov, Evgheni; Kalinin, Sergei V; Jang, Jae Hyuck; Borisevich, Albina Y

    2014-01-01

    Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO 2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing. (paper)

  16. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  17. Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece

    Science.gov (United States)

    Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E.

    2018-06-01

    The seismic hazard assessment in the area of Greece is attempted by studying the earthquake network structure, such as small-world and random. In this network, a node represents a seismic zone in the study area and a connection between two nodes is given by the correlation of the seismic activity of two zones. To investigate the network structure, and particularly the small-world property, the earthquake correlation network is compared with randomized ones. Simulations on multivariate time series of different length and number of variables show that for the construction of randomized networks the method randomizing the time series performs better than methods randomizing directly the original network connections. Based on the appropriate randomization method, the network approach is applied to time series of earthquakes that occurred between main shocks in the territory of Greece spanning the period 1999-2015. The characterization of networks on sliding time windows revealed that small-world structure emerges in the last time interval, shortly before the main shock.

  18. Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review.

    Science.gov (United States)

    Wang, Yi-Han; Huang, Ke-Jing; Wu, Xu

    2017-11-15

    Layered transition metal dichalcogenides (TMDCs) comprise a category of two-dimensional (2D) materials that offer exciting properties, including large surface area, metallic and semi-conducting electrical capabilities, and intercalatable morphologies. Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. TMDCs nanomaterials have been widely applied in various electrochemical biosensors with high sensitivity and selectivity. The marriage of TMDCs and electrochemical biosensors has created many productive sensing strategies for applications in the areas of clinical diagnosis, environmental monitoring and food safety. In recent years, an increasing number of TMDCs-based electrochemical biosensors are reported, suggesting TMDCs offers new possibilities of improving the performance of electrochemical biosensors. This review summarizes recent advances in electrochemical biosensors based on TMDCs for detection of various inorganic and organic analytes in the last five years, including glucose, proteins, DNA, heavy metal, etc. In addition, we also point out the challenges and future perspectives related to the material design and development of TMDCs-based electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Automatic devices for electrochemical water treatment with cooling of electrolyte

    Directory of Open Access Journals (Sweden)

    Trišović Tomislav Lj.

    2016-01-01

    Full Text Available The most common disinfectants for water treatment are based on chlorine and its compounds. Practically, water treatments with chlorine compounds have no alternative, since they provide, in comparison to other effective processes such as ozonization or ultraviolet irradiation, high residual disinfection capacity. Unfortunately, all of chlorine-based compounds for disinfection tend to degrade during storage, thus reducing the concentration of active chlorine. Apart from degradation, additional problems are transportation, storage and handling of such hazardous compounds. Nowadays, a lot of attention is paid to the development of electrochemical devices for in situ production of chlorine dioxide or sodium hypochlorite as efficient disinfectants for water treatment. The most important part of such a device is the electrochemical reactor. Electrochemical reactor uses external source of direct current in order to produce disinfectants in electrochemical reactions occurring at the electrodes. Construction of an electrochemical device for water treatment is based on evaluation of optimal conditions for electrochemical reactions during continues production of disinfectants. The aim of this study was to develop a low-cost electrochemical device for the production of disinfectant, active chlorine, at the place of its usage, based on newly developed technical solutions and newest commercial components. The projected electrochemical device was constructed and mounted, and its operation was investigated. Investigations involved both functionality of individual components and device in general. The major goal of these investigations was to achieve maximal efficiency in extreme condition of elevated room temperature and humidity with a novel device construction involving coaxial heat exchanger at the solution inlet. Room operation of the proposed device was investigated when relative humidity was set to 90% and the ambient temperature of 38°C. The obtained

  20. Fabrication of a miniaturized cell using microsystem technologies for electrochemical applications

    International Nuclear Information System (INIS)

    Lakard, Boris; Jeannot, Jean-Claude; Spajer, Michel; Herlem, Guillaume; Labachelerie, Michel de; Blind, Pascal; Fahys, Bernard

    2005-01-01

    A new type of electrochemical cell has been developed for use in electrochemical, chemical and biological applications. Using a platinum microelectrode as working electrode, this cell incorporates a silver microelectrode as reference electrode. These microelectrodes, whose area is equal to 1 μm 2 , were fabricated using photolithography, sputtering, and focused ion beam (FIB) technologies since these micro-fabrication techniques allow us to develop miniaturized electrochemical cells useful either for nanoelectrochemistry or biosensors applications. In this study, we show it is possible to coat a surface by chemical or biological compounds by immersing the microelectrodes in a solution, then setting a difference of potential between the two microelectrodes of the cell. For example, we used this miniaturized cell to realize the electrochemical polymerization of aniline into polyaniline to show that this electrochemical cell is efficient to coat a surface with a thin film of polymer